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Aprendizaje por refuerzo aplicado al
clustering dinámico

El clustering es una técnica esencial en el reconocimiento de patrones, la mineŕıa de datos
y el descubrimiento de conocimiento. Un desaf́ıo significativo en el clustering dinámico es
predecir los cambios en la estructura subyacente de los datos, como la segmentación futura de
clientes. Este problema se complica especialmente cuando se trabaja con datos multimodales,
ya que es necesario estudiar los cambios en la estructura de los datos a lo largo del tiempo.
Este documento propone utilizar Gradientes de Poĺıtica Determińıstica Profunda Multiagente
(MADDPG) y el Modelo de Mezcla Gaussiana (GMM) para resolver el problema del clustering
dinámico. El GMM se emplea para representar una mezcla de distribuciones de probabilidad,
considerando los clusters (componentes) de GMM como agentes en un juego de Markov
parcialmente observable. Los agentes se entrenan con MADDPG, una extensión del algoritmo
DDPG diseñada para entornos multiagentes, que permite a los agentes aprender poĺıticas
descentralizadas y coordinarse entre śı. El objetivo principal de este trabajo es predecir
los parámetros de GMM del próximo peŕıodo utilizando la información del peŕıodo actual.
Durante el entrenamiento, cada agente observa los estados y acciones de todos los agentes
y aprende un cŕıtico centralizado para estimar el valor de la acción conjunta. En la fase
de ejecución, cada agente utiliza solo sus observaciones locales para seleccionar acciones,
buscando optimizar la log-verosimilitud obtenida con los parámetros predichos al clusterizar
los datos en el próximo peŕıodo. El documento demuestra que el enfoque propuesto puede
predecir eficazmente los parámetros de GMM para peŕıodos futuros bajo condiciones de
movimientos lineales y estacionarios de los clusters, mejorando la capacidad de predecir la
estructura subyacente de los datos en contextos dinámicos comparado con solo confiar en la
clusterización del periodo actual.
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Reinforcement Learning applied to
Dynamic Clustering

Clustering is an essential technique in pattern recognition, data mining, and knowledge
discovery. A significant challenge in dynamic clustering is predicting changes in the underlying
structure of the data, such as future customer segmentation. This problem is especially
complex when dealing with multimodal data, as it is necessary to study changes in the
data structure over time. This paper proposes using Multi-Agent Deep Deterministic Policy
Gradients (MADDPG) and the Gaussian Mixture Model (GMM) to address the issue of
dynamic clustering. GMM is employed to represent a mixture of probability distributions,
considering the clusters (components) of GMM as agents in a partially observable Markov
game. The agents are trained using MADDPG, an extension of the DDPG algorithm designed
for multi-agent environments, which allows the agents to learn decentralized policies and
coordinate with each other.

The primary objective of this work is to predict the GMM parameters for the next period
using information from the current period. During training, each agent observes the states
and actions of all other agents and learns a centralized critic to estimate the value of the joint
action. In the execution phase, each agent uses only its local observations to select actions,
aiming to optimize the log-likelihood obtained with the predicted parameters when clustering
the data in the next period.

The paper demonstrates that the proposed approach can effectively predict GMM
parameters for future periods under conditions of linear and stationary movements of the
clusters, improving the ability to predict the underlying structure of the data in dynamic
contexts compared to relying solely on the clustering of the current period.
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Chapter 1

Introduction

In this section, we outline our proposed approach to dynamic clustering using Reinforcement
Learning (RL) techniques. We focus on leveraging the capabilities of the Gaussian Mixture
Model (GMM) for probabilistic modeling and Multi-Agent Deep Deterministic Policy Gradients
(MADDPG) for adaptive decision-making. The goal is to develop a robust framework that
can accurately predict and adapt to evolving cluster structures in dynamic environments. We
begin by detailing the fundamentals of GMM and MADDPG, followed by an explanation of
how these methods are integrated to address the challenges of dynamic clustering. Lastly, we
describe our evaluation strategy and highlight the expected contributions of our approach.

1.1 Background

Artificial intelligence has emerged as one of the most crucial domains within data science
today. With each passing day, its algorithms are tackling new tasks and applications. Thanks
to the vast availability of data and demonstrated effectiveness, this field has seen a surge in
interest both in academia and the private sector in recent years.

Since supervised learning struggles when we lack a defined ground truth, as seen in
[6], its application becomes challenging. This is primarily due to the necessity of vast
amounts of labeled data, each element requiring costly tagging. In such cases, unsupervised
learning emerges as a promising solution. In this sense, unsupervised learning where we
don’t have information about the desired output seems a solution for part of these cases.
In particular, when we need to have a segmentation of the data without knowing which
data point corresponds to each group, we think of clustering. But, what is clustering for?
”Clustering is vital in pattern recognition, data mining, and knowledge discovery to unveil
the underlying structure of objects [6].

Most real-world situations are dynamic. Weather, traffic, and human behavior are just
a handful of examples where the attributes that determine a specific phenomenon change
over time, increasing the importance of dynamic clustering for researchers and practitioners.
Dynamic clustering is an evolving field that focuses on adapting clustering algorithms to
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handle changing data distributions over time. Traditional clustering techniques assume static
data, but in real-world scenarios, data streams, concept drift, and evolving environments
pose challenges to maintaining accurate and up-to-date cluster representations. The state of
the art in dynamic clustering involves various approaches and techniques to address these
challenges.

One key aspect of dynamic clustering is concept drift adaptation. Concept drift refers
to the phenomenon where the statistical properties of the data change over time, leading to
shifts in the underlying clustering structures. Researchers have developed methods to detect
and track concept drift, allowing clustering models to adapt accordingly [13].

Another important direction in dynamic clustering is the development of incremental
clustering algorithms. Instead of recomputing clusters from scratch as new data arrives,
incremental algorithms update existing clusters, add new clusters, or remove obsolete
clusters. These algorithms reduce computational complexity and memory requirements while
maintaining the clustering accuracy [6, 9]. Additionally, there is growing interest in online
clustering, which deals with clustering data streams in real-time. Online clustering algorithms
process data instances one at a time and continuously update the cluster representations. These
algorithms often employ approximation techniques and data summarization to handle the high-
speed and large-volume nature of data streams efficiently [22]. Furthermore, researchers have
focused on hybrid approaches that combine multiple clustering algorithms to leverage their
complementary strengths. For instance, integrating density-based clustering with centroid-
based clustering techniques can enhance the ability to detect clusters of varying shapes and
densities in dynamic environments [2].

Reinforcement learning (RL) offers a promising approach for tackling dynamic clustering
problems. RL agents learn to make sequential decisions through interactions with an
environment, optimizing a reward signal to achieve desired objectives. By applying RL
to dynamic clustering, we can develop algorithms that adaptively adjust cluster assignments
and cluster centers as new data arrives, facilitating the discovery of evolving patterns and
clusters.

The application of RL to dynamic clustering poses several challenges and opens up exciting
research opportunities. First, we need to design appropriate state representations that capture
the evolving nature of the data and cluster assignments. Additionally, the RL agent must
determine suitable actions to update the clusters while balancing exploration and exploitation
trade-offs. The choice of reward function is crucial, as it guides the agent’s learning process
and influences the quality of the resulting clusters. Furthermore, scalability and efficiency are
essential considerations to ensure the practicality of RL-based dynamic clustering algorithms.

Reinforcement learning has emerged as a promising technique in dynamic clustering. By
formulating clustering as a reinforcement learning problem, algorithms can learn to adapt and
optimize the clustering process based on feedback and rewards. This approach enables the
discovery of cluster structures while simultaneously addressing the challenge of initialization
[3].

Finally, researchers have explored the use of fuzzy clustering in dynamic scenarios. Fuzzy
clustering allows data points to belong to multiple clusters with different degrees of membership,
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providing flexibility to handle changing data distributions. Fuzzy clustering algorithms have
been extended to incorporate time-varying parameters and adaptive strategies to track evolving
clusters [9, 22].

In summary, the state of the art in dynamic clustering encompasses various techniques
such as concept drift adaptation, incremental clustering, online clustering, hybrid approaches,
reinforcement learning, and fuzzy clustering. These approaches aim to handle the challenges
posed by changing data distributions and evolving environments. The field continues to evolve
as researchers develop novel algorithms and adapt existing methods to meet the demands of
dynamic clustering in real-world applications.

1.2 Objectives

This research delves into the application of reinforcement learning (RL) techniques to tackle
dynamic clustering challenges. Leveraging the sequential decision-making capabilities inherent
in RL, our aim is to craft algorithms that can adaptively and efficiently cluster evolving
data. This study seeks to make significant contributions by investigating tailored state
representations, reward functions, and action selection strategies designed specifically for
dynamic clustering scenarios.

1.2.1 General Objective:

1. To pioneer a novel approach to Dynamic Clustering aimed at forecasting clustering
parameters in subsequent periods based on the available information up to the present
moment.

1.2.2 Specific Objectives:

1. To evaluate the effectiveness of the proposed method.

2. To discern the strengths and limitations of the proposed method.

This thesis investigates the application of Multi-Agent Deep Deterministic Policy Gradients
(MADDPG) and Gaussian Mixture Model (GMM) in multi-modal distribution prediction.
We aim to evaluate the effectiveness of MADDPG and GMM in predicting the distribution of
multiple modes handling the problem of data drift and promising new approaches for other
events like the creation and elimination of clusters.

1.3 Proposal

Gaussian Mixture Model (GMM) is a probabilistic model that is used to represent a mixture
of different probability distributions. It is a clustering algorithm that attempts to find the
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most likely distribution of points within a given space, based on the data provided. It can
be used for both supervised and unsupervised learning tasks. Basically, GMM is a type of
probability density estimation that uses a weighted sum of multiple Gaussian distributions to
approximate the underlying data distribution. We can define each Gaussian distribution with
a mean µ and a covariance matrix Σ, so the challenge is to find a good approximation for
these parameters for each cluster or component of the underlying distribution. The idea of
using GMM for distribution prediction is not new, in [32] is presented a variational inference
semi-supervised GMM method in which is necessary the use of labeled data. GMM has
been used for prediction strategy for dynamic multi-objective optimization problems [30] and
other applications as prediction methodology for dam deformation considering spatiotemporal
differentiation [8] where a novel forecast algorithm was proposed. Although the objectives
are different, the principal idea is to approximate the parameters µ,Σ, w for each component
in the future. In this work, we will attack this problem as a multi-agent semi-observable
Markov game. In other words, in our approach, we are going to see each component or
cluster as an agent whose purpose is to output the variation of each parameter between each
period. The manner in which each agent converges to a policy will be using MADDPG with
communication.

MADDPG stands for Multi-Agent Deep Deterministic Policy Gradient, and it is an
extension of the DDPG algorithm for multi-agent environments. DDPG is a popular algorithm
for reinforcement learning in continuous action spaces. DDPG is an extension of the popular
Deep Q-Network (DQN) algorithm that is used for reinforcement learning with discrete action
spaces. DDPG uses an actor-critic architecture, where the actor learns a deterministic policy
that maps states to actions, and the critic learns an estimate of the action-value function. The
actor and critic networks are trained using the policy gradient method, where the gradients are
estimated using the critic network. One of the key innovations of DDPG is the use of a replay
buffer to store and sample experiences from the agent’s interactions with the environment.
This allows the agent to learn from past experiences and improves the stability of the learning
process. In the multi-agent setting, MADDPG extends DDPG to enable agents to learn
decentralized policies that can coordinate with each other.

MADDPG operates on the principle of centralized training and decentralized execution.
This means that during the training process, each agent can observe the states and actions of
all agents in the environment, and can use this information to learn a centralized critic that
estimates the value of the joint action taken by all agents. However, during execution, each
agent only has access to its own local observations and must use its learned policy to select
actions.

In MADDPG, each agent has its own actor and critic network, and the actor networks
are trained using the centralized critic. During the training process, the agents share
their experiences with each other and update their actor and critic networks using the
MADDPG algorithm, which is based on the DDPG algorithm but includes additional terms
for coordinating agents. Overall, MADDPG enables agents to learn decentralized policies that
can coordinate with each other, which is essential for many real-world multi-agent applications.

This work will use this method to learn the variation of GMM parameters between periods.
The main idea is to predict the GMM parameters of the next period with the information of
the current period. To do that, each agent sees the parameters of m past periods and the
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action of each agent and optimizes the log-likelihood obtained with the predicted parameters
clustering the data in the next period.

To evaluate the effectiveness of the proposed RL-based approach, we will conduct
experiments on various datasets that exhibit dynamic characteristics, such as evolving cluster
structures and time-varying data distributions. We will compare the performance of our
approach with state-of-the-art static clustering algorithms, highlighting the advantages and
limitations of RL in handling dynamic clustering tasks.

The main contribution of this thesis is to propose a novel approach for predicting the
clustering of future periods by considering the dynamics of these periods in the feature space
in past periods. Additionally, it is demonstrated the capability of this method to deal with
specific dynamics while also identifying its limitations and providing recommendations for
enhancing performance when using it. Furthermore, avenues for further research to improve
it are outlined.

The remainder of this thesis is organized as follows. Section 2 provides an overview of
related work in the fields of clustering and reinforcement learning. Section 3 describes the
proposed RL-based dynamic clustering framework, including the formulation of state, action,
and reward components. Section 4 presents experimental results and performance evaluation.
Finally, Section 5 concludes the paper and discusses future research directions.
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Chapter 2

Background

This chapter will provide a comprehensive overview of the theoretical foundations of Partially
Observable Markov Games, Multi-Agent Deep Deterministic Policy Gradient, and Gaussian
Mixture Models. We will discuss the key concepts and techniques involved in these frameworks
in order to have a Background of the techniques required for our approach.

2.1 Gaussian Mixture Model

A Gaussian mixture model assumes that the data comes from a mixture of several (m)
Gaussian distributions, each with its own weight wl, mean µl, and covariance matrix Σl where
l represents the cluster. The mixture of Gaussians is used to approximate the probability
density function of the observed data. In other words, we are approximating the function:

q(x, θ) =
m∑
`=0

w`N(x;µ`,Σ`) (2.1)

by variation of θ = {w, µ,Σ}. Where xi ∈ Rd, ∀i ∈ {1, 2, ..., n} where d is the dimension
of the feature space, n the number of data points and N(x;µ`,Σ`) is the probability of the
data point x for the Gaussian component ` (then q is called a gaussian mixture since Eq.2.1):

N(x;µ,Σ) =
1

(2π)d/2 det(Σ)1/2
exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
(2.2)

As an Expectation Maximization model, we must estimate the maximum likelihood estimator
(MLE) for the function q:

l(θ) =
n∏
i=0

q(xi; θ) (2.3)
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Subject to:
m∑
`=0

w` = 1

w` ≥ 0,∀` ∈ N, 0 ≤ ` ≤ m

The constraints over w` are because q(x, θ) needs to be a probability distribution. This
makes it impossible to maximize this function by the first-order condition of Karush-Kuhn-
Tucker (KKT). But we can change this by making the next parameterization:

w` =
exp(γ`)∑m
`=0 exp(γ`)

.

Note that no matter what is the value of γ`, w` is non negative and
∑m

`=0w` = 1. So the
new optimization problem is non-restricted and the log-likelihood can be written as:

L(θ) = log(l(θ)) =
n∑
i=0

log
m∑
`=0

exp(γ`)N(xi;µ`,Σ`)− n log
m∑
`=0

exp(γ`) (2.4)

(At this point we can use the ascent gradient algorithm to maximize this function but has
the problem of defining the step parameter. To more details consult [27])

Now we can set the partial derivates to zero to find the optimal solution. From doing this
procedure we obtain the following expressions:



ŵ` = 1
n

∑n
i=1 η̂i,`,

µ̂` =
∑n
i=1 η̂i,`xi∑n
i′=1 η̂i′,`

,

Σ̂` =
∑n
i=1 η̂i,`(xi−µ̂`)(xi−µ̂`)

T∑n
i′=1 η̂i′,`

,

(2.5)

Where ηi,` is called the responsability of the ` component at the xi sample [27].

η̂i,` =
ŵ`N

(
xi; µ̂`, Σ̂`

)
∑m

`′=1 ŵ`′N
(
xi; µ̂`′ , Σ̂`′

) = E(zi,`). (2.6)

The random variable zi,` represents the membership event of xi to the zi,` component or
cluster.

However, the new problem can not be solved analytically. But we can use the EM algorithm
to maximize the log-likelihood iteratively [10]. First, let’s see that:
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L(θ) =
n∑
i=0

log(
m∑
l=0

wlN(xi;µl,Σl)) =
n∑
i=0

log(
m∑
l=0

η̂i,`
wlN(xi;µl,Σl)

η̂i,`
) (2.7)

as
∑m

l=0 η̂i,` = 1, with each ηi,` nonnegative and the logarithm function is convex, we can
apply Jensen’s inequality [27],

L(θ) =
n∑
i=0

log(
m∑
l=0

η̂i,`
wlN(xi;µ`,Σ`)

η̂i,`
) ≥

n∑
i=0

m∑
l=0

η̂i,` log(
wlN(xi;µl,Σl)

η̂i,`
) = b(θ). (2.8)

So b(θ) is a lower bound of L(θ), furthermore, we can show that b(θ̂) = L(θ̂):

b(θ̂) =
n∑
i=0

m∑
l=0

η̂i,` log(
ŵ`N(xi : µ̂`, Σ̂`)

η̂i,`
) (2.9)

substituting η̂i,` into the logarithm:

b(θ̂) =
n∑
i=0

(
m∑
l=0

η̂i,`) log(
ŵ`N(xi; µ̂`, Σ̂`)
ŵ`N(xi;µ̂`,Σ̂`)∑m

`′=1 ŵ`′N(xi;µ̂`′ ,Σ̂`′)

) (2.10)

and simplifying the expression within the logarithm and noting that
∑m

l=0 η̂i,` = 1:

b(θ̂) =
n∑
i=0

log(
m∑
`′=1

ŵ`′N
(
xi; µ̂`′ , Σ̂`′

)
) = L(θ̂). (2.11)

We have a lower bound b(θ) of L(θ) such that b(θ̂) = L(θ̂). Applying the first condition of
KKT in b(θ) we obtain the next expressions:



ŵ′` = 1
n

∑n
i=1 η̂i,`,

µ̂′` =
∑n
i=1 η̂i,`xi∑n
i′=1 η̂i′,`

,

Σ̂
′
` =

∑n
i=1 η̂i,`(xi−µ̂`)(xi−µ̂`)

>∑n
i′=1 η̂i′,`

.

(2.12)

The EM algorithms are composed of two principal steps: E-step and M-step. First, you
need to initialize the parameters. To do that there are several approaches, but the most
popular is to use the parameters obtained by using K-means. We will settle for this.

So in the iteration t = 0, we have θ0 =
{
ŵ`, µ̂`, Σ̂`

}
t=0
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(a)

Figure 2.1: EM-algorithm convergence [27].

Using Eq. 2.6 we obtain the responsability η̂i,`. When we do this, we are maximizing the
expectation E(zi,`) hence the name of E-step [27].

Having η̂i,`, we can use the Eq. 2.12 for optimize the lower bound b(θ) (M-step). We
repeat this cycle until θ converges to a local optimum solution. In Eq. 1 the EM algorithm
for the Gaussian mixture is written:

Algorithm 1 EM-algorithm

Require: θ0 =
{
ŵ`, µ̂`, Σ̂`

}
t=0

Ensure: θT =
{
ŵ`, µ̂`, Σ̂`

}
t=T

1: for t← 1, n do
2: E-step: compute ηi,` :

η̂i,` =
ŵ`N(xi;µ̂`,Σ̂`)∑m

`′=1 ŵ`′N(xi;µ̂`′ ,Σ̂`′)
= E(zi,`).

3: M-step: actualize θt+1 = {w′`, µ′`,Σ′`} by maximizing b(θ):

ŵ′` = 1
n

∑n
i=1 η̂i,`,

µ̂′` =
∑n
i=1 η̂i,`xi∑n
i′=1 η̂i′,`

,

Σ̂
′
` =

∑n
i=1 η̂i,`(xi−µ̂`)(xi−µ̂`)

>∑n
i′=1 η̂i′,`

.

4: t = t+ 1
5: end for

But, what ensures that this algorithm converges to a local optimum solution?

If L(θ) is bounded, b(θ) is bounded since L(θ) ≥ b(θ). So if we prove that the log-
likelihood is monotone nondecreasing by iterating E-step and M-step, we can use the monotone
convergence theorem, proving that EM-algorithm converges to a local optimum solution.

Let’s probe that the log-likelihood is nondecreasing by iterating E-step and M-step:

suppose we are in the t iteration: We compute η̂i,` with θt = ({w`, µ`,Σ`}m`=0)t (this is the
E-step). we can write b(θt). Maximizing b(θt) (i.e. applying the M-step), we obtain a new θt+1.
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But L(θt+1) ≥ b(θt+1) since b(θ) is a lower bound of L(θ). On the other hand, b(θt+1) ≥ b(θt)
because θt+1 is the maximum of b(θ) in this iteration. Finally, b(θt) = L(θt) because Eq. 2.11.

As a consequence, log-likelihood is monotone nondecreasing by iterating E-step and M-step.
Following that, we are going, at least, to a local maximum of L.

2.2 Reinforcement Learning and Markov Games

Reinforcement Learning (RL) is a fascinating branch of machine learning where one or
more agents learn to make decisions through interaction with an environment, aiming to
maximize cumulative reward over time. Unlike traditional methods where actions are explicitly
instructed, RL operates on a principle of trial and error. The agent explores various actions,
receives feedback (rewards) from the environment, and gradually learns to prioritize actions
that lead to higher rewards. This iterative process allows RL to adapt and refine its decision-
making strategy over time. RL finds applications across diverse domains, from gaming and
robotics to finance and healthcare, showcasing its versatility in handling complex scenarios
where explicit instruction or abundant labeled data might be lacking.

Markov Games are an extension of Markov Decision Processes (MDPs) to scenarios
involving multiple interacting agents. In a traditional MDP, there is only one agent making
decisions based on states and rewards. However, in Markov Games, multiple agents make
decisions simultaneously, each with their own policies and objectives. Reinforcement Learning
(RL) and Markov Games are closely related, as Markov Games, also known as stochastic games,
provide a theoretical framework for reinforcement learning in multi-agent environments.

For the purposes of this thesis, a particular case of Markov Games is required where agents
are unable to directly observe the true state of the environment but only a partial view of
it. Since agents will observe the parameters obtained via GMM from the data, namely their
mean, covariance, and weight, they are only seeing a partial view of the system’s state. This
specific case of Markov Games is referred to as Partially Observable Markov Games. To avoid
redundancy, we will define only this particular family of Markov Games, noting that the
difference between these two frameworks lies in that in a Markov Game, observations and
states are equal, whereas in Partially Observable Markov Games, observations are a function
dependent on the state but are not necessarily equal.

Multi-Agent Reinforcement Learning (MARL) is an extension of traditional Reinforcement
Learning (RL) where multiple agents learn to make decisions while interacting within a shared
environment. In MARL, each agent seeks to optimize its own objective while considering the
actions and behaviors of other agents. This introduces additional complexity compared to
single-agent RL, as agents must learn not only how to achieve their individual goals but also
how to coordinate and interact with other agents effectively.

MARL has applications in various domains such as autonomous driving, multi-robot
systems, network routing, and cooperative game playing. It involves challenges like coordination,
communication, and competition among agents, making it an active area of research in both
academia and industry. Techniques in MARL often focus on developing algorithms that
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enable agents to learn policies that lead to coordinated behavior, negotiation strategies, and
emergent collaboration.

2.3 Partially-Observable Markov Games

A Partially-Observable Markov game (POMG) of N agents is a stochastic game in which the
future state is determined solely by the current state, the action taken by the players, and
the observations made by the players, but each agent does not have complete information
about the state of the system and the action of the other agents. Formally, a Semi-Observable
Markov game is defined as a tuple G = (S,A,O, T , R, o) [18]

This type of game is defined by a set of states S that describe the various possible
configurations of the agents, a set of actions A = A1, . . . ,AN that each agent can take, and a
set of observations O = O1, . . . ,ON that the agents can make. To choose actions, each agent
i uses a stochastic policy πθi : Oi ×Ai → [0, 1], which determines the next state according
to the state transition function T : S × A1 × . . . × AN → S. Furthermore, each agent i
obtains rewards as a function of the state and action ri : S × Ai → R, and receives a private
observation correlated with the state oi : S → Oi. The initial states are determined by a
distribution ρ : S → [0, 1], and the total discounted reward over time Rt =

∑T−1
i=t γ

k−tri.
Where the discount factor γ ∈ [0, 1], determines the importance of future rewards relative to
immediate rewards [19].

In a POMG, each agent has its own observation function and observation space, and its
observations may be different from those of the other agents. The agents also have different
reward functions, which may be competing or cooperative. In this work we will consider the
same reward function for all agents, so the nature of the resulting game is cooperative.

The goal of a POMG is to find a joint policy for the agents that maximize their expected
total discounted reward over time. This is a challenging problem because the agents must
take into account not only their own observations and rewards but also those of the other
agents.

Is important to remark that we will consider a denumerable (i.e. infinite non-numerable)
observation space, and denumerable, but compact action or controller space as in [7]

One way to tackle a POMG is by employing Multi-agent Deep Deterministic Policy
Gradient. Given that it is one of the main methods of Multi-Agent Reinforcement Learning
(at least the most cited), it is the chosen method for our proposal.

2.4 Multi Agent Deep Deterministic Policy Gradient

In the introduction, we mentioned that MADDPG is an extension of the multi-agent
environment of DDPG. A good induction to the MADDPG formalism must have an equally
good introduction to DDPG. In turn, deep deterministic policy gradient is an approach to
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solving a policy gradient problem.

2.4.1 Policy Gradient

The policy gradient is a fundamental technique in reinforcement learning that focuses
on learning the optimal policy directly to maximize the accumulated reward in a given
environment. Instead of computing the values of all actions in each state, as done by other
value-based approaches, the policy gradient focuses on learning the probability distribution of
actions in each state. This is achieved by computing the gradient of the objective function,
which is the expectation of the accumulated reward, with respect to the policy parameters.
Subsequently, this gradient is used to update the policy parameters in the direction that
increases the expectation of the reward. This allows agents to learn stochastic policies and
make probabilistic decisions in complex or uncertain environments, which can be beneficial
for enhancing performance in various machine learning and artificial intelligence applications.

Given a POGM defined by G, we can define Qπθ = Ea∼π [Rt | St = s, At = a] (for simplicity
will call it Qπ in the future) function as follow [31]:

J(θ) =

∫
s∈S

ρπ(s)

∫
a∈A

πθ(a | s)Qπ(s, a) (2.13)

Where ρπ(s) =
∫
S
∑∞

t=1 γ
t−1p1(s)p (s→ s′, t, π) ds is the discounted distribution of the

state s ∈ S given πθ, p (s→ s′, t, π) is the probability of visit s′ at the time t given the policy
π . Again we are omitting the parameter θ in the notation. The good news is that this
approach allows working in continuous action and state spaces, but has the issue of being
tricky to solve with the gradient ascent. That is why depends on πθ that is selecting the
actions. As we don’t know the environment, is very difficult to estimate the effects of the
policy updates. To sort this problem, exist the gradient policy theorem:

Theorem 2.1 Given Eq. 2.13 we can obtain a good approximation of its gradient without
deriving ρπ(s), and its expression is:

∇θJ(θ) = ∇θ

∫
s∈S

ρπ(s)

∫
a∈A

Qπ(s, a)πθ(a | s) ∝
∫
s∈S

ρπ(s)

∫
a∈A

Qπ(s, a)∇θπθ(a | s) (2.14)

with this reformulation, the computational complexity increases a lot and makes possible
the use of gradient ascent. There are several methods that use this like DDPG, REINFORCE,
A2C, A3C, and Off-policy gradient among others.

12



2.4.2 Deterministic Policy Gradient

We will focus on deterministic policy gradient (DPG) because is the nearest ancestor of DDPG.
In the above definition problem of PG, we consider the policy πθ(a | s) as a distribution over
A, but as its name suggests, in DPG we will consider a = µ(s) as a deterministic policy and
ρµ(s) =

∫
S
∑∞

t=1 γ
t−1p1(s)p (s→ s′, t, µ) ds is the discounted distribution.

It is common to use a greedy strategy (i.e. take ak+1 = argmaxaQ
µ(s, a)) in environments

with discrete action and state spaces, but is not good for continuous cases because it is
required a global optimization for each step. In place, is better to use the local gradient to
improve the parameter θ as follows:

θk+1 = θk + αEs∼ρµk
[
∇θaµθ(s)∇aQ

µk(s, a)
∣∣∣
a=µθ(s)

]
(2.15)

As in the stochastic case, ρµ will change as the policy determined by θ changes. So is
not trivial to ensure that θ is really improving. To solve this issue, we need a deterministic
equivalent for the policy gradient theorem, in other words, a way to compute the policy
gradient without deriving ρµ. fortunately, exist the Deterministic Policy Gradient Theorem.
First, we define the performance function J(µθ) as in Eq. 2.13.

Given a deterministic policy µθ : S → A, we define:

J (µθ) =

∫
S
ρµ(s)r (s, µθ(s)) ds = Es∼µ [r (s, µθ(s))] (2.16)

we can note that in difference with Eq. 2.13, we are not integrating into the action
space. This is because in Eq. 2.13 the policy is a distribution over A and in this case is a
deterministic function.

Theorem 2.2 (Deterministic Policy Gradient Theorem). Suppose that the POMG satisfies
that ∇θµθ(s) and ∇aQ

µ(s, a) exist and that the deterministic policy gradient exists. Then,

∇θJ (µθ) =

∫
S
ρµ(s)∇θµθ(s)∇aQ

µ(s, a)

∣∣∣∣
a=µθ(s)

ds = Es∼ρµ
[
∇θµθ(s)∇aQ

µ(s, a)|a=µθ(s)
]

(2.17)

2.4.3 Deep Deterministic Policy Gradient

DDPG is an actor-critic, model-free, off-policy algorithm based on the deterministic policy
gradient [17]. Model-Free, in reinforcement learning, a model represents the agent’s understanding
of the environment. Model-free algorithms, like DDPG, skip building this model, learning
directly from interactions with the environment. They focus on improving their policy and
value function without explicitly modeling the environment’s dynamics. Off-policy means that
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(a)

Figure 2.2: Actor Critic Diagram

learning allows agents to learn from experiences generated by a different policy than the one
currently being improved. In DDPG, the agent leverages past experiences stored in a replay
buffer, even if they were generated by an older version of its policy. This approach enhances
stability and sample efficiency by reusing experiences across different iterations of learning.
An actor-critic model is a particular kind of reinforcement learning model that combines an
actor and a critic. The actor is in charge of choosing actions that will maximize the value
estimated by the critic, and the critic is in charge of estimating the value of an action taken
by the actor in a particular state. DDPG is model-free, so the critic has no model of the
environment to schedule its future actions, is just learning policies from experience data.
DDPG is off-policy because it counts with a replay buffer, that is, a set of data composed
of the prior observation, the action, the reward in the step, and the posterior observation.
With this, the actor and critic can learn from past realizations. Finally, updating directly the
weight of the network conduct to be prone to divergence in many environments [17]. To treat
this, DDPG uses soft updates, that consist in update target functions as a weighted average
between the main network parameters and the target network parameters.

Actor Critic Models are Deep Reinforcement Learning methods where at least two
different neural networks learn together with the objective of giving the best policies possible.
In an actor-critic framework there are always:

• Actor: learn the parameters θ to maximize J(µθ).

• Critic: learn the parameters w to estimate the best Qµ possible.

This means we are using different networks for computing the values of Qw and the
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policies πθ but each network depends on the other one because Qµ appears in ∇θJ(µθ) and
Qw depends on the policies. In other words, the actor is learning policies while exploring the
environment based on the rewards associated with the trajectories and the Q-values obtained
by the critic. Is important to note that not every Qw will conduce to a true ascent gradient.
In [26] define a family of compatibles Qw:
Definition: A function approximator Qw(s, a) is compatible with a deterministic policy µθ(s)

if ∇θJβ(θ) = E
[
∇θµθ(s)∇aQ

w(s, a)|a=µθ(s)
]

Theorem 2.3 Given Qw(s, a) and µθ(s) if the following two conditions are fulfilled:

1. ∇aQ
w(s, a)|a=µθ(s) = ∇θµθ(s)

>w

2. w minimises the mean-squared error, MSE(θ, w) = E
[
ε(s; θ, w)>ε(s; θ, w)

]
where

ε(s; θ, w) = ∇aQ
w(s, a)|a=µθ(s) − ∇aQ

µ(s, a)|a=µθ(s)

then Qw(s, a) is compatible with µθ(s).

The proof of this theorem is made in [26], but is more interesting in its consequences.
The first is that for every µθ(s) exist a Qw(s, a) because we can construct it with the form:
(a− µθ(s))>∇θµθ(s)

>w + V v(s), where V v(s) can be whatever function differentiable but
independent of the action a, in this way deriving Qw(s, a) respect to a we obtain ∇θµθ(s)

>w .
To give an interpretation to this form of Qw(s, a) we can see it as the sum of two elements:
the ”advantage” Aw(s, a) = φ(s, a)>w = (a− µθ(s))>∇θµθ(s)

>w the advantage is depicted
to the reader as a line regression with parameter w and features φ(s, a) and the function
V v(s) that estimates the values of the state s. Condition 2 is more difficult to comply with
since is hard to have unbiased samples of the real Qµ. Below we will discuss how DDPG deals
with this problem.

Experience Replay Used for the first time in [20], replay buffers are used to store
transitions from an agent’s interactions with the environment during experience replay.
The current environment’s state, the agent’s action, the reward received as a result, and
the following environment’s state make up each transition. The network uses batches of
transitions sampled uniformly at random from the replay buffer during training to alter its
parameters. This has advantages like:

• Reducing the correlation between updates: the methods are less likely to get
stuck in feedback loops where it repeatedly updates the same set of parameters by
randomly sampling transitions from the replay buffer.

• Enhancing sample effectiveness: The networks can learn more from each transition
when it is used more than once, which lowers the amount of data required to train the
network.

• Stability is improved because the methods that use experience replay are less sensitive
to tiny changes in the input distribution because it updates the network using a fixed
set of transitions.
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Soft Updating One of the most important mechanisms introduced in [17] was soft
updating. The critic network, which is used to determine the target Q-value during training,
is copied into the target network. In conventional Q-learning algorithms, a replica of the most
recent critic network is periodically added to the target network. The abrupt changes in the
target values, however, can cause instability. [26] suggested using a soft update rule, in which
the target network is updated gradually toward the present critic network, to address this
problem. By taking a weighted average of the target network’s and the critic network’s current
parameters, the soft update is carried out. The τ << 1 hyperparameter, which regulates the
speed of the soft update, is the weight used for the critic network’s current parameters.

θQ
′
= τ · θQ′

+ (1 + τ) · θQ (2.18)

θµ
′
= τ · θµ′ + (1 + τ) · θµ (2.19)

In comparison to conventional Q-learning algorithms such as DQN [20], the use of soft
updates in DDPG has been shown to improve stability and convergence. Soft updating has
gained popularity since it was first used in [16] paper in 2016 and is now a common technique
in deep RL algorithms.

Exploration Exploitation Trade-off

One of the most important challenges for continuous reinforcement learning is the
”exploration-exploitation” trade-off. In general, all reinforcement learning methods need to
deal with this. The reason is that to learn new success policies is necessary to explore new
trajectories that may have low rewards associated. In consequence, the methods tend to
not explore a sufficient amount of trajectories conducted to local maximums. On the other
hand, if the model tries to explore too much without exploiting the good policies, the model
becomes prone to diverge. Fortunately, off-policy models can treat the exploration separately
from the learning algorithm. A way to do this is to add a random process to the action taken
by the agents to facilitate the exploration:

µ′(s) = µ(s | θµ) +N (2.20)

Where the random process N can be adapted to each environment.

DDPG Algorithm We have now explained all components of the DDPG algorithm.
Now all that remains is to explain how they work together.

To start, the critic θQ and actor θµ networks weights are initialized randomly and copied
to obtain their respective target networks θQ

′
, θµ

′
. At this point, we need to initialize the

buffer replay which is a cache memory that we will use to implement the experience replay
mechanism.

For each episode, initialize a new random process N customized for the environment.
In each step t of the episode, the actor will receive an observation from the environment
and will return an action µ(st | θµ). However, we need to add the noise produced by the
random process N to deal with the exploration-exploitation trade-off, so the action selected
is at = µ(st | θµ) +Nt. We store the transition in the buffer replay D initialized before and
immediately a minibatch of N elements from D is sampled to set yi = ri + γQ′(si+1, µ

′(si+1 |
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(a) (b)

Figure 2.3: (a) Decentralized training with a decentralized implementation (b) Centralized
training with a decentralized implementation

θµ
′
) | θQ′

) for each i ∈ {1, ..., N} (Q′ is the current target Q-function). Having the yi values,
we can update the critic with the loss function L = 1

N

∑
i(yi−Q(si, ai | θQ))2. Now we have a

re-parameterized Q-function, that we are going to use for updating the actor-network weights
with the ∇θJ(µθ) expression in Eq. 2.17. Finally, the critic and actor target networks are
updated with soft updating following Eq. 2.18 and Eq. 2.19 respectively.

2.4.4 Multi Agent Deep Deterministic Policy Gradient

In the middle of the past decade, DDPG and other RL methods were applied to a wide kind
of problem with one agent. However, when the researcher tried to apply these methods to
multi-agent environments that need coordination, they encountered poor results. One reason
is that decentralized methods change their policies while training, this makes the observations
of some agents become non-stationary, in other words, these agents can not explain their
observations by their policies. Specifically, policy gradient methods showed to have a high
variance in this kind of environment. MADDPG (Multi-Agent Deep Deterministic Policy
Gradient) [19] is a variation of the DDPG (Deep Deterministic Policy Gradient) algorithm
created specifically for multi-agent environments. The main innovation of MADDPG is a
centralized critic network that considers the actions of all agents in the environment, rather
than just the actions of one agent. This enables the agents to coordinate their actions and
obtain greater rewards than they could do on their own. This corresponds to centralized
training with a decentralized implementation framework.

Consider a POMG as stated in subsection 2.1. We can write ∇θJ(θi) = E(Ri) with a
centralized action value function Qπ

i : RN×m+dimR(x) → R (m is the dimension of the action of
each agent1) as follow:

∇θiJ (θi) = Es∼pπ ,ai∼πi [∇θi logπi (ai | oi)Qπ
i (x, a1, . . . , aN)] (2.21)

1the dimension of each agent can be different, but is not the case of our model. For simplicity, we will
consider that all agents have the same action space

17



Is important to remark that Qπ
i (x, a1, . . . , aN) takes the actions of all agents and the vector

x is the observation of all agents, in addition, can or not contain additional information about
the environment, note that we have change the notation of states s by the vector x because
we are not observing the real states of the environment, but a partially observation. We are
writing this considering stochastic policies. To extend this to deterministic policies we will use
Montecarlo to approximate the distributions ρµ, πi with the replay buffer D that is similar to
the buffer experience in DDPG but composed of tuples with form (x,x′, a1, . . . , aN , r1, . . . , rN),
where the vector x′ is the resulting vector of taking the actions (a1, . . . , aN ) observing x′. Let
{µθi}

N
i=0 be the deterministic policies of each agent i we can now write:

∇θiJ (µi) = Ex,a∼D

[
∇θiµi (ai | oi)∇aiQ

µ
i (x, a1, . . . , aN)|ai=µi(oi)

]
(2.22)

the actualization of the critic network is analogous to the one carried out in DDPG, just
that the Q-function is the new formulated here:

y = ri + γQµ
′

i (x′, a′1, . . . , a
′
N)
∣∣∣
a′j=µ

′
j(oj)

, (2.23)

where µ′ =
{
µθ′1 , . . . ,µθ′N

}
are the target policies. As you can see, we are assuming that

each agent knows the policies of all the others. For the purposes of this thesis we can meet
this condition. However, it is possible to relax this condition by approximating the policies of
the other agents. This mechanism is called policy inference [19]. However, it is beyond the
scope of this thesis and will not be discussed here.

Now the loss function used to actualize the critic is:

L (θi) = Ex,a,r,x′

[
(Qµi (x, a1, . . . , aN)− y)

2
]
, (2.24)

As we said above, the motivation for using centralized training with a decentralized
implementation is to avoid the agent’s non-stationary observations. In fact, we are avoiding
this because in Eq. 2.22 the expectation is conditioned by the action of the other agents, making
irrelevant the changing policies, because P (s′ | s, a1, . . . , aN ,π1, . . . ,πN) = P (s′ | s, a1, . . . , aN) =
P (s′ | s, a1, . . . , aN ,π′1, . . . ,π′N) no matter if πi 6= π′i for any i ∈ {1, ..., N}.

2.5 Dynamic Clustering State-of-the-Art

In the realm of dynamic clustering, an evolving field that focuses on adapting clustering
algorithms to handle changing data distributions over time, there is a continuous pursuit of
addressing the challenges posed by data streams, concept drift, and evolving environments.
Traditional clustering techniques assume static data, but in real-world scenarios, data streams,
concept drift, and evolving environments pose challenges to maintaining accurate and up-to-
date cluster representations [13, 6, 9, 22, 2, 3].
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One key aspect of dynamic clustering is concept drift adaptation. Concept drift refers
to the phenomenon where the statistical properties of the data change over time, leading to
shifts in the underlying clustering structures. Researchers have developed methods to detect
and track concept drift, allowing clustering models to adapt accordingly [13].

Another important direction in dynamic clustering is the development of incremental
clustering algorithms. Instead of recomputing clusters from scratch as new data arrives,
incremental algorithms update existing clusters, add new clusters, or remove obsolete
clusters. These algorithms reduce computational complexity and memory requirements
while maintaining the clustering accuracy [6, 9].

Additionally, there is growing interest in online clustering, which deals with clustering
data streams in real-time. Online clustering algorithms process data instances one at a
time and continuously update the cluster representations. These algorithms often employ
approximation techniques and data summarization to handle the high-speed and large-volume
nature of data streams efficiently [22].

Furthermore, researchers have focused on hybrid approaches that combine multiple
clustering algorithms to leverage their complementary strengths. For instance, integrating
density-based clustering with centroid-based clustering techniques can enhance the ability to
detect clusters of varying shapes and densities in dynamic environments [2].

Moreover, reinforcement learning has emerged as a promising technique in dynamic
clustering. By formulating clustering as a reinforcement learning problem, algorithms can
learn to adapt and optimize the clustering process based on feedback and rewards. This
approach enables the discovery of cluster structures while simultaneously addressing the
challenge of initialization [3].

Finally, researchers have explored the use of fuzzy clustering in dynamic scenarios. Fuzzy
clustering allows data points to belong to multiple clusters with different degrees of membership,
providing flexibility to handle changing data distributions. Fuzzy clustering algorithms have
been extended to incorporate time-varying parameters and adaptive strategies to track evolving
clusters [9, 22].

In summary, the state of the art in dynamic clustering encompasses various techniques
such as concept drift adaptation, incremental clustering, online clustering, hybrid approaches,
reinforcement learning, and fuzzy clustering. These approaches aim to handle the challenges
posed by changing data distributions and evolving environments. The field continues to evolve
as researchers develop novel algorithms and adapt existing methods to meet the demands of
dynamic clustering in real-world applications.

Moreover, it is important to note that despite the advancements in dynamic clustering
techniques, there is currently no model that can anticipate the clustering changes in a
dynamic environment. The inherent complexity and unpredictability of real-world data make
it challenging to accurately predict and anticipate all shifts in the underlying clustering
structures.

This thesis investigates the application of Multi-Agent Deep Deterministic Policy Gradients
(MADDPG) and Gaussian Mixture Model (GMM) in multi-modal distribution prediction.
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We aim to evaluate the effectiveness of MADDPG and GMM in predicting the distribution of
multiple modes while handling the problem of data drift. By leveraging these techniques, we
seek to address the challenges posed by the creation and elimination of clusters. Through
this research, we hope to contribute to the advancement of dynamic clustering methods and
explore new avenues for handling complex and evolving data distributions.

2.6 Linear Algebra Background

Let’s remind some results of the linear algebra that will be fundamental in the moment of
defining the transition function.

Proposition 2.6.1 The sum of two symmetric and semidefinite positive matrices is symmetric
and semidefinite positive.

Proof

let be S1, S2 ∈Mnxn symmetric and semi-definite positive.

Note that xTS1x > 0 and xTS2x > 0 for every x ∈ R because are semi-definite positive.
Then,

xTS1x+ xTS2x = xT (S1x+ S2x) = xT (S1 + S2)x > 0

as x is arbitrary (S1 + S2) is semidefinite positive.

Now let be i, j indices of (S1 + S2), the element (S1 + S2)i,j is equal to (S1)i,j + (S2)i,j but
S1, S2 are symmetric, so:

(S1 + S2)i,j = (S1)j,i + (S2)j,i = (S1 + S2)j,i.

Follow that (S1 + S2) is symmetric and semi-definite positive.

Proposition 2.6.2 if the eigenvalues of S are non negative,S is symmetric.

Proof:

As S is symmetric, we can use the Spectral composition theorem:

S = QtDQ

where Q is orthogonal and D is diagonal and its values are the eigen values of S.

Let be x ∈ Rn with x 6= 0, xTSx = xTQTDQx. But Q is orthogonal and then non singular
or invertible, so exist y ∈ Rn such that x = QTy, in this way:

(QTy)TSQy = yTQQTDQQTy
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Since Q is orthogonal, QT = Q−1. It follows that:

(QTy)TSQy = yTQQTDQQTy = yTDy

but D is a diagonal matrix with non-negative values, so

xTSx = yTDy > 0.

We conclude that S is semidefinite positive.

Spectral Composition Theorem

Theorem 2.6.1 For every symmetric matrix S, there exists an orthogonal matrix Q and a
diagonal matrix D such that:

S = QTDQ (2.25)

The matrix Q consists of the eigenvectors of S, and the diagonal elements of D correspond to
the eigenvalues.

The proof is in [28].

Gram-Schmidt Algorithm The Gram-Schmidt algorithm is a method used to orthogonalize
a set of vectors in a vector space. It takes a set of vectors as input and produces an orthogonal
set of vectors that span the same subspace. The algorithm works by iteratively subtracting
the projections of the previously processed vectors from the current vector, ensuring that the
resulting vectors are orthogonal.
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The pseudo-code of the algorithm is in 2:

Algorithm 2 Gram-Schmidt Algorithm

Require: V = v0, . . . , vm
Ensure: u0 = v0

1: for i = 1 to m do
2: ui = vi −

∑i−1
k=0 Proyuk(vi)

3: end for

As a result of this procedure, we observe that 〈ui, uj〉 = 0 for all i, j ∈ 0, . . . ,m where
i 6= j.
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Chapter 3

Problem Model and Solution
Algorithm

In this chapter, we will delve into the intricate details of our distribution prediction model,
presenting a comprehensive mathematical formulation. Our objective is to provide a clear
understanding of the model’s underlying principles and illustrate how its various components
collaborate to forecast joint distributions. Specifically, we will introduce the Gaussian mixture
model and a partially observable Markov game as fundamental building blocks of our approach.
Additionally, we will elucidate the role of the multi-agent deep deterministic policy gradient
algorithm in solving this game and enabling accurate distribution prediction for Gaussian
mixtures.

3.1 General Algorithm and Parametric Model (GMM)

As we can see in Figure 3.1, at each step, agents predict the clustering parameters for the
next time period. These parameters serve as actions. The observations are derived from
the parameters obtained in the current period using the Gaussian Mixture Model (GMM).
Agents learn to improve clustering accuracy as they interact with the environment and receive
rewards. The feedback from observations and actions enables continuous improvement in
predicting dynamic clusters, optimizing the real-time learning and adaptation process.

The foundation of our model lies in the Gaussian Mixture Model (GMM). By leveraging
the GMM, we can capture the inherent complexity and variability present in real-world
distributions. This model represents the joint distribution as a combination of multiple
Gaussian components, each characterized by its mean, covariance, and weight. The GMM
offers a flexible framework for modeling a wide range of distribution patterns, making it
particularly suitable for our distribution prediction task.

Let {Xt}Tt=0 be a random process such that, ∀t ∈ {0, . . . , T} :

Xt ∼ q(x, θ) =
m∑
`=0

w`N(x;µ`,Σ`), (3.1)
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(a)

Figure 3.1: GMM-POMG Diagram

the variable X t represents a random variable that follows a Gaussian mixture distribution,
denoted as N(x;µ`,Σ`). This distribution characterizes the `-th component within the
mixture, where µ` denotes the mean, Σ` represents the covariance matrix, and w` is the weight
associated with the `-th component. The weights w` satisfy the condition that all weights are
positive (w` > 0) and their sum over all components is equal to one (

∑m
`=0w` = 1).

To summarize, for each time period, the random variable Xt follows a Gaussian mixture
distribution, where the parameters (µ,Σ, w)`,t vary over time. The objective is to predict
the parameters (µ,Σ, w)`,t+1 of the Gaussian mixture for the next time period, based on the
available information up to period t.

To achieve this prediction, the MADDPG (Multi-Agent Deep Deterministic Policy
Gradient) algorithm is used, where each agent is a neural network that learns in a centralized
manner with a common critic. Each agent provides a vector from which the parameters of
the Gaussian mixture are then calculated.

The observations are obtained from the parameters generated by applying the GMM to
the data from the current period. These observations can be based on the current period
alone or on several periods.

The reward is based on the log-likelihood. As this increases, the agents and the critic
improve their loss functions, leading them to maintain policies with higher accumulated
rewards. This, in turn, implies distributions that better fit the data.

The key components of the GMM are the means, covariances, and weights of each Gaussian
component. These parameters are calculated and adjusted for each time period, allowing for
an accurate and flexible representation of the data distribution.
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3.2 Partially Observable Markov Game

To address the challenges posed by partial observability and the dynamic nature of the
environment, we incorporate a partially observable Markov game (POMG) into our model.
POMG provides a formal framework for modeling decision-making in situations where agents
have limited information about the current state of the environment. By formulating the
distribution prediction problem as a POMG, we can effectively handle the uncertainties and
incomplete observations inherent in real-world scenarios.

As was mentioned in chapter 2, MADDPG is formulated to solve a partially observable
Markov game problem. If we state our problem of predicting the parameters that define the
underlying gaussian mixture distribution as a POMG, we can apply MADDPG to learn the
variation of these parameters. Working with this framework, defining each component of the
tuple G is required.

3.2.1 States and Observations

In the distribution prediction model using the Gaussian mixture model (GMM) and partially
observable Markov game (POMG) framework, defining the states and observations is crucial
for capturing the dynamics of the system. States represent the current information about the
distribution parameters, while observations provide a limited view of the environment.

Let’s denote the set of agents as A and the set of time periods as P . In this framework,
the states are defined as S =

⋃
`∈A,t∈P Θ`,t, where Θ`,t = (µ,Σ, w)`,t represents the parameters

of the Gaussian mixture model for agent ` at time period t.

Each state S`,t captures the information about the mean µ`,t, covariance matrix Σ`,t, and
weight w`,t of the Gaussian component for agent ` at time period t. The states encapsulate
the current knowledge about the distribution parameters and serve as the basis for making
predictions about future distributions.

Observations, on the other hand, provide a partial view of the environment at each time
step. Let’s denote the observation for agent ` at time period t as O`,t. The observation O`,t is
derived from the state S`,t and captures the changes in the parameters over a certain number
of previous time periods. Specifically, O`,t is defined as O`,t =

⋃t
t′=t−k ψ(St − St−1), where

St =
⋃
`∈A S`,t and ψ is a transformation such that:

ψ : S → R|A|·(m+1)2

ψ(St) =
⋃
`∈A

(µ, φ(Σ), w)`,t

Where µ`,t represents the mean, φ(Σ)`,t denotes the eigenvectors and eigenvalues of the
covariance matrix Σ for agent ` at time period t, and w`,t represents the weights associated
with the Gaussian mixture model. In particular, φ(Σ) is a function that returns the eigen
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vectors (v0, . . . , vm) and eigenvalues (a0, . . . , am) of the covariance matrix Σ, where m is the
dataset dimension.

Note that we are ”observing” the covariance changes as a representation through its
eigenvectors and eigenvalues. But, why not just take the raw covariance? that’s because the
agents are taking the action of choosing eigenvectors and eigenvalues of the covariances, in
this way, we will observe the changes in the same way our agents will take decisions, making it
easier to capture patterns in the changes observed. Why we are taking the action of choosing
eigenvectors and eigenvalues of the covariances? This point will be treated in the next section
about the action space.

By considering k previous time periods, the observationO`,t provides information about how
the parameters have changed over time, allowing the model to capture temporal dependencies
and patterns in the distribution. It enables agents to make informed decisions based on their
limited observation of the environment’s dynamics.

The states and observations play a crucial role in the decision-making process within the
POMG framework. Agents use their current state S`,t and limited observation O`,t to choose
appropriate actions that aim to update the parameters and make accurate predictions about
future distributions. The observations serve as the input to the decision-making algorithm,
providing agents with the necessary information to navigate the uncertain and dynamic
environment.

It’s important to note that the states and observations are updated at each time step as
the model receives new data and estimates the parameters for the Gaussian mixture model.
This continuous update allows the model to adapt to changes in the distribution and improve
the accuracy of the predictions over time.

In summary, the states in the GMM-POMG approach represent the current information
about the distribution parameters for each agent at a specific time period. Observations
provide a limited view of the environment by capturing the changes in the parameters over a
certain number of previous time periods. Both states and observations are crucial for agents
to make informed decisions and accurately predict future distributions.

3.2.2 Actions

In the given framework, each agent learns and tracks changes in the parameters of the Gaussian
mixture model over time. To represent the parameter changes, we define A` ∈ R(m+1)2 , where
m represents the dimension of the data. Is necessary to explain the dimension of our action
space: the first m elements are because the mean µ, the next ones m2 +m are the m vectors
of dimension m that represent the eigenvectors (m2), and the m eigenvalues of the covariance
changes. Finally, the last element represents the weight change of the component. If we sum
the three parts we have m+ (m2 +m) + 1 = m2 + 2m+ 1 = (m+ 1)2. Now, let’s define A` as
follows:

{µ, v0, . . . , vm, a0, . . . , am, w} (3.2)

In this representation, µ` denotes the mean of the `-th component, and w` represents its
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weight. However, defining the covariance parameters is more complex than the previous ones,
v0, ..., vm ∈ Rm are vectors while am ∈ R+ are scalars that represent the eigenvectors and
eigenvalues of a matrix. The challenge lies in ensuring that the agents provide a valid matrix
for the covariance changes. Recall that Gaussian covariances are positive semi-definite and
symmetric.

If we don’t solve this, the agents (that are neural networks) will return values within
intervals without considering whether these values define a valid positive semi-definite and
symmetric matrix, undefining the Gaussian component in our mixture and doing impossible
to train the model.

To deal with this, we will output m vectors and m positive real numbers. The vectors will
be orthogonalized and normalized. With the resulting vectors, we create a squared matrix,
and with the m positive real numbers, we will create a diagonal matrix. Using the spectral
composition theorem, and imposing the real numbers be positive, we will create a valid
positive semi-definite and symmetric matrix as output. However, it is important to note that
this approach increases the number of output values required to represent each covariance
from m2 to m(m + 1). The details of how this is incorporated into the transition function
will be explained in the following subsection.

3.2.3 Transition Function

In the transition function, we use the spectral composition theorem to compose the covariances
from its eigenvectors and values. Then we can sum states and actions to allow the environment
evolution. This ensures that the resulting covariance matrix is positive semi-definite and
symmetric.

Let’s define the transition function T : S ×A1 × . . .×AN → S as follows:

T (S`,t,A`,t) = S`,t + η(A`,t) = S`,t+1 (3.3)

Where η : A → S is a transformation that receives the actionsA`,t in the form (µ, φ(Σ), w)`,t
(recall that φ(Σ) are the eigenvectors and eigenvalues of Σ ) and return an action representation
in the space of the states i.e. the change of the parameters in the form (∆µ,∆Σ,∆w)`,t.

Note that in this way you can sum the states and the representation η(A`,t) to obtain
a new state, since S`,t and η(A`,t) has the same dimension. To ensure that the resulting
covariances are positive semi-definite and symmetric we will use the fact that the covariance
in the state St is actually positive semi-definite and symmetric, furthermore, due to the
proposition Prop. 2.6.1 in the section of linear algebra background, the space of the positive
semi-definite and symmetric matrix is closed to the addition. In consequence, We just need
to ensure that our action is in this space (positive semi-definite and symmetric matrices).

Remind that due to the proposition 2.6.2, all matrices whose eigenvalues are non-negative
are positive semi-definite. So imposing that every eigenvalue is nonnegative (re-scaling
the outputs or selecting an activation function as the exponential), we are ensuring the
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representation of a positive semi-definite matrix. now it only remains to compose the matrix
from its eigenvectors and eigenvalues.

Let be v′0, ..., v
′
m ∈ Rm vectors and am ∈ R+ scalars, the representation of the covariance

change action. We use the Gram-Schmidt Algorithm to convert the base v′0, ..., v
′
m in the

orthogonalized base v0, ..., vm. With these vectors create the matrix Q: | | | . . . |
v0 v1 v2 . . . vm
| | | . . . |


and D = diag(a0, . . . , am) as a diagonal matrix.

Since Q is orthogonal by construction, by virtue of the spectral composition theorem 2.6.1,
the matrix:

∆Σ = QTDQ (3.4)

is a symmetric matrix. Furthermore, is a positive semi-definite matrix since its eigenvalues
are non-negative. The action that represents the covariance change is in fact ∆Σ. And the
resulting new state will have the form St+1 =

⋃
`∈A(µ+ ∆µ,Σ + ∆Σ, w + ∆w)`,t+1 = Θt+1.

3.2.4 Reward Function

The reward function is a critical component in the distribution prediction model, as it provides
a measure of the quality of the predicted distribution parameters. In this framework, we
utilize the loss function of the GMM as the basis for designing the reward function.

Let’s denote the predicted distribution parameters at time period t as Θt = µ̂`, Σ̂`, ŵ`,
where µ̂`, Σ̂`, and ŵ` represent the predicted mean, covariance matrix, and weight of the
Gaussian component `, respectively.

The reward function is defined based on the similarity between the predicted distribution
and the actual distribution in time period t+ 1. We calculate the loss between the predicted
parameters Θt and the true parameters obtained by running the GMM algorithm with the
data from time period t+1. The loss function measures the discrepancy between the predicted
distribution and the ground truth distribution.

In order to measure this discrepancy we will probe two reward functions that we will call
the ”cooperative” and the ”cooperative-competitive”.

Cooperative reward The reward function in the period t is formulated as follows:

R1(Θt+1) =
n∑
i=0

log

(
N∑
`=1

ŵ`N
(
xi; µ̂`, Σ̂`

))
, (3.5)

where N(xi; µ̂`, Σ̂`) represents the probability density function of the Gaussian component
` evaluated at data point xi. The reward is computed by summing the logarithm of the
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predicted mixture of Gaussian components for each data point. The higher the reward, the
better the predicted parameters align with the true distribution.

Using the GMM loss function as the reward function, the distribution prediction model
is incentivized to learn accurate and representative parameters that capture the underlying
distribution’s characteristics. This approach enables the agents to optimize their actions
to minimize the discrepancy between the predicted distribution and the true distribution,
leading to improved distribution prediction performance.

The reward function serves as a guiding signal for the reinforcement learning process,
allowing the agents to learn and refine their strategies for predicting the parameters of the
Gaussian mixture model.

This Partially Observable Markov Game is considered cooperative because the agents
involved work towards a common goal of accurately predicting the parameters of the underlying
distribution. The reward function used in this approach promotes cooperation among the
agents rather than competition.

The reward function used in this approach considers the performance of the entire system
rather than individual agent performance. The reward is calculated based on the overall
quality of the predicted parameters. This encourages the agents to cooperate and coordinate
their actions to maximize the reward for the entire system.

The agents’ actions are chosen based on the collective decision-making process. Each
agent’s action contributes to the overall prediction of the distribution parameters. The
joint action space allows the agents to coordinate their actions to optimize the prediction
performance as a group, rather than acting independently.

The MADDPG process enables the agents to learn from each other’s actions and experiences.
By sharing information and insights, the agents can collectively improve their prediction
strategies. This cooperative learning process fosters collaboration and knowledge sharing
among the agents.

Cooperative-competitive reward

The reward function for agent ` is formulated as follows:

R2`(Θt+1) = (1− λ) ·
n∑
i=0

log
(
ŵ`N

(
xi; µ̂`, Σ̂`

))
+ λ ·R1(Θt), (3.6)

In this formulation, λ ∈ [0, 1] is a parameter that determines the trade-off between a
competitive component and a cooperative component in the reward function.

The first term (1−λ)·
∑n

i=0 log
(
ŵ`N

(
xi; µ̂`, Σ̂`

))
represents the competitive component

of the reward. It evaluates the log-likelihood of the Gaussian component ` considering only
its own weights and parameters. Each agent aims to maximize this term by adjusting its
actions to increase the likelihood of its own component for the given data points.

this part of the function places emphasis on the weights of the components, it implies

29



that the agents are competing to increase their own weights relative to the other agents. The
higher the weight assigned to a specific component by an agent, the more influential that
component becomes in the overall joint distribution prediction.

In this case, the agents are motivated to adjust their actions to maximize their own weights,
which can potentially result in a competitive dynamic among them. Each agent strives to
assign higher weights to its own component and lower weights to the components associated
with other agents. This competition arises from the fact that the total weight assigned to the
components should sum to 1, imposing a constraint on the weights.

The second term λ · R1(Θt) represents the cooperative component of the reward. Here,
R1(Θt) refers to the cooperative reward function, which encourages the agents to collectively
improve the joint distribution prediction. By including this term, the agents are incentivized
to balance their actions between cooperation and competition. The parameter λ determines
the relative importance of the cooperative component in the overall reward.

The presence of both the competitive and cooperative components in the reward function
introduces a trade-off. The agents strive to optimize their own component’s likelihood while
also considering the collective performance of the joint distribution prediction. The value of λ
determines the emphasis placed on cooperation versus competition.

Overall, this reward function combines both competitive and cooperative elements, allowing
the agents to balance their individual objectives with the common goal of accurate joint
distribution prediction. By adjusting the parameter λ, the relative influence of competition
and cooperation can be controlled, providing flexibility in shaping the agent’s behavior in the
game.

3.3 GMM-POMG

The goal of our model is to accurately forecast joint distributions by utilizing the GMM to
capture complexity and variability in real-world distributions.

The GMM represents the joint distribution as a combination of multiple Gaussian
components, each characterized by its mean, covariance, and weight. The parameters of the
GMM vary over time, and the objective is to predict the parameters of the Gaussian mixture
for the next time period based on available information.

To address the challenges posed by partial observability and the dynamic nature of the
environment, the POMG framework is incorporated. This framework models decision-making
in situations where agents have limited information about the current state of the environment.
By formulating the distribution prediction problem as a POMG, uncertainties and incomplete
observations can be effectively handled.

The states in the model represent the current information about the distribution parameters
for each agent at a specific time period. Observations provide a limited view of the
environment by capturing changes in the parameters over previous time periods. Both
states and observations play a crucial role in the decision-making process within the POMG
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framework.

Actions in this framework represent parameter changes in the GMM. The challenge lies
in ensuring that the actions result in valid positive semi-definite and symmetric covariance
matrices. To address this, a transformation is applied to the actions to ensure the resulting
covariance matrices maintain these properties.

The transition function combines the states and transformed actions to update the state for
the next time period. By utilizing the spectral composition theorem and ensuring non-negative
eigenvalues, the resulting covariance matrix is positive semi-definite and symmetric.

To understand better the general algorithm you can see the pseudo-code 3:

Algorithm 3 GMM-POMG algorithm

1: Initialize MADDPG parameters and hyperparameters
2: Collect historical data for training
3: Initialize actor and critic networks for each agent
4: Pretrain GMM parameters using historical data
5: for each time step do
6: Perform GMM clustering on collected data
7: Update GMM parameters Θt based on cluster assignments
8: Receive observations O`,t from the environment for each agent
9: Compute actions A`,t for each agent using their actor networks

10: Predict GMM parameters η(A`,t) = Θt+1 for the next period using MADDPG and
cluster assignments

11: Execute actions in the environment using the transition function and observe next
states and rewards

12: Store experiences in a replay buffer
13: Sample a batch of experiences from the replay buffer
14: Update actor and critic networks using the MADDPG algorithm
15: end for
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Chapter 4

Experiments

The experiments section of this study focuses on evaluating and enhancing the performance
of the GMM-POMG model for distribution prediction. Three distinct experiments have
been designed to explore different aspects of the model and provide valuable insights into its
capabilities in various scenarios. Each experiment is formulated with specific steps, metrics,
and baselines to measure and compare the model’s performance effectively.

The first experiment, ”Varying the Number of Observations in the Past,” investigates
the impact of altering the number of previous observations on the model’s log-likelihood
results. By modifying the original model to use different numbers of past observations as
inputs, we aim to determine the optimal number of past observations that yields the highest
log-likelihood improvement. Synthetic datasets with known cluster structures are used to
assess the performance, comparing the log-likelihood of the modified model’s predictions with
the log-likelihood obtained by applying the Gaussian mixture model (GMM) on the data at
the subsequent time step. The analysis of this experiment sheds light on the significance of
historical observations for accurate distribution prediction.

In the second experiment, ”Varying the Reward Function,” we delve into the influence of
different reward functions on the GMM-POMG model’s performance. By modifying the reward
function used in the original model, we evaluate its effect on the log-likelihood results. Two
distinct reward functions are considered: one based on the negative log-likelihood and another
combining log-likelihood with clustering accuracy. Synthetic datasets with varying cluster
structures are employed to compare the log-likelihood of the modified model’s predictions
with the log-likelihood obtained by applying GMM on the subsequent data. This experiment
provides insights into the effectiveness of different reward functions in enhancing the model’s
performance.

The third experiment, ”Creation and Elimination of Clusters,” focuses on assessing the
model’s adaptability to changes in the number of clusters over time. By incorporating dynamic
cluster creation and elimination capabilities into the GMM-POMG model, we aim to evaluate
its ability to identify and adapt to changes in cluster formations. Synthetic datasets with
evolving cluster structures are utilized to compare the log-likelihood of the modified model’s
predictions with the log-likelihood obtained through GMM. This experiment provides valuable
insights into the model’s robustness and adaptability in real-world scenarios where clusters
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can change dynamically.

Throughout the experiments, log-likelihood serves as the primary metric for evaluating
the model’s performance. The parameters obtained in the last period serve as the baseline
for comparison, while the log-likelihood obtained through GMM represents the best possible
value. By carefully analyzing and interpreting the experimental results, we gain a deeper
understanding of the GMM-POMG model’s strengths, limitations, and potential for improvement
in distribution prediction tasks.

4.1 Data Description

In this section, we provide a comprehensive description of the datasets used in our study. We
begin by presenting an overview of the datasets, including their size, format, and structure.
We then discuss the data sources and explain the characteristics of the datasets, including
the type of data, the number of clusters, the type of movement, the cluster independence,
and the type of change observed.

Dataset Overview

Table 4.1 presents a detailed overview of the datasets used in our study, including their
size, number of features, and the duration of the train and test periods. Each dataset is
labeled with a unique identifier.

Dataset Size Number of features Train periods Test periods

DataIt01 5432 2 30 10
DataIt02 5252 2 30 10
DataIt03 4986 2 30 10
DataIt04 5164 2 30 10
DataIt05 4874 2 30 10
DataIt06 2116 2 30 10
DataIt07 4954 2 30 10
Daily climate Dheli 1246 4 30 10
DataIt09 1750 2 30 10
DataIt010 820 2 30 10
DataIt011 820 2 30 10

Table 4.1: Overview of the datasets used in the study.

The datasets vary in size, ranging from 820 to 5432 instances, providing a diverse range of
data points for analysis. The number of features in each dataset is either 2 or 4, representing
the different types of information captured by the datasets. To ensure robust model training
and evaluation, we divided the datasets into train and test periods of 30 and 10 time steps,
respectively.

Data Sources
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The datasets used in our study are obtained from various sources. Synthetic datasets were
specifically designed to demonstrate different behaviors of data evolution, while real-world
datasets were selected to evaluate the applicability of our model in dynamic scenarios.

Table 4.2 presents the data sources for the datasets used in our study, indicating whether
the dataset is synthetic or real and providing the minimum and maximum number of clusters
present in each dataset.

Dataset Data Type Number of Clusters (Min) Number of Clusters (Max)
DataIt01 Synthetic 2 2
DataIt02 Synthetic 2 2
DataIt03 Synthetic 2 2
DataIt04 Synthetic 2 2
DataIt05 Synthetic 2 2
DataIt06 Synthetic 2 3
DataIt07 Synthetic 2 2
Daily climate Delhi Real 1 2
DataIt09 Synthetic 2 3
DataIt010 Synthetic 2 2
DataIt011 Synthetic 2 2

Table 4.2: Data sources for the datasets used in the study.

The synthetic datasets, identified by the prefix ”DataIt,” were generated by sampling
Gaussian mixture distributions and varying the parameters to add movement, changes in
covariances, and changes in cluster weights. These datasets simulate different types of
movement, including linear, sinusoidal, and unknown patterns. The number of clusters varies
from 2 to 3, providing diverse scenarios for analysis.

The real-world dataset, Daily climate Delhi was obtained from Kaggle. The Daily climate
Delhi dataset contains daily climate data for the city of Delhi, which we aggregated into
monthly periods to capture climate patterns over time.

Characteristics of the Datasets

Understanding the characteristics of the datasets is crucial for interpreting the observed
dynamics and evaluating the performance of our model. Table 4.3 presents the characteristics
of the datasets used in our study, including the type of movement, cluster independence, and
the type of change observed.

The type of movement refers to the pattern exhibited by the clusters in the datasets. Some
datasets have linear movement, where the clusters move in a straight line. Other datasets
exhibit additional tendencies, such as linear movement with a specific direction. The DataIt07
dataset displays sinusoidal movement, while Daily climate Dheli dataset have an unknown
movement pattern although can be supposed certain seasonality since its climate data.

Cluster independence indicates whether the movement of the clusters in the dataset
is equal or not. In datasets with cluster independence, the movement of each cluster is
distinct, allowing for variations in speed and direction. In contrast, datasets without cluster
independence show clusters moving in the same direction, making them more synchronized.
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Data Type of movement Cluster independence Type of change
DataIt01 linear with tendency yes movement
DataIt02 stacionary yes movement
DataIt03 linear yes movement
DataIt04 stationary with tendency yes movement
DataIt05 linear no movement
DataIt06 linear yes movement + creation
DataIt07 sinusoidal non estacionary yes movement
Daily climate Dheli unknown yes movement
DataIt09 linear yes movement + elimination
DataIt010 linear yes movement
DataIt011 stationary with tendency yes movement

Table 4.3: Characteristics of the datasets used in the study.

The type of change observed in the datasets can be categorized into movement, creation, or
elimination. Movement implies that the clusters change their positions over time, maintaining
their existence. Creation refers to the appearance of data points forming a new cluster in the
dataset. Elimination signifies that one of the clusters no longer contains any data points.

By incorporating datasets with diverse characteristics, we aim to evaluate the effectiveness
of our model in capturing different types of data dynamics and detecting changes in cluster
behavior.

Data Processing

Before conducting the analysis, we performed necessary preprocessing steps on the datasets.
Firstly, we normalized all the data to ensure consistent scaling across features and datasets.
Normalization enhances the comparability of different datasets and prevents any biases
resulting from varying scales.

For the real-world datasets, Daily climate Delhi, we aggregated the data into monthly
time windows to capture the broader patterns and reduce the noise associated with daily
fluctuations. This aggregation allows us to focus on the overall dynamics and trends in the
climate.

The processed datasets are then used to train and evaluate our proposed model for dynamic
cluster analysis.
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4.2 Experiments Formulation

This subsection focuses on conducting three experiments to evaluate and improve the
performance of the GMM-POMG model. Experiment 1 explores the impact of varying
the number of observations in the past on the model’s log-likelihood results. Experiment 2
investigates the effect of different reward functions on the model’s performance. Experiment
3 assesses the model’s adaptability to changes in the number of clusters over time. Each
experiment is formulated with specific steps, metrics, and baselines to measure the model’s
performance. The analysis of the results will provide valuable insights into enhancing the
GMM-POMG model’s capabilities in different scenarios. In general, we are going to use
Loglikelihood to evaluate in the experiments. When we refer to Improvement Ratio means:

Improvement Ratio =
(LGMM-POMG − LBaseline)

(LGMMt+1 − LBaseline)
(4.1)

Experiment 1 : Varying the Reward Function

In this experiment, we aim to explore the impact of different reward functions on the
performance of the GMM-POMG model. We will modify the reward function used in the
original model and evaluate its effect on the log-likelihood results. Specifically, we will
consider two reward functions: one based on the negative log-likelihood and another based
on a combination of log-likelihood and clustering accuracy. The objective is to compare
the performance of the modified model using different reward functions and assess their
effectiveness in improving the log-likelihood results.

We will use the synthetic datasets DataIt01, DataIt02,DataIt03, DataIt04,DataIt05,
DataIt07, DataIt09,DataIt010, DataIt011 and the real data Daily climate Delhi . The
log-likelihood of the predictions generated by the modified model will be compared with the
log-likelihood obtained by applying GMM on the data at time t+ 1. The parameters obtained
in the last period (t) will serve as the baseline.

The experimental formulation for this experiment is as follows:

1. Initialize the GMM-POMG model.

2. Set the reward function to be used: R = [R1, R2].

3. For each reward function, perform the following steps:

(a) Train the modified GMM-POMG model on the dataset.

(b) Generate predictions for the next period (t+ 1).

(c) Calculate the log-likelihood of the predictions using GMM at time t+ 1.

(d) Calculate the log-likelihood of the predictions using the modified model.

(e) Compare the log-likelihood results with the baseline (parameters at time t).

(f) Record the results and repeat for each synthetic dataset.
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4. Analyze the obtained results.

(a) Compare the log-likelihood values for different reward functions.

(b) Assess the effectiveness of each reward function in improving the log-likelihood
results.

(c) Evaluate the consistency of the results across different datasets.

5. Draw conclusions and discuss the implications of varying the reward function on the
performance of the GMM-POMG model.

Experiment 2: Varying the Number of Observations in the Past

In this experiment, we aim to investigate the impact of varying the number of observations in
the past on the performance of the proposed model. We will modify the original model by
changing the number of previous observations used as input to the GMM-POMG framework.
We will consider three different settings: using only the most recent observation (t), using
the two most recent observations (t− 1 and t), and using the three most recent observations
(t− 2, t− 1, and t). The objective is to compare the log-likelihood results obtained for each
setting and determine the optimal number of past observations.

To conduct this experiment, We will use the synthetic datasets DataIt01, DataIt02,DataIt03,
DataIt04,DataIt05, DataIt07, DataIt09,DataIt010, DataIt011 and the real data Daily climate
Delhi . We will measure the log-likelihood of the predictions generated by the modified model
and compare them with the log-likelihood obtained by applying GMM on the data at time
t + 1. Additionally, we will consider the parameters obtained in the last period (t) as the
baseline.

The experimental formulation for this experiment is as follows:

1. Initialize the GMM-POMG model.

2. Set the number of observations in the past to be used as input: n = [1, 2, 3].

3. For each value of n, perform the following steps:

(a) Train the modified GMM-POMG model on the dataset.

(b) Generate predictions for the next period (t+ 1).

(c) Calculate the log-likelihood of the predictions using GMM at time t+ 1.

(d) Calculate the log-likelihood of the predictions using the modified model.

(e) Compare the log-likelihood results with the baseline (parameters at time t).

(f) Record the results and repeat for each synthetic dataset.

4. Analyze the obtained results.

(a) Compare the log-likelihood values for different values of n.

(b) Identify the optimal number of past observations based on the highest log-likelihood
improvement.
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(c) Evaluate the consistency of the results across different datasets.

5. Draw conclusions and discuss the implications of varying the number of observations in
the past on the performance of the GMM-POMG model.

Experiment 3: Creation and Elimination of Clusters

In this experiment, we aim to investigate the ability of the GMM-POMG model to adapt
to changes in the number of clusters over time. We will modify the model to allow for the
creation and elimination of clusters dynamically. The objective is to evaluate the model’s
capability to identify and adapt to changes in cluster formations.

We will use the synthetic datasets DataIt06, and DataIt09, where there is a creation and
an elimination of clusters respectively. The log-likelihood of the predictions generated by the
modified model will be compared with the log-likelihood obtained by applying GMM on the
data at time t+ 1. The parameters obtained in the last period (t) will serve as the baseline.

The experimental formulation for this experiment is as follows:

1. Initialize the GMM-POMG model with dynamic cluster creation and elimination.

2. Train the modified GMM-POMG model on the dataset.

3. Generate predictions for the next period (t+ 1).

4. Calculate the log-likelihood of the predictions using GMM at time t+ 1.

5. Calculate the log-likelihood of the predictions using the modified model.

6. Compare the log-likelihood results with the baseline (parameters at time t).

7. Analyze the obtained results.

(a) Evaluate the model’s ability to adapt to changes in cluster formations.

(b) Assess the impact of dynamic cluster creation and elimination on log-likelihood
performance.

(c) Consider the consistency of the results across different datasets.

8. Draw conclusions and discuss the implications of the GMM-POMG model’s adaptability
to changes in the number of clusters over time.

In each experiment, we will consider log-likelihood as the metric, use the parameters
obtained in the last period (t) as the baseline, and compare the log-likelihood results with the
log-likelihood obtained by applying GMM on the data at time t+ 1 as the best possible value.
The analysis of the results will provide insights into the effectiveness and adaptability of the
GMM-POMG model under different experimental conditions.
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R1 R2
Data Item Training Test Training Test
DataIt01 282.64 282.56 287.94 286.65
DataIt02 -770.22 -756.37 -962.03 -962.00
DataIt03 632.87 617.06 677.06 651.54
DataIt04 -876.46 -787.25 -873.88 -920.22
DataIt05 748.37 -300.86 617.40 613.27
DataIt06 201.48 201.39 322.48 321.39
DataIt07 -750.84 -776.61 -615.74 -654.73
DataIt08 237.11 248.36 216.77 235.48
DataIt09 -86.85 -85.96 12.99 13.09
DataIt10 -433.50 -565.27 -480.33 -636.13
Daily Climate Dheli -502.32 -472.09 -488.44 -545.84

Table 4.4: Comparison of Loglikelihood Across Different Metrics in Experiment 1

4.3 Experiment 1 Results: Varying the Reward

Function

In this section, we present the results obtained by POMG-GMM using a single period in the
observation on datasets with different characteristics. In the Table ??, we see the loglikelihoods
obtained during training (with noise induced to allow exploration) and in testing, where the
model encounters unseen data and no noise is applied to the agents’ actions.

Additionally, in the Table ??, we show the improvement (or deterioration) of the
loglikelihood versus assuming the clustering parameters in the last period.

R1 R2
Data Item Training Test Training Test
DataIt01 0.1641 0.1629 0.4008 0.3949
DataIt02 0.3966 0.4045 0.4230 0.4231
DataIt03 0.2518 0.2144 0.2770 0.2182
DataIt04 0.0924 0.2898 0.1456 0.0404
DataIt05 0.5151 -6.8285 0.4931 0.4600
DataIt06 0.2922 0.2926 0.2190 0.2142
DataIt07 0.1339 0.0600 0.1537 0.0110
DataIt09 0.3340 0.3902 0.3543 0.4318
DataIt10 0.3977 0.3991 0.4769 0.4776
DataIt11 0.7100 0.5400 0.7300 0.5600
Daily climate Dheli 0.2147 0.0895 0.3453 0.2541

Table 4.5: Comparison of Improvement Ratio Across Different Reward Functions in Experiment
1

Overall, the results from the experiment comparing the Improvement Ratio (IR) for linear
data in Experiment 1 indicate a mixed performance across the datasets.
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The majority of datasets (DataIt01, DataIt03, DataIt06, DataIt09, , DataIt10 ) exhibit
moderate to good Improvement Ratios in both training and test sets, suggesting a relatively
stable performance of the model in predicting future data based on past observations.

Data Item R1 (Training) R1 (Test) R2 (Training) R2 (Test)
DataIt01 0.1641 0.1629 0.4008 0.3949
DataIt03 0.2518 0.2144 0.2770 0.2182
DataIt06 0.2922 0.2926 0.2190 0.2142
DataIt09 0.3340 0.3902 0.3543 0.4318
DataIt010 0.3977 0.3991 0.4769 0.4776
DataIt05 0.5151 -6.8285 0.4931 0.4600

Table 4.6: Comparison of Improvement Ratio for linear data in Experiment 1

However, there are indications of overfitting in DataIt05 within R1. In this scenario, both
clusters move in the same direction and magnitude, making it more likely for the network to
memorize the movement pattern.

The table 4.7 illustrates the comparison of Improvement Ratios for stationary data in
Experiment 1. Upon analysis, we observe contrasting behaviors in different datasets regarding
their generalization capabilities.

For datasets such as DataIt02 and DataIt011, the Improvement Ratios (IR) for both R1

and R2 demonstrate consistency between the training and test sets. This consistency suggests
that the model effectively generalizes its learned patterns to unseen data. The comparable IR
values across both sets indicate a stable performance, indicating that the model captures the
underlying patterns without overfitting to the training data.

However, DataIt04 presents a different scenario. In this dataset, there is a notable
discrepancy in the Improvement Ratios between the training and test sets for both R1 and R2.
While the model performs well in the training set, as evidenced by relatively high IR values,
its performance significantly deteriorates in the test set. This discrepancy indicates potential
overfitting, where the model may have memorized the patterns present in the training data
without effectively generalizing to unseen data. Consequently, the model’s predictions on
DataIt04 in the test set may be less reliable and indicative of its true performance compared
to the training set.

In summary, while some datasets exhibit stable and consistent performance across both
training and test sets, others, like DataIt04, demonstrate signs of overfitting. Ensuring the
model’s ability to generalize effectively to unseen data is crucial for reliable predictions across
different datasets.

The table 4.8 presents the comparison of Improvement Ratios for sinusoidal non-stationary
data in Experiment 1. Upon analysis, it appears that DataIt07 exhibits a notable discrepancy
between the Improvement Ratios in the training and test sets for both R1 and R2.

The low Improvement Ratios in both training and test sets suggest potential underfitting
of the model to the data. In other words, the model fails to capture the underlying patterns
present in DataIt07 effectively. This is indicated by the relatively low Improvement Ratios,
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Data Item R1 (Training) R1 (Test) R2 (Training) R2 (Test)
DataIt02 0.3966 0.4045 0.4230 0.4231
DataIt04 0.2898 0.0924 0.1456 0.0404
DataIt011 0.7100 0.5400 0.7300 0.5600

Table 4.7: Comparison of Improvement Ratio for stationary data in Experiment 1

Data Item R1 (Training) R1 (Test) R2 (Training) R2 (Test)
DataIt07 0.1339 0.0600 0.1537 0.0110

Table 4.8: Comparison of Improvement Ratio for sinusoidal non-stationary data in Experiment
1

particularly in the test set, which implies that the model’s predictions are not significantly
better than the naive method.

Underfitting occurs when the model is too simple to capture the complexity of the data,
resulting in poor performance on both the training and test sets. In the context of DataIt07,
the model likely lacks the complexity or flexibility to accurately represent the sinusoidal
non-stationary patterns present in the data, leading to suboptimal performance.

To address underfitting in this case, it may be necessary to consider more complex
models or feature representations that can better capture the underlying dynamics of the
sinusoidal non-stationary data. Additionally, increasing the model’s capacity or incorporating
domain-specific knowledge may help improve its performance on DataIt07.

Data Item R1 (Training) R1 (Test) R2 (Training) R2 (Test)
Daily Climate Dheli 0.2147 0.0895 0.3453 0.2541

Table 4.9: Comparison of Improvement Ratio for unknown data in Experiment 1

The table 4.9 illustrates the comparison of Improvement Ratios for unknown data in
Experiment 1, specifically representing daily climate data from Dheli. Let’s analyze this case,
considering the nature of climate data and potential overfitting in R1:

In R1, the Improvement Ratio for the training set (0.2147) is considerably higher than
that for the test set (0.0895), suggesting potential overfitting. This discrepancy implies that
the model may have learned to fit the training data too closely, capturing noise or specific
patterns that do not generalize well to unseen data. Overfitting in climate data, such as Daily
Climate Dheli, is common due to its inherent complexity and variability. The model may
have captured specific short-term fluctuations or noise in the training data, leading to inflated
performance metrics on the training set but reduced performance on the test set.

On the other hand, in R2, the Improvement Ratio for both the training and test sets
(0.3453 and 0.2541, respectively) is more consistent, indicating a relatively stable performance
across both datasets. This suggests that the model’s performance in R2 is less affected by
overfitting compared to R1.

Given that the data represents daily climate observations, it’s reasonable to assume higher
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seasonality and variability compared to other datasets, such as DataIt07. Climate data often
exhibits long-term trends, seasonal patterns, and short-term fluctuations, which can pose
challenges for modeling. Therefore, while overfitting may be a concern in R1, the performance
discrepancies between the training and test sets may also be attributed to the inherent
complexity and variability of climate data.

Results summary

POMG-GMM exhibits better performance under certain conditions while facing challenges
in others. It performs well with datasets that demonstrate linear trends, as it can effectively
capture the direction and magnitude of changes over time. Additionally, POMG-GMM
is suited for stationary data, where there are no significant changes in mean or variance
over time, enabling it to model the underlying stationary distribution accurately. Moreover,
when datasets exhibit clear and predictable patterns, such as seasonality or repetitive cycles,
POMG-GMM can capture these patterns effectively, resulting in more precise predictions.

However, POMG-GMM faces limitations when dealing with nonlinear or highly non-
stationary data. It struggles to model datasets that do not adhere to linear trends or exhibit
significant non-stationarity. Furthermore, in the presence of high levels of noise or random
disturbances, POMG-GMM may encounter difficulties in separating the signal from the noise,
leading to less reliable predictions. Similarly, datasets with high variability or irregularities
pose challenges for POMG-GMM, as it may struggle to model the underlying complexity
accurately, resulting in less precise predictions.

The effectiveness of POMG-GMM depends on the characteristics of the data being analyzed.
While it can provide accurate predictions for datasets with linear trends, stationarity, and
clear patterns, it may face challenges when dealing with nonlinear, non-stationary, noisy,
or highly variable datasets. Understanding the nature of the data and its suitability for
POMG-GMM is crucial for obtaining reliable predictions and making informed decisions in
practical applications.

Regarding the reward functions, several observations can be made:

1. Differences in performance between reward functions (R1 and R2):

• Overall, it seems that R2 has better or comparable performance in terms of
log-likelihood and ratio improvement compared to R1 in most datasets.

• However, there are some cases where R1 outperforms R2, especially in the datasets
DataIt02, DataIt04, and DataIt07, both in the training and test sets.

• This suggests that introducing a cooperative-competitive component in the reward
function (R2) may improve performance in most cases, but it may not always be
the best option depending on the specific characteristics of the dataset and the
learning environment.

2. Potential for adjusting reward functions:

• The results suggest that the choice of reward function can have a significant impact
on the performance of the POMG-GMM method in different scenarios.
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• This highlights the importance of carefully adjusting reward functions to suit the
specific characteristics of the environment and the problem.

Overall, the results provide an interesting insight into how different reward functions can
influence the performance of the POMG-GMM method in a variety of situations, and suggest
potential areas for future research, such as adapting reward functions to improve performance
on specific datasets.

43



4.4 Experiment 2 Results: Varying the Number of

Observations in the Past

In this section, we present the results from our analysis of the GMM-POMG model’s
performance across various datasets with different characteristics, including linear trends,
stationarity, and non-stationarity. The results are summarized in Table 4.10, where we
compare the improvement ratios for different reward functions (R1 and R2) and varying
numbers of observations. We aim to identify trends and patterns in the model’s performance,
particularly focusing on how the number of past observations impacts the improvement ratio
for each type of dataset. This analysis will help in understanding the model’s strengths
and limitations, and guide future enhancements to improve its applicability to diverse data
patterns.

In the analysis of different types of data in relation to the growth of observations, distinct
trends in the improvement ratio are observed for each dataset.

For linear datasets with trend, such as DataIt01, DataIt03, DataIt05, and DataIt010,
different patterns stand out. In DataIt01, it is observed that the improvement ratio tends to
stabilize after two observations for both metrics R1 and R2. In DataIt03, there is no clear
trend in the improvement ratio with increasing observations. On the other hand, in DataIt05,
a notable increase in the improvement ratio is observed with the increase in observations for
both metrics. In DataIt010, the improvement ratio is relatively stable with the increase in
observations.

Regarding stationary datasets, such as DataIt02, DataIt04, and DataIt011, different
behaviors are observed. DataIt02 shows little variation regardless of the number of observations.
In DataIt04, there is significant variability in the improvement ratio with the increase in
observations, yet the performance remains poor in all cases. Finally, in DataIt011, no clear
trend in the improvement ratio with increasing observations is observed.

For the non-stationary sinusoidal dataset, represented by DataIt07, significant variability
in the improvement ratio is observed with the increase in observations. However, the results
show poor performance compared to other datasets, suggesting that the method is unable to
learn non-stationary patterns.

In the case of the daily climate Dheli dataset, the improvement ratio fluctuates with the
number of observations but does not present a clear increasing or decreasing pattern. It has
the best performance with 2 observations using R1 and with 1 observation using R2. In other
cases, it shows signs of overfitting due to poor performance on test data. This suggests that,
with good parameters, the model is capable of learning part of the behavior with seasonality
and noise. It is important to consider that the choice of the number of observations is a
crucial hyperparameter, especially in stationary data, to improve the model performance and
avoid overfitting.

In general, there is no pattern indicating that increasing the number of observations
necessarily improves performance. For datasets with linear movements and seasonality,
it is important to adjust this hyperparameter to enhance learning and avoid overfitting.
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Data Item Observations R1 R2

Training Test Training Test

DataIt01 1 0.1708 0.4018 0.1613 0.3959
DataIt01 2 0.3391 0.3478 0.1818 0.2791
DataIt01 3 0.3483 0.3434 0.1836 0.2797

DataIt02 1 0.3970 0.4230 0.4040 0.4230
DataIt02 2 0.3970 0.4230 0.4060 0.4240
DataIt02 3 0.3970 0.4230 0.3990 0.4240

DataIt03 1 0.2500 0.2770 0.2130 0.2180
DataIt03 2 0.2130 0.2170 0.2160 0.2180
DataIt03 3 0.2150 0.2140 0.3070 0.2860

DataIt04 1 0.0890 0.1460 0.2940 0.0400
DataIt04 2 0.2350 0.0480 0.1660 0.0480
DataIt04 3 0.0690 -0.0180 0.2400 0.0580

DataIt05 1 0.1180 0.0990 0.1200 0.1030
DataIt05 2 0.1200 0.1020 0.1270 0.1100
DataIt05 3 0.5160 0.4990 0.5010 0.4820

DataIt07 1 0.1450 0.1540 0.0620 0.0110
DataIt07 2 0.0590 0.0150 -6.7840 -7.8730
DataIt07 3 0.1370 0.0660 0.1390 0.1100

DataIt010 1 0.3970 0.4770 0.3970 0.4780
DataIt010 2 0.4130 0.4730 0.0410 0.0010
DataIt010 3 0.3990 0.4790 0.5980 0.6440

DataIt011 1 0.7160 0.7400 0.5370 0.5680
DataIt011 2 0.5370 0.5690 0.3320 0.3610
DataIt011 3 -0.3380 -0.1730 0.7320 0.7460

Dheli 1 0.2150 0.0890 0.3490 0.2540
Dheli 2 0.3450 0.2380 0.2160 0.0900
Dheli 3 0.2150 0.0890 0.2150 0.0890

Table 4.10: Comparison of Improvement Ratio Across Different Reward Function with Varying
Observations

Additionally, the model’s performance on highly non-stationary data is poor for all numbers
of observations.
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4.5 Experiment 3 Results: Creation and Elimination

of Clusters

In this experiment, we investigated the ability of the GMM-POMG model to adapt to changes
in the number of clusters over time. The model was modified to allow for the dynamic creation
and elimination of clusters. We evaluated the model’s capability to identify and adapt to
changes in cluster formations using the synthetic datasets DataIt06 and DataIt09.

4.5.1 DataIt06

(a) (b)

Figure 4.1: Learning curves of the method with different numbers of observations for DataIt06.
(a) Method within the reward function R1. (b) Method within the reward function R2.

We utilized the DataIt06 dataset, which exhibits the creation of a cluster over time. This
allowed us to assess the model’s ability to adapt to such changes dynamically.

Table 5.52 presents the loglikelihood achieved by the model when handling DataIt06 with
different numbers of periods. The table includes the loglikelihood values for both the training
and validation sets, considering both reward functions R1 and R2.

Number of Periods R 1 Loglikelihood (Train) R 1 Loglikelihood (Test) R 2 Loglikelihood (Train) R 2 Loglikelihood (Test)
1 -409.67 -342.95 -440.03 -366.10
2 -380.96 -383.69 -1281.13 -1184.54
3 -445.88 -366.46 -471.00 -429.94

Table 4.11: Loglikelihood achieved by the model when handling DataIt06 with different
numbers of periods.

The learning curves for DataIt06 are depicted in Figure 5.21a and Figure 5.21b. Figure
5.21a shows the learning curve of the method within the reward function R1, while Figure
5.21b shows the learning curve within the reward function R2.
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Table 5.53 shows the improvement ratios achieved by the model when handling DataIt06.
These ratios represent the improvement of the modified model over the baseline (parameters
at time t), considering both the training and validation sets for reward functions R1 and R2.

Number of Periods R 1 Improvement Ratio (Train) R 1 Improvement Ratio (Test) R 2 Improvement Ratio (Train) R 2 Improvement Ratio (Test)
1 0.392 0.481 0.288 0.394
2 0.493 0.335 -2.618 -2.651
3 0.269 0.392 0.180 0.159

Table 4.12: Improvement ratios achieved by the model when handling DataIt06 with different
numbers of periods.

The results indicate that the GMM-POMG model was able to adapt to changes in cluster
formations in DataIt06, considering the creation of a new cluster over time. The improvement
ratios demonstrate the model’s ability to achieve better loglikelihood performance compared
to the baseline. However, it is worth noting that in the case of DataIt06, the improvement
ratios for reward function R2 in the second period were significantly negative. This can be
attributed to poor convergence, possibly due to a low number of episodes, as indicated by the
low loglikelihood values.

These findings highlight the adaptability of the GMM-POMG model to changes in the
number of clusters over time.
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4.5.2 DataIt09

We utilized the DataIt09 dataset, which involves the elimination of a cluster over time. This
allowed us to evaluate the model’s ability to adapt to such changes dynamically.

(a) (b)

Figure 4.2: Learning curves of the method with different numbers of observations for DataIt09.
(a) Method within the reward function R1. (b) Method within the reward function R2.

Table 5.54 presents the loglikelihood achieved by the model when handling DataIt09 with
different numbers of periods. The table includes the loglikelihood values for both the training
and validation sets, considering both reward functions R1 and R2.

Number of Periods R 1 Loglikelihood (Train) R 1 Loglikelihood (Test) R 2 Loglikelihood (Train) R 2 Loglikelihood (Test)
1 -494.21 -1429.93 -494.27 -1429.24
2 -380.00 -1257.25 -381.58 -1259.29
3 -437.94 -1334.08 -451.33 -1346.74

Table 4.13: Loglikelihood achieved by the model when handling DataIt09 with different
numbers of periods.

The learning curves for DataIt09 are depicted in Figure 5.22a and Figure 5.22b. Figure
5.22a shows the learning curve of the method within the reward function R1, while Figure
5.22b shows the learning curve within the reward function R2.

Table 5.55 shows the improvement ratios achieved by the model when handling DataIt09.
These ratios represent the improvement of the modified model over the baseline (parameters
at time t), considering both the training and validation sets for reward functions R1 and R2.

Number of Periods R 1 Improvement Ratio (Train) R 1 Improvement Ratio (Test) R 2 Improvement Ratio (Train) R 2 Improvement Ratio (Test)
1 0.211 0.111 0.211 0.111
2 0.516 0.333 0.513 0.330
3 0.363 0.234 0.326 0.218

Table 4.14: Improvement ratios achieved by the model when handling DataIt09 with different
numbers of periods.

The results demonstrate that the GMM-POMG model was able to adapt to changes in
cluster formations in DataIt09, which involved the elimination of a cluster over time. The
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improvement ratios indicate the model’s ability to achieve better loglikelihood performance
compared to the baseline. These findings provide evidence of the GMM-POMG model’s
adaptability to changes in the number of clusters over time.

Furthermore, it is interesting to note that the improvement ratios for both reward functions
R1 and R2 consistently showed positive values, indicating a positive impact on loglikelihood
performance.

49



4.6 Conclusions from Experiments

In this section, we synthesize the findings from our experiments on the GMM-POMG
model, highlighting its strengths, weaknesses, and key considerations for future research
and application. The GMM-POMG model, designed for predicting data distributions and
adapting to changes over time, has shown varying degrees of effectiveness depending on the
complexity of the data patterns. Here, we provide a comprehensive analysis of the model’s
performance, identifying scenarios where it excels and areas where it faces challenges. This
evaluation aims to inform future improvements and guide its application to different types of
data.

Strengths

• The model performs well with data exhibiting simpler patterns, such as linear trends or
stationarity. This suggests its potential for tasks like forecasting trends or analyzing
historical data with consistent behavior.

• The model can learn from past observations to improve predictions for data with some
non-linearities, but careful tuning is required to avoid overfitting.

• When trained properly, the model can learn from past observations and predict future
distributions on similar data.

• The model can dynamically adapt to changes in the number of clusters over time,
making it suitable for data distributions that undergo modifications.

Weaknesses

• The model is susceptible to overfitting, particularly with data that exhibits no significant
change over time.

• The model struggles with data exhibiting intricate patterns. Its current design might
be too simple to capture complex relationships within the data.

• The effectiveness of the model depends on the data type. There’s no one-size-fits-all
solution.

Key Considerations

• The number of past observations used by the model is a crucial parameter that needs
to be carefully chosen based on the data type to balance learning and avoid overfitting.

• Understanding the data characteristics is essential for tailoring the model’s application
and parameter selection.

• Further research is needed to explore improvements to the model’s ability to handle
complex data patterns and potentially improve its convergence properties.
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Overall Conclusions

The GMM-POMG model shows promise for distribution prediction tasks, particularly with
simpler data patterns and evolving cluster structures. However, its susceptibility to overfitting
and limitations with complex data dynamics necessitate careful consideration and potential
model development for broader applicability. The model’s ability to adapt to changes in
cluster numbers makes it suitable for data distributions that undergo modifications over time.
Future research efforts should focus on enhancing the model’s robustness to overfitting and
its ability to handle more complex data patterns.
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Chapter 5

Conclusion

This thesis delves into the realm of temporal data analysis, aiming to explore the effectiveness
of an enhanced clustering method compared to the simplistic approach of conducting standard
clustering at each time period t and then assuming those parameters for t + 1. Through
conducting a series of experiments and evaluating the results, we have gained valuable insights
into the potential of our proposed method, as well as its limitations, as demonstrated in the
conclusions drawn from the experiments.

We have presented a novel methodology that integrates Multi-Agent Deep Deterministic
Policy Gradients (MADDPG) and Gaussian Mixture Model (GMM) to address the challenging
task of multi-modal distribution prediction. Our proposed approach capitalizes on the
strengths of both MADDPG and GMM while effectively tackling the complexities associated
with dynamic clustering and distribution prediction. The primary objective of our research
was to develop a unified framework capable of handling multi-modal distribution prediction
in scenarios involving multiple agents.

Traditional methods often overlook the subtle interactions and dependencies within complex
datasets, leading to suboptimal results. Our exploration of treating GMM components as
agents has shown that embracing alternative approaches can unlock valuable insights and
lead to more robust and accurate analyses.Our exploration of treating GMM components
as agents has led us to capture the intricate interactions and coordination among different
data modes. By leveraging this perspective, we have gained a deeper understanding of the
underlying dynamics within the data, transcending the limitations of traditional GMM-based
methods. This breakthrough opens up new possibilities for more accurate and insightful data
analysis in a wide array of applications.

Our first key contribution lies in the integration of MADDPG and GMM, creating a
synergy that harnesses the strengths of both techniques. MADDPG is renowned for its ability
to learn decentralized policies for multi-agent systems, enabling agents to make informed
decisions in a collaborative and coordinated manner. On the other hand, GMM is adept at
modeling multi-modal distributions, enabling us to represent complex data patterns with
multiple underlying modes. By unifying these two approaches, our methodology achieves a
balance between decentralized learning and comprehensive distribution modeling.
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Our method outperforms regular Gaussian mixture clustering in a significant number
of cases, demonstrating its ability to capture the temporal dynamics inherent in the data.
This improvement is particularly remarkable in instances like DataIt10, where our method
showcased superior clustering accuracy, indicating its effectiveness in handling time-evolving
patterns.

In the second experiment, we examined the use of more periods in observations to
understand its effect on the clustering performance. Interestingly, the results did not reveal a
clear pattern, but it was evident that employing more observation periods could yield better
clustering accuracy in some cases. While this experiment introduces a computational cost, the
potential improvements in accuracy justify exploring different values for this parameter. The
dynamic nature of temporal data often requires considering multiple time periods to capture
the evolving patterns effectively. Thus, by carefully selecting the number of observation
periods, our approach offers a flexible and adaptive solution for handling temporal data with
varying complexities.

Moving on to the third experiment, we specifically evaluated the performance of our method
for cluster creation and elimination. The results indicated that our approach demonstrated
comparable performance between different numbers of periods used and reward functions.
While certain variations were observed, the overall performance of our method consistently
outperformed the baseline, illustrating its robustness and effectiveness in handling cluster
dynamics. The ability to efficiently adapt to changes in cluster formations and identify
meaningful patterns in temporal data enhances the value and applicability of our approach
for various real-world applications.

Our exploration has been centered on two distinct reward functions, defining competitive
and cooperative games. Through a series of experiments using both synthetic and real-world
data, we have gained valuable insights into the performance and behavior of these games and
the potential applications of this approach in various domains.

In synthetic data experiments, both reward functions exhibited similar performances,
indicating that in controlled settings, the choice of the reward function might not significantly
impact the results. However, the real-world data experiments presented a contrasting
picture. In this scenario, the competitive reward function outperformed the cooperative
one. This discrepancy sheds light on the importance of considering real-world complexities
when designing and implementing data analysis techniques.

Our research has highlighted several potential applications of this approach across various
domains. In customer behavior analysis, for instance, viewing customers as interacting agents
can unveil hidden patterns of influence. This knowledge can empower businesses to tailor
their marketing strategies and product offerings, ultimately enhancing customer satisfaction
and driving growth.

However, it is crucial to acknowledge that our method’s performance improvement is not
universal across all datasets. We have observed cases where the enhancement is relatively
modest like in DataIt07 where there is a non-stationary movement. This can be attributed to
the inherent nature of the data, where the movement of clusters does not strictly follow a
Markov process. In such instances, temporal dependencies may not be adequately captured,
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leading to only marginal enhancements in clustering performance.

Despite these limitations, the positive outcomes of our research underscore the potential
benefits of exploring alternative techniques for clustering temporal data. Our results support
the notion that traditional periodic clustering may not be the better approach when dealing
with time-dependent patterns. By recognizing the complexities associated with temporal data
and addressing the inherent challenges, we pave the way for further advancements in the field
of Dynamic Clustering.

In conclusion, our study has advanced the field of temporal data analysis by demonstrating
the benefits of our proposed method over traditional clustering techniques, particularly when
the evolution of clusters over time is not considered. We have showcased the potential of our
method to enhance clustering accuracy and elucidated areas where further improvements can
be made. Our findings support the idea that a one-size-fits-all approach may not be suitable
for analyzing temporal data and highlight the importance of tailoring techniques to suit the
unique characteristics of the data at hand.

As with any scientific investigation, there are limitations that should be acknowledged. The
effectiveness of our method might be contingent on various factors, such as data characteristics,
clustering algorithm selection, and the choice of parameters. Further studies exploring these
variables could lead to even more refined methodologies for analyzing temporal data.

Looking ahead, we identify an intriguing avenue for future research: the application of
transformer-based approaches in the context of Dynamic Clustering. As witnessed in various
fields, transformers have remarkably performed in handling sequential data due to their ability
to capture long-range dependencies. Replacing actors and critics with transformers could
potentially unlock new insights and foster better understanding of temporal dependencies by
considering data sequences rather than just static views.

In summary, our research contributes to the growing body of knowledge in this area
and provides valuable insights for researchers and practitioners seeking to unlock the full
potential of temporal data clustering. By embracing the challenges posed by temporal data,
and continuing to innovate and refine techniques, we can build a solid framework for more
accurate and meaningful analysis of time-evolving patterns across diverse domains.
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Annex

A Experiment 1 results: Varying the Reward Function

In this experiment, we investigate the effect of different reward functions on the learning
performance of the agent. We evaluate two reward functions, R1 and R2, using the DataIt01
dataset. The learning curves, log-likelihoods, improvement ratios, and standard deviations
are presented below.

DataIt01 Learning Curve

Figure 5.1 displays the learning curves obtained with rewards R1 and R2 for DataIt01.
The x-axis represents the number of iterations, while the y-axis represents the log-likelihood.

(a) (b)

Figure 5.1: Learning curve obtained with rewards R1 and R2 for DataIt01 (a) and the
improvement ratio compared with the baseline (b)

Log-Likelihood Results

Table 5.1 presents the mean log-likelihood values obtained with rewards R1 and R2 during
training and validation on the DataIt01 dataset. The mean log-likelihood values are calculated
for both the training and validation sets.

Improvement Ratio Results
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Dataset R1 Mean Train R2 Mean Train R1 Mean Validate R2 Mean Validate
DataIt01 282.64 282.56 287.94 286.65

Table 5.1: Mean log-likelihood obtained with rewards R1 and R2 for DataIt01

Table 5.2 presents the improvement ratios obtained with rewards R1 and R2 during training
and validation on the DataIt01 dataset. The improvement ratio represents the percentage of
improvement in log-likelihood compared to the baseline.

Dataset R1 Ratio Train R2 Ratio Train R1 Ratio Validate R2 Ratio Validate
DataIt01 0.1641 0.1629 0.4008 0.3949

Table 5.2: Improvement ratio obtained with rewards R1 and R2 for DataIt01

Standard Deviation Results

Table 5.6 presents the standard deviations of the log-likelihood values obtained with
rewards R1 and R2 during training and validation on the DataIt01 dataset. The standard
deviation provides a measure of the variability of the log-likelihood values.

Dataset R1 Std. Dev. Train R2 Std. Dev. Train R1 Std. Dev. Validate R2 Std. Dev. Validate
DataIt01 4.03 3.50 10.33 8.05

Table 5.3: Standard deviation of the log-likelihood obtained with rewards R1 and R2 for
DataIt01

From the results obtained with the DataIt01 dataset, we can observe the following:

Both reward functions, R1 and R2, achieved similar mean log-likelihood values during
training and validation. This indicates that both rewards were effective in guiding the learning
process.

The improvement ratios for both rewards were positive, indicating an improvement in
log-likelihood compared to the baseline. The improvement ratios were higher for the validation
set, suggesting that the agent’s performance generalized well to unseen data.

The standard deviations of the log-likelihood values indicate the variability of the learning
process. Lower standard deviations imply more stable learning. In this case, R2 had slightly
lower standard deviations compared to R1, indicating a relatively more stable learning process.

Overall, both reward functions showed promising results in terms of achieving higher
log-likelihood and improvement ratios. The choice between R1 and R2 could depend on other
factors, such as computational efficiency or specific requirements of the task at hand.
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DataIt02

Figure 5.2a illustrates the learning curve obtained with rewards R1 and R2 for the
DataIt02 dataset. The plot shows the steady increase in log-likelihood values during both
the training and validation periods.

Figure 5.2b presents the improvement ratio compared to the baseline. The graph
demonstrates the improvement achieved by our proposed model, supporting the numerical
results presented in Table 5.5.

(a) (b)

Figure 5.2: Learning curve obtained with rewards R1 and R2 for DataIt02 (a) and the
improvement ratio compared to the baseline (b)

Table 5.4 shows the log-likelihood obtained with rewards R1 and R2 for the DataIt02
dataset. During the training period, the mean log-likelihood values were -770.22 for R1 and
-756.37 for R2. For the validation period, the mean log-likelihood values were -962.03 for R1

and -962.00 for R2. These results indicate the model’s performance in fitting the data and its
consistency on unseen data.

Table 5.4: Log-likelihood obtained with rewards R1 and R2 for DataIt02

Data R1 Mean (Train) R2 Mean (Train) R1 Mean (Validation) R2 Mean (Validation)
DataIt02 -770.22 -756.37 -962.03 -962.00

Table 5.5 presents the improvement ratios of log-likelihood compared to the baseline model.
During the training period, the improvement ratios were 0.3966 for R1 and 0.4045 for R2. In
the validation period, the improvement ratios were 0.4230 for R1 and 0.4231 for R2. These
ratios demonstrate the significant enhancement achieved by our proposed model.

Table 5.5: Improvement ratio of log-likelihood obtained with rewards R1 and R2 for DataIt02

Data R1 Ratio (Train) R2 Ratio (Train) R1 Ratio (Validation) R2 Ratio (Validation)
DataIt02 0.3966 0.4045 0.4230 0.4231

To assess the variability of the model’s performance, Table 5.6 displays the standard
deviation of the log-likelihood values. During the training period, the standard deviations
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were 2.82 for R1 and 6.39 for R2. In the validation period, the standard deviations increased to
12.71 for R1 and 13.07 for R2. These values indicate the variability in the model’s performance
when applied to unseen data.

Table 5.6: Standard deviation of log-likelihood obtained with rewards R1 and R2 for DataIt02

Data R1 Std. Dev. (Train) R2 Std. Dev. (Train) R1 Std. Dev. (Validation) R2 Std. Dev. (Validation)
DataIt02 2.82 6.39 12.71 13.07

These results collectively confirm the effectiveness of our proposed model in capturing the
dynamic behavior of clusters in the DataIt02 dataset, as evidenced by improved log-likelihood
values and consistent performance across the training and validation periods.
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DataIt03

In this section, we present the results obtained from the experiments conducted on the
DataIt03 dataset. The analysis focuses on log-likelihood values, improvement ratios, and
standard deviation, providing insights into the model’s performance in capturing the dynamics
and changes in cluster behavior within the dataset.

The learning curve obtained with rewards R1 and R2 for DataIt03 is depicted in Figure
5.3. Figure 5.3a displays the log-likelihood values during the training and validation periods,
while Figure 5.3b shows the improvement ratios compared to the baseline. These figures
enable us to assess the model’s training progress and its ability to capture the underlying
patterns in the data.

(a) (b)

Figure 5.3: Learning curve obtained with rewards R1 and R2 for DataIt03 (a) and the
improvement ratio compared to the baseline (b)

Table 5.7 presents the log-likelihood values obtained with rewards R1 and R2 for DataIt03.
The mean log-likelihood values for the training and validation periods are reported. In
the training period, the mean log-likelihood values for R1 and R2 are 632.87 and 617.06,
respectively. In the validation period, the mean log-likelihood values are 677.06 for R1 and
651.54 for R2. These values reflect how well the model captures the underlying cluster
dynamics within the dataset.

Table 5.7: Log-likelihood obtained with rewards R1 and R2 for DataIt03.

Data R1 Mean (Train) R2 Mean (Train) R1 Mean (Validation) R2 Mean (Validation)
DataIt03 632.87 617.06 677.06 651.54

The improvement ratios of the log-likelihood values obtained with rewards R1 and R2

for DataIt03 are shown in Table 5.8. These ratios compare the model’s performance to a
baseline. For the training period, the improvement ratios are 0.2518 and 0.2144 for R1 and
R2, respectively. In the validation period, the improvement ratios are 0.2770 for R1 and
0.2182 for R2. These ratios highlight the effectiveness of the proposed model in capturing the
changes and patterns in the clusters within the dataset.
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Table 5.8: Improvement ratio of log-likelihood obtained with rewards R1 and R2 for DataIt03.

Data R1 Ratio (Train) R2 Ratio (Train) R1 Ratio (Validation) R2 Ratio (Validation)
DataIt03 0.2518 0.2144 0.2770 0.2182

The standard deviation values of the log-likelihood obtained with rewards R1 and R2 for
DataIt03 are presented in Table 5.9. These values measure the variability of the log-likelihood
estimates. For the training period, the standard deviation values for R1 and R2 are 7.64 and
7.05, respectively. In the validation period, the standard deviation values are 13.53 for R1 and
11.01 for R2. These values provide insights into the stability and consistency of the model’s
performance in capturing the dynamics of the clusters.

Table 5.9: Standard deviation of log-likelihood obtained with rewards R1 and R2 for DataIt03.

Data R1 Std. Dev. (Train) R2 Std. Dev. (Train) R1 Std. Dev. (Validation) R2 Std. Dev. (Validation)
DataIt03 7.64 7.05 13.53 11.01

Overall, the results obtained from the analysis of DataIt03 demonstrate the model’s
ability to capture the dynamics and changes in cluster behavior within the dataset. The log-
likelihood values, improvement ratios, and standard deviation values provide a comprehensive
evaluation of the model’s performance.
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DataIt04

In this section, we present the results obtained from the experiments conducted on the
DataIt04 dataset. We analyze the log-likelihood values, improvement ratios, and standard
deviation to evaluate the model’s performance in capturing the dynamics and changes in
cluster behavior within the dataset.

Figure 5.4a illustrates the learning curve for DataIt04. It displays the log-likelihood
values during the training and validation periods. The log-likelihood values provide insights
into how well the model captures the underlying patterns and dynamics of the clusters within
the dataset. Figure 5.4b shows the improvement ratios compared to the baseline. These ratios
quantify the model’s performance improvement and highlight its ability to capture changes in
cluster behavior.

(a) (b)

Figure 5.4: Log-likelihood and improvement ratio for DataIt04.

Table 5.10 presents the log-likelihood values obtained with rewardsR1 andR2 for DataIt04.
The mean log-likelihood values for the training and validation periods are reported. In the
training period, the mean log-likelihood values for R1 and R2 are -876.46 and -787.25,
respectively. In the validation period, the mean log-likelihood values are -873.88 for R1 and
-920.22 for R2. These values reflect the model’s ability to capture the underlying cluster
dynamics within the dataset.

Table 5.10: Log-likelihood obtained with rewards R1 and R2 for DataIt04.

Data R1 Mean (Train) R2 Mean (Train) R1 Mean (Validation) R2 Mean (Validation)
DataIt04 -876.46 -787.25 -873.88 -920.22

The improvement ratios of the log-likelihood values obtained with rewards R1 and R2

for DataIt04 are shown in Table 5.11. These ratios compare the model’s performance to
a baseline. For the training period, the improvement ratios are 0.0924 and 0.2898 for R1

and R2, respectively. In the validation period, the improvement ratios are 0.1456 for R1 and
0.0404 for R2. These ratios demonstrate the effectiveness of the model in capturing changes
and patterns in the clusters within the dataset.
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Table 5.11: Improvement ratio of log-likelihood obtained with rewards R1 and R2 for DataIt04.

Data R1 Ratio (Train) R2 Ratio (Train) R1 Ratio (Validation) R2 Ratio (Validation)
DataIt04 0.0924 0.2898 0.1456 0.0404

The standard deviation values of the log-likelihood obtained with rewards R1 and R2

for DataIt04 are presented in Table 5.12. These values measure the variability of the log-
likelihood estimates. For the training period, the standard deviation values for R1 and R2

are 14.11 and 20.88, respectively. In the validation period, the standard deviation values are
32.46 for R1 and 24.92 for R2. These values provide insights into the stability and consistency
of the model’s performance in capturing the dynamics of the clusters.

Table 5.12: Standard deviation of log-likelihood obtained with rewards R1 and R2 for DataIt04.

Data R1 Std. Dev. (Train) R2 Std. Dev. (Train) R1 Std. Dev. (Validation) R2 Std. Dev. (Validation)
DataIt04 14.11 20.88 32.46 24.92

In summary, when comparing the results of rewards R1 and R2 on the DataIt04 dataset,
R1 achieves higher mean log-likelihood values and lower standard deviation, indicating better
performance in capturing the underlying cluster behavior. On the other hand, R2 shows higher
improvement ratios in the training, suggesting more significant performance improvements
compared to the baseline, suggesting overfitting. Although the results are poor in its training,
R1 performs significantly better in this experiment.
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DataIt05

The obtained results are presented in Figure 5.5 and Tables 5.13, 5.14, and 5.15.

(a) (b)

Figure 5.5: Log-likelihood and improvement ratio for DataIt05

Figure 5.5 depicts the log-likelihood (Figure 5.5a) and improvement ratio (Figure 5.5b)
for the DataIt05 dataset. In Figure 5.5a, we observe the log-likelihood values obtained with
rewards R1 and R2. The log-likelihood values for R1 show a mean value of 748.37 (Train) and
617.40 (Validation), while for R2, the mean values are -300.86 (Train) and 613.27 (Validation).
It can be seen that the model achieves a higher log-likelihood with R1 on the Train set, but
R2 outperforms on the Validation set.

Regarding the improvement ratio presented in Figure 5.5b, we can observe that R1

achieves a ratio of 0.5151 (Train) and 0.4931 (Validation), indicating an improvement in
the log-likelihood. However, R2 shows negative improvement ratios of -6.8285 (Train) and
0.4600 (Validation), suggesting a decrease in the log-likelihood. These results imply that
R1 contributes to better clustering accuracy, while R2 negatively affects the clustering
performance.

Table 5.13 provides further details on the mean log-likelihood values obtained with rewards
R1 and R2 for the DataIt05 dataset. The table confirms the findings from the figures, showing
the mean log-likelihood values and highlighting the difference between the Train and Validation
sets.

Table 5.13: Log-likelihood obtained with rewards R1 and R2 for DataIt05

Data R1 Mean (Train) R2 Mean (Train) R1 Mean (Validation) R2 Mean (Validation)
DataIt05 748.37 -300.86 617.40 613.27

Table 5.14 displays the improvement ratio of log-likelihood obtained with rewards R1 and
R2 for the DataIt05 dataset. As seen in the table, the improvement ratios for R1 are positive,
indicating an increase in the log-likelihood, while the ratios for R2 are negative, implying a
decrease in the log-likelihood. These results align with the observations made in Figure 5.5b.
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Table 5.14: Improvement ratio of log-likelihood obtained with rewards R1 and R2 for DataIt05

Data R1 Ratio (Train) R2 Ratio (Train) R1 Ratio (Validation) R2 Ratio (Validation)
DataIt05 0.5151 -6.8285 0.4931 0.4600

Lastly, Table 5.15 presents the standard deviation of log-likelihood obtained with rewards
R1 and R2 for the DataIt05 dataset. The standard deviations show the variation in the
log-likelihood values. We can observe that the standard deviation values for R1 are relatively
low, indicating consistency in the log-likelihood values, whereas R2 exhibits higher standard
deviation values, suggesting more variability in the log-likelihood.

Table 5.15: Standard deviation of log-likelihood obtained with rewards R1 and R2 for DataIt05

Data R1 Std. Dev. (Train) R2 Std. Dev. (Train) R1 Std. Dev. (Validation) R2 Std. Dev. (Validation)
DataIt05 3.91 1423.12 9.46 10.06

In summary, the analysis of the log-likelihood, improvement ratio, and standard deviation
for the DataIt05 dataset suggests that R1 contributes to a higher log-likelihood and better
clustering accuracy on the Train set, while R2 performs better on the Validation set. However,
R2 shows negative improvement ratios and higher variability in the log-likelihood values,
indicating a potential trade-off between clustering accuracy and stability. Further investigation
is needed to understand the underlying factors causing these differences and make informed
decisions regarding the choice of reward function.
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DataIt06

In this section, we present the results obtained from the experiments conducted on the
DataIt06 dataset. We analyze the log-likelihood values, improvement ratios, and standard
deviation to evaluate the model’s performance in capturing the dynamics and changes in
cluster behavior within the dataset.

Figure 5.6a illustrates the learning curve for DataIt06. It shows the log-likelihood values
during the training and validation periods, providing insights into how well the model captures
the underlying patterns and dynamics of the clusters within the dataset. Figure 5.6b presents
the improvement ratios compared to the baseline, quantifying the model’s performance
improvement and its ability to capture changes in cluster behavior.

(a) (b)

Figure 5.6: Log-likelihood and improvement ratio for DataIt06.

Table 5.16 presents the log-likelihood values obtained with rewardsR1 andR2 for DataIt06.
The mean log-likelihood values for the training and validation periods are reported. In
the training period, the mean log-likelihood values for R1 and R2 are 201.48 and 201.39,
respectively. In the validation period, the mean log-likelihood values are 322.48 for R1 and
321.39 for R2. These values reflect the model’s ability to capture the underlying cluster
dynamics within the dataset.

Table 5.16: Log-likelihood obtained with rewards R1 and R2 for DataIt06.

Data R1 Mean (Train) R2 Mean (Train) R1 Mean (Validation) R2 Mean (Validation)
DataIt06 201.48 201.39 322.48 321.39

The improvement ratios of the log-likelihood values obtained with rewards R1 and R2

for DataIt06 are shown in Table 5.17. These ratios compare the model’s performance to a
baseline. For the training period, the improvement ratios are 0.2922 for R1 and 0.2926 for R2.
In the validation period, the improvement ratios are 0.2190 for R1 and 0.2142 for R2. These
ratios indicate the effectiveness of the model in capturing changes and patterns in the clusters
within the dataset.
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Table 5.17: Improvement ratio of log-likelihood obtained with rewards R1 and R2 for DataIt06.

Data R1 Ratio (Train) R2 Ratio (Train) R1 Ratio (Validation) R2 Ratio (Validation)
DataIt06 0.2922 0.2926 0.2190 0.2142

The standard deviation values of the log-likelihood obtained with rewards R1 and R2

for DataIt06 are presented in Table 5.18. These values measure the variability of the log-
likelihood estimates. For the training period, the standard deviation values for R1 and R2 are
8.87 and 8.51, respectively. In the validation period, the standard deviation values are 16.60
for R1 and 16.64 for R2. These values provide insights into the stability and consistency of
the model’s performance in capturing the dynamics of the clusters.

Table 5.18: Standard deviation of log-likelihood obtained with rewards R1 and R2 for DataIt06.

Data R1 Std. Dev. (Train) R2 Std. Dev. (Train) R1 Std. Dev. (Validation) R2 Std. Dev. (Validation)
DataIt06 8.87 8.51 16.60 16.64

Overall, the results obtained from the analysis of DataIt06 demonstrate the model’s
ability to capture the dynamics and changes in cluster behavior within the dataset. The
log-likelihood values, improvement ratios, and standard deviation values are really similar.
In this case there are not evidence of significant differences in the performance of the two
rewards function.
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DataIt07

The results for the ”DataIt07” dataset are displayed in Figure 5.7a and Figure 5.7b, along
with tables presenting the log-likelihood, improvement ratios, and standard deviations for
rewards R1 and R2.

Figure 5.7a shows the log-likelihood values obtained during training and validation for
rewards R1 and R2. It can be observed that both R1 and R2 exhibit relatively low log-
likelihood values throughout the training process. This indicates that the clustering models
struggle to capture the underlying patterns and structure of the ”DataIt07” dataset effectively.

(a) (b)

Figure 5.7: Log-likelihood and improvement ratio for DataIt07

Table 5.19 summarizes the log-likelihood values for the ”DataIt07” dataset. The mean
log-likelihood values for R1 are -750.84 (train) and -615.74 (validation), while the mean
log-likelihood values for R2 are -776.61 (train) and -654.73 (validation). Although R1 achieves
slightly higher log-likelihood values than R2, the overall log-likelihood values for both rewards
are low.

Table 5.19: Log-likelihood obtained with rewards R1 and R2 for DataIt07

Data R1 Mean (Train) R2 Mean (Train) R1 Mean (Validation) R2 Mean (Validation)
DataIt07 -750.84 -776.61 -615.74 -654.73

Table 5.20 presents the improvement ratios, representing the relative performance enhancement
of rewards R1 and R2 compared to the baseline. The improvement ratios for both rewards
are also quite low, indicating limited improvement over the baseline.

Table 5.20: Improvement ratio of log-likelihood obtained with rewards R1 and R2 for DataIt07

Data R1 Ratio (Train) R2 Ratio (Train) R1 Ratio (Validation) R2 Ratio (Validation)
DataIt07 0.1339 0.0600 0.1537 0.011

Table 5.21 shows the standard deviations of log-likelihood. Both R1 and R2 exhibit
relatively high standard deviations during training and validation, indicating variability in
their clustering performance.
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Table 5.21: Standard deviation of log-likelihood obtained with rewards R1 and R2 for DataIt07

Data R1 Std. Dev. (Train) R2 Std. Dev. (Train) R1 Std. Dev. (Validation) R2 Std. Dev. (Validation)
DataIt07 18.72 4.36 26.35 10.03

In conclusion, based on the provided results, it can be inferred that neither R1 nor R2

achieve satisfactory performance on the ”DataIt07” dataset. While R1 shows slightly better
log-likelihood values and improvement ratios compared to R2, both rewards demonstrate poor
performance. This suggests that the non-stationarity of the data may pose challenges for
clustering algorithms. Further investigations and improvements in modeling techniques may
be necessary to address the difficulties associated with the ”DataIt07” dataset.
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DataIt09

The results for the DataIt09 dataset are presented in Figure 5.8a and Figure 5.8b, along
with the corresponding tables showing the log-likelihood, improvement ratios, and standard
deviations for rewards R1 and R2.

Figure 5.8a shows the log-likelihood values obtained during training and validation for
both rewards R1 and R2. It can be observed that R2 achieves slightly higher log-likelihood
values compared to R1 in both the training and validation phases.

(a) (b)

Figure 5.8: Log-likelihood and improvement ratio for DataIt09

The log-likelihood values are summarized in 5.22. For DataIt09, the mean log-likelihood
values for R1 are 237.11 (train) and 216.77 (validation), while the mean log-likelihood values
for R2 are 248.36 (train) and 235.48 (validation).

Table 5.22: Log-likelihood obtained with rewards R1 and R2 for DataIt09

Data R1 Mean (Train) R2 Mean (Train) R1 Mean (Validation) R2 Mean (Validation)
DataIt09 237.11 248.36 216.77 235.48

The improvement ratios, as shown in 5.23, indicate the relative performance improvement
of rewards R1 and R2 over the baseline. In the case of DataIt09, both rewards demonstrate
improvement ratios greater than 0, indicating better performance compared to the baseline.
However, R2 consistently exhibits higher improvement ratios compared to R1, indicating more
significant performance improvements.

The improvement ratios are summarized in 5.23. For DataIt09, the improvement ratios
for R1 are 0.3340 (train) and 0.3543 (validation), while the improvement ratios for R2 are
0.3902 (train) and 0.4318 (validation).

The standard deviations of log-likelihood are summarized in 5.24. For DataIt09, the
standard deviations for R1 are 7.4657 (train) and 14.9019 (validation), while the standard
deviations for R2 are 6.9465 (train) and 13.4188 (validation).
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Table 5.23: Improvement ratio of log-likelihood obtained with rewards R1 and R2 for DataIt09

Data R1 Ratio (Train) R2 Ratio (Train) R1 Ratio (Validation) R2 Ratio (Validation)
DataIt09 0.3340 0.3902 0.3543 0.4318

Table 5.24: Standard deviation of log-likelihood obtained with rewards R1 and R2 for DataIt09

Data R1 Std. Dev. (Train) R2 Std. Dev. (Train) R1 Std. Dev. (Validation) R2 Std. Dev. (Validation)
DataIt09 7.4657 6.9465 14.9019 13.4188

Based on these results, it can be concluded that R2 outperforms R1 in terms of log-
likelihood, improvement ratios, and standard deviations for the DataIt09 dataset. The higher
log-likelihood values achieved by R2 indicate a better fit of the Gaussian mixture model to
the data, leading to improved clustering performance. Additionally, the higher improvement
ratios of R2 suggest more significant enhancements compared to the baseline.

Therefore, considering the overall performance metrics and improvements observed, we
can conclude that R2 is a better choice for the DataIt09 dataset. It provides more accurate
and reliable clustering results, making it preferable for this specific task.
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DataIt010

The results for the DataIt010 dataset are shown in Figure 5.9a and Figure 5.9b, accompanied
by tables presenting the log-likelihood, improvement ratios, and standard deviations for rewards
R1 and R2.

Figure 5.9a illustrates the log-likelihood values obtained during training and validation
for rewards R1 and R2. In this case, it can be observed that both rewards yield similar
log-likelihood values, with no apparent significant difference between them.

(a) (b)

Figure 5.9: Log-likelihood and improvement ratio for DataIt010

Table 5.25 summarizes the log-likelihood values for DataIt010. The mean log-likelihood
values for R1 are -86.85 (train) and 12.99 (validation), while the mean log-likelihood values
for R2 are -85.96 (train) and 13.09 (validation). The difference in mean log-likelihood between
the two rewards is minimal.

Table 5.25: Log-likelihood obtained with rewards R1 and R2 for DataIt010

Data R1 Mean (Train) R2 Mean (Train) R1 Mean (Validation) R2 Mean (Validation)
DataIt010 -86.85 -85.96 12.99 13.09

Table 5.26 presents the improvement ratios, indicating the relative performance improvement
of rewards R1 and R2 over the baseline. For DataIt010, both rewards demonstrate improvement
ratios greater than 0, suggesting better performance compared to the baseline. However,
the difference in improvement ratios between R1 and R2 is negligible, indicating similar
performance enhancements.

Table 5.26: Improvement ratio of log-likelihood obtained with rewards R1 and R2 for DataIt010

Data R1 Ratio (Train) R2 Ratio (Train) R1 Ratio (Validation) R2 Ratio (Validation)
DataIt010 0.3977 0.3991 0.4769 0.4776

Table 5.27 provides the standard deviations of log-likelihood, which indicate the stability
and consistency of the clustering results. In this case, both rewards exhibit relatively low
standard deviations, further supporting the similarity in their performance.
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Table 5.27: Standard deviation of log-likelihood obtained with rewards R1 and R2 for DataIt010

Data R1 Std. Dev. (Train) R2 Std. Dev. (Train) R1 Std. Dev. (Validation) R2 Std. Dev. (Validation)
DataIt010 3.9257 4.3720 7.6743 7.7043

Considering these results, it can be concluded that there are no significant differences
between rewards R1 and R2 in terms of log-likelihood, improvement ratios, and standard
deviations for the DataIt010 dataset. Both rewards yield similar clustering performance and
stability, indicating comparable effectiveness in capturing the underlying data patterns.

Therefore, based on the overall analysis and the observed performance metrics, it can be
concluded that both R1 and R2 are viable options for the DataIt010 dataset. There is no
clear superiority of one reward over the other, suggesting that either reward can be chosen
without a substantial impact on the clustering outcomes.
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DataIt011

The results for the ”DataIt011” dataset are presented in Figure 5.10a and Figure 5.10b,
along with tables showing the log-likelihood, improvement ratios, and standard deviations for
rewards R1 and R2.

Figure 5.10a displays the log-likelihood values obtained during training and validation for
rewards R1 and R2. From the figures, it can be observed that R1 achieves higher log-likelihood
values than R2 during training, while R2 performs better during validation, indicating a better
generalization ability.

(a) (b)

Figure 5.10: Log-likelihood and improvement ratio for DataIt011

Table 5.28 summarizes the log-likelihood values for the ”DataIt011” dataset. The mean
log-likelihood values for R1 are -433.50 (train) and -480.33 (validation), while the mean
log-likelihood values for R2 are -565.27 (train) and -636.13 (validation). These results suggest
that R2 achieves lower log-likelihood values, indicating a better fit to the ”DataIt011” data.

Table 5.28: Log-likelihood obtained with rewards R1 and R2 for DataIt011

Data R1 Mean (Train) R2 Mean (Train) R1 Mean (Validation) R2 Mean (Validation)
DataIt011 -433.50 -565.27 -480.33 -636.13

Table 5.29 presents the improvement ratios, representing the relative performance enhancement
of rewards R1 and R2 compared to the baseline. For the ”DataIt011” dataset, R1 demonstrates
higher improvement ratios during training, while R2 achieves slightly higher improvement
ratios during validation. These results indicate that both rewards offer an improvement over
the baseline, with R1 showing better performance during training and R2 performing better
during validation.

Table 5.29: Improvement ratio of log-likelihood obtained with rewards R1 and R2 for DataIt011

Data R1 Ratio (Train) R2 Ratio (Train) R1 Ratio (Validation) R2 Ratio (Validation)
DataIt011 0.71 0.54 0.73 0.56
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Table 5.30 shows the standard deviations of log-likelihood, which indicate the stability
and consistency of the clustering results. In this case, R2 exhibits higher standard deviations
compared to R1 for both the training and validation sets, suggesting more variability in its
clustering performance.

Table 5.30: Standard deviation of log-likelihood obtained with rewards R1 and R2 for DataIt011

Data R1 Std. Dev. (Train) R2 Std. Dev. (Train) R1 Std. Dev. (Validation) R2 Std. Dev. (Validation)
DataIt011 27.0546 36.01 46.8850 61.6767

In conclusion, based on the provided results, it can be inferred that R1 outperforms
R2 for the ”DataIt011” dataset. R1 achieves higher log-likelihood values during training
and demonstrates better generalization performance with lower log-likelihood values during
validation. The improvement ratios and standard deviations also support the superior
performance of R1. These findings suggest that R1 captures better the underlying patterns of
the ”DataIt011” data.
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Daily climate Dheli

The results for the ”Daily climate Dheli” dataset are shown in Figure 5.11a and Figure
5.11b, along with tables presenting the log-likelihood, improvement ratios, and standard
deviations for rewards R1 and R2.

Figure 5.11a displays the log-likelihood values obtained during training and validation for
rewards R1 and R2. From the figures, it can be observed that R2 consistently outperforms R1

in terms of log-likelihood, indicating a better fit to the ”Daily climate Dheli” data.

(a) (b)

Figure 5.11: Log-likelihood and improvement ratio for Daily climate Dheli

Table 5.31 summarizes the log-likelihood values for the ”Daily climate Dheli” dataset.
The mean log-likelihood values for R1 are -502.32 (train) and -488.44 (validation), while
the mean log-likelihood values for R2 are -472.09 (train) and -545.84 (validation). These
results demonstrate that R2 achieves higher log-likelihood values than R1, suggesting better
clustering performance.

Table 5.31: Log-likelihood obtained with rewards R1 and R2 for Daily climate Dheli

Data R1 Mean (Train) R2 Mean (Train) R1 Mean (Validation) R2 Mean (Validation)
Daily climate Dheli -502.32 -472.09 -488.44 -545.84

Table 5.32 presents the improvement ratios, which represent the relative performance
enhancement of rewards R1 and R2 compared to the baseline. For the ”Daily climate Dheli”
dataset, R2 consistently outperforms R1 in terms of improvement ratios. The improvement
ratios of R2 are significantly higher than those of R1, indicating a more substantial enhancement
in clustering quality.

Table 5.32: Improvement ratio of log-likelihood obtained with rewards R1 and R2 for Daily
climate Dheli

Data R1 Ratio (Train) R2 Ratio (Train) R1 Ratio (Validation) R2 Ratio (Validation)
Daily climate Dheli 0.2147 0.3453 0.0895 0.2541
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Table 5.33 shows the standard deviations of log-likelihood, which indicate the stability
and consistency of the clustering results. In this case, R2 exhibits higher standard deviations
compared to R1 for both the training and validation sets, suggesting more variability in its
clustering performance.

Table 5.33: Standard deviation of log-likelihood obtained with rewards R1 and R2 for Daily
climate Dheli

Data R1 Std. Dev. (Train) R2 Std. Dev. (Train) R1 Std. Dev. (Validation) R2 Std. Dev. (Validation)
Daily climate Dheli 0.7561 6.9854 1.5519 8.8730

In conclusion, based on the provided results, it can be inferred that R2 is better than R1

for the ”Daily climate Dheli” dataset. R2 consistently achieves higher log-likelihood values,
demonstrates significantly better improvement ratios, and exhibits higher standard deviations.
These findings suggest that R2 captures the underlying patterns of the ”Daily climate Dheli”
data more effectively and produces more accurate and potentially diverse clustering results.
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B Experiment 2 results: Varying the Number of Observations

in the Past

DataIt01

The results of Experiment 2, which focused on varying the number of observations in the
past, are presented below for the DataIt01 dataset.

(a) (b)

Figure 5.12: Learning curves of the method with different numbers of observations. Figure (a)
shows the method within the reward function R1, and Figure (b) shows the version within R2.

Figure 5.12a shows the learning curves of the proposed method with different numbers
of observations within two different reward functions, R1 and R2. Figure 1(a) depicts the
learning curve within the reward function R1, while Figure 1(b) displays the version within
R2.

number of periods R 1 log likelihood train R 1 log likelihood validation R 2 log likelihood train R 2 log likelihood validation
1 283.24 287.97 282.33 286.66
2 304.10 275.76 284.73 261.43
3 305.16 274.85 285.13 261.66

Table 5.34: Loglikelihood achieved by the model when handling DataIt01 with different
numbers of observations.

Table 5.34 presents the log-likelihood values achieved by the model when handling DataIt01
with different numbers of observations. The table includes the number of periods considered
(number of periods) and the corresponding log-likelihood scores for the training and validation
sets within reward functions R1 and R2.

Table 5.35 provides the improvement ratios obtained by the model when handling DataIt01
with different numbers of periods. The improvement ratios are calculated by comparing the
log-likelihood scores of the modified model with the baseline model (naive approach) for both
the training and validation sets within reward functions R1 and R2.
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number of periods R 1 ratio train R 1 ratio validation R 2 ratio train R 2 ratio validation
1 0.1708 0.4018 0.1613 0.3959
2 0.3391 0.3478 0.1818 0.2791
3 0.3483 0.3434 0.1836 0.2797

Table 5.35: Improvement ratios achieved by the model when handling DataIt01 with different
numbers of periods.

The results obtained for DataIt01 are as follows:

For reward function R1, the log-likelihood scores for the training set increase as the number
of periods increases. The model achieves a log-likelihood score of 283.24 with 1 period, 304.10
with 2 periods, and 305.16 with 3 periods. However, on the validation set, the log-likelihood
score is highest with 1 period, reaching 287.97, while it decreases with 2 and 3 periods.

In terms of improvement ratios, for the training set, the model shows an improvement of
17.08% with 1 period, 33.91% with 2 periods, and 34.83% with 3 periods compared to the
baseline. Similarly, for the validation set, the improvement ratios are 40.18% with 1 period,
34.78% with 2 periods, and 34.34% with 3 periods.

Moving to reward function R2, the log-likelihood scores follow a similar pattern. The
model achieves the highest log-likelihood score on the training set with 3 periods (285.13),
followed by 2 periods (284.73), and 1 period (282.33). However, for the validation set, the
log-likelihood score is highest with 1 period (286.66) and decreases with 2 and 3 periods.

Regarding the improvement ratios for reward function R2, the model shows an improvement
of 16.13% with 1 period, 18.18% with 2 periods, and 18.36% with 3 periods on the training
set compared to the baseline. Similarly, on the validation set, the improvement ratios are
39.59% with 1 period, 27.91% with 2 periods, and 27.97% with 3 periods.
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DataIt02

The results of Experiment 2, which focused on varying the number of observations in the
past, are presented below for the DataIt02 dataset.

(a) (b)

Figure 5.13: Learning curves of the method with different numbers of observations. Figure (a)
shows the method within the reward function R1, and Figure (b) shows the version within R2.

Figure 5.13a shows the learning curves of the proposed method with different numbers
of observations within two different reward functions, R1 and R2. Figure 1(a) depicts the
learning curve within the reward function R1, while Figure 1(b) displays the version within
R2.

The log-likelihood scores for different numbers of periods (n obs) and reward functions R1

and R2 are presented in Table 5.36. The improvement ratios are shown in Table 5.37.

Table 5.36: Loglikelihood achieved by the model when handling DataIt02 with different
numbers of observations.

n obs R 1 loglikelihood train R 1 loglikelihood validation R 2 loglikelihood train R 2 loglikelihood validation
1 -770.32 -962.81 -756.74 -962.81
2 -769.59 -963.15 -753.88 -960.56
3 -769.94 -962.90 -766.42 -959.95

Table 5.37: Improvement ratios achieved by the model when handling DataIt02 with different
numbers of observations.

n obs R 1 improvement ratio train R 1 improvement ratio validation R 2 improvement ratio train R 2 improvement ratio validation
1 0.397 0.423 0.404 0.423
2 0.397 0.423 0.406 0.424
3 0.397 0.423 0.399 0.424

Now, let’s analyze the results obtained for DataIt02:

Regarding the log-likelihood scores presented in Table 5.36, there is no clear pattern
observed for reward function R1 as the number of observations (n obs) increases since there
are not a tendency.
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Moving to reward function R2, the log-likelihood scores also show a similar pattern. The
model achieves the highest log-likelihood score on the training set with 2 observations, followed
by 1 observation, and finally 3 observations. However, on the validation set, the log-likelihood
score is highest with 1 observation and decreases with 2 and 3 observations.

Analyzing the improvement ratios presented in Table 5.37, we can observe that the model
consistently demonstrates improvement across different numbers of observations for both
rewards functions R1 and R2. The improvement ratio for R1 is 39.7% for the training set in
all versions and 42.3% for the validation set (yes, these results are correct). On the other
hand, the improvement ratio for R2 touch the maximum in the 1 observation version.

Overall, the results indicate that the proposed method achieves improved log-likelihood
scores and substantial improvement ratios compared to the baseline (naive approach) for both
rewards functions R1 and R2 on the DataIt02 dataset.
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DataIt03

Figure 5.14 illustrates the learning curves of the proposed method with different numbers
of observations within two different reward functions, R1 and R2, for the DataIt03 dataset.
Figure 5.14a represents the learning curve within the reward function R1, while Figure 5.14b
illustrates the version within R2.

(a) (b)

Figure 5.14: Learning curves of the method with different numbers of observations. Figure (a)
shows the method within the reward function R1, and Figure (b) shows the version within R2.

Table 5.38 presents the log-likelihood values achieved by the model when handling the
DataIt03 dataset with different numbers of observations. It includes the number of observations
considered (n obs) and the corresponding log-likelihood scores for the training and validation
sets within reward functions R1 and R2.

n obs R 1 log likelihood train R 1 log likelihood validation R 2 log likelihood train R 2 log likelihood validation
1 632.28 677.28 616.28 651.65
2 616.29 651.04 616.95 651.74
3 617.18 649.93 656.06 681.06

Table 5.38: Loglikelihood achieved by the model when handling DataIt03 with different
numbers of observations.

Table 5.39 provides the improvement ratios obtained by the model when handling the
DataIt03 dataset with different numbers of observations. The improvement ratios are
calculated by comparing the log-likelihood scores of the modified model with the baseline
model (naive approach) for both the training and validation sets within reward functions R1

and R2.

Analyzing the results for DataIt03, we observe the following:

For reward function R1, the log-likelihood scores for both the training and validation sets
decrease as the number of observations (n obs) increases. The model achieves a log-likelihood
score of 632.28 on the training set and 677.28 on the validation set with 1 observation. With
2 observations, the scores decrease to 616.29 on the training set and 651.04 on the validation
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n obs R 1 ratio train R 1 ratio validation R 2 ratio train R 2 ratio validation
1 0.250 0.277 0.213 0.218
2 0.213 0.217 0.216 0.218
3 0.215 0.214 0.307 0.286

Table 5.39: Improvement ratios achieved by the model when handling DataIt03 with different
numbers of observations.

set. Finally, with 3 observations, the scores further decrease to 617.18 on the training set and
649.93 on the validation set.

Regarding the improvement ratios, for the training set, the model shows an improvement
ratio of 25.0% with 1 observation, 21.3% with 2 observations, and 21.5% with 3 observations
compared to the baseline model. On the validation set, the improvement ratios range from
21.4% to 27.7% for 1 to 3 observations, indicating the effectiveness of the proposed method
within reward function R1.

Moving to reward function R2, the log-likelihood scores follow a similar pattern as in R1.
The model achieves the highest log-likelihood score on the training set with 3 observations
(656.06), followed by 2 observation (616.95), and 1 observations (616.28). However, on the
validation set, the log-likelihood score is highest with 3 observation (681.06) and decreases
with 1 and 3 observations.

Regarding the improvement ratios for reward function R2, the model shows different
patterns compared to R1. The improvement ratios on the training set range from 21.3% to
30.7% for 1 to 3 observations. On the validation set, the improvement ratio remains between
21.8% to 28.6% for 1 to 3 observations, touching its maximum with 3 observations.

Overall, the results indicate that the number of observations can play an important role
in the performance of our method.
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DataIt04

Figure 5.15 illustrates the learning curves of the proposed method with different numbers
of observations within two different reward functions, R1 and R2, for the DataIt04 dataset.
Figure 5.15a represents the learning curve within the reward function R1, while Figure 5.15b
illustrates the version within R2.

(a) (b)

Figure 5.15: Learning curves of the method with different numbers of observations. Figure (a)
shows the method within the reward function R1, and Figure (b) shows the version within R2.

Table 5.40 presents the log-likelihood values achieved by the model when handling the
DataIt04 dataset with different numbers of observations. It includes the number of periods
considered (n obs) and the corresponding log-likelihood scores for the training and validation
sets within reward functions R1 and R2.

n obs R 1 log-likelihood train R 1 log-likelihood validation R 2 log-likelihood train R 2 log-likelihood validation
1 -877.24 -873.93 -784.70 -920.73
2 -810.69 -916.78 -843.20 -915.88
3 -887.48 -943.63 -810.16 -912.66

Table 5.40: Log-likelihood achieved by the model when handling DataIt04 with different
numbers of observations.

Table 5.41 provides the improvement ratios obtained by the model when handling the
DataIt04 dataset with different numbers of observations. The improvement ratios are
calculated by comparing the log-likelihood scores of the modified model with the baseline
model (naive approach) for both the training and validation sets within reward functions R1

and R2.

In summary, the results obtained from the DataIt04 dataset indicate the following:

For reward function R1, the log-likelihood scores generally decrease as the number of
periods (n obs) increases. With 1 period, the model achieves log-likelihood scores of -877.24
on the training set and -873.93 on the validation set. As the number of periods increases to 2
and 3, the log-likelihood scores decrease further.
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n obs R 1 improvement ratio train R 1 improvement ratio validation R 2 improvement ratio train R 2 improvement ratio validation
1 0.089 0.146 0.294 0.040
2 0.235 0.048 0.166 0.048
3 0.069 -0.018 0.240 0.058

Table 5.41: Improvement ratios achieved by the model when handling DataIt04 with different
numbers of observations.

Analyzing the improvement ratios, on the training set, the model consistently shows
positive improvement ratios for all numbers of periods, indicating an improvement over
the baseline model. However, on the validation set, the improvement ratios vary. While
improvement ratios are positive for 1 and 2 periods, the improvement ratio becomes negative
for 3 periods, indicating a worse performance compared to the baseline model.

For reward function R2, the log-likelihood scores exhibit a similar trend. The model
achieves the highest log-likelihood scores on the training set with 1 period, while the scores
decrease with 2 and 3 periods. On the validation set, the log-likelihood scores consistently
decrease as the number of periods increases.

Regarding the improvement ratios, for both the training and validation sets, the improvement
ratios fluctuate across different numbers of periods. While positive improvement ratios
are observed for some cases, indicating an improvement over the baseline model, negative
improvement ratios are also present, indicating worse performance for certain configurations.

These findings highlight the complex relationship between the number of periods and the
model’s performance within different reward functions for the DataIt04 dataset. The impact
of the number of periods may vary depending on the specific reward function used.
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DataIt05

Figure 5.16 illustrates the learning curves of the proposed method with different numbers of
observations within two different reward functions, R1 and R2, for the 05 dataset. Figure 5.16a
represents the learning curve within the reward function R1, while Figure 5.16b illustrates
the version within R2.

(a) (b)

Figure 5.16: Learning curves of the method with different numbers of observations for the 05
dataset. Figure (a) shows the method within the reward function R1, and Figure (b) shows
the version within R2.

Table 5.42 presents the log-likelihood values achieved by the model when handling the
DataIt05 dataset with different numbers of periods. It includes the number of periods
considered (n obs) and the corresponding log-likelihood scores for the training and validation
sets within reward functions R1 and R2.

n obs R 1 log-likelihood train R 1 log-likelihood validation R 2 log-likelihood train R 2 log-likelihood validation
1 634.72 724.91 634.96 725.53
2 635.02 725.25 636.04 726.63
3 748.49 617.79 746.60 615.49

Table 5.42: Log-likelihood achieved by the model when handling DataIt05 with different
numbers of periods.

Table 5.43 provides the improvement ratios obtained by the model when handling the
DataIt05 dataset with different numbers of periods. The improvement ratios are calculated
by comparing the log-likelihood scores of the modified model with the baseline model (naive
approach) for both the training and validation sets within reward functions R1 and R2.

In summary, the results obtained from the DataIt05 dataset indicate the following:

For reward function R1, the log-likelihood scores generally increase or remain relatively
stable as the number of periods (n obs) increases. The model achieves log-likelihood scores
ranging from 634.72 to 748.49 on the training set and from 617.79 to 724.91 on the validation
set.
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n obs R 1 improvement ratio train R 1 improvement ratio validation R 2 improvement ratio train R 2 improvement ratio validation
1 0.118 0.099 0.120 0.103
2 0.120 0.102 0.127 0.110
3 0.516 0.499 0.501 0.482

Table 5.43: Improvement ratios achieved by the model when handling DataIt05 with different
numbers of periods.

Analyzing the improvement ratios, on both the training and validation sets, the model
consistently shows positive improvement ratios for all numbers of periods within reward
function R1, indicating an improvement over the baseline model. The improvement ratios
range from 0.118 to 0.516 on the training set and from 0.099 to 0.499 on the validation set.
The better is the 3 observation version.

For reward function R2, the log-likelihood scores also exhibit a similar trend. The model
achieves log-likelihood scores ranging from 634.96 to 746.60 on the training set and from
615.49 to 725.53 on the validation set as the number of periods increases.

Regarding the improvement ratios, positive improvement ratios are observed for all numbers
of periods on both the training and validation sets within reward function R2, indicating an
improvement over the baseline model. The improvement ratios range from 0.103 to 0.482 on
the validation set and from 0.120 to 0.501 on the training set. The better is the 3 observation
version.

These findings indicate that increasing the number of periods could lead to improved
performance in terms of log-likelihood scores and improvement ratios for both rewards
functions R1 and R2 in the DataIt05 dataset.
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DataIt07

Figure 5.17 illustrates the learning curves of the proposed method with different numbers
of observations within two different reward functions, R1 and R2, for the DataIt07 dataset.
Figure 5.17a represents the learning curve within the reward function R1, while Figure 5.17b
illustrates the version within R2.

(a) (b)

Figure 5.17: Learning curves of the method with different numbers of observations for the
DataIt07 dataset. Figure (a) shows the method within the reward function R1, and Figure
(b) shows the version within R2.

Table 5.44 presents the log-likelihood values achieved by the model when handling the
DataIt07 dataset with different numbers of periods. It includes the number of periods
considered (n obs) and the corresponding log-likelihood scores for the training and validation
sets within reward functions R1 and R2.

n obs R 1 log-likelihood train R 1 log-likelihood validation R 2 log-likelihood train R 2 log-likelihood validation
1 -745.57 -615.23 -775.79 -654.24
2 -777.07 -653.33 -3141.19 -2801.29
3 -750.50 -639.58 -749.33 -627.37

Table 5.44: Log-likelihood achieved by the model when handling DataIt07 with different
numbers of periods.

Table 5.45 provides the improvement ratios obtained by the model when handling the
DataIt07 dataset with different numbers of periods. The improvement ratios are calculated
by comparing the log-likelihood scores of the modified model with the baseline model (naive
approach) for both the training and validation sets within reward functions R1 and R2.

In summary, the results obtained from the DataIt07 dataset indicate the following:

For reward function R1, the log-likelihood scores show some variation as the number of
periods (n obs) increases. The model achieves log-likelihood scores ranging from -745.57 to
-777.07 on the training set and from -615.23 to -653.33 on the validation set.
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n obs R 1 improvement ratio train R 1 improvement ratio validation R 2 improvement ratio train R 2 improvement ratio validation
1 0.145 0.154 0.062 0.011
2 0.059 0.015 -6.784 -7.873
3 0.137 0.066 0.139 0.110

Table 5.45: Improvement ratios achieved by the model when handling DataIt07 with different
numbers of periods.

Analyzing the improvement ratios, on both the training and validation sets, the model
shows mixed improvement ratios for different numbers of periods within reward function R1.
While positive improvement ratios are observed, indicating an improvement over the baseline
model, the improvement ratios range from 0.059 to 0.145 on the training set and from 0.015
to 0.154 on the validation set.

For reward function R2, the log-likelihood scores exhibit a similar trend. The model
achieves log-likelihood scores ranging from -775.79 to -3141.19 on the training set and from
-654.24 to -2801.29 on the validation set as the number of periods increases.

Regarding the improvement ratios, negative improvement ratios are observed for the
model’s performance within reward function R2 on both the training and validation sets. The
improvement ratios range from -6.784 to 0.139 on the training set and from -7.873 to 0.110
on the validation set.

These findings demonstrate the impact of the number of periods on the model’s performance
within different reward functions for the DataIt07 dataset.
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Figure 5.18 illustrates the learning curves of the proposed method with different numbers
of observations within two different reward functions, R1 and R2, for the DataIt010 dataset.
Figure 5.18a represents the learning curve within the reward function R1, while Figure 5.18b
illustrates the version within R2.

(a) (b)

Figure 5.18: Learning curves of the method with different numbers of observations for the
DataIt010 dataset. Figure (a) shows the method within the reward function R1, and Figure
(b) shows the version within R2.

Table 5.46 presents the log-likelihood values achieved by the model when handling the
DataIt010 dataset with different numbers of periods. It includes the number of periods
considered (n obs) and the corresponding log-likelihood scores for the training and validation
sets within reward functions R1 and R2.

n obs R 1 log-likelihood train R 1 log-likelihood validation R 2 log-likelihood train R 2 log-likelihood validation
1 -87.03 13.37 -87.04 13.48
2 -80.55 12.15 -229.31 -106.63
3 -86.46 13.79 -7.66 54.78

Table 5.46: Log-likelihood achieved by the model when handling DataIt010 with different
numbers of periods.

Table 5.47 provides the improvement ratios obtained by the model when handling the
DataIt010 dataset with different numbers of periods. The improvement ratios are calculated
by comparing the log-likelihood scores of the modified model with the baseline model (naive
approach) for both the training and validation sets within reward functions R1 and R2.

n obs R 1 improvement ratio train R 1 improvement ratio validation R 2 improvement ratio train R 2 improvement ratio validation
1 0.397 0.477 0.397 0.478
2 0.413 0.473 0.041 0.001
3 0.399 0.479 0.598 0.644

Table 5.47: Improvement ratios achieved by the model when handling DataIt010 with different
numbers of periods.

In summary, the results obtained from the DataIt010 dataset indicate the following:
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For reward function R1, the log-likelihood scores show some variation as the number of
periods (n obs) increases but is not possible to see a tendency,

Analyzing the improvement ratios, on both the training and validation sets, the model
shows positive improvement ratios for different numbers of periods within reward function R1.

For reward function R2, the log-likelihood scores exhibit a larger variation where the worse
was the model with 2 observations and the better the case with 3 observations.

Regarding the improvement ratios, positive improvement ratios are observed for the
model’s performance within reward function R2 on the training set for 1 and 3 periods.
However, the improvement ratios were close to zero for the validation set with 2 observations,
indicating limited improvement over the baseline model, but a high improvement in the other
configurations.

These findings demonstrate the impact of the number of periods on the model’s performance
within different reward functions for the DataIt010 dataset.
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DataIt011

Figure 5.19 illustrates the learning curves of the proposed method with different numbers
of observations within two different reward functions, R1 and R2, for the DataIt011 dataset.
Figure 5.19a represents the learning curve within the reward function R1, while Figure 5.19b
illustrates the version within R2.

(a) (b)

Figure 5.19: Learning curves of the method with different numbers of observations for the
DataIt011 dataset. Figure (a) shows the method within the reward function R1, and Figure
(b) shows the version within R2.

Table 5.48 presents the log-likelihood values achieved by the model when handling the
DataIt011 dataset with different numbers of periods. It includes the number of periods
considered (n obs) and the corresponding log-likelihood scores for the training and validation
sets within reward functions R1 and R2.

n obs R 1 log-likelihood train R 1 log-likelihood validation R 2 log-likelihood train R 2 log-likelihood validation
1 -433.29 -480.39 -567.94 -636.51
2 -569.39 -635.60 -724.99 -823.79
3 -1240.05 -1305.35 -417.46 -475.22

Table 5.48: Log-likelihood achieved by the model when handling DataIt011 with different
numbers of periods.

Table 5.49 provides the improvement ratios obtained by the model when handling the
DataIt011 dataset with different numbers of periods. The improvement ratios are calculated
by comparing the log-likelihood scores of the modified model with the baseline model (naive
approach) for both the training and validation sets within reward functions R1 and R2.

In summary, the results obtained from the DataIt011 dataset indicate the following:

For reward function R1, the log-likelihood scores show variations as the number of periods
(n obs) increases. The model achieves log-likelihood scores ranging from -1240 to -433.29 on
the training set and from -1305.35 to -480.39 on the validation set.

94



n obs R 1 improvement ratio train R 1 improvement ratio validation R 2 improvement ratio train R 2 improvement ratio validation
1 0.716 0.740 0.537 0.568
2 0.537 0.569 0.332 0.361
3 -0.338 -0.173 0.732 0.746

Table 5.49: Improvement ratios achieved by the model when handling DataIt011 with different
numbers of periods.

Analyzing the improvement ratios, positive improvement ratios are observed for different
numbers of periods within reward function R1 on both the training and validation sets. The
improvement ratios range from -0.338 to 0.716 on the training set and from -0.173to 0.740 on
the validation set.

For reward function R2, the log-likelihood scores also exhibit variations. The model
achieves log-likelihood scores ranging from -724.99 to -417.46 on the training set and from
-823.51 to -475.22 on the validation set as the number of periods increases.

Regarding the improvement ratios, positive improvement ratios are observed for the
model’s performance within reward function R2 on both the training and validation sets for
all numbers of periods considered. The improvement ratios range from 0.332 to 0.732 on the
training set and from 0.361 to 0.746 on the validation set, indicating improvement over the
baseline model.

These findings demonstrate the impact of the number of periods on the model’s performance
within different reward functions for the DataIt011 dataset, but is not always better as the
number of observation increase.
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Daily Climate Delhi

Figure 5.20 illustrates the learning curves of the proposed method with different numbers
of observations within two different reward functions, R1 and R2, for the Daily climate Delhi
dataset. Figure 5.20a represents the learning curve within the reward function R1, while
Figure 5.20b illustrates the version within R2.

(a) (b)

Figure 5.20: Learning curves of the method with different numbers of observations for the
Daily climate Delhi dataset. Figure (a) shows the method within the reward function R1,
and Figure (b) shows the version within R2.

Table 5.50 presents the log-likelihood values achieved by the model when handling the
”Daily Climate Delhi” dataset with different numbers of periods. It includes the number of
periods considered (n obs) and the corresponding log-likelihood scores for the training and
validation sets within reward functions R1 and R2.

n obs R 1 log-likelihood train R 1 log-likelihood validation R 2 log-likelihood train R 2 log-likelihood validation
1 -502.37 -488.39 -470.71 -464.70
2 -472.07 -467.06 -502.18 -488.28
3 -502.41 -488.44 -502.29 -488.45

Table 5.50: Log-likelihood achieved by the model when handling Daily Climate Delhi with
different numbers of periods.

Table 5.51 provides the improvement ratios obtained by the model when handling the
”Daily Climate Delhi” dataset with different numbers of periods. The improvement ratios are
calculated by comparing the log-likelihood scores of the modified model with the baseline
model (naive approach) for both the training and validation sets within reward functions R1

and R2.

In summary, the results obtained from the ”Daily Climate Delhi” dataset indicate the
following:

For reward function R1, the log-likelihood scores show slight variations as the number of
periods (n obs) increases. The model achieves log-likelihood scores ranging from -502.41 to
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n obs R 1 improvement ratio train R 1 improvement ratio validation R 2 improvement ratio train R 2 improvement ratio validation
1 0.215 0.089 0.349 0.254
2 0.345 0.238 0.216 0.090
3 0.215 0.089 0.215 0.089

Table 5.51: Improvement ratios achieved by the model when handling Daily Climate Delhi
with different numbers of periods.

-472.07 on the training set and from -488.44 to -467.06 on the validation set.

Analyzing the improvement ratios, positive improvement ratios are observed for different
numbers of periods within reward function R1 on both the training and validation sets. The
improvement ratios range from 0.215 to 0.345 on the training set and from 0.089 to 0.238
on the validation set, indicating improvement over the baseline model. The better version is
with 2 observations.

For reward function R2, the log-likelihood scores also exhibit variations. The model
achieves log-likelihood scores ranging from -502.29 to -470.71 on the training set and from
-488.45 to -464.70 on the validation set as the number of periods increases.

Regarding the improvement ratios, positive improvement ratios are observed for the
model’s performance within reward function R2 on both the training and validation sets for
all numbers of periods considered. The improvement ratios range from 0.215 to 0.349 on the
training set and from 0.254 to 0.090 on the validation set, indicating improvement over the
baseline model. The better version is with 1 observation.

These findings demonstrate the impact of the number of periods on the model’s performance
within different reward functions for the ”Daily Climate Delhi” dataset.
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C Experiment 3 Results: Creation and Elimination of

Clusters

In this experiment, we investigated the ability of the GMM-POMG model to adapt to changes
in the number of clusters over time. The model was modified to allow for the dynamic creation
and elimination of clusters. We evaluated the model’s capability to identify and adapt to
changes in cluster formations using the synthetic datasets DataIt06 and DataIt09.

C.1 DataIt06

(a) (b)

Figure 5.21: Learning curves of the method with different numbers of observations for DataIt06.
(a) Method within the reward function R1. (b) Method within the reward function R2.

We utilized the DataIt06 dataset, which exhibits the creation of a cluster over time. This
allowed us to assess the model’s ability to adapt to such changes dynamically.

Table 5.52 presents the loglikelihood achieved by the model when handling DataIt06 with
different numbers of periods. The table includes the loglikelihood values for both the training
and validation sets, considering both reward functions R1 and R2.

Number of Periods R 1 Loglikelihood (Train) R 1 Loglikelihood (Validation) R 2 Loglikelihood (Train) R 2 Loglikelihood (Validation)
1 -409.67 -342.95 -440.03 -366.10
2 -380.96 -383.69 -1281.13 -1184.54
3 -445.88 -366.46 -471.00 -429.94

Table 5.52: Loglikelihood achieved by the model when handling DataIt06 with different
numbers of periods.

The learning curves for DataIt06 are depicted in Figure 5.21a and Figure 5.21b. Figure
5.21a shows the learning curve of the method within the reward function R1, while Figure
5.21b shows the learning curve within the reward function R2.
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Table 5.53 shows the improvement ratios achieved by the model when handling DataIt06.
These ratios represent the improvement of the modified model over the baseline (parameters
at time t), considering both the training and validation sets for reward functions R1 and R2.

Number of Periods R 1 Improvement Ratio (Train) R 1 Improvement Ratio (Validation) R 2 Improvement Ratio (Train) R 2 Improvement Ratio (Validation)
1 0.392 0.481 0.288 0.394
2 0.493 0.335 -2.618 -2.651
3 0.269 0.392 0.180 0.159

Table 5.53: Improvement ratios achieved by the model when handling DataIt06 with different
numbers of periods.

The results indicate that the GMM-POMG model was able to adapt to changes in cluster
formations in DataIt06, considering the creation of a new cluster over time. The improvement
ratios demonstrate the model’s ability to achieve better loglikelihood performance compared
to the baseline. However, it is worth noting that in the case of DataIt06, the improvement
ratios for reward function R2 in the second period were significantly negative. This can be
attributed to poor convergence, possibly due to a low number of episodes, as indicated by the
low loglikelihood values.

These findings highlight the adaptability of the GMM-POMG model to changes in the
number of clusters over time.
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C.2 DataIt09

We utilized the DataIt09 dataset, which involves the elimination of a cluster over time. This
allowed us to evaluate the model’s ability to adapt to such changes dynamically.

(a) (b)

Figure 5.22: Learning curves of the method with different numbers of observations for DataIt09.
(a) Method within the reward function R1. (b) Method within the reward function R2.

Table 5.54 presents the loglikelihood achieved by the model when handling DataIt09 with
different numbers of periods. The table includes the loglikelihood values for both the training
and validation sets, considering both reward functions R1 and R2.

Number of Periods R 1 Loglikelihood (Train) R 1 Loglikelihood (Validation) R 2 Loglikelihood (Train) R 2 Loglikelihood (Validation)
1 -494.21 -1429.93 -494.27 -1429.24
2 -380.00 -1257.25 -381.58 -1259.29
3 -437.94 -1334.08 -451.33 -1346.74

Table 5.54: Loglikelihood achieved by the model when handling DataIt09 with different
numbers of periods.

The learning curves for DataIt09 are depicted in Figure 5.22a and Figure 5.22b. Figure
5.22a shows the learning curve of the method within the reward function R1, while Figure
5.22b shows the learning curve within the reward function R2.

Table 5.55 shows the improvement ratios achieved by the model when handling DataIt09.
These ratios represent the improvement of the modified model over the baseline (parameters
at time t), considering both the training and validation sets for reward functions R1 and R2.

Number of Periods R 1 Improvement Ratio (Train) R 1 Improvement Ratio (Validation) R 2 Improvement Ratio (Train) R 2 Improvement Ratio (Validation)
1 0.211 0.111 0.211 0.111
2 0.516 0.333 0.513 0.330
3 0.363 0.234 0.326 0.218

Table 5.55: Improvement ratios achieved by the model when handling DataIt09 with different
numbers of periods.

The results demonstrate that the GMM-POMG model was able to adapt to changes in
cluster formations in DataIt09, which involved the elimination of a cluster over time. The
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improvement ratios indicate the model’s ability to achieve better loglikelihood performance
compared to the baseline. These findings provide evidence of the GMM-POMG model’s
adaptability to changes in the number of clusters over time.

Furthermore, it is interesting to note that the improvement ratios for both reward functions
R1 and R2 consistently showed positive values, indicating a positive impact on loglikelihood
performance.

D Results Tables

Data Item R1 R2
Training Test Training Test

DataIt01 283.24 287.97 282.33 286.66
DataIt02 -770.32 -962.81 -756.74 -962.81
DataIt03 632.28 677.28 616.28 651.65
DataIt04 -877.24 -873.93 -784.70 -920.73
DataIt05 634.72 724.91 634.96 725.53
DataIt07 -745.57 -615.23 -775.79 -654.24
DataIt010 -87.03 13.37 -87.04 13.48
DataIt011 -433.29 -480.39 -567.94 -636.51
Dheli -502.37 -488.39 -470.71 -464.70

Table 5.56: Comparison of Loglikelihood Across Different Reward Function within 1
Observation

Data Item R1 R2
Training Test Training Test

DataIt01 0.1708 0.4018 0.1613 0.3959
DataIt02 0.397 0.423 0.404 0.423
DataIt03 0.250 0.277 0.213 0.218
DataIt04 0.089 0.146 0.294 0.040
DataIt05 0.118 0.099 0.120 0.103
DataIt07 0.145 0.154 0.062 0.011
DataIt010 0.397 0.477 0.397 0.478
DataIt011 0.716 0.740 0.537 0.568
Dheli 0.215 0.089 0.349 0.254

Table 5.57: Comparison of Improvement Ratio Across Different Reward Function within 1
Observation
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Data Item R1 R2
Training Test Training Test

DataIt01 304.10 275.76 284.73 261.43
DataIt02 -769.59 -963.15 -753.88 -960.56
DataIt02 616.29 651.04 616.95 651.74
DataIt02 -810.69 -916.78 -843.20 -915.88
DataIt02 635.02 725.25 636.04 726.63
DataIt07 -777.07 -653.33 -3141.19 -2801.29
DataIt010 -80.55 12.15 -229.31 -106.63
DataIt011 -569.39 -635.60 -724.99 -823.79
Dheli -472.07 -467.06 -502.18 -488.28

Table 5.58: Comparison of Loglikelihood Across Different Reward Function within 2
Observation

Data Item R1 R2
Training Test Training Test

DataIt01 0.3391 0.3478 0.1818 0.2791
DataIt02 0.397 0.423 0.406 0.424
DataIt03 0.213 0.217 0.216 0.218
DataIt04 0.235 0.048 0.166 0.048
DataIt05 0.120 0.102 0.127 0.110
DataIt07 0.059 0.015 -6.784 -7.873
DataIt010 0.413 0.473 0.041 0.001
DataIt011 0.537 0.569 0.332 0.361
Dheli 0.345 0.238 0.216 0.090

Table 5.59: Comparison of Improvement Ratio Across Different Reward Function within 2
Observation

Data Item R1 R2
Training Test Training Test

DataIt01 305.16 274.85 285.13 261.66
DataIt02 -769.94 -962.90 -766.42 -959.95
DataIt03 617.18 649.93 656.06 681.06
DataIt04 -887.48 -943.63 -810.16 -912.66
DataIt05 748.49 617.79 746.60 615.49
DataIt07 -750.50 -639.58 -749.33 -627.37
DataIt010 -86.46 13.79 -7.66 54.78
DataIt011 -1240.05 -1305.35 -417.46 -475.22
Dheli -502.41 -488.44 -502.29 -488.45

Table 5.60: Comparison of Loglikelihood Across Different Reward Function within 3
Observation
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Data Item R1 R2
Training Test Training Test

DataIt01 0.3483 0.3434 0.1836 0.2797
DataIt02 0.397 0.423 0.399 0.424
DataIt03 0.215 0.214 0.307 0.286
DataIt04 0.069 -0.018 0.240 0.058
DataIt05 0.516 0.499 0.501 0.482
DataIt07 0.137 0.066 0.139 0.110
DataIt010 0.399 0.479 0.598 0.644
DataIt011 -0.338 -0.173 0.732 0.746
Dheli 0.215 0.089 0.215 0.089

Table 5.61: Comparison of Improvement Ratio Across Different Reward Function within 3
Observation
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