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DETECCIÓN ADAPTATIVA Y AUTOMÁTICA DE VOCALIZACIONES DE
MANATÍES UTILIZANDO TRANSFORMERS

En el campo de la conservación, es esencial contar con herramientas para estimar la po-
blación de diferentes especies. Particularmente para los manatíes, los métodos convencionales
para estimar su población son bastante costosos y conllevan numerosos desafíos logísticos.
En este contexto, y considerando que los manatíes frecuentemente producen vocalizaciones
bajo el agua, el uso de grabaciones acústicas pasivas para contar manatíes y estimar el ta-
maño de su población se ha vuelto una opción cada vez más popular entre los expertos en
conservación.

La metodología estándar consiste en implementar etapas de eliminación de ruido, detección
y clasificación de manera independiente, donde las dos primeras son ajustadas por expertos,
dejando sin opción de generalizar la solución para trabajar con audios grabados en diferentes
entornos. Este trabajo aborda este problema y propone un enfoque novedoso que permite
detectar llamadas de manatíes en grabaciones de audio y adapta la solución a diferentes
fuentes de datos, posibilitando su implementación en varios ambientes habitados por esta
especie, mediante la implementación de una solución de extremo a extremo donde las etapas
de eliminación de ruido y clasificación se ajustan juntas bajo un marco de entrenamiento de
aprendizaje profundo.

Los resultados obtenidos muestran que, aunque la solución de extremo a extremo obtiene
un recall del 91 %, al observar la métrica de precisión, su desempeño es peor que el modelo
de clasificación por sí solo, obteniendo una puntuación de precisión del 71 %. Este trabajo
aún está en curso, por lo que aún queda trabajo por hacer para mejorar estos resultados.
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Chapter 1

Introduction

In any species conservation program, it is essential to be able to estimate the number of
individuals that exist in a given geographic location in order to carry out management. In
the case of manatees, aerial and sonar studies have been carried out to make this estimate
(Ackerman, 1995). However, these approaches suffer from detection limitations, logistical
problems, and are relatively expensive. In the past decade the detection of marine mammal
sounds through passive acoustic monitoring (PAM) has been widely used due to its low
cost and non-invasive implementation in the deployed environment (Castro et al., 2015).
Through PAM, it is possible to detect vocalizations of different marine species and thus
estimate the number of individuals. For this purpose, it is necessary for these species to emit
sounds that can be captured by underwater microphones, also known as hydrophones. The
antillean manatee, Trichechus manatus, is characterized as a marine mammal that constantly
emits sounds of various kinds (Phillips et al, 2003), enabling the use of PAM to manage its
conservation through the processing of these underwater recorded sounds.

There are studies aiming to count how many different individuals are identified in an
audio segment, using both classical signal processing techniques[1, 2] and deep learning
approaches[3]. The implemented methodology in these studies is characterized by a denoi-
sing stage, where noise is removed from the audio, a detection stage that seeks to discard
audio segments without vocalizations, a classification stage where the detected audio seg-
ments are classified, and finally, a counting stage where unsupervised techniques are used for
segmentation and identification of different individuals. These studies have the particularity
of processing audio with the need for the expert choice of multiple hyperparameters through
experimentation, limiting the solution to working with data from the same source and not
allowing generalization to audios recorded in other environments.

This study addresses this issue by proposing a novel modeling approach that allows adap-
ting the solution to work with audio from different sources, where the hyperparameters used
in the denoising and classification stages are learned through signal processing and deep
learning techniques using an end-to-end architecture.

The implemented methodology is summarized in Figure 4.1. It consists of 3 main stages.
The first stage involves the denoising step, where power spectral floor denoising technique
presented by Tobar et al.[4] is applied. This technique uses Fourier analysis to remove noise
from audio segments by attenuating the frequencies most present in a characteristic noise
window, known as the power spectral floor window, and consequently enhance the frequencies
that do not correspond to background noise. The second stage is the generation of time-
frequency representation of audios where the denoised audio segments are transformed
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to spectrograms to get a more expressive version of the audio waveforms where we can see the
evolution of frequency components of the signals over time. Finally a classification stage
is implemented, where the spectrograms representation of the audio segments are passed
through an Audio Spectrogram Transformer model (AST) that generates predictions. The
predictions are then evaluated by computing the loss in conjunction with the labels, and the
error is propagated back to the first stage. Both stages are interconnected within a training
framework, making the solution end-to-end and allowing the parameters of both the denoise
and classification stages to be learned together and thus ensure that the solution is capable
of adapting to audio that has been recorded in different environments.

To test this methodology, manatee audio recordings from ZooParc de Beauval & Beauval
Nature in France, provided by the ECOSUR foundation in collaboration with C-MINDS un-
der the project A Machine Learning Approach to better understand and protect Marine Mam-
mals in Latin America and the Caribbean: the case of the manatee funded by Google under
the AI for social good program, are being used. The dataset consists of 20 audio sessions,
with an average duration of 10 minutes each, where less than 1 % of the time corresponds
to manatee vocalizations. The denoising and classification stages were tested independently
and also they were trained together to validate our proposal. Regarding the audio denoising
stage, the results shows that the power spectral denoising successfully attenuates frequencies
from background noise and enhances the frequencies of the vocalization and, on the other
hand, in the classification stage, the implemented model successfully identifies, more than
80 % of all vocalizations with a precision over 80 %. When both models are trained together,
the results drop regarding to the classification model by it self, demonstrating that capability
of the AST to perform well without the need to used denoised audios as inputs. Even though
this results do not validate our proposal, we strongly think that this is a consequence of
using data recorded in a Zoo, where background noise might not be as relevant as for audios
recordings in real hábitats of the manatee. Also, we conclude that noise can even help the
model to discriminate better between positive a negative classes, as the AST model used,
was pretrained on noisy data.
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Chapter 2

Background

2.1. Manatee monitoring
2.1.1. Importance of monitoring manatee populations

Monitoring manatee populations is of paramount importance due to the manifold roles
these marine mammals play in ecosystems and their status as vulnerable or endangered
species[5]. The data generated from monitoring efforts are instrumental in assessing and
refining conservation strategies aimed at safeguarding manatees from threats like boat stri-
kes, habitat loss, and pollution[6]. Beyond their charismatic presence, manatees serve as
critical indicators of ecosystem health, particularly in relation to seagrass beds and aqua-
tic vegetation. As herbivores, their feeding habits influence the balance of underwater flora,
establishing them as keystone species with a profound impact on biodiversity. Moreover, ma-
natees’ sensitivity to changes in water quality makes them invaluable sentinels for detecting
environmental degradation caused by pollution, thus enabling timely interventions[7]. The
monitoring of manatee populations also contributes to our understanding of the effects of
climate change on these creatures and their habitats, providing essential data for adaptive
measures. Scientific research into manatee behavior, migration patterns, and reproduction
enhances our knowledge base, informing effective conservation management. By serving as
ambassadors for marine conservation, manatees contribute to public awareness and educa-
tion, fostering a sense of responsibility and promoting sustainable practices. Additionally, the
population data derived from monitoring efforts play a pivotal role in shaping legal and po-
licy decisions, influencing regulations and initiatives aimed at ensuring the long-term survival
of these species. In essence, monitoring manatee populations is a multidimensional endea-
vor with far-reaching implications for ecological balance, biodiversity maintenance, and the
broader well-being of aquatic environments.

Manatee population monitoring has undergone a long journey, evolving from sporadic ob-
servations to sophisticated, technology-driven methods aimed at understanding and safeguar-
ding these marine mammals. Initial population surveys in the 1970s and 1980s relied on aerial
and boat-based counts to provide baseline data on manatee numbers and distribution[8]. Sub-
sequent decades witnessed the advent of tagging and tracking studies using satellite and radio
telemetry, offering insights into manatee movements and habitat use[9]. Aerial surveys beca-
me a standard method for estimating populations, especially in Florida and the Caribbean.
The 21st century ushered in a new era with the introduction of acoustic monitoring, uti-
lizing hydrophones to capture and analyze manatee vocalizations. The integration of these
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technologies represents a paradigm shift, enhancing the efficiency, accuracy, and real-time ca-
pabilities of manatee population assessments[1]. Collaborative conservation efforts involving
government agencies, non-profit organizations, and research institutions underscore the im-
portance of standardized monitoring methodologies and data-sharing practices. The ongoing
evolution of manatee population monitoring reflects a commitment to informed conservation
strategies and the long-term well-being of these vulnerable marine mammals.

2.1.1.1. Manatee population monitoring overview

Traditional methods for monitoring manatee populations, including aerial surveys, boat-
based counts, and tagging studies, have played crucial roles in providing foundational data
but are accompanied by distinct limitations. Aerial surveys, conducted via manned or un-
manned aircraft, offer expansive coverage and a comprehensive view of manatee habitats.
However, they are susceptible to weather conditions, with factors like cloud cover and rough
seas impacting visibility[8]. The approach provides snapshot assessments, potentially over-
looking variations in manatee distribution over time and submerged individuals, particularly
in turbid or densely vegetated waters. Boat-based counts, involving visual observations from
watercraft, offer proximity and individual identification capabilities. Yet, these surveys can
be logistically challenging, requiring substantial resources and time, and are sensitive to dis-
turbances that may alter manatee behavior during observations[10]. Tagging and tracking
studies, leveraging satellite or radio telemetry, yield valuable insights into manatee move-
ments and behavior. However, the invasive nature of tagging, potential risks to manatees,
and the finite lifespan of tags limit the scalability and long-term tracking capabilities of this
method. Moreover, traditional methods face challenges related to data accuracy, resolution,
and the inability to capture nocturnal behaviors, as well as limitations in temporal cove-
rage, providing periodic snapshots rather than continuous monitoring[3]. The integration of
advanced technologies, such as acoustic monitoring and automated analysis, addresses these
limitations, offering a more comprehensive, continuous, and non-invasive approach to mana-
tee population monitoring, essential for refining conservation and management strategies.

The limitations inherent in traditional methods of manatee population monitoring un-
derscore the critical need for more advanced and accurate counting methodologies. Aerial
surveys and boat-based counts, while foundational, are subject to environmental variables
and logistical challenges that compromise their reliability and precision. Weather conditions,
such as cloud cover or rough seas, can impede visibility during aerial surveys, potentially lea-
ding to underestimations or incomplete assessments of manatee populations[8]. Boat-based
counts, while offering a close-up perspective, are resource-intensive, logistically challenging,
and sensitive to disturbances that may alter manatee behavior during observations. Mo-
reover, these methods provide intermittent snapshots, failing to capture the dynamic and
nocturnal aspects of manatee behavior, thus limiting the temporal resolution of population
assessments[10]. Tagging and tracking studies, while informative, are invasive, pose potential
risks to manatees, and have practical constraints regarding scalability and tracking duration.
The imperative for more advanced and accurate counting methods is evident in the quest
for continuous, non-invasive, and scalable approaches that can overcome the limitations of
traditional techniques. Such advancements are vital for achieving a nuanced understanding
of manatee populations, identifying temporal and spatial variations, and responding effecti-
vely to conservation challenges. The integration of cutting-edge technologies, exemplified by
acoustic monitoring and automated analysis, represents a paradigm shift towards achieving
these goals. These advanced methods not only enhance accuracy and efficiency but also of-
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fer real-time capabilities, ensuring a more comprehensive and timely assessment of manatee
populations.

The use of audio recordings has emerged as a pivotal method in monitoring manatee
populations, introducing a non-invasive and technologically advanced approach to counting
individuals[1]. Manatees, known for their unique vocalizations encompassing various sounds,
offer a rich source of information crucial for communication, social interactions, and environ-
mental awareness. Deploying hydrophones in their habitats enables researchers to tap into
this acoustic landscape, providing a non-invasive means to gather critical data. The conti-
nuous, 24/7 surveillance afforded by audio recordings addresses limitations associated with
traditional methods, offering insights into manatee behavior around the clock, including noc-
turnal activities and responses to environmental changes. The non-invasive nature of acoustic
monitoring aligns with ethical considerations, avoiding physical contact or disturbances that
may impact the well-being of manatees. Individual recognition through acoustic signatures
allows for a more specific understanding of population dynamics, including social structu-
res, migration patterns, and habitat preferences. Technological advancements, particularly in
automated sound analysis and machine learning[3], further enhance the rationale for audio
recordings by facilitating efficient processing of large datasets, ensuring accurate and scalable
population assessments.

2.2. Related work
Various techniques and methodologies have been employed to detect manatee vocalizations

from audio recordings, reflecting the dynamic landscape of technological innovations in marine
mammal research. One common approach involves sound analysis utilizing signal processing
algorithms. Several studies have used this approach, where they take advantage of two main
characteristics of manatee vocalization, the strong harmonic content, as shown in Figure
2.1 and the slow decaying autocorrelation function[11]. A traditional methodology that has
been established in the detection of manatee vocalizations consists of first implementing a
denoising algorithm that is capable of attenuating the background noise, then a detection
stage is implemented to quickly discard audio segments that do not contain vocalizations and
finally a classification algorithm is responsible for taking the audios detected and classifying
them into manatee vocalizations and non-manatee vocalizations.

Figure 2.1: Three examples of different manatee vocalizations (Castro and
Rivera 2015).
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Merchan et al. (2019) introduces a method for automatically detect manatee individuals
in continuous passive acoustic underwater recordings. The process involves four stages: detec-
tion, denoising, classification, and manatee counting with identification through vocalization
clustering. For out interest, we will only go deeper on the first three stages. In this metho-
dology, the detection stage utilizes a modified version of Gur’s denoising algorithm (2007),
conducting a multi scale signal analysis to identify harmonic and sub-harmonic components
based on specific criteria, based on the autocorrelation function, passband filters and dura-
tion of the vocalizations. For denoising stage, they proposed a signal subspace approach that
is based in decomposing the vector space of the noisy signal into a signal subspace and a
noise subspace. The decomposition is obtained using the Karhunen-Loeve transform (KLT).
For denoising the signal, the noise subspace is removed by projecting the noised signal in
a filtering matrix consisting of components obtained by the KLT of this signal. A modified
version of the harmonic detection method, originally proposed by Niezrecki et al. (2003), has
been developed for the classification stage. In the original method, the fundamental frequency
of vocalizations is estimated by analyzing peaks in the FFT spectrum, and detection is con-
firmed if at least two harmonics are present. The modified version introduces two additional
criteria. Firstly, it verifies that the amplitude of the FFT spectrum in a specified percentage
of the frequency band between harmonic components is below a given threshold, accounting
for possible subharmonic components. Secondly, when only one harmonic is present (as in
some manatee vocalizations), it checks that the amplitude of the FFT spectrum in its vici-
nity is also below a specified threshold, as indicated by Williams (2005). The results of this
method has an average recall of 60 %.

Castro et al (2015) also used the standard methodology, and for the denoising method the
undecimated discrete wavelet transform and the autocorrelation function were implemented.
Initially, the noisy signal undergoes high-pass filtering at 2 kHz to remove noise outside
the vocalization bandwidth. Subsequently, the Daubechis-8 family Undecimated Discrete
Wavelet Transform (UDWT) with four decomposition levels is applied to 3 ms windows
of the signal. Autocorrelation functions are computed for wavelet coefficients at each level,
and Root Mean Square (RMS) values are derived from lag τ = 20 to τ = 120 samples
to distinguish between slow and fast decaying envelopes, indicative of manatee calls and
noise, respectively. Finally the resulting RMS matrix is smoothed using a 22-point (80 ms)
moving average filter to mitigate noise transients. The proposed detection algorithm relies
on a matched filter and statistical information concerning fundamental frequency (F0) and
peak frequency (Fp). The detection algorithm is shown in Figure 2.2 and involves segmenting
the denoised signal using 40 ms Hanning windows with 50 % overlap, where each segment is
scored based on its similarity to a manatee call, with the score ranging from -1 to 1. The
scoring process considers factors such as the RMS of the signal and the FFT magnitude to
identify the peak frequency Fp in the range 2–12 kHz. Fp is assumed to be a harmonic of
F0, and candidates for F0 are selected within the range of 1–6 kHz. Each F0 candidate is
assigned a score based on the median prominence of up to ten harmonics below 25 kHz.
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Figure 2.2: Block diagram of the detection method (Castro and Rivera
2015).

A moving average is applied to scores, and a fixed threshold detects manatee vocalizations
while filtering out sequences of inadequate durations. The denoising algorithm aids in isola-
ting manatee calls by silencing their surroundings and its output is a binary signal indicating
manatee call occurrences through sequences of ones.

This work (Castro et al. 2015) concludes the importance of using a denoising algorithm
before doing the detection, since the precision of manatee vocalization classification varies
from 10 % to 97 % if the first stage is not used.

Another study carried out by Merchan et al. (2020) propose a comprehensive scheme
for identifying and counting manatees using underwater passive recordings, aiming to en-
hance population estimates in Panamanian wetlands. The four-stage methodology includes
detection, denoising, signal classification, and individual counting and identification through
vocalization clustering. The denoised algorithm uses Boll’s spectral subtraction method[12]
to minimize the presence of noise or unwanted artifacts in signals where vocalizations were
present. This denoising method had a significantly lower computational cost that the signal
subspace approach used previously[2]. The detection stage was the same used in his for-
mer work[2]. In this work, for the first time, deep learning techniques are introduced for
the classification stage. To do this, the vocalizations detected from the previous stages are
transformed in a time-frequency representation, specifically through spectrograms, to later
be classified using Convolutional Neural Networks (CNN). To create the spectrograms, they
used the FFT-based short-time Fourier transform with 50 % overlapping windows containing
1024 samples. This window size was chosen to get a balance between temporal and frequency
resolution suitable for the 96 kHz sampling frequency. Regardless of signal duration, zero-
padding and centering were applied to ensure uniformity, resulting in spectrograms with a
fixed size of 257 × 150 pixels. In this study the authors tried different architectures for the
CNN with different types of spectrogram generation, and got average recalls of 88 % with
precision nearly about 95 %.

2.3. Theoretical framework
2.3.1. Fourier Transform

Signal processing techniques play a pivotal role in analyzing and manipulating signals
to extract valuable information. One of the fundamental and widely employed methods in
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signal processing is the Fourier Transform, a mathematical operation that decomposes a signal
into its frequency components. This technique, named after Joseph Fourier, has become a
cornerstone in various scientific and engineering applications due to its ability to provide
insights into the frequency domain of a signal.

The Fourier Transform essentially allows us to represent a signal in terms of its frequencies
components, offering a powerful tool for understanding and manipulating signals in both
continuous and discrete domains. In digital signal processing, where signals are discretized
into digital samples, the Discrete Fourier Transform (DFT) is employed and is particularly
useful in applications like telecommunications and image processing. One of the most efficient
algorithms for computing the DFT is the Fast Fourier Transform (FFT), which dramatically
reduces the computation time compared to direct computation, making it suitable for real-
time applications.

Fourier transform represents a signal in the frequency domain, revealing the amplitude
and phase information of various sinusoidal components that make up the original signal as
shown in Figure 2.3.

Discrete Fourier Transform (DFT): X[ω] =
N−1∑
n=0

x[n]e−iωn (2.1)

The mathematical representation of the DFT is shown in equation 2.1, where we can
notice that each Fourier coefficient (left side of the equation) is a sum of complex sinusoids,
since eulers formula indicates eix = cos(x) + isen(x). In eq. 1.1, N is the total samples of
a discrete signal, x[n] is the amplitude of the signal in the specific sample n and f is the
frequency component being analyzed. Here, X[f ] represents the amplitude and phase of the
k-th frequency component in the discrete signal x[n]. The sum considers all samples of the
signal, effectively breaking it down into its frequency constituents.

Figure 2.3: Signal decomposition by Fourier Trasform.

Interpretation of the Fourier Transform:
• Amplitude Spectrum: the magnitude of X(f) indicates the strength or amplitude of

each frequency component in the signal.
• Phase Spectrum: the phase of X(f) provides information about the phase relationship
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between the different frequency components.

• Frequency Components: each term in the Fourier Transform corresponds to a sinu-
soidal waveform at a specific frequency. The integral or sum evaluates the contribution
of each frequency to the signal.

• Complex Exponentials: the use of complex exponentials in the Fourier Transform
allows for the representation of both sine and cosine components, as well as their phase
relationships.

A Specific type of FT is the Short time Fourier transform (STFT). This is a signal proces-
sing technique that provides a time-varying frequency analysis of a signal. It is an extension
of the traditional Fourier Transform, allowing us to examine the changing frequency con-
tent of a signal as it evolves over time. This is particularly useful for analyzing signals with
non-stationary characteristics, where the frequency components may vary with time.

The STFT is defined by applying the Fourier Transform to short, overlapping windows of
the signal. Instead of analyzing the entire signal at once, the signal is divided into segments,
and the Fourier Transform is computed for each segment. The use of overlapping windows
helps capture the evolution of frequency components across adjacent time intervals.

Mathematically, the continuous STFT of a signal x(t) is given by equation 2.2 and its
discrete version on equation 2.3.

STFT{x(t)}(τ, ω) ≡ X(τ, ω) =
∫ ∞

−∞
x(t)w(t − τ)e−iωt dt (2.2)

STFT{x[n]}(m, ω) ≡ X(m, ω) =
N−1∑
n=0

x[n]w[n − m]e−iωn (2.3)

For the discrete case, but for the continuous is the same logic, X[m, k] represents the
STFT at time index m and frequency ω, x[n] is the discrete signal, w[n − m] is a window
function centered at time index m, and N is the total number of samples. This algorithm
have some key features important highlight, firstly there is a time-frequency tradeoff that
allows a compromise between time and frequency resolution. While short windows provide
better temporal resolution but poorer frequency resolution, longer windows provide better
frequency resolution but poorer temporal resolution. Secondly the choice of the window fun-
ction is critical in shaping the characteristics of the STFT and overlapping used between
windows helps to mitigate spectral leakage and provide a smoother transition between adja-
cent time intervals. Lastly, the result of the STFT is often represented as a Spectrogram, a
two-dimensional plot with time on one axis, frequency on the other, and color intensity indi-
cating the magnitude of the frequency components. This algorithm is very used in task like
speech recognition, music analysis and identifying patterns in audio signals. In recent years,
the application of the Fourier Transform has expanded with advancements in technology.
Real-time processing, particularly in audio and video streaming, relies heavily on efficient
Fourier Transform algorithms. Additionally, the integration of machine learning techniques
with signal processing has led to innovative approaches in signal denoising, classification, and
feature extraction. An example of Spectrogram was shown in Figure 2.1 of previous section.
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2.3.2. Deep Learning and Deep Neural Networks
Since last 2 decades Deep Learning, with its Deep Neural Networks (DNNs), have revo-

lutionized the field of IA, learning intricate patterns and excelling other techniques in tasks
like image recognition and natural language processing (NLP), leveraging depth for complex
representation learning. The basis of deep learning lies in the utilization of artificial neu-
ral networks (ANN), drawing inspiration from the structure and functioning of the human
brain, consisting of multiple layers of interconnected nodes or neurons, where each of them
processes and transforms input data, allowing it to automatically learn intricate features and
representations from raw data. The perceptron is the simplest form of a neural network unit,
which is an algorithm for learning a binary classifier called a threshold function, a function
that maps its input x (a real-valued vector) to an output value f(x) (a single binary value).
The perceptron is a foundational building block in neural networks, capable of learning linear
decision boundaries and forming the basis for more complex neural network architectures.

f(x) = θ(w · x + b) (2.4)

Equation 2.4 shows the perceptron, where θ is the step-function, w is a vector of real-
valued weights, w · x is the dot product ∑m

i=1 wixi, where m is the number of inputs to the
perceptron, and b is the bias. The bias shifts the decision boundary away from the origin and
does not depend on any input value.

2.3.2.1. DNN structure, layers, and activation functions.

Deep Neural Networks (DNNs) are the backbone of modern artificial intelligence, renowned
for their ability to learn complex patterns in diverse tasks. As shown in Figure 2.4, a DNN
is characterized by its layered architecture, typically comprising an input layer, one or more
hidden layers, and an output layer. Each layer consists of interconnected nodes, or neurons,
and is responsible for transforming the input data through a set of learnable parameters,
known as weights.

Figure 2.4: Example of a deep neural network arquitecture[13].
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The input layer serves as the entry point for data, with each node representing a feature or
attribute. The subsequent hidden layers play a crucial role in learning hierarchical represen-
tations of the input. These layers leverage activation functions to introduce non-linearities
into the model, enabling it to capture intricate relationships in the data. The depth of a
DNN, determined by the number of hidden layers, allows it to automatically extract and
represent increasingly complex features, enhancing its capacity to understand and generalize
from diverse datasets.

Activation functions are a fundamental component of DNNs, introducing non-linearities
that enable the model to learn and approximate complex mappings between inputs and
outputs. Common activation functions include the sigmoid, hyperbolic tangent (tanh), and
Rectified Linear Unit (ReLU). Sigmoid and tanh functions squash the output between 0 and
1 or -1 and 1, respectively, and ReLU, on the other hand, replaces negative values with zero,
promoting faster convergence during training and mitigating the vanishing gradient problem.
See Figure 2.5 to get a visual interpretation of these activation functions.

(a) Sigmoid (b) Tanh

(c) ReLU (d) LeakyReLU(a=0.2)

Figure 2.5: Commonly used activation functions[14].

The choice of activation function depends on the nature of the task and the characteristics
of the data. ReLU has gained popularity for its simplicity and effectiveness in promoting
sparsity, but it may suffer from the "dying ReLU"problem where neurons can become inactive
during training. Variants like Leaky ReLU address this issue by allowing a small gradient for
negative values.

A simple mathematical representation of a neural network of only to layers is presented
in equations 2.5, 2.6, 2.7 and 2.8.

Z(1) = X · W (1) + b(1) (2.5)
A(1) = σ(Z(1)) (2.6)

Z(2) = A(1) · W (2) + b(2) (2.7)
Ŷ = σ′(Z(2)) (2.8)

Where:
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• X is the input.

• W (1) and b(1) are the weights and bias of the first layer.

• σ is the activation function.

• Z(1) is the weighted sum for the first layer.

• A(1) is the activation of the first layer.

• W (2) and b(2) are the weights and bias of the second layer.

• Z(2) is the weighted sum for the second layer.

• σ′ is the activation function of the output layer, which may vary from the activation
functions of the hidden layers.

• Ŷ is the predicted output.

The outputs of the neural network are then compared against the actual labels of the
examples using a loss function, which is chosen depending on the nature of the problem. The
prediction error is computed and then through optimization algorithms the error is propaga-
ted through the network in order to adjust its parameters in the direction of minimizing the
loss error.

2.3.2.2. Training methodologies and common challenges

Training Deep Neural Networks (DNNs) is a critical phase in realizing their potential,
involving the adjustment of model parameters to learn meaningful representations from data.
Several methodologies and techniques are employed in this process, along with challenges that
researchers and practitioners continually address.

Training key concepts
We present most important concepts and practices for training deep neural networks.

• Backpropagation: is the most fundamental training technique for DNNs. It involves
the iterative optimization of model parameters by computing gradients of the loss with
respect to each parameter and adjusting them accordingly. This process is typically faci-
litated by optimization algorithms like stochastic gradient descent (SGD) or its variants
(e.g., Adam, RMSprop), which determine the magnitude and direction of parameter
updates.

• Mini-Batch Training: instead of processing the entire dataset in one go, mini-batch
training involves dividing the data into smaller subsets. This accelerates training by
allowing for more frequent weight updates, enhancing convergence and often providing
computational efficiency.

• Regularization Techniques: to prevent overfitting, regularization techniques such as
dropout or L1/L2 regularization are commonly employed. Dropout randomly deacti-
vates neurons during training, introducing a form of ensemble learning, while L1/L2
regularization adds penalty terms to the loss function to discourage large weights.
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• Data Augmentation: data augmentation involves applying random transformations
to the training data, such as rotation, flipping or masking, to increase variability to the
dataset. This helps the model generalize better to unseen examples.

• Transfer learning: transfer learning is a technique where a model pretrained on one
task is adapted for a related task. It leverages knowledge gained from the source task
to improve performance on the target task, especially when datasets share underlying
patterns. Approaches include feature extraction, using pretrained model features as in-
put, and fine-tuning, adjusting model weights for the target task. Transfer learning is
valuable when target task data is limited, providing a way to benefit from knowledge
acquired on a larger source task.

Common Challenges
In the other hand, there are many typical challenge when facing the training of a neural

network model. We now present the most relevant ones.

• Vanishing and Exploding Gradients: in deep networks, gradients can diminish (va-
nish) or explode during backpropagation, making it challenging for the model to learn
effectively. Techniques like careful weight initialization and using activation functions
that mitigate this issue, such as ReLU, aim to address these challenges.

• Overfitting: DNNs are prone to overfitting, where the model performs well on the
training data but poorly on unseen data. Regularization techniques, proper dataset
splitting for validation, and early stopping are strategies used to mitigate overfitting.

• Computational Intensity: deep networks often require substantial computational re-
sources for training, making them computationally intensive and time-consuming. Stra-
tegies such as distributed training, model parallelism, and hardware acceleration (e.g.,
GPUs, TPUs) are employed to address these challenges.

• Hyperparameter Tuning: selecting optimal hyperparameters, such as learning rate,
batch size, and network architecture, is a non-trivial task. Grid search, random search,
and more advanced optimization techniques are used to find suitable hyperparameter
configurations.

• Data Quality and Quantity: the success of DNNs is highly dependent on the quality
and quantity of training data. Insufficient or biased data can lead to poor generalization.
Data augmentation and careful curation of diverse datasets are strategies to mitigate
these challenges.

• Interpretability and Explainability: the inherent complexity of deep networks often
makes them difficult to interpret. Understanding and explaining the decisions made by
these models is an ongoing challenge, especially in sensitive domains like healthcare and
finance.

Addressing these challenges requires a combination of domain expertise, algorithmic ad-
vancements, and continuous research. As DNNs become increasingly integral to various appli-
cations, refining training methodologies and overcoming challenges contribute to the ongoing
evolution of deep learning.
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2.3.3. Convolutional Neural Networks (CNNs)
Convolutional Neural Networks (CNNs) represent a specialized class of Deep Neural Net-

works designed to excel in processing grid-like data, most notably images. They have become
pivotal in the realm of computer vision, offering a transformative approach to feature ex-
traction and pattern recognition. Unlike traditional neural networks, CNNs leverage convo-
lutional layers to automatically learn spatial hierarchies within the input data, making them
particularly effective in tasks where the spatial arrangement of features is crucial.

The fundamental building blocks of a CNN are convolutional layers, pooling layers, and
fully connected layers, as can be seen in Figure 2.6. Convolutional layers employ filters or
kernels that slide over the input data, capturing local patterns and creating feature maps.
Pooling layers downsample the spatial dimensions of the feature maps, reducing computatio-
nal complexity while retaining important information. Fully connected layers at the end of
the network aggregate high-level features for classification or regression tasks.

Figure 2.6: Example of a convolutional deep neural network arquitecture[15].

Convolutional layers apply filters or kernels to local regions of the input data, allowing
the network to automatically learn and extract spatial features. These filters slide over the
input, performing element-wise multiplications and aggregating the results to create feature
maps. Through multiple convolutional layers, the network progressively learns abstract and
hierarchical representations, capturing complex patterns and structures within the data. The
use of non-linear activation functions, such as ReLU, introduces non-linearities and enhances
the model’s expressive power.

In the other hand, pooling layers are interleaved between convolutional layers and are
crucial for spatial down-sampling. Max pooling and average pooling are common techniques,
reducing the spatial dimensions of the feature maps while retaining essential information.
Pooling helps make the network more computationally efficient, reduces overfitting, and en-
hances translation invariance, making the model robust to variations in object positions
within the input.

Some of the main applications of CNN architectures are described below:

1. Image Classification: CNNs have revolutionized image classification tasks, surpassing
traditional methods by automatically learning hierarchical features. Applications range
from identifying objects in everyday photos to classifying medical images for diagnostic
purposes.
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2. Object Detection: CNNs are widely employed in object detection tasks, accurately
localizing and classifying objects within images. Popular architectures like YOLO (You
Only Look Once)[16] and Faster R-CNN[17] have become benchmarks in this domain,
finding applications in autonomous vehicles, surveillance, and more.

3. Semantic Segmentation: for tasks requiring pixel-level precision, such as medical ima-
ge analysis or autonomous navigation, CNNs are employed for semantic segmentation.
They assign a specific label to each pixel, delineating object boundaries within an image.

4. Facial Recognition: CNNs power facial recognition systems, enabling applications like
biometric authentication in smartphones and surveillance systems. They learn intricate
facial features, making them robust to variations in pose, lighting, and facial expressions.

2.3.4. Transformers

2.3.4.1. Overview of transformers and their attention mechanism.

Transformers represent a groundbreaking architecture in deep learning, introduced in the
seminal paper Attention is All You Need by Vaswani et al. (2017). Their innovative design
departs from traditional sequential processing methods, offering a parallelized approach that
excels in capturing long-range dependencies in sequential data. Originally designed for natural
language processing tasks like machine translation, transformers have since proven to be
versatile and applicable across various domains due to their capacity to model complex
relationships in data[18]. The big picture of Transformers arquitecture is shown in Figure
2.7.

Figure 2.7: Transformer arquitecture[19].
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At the heart of the transformer architecture lies the attention mechanism, a fundamen-
tal concept that revolutionized the way models process and contextualize information, first
introduce by Bahdanau et al. (2014)[20]. The attention mechanism enables the model to
selectively focus on different parts of the input sequence, assigning varying degrees of impor-
tance to each element. An illustrative example of this is shown in Figure 2.8. This selective
attention allows transformers to capture dependencies that span across the entire sequence,
overcoming the limitations of fixed-size receptive fields present in traditional recurrent neural
networks (RNN).

Figure 2.8: Illustrative example of how attention mechanism works for a
NLP task[21].

The attention mechanism in transformers can be broadly divided into two types, Self-
Attention or Scaled Dot-Product Attention, and Multi-Head Attention, see Figure 2.9. In
the first mechanism, the model weighs the importance of different tokens in a sequence
concerning each other. The attention score is computed by taking the dot product of the
querys (Q), representing elements in the input sequence for which the model seeks context,
keys (K), that store information about each element for reference, and value vectors (V)
that store relevant information about the context, providing a weighted sum of values for
each position in the sequence. This selective attention enables the transformer to capture
intricate dependencies in a concise and expressive manner. In the other hand, Multi-Head
Attention mechanism is used to enhance the expressive power of attention mechanisms. In
this configuration, the model learns multiple sets of attention weights in parallel, allowing
it to capture different aspects of relationships within the data. The outputs from different
attention heads are concatenated and linearly transformed to produce the final attention-
weighted representation.
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(a) Self attention. (b) Multi-Head attention.

Figure 2.9: Types of Transformer attention mechanism.

The attention mechanism facilitates the modeling of complex dependencies, enabling trans-
formers to excel in tasks like machine translation, text summarization, and question answe-
ring. Moreover, the parallelized nature of transformers makes them highly efficient for trai-
ning on modern hardware, contributing to their widespread adoption in the deep learning
community.

2.3.4.2. Vision Transfomer (ViT)

The Vision Transformer, or ViT, is a neural network architecture designed for computer
vision tasks. It is based on the Transformer architecture, motivated by the success of Trans-
formers in NLP, making researchers to explore their application in other domains. The big
picture of its architecture is presented in Figure 2.10.

Figure 2.10: ViT arquitecture[18].

Decomposing the ViT architecture into it main components.

• Patch Embedding: the input image is divided into fixed-size non-overlapping patches,
where each patch is linearly embedded into a lower-dimensional vector. This process
converts the 2D image into a sequence of embeddings, similar to how words are embedded
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in NLP tasks.

• Positional Encoding: since the Transformer architecture doesn’t inherently unders-
tand the spatial relationships between tokens, positional information is crucial. Posi-
tional encodings are added to the patch embeddings to provide information about the
position of each patch in the original image.

• Transformer Encoder: the core of the Vision Transformer is the Transformer encoder
architecture. Self-attention mechanisms are used to capture global dependencies between
different patches, allowing each patch to attend to all other patches, capturing long-range
dependencies.

• Classification Head: the final output of the transformer encoder is used for classifica-
tion. A simple classification head, often a fully connected layer, is added to predict the
class labels.

This deep neural network benefits from global context understanding, making it suitable
for tasks that require understanding relationships across the entire input, such as image clas-
sification. Also ViT can scale effectively to handle both small and large images, capturing
complex patterns when train on large datasets[22]. In addition, as other large models, it can
be pretrained on large datasets and then be fine-tuned on smaller, task-specific datasets, le-
veraging the knowledge learned and adapt it to specific visual task. Vision Transformers have
demonstrated impressive performance on various computer vision benchmarks and competi-
tions, establishing them as a powerful architecture in the field of computer vision tasks[18].

2.3.4.3. Audio Spectrogram Transformer (AST)

Audio Spectrogram Transformer (AST) is a Vision Transformer adapted to work with
audio instead of images. The essence of AST its the same as ViT, because it does not use the
audio as a waveform representation, but first transform it into Spectrograms that represent
the time-frequency content of audio signals, breaking it down into its frequency components
over time. This is a 2D representation of the audio, that can be treated as a 1 channel image,
which is exactly what AST model does. The AST architecture is shown in Figure 2.11.

Figure 2.11: AST arquitecture[22].

AST ans ViT are similar models, sharing the same components described in the ViT
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section, but AST was designed for audio-related tasks, working in the domain of audio signals,
making it suitable for tasks like speech recognition, sound classification, and audio generation.

While both AST and ViT share the underlying Transformer architecture, their applications
and specific design considerations are tailored to the characteristics of audio and visual data,
respectively. These models showcase the versatility of the Transformer architecture across
different modalities.
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Chapter 3

Objectives

3.1. General objective
Develop a methodology to detect manatee vocalizations in audio segments, ensuring adap-

tability for audios recorded in different environments, through the integration of signal pro-
cessing and deep learning techniques.

3.2. Specifics objectives
• Conduct a comprehensive literature review on existing methodologies for audio analysis,

signal processing, and deep learning techniques in the context of detecting manatee
vocalizations in audio segments.

• Develop a methodology that can adapt it solution to ensure reliable performance across
different recording settings.

• Evaluate the performance of the developed methodology through rigorous experiments,
using a labeled dataset of manatee vocalizations.

• Present a detailed analysis of the methodology’s strengths, weaknesses, and potential
areas for future improvements.

20



Chapter 4

Methodology

In this study we propose to use a novel approach that allows coupling the training of
the denoise model with the classification model so that the parameters of both models are
adjusted under the same objective, which is to be able to correctly predict the existence of
manatee vocalizations in an audio segment. To do this we create a model that we will call
joint model, which will have three main components. The first component is a denoise model,
which will be responsible for removing the background noise from the audio segments. This
model is based on the power spectral floor denoising algorithm proposed by Tobar et
al. (2021). The second stage will take this denoise audios and transform them into a time-
frequency representation, using for this the Short Time Fourier Transform. Finally we pass
this representations to a classification model, which is the last and third component of the
joint model. The model we propose to use for the classification stage is the Audio Spectro-
gram Transformer [22]. We can see the proposed methodology in Figure 4.1.The following
sections details the implementation of these three sections, along with the dataset used and
its preprocessing.

Figure 4.1: Proposed methodology.
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4.1. Dataset and preprocessing
Our study considered 20 approximately 10-minute-long audio sessions, registered in Zoo-

Parc de Beauval (Saint-Aignan, France), with a total of 3 hours of labelled data, collected
over a three-week period from November 2020 to January 2021. The sampling rate of the
recordings was 48 kHz and for each audio session there was annotations indicating all the
manatee vocalizations registered with their starting and ending time. Each recording con-
tained between 3 and 52 manatee vocalizations, and represent less than 1 % of total data.
Manatee vocalizations are in average 240 [ms] long, with a range from 100 [ms] to 600 [ms].
The audio recordings where obtained using an omnidirectional hydrophone (Aquarian Audio,
H2A-XLR, sensitivity of -180dB re: 1V/µPa, frequency range response 20 Hz to 100 kHz,)
with a Zoom H5 recorder (24-bit quantization and 48 kHz sampling rate; recording level was
set manually to 80).

Before feeding the model with this recordings, we first split each audio file into windows
of 100 [ms], with an overlap of 50 [ms]. The length of the chosen window had to be large
enough to contain the stationary part of a manatee vocalization and short enough in order
not to contain non-stationary data. Additionally, we assigned a single label for each window
and positive labels where consider when a 100 % of the vocalization was inside the windows
intervals. This segmentation gave us a total of 218.702 samples, where only 0.5 % of them
were from the positive class (containing manatee vocalization). The total dataset generated
was split in a train, validation and test set, each of them with 60 %, 20 % and 20 % of the
total examples respectively.

4.2. Denoise Stage
The denoise stage aims to minimize the presence of noise or unwanted sounds in signals

where vocalizations were present. We used power spectral floor denoising proposed by
Tobar et al. (2021), consisting on removing the power spectral floor of the recording. The
power spectral floor is calculated as the power spectrum (the squared magnitude of the
Fourier transform) of a typical noise window. This noise window is find as the 25th percentile
by ordering the windows with respect their maximum power spectrum value. However in our
implementation we don’t fix the 25th percentile, but rather we learn it during training. The
model is the following:

Fdenoised(x) = F (x) ∗ σ(α ∗ P (x) − β ∗ Pfloor

β ∗ Pfloor

) (4.1)

where:

• x is each audio segment window.

• F (x) is the Fourier transform of the recording x.

• P (x) = ||F (x)||2 is the Power spectrum of x.

• Pfloor is the power spectral floor window.

• α control the smoothness of the sigmoid function.

• β control the scaling of the power spectral floor.
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Another difference with Tobar et al. (2021) work is that they tuned by experimentation
the values of α and β hiperparameters, using 2.5 and 50 respectively, while we proposed that
they also should be learned during training. This distinction allows these parameters to be
adjusted to improve the classification performance of the joint model. As seen in Figure 4.1,
this model takes noisy audio segments as input and delivers the same segments as output
but denoised.

4.3. Generation of time-frequency representation of
denoised audio segments

After noise is removed from each audio segment, the time-frequency representation of
each window is computed. We choose the Short Time Fourier Transform (STFT) as the
time-frequency representation for the signals. This is a different approach used by Gong
et al. (2021) for AST model, since they used Mel filterbank features. We propose using
STFT instead of Mel filterbanks for two reasons, the first is that manatee vocalizations have
frequencies above 2 [kHz] that when using the Mel scale begin to compress since it gives
greater resolution to the low frequencies and lower resolution to high frequencies, since the
human does not perceive the different frequencies in a linear way but rather distinguishes the
low frequencies better over the high ones. The second reason is because manatee vocalizations
have harmonic components up to 20 [kHz], whose relationship in the frequency dimension
is lost when transformed to the Mel scale. To compute the STFT we use 70 % overlapping
Hanning windows of 256 samples. The choice of the window size was influenced by the decision
to use the pretrained weights of the AST model. Since Gong et al. (2021) used 128 log mel
filterbanks features, we need to get a resolution of 128 frames in the frequency domain,
which is achieve using windows of 256 samples. Also, mention that we use the log power of
the spectrum to create the STFT for numerical stability and regardless we got 55 bins in
the time dimension, they were zero-padded to obtain spectrograms with a fixed size of 128
× 128. This may not seem reasonable because it does not add useful information, but during
experimentation it proved to have better performance since it takes more advantage of the
pre-trained weights of the AST, since it uses an input of 128x1024. Lastly, we normalized
this STFT to be 0 mean and 0.5 std, as recommended by Gong et al. (2021) when using their
pretrained weights for AST model.

4.4. Classification stage
For this stage we test Audio Spectrogram Transformer (AST) (Gong et al. 2021) as the

classification model. In this model, initially the t seconds input audio waveform, is converted
into a 128-dimensional log Mel filterbank (fbank), computed at 10 [ms] intervals using a 25
[ms] Hamming window. This yields a 128 × 100t log mel spectrogram that serves as input for
the AST. The log mel spectrogram is then divided into N 16×16 patches with strides of 10
frames in both time and frequency dimensions, establishing the number of patches and the
effective input sequence length for the Transformer. Each 16×16 patch is flattened into a 1D
patch embedding of size 768 through a linear projection layer referred to as the patch embed-
ding layer. This linear projection is made with a 2D convolutional layer. As the Transformer
architecture lacks the ability to capture input order information, and the patch sequence is
not in temporal order, a trainable positional embedding of size 768 is added to each patch
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embedding. This addition enables the model to grasp the spatial structure of the 2D audio
log mel spectrogram. AST also include a [CLS] token at the sequence’s start, as the ViT mo-
del does, which is a learnable embedding serving as the spectrogram representation. Given
that AST is tailored for classification tasks, only the Transformer’s[19] encoder is utilized.
Importantly, the original Transformer encoder architecture is adopted without alterations.
This choice is deliberate for two reasons: 1) the standard Transformer architecture is straight-
forward to implement and replicate as it is readily available in TensorFlow and PyTorch, and
2) to facilitate transfer learning in AST. Specifically, the Transformer encoder employed has
an embedding dimension of 768, 12 layers, and 12 heads, mirroring those in a reference work
[18]. The output of the [CLS] token in the Transformer encoder serves as the representation
of the audio spectrogram and to map ot to classification labels, a multi layer perceptron
with sigmoid activation is applied. We modified the original version of this AST model, as
mention in the previous section, to adapt it to work with our data. The modification where
only made on the generation of the time-frequency representation, where instead of 128 log
mel filterbanks features used by the original work, we used the STFT also with 128 frames
in the frequency dimension. This is the only adaption made to the AST arquitecture.

4.5. End-to-End training framework
As is identified in Figure 4.1 our methodology proposal implies training simultaneously the

denoised model with the classification model, so both sets of parameters are adjusted through
the same pipeline. This way the denoise model updates its parameters in order to improve
the classification task which is the main objective. For these purpose we couple the denoise
model, the generation of the spectrogram and the classification model in one big model which
we will call the joint model. This model takes as input the audio segments coming from the
preprocess stage and outputs the predictions whether it is a vocalization (positive class) or
not (negative class).

We had to adapt some of the hyperparameters of AST model to work with our dataset
because Audioset dataset consists in 10 [s] long audios, which are 100 times longer than our
segments of audio of 100 [ms], so the log mel spectrogram for Audioset has around 1000 time
frames (using 25 [ms] as window length and 10 [ms] of stride) where for our dataset, using
same window length and window stride, we get around only 8 time frames. Considering that,
we instead of using audios with a 16 [kHz] sampling rate, which give us audio segments of
1600 samples, we use the original sampling rate of the recordings of 48 [kHz], getting audio
segments of 4800 samples, but keeping the window length and stride according to initial 16
[kHz] frequency rate. We also decrease the window stride when computing spectrogram to
half, 5 [ms], to get more resolution in temporal dimension considering the small size of our
audio segments. Doing this we get a time-frequency representation of audios with 128 bins
in frequency dimension and 55 in time dimension.

We used pretrained weights of the AST learned over Audioset dataset[23], to transfer the
knowledge acquire for the model, since to training from scratch we would need millions of
examples as mentioned by Gong et al. (2021).

We also had to restrict the percentile parameter of the denoiser model, as it have intrinsi-
cally interpretation and has to be between 0 and 1, so we passed through a sigmoid function
Considering the unbalanced dataset we have, where positive samples represent the 0.5 % of
the all dataset, we used a weighted sampling strategy during training by assigning weights to
each sample, influencing their probability of inclusion in training batches. Higher weights in-
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crease the likelihood of a sample being chosen. This is particularly useful when certain classes
are underrepresented, ensuring that the model learns from all classes effectively. By drawing
samples with probabilities based on their weights, the model is exposed to a representative
mix of classes, mitigating bias and enhancing generalization.

In addition we used a linear learning rate scheduler to dynamically adjusts the learning rate
during the training process. A fixed learning rate may lead to suboptimal training outcomes
or slow convergence. A learning rate scheduler addresses these issues by allowing the model
to adapt its learning rate based on the progression of training. Initially, a higher learning
rate facilitates faster convergence, while later in training, a smaller learning rate helps fine-
tune the model and avoid overshooting optimal parameter values. This adaptability enhances
training stability, accelerates convergence, and ultimately contributes to better generalization
and model performance.

Lastly we also used a warm-up strategy for the learning rate which is useful in the early
stages of training neural networks to address challenges related to model instability and con-
vergence. It avoid an .early over-fitting"problem which may occur when the dataset is highly
differentiated and if happens to include a cluster of related, strongly-featured observations.
If it the case, the model’s initial training can skew badly toward those features. Warm-up is
a way to reduce the primacy effect of the early training examples. Without it, you may need
to run a few extra epochs to get the convergence desired, as the model un-trains those early
superstitions.
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Chapter 5

Experiments and results

In this section we present the experiments carried out with their respective results. We first
test independently the denoising and the classification model, to verified if they accomplish
what they are suppose to do. To evaluate the performance of the classification model we
use the recall and precision metrics. They were observed separately, since the first allows
us to know how many of the total manatee vocalizations the model is detecting, and on
the other hand the second metric gives us the Look at how accurate you are being with
your predictions. However, to peak the best model we use F1-score since is the harmonic
mean between recall and precision. We trained the models in a remote server with a Intel(R)
Xeon(R) CPU E5-1620 v3 @ 3.50GHz, with a NVIDIA GeForce GTX 1080 GPU. Each run
of 30 epochs took about 20 hours

5.1. Denoising results
To test the denoising model by it self we first find the parameters α, β and percentile by

experimentation, starting by the values used in Tobar et al. (2021) and changing them in
order to effectively remove background noise and enhance the manatee vocalization. In Figure
5.1 we can see in a) the log spectrum of a typical noise window in our audio recordings and
in b) an average of log spectrum of windows containing vocalizations, where we can see the
harmonic frequency components present in manatee vocalizations. This results were obtained
using α = 10, β = 100 and percentile = 0.25.

(a) Typical noise window log po-
wer spectrum.

(b) Manatee vocalization log po-
wer spectrum.

(c) Denoised manatee vocaliza-
tion log power spectrum.

Figure 5.1: Log power spectrum of a typical noise window, a manatee voca-
lization and a denoised manatee vocalization.

We can observe that noise has low frequency range, contrasting with manatee vocaliza-
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tions where they has a bandwidth much broader. Now applying the denoise algorithm to the
manatee vocalization, i.e. subtracting the spectrum of the noise window to the audio recor-
ding, we can observe the result in image c) of Figure 5.1 where it is noticed that frequencies
components of the noise window are subtracted from the vocalization.

To get a more expressive representation of the performance of the denoise algorithm Figure
5.2 shows a) the spectrogram of a noisy vocalization in contrast of its b) denoised version.

(a) Noisy vocalization. (b) Denoised vocalization.

Figure 5.2: Spectrogram of a noisy and denoised vocalization.

We can see that frequencies below 2.5 [kHz] are attenuated, keeping harmonics components
of the vocalization and therefore enhancing them, which is exactly the objective of the denoise
model.

5.2. Classification results
On the other side, we also tested the classification model by itself to verify firstly if

can detect manatee vocalizations from denoised audios. As mentioned in the methodology
section, we had to tune some of the architecture of AST to be able to work with our data.
Need to mention that we used the pretrained AST weights learned during training with
Audioset dataset[23] because the size of our dataset is considerably small to train such a big
model as AST with approximately 87 millions of parameters. This transfer learning is very
straightforward just loading the available weights which are accessible thanks to the author
and taking care of the normalization of our input to be 0 mean and 0.5 std. We used the
denoised audio segments obtained as the output of the denoise model as input of the AST.
The results are shown in Table 5.1.

Table 5.1: Classification model tested independently

Model name Recall Precision F1 score Accuracy
Only AST 77.3 % 73.7 % 75.5 % 99.1 %
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This results shows us that the model is learning to discriminate between vocalizations and
not vocalizations and tell us that we picked a correct model for this task.

Figure 5.3: Training and validation loss evolution for AST independent.

As seen in Figure 5.3, during the training it seems that the model has some overfitting,
so there is space to improve its performance if we apply some data augmentation techniques
or we get more data.

5.3. Joint model results
After testing both models independently we couple them in one pipeline of training, so the

can update both parameters at the same time. We tested four different training configurations,
which emerged as a consequence of the results obtained from the previous runs. Each training
set up and hyperparameters used are the following.

Table 5.2: Hyperparameters

Variable Value
Learning rate 3e−5

Epochs 30
Optimizer Adam

Input dimension 128x128
Loss Binary cross entropy

Batch size 64

In the first training loop (experiment #1) we implemented the joint model with priors
on the parameters of the denoise model, initializing them with the same values we found in
the independent testing stage of the model and using them as a starting point. The results
presented in Table 5.3, shows that this joint model performs better than the independent
AST model, specially when we look at the recall metric, which indicates is detecting roughly
13 % more manatee vocalizations. In image a) of Figure 5.4, we can see the evolution of the
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loss during training and unlike the previous model now it seems that there is still more space
for improving the performance since the train set loss is decreasing, so probably running the
model for more epochs will end with better results. Also important to remark is that the
validation loss is evolving below the train loss, this could be due to the regularization used
in the model.

(a) Joint model. (b) AST only with noisy inputs.

Figure 5.4: Examples of loss evolution during the epochs for validation and
training sets.

After training, the parameters of the denoise model were observed and these did not suffer
major variations and remained with values very close to those with which it was initialized.
We consider two possible options, the first is that since the classification model is very large
(87 million parameters) the gradient vanishes and is not able to reach the denoiser through
back propagation, causing its parameters to not fit. The second option is that the initial
parameters were actually close to an optimal value, so it would be necessary to vary them
greatly.

To verify the first option, we ran another training loop (experiment # 2) with a new model
created with skip connections from the denoise model directly to the MLP that generates
the classification on AST model, in order to see if the parameters of the Denoiser do fit in
this way. To do this, was passed the Denoiser parameters as inputs in the forward pass of
the AST model, which are concatenated at the end before entering the MLP that generates
the prediction. In this way a direct connection is created from the Denoiser to the end of the
joint model that allows the gradient to flow through this new path directly to the Denoise
model.

Table 5.3: Models performance

Model name | Exp Recall Precision F1 score Accuracy
Only AST | #0 77.3 % 73.7 % 75.5 % 99.1 %

Original joint model | #1 91.0 % 70.8 % 79.6 % 99.2 %
Skip connections | #2 61.4 % 82.9 % 70.5 % 99.1 %

Random initialization | #3 88.5 % 71.3 % 78.9 % 99.1 %
AST only with noisy input | #4 85.7 % 80.2 % 82.9 % 99.4 %
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The results in Table 5.3 shows that the model has worse performance than the previous
ones, but yet when looking at the Denoiser parameters we can still see that they remain
practically unchanged from their initial values. With this results the option that the para-
meters are not being adjusted because the gradient is not capable of reaching begins to be
loose arguments, and the second option that the parameters with which the denoise model
was initialized are close to the optimal parameters and for this reason they do not change, it
begins to be more plausible. To test that (experiment # 3), the weights of the Denoise model
are initialized with random values, and the model is retrained, without the skip connections,
in order to see if the parameters do vary in this way. The results in Table 5.3 show that
the model continues to perform quite similar to the model of the first experiment, and the
weights of the Denoise model still do not change much with respect to their initial values.

This make us think that it seems the model is agnostic to the values that the denoise
parameters take when generating the predictions. We could see, for example, that the beta
parameter that is responsible for scaling the typical noise window went from 100 to 1 and
yet the model did not seem to be affected. This opens the possibility that the model may not
need a denoise model for this particular problem, and this may be because the audios were
recorded in a zoo, where the noise is much lower than in a natural habitat (e.g. sea, river),
perhaps noise is not a determining factor for the correct detection of manatee vocalizations.
To test the above, we will experiment by directly passing the audios with noise to the AST
model (experiment # 4). The result for this model, shown in Table 5.3, says that there is no
need to use denoised audios to be able to distinguish between positive and negative samples.
Is the model with better performance, if we use F1 score as the comparison metric. As usual
seen in other results, this model with noisy audio inputs have better recall than precision,
which indicates its power to detect manatee vocalizations. The evolution of its training and
validation loss, is shown in Figure 5.4 image b), and we can observe that there is also space
for improving performance as it seems is still decreasing and is not overfitted yet.

In Figure 5.5 we show an illustrative example of the detected samples of the joint model
for the audio session recording number 4.
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(a) Ground truth vocalizations.

(b) Detected vocalizations.

Figure 5.5: Illustrative example of the detected vocalizations of the joint
model for session 4.
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Chapter 6

Discussion and future work

The results presented in the section leave us a lot to talk about and analyze. First of
all, as mentioned en previous sections, the recall and precision metrics are the ones that
interest us the most because on the one hand, the first indicates the capacity of the model to
identify manatee vocalizations and the second shows us how precise it is, when it indicates
that a sample is of the positive class. This is extremely relevant because if we focused only on
precision, the model could tend to be very careful when predicting to do not make any error,
yet be able to recognize only few of the total manatee vocalizations, which would be a big
problem. On the other hand, if it were the other way around and we paid attention only to
the recall, the model would ensure and predict a large part of the samples as a positive class,
getting high detection rate at the cost of poorer precision. This tradeoff between recall and
precision is well demonstrated in Figure 6.1, which shows how these metrics evolve during
training, taking the training of the joint model as an example.

Figure 6.1: Evolution of precision and recall for the joint model training.

Considering the above, when observing the results presented in the previous section, it
is worth mentioning that all models, except the model combined with skip connections, are
capable of recognizing over 77 % of all manatee vocalizations. This is a significant achievement
considering that only 0.5 % of the total samples correspond to this class, which could be
a major obstacle for the model to adjust its parameters to recognize positive or negative
examples effectively. On this point, the combined model (experiment #1) has the highest
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recall, exceeding 90 %, but at the same time, it makes more mistakes when predicting a
sample as a manatee vocalization, as it has the lowest precision. Continuing in the same line,
it is noteworthy that when looking at this metric, we can observe that the model with the best
performance is precisely the one with the worst recall, i.e., the model with skip connections.
This may occur because adding three extra dimensions to the input of the final layer of
the AST model, the MLP classification layer, gives more expressiveness to the classification,
making it better at predicting the positive class but simultaneously reducing its detection
power.

To balance and weigh both metrics of interest, we look at them together through the F1
score. Regarding this metric, we can observe that the model with the best performance is
the AST model, whose inputs are segments of noisy audio without having undergone the
denoising process. While this model may not stand out the most when looking at recall or
precision individually, it performs the best in combination, which is precisely what we are
seeking, a model that detects a significant portion of vocalizations while being precise when
doing so. These results, indicating that the model with noisy inputs performs best in F1
score, raise a lot of questions for discussion. The first thing that can be said about this is
that perhaps the AST model, trained with the Audioset dataset containing segments of noisy
audio, learned to be capable of identifying patterns in noisy inputs and when we provide
it with segments of audio without noise, we might be hindering the model’s performance
because it encounters samples from a distinct distribution than the one it was trained on.
This is despite the fact that the samples were normalized before being input into the model.
Another possibility is that the denoiser is removing relevant information from manatee’s
vocalizations, as can be seen in Figure 5.2, where, when comparing the noisy vocalization
(a), some of the harmonic components of the vocalization are lost when the noise is removed
(b).

In the other hand, when looking at the accuracy metric, which indicates the total number
of samples correctly identified, considering both positive and negative samples, all models
show high performance. However, this is not a metric of great interest for our specific problem,
since the dataset is highly imbalanced with a ratio of 1/200 in terms of positive to negative
samples and models could predict everything as the negative class and still have a high
accuracy, which is not our case.

Table 6.1: Variation of denoise model parameters.

Model name | Exp α β Percentile
Original joint model | #1 0.23 % 0.62 % 0.1 %

Skip connections | #2 0.46 % 0.82 % 0.1 %
Random initialization | #3 0.17 % 0.53 % 0.2 %

Discussing the results obtained from the different training sessions of the joint model,
experiments #1, #2, and #3, where it was observed that the parameters of the denoise
model did not vary much from their initial values (see Table 6.1), leads us to think that
these parameters may not be of great help for the model when learning the representations
of the inputs. That’s why their values are not adjusted, which becomes more plausible when
we observe that the AST model with noisy inputs performs better than the combined model
with the denoise model. Another possibility is that the learning rate used during training is
very low (as recommended by Gong et al. 2021), and given that the size of the AST model
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is very large, this could be causing issues when updating the weights of the denoiser.
The last point to mention is that perhaps the denoise model is also eliminating certain

frequency components of manatee vocalizations that impair their correct detection. This does
not happen when using noisy audios, where the vocalization is fully preserved without adding
or removing any information from it.

6.1. Future work
This work is still ongoing, and the results presented in this report are those obtained up

to the current date. However, there are many things to address after having observed and
discussed the results presented in the previous section. First of all, what needs to be done is to
experiment with different hyperparameter configurations during training sessions, as a single
combination has been used for all trained models so far. Regarding the training setup, firstly,
we need to train for more epochs since, as seen in Figure 5.4, there is room for improvement
for some of the presented models, since losses are still decreasing till last epoch. Extending
the training of these models could enhance their performance and we would simply need to
take the learned weights up to epoch 30 and train again the models from this point. On
the other hand, as observed in Figure 5.3, some models seem to have overfit, given that the
validation loss diverges from the training loss. To address this, we could include more data
(currently in the process of collection) and also implement data augmentation techniques
to introduce variability into the dataset. One of the data augmentation techniques applied
by Gong et al. (2021) in their training is spectrogram masking, where masks are added to
portions of the spectrogram, in both the temporal and frequency dimensions, to introduce
variability to the dataset and force the model to learn robust representations of the inputs.

Another thing we are going to do is vary the learning rate during training, as this may
be affecting the update of the denoiser’s parameters. We will also modify the learning rate
scheduler, which reduces the rate by half every 5 training epochs, resulting in a learning
rate of the order of magnitude of 1e−8 at epoch 30. Additionally, during experimentation, we
tried varying the dimensions of the input for the AST model, specifically the dimensions of
the spectrogram, and we extended the temporal dimension to 1024, following the approach
used by Gong et al. (2020), and the results improved compared to the 128x128 inputs we
are currently using. This is noteworthy because, by definition, our inputs are 1000 times
shorter than those used to train the AST model. Therefore, when we mention extending
the input dimension, what we are essentially doing is padding with zeros up to frame 1024.
Intuitively, this might not make much sense as we are not adding extra information to the
smaller spectrogram. However, the results seemed promising. Unfortunately, they are not
presented here as we could only run them for 5 epochs due to slow training, because the
input became to large, and due to computational constraints, we could only use a batch size
of 2 samples, making the training process time-consuming.

On the other hand, although the combined model demonstrated worse performance than
the AST-only model, this could be because the audios were recorded in a zoo, and background
noise may not be an obstacle to learning to discriminate between classes. However, if we
test with audios recorded in the natural habitats of manatees (rivers, seas), perhaps the
combined model improves compared to the AST-only model. This because providing the
model with audio segments without noise, using data in real habitats, could be beneficial for
the classification model when making predictions.

Another option that we should try is to train the AST-only model and the combined
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model without using the pretrained model provided by the author. This should not result
in an improvement in performance since it requires too much data to update its 87 million
parameters effectively, however, it is still worth experimenting with.

Finally, it is worth mentioning that this work can be extended beyond manatee vocaliza-
tion detection and use the positive predictions of the model to segment spectrograms using
clustering algorithms, aiming to identify different individuals based on the differences in their
vocalization frequency components (William et al., 2005). This approach has been pursued
by other authors[1–3], and their results have been promising in terms of identifying distinct
individuals.
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Chapter 7

Conclusions

From the present study, several relevant aspects can be concluded after observing the
obtained results. Firstly, although this work is still in progress, it was noted that implementing
a combined model, with a denoise model and a classification model coupled in the same
training framework, did not yield better results than those obtained by the classification
model alone, but they are still good and not so far from the AST-only model. This could
be attributed to the dataset used for this work, where the audios were collected in a zoo in
France with a well-controlled ambient noise, which may not be a problem for the AST model
when generating accurate predictions for manatee vocalization detection. This highlights the
capability of the Transformer-based model, which performed better not only compared to its
combined version with the denoise model but also when using noisy inputs instead of using
inputs that had the noise removed first.

However, it remains to be verified how the results would be when using audio segments
collected in the natural habitat of manatees, where ambient noise is much more invasive than
in a zoo. If logic holds, there should be a notable difference between using noiseless audios
versus noisy ones, since in a natural environment, noisy signals could potentially prevent
the correct identification of harmonic components in manatee vocalizations, which should be
crucial for the AST model to learn which segments of the spectrogram to pay attention on.

This work demonstrates the tremendous capability of attention-based models to work
with spectrograms, representing a state-of-the-art technique that enables the detection of
over 80 % of manatee vocalizations while maintaining over 80 % precision, even when positive
class examples are only 0.5 % of the total dataset.

While the obtained results do not validate the novel proposal of creating a combined
model that trains a denoise model along with a classification model, we have no choice but
to continue working to validate the use of a combined model on data from a different source.
This will help determine whether the AST model indeed does not require noise-free inputs,
as it pretrained weights were learned using noisy data, or if our proposal for joint training
is genuinely useful for improving performance in the detection and accurate classification of
manatee vocalizations.
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Annexes

Annex A. Cálculos realizados
A.1. Metodología

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, pla-
cerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy
eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque ha-
bitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo.
Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus
eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra
ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla,
malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci
eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit
amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non
justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor
sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac
orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum
sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam
tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Figure A.1: Imagen en anexo.
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A.2. Resultados
Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo eu, li-

bero. Fusce sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et, lobortis
in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam elementum ullamcorper leo. Morbi
dui. Aliquam sagittis. Nunc placerat. Pellentesque tristique sodales est. Maecenas imperdiet
lacinia velit. Cras non urna. Morbi eros pede, suscipit ac, varius vel, egestas non, eros. Prae-
sent malesuada, diam id pretium elementum, eros sem dictum tortor, vel consectetuer odio
sem sed wisi.

Table A.1: Tabla de cálculo.

Elemento ϵi Valor Descripción
A 10 3,14π Valor muy interesantea

B 20 6 Segundo elemento
C 30 7 Tercer elemento1

D 150 10 Sin descripción
E 0 0 Cero

a Este elemento tiene una descripción debajo de la tabla
1 Más comentarios
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