
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

3D SHAPE RETRIEVAL USING NEURAL NETWORKS

TESIS PARA OPTAR AL GRADO DE
DOCTOR EN COMPUTACIÓN

ARNIEL LABRADA DENIZ

PROFESOR GUÍA:
BENJAMÍN BUSTOS CÁRDENAS

MIEMBROS DE LA COMISIÓN:
IVÁN SIPIRÁN MENDOZA
JUAN BARRIOS NÚÑEZ

THEOHARIS THEOHARIS

SANTIAGO DE CHILE
2024

Resumen

RECUPERACIÓN DE OBJETOS 3D USANDO REDES NEURONALES

En los últimos años se han observado avances significativos en las tareas de recuperación,
clasificación y segmentación de modelos 3D. Las representaciones tradicionales como las nubes
de puntos y las mallas poligonales si bien son adecuadas para la renderización, presentan
desafíos para las tareas mencionadas debido a su complejidad y redundancia. Esta tesis se
enfoca en varias tecnicas para la representación de los modelos 3D asi como diferentes técnicas
de recuperación de los mismos, centrándose en la recuperación intermodal utilizando image
views.

Comenzamos nuestra investigación utilizando técnicas de representación de nivel medio,
como bag-of-words combinado con features tradicionales como por ejemplo filtros de Gabor.
Luego, avanzamos hacia métodos de deep learning para manejar modelos 3D representados
como conjuntos de image views. Proponemos una arquitectura novedosa, que combina redes
neuronales convolucionales (CNN) y autoencoders para calcular embeddings de los mode-
los 3D a partir de image views, con el objetivo de capturar información semántica para la
evaluación de similitudes.

Ampliamos el trabajo a la recuperación de modelos 3D basados en imágenes, revelando
desafíos para encontrar un espacio conjunto para embeddings de imágenes y modelos 3D.
Finalmente proponemos una arquitectura end-to-end para aprender a comparar imágenes y
modelos 3D directamente.

Los objetivos de la tesis incluyen el desarrollo de métodos basados en redes neuronales
para la recuperación de formas 3D y la recuperación de formas 3D intermodal, evaluación
comparativa, establecimiento de métricas, comparación con métodos tradicionales y pruebas
en escenarios reales.

i

Abstract

Significant advancements have been witnessed in 3D model retrieval, classification, and seg-
mentation tasks in recent years. While suitable for rendering, traditional representations
like point clouds and polygon meshes present challenges for the tasks above due to their
complexity and redundancy. This thesis delves into various 3D model representations and
retrieval techniques, focusing on cross-modal retrieval using image views.

We begin our research using mid-level representation techniques such as bag of words
combined with hand-engineered features. Then, we progress towards deep learning methods
to handle 3D models represented as sets of image views. We propose a novel architecture,
combining Convolutional Neural Networks (CNNs) and Autoencoders to compute 3D model
embeddings from image views, aiming to capture semantic information for similarity assess-
ment.

We extend the work to image-based 3D model retrieval, revealing challenges in finding a
joint space for image and 3D model embeddings. Finally, we propose an end-to-end archi-
tecture to learn how to directly compare images and 3D shapes.

The thesis objectives include developing neural network-based methods for 3D shape re-
trieval and cross-modal 3D shape retrieval, benchmarking, metric establishment, comparison
with traditional methods, and real scenario testing.

ii

TABLE OF CONTENT

1 INTRODUCTION 1

1.1 Information Retrieval . 2

1.1.1 3D shape retrieval . 3

1.2 Objectives . 3

1.2.1 General objective . 3

1.2.2 Specific objectives . 4

1.3 Hypothesis . 4

1.4 Research problem . 4

1.4.1 3D shape retrieval . 5

1.4.2 Image-based 3D shape retrieval . 6

1.5 Publications . 8

1.6 Thesis organization . 9

2 Background 10

2.1 Hand-engineered features for multimedia objects 10

2.1.1 Bag of Words (BOW): a mid-level representation for multimedia objects 10

2.1.2 Other mid-level representations (BOH and BossaNova) 12

2.2 Basic concepts of deep learning . 14

2.2.1 Artificial Neural Network . 14

iii

2.2.2 Activation Functions . 14

2.2.3 Optimizers . 15

2.3 Important Artificial Neural Networks Architectures 16

2.3.1 Convolutional Neural Networks . 16

2.3.2 Autoencoders . 17

2.3.3 Siamese Networks . 18

2.4 Transfer Learning . 19

2.5 Semantic Image Segmentation . 20

2.6 Evaluation metrics . 21

2.6.1 Precision-Recall plot . 21

2.6.2 Mean average precision . 22

2.6.3 Nearest Neighbor (NN) . 22

2.6.4 Discounted cumulative gain (DCG) 23

2.6.5 Micro and macro average . 23

2.7 Datasets . 24

2.7.1 SHREC’12 . 24

2.7.2 ShapeNet . 24

2.7.3 ModelNet . 24

2.8 Image views extraction . 25

2.8.1 Image views extraction from scratch 25

2.8.2 Image views extraction using Stanford-Shapenet-renderer 25

2.8.3 Image views refining using Convolutional Neural Networks 26

2.9 Summary . 26

3 State of the Art of 3D Model Processing 27

3.1 Image views representation for 3D deep learning 28

iv

3.2 Deep Features . 30

3.3 Data Embedding . 32

3.4 Image-based 3D Shape Retrieval . 32

4 SC-GALIF: A new method for image-based 3D model retrieval 34

4.1 Suggestive contours . 35

4.2 Sketch-based 3D shape retrieval using Gabor local line-based feature (GALIF) 35

4.3 Gabor Local Line-Based Feature (GALIF) 36

4.4 Our approach: SC-GALIF . 38

4.5 Summary . 40

5 Slider: A new mid-level representation 42

5.1 Others mid-level representations . 42

5.2 Proposal description . 43

5.3 3D shapes Representation . 44

5.4 Features extraction . 44

5.5 Building of the visual dictionary. 44

5.6 Experiment and results . 45

5.7 Summary . 45

6 Deep features for image-based 3D model retrieval 47

6.1 Proposal description . 47

6.2 Experiments and Results . 49

6.3 Summary . 49

7 Retrieval techniques for Cultural Heritage objects 51

7.1 A sketch-aided retrieval approach for incomplete 3D objects 51

v

7.1.1 Content-Based-Retrieval . 52

7.1.2 Deep Features for Content-Based-Retrieval 52

7.2 Motif-driven Retrieval of Greek Painted Pottery 53

7.2.1 Segmentation and Feature Extraction for Pottery Motifs 54

7.3 Experiment and results for sketch-aided retrieval approach for incomplete 3D
objects . 54

7.4 Experiment and results for Motif-driven Retrieval of Greek Painted Pottery . 55

7.5 Summary . 55

8 A New Convolutional Architecture for 3D Model Embedding and Retrieval (SE3D) 57

8.1 Autoencoder Network . 57

8.2 Classification Network . 59

8.3 Combination of the Autoencoder and the classification network 60

8.4 Improving the embedding . 60

8.5 Image view extraction . 62

8.5.1 Network for classification of the image views 62

8.5.2 Selection of the image views . 63

8.6 Overview . 64

8.7 Experiments and Results . 64

8.7.1 Data configurations . 65

8.7.2 Experimental setup . 66

8.7.3 Ablation study . 66

8.7.4 Inference time Study . 69

8.7.5 Proposal results against the state of the art 69

8.8 Summary . 71

9 SHREC 2021: A practical application of our proposal for the 3D shape retrieval 75

vi

9.1 SHREC 2021: Retrieval of Cultural Heritage Objects 75

9.1.1 Dataset . 76

9.1.2 Challenge description . 76

9.2 Proposal . 77

9.3 Experiment and results . 78

9.4 Summary . 79

10 Deep learning architectures for Image-based 3D Shape Retrieval (CrossSE3D) 84

10.1 A deep learning architecture for Image-based 3D Shape Retrieval 85

10.1.1 Architecture for computing embeddings 85

10.1.2 Compute similarity between embbeddings 87

10.2 Experiments and Results . 88

10.2.1 Data configurations . 88

10.2.2 Image views represenation . 88

10.2.3 Proposal setups and results . 88

10.3 An end-to-end neural network for image-based 3D shape retrieval 89

10.3.1 Experiments and Results for the end-to-end proposal 90

10.4 Summary . 90

11 Conclusions and future work 92

11.1 Summary of Contributions . 92

11.2 Future Work . 93

Bibliography 105

vii

List of Tables

4.1 Other metric values for the methods: SC-GALIF, BOF-SBR, SBR-2D-3D,
Orig-DG1SIFT, Dilated-DG1SIFT. 41

5.1 Experiment results for the SHREC’12 benchmark 46

5.2 Experiment results for the ShapeNet benchmark 46

6.1 Evaluation of the performance of the learned features and the engineered
features using a sample of the ShapeNet benchmark. 50

6.2 Evaluation of the performance of the learned features using the full ShapeNet
benchmark. 50

8.1 Evaluation of the performance of the embedding for 3D models Retrieval using
the normalized version of the ShapeNet. 71

8.2 Evaluation of the performance changing the amount of fully connected layers
for 3D models Retrieval using the normalized version of the ShapeNet. . . . 71

8.3 Evaluation of the performance changing the embedding size for 3D models
Retrieval using the normalized version of the ShapeNet. 72

8.4 Evaluation of the performance adding skip connection for 3D models Retrieval
using the normalized version of the ShapeNet. 72

8.5 Evaluation of the performance for different number of image views per 3D
model using normalized version of the ShapeNet. 72

8.6 Evaluation of the performance for the two different techniques to select im-
age views using normalized version of the ShapeNet with 16 views, five fully
connected layers and embedding size 256. 72

viii

8.7 Evaluation of the performance for the two different techniques to select im-
age views using perturbed version of the ShapeNet with 16 views, five fully
connected layers and embedding size 256. 72

8.8 Comparison of the Average Inference Times 72

8.9 Comparison of our computed embedding against other 3D model retrieval
methods using the normalized version of the ShapeNet. 73

8.10 Comparison of our computed embedding against other 3D model retrieval
methods using the perturbed version of the ShapeNet. 73

8.11 Comparison of our computed embedding against other 3D model retrieval
methods using ModelNet. 74

9.1 Evaluation measures for the retrieval-by-shape challenge 82

9.2 Evaluation measures for the retrieval-by-culture challenge 83

10.1 Evaluation results for the embedding-based proposal 91

10.2 Evaluation results for both proposal . 91

10.3 Evaluation results over the ModelNet dataset 91

11.1 Objectives by Chapter . 94

ix

List of Figures

2.1 BOW: H matrix representing coding and pooling functions. 11

2.2 Illustration of a local histogram zm. 12

2.3 Sigmoid function: y = 1
1+ex

. 15

2.4 Hyperbolic tangent function: y = tanh(x) 15

2.5 ReLU function: y = max(0, x) . 15

2.6 Leaky ReLU function: y = max(0.01, x) . 15

2.7 Softmax function: yi =
eyi∑k

j=1 e
yj

. 16

2.8 A standard Autoencoder architecture . 18

2.9 Siamese Networks . 19

2.10 Semantic Image Segmentation . 20

4.1 (a) A horse model (in curvature view); (b) Silhouette; (c) Contours (green)
and Suggestive contours (blue); (d) Apparent ridges 35

4.2 (a) A view from a 3D ant; (b) Suggestive contour extracted from the view . 39

4.3 Precision-Recall plot for the methods: SC-GALIF, BOF-SBR, SBR-2D-3D,
Orig-DG1SIFT, Dilated-DG1SIFT. 40

6.1 Convolutional Neural Network architecture for computing learned features,
using a classification architecture composed of four blocks of two convolutional
layers and one max pooling layer. Each block reduces the dimensionality of
the input from 128 × 128 to 16 × 16 in the last block before connecting it to
two consecutive fully connected layers and applying the soft-max activation
function over the last layer. 48

x

7.1 Complete Pipeline for sketch-aided retrieval approach for incomplete 3D ob-
jects (top left side of the figure are the preprocessing steps for the incomplete
3D object query to extract the feature descriptor, the bottom left side of the
figure are the preprocessing steps for 2D image data to extract the feature de-
scriptors, and finally the right side of the image is the content-based retrieval
using the query descriptor and the 2D image descriptor) 52

7.2 Results for Motif-driven Retrieval of Greek Painted Pottery 56

8.1 Proposal overview: A deep architecture for computing embeddings. It uses an
Autoencoder combined with a classification network and various constraints
to improve the quality of the embeddings that are later used in 3D shape
retrieval tasks. 58

8.2 Un-pooling layer used for the decoder of the model 59

8.3 Network for computing 3D shape embeddings using an Autoencoder archi-
tecture composed of its three main components: encoder (four blocks of two
convolutional layers and one max pooling layer), bottleneck (one fully con-
nected layer), and decoder (four blocks of one deconvolutional layer and one
un-pooling layer). 60

8.4 Network for computing 3D shape embeddings, using a classification architec-
ture composed of four blocks of two convolutional layers and one max pooling
layer. Each block reduces the dimensionality of the input from 128 × 128 to
16×16 in the last block before connecting it to two consecutive fully connected
layers and applying the soft-max activation function over the last layer. . . . 61

8.5 Network for computing 3D shape embeddings using a combination of Autoen-
coder and classification architectures. These architectures share the first half
of the network and then compute two losses for the Autoencoder and clas-
sification separately. Finally, the losses are combined into a single final loss
function. 62

8.6 Full network proposal for computing 3D shape embeddings using a combina-
tion of an Autoencoder architecture and a classification architecture, incorpo-
rating skip connections and increasing the bottleneck capacity by adding fully
connected layers. 63

8.7 Network architecture for image view classification optimized to refine a view
set representing a 3D shape. The goal is to identify and select the image views
best suited for accurately classifying the 3D shape in question. 64

xi

8.8 Entire pipeline for the retrieval process. We start from the offline stage, where
we train an artificial neural network to compute embedding representations
for every 3D shape. In the online stage, we compute the embedding for a given
3D shape and measure the distance from this embedding to every previously
computed embedding to obtain the retrieval results. 65

9.1 Example of each class for the shape challenge 76

9.2 Example of each class for the cultural challenge 77

9.3 Precision-recall plot for the retrieval-by-shape challenge. 79

9.4 Precision-recall plot for the retrieval-by-culture challenge 81

10.1 Un-pooling layer used for the decoder of the model 86

10.2 Network architecture for computing embeddings 87

xii

Chapter 1

INTRODUCTION

Many advances have been made in tasks like 3D model retrieval, 3D model classification, and
3D model segmentation during the last few years. Typical 3D representations such as point
clouds, voxels, and polygon meshes are primarily suitable for rendering purposes. At the
same time, their use for cognitive processes (retrieval, classification, segmentation) is limited
due to their high redundancy and complexity. This work explores different techniques for 3D
model representation, 3D model retrieval, and cross-domain 3D model retrieval using image
views to represent the 3D models.

We start our research using mid-level representation techniques, such as the bag of words
combined with hand-engineered features extracted with image descriptors. Then, we use
this representation in the 3D model retrieval task. Subsequently, we expand our research
to deep representation using deep learning techniques to propose a learning architecture to
handle 3D models represented as sets of image views as input. This architecture combines
standard architectures, like Convolutional Neural Networks and Autoencoders, for computing
3D model embeddings using sets of image views extracted from the 3D models. We aim to
represent a 3D model as a vector with enough information to substitute the 3D model for
high-level tasks. Since this vector is a learned representation that tries to capture the relevant
characteristics of a 3D model, we show that the embedding representation conveys semantic
information that helps deal with the similarity assessment of 3D objects. We compare our
proposed embedding technique with state-of-the-art techniques for 3D model retrieval using
the ShapeNet dataset. We show that the embeddings obtained with our proposed architecture
allow us to acquire a high effectiveness score in both normalized and perturbed versions of
the ShapeNet dataset.

We also extend our research to other subtasks like sketch-based 3D model retrieval and
image-based 3D model retrieval. In the last case, we use our proposed embedding-based model
to compute embeddings from images and 3D shapes and then perform the retrieval. This
approach is usual in other domains, such as image retrieval, because pre-trained networks

1

already give a good representation for metric learning. We evaluated this approach for
image-based 3D shape retrieval, and we observed poor performance. This result indicates
that metric learning struggles to find a suitable joint space for image embeddings and 3D
models embeddings. Inspired by these insights, we propose a second model that is an end-
to-end architecture. This end-to-end model directly learns how to compare images and 3D
shapes by guiding the feature extraction to the construction of common feature space. Our
experimental evaluation shows that the end-to-end architecture is more effective than the
embedding-based model for the retrieval task.

1.1 Information Retrieval

Information Retrieval (IR) is an interdisciplinary field that focuses on efficiently searching
and retrieving relevant information from large datasets. This discipline is essential in various
applications, including 3D object retrieval, where the goal is to find relevant three-dimensional
models in a database based on user needs and queries. Before delving into 3D object retrieval,
it is crucial to understand the fundamental concepts of Information Retrieval.

User Information Need: IR begins with a user’s need for information. Users seek infor-
mation to fulfill their goals, whether finding answers to specific questions, exploring topics,
or retrieving relevant resources.

Types of Queries: Queries are users’ expressions to search for information. They can be
text queries, queries based on visual content, or, in the context of 3D object retrieval, queries
based on geometric or structural features.

Relevance: Relevance is a key concept in IR. It refers to how a retrieved document or
object satisfies the user’s information needs. Evaluating relevance is essential to determine
the effectiveness of a retrieval system.

Ranking: In IR, search results are presented in an order that reflects their perceived
relevance. IR systems use ranking algorithms to rank retrieved documents or objects based
on their estimated relevance.

Similarity: Similarity measures the closeness between the user’s query and the documents
or objects in the database. In 3D object retrieval, similarity can be based on geometric
features such as shape and structure.

Descriptor: A descriptor is a structured or semantic representation of a document or
object. In 3D object retrieval, descriptors may include metadata, geometric features, and
other relevant attributes.

Index: IR systems use indexes to expedite searching and retrieval. An index is a data

2

structure that enables quick access to relevant documents or objects based on search terms
or query features.

Search: Searches involve retrieving relevant information from a database using queries.
Search techniques vary depending on the type of information and system requirements.

In the context of 3D object retrieval, these Information Retrieval concepts are crucial for
designing effective systems that can retrieve relevant three-dimensional models for users. By
understanding these concepts, we can develop algorithms and techniques that enhance the
accuracy and efficiency of 3D object retrieval in practical applications.

1.1.1 3D shape retrieval

The problem of 3D shape retrieval refers to searching for and retrieving a specific three-
dimensional object or relevant 3D models from a collection of 3D models. To further un-
derstand the problem, we will describe some of the basic concepts of information retrieval
adapted to our 3D shape Retrieval proposal. The user can be a researcher, a designer, or
any entity interested in finding specific 3D models. Then, the query is usually a 3D object,
but in other more specific tasks like image-based 3D shape retrieval, the goal is to retrieve
the 3D objects more similar to a query image.

We use several standard benchmarks for 3D shape retrieval and classification for all our
experiments. These benchmarks have their own train/validation/test split, and each 3D
model is labeled with their respective class. This means that given a specific query, an object
in the dataset is relevant if labeled with the same class as the query.

Finally, to evaluate the performance of our retrieval system, we use several metrics based
on a ranked list like Precision-Recall plot (PR), Mean Average Precision MAP, Nearest
Neighbor NN, First Tier FT, Second Tier ST, and Discounted Cumulative Gain DCG.

1.2 Objectives

In this section, we present the general and specific objectives of the proposed thesis.

1.2.1 General objective

The general objective of the proposed thesis is to develop methods to solve the problem
of 3D shape retrieval using artificial neural network techniques, as well as to compare the
performance of these methods with that of the traditional methods of the area.

3

1.2.2 Specific objectives

• Develop methods to solve the 3D shape retrieval (cross-modality 3D shape retrieval,
partial 3D shape retrieval) tasks using artificial neural networks.

• Select and implement the current methods that perform best in the area of 3D shape
retrieval (cross-modality 3D shape retrieval, partial 3D shape retrieval).

• Establish standard benchmarks for experimentation.

• Establish metrics to measure the performance of the methods

• Make comparisons between the proposed and most important methods in the area.

• Test the proposed methods in real scenarios and refine them to improve the results if
necessary.

1.3 Hypothesis

By using artificial neural networks combined with techniques for the representation of 3D
models, it is possible to develop methods to solve 3D shape retrieval tasks that improve the
performance of current methods and solve some open problems in the areas of cross-modal
3D shape retrieval and partial 3D shape retrieval.

1.4 Research problem

Since the outstanding results obtained by AlexNet [42] for image classification in 2012,
the architectures of artificial neural networks, specifically Convolutional Neural Networks
(CNNs) [45], have been continuously improving to solve visual computing tasks. Especially
in the image processing field, CNNs has been used to solve the most relevant tasks, out-
performing the results obtained with the area’s standard techniques. These tasks include
retrieval, classification, segmentation, and computation of image embeddings, among others.

Due to this remarkable performance, researchers have extended the use of CNNs to other
fields, such as 3D model processing. In recent years, some works propose using these networks
to solve classification and retrieval of 3D models with excellent results [37]. However, deep
learning in the field of 3D models is still a relatively under-researched topic, and some 3D
model tasks, such as computing 3D model embeddings, have received little to no attention.

textcolorblueBy researching these topics, we aim to create, help, or enhance several real-
life applications related to 3D data. For instance, two applications motivated this research.

4

The first consists of automatically adding the existing metadata from an image in the se-
mantic web to new 3D shapes in the semantic web. To accomplish these, we must match 3D
models with images to make this process automatic, enhancing the metadata for 3D shapes
on the web.

The second task is to create 3D catalogs of museums from existing 2D catalogs. Once
again, the goal is to automatically match 3D models with images so that, given a 3D shape,
we can extract all the pertinent information from the existing 2D catalog by finding the
image more similar to the 3D shape.

We also worked on other real-life applications during our research. Precisely, in the work
“A sketch-aided retrieval approach for incomplete 3D objects”. This work defines an appro-
priate workflow for content-based retrieval of 2D image data from incomplete 3D objects.
The workflow is built around a human-in-the-loop approach, allowing experts to provide
sketch-aids for adding missing shape information, query weighting, and visual result com-
parison. Domain experts can accurately estimate missing parts of Cultural Heritage objects.
The basic idea of sketch-aids is to allow users to create additional object structures, filled by
a texture inpainting step, which serves as input for content-based retrieval. This work was
applied to archaeological object comparison with promising results.

1.4.1 3D shape retrieval

In this work, we propose an artificial neural network architecture for computing 3D model
embeddings using sets of image views extracted from them. For this purpose, we first render
a set of image views from the 3D models. We propose an artificial neural network module
to process these image view sets to consume them as input. Our proposed architecture
combines this module with other standard artificial neural network architectures, like CNNs
and Autoencoders, to obtain the 3D model embeddings. This proposal simultaneously learns
features from the whole set of views instead of using the standard approach in the field
to combine the features from each view by incorporating view pooling layers [93]. This
traditional approach needs to compute each view’s features separately before combining them
using the view pooling layer, thus making the training and inference of these networks a time
and resource-demanding process. On the other hand, our approach learns features directly
from a single tensor with all the views. Besides, we do not need to specify an order for the
image views. We will show that our proposed architecture is significantly more time and
resource-efficient than the standard approach.

Since 3D models are a complex and space-consuming type of data, their processing is often
challenging. However, our proposal goal is to compile into single vectors as much information
as possible of the 3D models. We can substitute the 3D models with these vectors in further
tasks such as retrieval, cross-modal retrieval, classification, segmentation, and others.

5

We present five main contributions:

• We propose a convolutional architecture that uses image views as input for computing
3D model embeddings by combining different deep learning architectures and imposing
restrictions on the network to improve the quality of the embeddings.

• We use a network architecture that does not require a view pooling layer, making our
network faster and easier for training and inference computing.

• We propose techniques for selecting the image views taken from the 3D model as input
for our architecture.

• We analyze the performance of different convolutional architectures for 3D model em-
bedding.

• We study the relationship between the quality and the cost of computing the 3D model
embeddings as the number of image views increases by changing the numbers of image
views (4, 8, 16) to represent the models, and we also evaluate two different techniques
for selecting the image views.

Finally, we show how our proposed 3D shape embedding method can benefit 3D model
retrieval. To achieve this goal, after we compute the vector representation of the 3D models,
we use the cosine distance as the similarity metric between the vectors. With this method-
ology, we show that we can obtain competitive results compared with the state-of-the-art
techniques for the 3D model retrieval task.

1.4.2 Image-based 3D shape retrieval

3D model retrieval is the problem of searching for an object in a 3D model collection. Instead
of using a textual query that describes what the user needs, we are interested in the case where
the query is an object similar to the 3D models in the collection. For example, in traditional
3D model retrieval, the search starts with a 3D shape as a query object. While this is a
common approach in multimedia information retrieval, known as query-by-example, there
could be a contradiction in the assumption that the user has available a 3D shape for making
the query. Indeed, the query-by-example approach supposes that there is a mechanism to
obtain or search the 3D query object before using the retrieval algorithm. From the user
perspective, for many practical applications of 3D object retrieval, it would be easier if the
search algorithm receives an image as input. Thus, a relevant problem is finding a 3D model
given an image that depicts it, which we call “image-based 3D shape retrieval”.

Applying deep learning techniques for solving the 3D model retrieval problem is a current
interesting trend, as this type of techniques has shown promising results in several computer

6

vision tasks during the last decade [37, 34]. So, the question is how to train a deep artificial
neural network capable of finding relevant 3D objects given an image as a query. In a deep
learning context, one challenge is to have good representations for both the query image
and relevant 3D models such that these representations share a common place in the feature
space (also known as the latent space). To solve this, we need to find an appropriate artificial
neural network architecture that allows us to train it so that it learns to match images with
3D objects effectively.

Another challenge related to this problem is the data. Images and 3D objects are complex
data types. In addition, these data may be subject to several types of transformations
(scale, translation, orientation, mirroring, noise, etc.), so there is a crucial need to develop
retrieval algorithms that are robust to these transformations. Moreover, in our case, the
retrieval algorithms must tackle the invariance problem in both domains (image and 3D
shape) simultaneously, making the search problem even harder than when the user uses the
same type of object as in the collection for processing a query.

In this work, we study and propose deep learning models for image-based 3D shape
retrieval. The first model is based on computing embeddings for both the 3D shapes and
the images, which can be used to implement the retrieval phase. In this model, we use an
image-view approach for representing the 3D shapes. However, the experimental evaluation
of this model shows that it has poor performance in solving the image-based 3D shape
retrieval problem. This result indicates that metric learning struggles to find a suitable joint
space for image embeddings and 3D model embeddings. Therefore, we need to explore novel
architectures for improving the effectiveness of the retrieval.

The insights obtained during the evaluation of our first model led us to propose a second
model, which is an end-to-end architecture that directly learns how to match images and 3D
shapes. We show that the development of this second model requires us to present solutions
to a number of technical difficulties, as each data object is represented as a multichannel data
source but with (most probably) a different number of channels. We explain how to tackle
all these difficulties. Finally, we conduct an experimental evaluation with this second model
and show that the end-to-end architecture is far more effective than the embedding-based
architecture for the image-based 3D shape retrieval task.

Our contributions in this field are:

• We propose a deep learning architecture for image-based 3D shape retrieval based on
computing embeddings of the images and 3D shapes.

• We propose an end-to-end architecture for image-based 3D shape retrieval.

• We present an experimental evaluation of both proposed retrieval methods, concluding
that the end-to-end architecture is a more effective model for the retrieval task.

7

1.5 Publications

Along with our research work, we contribute to the scientific community the following papers:

• A convolutional architecture for 3D model embedding using image views. Arniel
Labrada, Benjamin Bustos, and Ivan Sipiran. The Visual Computer, pages 1–15,
2023 [43].

• HateU at SemEval-2022 Task 5: Multimedia Automatic Misogyny Identification. Aymé
Arango, Jesus Perez Martin, and Arniel Labrada. In Guy Emerson, Natalie Schluter,
Gabriel Stanovsky, Ritesh Kumar, Alexis Palmer, Nathan Schneider, Siddharth Singh,
and Shyam Ratan, editors, Proceedings of the 16th International Workshop on Se-
mantic Evaluation, SemEval@NAACL 2022, Seattle, Washington, United States, July
14-15, 2022, pages 581–584 [5].

• SHREC 2021: Retrieval of cultural heritage objects. Ivan Sipiran, Patrick Lazo, Cris-
tian Lopez, Milagritos Jimenez, Nihar Bagewadi, Benjamin Bustos, Hieu Dao, Shankar
Gangisetty, Martin Hanik, Ngoc-Phuong Ho-Thi, Mike Holenderski, Dmitri Jarnikov,
Arniel Labrada, Stefan Lengauer, Roxane Licandro, Dinh Huan Nguyen, Thang-Long
Nguyen-Ho, Luis A. Pérez Rey, Bang-Dang Pham, Reinhold Preiner, Tobias Schreck,
Quoc-Huy Trinh, Loek Tonnaer, Christoph von Tycowicz, and The-Anh Vu-Le. Com-
put. Graph.,100:1–20, 2021 [88].

• A sketch-aided retrieval approach for incomplete 3D objects. Stefan Lengauer, Alexan-
der Komar, Arniel Labrada, Stephan Karl, Elisabeth Trinkl, Reinhold Preiner, Ben-
jamin Bustos, and Tobias Schreck. Comput. Graph., 87:111–122, 2020 [49].

• Sketch-Aided Retrieval of Incomplete 3D Cultural Heritage Objects. Stefan Lengauer,
Alexander Komar, Arniel Labrada, Stephan Karl, Elisabeth Trinkl, Reinhold Preiner,
Benjamin Bustos, and Tobias Schreck. In Silvia Biasotti, Guillaume Lavoué, and
Remco C. Veltkamp, editors, 12th Eurographics Workshop on 3D Object Retrieval,
3DOR@Eurographics 2019, Genoa, Italy, May 5-6, 2019, pages 17–24. Eurographics
Association, 2019 [48].

• Motif-driven Retrieval of Greek Painted Pottery. Stefan Lengauer, Alexander Komar,
Arniel Labrada, Stephan Karl, Elisabeth Trinkl, Reinhold Preiner, Benjamin Bustos,
and Tobias Schreck. In Selma Rizvic and Karina Rodriguez-Echavarria, editors, GCH
2019 - Eurographics Workshop on Graphics and Cultural Heritage, GCH 2019, Sara-
jevo, Bosnia and Herzegovina, November 6-9, 2019, pages 89–98. Eurographics Asso-
ciation, 2019. [47].

8

1.6 Thesis organization

This thesis is organized in 10 chapters as follows:

• Chapter 1 presents the introduction, motivation, and goals of this thesis.

• Chapter 2 describes the basic concepts to comprehend better the problems tackled in
this thesis.

• Chapter 3 contains a review of studies performed in the 3D shape research field. We ex-
plain the state of the art in different tasks like 3D shape retrieval, 3D shape embedding,
and 3D shape representation.

• Chapter 4 describes an image-based 3D model retrieval method (SC-GALIF) using
suggestive contours and Gabor filters to extract features from images and 3D models
represented as a set of image views.

• Chapter 5 describes a new mid-level representation used for 3D shape retrieval.

• Chapter 6 proposes a 3D shape descriptor using deep features applied to image-based
3D shape retrieval. Besides, we compare the results using the proposed deep features
extraction technique against the engineered features extracted with our proposal from
Chapter 4 (SC-GALIF).

• Chapter 7 describes two proposals for Cultural Heritage Retrieval. First, a sketch-aided
retrieval system, and second, a Motif-driven Retrieval framework.

• Chapter 8 proposes a new convolutional architecture for computing 3D model embed-
ding applied to 3D shape retrieval.

• Chapter 9 describes an extension of our network for computing 3D shape embedding
used in the SHREC (3D Shape Retrieval Challenge) 2021.

• Chapter 10 proposes a new deep learning architecture for image-based 3D shape re-
trieval using our network for computing embeddings. We also compare the results
using the proposed artificial neural network architecture against the learned features
extracted using our proposal from Chapter 6.

9

Chapter 2

Background

In this section, we discuss some background concepts for the best understanding of our Ph.D.
research.

2.1 Hand-engineered features for multimedia objects

The Bag of Features (BOF), a widely employed low-level representation in the field of mul-
timedia, finds versatile application in tasks like multimedia retrieval and multimedia classi-
fication. This technique revolves around characterizing multimedia objects as a collection of
distinctive features. To achieve this, one or more descriptors are carefully selected based on
the nature of the multimedia object under consideration. These descriptors are then applied
to predefined local regions within the original multimedia object to extract relevant features
from those regions. Subsequently, the ensemble of all extracted features from these local
regions collectively constitutes the BOF representation of the multimedia object.

Visual multimedia data encompassing images and 3D models, (BOF) representations hold
prominence. The literature has seen a plethora of descriptor choices for feature extraction in
this domain, including but not limited to gradient [45], Gabor filters [27], shape descriptors,
and DSIFT (dense scale-invariant feature transform) [29], each tailored to capture unique
aspects of visual content.

2.1.1 Bag of Words (BOW): a mid-level representation for multimedia ob-
jects

The problem with BOF is that a multimedia object is represented as a set of features, which
can be in the order of the thousands of features, and each feature is usually a vector of

10

Figure 2.1: BOW: H matrix representing coding and pooling functions.

more than one hundred dimensions, so this representation is very ineffective. A frequently
addressed solution to this problem is the mid-level representation. This kind of representation
tries to capture in a single vector as much information as possible from the set of features
that represent a multimedia object.

A representation of medium level widely used in the state of the art is the Bag of Words
(BOW). Su et al. [10] formalize BOW by following a three-step algorithm coding, pooling,
and concatenating. Given the set of local descriptors by X = {xj}, j ∈ {1;N}, where each
local feature xj ∈ Rd and N is the number of local regions of interests on the image, let us
denote the visual dictionary as C = {Cm},m ∈ {1;M}, where M is the number of visual
words and Z ∈ RM is the final vectorial representation of the image. The final goal of the
three-step methodology is a mapping from X to Z.

The coding step is where each local descriptor is projected to the visual dictionary. This
step is modeled by the function f :

f : Rd → RM

xj → f(xj) = αj = {αm,j},m ∈ {1;M} (1)

After the coding, the pooling step is modeled by the following function g:

g : IN → R

αm = {αm,j}, j ∈ 1;N → g(αm) = zm (2)

11

Figure 2.2: Illustration of a local histogram zm.

As illustrated in Figure 2.1, the coding function f for a given descriptor xj corresponds
to the jst column and the pooling function g for a given visual word cm corresponds to the
mst row. For example, to compute the basic BOW representation, first f assigns a constant
weight to its closest center:

f(xj) =

1 if m = argmin ∥xj − ck∥2 ; k ∈ {1,M}
0 otherwise

(3)

g computes the sum over the pooling region.

zm =
∑N

j=1 αm,j (4)

The final image representation, Z, is given by sequential coding, pooling, and concate-
nating: Z = [z1, z2, ..., zM].

2.1.2 Other mid-level representations (BOH and BossaNova)

Although BOW is the most used mid-level representation, it has the problem that all features
belonging to the same visual word provide the same amount of information, regardless of the
distribution of these features within that visual word. Different solutions have been proposed

12

to address this problem like BossaNova [23] and BOH [4].

BossaNova proposes an extension of BOW, called BOSSA (Bag Of Statistical Sampling
Analysis) [23]. The idea here is to keep more information during the pooling step. For
instance, in BOW, the pooling function summarizes the information contained in αm,j into a
single scalar value. On the other hand, BossaNova computes a histogram of the distribution
of the features within the αm,j. To calculate this histogram, BossaNova divides each visual
word into B bins. With this, each Zm is now a vector of size B, which makes the final
representation Z of size M ·B. Figure 2.2 shows an illustration of a local histogram Zm, and
the formula below shows the new pooling function.

g : RN → RB

αm → g(αm,j) = zm

zm,k = card(xj | αm,j ∈ αmax
m · [k

B
; k+1

B
]) (5)A where B denotes the number of bins of each

histogram zm, and αmax m is the maximum radius within visual word. We obtain the zm by
concatenating the zm,k and the final image representation Z, same as in BOW, is given by
sequential coding, pooling, and concatenating: Z = [z1, z2, ..., zM].

We can make two observations of this new pooling function first when B = 1 BossaNova is
equal to BOW. The second observation deals with how this B bins divides the d dimensional
hyperspace. As we can see from the formula, each bin has the same radius. In other words,
the distance between bins is the same. However, all the bins of a specific histogram have
different hyper-volumes. For example, let us say that d = 2 and B = 2, the second bin of
any histogram is a circumference of radius twice the first one, which means that the second
bin has three times more area than the first. This difference grows exponentially with the
number of dimensions. For example, for d = 3, the volume of the second bin is seven times
the volume of the first, and in general, for d = n and B = 2, the proportion between the
volumes is 2n − 1.

Due to this exponential difference between the bins of a same histogram, the distribution
of features xj in a zm histogram will not be uniform since it is more likely that if one bin has
much more volume than another, then the probability that the features accumulate in that
bin is greater.

To solve this problem, another mid-level representation based on BOW is used, Bag of
local distribution of descriptors on concentric Hyperspheres (BOH) [4]. The idea in this
proposal is that all bins in the same histogram have the same volume. Therefore, the for-
malization of the BOH method is very similar to that of BossaNova, with the difference of
the pooling function g, which is defined as follows:

g : RN → RB

13

αm → g(αm,j) = zm

zm,k = card(xj | αm,j ∈ αmax
m · [d

√
k
B
; d

√
k+1
B

]) (6)

2.2 Basic concepts of deep learning

Here, we discuss basic techniques and tools to build an artificial neural network.

2.2.1 Artificial Neural Network

Artificial Neural networks [44], rooted in the mathematical modeling of artificial intelligence,
are computational models specifically designed for optimizing complex tasks by minimizing a
downstream cost function. These networks are composed of interconnected processing nodes,
referred to as neurons, organized into layers. Each neuron within a layer processes informa-
tion from the preceding layer and produces an output, which is then propagated through
subsequent layers. The final layer generates the network’s ultimate output, representing the
network’s learned solution.

One of the notable attributes of artificial neural networks is their adaptability: each layer
may encompass a different number of neurons, and the connections between neurons, gov-
erned by adjustable parameters, have varying strengths. These parameters are honed during
the training process using optimization techniques like gradient descent, where the network
iteratively adjusts its parameters to minimize the discrepancy between its predictions and the
desired outcomes. This capacity for self-adjustment empowers artificial neural networks to
tackle intricate tasks such as image recognition, speech synthesis, language translation, and
more. They have revolutionized machine learning and artificial intelligence, enabling the de-
velopment of sophisticated systems capable of handling real-world challenges with remarkable
precision.

2.2.2 Activation Functions

In deep learning, an activation function is applied to the output of each neuron in an artificial
neural network layer to obtain the final result of the said layer. This function is commonly
used to allow the network to learn non-linear models since the rest of the operations made in
a layer are linear. However, linear functions can be used when trying to learn linear models.
Some commonly used activation functions are Sigmoid, Hyperbolic tangent (tanh), ReLU,
Leaky ReLU, softmax, etc. Their use is tied to the task tackled by the network. For example,
softmax is the standard on the output of the last layer in classification networks, and relu

14

family functions are commonly used to activate convolutional layers. Figures 2.3, 2.4, 2.5, 2.6,
and 2.7 show the formula of the mentioned activation functions and their plots.

−10 −5 5 10

0.2

0.4

0.6

0.8

1

x

y

Figure 2.3: Sigmoid function: y = 1
1+ex

−10 −5 5 10

−1

−0.5

0.5

1

x

y

Figure 2.4: Hyperbolic tangent function:
y = tanh(x)

−6 −4 −2 2 4 6

1

2

3

4

5

x

y

Figure 2.5: ReLU function: y = max(0, x)

−6 −4 −2 2 4 6

2

4

x

y

Figure 2.6: Leaky ReLU function: y =
max(0.01, x)

2.2.3 Optimizers

In deep learning, an optimizer is a technique used to adjust an artificial neural network’s
weight and learning rate. In other words, the optimizer defines how the network will learn.
Standard optimizers are Stochastic Gradient Descent (SGD), SGD with momentum, RM-
Sprop, and Adam. Though Adam optimizer is the most common, like other params in an
artificial neural network, choosing the optimizer is also a task-dependent process.

15

−10 −5 5 10

0.2

0.4

0.6

0.8

1

x

y

Figure 2.7: Softmax function: yi =
eyi∑k

j=1 e
yj

2.3 Important Artificial Neural Networks Architectures

Here, we describe three artificial neural network architectures used throughout our thesis pro-
posal. These architectures are Convolutional Neural Networks, Autoencoders, and Siamese
Networks.

2.3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [45] represent a class of artificial neural networks
renowned for their exceptional performance across diverse tasks. Particularly dominant in
image processing, CNNs gained significant recognition after the groundbreaking success of
AlexNet [42] in 2012. These networks have since been extensively employed in various appli-
cations, including image recognition, image classification, object detection, and face recogni-
tion.

The standard architecture of a CNNs is distinctive, featuring two key types of layers:
convolutional layers and pooling layers. Convolutional layers revolutionize traditional ar-
tificial neural networks by employing a convolution operation, effectively transforming the
input data through a set of learnable filters or kernels. This process generates feature maps
that capture localized patterns and structures within the input data, effectively automating
the feature engineering process that was previously manual and labor-intensive.

Pooling layers, on the other hand, play a crucial role in spatial dimension reduction.
Various pooling methods, such as max pooling, average pooling, and sum pooling, extract
the most salient information from the feature maps while reducing their size. This reduction
enhances computational efficiency and helps focus on the most relevant features.

16

CNNs exhibit a hierarchical feature learning process. Initial layers detect simple features
like edges and gradients, while deeper layers progressively recognize more complex and ab-
stract features, including shapes, textures, and objects. The adaptability of CNNs is a key
strength, allowing their architecture to be tailored to specific tasks. For instance, in image
classification tasks, fully connected layers follow the convolutional and pooling layers, culmi-
nating in a final connection to a classifier, typically employing a softmax activation function
and cross-entropy loss.

In summary, CNNs have revolutionized the field of deep learning and computer vision by
automating feature extraction and demonstrating remarkable capabilities in various applica-
tions, making them an indispensable tool for image-related tasks and beyond.

2.3.2 Autoencoders

Autoencoders [73] are a versatile class of artificial neural networks primarily employed in
unsupervised learning tasks, serving various purposes, including data representation, fea-
ture embedding, and data compression. These networks are designed with a distinctive
architecture that includes four essential components: the encoder, bottleneck, decoder, and
reconstruction loss.

The encoder is responsible for learning a reduced-dimensional representation of the input
data, effectively capturing essential features and patterns. The bottleneck, often a layer with
a lower dimensionality than the input, serves as a compressed knowledge representation of
the original data. The decoder’s role is to reconstruct the input data from the bottleneck’s
representation, aiming to minimize the information loss during the compression process.
The reconstruction loss quantifies the dissimilarity between the reconstructed output and
the original input, measuring how well the autoencoder is performing. Figure 2.8 shows a
standard Autoencoder architecture.

Autoencoders find widespread use in image processing, particularly for image compression
and representation. One of the most common variations is the convolutional autoencoder,
which adapts the encoder-decoder architecture to images. The encoder portion typically
consists of convolutional layers and pooling layers, facilitating dimension reduction by down-
sampling. Subsequently, the encoder connects to a fully connected layer serving as the
bottleneck. The decoder, responsible for image reconstruction, utilizes de-convolutional lay-
ers and un-pooling layers. De-convolutional layers perform the inverse operation of their
corresponding convolutional layers, while un-pooling layers are used to increase resolution,
effectively reversing the effects of pooling layers. Notably, addressing the non-invertibility of
traditional pooling operations, recent years have seen the development of various un-pooling
techniques [15, 95] to facilitate the autoencoder’s image reconstruction capabilities.

17

Figure 2.8: A standard Autoencoder architecture

In summary, autoencoders offer a powerful framework for tasks such as dimensionality
reduction, data compression, and image processing, with convolutional autoencoders being
particularly well-suited for image analysis and representation applications. These networks
have found applications in various fields, from computer vision to data compression, facili-
tating meaningful feature extraction and efficient data representation.

2.3.3 Siamese Networks

Siamese Networks [12] are artificial neural networks, usually composed of two subnetworks,
but can be more than just two. These subnetworks not only have identical architecture, but
the weights have to be shared among them as well. In other words, all the subnetworks are
copies of the first subnetwork.

To train a Siamese network, we usually use a tuple of input (x1, x2) with a binary label
ℓ. This label indicates if x1 and x2 belong to the same class. The idea is to pass x1 and
x2 through the subnetworks to compute a fixed-length feature vector for each (h(x1), h(x2)).
After that, we define a loss function that penalizes the similarities or dissimilarities between
h(x1) and h(x2) according to ℓ. This loss function is often a distance between vectors like the
euclidean distance or the cosine distance, with binary cross-entropy using the binary label.

The inputs of a Siamese network can be anything from numerical data, image data, or

18

Figure 2.9: Siamese Networks

even sequential data such as sentences or time signals. As for the subnetworks, we can use
any deep learning architecture such as a Recurrent neural network (RNNs), fully connected
layers, CNNs, etc. The goal is to transform the data using this subnetwork before applying
the loss function between the transformations of the inputs. The primary purpose of these
kinds of architectures is metric learning. In other words, these networks learn whether inputs
are similar or not. However, given the nature of the subnetworks to compute feature vectors
of the inputs, we can use them for data representation. This allows us to use siamese networks
to solve a wide variety of tasks like retrieval.

2.4 Transfer Learning

Transfer learning is a machine learning technique where a model developed for a task is
reused for another model on a second task. More specifically, the idea is to use what was
learned for a particular task (source task) to solve a different task (the destination task). To
that end, the source and the destination task must be “sufficiently similar.”

In the deep learning field, the transfer learning paradigm is especially useful. We can
use pre-trained models for our specific tasks. For example, we can train a model for image
classification using Imagenet, a very standard and extensive image dataset. After that, we
can re-use this trained model for another task like segmentation, object detection, or even

19

Figure 2.10: Semantic Image Segmentation

image classification as well in another dataset. Furthermore, we can also use a model trained
by other researchers and adapt it to our necessities. With this technique, we can save training
time and computational resources. But more relevant, we can use deep learning even when
we have little data for training.

2.5 Semantic Image Segmentation

A recent application of the CNNs is semantic image segmentation. This task consists of
classifying each pixel in an image into a class. In other words, the goal is to assign a label to
each pixel of a given image. A basic approach to solve this task would be an artificial neural
network architecture with a stack of convolutional layers with the same padding to preserve
dimension and output a final segmentation map. This way, we learn a mapping directly from
the image to its corresponding segmentation. However, since we are preserving the dimension
from layer to layer, this would be quite computationally expensive, especially if we keep
increasing the number of feature maps (channels) per layer. To solve this, researchers tend
to follow an encoder/decoder structure similar to an Autoencoder architecture. The encoder
solves the dimensionality preserving problem by downsampling the spatial resolution of the
input. Then, the decoder is used for upsampling the feature representations into a full-
resolution segmentation map. Figure 2.10 shows the result of the semantic segmentation of
an image. To visualize this result, different colors are used for each different label of pixels.

Currently, the best approaches for semantic segmentation use end-to-end deep neural
networks. Examples of these approaches are Mask R-CNN [36], FPN [59], FCN [63], U-
NET [72], and deeplabv3+ [16]. This last approach reported the best results for the 2012
PASCAL VOC segmentation challenge. Implementation of these previous models can be

20

found in the open-source machine learning library TensorFlow. This library allows us to
train these models from scratch using our own data sets or to use one of several pre-trained
deeplab models for semantic segmentation.

2.6 Evaluation metrics

To evaluate our proposals, we used six common performance metrics for retrieval techniques.
These metrics are based on a ranked list, which consists of all 3D models ordered accord-
ing to their similarity with a specific query. The metrics are Precision-Recall plot (PR),
Mean Average Precision MAP, Nearest Neighbor NN, First Tier FT, Second Tier ST, and
Discounted Cumulative Gain DCG. Their meanings and definitions are explained below.

2.6.1 Precision-Recall plot

A precision-recall plot is a graphical representation used to assess the performance of a
ranking or retrieval system, typically in information retrieval or machine learning tasks. It
aims to illustrate the trade-off between precision and recall for a given retrieval model and a
specified number n of the top-ranked items.

Precision measures how many of the top n items retrieved by the model are relevant to
the class C or the target category. It is calculated as the ratio of relevant items retrieved to
the total number of items retrieved.

Recall measures how many of the total relevant items in the dataset were successfully
retrieved within the top n items by the model. It is calculated as the ratio of relevant items
retrieved to the total number of relevant items in the dataset.

In the precision-recall plot, recall is typically plotted on the horizontal axis, while precision
is plotted on the vertical axis. Each point on the plot corresponds to a different value of n,
representing the top n ranked items from the retrieval model.

A perfect retrieval system would achieve a horizontal line in the plot at a precision equal
to one, indicating that all the retrieved items at that rank are relevant. In contrast, a shifted
curve suggests a trade-off between precision and recall, with the system retrieving more
relevant items as n increases and potentially introducing some irrelevant items.

21

2.6.2 Mean average precision

Mean Average Precision (MAP) is a widely used evaluation metric in information retrieval
and ranking tasks. It measures the average precision score across multiple queries, providing
a single aggregate value to assess the overall performance of a ranking system.

To compute the MAP first, we must compute the Average Precision AP for each query
or data point. The AP quantifies how well the ranking system retrieves relevant items at
different retrieval depths. Below, we show the formula for the Average Precision:

AP =
1

R

R∑
k=1

(
k

rankk
· relk

)
(2.1)

Where R is the total number of relevant items in the ground truth for the query, rankk
is the position (rank) at which the kth relevant item is retrieved, and relk is an indicator
function that equals 1 if the kth item is relevant, and 0 otherwise.

In other words, to calculate AP for a single query, you sum up the precision values at
each relevant item’s position and divide by the total number of relevant items. This yields
the Average Precision for that query.

With the AP formula, the MAP of a set of N queries is calculated as follows: for each
query, q, we compute its corresponding Average Precision AP, and then, the mean of all
these scores (Formula 2.2). The resultant value measures the quality of models at carrying
out queries and is approximately equal to the area under the precision-recall curve [104].

MAP =

∑N
q=1 AP (q)

N
(2.2)

2.6.3 Nearest Neighbor (NN)

NN is a simple metric to measure the percentage of times the element closest to a query (first
element of the ranked list) belongs to the same class as the query. The goal with this metric
is to obtain a result as close to 100% as possible since this would mean that for every query,
its closest element belongs to its same class.

First tier and second tier

On the other hand, FT and ST go deeper than NN and measure the percentage of elements
that belong to the query class C that appear within the first n elements matches of the

22

ranked list, where n depends on the number of elements in C. Specifically, for the First Tier
metric n = |C| − 1, and for the Second Tier metric n = 2 ∗ (|C| − 1). Similarly to NN, the
optimum value of these scores is 100%.

2.6.4 Discounted cumulative gain (DCG)

Finally, the DCG metric uses the fact that search engine users are more interested in the top
results of the queries they execute. For this reason, to compute the final score, DCG uses all
the elements of the ranked list that belong to the same class as the query. However, the closer
to the beginning of the ranked list the elements appear, the more weight they provide to the
final score. To do this, the metric follows three steps. First, the ranked list R is converted
to a list G, where element Gi has value 1 if element Ri is in C and value 0 otherwise, where
C is the class of the query image. Second, the discounted cumulative gain is calculated as
follows:

DCGi =

{
G1, i = 1

DCGi−1 +Gi/ log2 i, otherwise

}
(2.3)

Finally, the obtained result is divided by the maximum possible DCG:

DCG =
DCGn

1 +
∑|C|

j=2
1

log2 j

(2.4)

where n is the size of R.

2.6.5 Micro and macro average

Along with these two evaluation metrics, MAP and DCG, we also use two versions of each
metric. These versions are the micro averaged and the macro averaged. On the one hand,
the micro averaged version will aggregate the contributions of every object to calculate the
average metric. On the other hand, the macro averaged version will compute the metric
for each class of objects and average these results. In multiclass classification and retrieval,
the micro averaged version is more desirable if one knows that there is an imbalance in the
categories’ sizes.

23

2.7 Datasets

We use three different datasets for the experiments, the ShapeNet benchmark [14], the Mod-
elNet [99] and the SHREC’12 benchmark [55]. Below, we describe the three datasets and the
techniques for their processing.

2.7.1 SHREC’12

SHREC’12 [55] is built based on the Watertight Model Benchmark (WMB) dataset. This
benchmark has 400 models, divided into 20 classes, with 20 models each. This dataset is built
for sketch-based 3D model retrieval. However, given that the 3D models are well annotated,
the dataset can be used for different tasks related to 3D models, like 3D model retrieval and
image-based 3D model retrieval.

2.7.2 ShapeNet

This dataset [14] comprises 51,300 3D models grouped into 55 categories, and they are pro-
vided in OBJ format. The dataset counts with two versions, consistently aligned(normalized
dataset) and a more challenging dataset where random rotations perturb models. The dataset
provides a split 70%/10%/20% for training, validation, and testing, respectively. We also
use a point cloud version of the normalized ShapeNet as well. This point cloud version is
public on Github 1.

We also use a partition of this dataset to perform some minor experiments and tune some
of our proposals. To do this, from all the 55 categories, we chose 20 randomly, and from each
selected category, we extracted 200 3D models. Finally, we divide each of the chosen 200 3D
models of each chosen class into 100 3D models for training and 100 for testing.

2.7.3 ModelNet

This dataset [99] has two versions ModelNet10 where the models are categorized into 10
classes, and ModelNet40, where the models are categorized into 40 classes. Both versions are
composed of CAD models manually aligned but not scaled. The dataset also counts with its
own training/testing split.

1Point Cloud Datasets

24

https://github.com/AnTao97/PointCloudDatasets

2.8 Image views extraction

As mentioned, we represent a 3D model using image views rendered from the 3D models
themselves. To accomplish this, we use three different methods. We built the first of these
methods by ourselves from scratch, while in the second one, we helped ourselves using a
pre-coded tool. Finally, we proposed a Convolutional Neural Network for the third method
to refine a given image view set, extracting the best views. We use Python to code for all
three methods.

2.8.1 Image views extraction from scratch

For our first method, we extract 100 image views from each 3D model. To accomplish this,
we utilize two fundamental measures: azimuth, which specifies the viewpoint’s direction, and
elevation, which represents the height of the viewpoint, both measured in degrees. These
measures are defined with respect to the XY plane. We initiate with an initial viewpoint set
at 0◦ azimuth and 0◦ elevation, serving as our reference point. We systematically vary the
azimuth measure by adding 36◦ to the current value. This step is repeated ten times, creating
a series of viewpoints spanning different azimuth angles. Finally, we reset the azimuth to 0◦

to repeat the aforementioned process and rotate the 3D object 18◦ over the X-axis downward.
We repeat this last process ten times and obtain the 100 viewpoints for each 3D model. We
explain below the details of each of the experiments.

2.8.2 Image views extraction using Stanford-Shapenet-renderer

For our second method to extract the image views, we use the Stanford-Shapenet-renderer
script. This script uses the API from the Blender software to render images from different
angles of a given 3D model in OBJ format. This code is public on Github 2 and fully
parameterizable for different tasks. In our case, we use the code to render images using two
different approaches. The first approach starts with the camera pointing to the coordinates’
origin. From there, we generate an image every 12◦ in circumference around the 3D model
itself, which provides 30 image views per 3D shape. For the second approach, we render 48

images by sampling in the vertex of a regular icosahedron containing the 3D models.
2Stanford-Shapenet-renderer

25

https://github.com/panmari/stanford-shapenet-renderer

2.8.3 Image views refining using Convolutional Neural Networks

We propose a method to select the “best image views” from a large set of image views repre-
senting a 3D model. To do this, we train a deep convolutional architecture for classification
using the whole set of image views. After the training phase, we use the trained network to
select the views that best classify the 3D model. In other words, we choose the views that
produce the highest accuracy score for classification.

2.9 Summary

In this chapter, we explain some basic concepts for a better understanding of our thesis
proposal. We first discuss multiple techniques for 3D model retrieval using engineered features
to build representations of the 3D models. We start with a low-level representation of the
bag of features technique. Then, we explain how to group those features using different
techniques to build mid-level representations like Bag of Words, BossaNova and BOH.

We also discuss important deep learning concepts in the chapter. We first explain different
standard artificial neural network architectures used in our proposals. These architectures
are the convolutional neural network, Autoencoder, and siamese network. We also discuss
semantic segmentation and transfer learning techniques.

Finally, we detail the evaluation metrics used to evaluate our results (MAP, NN, FT, ST,
DCG) and two ways to compute those metrics the micro average and macro average. We
also describe the datasets (ShapeNet, SHREC’12) used in the experiments and the technique
to render image views from the 3D shapes.

26

Chapter 3

State of the Art of 3D Model Processing

Over the years, the 3D model research field has been highly relevant in Computer Science
due to the steady increase in the number and use of 3D objects for many practical application
domains. Surface segmentation and face recognition are some of the many important tasks in
this field. However, two of the most addressed tasks are 3D shape retrieval and classification.
Traditionally, the main approaches for fulfilling these tasks relied on hand-engineered feature
extraction methods. Many kinds of features can be used for this purpose. Nevertheless,
shape features are the most used because, in many cases, one only has the shape of the 3D
model as input data. Surveys in this area can be found in Generic 3D shape retrieval [50]
and textured 3D model retrieval [13].

In particular, image views are a very feasible and accepted representation of 3D models
for its processing. Since 3D models are a very complex and space costly type of data, in many
cases, it is necessary to transform these objects into a more manageable kind of data such as
an image or, as in this case, a set of images. Several works that use deep learning architectures
in the 3D model field use this image view representation [37]. The reason behind this is that
training a deep learning model directly with any of the standard 3D model representations
(voxel grid, polygon mesh) could be a very costly process both in time and resources.

Recently, some works have proposed using artificial neural network techniques instead
of extracting features to solve the 3D model retrieval and classification tasks with excellent
results [37]. This new approach shows promising results in the area. However, it is still a
relatively under-researched topic, and some 3D model tasks such as computing 3D model
embeddings have received little to no attention.

There are three main approaches for using deep learning techniques in the area of 3D shape
retrieval and classification. These approaches are based on how 3D models are represented
as input to an artificial neural network model (image views, voxel grids, point clouds).

The first two approaches represent 3D models as a set of image views and voxel grids,

27

respectively [37, 34]. In the first case, authors often adapt artificial neural networks that
have been successfully used to solve image processing tasks to the image view domain. This
is fulfilled by using techniques like the assembly of artificial neural networks to combine the
output of several networks into one.

In voxel grid representation, the approach adapts the 2D operators used in a convolutional
neural network to 3D operators. For example, instead of using convolutional layers of (number
of inputs) x (input height) x (input width) x (input channels), convolutional layers of (number
of inputs) x (input height) x (input width) x (input depth) x (input channels) are used.

The representation of 3D models with image views yields better results than voxel grids
in many applications. However, incorporating the voxel grid can lead to better results if one
uses more complex artificial neural network models, which are more expensive to train and
require more training data.

The third approach consists of using point cloud representations to train deep learning
models. However, this could be challenging since point clouds are an irregular representation
and standard convolutional neural networks work with regular representations. To address
this problem, two approaches are used. The first one consists of transforming the original
point cloud into a regular grid. The second one consists of building a convolutional operator
that works directly over the point cloud using structures to store the points like k-d trees.

This last approach has recently increased in popularity with some outstanding works like
PointNet [69], DensePoint [60], Dynamic Graph CNN for Learning on Point Clouds [97],
RS-CNN [61], and LDGCNN [101]. A survey on this topic can be found in Deep Learning
for 3D Point Clouds: A Survey [34].

3.1 Image views representation for 3D deep learning

View-based 3D shape recognition and retrieval approaches are typical in the research commu-
nity. These approaches are commonly focused on two main aspects: the quality of the image
views and how to aggregate those image views to obtain the best representation. In the first
case, different techniques exist for extracting the image views, different types of image views,
and even methods to add more information to the set o image views like view-graph. An
example of this last one is proposed in View-GCN [98]. In the second case, view pooling lay-
ers to fuse multi-view features are standard in combination with assembles of convolutional
neural networks. We detail below essential works in these fields.

One of the earliest proposals for 3D shape retrieval using Convolutional Neural Networks
is DeepEm [33]. They first propose an architecture for image embedding using a triple input
for the training. The input consists of a query image, a positive image, and a negative

28

image. Then, they compute the classification loss of each one using VGG19 [85] and a triplet
loss using the last fully-connected layer of each of the three networks. Finally, to learn the
embeddings, they jointly use all of the classification loss and the triplet loss. Using this
network for image embedding, they also propose a 3D shape retrieval framework using Image
Views representation. The goal is to compute embeddings from the image views and then use
a set-to-set distance metric to calculate the similarity between two 3D shapes represented as
a set of embeddings.

Aktar and Al Mamum [3] further explore the concept of using triplet loss with a convo-
lutional neural network to compute image embeddings and then use these embeddings for
3D object retrieval. They also extend their proposal to unsupervised learning by using a
convolutional Autoencoder.

Qi et al. [70] proposed three steps methodology for their Multi-View Convolutional Neural
Networks proposal. First, they render multiple images from the 3D shapes. Second, they
extract image features from each view using standard CNNs like VGG or AlexNet. Finally,
they combine the features across views through a pooling layer, followed by fully connected
layers.

Similarly, Su et al. [91] proposed a standard CNN trained to recognize the image views
independently of each other, obtaining a very high accuracy for the recognition of 3D model
even from a single view. Furthermore, they present a CNNs architecture with an image
view pooling layer that combines information from multiple views into a unique and compact
shape descriptor, offering even better recognition performance.

This concept of using pooling for aggregations of view has been explored in some works
with good results. Sfikas et al. [79] proposed an extension of the PANORAMA 3D shape
representation [67]. They use this representation as input to an ensemble of CNNs with the
goal of computing feature continuity of 3D models. They test their proposal for 3D model
classification and retrieval against several other state-of-the-art techniques, achieving very
competitive results.

DRCNN [93] is another example of using view pooling layers. In this work, the author
builds a novel layer called Dynamic Routing Layer (DRL) by modifying the dynamic routing
algorithm of the capsule network to fuse the features of each view more effectively. In
addition, based on DRL, they present a Dynamic Routing Convolutional Neural Network
(DRCNN) for multi-view 3D object recognition.

More recently, Han et al. [35] further explore this approach of using pooling of views
aggregation. The conjecture is that the redundant information within the views and their
spatial relationships are lost during the pooling process. To solve this, they present a deep
learning model (3D2SeqViews) with a novel hierarchical attention aggregation. This model
not only aggregates the content information within all sequential views but also the sequential

29

spatiality among the views.

“FMVAC: view-filtering-based multi-view aggregating convolution for 3d shape recogni-
tion and retrieval” [62] and “Multi-view 3d object retrieval leveraging the aggregation of view
and instance attentive features” [58] are recent works that also rely on view pooling layers
for aggregations of deep features. In the case of “FMVAC: view-filtering-based multi-view
aggregating convolution for 3d shape recognition and retrieval” [62], the authors propose a
voting-based view filtering module to select the top-k representative views before using the
filtered top-k views to feed a multi-view aggregating module. As for the work presented
in “Multi-view 3d object retrieval leveraging the aggregation of view and instance atten-
tive features” [58], the authors point out that the existing multi-view convolutional neural
network employs view pooling for feature aggregation, which ignores the local view-relevant
discriminative information within each view image and the global correlative information
across all view images. To address these problems, they propose two self-attention modules,
View Attention Module and Instance Attention Module, to learn view and instance attentive
features, respectively. Finally, they use these two modules to build the representation of a
3D object by aggregating three features: original, view-attentive, and instance-attentive.

We also propose an approach for computing 3D model embedding based on image views.
However, we do not use view pooling layers or assembles of convolutional neural networks
since we represent the 3D shapes as single multichannel objects. This makes the computa-
tional graph of our network smaller and more straightforward than the computational graph
in a standard assembly of CNNs since this last approach needs to keep the information of a
whole network for each view.

3.2 Deep Features

In the realm of machine learning and artificial intelligence, deep learning models have emerged
as powerful tools, not only for predictive tasks but also for feature extraction. This chapter
explores the pivotal role played by deep learning models in feature extraction, particularly
within the domain of Multimedia Information. Traditionally, hand-crafted features have been
employed extensively to represent multimedia objects for various tasks. However, recent
advancements in deep learning have introduced ”learned features,” revolutionizing how we
represent and extract meaningful information from data.

Learned features refer to representations or characteristics of data that machine learning
models automatically acquire during training. These features are derived from raw input
data through a data-driven approach, allowing models to uncover meaningful patterns and
representations within the data. On the other hand, deep features are a category of ”learned
features” that emerge from processing data through deep neural networks, typically deep feed-

30

forward neural networks (like convolutional neural networks or recurrent neural networks).
These features are extracted from intermediate layers of the network and are characterized by
their hierarchical and abstract nature. The term ”deep” in deep features reflects the depth
of the artificial neural network architecture, where each layer learns increasingly complex
representations of the input data. Deep features capture intricate patterns, textures, and
structures within the data, making them highly expressive and informative.

One notable application of deep learning for feature extraction is in the field of text
processing. Here, the Word2Vec [71] algorithm stands as a prominent example. Word2Vec
employs a deep learning model trained to predict words based on contextual usage. Following
the training phase, a specific hidden layer of the model serves as a vector representation for
each word. The key objective is to position the vectors representing words so that words
with similar contextual usages are closer to each other in this vector space.

Deep learning models have also made significant inroads into the domain of image pro-
cessing, where they are instrumental in feature extraction. A common architecture employed
for this purpose is the Siamese network. The Siamese network consists of two identical sub-
networks and a final module that leverages the outputs of both sub-networks to produce a
final decision or representation.

In the training phase, pairs of objects are fed into the Siamese network, accompanied
by a label indicating whether the objects belong to the same class. Once the training con-
cludes, the model becomes proficient at discerning whether arbitrary objects share the same
class. Noteworthy examples of works using Siamese networks for learned feature extraction
from images include works like LIFT [100] and “Learning global representations for image
search” [31].

The realm of 3D models is not exempt from the influence of learned features. In this
context, we encounter the application of Convolutional Neural Networks (CNNs) and Siamese
networks, as exemplified in the work “Sketch-based 3d shape retrieval using convolutional
neural networks” [96] for sketch-based 3D shape retrieval.

In this cross-modal retrieval task, two Siamese networks are employed—one for the query
sketch domain and another for the 3D models domain, represented as a set of 2D images.
The outputs of these Siamese networks are connected to a module that generates the final
output. During training, quadruple entries comprising two sketches and two 2D images are
utilized, each labeled to indicate whether the objects belong to the same class. Through this
process, the network learns vector representations for the sketch and the 2D images, ensuring
that if a sketch and a 2D image belong to the same class, their respective vectors are close
to each other in the feature space.

In summary, deep learning models have significantly reshaped the landscape of feature
extraction across various domains. They enable the automatic extraction of meaningful

31

features from data, improving performance in various applications, from text processing to
image analysis. These learned features have enhanced our ability to understand and interpret
data and propelled the development of more advanced and effective machine learning models.

3.3 Data Embedding

One notably successful use of deep learning is obtaining data embedding representations.
This technique aims to represent the data as vectors with enough information to substitute
the data for different tasks. In the text processing field, several outstanding works apply
this technique for words (e.g., Word2Vec [71], Glove [68]) and sentence embedding (e.g.,
InferSent [18], BERT [25]).

There is a plethora of research available on image embedding, as well. Many researchers
have proposed new architectures of CNNs to compute embedding for images. Examples
of these works are LIFT [100], “Learning Image Embeddings using Convolutional Neural
Networks for Improved Multi-Modal Semantics” [41], and “Deep Image Retrieval: Learning
Global Representations for Image Searc” [31]. However, even when deep learning models
compute embeddings implicitly, there is not much work focused on computing 3D shape
embedding. Moreover, the few works that focus on compute embedding for 3D shapes are
mainly based on point cloud representations [1, 17] or voxel grids. There is also a pro-
posal for computing 3D shapes embedding using engineered features and the bag-of-words
framework [57]. We propose a deep neural network architecture for computing 3D Shape
embeddings using image view representation and CNNs. We aim to compute good embed-
dings by imposing restrictions on our network to achieve a compact representation of the 3D
shapes while preserving its information.

3.4 Image-based 3D Shape Retrieval

Image-based 3D shape retrieval is challenging due to the significant differences between 2D
images and 3D objects. So far, little research has been done in this field, and all the works
we have found rely on deep learning techniques, especially convolutional neural networks.
Another impediment in this field is that, to our knowledge, there is no standard benchmark
for this task, and the authors need to build their own datasets to experiment.

A common practice to solve image-based 3D shape retrieval is to learn a joint space for
images and 3D shapes. The earliest work we can find to use this approach is “Cross-Domain
Image-Based 3D Shape Retrieval by View Sequence Learning” [46]. In this work, the authors
propose a cross-domain triplet neural network with a feature aggregation method to represent

32

the 3D shapes.

In 2019 Zhu et al. [103] proposed a pair of discriminative neural networks to learn a
domain-invariant representation between 3D shape and depth image. They connect the two
networks by a loss function composed of two terms: the inter-class margin and the intra-
class margin. If the two samples come from the same category, then the variance between
networks’ outputs is considered the intra-class margin. Otherwise, the variance can be seen
as the inter-class margin.

We can also find two very recent works in this field “Joint Intermediate Domain Gen-
eration and Distribution Alignment for 2D Image-Based 3D Objects Retrieval” [92] and M-
GCN [65]. In the first one, the authors construct an intermediate domain module based on
maximum mean discrepancy to reduce the 2D and 3D distribution discrepancy. Then, they
use source domain labels as semantic information to guide distribution alignment dynami-
cally. In the second work, the author proposes a multi-branch graph convolution network.
The idea is that they use visual information to construct one cross-modalities graph model to
compute the similarity between the image and the 3D model. Then, they apply a multi-head
attention mechanism further to predict the hidden relationship between 2D image and 3D
model.

33

Chapter 4

SC-GALIF: A new method for image-based 3D
model retrieval

We employ an approach that fuses the capabilities of line drawing algorithms, suggestive
contours, and mid-level representation techniques to tackle the challenging task of image-
based 3D shape retrieval. This task involves identifying objects within a 3D model dataset
that bear the closest resemblance to a given query image.

Our method transforms the initial problem into a sketch-based 3D shape retrieval chal-
lenge. We achieve this transformation by converting our query image into a sketch-like
representation, leveraging the suggestive contours derived from the original image.

We employ Gabor filters to extract meaningful features from the suggestive contours.
These filters help us capture essential details and characteristics embedded within the con-
tours, enhancing the discriminative power of our retrieval system.

We adopt the Bag of Words framework to construct a structured representation for each
suggestive contour. This framework allows us to aggregate the Gabor filter-derived features
into a coherent and informative descriptor for each contour.

Finally, we use a similarity metric to compare and rank the representations of suggestive
contours. This step is the foundation for building our retrieval system, which identifies and
retrieves 3D shapes that closely match the query image.

We will first provide detailed explanations of suggestive contours and Gabor filters to
facilitate a comprehensive understanding of our proposal. Following this, we will present the
core components of our approach, illustrating how these techniques synergize to address the
image-based 3D shape retrieval task effectively.

34

Figure 4.1: (a) A horse model (in curvature view); (b) Silhouette; (c) Contours (green) and
Suggestive contours (blue); (d) Apparent ridges

4.1 Suggestive contours

The line drawing algorithms are techniques of image processing. These techniques are used
to extract from a given image I the lines that compose the objects within it. Many line
drawing algorithms have been proposed in the literature over the years, such as silhouette,
contour or outline, suggestive contours, and apparent ridges. A revision of those algorithms
can be found in the work “A comparison of methods for sketch-based 3d shape retrieval” [53].
An example of each line drawing algorithm is shown in Figure 4.11.

Suggestive contours are one of the most addressed line drawing algorithms in the literature
over recent years. Visually, it is defined as lines drawn on clearly visible parts of the surfaces
of an image, where a true contour would first appear with a minimal change in viewpoint.
To extract the suggestive contours from a given image I, we first define a mask m. Then, we
perform a convolution between m and each pixel of I. Finally, the suggestive contour of I is
the subtraction of I minus the convolution performed on I with the mask m.

4.2 Sketch-based 3D shape retrieval using Gabor local line-based
feature (GALIF)

Many techniques in the sketch-based 3D shape retrieval field have been proposed in recent
years. The majority of these techniques follow a two major steps methodology. The first step
is to preprocess the 3D models to transform them into a set of images (rendered views from
different angles of the 3D model itself) and a line drawing algorithm is then used over the
images to obtain a common domain for 3D models and sketches. The second step consists of
using the bag-of-features search framework, which has become the method of choice for affine
invariant image retrieval during the last few years. However, to enhance the performance of

1Source: [53]

35

the methods for sketch-based 3D shape retrieval, this methodology is often combined with
some filtering preprocessing techniques to reduce the size of the image view space before the
retrieval stage.

The bag-of-features framework consists of representing each one of the images of a dataset
by a large set of small local features. These features are quantized in a training stage to form
a “visual vocabulary,” and each image is then represented by a histogram of its specific
distribution of “visual words.” In the query stage, with a given image, the distribution of
visual words of the query is computed, and the images with the most similar distributions
are returned.

To be able to apply the bag-of-features framework, an image descriptor has to be used for
the local feature extraction. Many image descriptors have been proposed in the literature,
such as gradient, Gabor filters, Fourier descriptors, Zernike moments, shape descriptors,
DSIFT, etc. However many authors in the sketch-based 3D shape retrieval field agree that
the Gabor filters are the ones that achieve the best results. For this reason, we use the
GALIF method for the sketch-based 3D shape retrieval stage in our proposal.

4.3 Gabor Local Line-Based Feature (GALIF)

Eitz et al. [27] proposed the Gabor Local Line-based Feature (GALIF) a method for sketch-
based 3D shape retrieval. In this work, we represent each 3D model in a database as a set
of 102 rendered views from the 3D model itself. We select these views uniformly distributed
around the model and then transform each into a Suggestive Contour to apply the Bag-
of-features framework. This process requires several steps: select the location and size of
features in the images, transform the pixel set of the feature into a smaller dimensional
feature vector, find the closest match of this vector in a group of predetermined clusters and
for the whole image, count the occurrences of cluster matches. The set of clusters is obtained
by clustering the feature vectors found in the images of the database. A signature for each
image is generated as a histogram of cluster matches.

An essential aspect of this method is the selection of the views for the representation of
the 3D models. Since there is no a priori knowledge about which viewpoint a user chooses
when sketching an object, the underlying retrieval system must encode all potential view-
points. To this end, the viewpoints consider view directions towards the barycenter of the
3D model itself. Consequently, nearby viewpoints have different orientations assigned to
them, approximating a globally rotation-invariant indexing of the shapes. We evaluate two
strategies for selecting the viewpoints for the GALIF method: uniformly distributed views
and perceptually best views, and the best results were obtained with uniformly distributed
views. The work “Sketch-based shape retrieval” [27] explains this strategy as follows:

36

“We generate d uniformly distributed directions on the unit sphere using k-means cluster-
ing. Starting from a highly tessellated triangle mesh of a unit sphere M = V, T , with V a set
of vertices and T a set of triangles, we select a set S of d random seed vertices among V and
perform Lloyd relaxations iteratively. After convergence, we return the resulting Voronoi cell
centers as the view directions vi. We use d ∈ 7, 22, 52, 102, 202”

Finally, after several experiments, they propose the optimal value for the number of
viewpoints as d = 102

To sample local features, we generate 32× 32 = 1, 024 key points evenly distributed over
the image views by sampling on a regular grid. For each key point, we define a local image
patch as n× n cells around the key point; then, we apply a Gabor Filter over this patch to
obtain a features vector. Finally, we generate a visual vocabulary for the representation using
k-means clustering over the set of feature vectors with about 1000 visual words (centroids).
Finally, we use a Tf-idf weighting function to build the histograms of visual word occurrences.

The main difference between the GALIF method for sketch-based 3D shape retrieval and
other methods that use the Bag of Features framework is the use of the Gabor filters as
descriptors for the feature extraction from the image views and the query sketches. A Gabor
filter in the frequency domain is defined as:

g(u, v) = exp(−2π2((uΘ − w0)
2σ2

x + v2Θσ
2
y))

where (uΘ, vΘ) = RΘ(u, v)
T is the standard coordinate system rotated by angle Θ, and the

other parameters can be changed so the Gabor filter can be tuned:

• w0 : peak response frequency.

• Θ : filter orientation.

• σx : frequency bandwidth.

• σy : angular bandwidth

Finally, to compute the feature space transform, a filter bank of Gabor functions gi with
k different orientations is defined. The sketch is then convolved with the Gabor functions
from the filter bank to yield a set of filter response images.

Ri = ∥idft(gi ∗ dft(I))∥

where I is the input sketch, denotes point-wise multiplication and idft and dft denote the
inverse/forward discrete Fourier transform. Given the number of orientations k we define
the Θ’s used for the filter bank as Θ ∈ {0, π/k, ..., (k − 1)π/k}. The other parameters were
adjusted to make evaluation results invariant to the size of a sketch. To this end, two new
variables were added: λ = σx/σy and linewidth = σx/w where w denotes the side-length of

37

a sketch. The optimal values for the parameters are: linewidth = 0.02, λ = 0.3, k = 4 and
w0 = 0.13 [27].

To perform a query for a given user draw sketch, first, we extract the local descriptors
using the same methodology, then we quantize the descriptors against the visual vocabulary.
Finally, we represent the sketch as a (sparse) histogram of visual word occurrences. Then,
we define a similarity metric to determine the similarity between two histograms so that we
consider two images similar if their histograms point in the same direction. Then, with the
histogram of the query sketch and the similarity metric, we can perform a match against the
database of views represented as histograms.

4.4 Our approach: SC-GALIF

The main idea of the SC-GALIF method for image-based 3D shape retrieval is to automati-
cally extract an image sketch s from a given query image to apply methods of sketch-based
3D shape retrieval over the extracted sketch s. To this end, we use line drawing algorithms
over the query images that allow us to extract from them feature images similar to sketches.

In the SC-GALIF approach, we use suggestive contours [24] for the feature image extrac-
tion from the image queries because it is one of the line drawing algorithms mostly used in the
literature to this end. We use different masks m for our suggestive contours implementation
and the one with the best results was:

m =

1 1 1 1 1 1

1 1 1 1 1 1

1 1 −8 −8 1 1

1 1 −8 −8 1 1

1 1 1 1 1 1

1 1 1 1 1 1

Figure 4.2 shows an image view of a 3D object and its respective suggestive contour

extracted using the mask m defined before.

A second stage in our proposed approach for image-based 3D shape retrieval consists of
using sketch-based 3D shape retrieval techniques on the suggestive contours extracted from
the images. For this stage, we use the GALIF method with some variations. For the view
extraction, we use 100 viewpoints for each 3D model evenly distributed around a sphere
containing the 3D model itself. Each of the image views and query images are rendered to a
resolution of 256x256. Finally, we set the size of the image patch to 8x8. We use the rest of
the parameters with the same values proposed in [27].

For the experiment, we use the SHREC’12 benchmark [56]. For the query images, we

38

Figure 4.2: (a) A view from a 3D ant; (b) Suggestive contour extracted from the view

extract one view from a random viewpoint for each of the 400 models. We evaluate the
proposed SC-GALIF method against four other methods (BOF-SBR, SBR-2D-3D, Orig-
DG1SIFT, Dilated-DG1SIFT) for sketch-based 3D shape retrieval evaluated in [56] against
the same benchmark. Figure 4.3 shows the results of the precision-Recall plot (PR) and the
results for the metrics NN , FT , ST , and DCG are shown in Table 4.1.

As we expected, the SC-GALIF method outperforms three of the four methods for sketch-
based 3D shape retrieval because the images and the 3D shape views are much more similar
than the sketches and the 3D shape views. However the method SBR-2D-3D behaves similarly
to SC-GALIF, even in several metrics has slightly better results.

The SBR-2D-3D [52] method is a sketch-based 3D shape retrieval algorithm that uses the
same bag of features framework as GALIF, with the difference that a filtering preprocessing
stage is added, in which a 2D-3D alignment between the query sketches and the 3D models
is performed, before the retrieval stage. However, the SC-GALIF method applies only the
bag of feature framework for the retrieval, which makes it simpler, more efficient, and faster
in computation.

39

Figure 4.3: Precision-Recall plot for the methods: SC-GALIF, BOF-SBR, SBR-2D-3D, Orig-
DG1SIFT, Dilated-DG1SIFT.

4.5 Summary

We propose an approach for image-based 3D shape retrieval using the advances in the sketch-
based 3D shape retrieval field combined with line drawing algorithms. The general idea in
the proposed SC-GALIF method is to use suggestive contours, one of the most efficient line
drawing algorithms in the literature, to transform a given query image into a sketch image
s. Then, to perform the retrieval of the 3D objects, s is used as input for the sketch-based
3D shape retrieval algorithm GALIF. For the evaluation of the SC-GALIF method we use
the SHREC’12 benchmark [56] and we compare the obtained results by our proposal against
the results of four other methods tested with the same SHREC’12 benchmark.

We can conclude that the results obtained by the SC-GALIF method for image-based
3D shape retrieval using the SHREC’12 benchmark are good since the algorithm behaves
similarly to SBR-2D-3D, which obtained the best results of all the algorithms tested with the
same benchmark. However, our proposed method directly uses the bag of features framework
to perform the sketch-3D view matching for retrieval. In contrast to the method SBR-2D-
3D, which adds a very costly filtering preprocessing step before using the bag of features
framework.

40

Table 4.1: Other metric values for the methods: SC-GALIF, BOF-SBR, SBR-2D-3D, Orig-
DG1SIFT, Dilated-DG1SIFT.

Method NN FT ST DCG
SC-GALIF 0.635 0.358 0.497 0.715
BOF-SBR 0.460 0.278 0.412 0.614
SBR-2D-3D 0.628 0.371 0.520 0.692
Orig-DG1SIFT 0.100 0.092 0.158 0.426
Dilated-DG1SIFT 0.168 0.120 0.212 0.462

41

Chapter 5

Slider: A new mid-level representation

The BOW formalism is a mid-level representation for multimedia objects that tries to capture
the distribution of a set of features with respect to a set of visual words C. The set C is
previously computed and is what we know as a visual dictionary. In other words, it is a
histogram of the frequency with which the features belong to each visual word. However,
BOW has the problem that all features belonging to the same visual word provide the same
amount of information, regardless of how the features are distributed within that visual word.

5.1 Others mid-level representations

Some work has been proposed to use the information of the distribution of the features
within a specific visual word, like BossaNova and BOH, both methods described in Chapter
2, Section 2.1.2. According to different criteria, these methods try to solve this problem by
distributing the features belonging to the same visual word in bins. In the case of BossaNova
the bins grouped the features according to their distance to the visual word so that the
distance of the features belonging to the second bin is double the distance of those belonging
to the first bin, the distance of those belonging to the third bin is triple of those belonging
to the first bin and so on. On the other hand, the BOH formalism constructs bins so that
all regions of hyperspace that represent these bins have the same hyper-volume. With this,
what is sought is that all bins are equally probable.

Both methods have a greater degree of granularity in the distribution of features that
belong to the same visual word. However, which is better depends on the task for which
these methods will be used. In some cases it will be better BossaNova, in others BOH,
and in others maybe a mid-level representation that is somewhere between BossaNova and
BOH. This suggests that a whole spectrum of useful mid-level representations exists between
BossaNova and BOH.

42

5.2 Proposal description

We propose a new mid-level representation, so-called Slider, that exploits the spectrum of
representation between BossaNova and BOH. In this new representation, the features be-
longing to the same visual word are grouped in B bins with the particularity that these
are constructed from linear combinations of BossaNova and BOH. This linear combination
is governed by an adjustable β ∈ [0, 1] parameter, which indicates how much each method
contributes to the final formula so that the closer is beta to one, the closer is the slider to
BOH, and the closer the β is to zero, the closer is the slider to BossaNova.

More in detail, the slider proposal is an extension of BOW described in Chapter 2, Section
2.2.1. This proposal aims to keep more information during the pooling step. For instance, in
BOW, the pooling function summarizes the information in a pooling region m, the αm,j, into
a single scalar value Zm. In contrast, the slider computes a histogram of the distribution of
the features within the pooling region. To do this, we divide each visual word into B bins.
With this, each Zm is now a vector of size B, which makes the final representation Z of size
M · B where M is the number of visual words. With this, the pooling function g of our
proposal is as follows:

g : RN → RB

αm → g(αm,j) = zm

zm,k = card(xj | αm,j ∈ αmax
m · [β · d

√
k

B
+ (1− β) · k

B
; β · d

√
k + 1

B
+ (1− β) · k + 1

B
]) (5.1)

Where B denotes the number of bins of each histogram zm. Note that when β = 1 slider
is exactly equal to BOH and when β = 0 then the slider is exactly equal to BossaNova.
Another important change in our proposal is with respect to αmax

m . In our case αmax
m is the

distance of the visual word to the farthest feature that belongs to said visual word. We
obtain the zm by concatenating the zm,k and the final image representation Z, same as in
BOW is given by sequential coding, pooling, and concatenating: Z = [z1, z2, ..., zM].

We use this mid-level representation technique in the field of 3D shape retrieval. Specifi-
cally, to solve the image-based 3D shapes retrieval task, which consists of retrieving from a
3D models dataset those objects that are more similar to a given query image. To carry out
this task, several stages of prepossessing the 3D shapes are needed. To explain these stages,
we will divide them into three: the 3D shapes representation, the features extraction, and
the building of the visual dictionary.

43

5.3 3D shapes Representation

To retrieve 3D shapes using images as a query object, we need to build a common domain
for query images and 3D models. For this, we will use the image views representation, which
are pictures taken from a 3D model from different angles. However, many authors propose
different approaches to choosing the angles and the amount of image views to obtain the best
representation of a 3D shape. For our representation of the 3D models, we use 100 image
views uniformly distributed around a sphere containing the 3D model itself.

5.4 Features extraction

Once all the 3D models are represented as a set of image views, we need to use image descrip-
tors for the feature extraction stage. Several image descriptors are used in the 3D models
research field to this end: gradient, Gabor filters, Fourier descriptors, Zernike moments,
shape descriptors, DSIFT, etc. However many authors agree that the Gabor filters are the
ones that achieve the best results in similar tasks [54]. For this reason, we use these filters
for our feature extraction stage.

To extract a set of features from a given image, we need to apply the Gabor filters on a
set of predetermined samples extracted from that image. To this end, 32 × 32 = 1, 024 key
points evenly distributed over the image are generated. For each key point, a local image
patch is defined as an n× n cells around the key point. Then, a Gabor filter is applied over
this patch to obtain a features vector. For the experiments, we use image patch of size 8× 8

and the features obtained from applying Gabor filters over those image patches are vectors
of 64 dimensions.

5.5 Building of the visual dictionary.

As a final step, we need to build the visual dictionary for all the extracted features to apply
the proposed mid-level representation techniques. To do that, we use a k-mean clustering
with 1000 visual words (centroids) over all the features extracted. Once the visual dictionary
is built, we are ready to obtain the mid-level representation of each image view and query
image using a specific mid-level representation method and we need to define a similarity
metric between those representations to perform the retrieval. In our case, we use the cosine
distance.

44

5.6 Experiment and results

We carry out several experiments using the proposed methods, as well as the traditional
methods of the area. For these experiments, we use two benchmarks the SHREC’12 bench-
mark [55] and ShapeNet [14]. The SHREC’12 benchmark is built based on the Watertight
Model Benchmark (WMB) dataset which has 400 models divided into 20 classes, with 20
models each. For the query images, we extract one view from a random viewpoint for each
of the 400 models. With this benchmark, we evaluate the mid-level representation methods
BOW, BossaNova, BOH, and Slider. For the BossaNova and BOH methods, we use two
different values for the number of bins: two and four. As for the Slider method, we use the
number of bins equal to four and three different values for the β parameter (0.1, 0.5, 0.9).
The results of the experiments with the SHREC’12 benchmark are shown in Table 5.1.

The ShapeNet benchmark is much larger than the SHREC’12 benchmark. It is composed
of more than 50,000 3D shapes divided into 55 classes. However, for us is very time-consuming
to compute Gabor filters for this whole dataset. To address this problem, we selected 20
categories randomly for our experiments, and from each class, we extracted the first 200
3D shapes. We extract one view from a random viewpoint for each of the 8000 models for
the query images. With this benchmark, we evaluate the mid-level representation methods
BOW, BossaNova, BOH, and Slider. For all the methods, we use the number of bins equal
to four. As for the Slider method, we use the same three different values for the β parameter
as before. Table 5.2. shows the results of the experiments with the ShapeNet benchmark.

5.7 Summary

We develop a mid-level representation method to exploit the spectrum of representations
between BossaNova and BOH. We perform several experiments using the proposal and other
mid-level representation methods. For all the experiments, we use Gabor filters for the
features extraction task and K-means to build the visual dictionary.

The results of the experiments show that BOH performs the best as a mid-level repre-
sentation to solve the image-based 3D shape retrieval task. However, BOW performs very
closely to BOH. From this find, we can conclude that having a greater degree of granularity
in the distribution of features that belong to the same visual word can improve the quality
of the representation.

On the other hand, the method with the worst results is the BossaNova, which worsens
with the increase in the number of bins, as seen in Table 5.1. However, although both BOH
and BossaNova methods propose having a greater degree of granularity in the distribution
of features that belong to the same visual word, the distribution of those features makes one

45

method perform much better.

Finally, we can see that the slider method obtains better results than BossaNova and
worse than BOH. However, as the parameters that govern the slider method cause it to
behave close to BOH, the results improve significantly.

Table 5.1: Experiment results for the SHREC’12 benchmark

Method Number of Bins param NN FT ST DCG
BOW 0.62 0.3648 0.4937 0.7183
BossaNova 4 0.59 0.3553 0.4911 0.7092
BOH 4 0.6225 0.3656 0.4981 0.7178
BossaNova 2 0.605 0.3681 0.5072 0.7175
BOH 2 0.6225 0.3660 0.4991 0.7182
Slider 4 0.5 0.61 0.3502 0.4799 0.7073
Slider 4 0.9 0.6225 0.3645 0.4981 0.7178
Slider 4 0.1 0.5875 0.3508 0.4952 0.7079

Table 5.2: Experiment results for the ShapeNet benchmark

Method Number of Bins Param NN FT ST DCG
BOW 0.5125 0.2097 0.3245 0.6996
BossaNova 4 0.441 0.1683 0.2651 0.6706
BOH 4 0.5175 0.2097 0.3245 0.6997
Slider 4 0.5 0.4822 0.1959 0.3058 0.6889
Slider 4 0.9 0.5105 0.2095 0.3242 0.6994
Slider 4 0.1 0.444 0.1685 0.2670 0.6707

46

Chapter 6

Deep features for image-based 3D model
retrieval

In recent years, deep learning techniques for extracting learned features have been used in sev-
eral fields from multimedia information for classification and retrieval, with excellent results.
For instance, in areas such as text processing and image processing, several network archi-
tectures specialized in extracting learned features have been proposed such as Autoencoders
and Siamese networks. However, a more direct approach for extracting learned features is to
train a standard artificial neural network architecture for the classification. Then, when the
network finishes training, a hidden layer of this is used to represent the objects. This last
approach, despite not being the standard approach for learned features, is used in different
works since it is often easier to train and produce faster results.

It is in our best interest to use the learned features in the cross-modal 3D shape retrieval
area. In this paper, we propose an initial approach for cross-modal 3D shape retrieval,
specifically for image-based 3D shape retrieval using learned features. For the extraction of
the latter, we use a standard CNN , which we train for classification tasks. Once the training
is finished, we use a hidden layer of the CNN already trained as a vector representation of
the images.

6.1 Proposal description

As mentioned earlier, we propose solving the image-based 3D shape retrieval problem using
learned features. The image-based 3D shape retrieval problem consists in retrieving the 3D
models of a database that are most similar to a given query image; for this objective, it is
necessary to build a common domain for 3D models and query images. To solve this problem,
we used image views that are 2D projections of a 3D object from different angles. In our

47

case, each 3D model was represented as a set of 100 image views with resolution 128 × 128

evenly distributed around the sphere containing the 3D model.

Once extracted the image views of all the 3D models, we trained a CNN architecture
to classify the image views according to the classes to which they belonged. This network
comprises four blocks of two convolutional layers and one pooling layer with stride two to
reduce the dimensionality by half. The last block output is the input to a fully connected
layer, which will be the deep feature representation of the image after the training phase.
Finally, this layer is linked to another fully connected layer with size C, where C is the
number of classes for classification. We use the Relu function to activate the layers except
for the last layer, in which we use the standard softmax function for classification. We also
use cross-entropy as the lost function and Adam optimizer. Figure 6.1 shows the architecture
of the network.

Figure 6.1: Convolutional Neural Network architecture for computing learned features, using
a classification architecture composed of four blocks of two convolutional layers and one max
pooling layer. Each block reduces the dimensionality of the input from 128× 128 to 16× 16
in the last block before connecting it to two consecutive fully connected layers and applying
the soft-max activation function over the last layer.

Using the mentioned CNNs architecture and all the image views, we train the model
for image classification until the network achieves good accuracy (ideally above 90 percent).
Once the training is over, we use the first fully connected layer of the network as a learned
feature so that the vectors will be of size 1024, and we represent all the image views by their
respective learned feature.

48

In the query stage, given a specific query image, we first used the trained network to
extract the vector representation of the query. Then, we matched the vector of the query
image and the vectors of all the image views to obtain the retrieval results. To perform this
last step we needed to use a similarity metric between vectors; in our case, we used the cosine
distance.

6.2 Experiments and Results

An essential aspect of our work is to compare our approach using learned features to solve the
image-based 3D shape retrieval task and the traditional approach of the field using engineered
features. To achieve this comparison, we implemented a second solution to the problem using
our SC-Galif proposal from Chapter 4.

We conducted several experiments using our new proposal for learned features and our
implementation of the SC-GALIF method for hand-engineered features. In our experiments,
we used the ShapeNet benchmark [14], composed of 51300 3D models grouped into 55 cat-
egories. However, for us is very time-consuming to compute Gabor filters for this whole
dataset. To address this problem, we first use a dataset sample to compare against SC-
GALIF. To build this sample, we select 20 random categories, and from each category, we
choose 200 3D models. Finally, we divide each of the 20 categories into 100 3D models for
training and 100 for testing. We chose a random image view of each of the 2000 3D test
models for the query images. Table 6.1 shows the results of the experiments using the sam-
pled dataset. We also compute the retrieval results of this proposal using the entire dataset
for future comparison. Table 6.2 shows these last results for the MAP and DCG metrics.

The experiments show that the results obtained with our proposal for image-based 3D
shape retrieval were significantly better than the results obtained with Gabor filter histograms
for all the metrics. Considering this is an initial proposal for using learned features to solve
this task, we think we can obtain even better results with a more complex architecture
designed for this specific task.

6.3 Summary

We proposed solving the image-based 3D shape retrieval problem using CNNs to extract
learned features. For this solution, we first represent the 3D shapes as a set of 100 image
views. Then, we use these image views to train a CNNs for classification until we achieve
90 percent accuracy for the classification task. After the training, we use a fully connected
layer of the network to represent the images. Finally, we use cosine distance to measure the

49

distance between the representations and compute the retrieval results.

Our solution was tested against a hand-engineered features solution using Gabor filter
histograms. According to the results of the experiments, we could see that the learned
features were better than the Gabor filter histograms in solving the image-based 3D shape
retrieval task. We also compute the results of our proposal against the entire dataset to
compare with future proposals for image-based 3D shape retrieval.

Table 6.1: Evaluation of the performance of the learned features and the engineered features
using a sample of the ShapeNet benchmark.

Feature Type NN FT ST DCG
Engineered 0.5032 0.2230 0.3401 0.7038
Learned 0.7522 0.3995 0.5455 0.8074

Table 6.2: Evaluation of the performance of the learned features using the full ShapeNet
benchmark.

Feature Type MAP DCG
Learned 0.2801 0.6413

50

Chapter 7

Retrieval techniques for Cultural Heritage
objects

We present two approaches for Greek pottery retrieval, “A sketch-aided retrieval approach
for incomplete 3D objects” and “Motif-driven Retrieval of Greek Painted Pottery.” Both pro-
posals have small datasets, so we need to test the feasibility of using deep learning techniques
to solve both approaches. We detail below both proposals as well as our contributions. This
work was in collaboration with the CGV group at TU Graz.

7.1 A sketch-aided retrieval approach for incomplete 3D objects

A major challenge for a computer-aided search is that only a fraction of the excavated Cul-
tural Heritage objects are complete. Still, most of them are present in various degrees of
fragmentation or erosion, making it difficult to use them directly as input for shape compar-
ison and search.

This proposal addresses this issue by defining an appropriate workflow for content-based
retrieval of 2D image data from incomplete 3D objects. The workflow is built around a
human-in-the-loop approach, allowing experts to provide sketch-aids for adding missing shape
information, query weighting, and visual result comparison.

Missing parts of Cultural Heritage objects can be estimated with high precision by domain
experts. The basic idea of sketch-aids is to allow users to create additional object structure,
which is filled by a texture inpainting step, which serves as input for content-based retrieval.
Fig. 7.1 shows the complete pipeline of the proposal.

51

Figure 7.1: Complete Pipeline for sketch-aided retrieval approach for incomplete 3D objects
(top left side of the figure are the preprocessing steps for the incomplete 3D object query to
extract the feature descriptor, the bottom left side of the figure are the preprocessing steps
for 2D image data to extract the feature descriptors, and finally the right side of the image
is the content-based retrieval using the query descriptor and the 2D image descriptor)

7.1.1 Content-Based-Retrieval

After the sketch-completion, texture inpainting and preprocessing steps, the query and target
collection are available, allowing for a conventional image feature-based similarity search.
There exists a wide range of established 2D image features, incorporating global features like
Color Histogram, Edge Histogram, Tamura, Color and Edge Directivity Descriptor (CEDD),
Histogram of Oriented Gradients, and local features like Scale Invariant Feature Transform
(SIFT). Global features are computed from the whole image and can be further divided into
features based on color, texture, and shape. The group of local features relies on “significant”
points in the image, which noticeably differ from their neighborhood.

We found that color-based features performed poorly for our specific use case of pot-
tery images, as they exhibit mostly undiscriminating color distributions, and many target
images are available only in grayscale in the first place. In preliminary experiments, global
shape-based feature descriptors yielded the most promising results due to the query and the
search space images being depicted with the whole object in view and with a characteristic
orientation. Two descriptors, yielding appropriate results, are evaluated in more depth: The
HOG [20] feature descriptor and the shape contour descriptor (SCD) [6].

7.1.2 Deep Features for Content-Based-Retrieval

One of the strengths of artificial neural networks is deep feature extraction. In this work,
the research was made using traditional engineering features given the fact that the database
was too small. However, this research needed to perform a comparison between the results

52

obtained using engineered features and deep features. To that end, we implemented two
different types of deep features.

For the first one, we use transfer learning with the mobilenetv2 [74] for the source task
to train a standard CNNs for image classification. Then, we use the last layer of our trained
network as the image representation.

Our first approach consists of using standard CNNs for image classification. In our case,
we use two different networks: ResNet and MobileNetV2. These networks are well known in
the field, with outstanding results for different image processing tasks.

ResNet, learns residual functions with reference to the layer inputs. This architecture
stacks 50 residual blocks on top of each other to form the network. The Residual Blocks are
skip-connection blocks composed of multiple convolutional layers and a pooling layer at the
end.

The architecture of MobileNetV2 contains the initial fully convolution layer with 32 filters,
followed by 19 residual bottleneck layers. It is based on an inverted residual structure where
the residual connections are between the bottleneck layers. In addition, the intermediate
expansion layer uses lightweight depthwise convolutions to filter features as a source of non-
linearity.

For both ResNet and MobileNetV2, we use pre-trained versions with high accuracy for
image classification. Then we apply transfer learning techniques and adapt them to our
domain. Finally, we use the layer’s output before the last fully connected layer to represent
the image.

For the second approach for deep features, we use an auto-encoder architecture. We train
this network over the whole dataset for 10000 iterations. After the training, we use the code
layer of the network as the image representation.

7.2 Motif-driven Retrieval of Greek Painted Pottery

This approach for retrieval of Greek painted pottery presents an integrated retrieval system
that combines the interactive specification of a query motif by a user with a suitable unsu-
pervised motif extraction pipeline of a search space to allow for a search of specific scenery
depicted on painted pottery. By motif, we refer to an ornament or a figure, which is itself
not a composition or part of another motif.

It is crucial that this segmentation step is performed in a robust and reliable automatic
way to be useful for a content-based search engine. In the case of Greek ancient painted
pottery, the motifs of interest are mostly painted in two major styles: red figures on a black

53

background (red-figure pottery) and vice versa (black-figure pottery), yielding objects with
a binarized colorization.

7.2.1 Segmentation and Feature Extraction for Pottery Motifs

The approach poses two major challenges. First, generating the search space by discovering
and extracting image segments, possibly corresponding to an individual motif, from domain-
specific images. Second, the similarity retrieval is based on the contour of the extracted
segments.

For the unsupervised motif extraction from Greek painted pottery images, we use several
standard image segmentation algorithms and deep learning techniques for semantic image
segmentation. For the standard image segmentation algorithms, we obtained the best re-
sults using Graph-cut [11] based Segmentation, but still, these algorithms could not get
proper segmentation for the entire data set. As for the deep learning techniques, we use the
deeplabv3+ [16] model from the TensorFlow library.

For similarity matching, we rely on shape as well as color. In terms of shape, the shape
context feature descriptor has been found to be a good choice for this application. This local
shape feature descriptor takes a representation of a shape by a number of points and defines
a feature vector for each point based on the relative location, directivity, and distance of all
the other points in the form of a distribution histogram with br radial bins and bθ angular
bins.

7.3 Experiment and results for sketch-aided retrieval approach for
incomplete 3D objects

We encounter two major problems in our research in CGV using deep features for image
retrieval and Image-based 3D model retrieval. First, the database was small for the use
of artificial neural network techniques. Second, given the lack of annotated data, we had
to use unsupervised techniques. We use two approaches for deep feature extraction to ad-
dress these problems: CNNs for image classification with transfer learning and auto-encoder
architectures.

However, a manual evaluation with many queries is not feasible because several steps of
the proposed pipeline require user interaction. For this reason, we produce qualitative results
by visualizing the query results. Two feature extraction methods were the most promising:
Histogram of Oriented Gradients (HOG) and shape contour descriptor (SCD).

54

So far, the deep features approaches have not surpassed the engineered features’ effec-
tiveness due to the lack of annotated data. However, we believe this result could improve
considerably by increasing the annotated data.

7.4 Experiment and results for Motif-driven Retrieval of Greek Painted
Pottery

We select two published datasets exhibiting a representative range of various motifs on differ-
ent vessel shapes. Those publications are the Corpus Vasorum Antiquorum Berlin 13 [ZE13]
and Corpus Vasorum Antiquorum Dresden 3 [Esc18]. Almost all of the depicted vessels ex-
hibit motifs on their surfaces. All images depicting whole vessels with motifs were manually
selected, resulting in a data basis of 57 images from CVA Berlin 13 and 42 images from CVA
Dresden 3.

For the experiments, we adapt a pre-trained deeplabv3+ model implemented in the Ten-
sorFlow library with mobilenetv2 as the backbone of the network. We use this architecture
and several other standard image segmentation algorithms for the segmentation step of the
proposal. Then, we visually select the best result of each segmentation algorithm used pre-
viously over the whole dataset.

Once again, given the lack of anatoted data and data in general, we could not obtain
quantitative results for the proposal, and we produced qualitative results by visualizing the
query results. The deeplabv3+ model outperforms every other segmentation algorithm since
we obtained proper segmentation for most of the images in the entire dataset. Figure. 7.2
shows visual results.

Once again, given the lack of anatoted data and data in general, we could not obtain
quantitative results for the proposal, and we produced qualitative results by visualizing the
query results. The deeplabv3+ model outperforms every other segmentation algorithm since
we obtained proper segmentation for most of the images in the entire dataset. Figure. 7.2
shows visual results.

7.5 Summary

We work in collaboration with the CGV group at TU Graz. In this collaboration, we apply
deep learning techniques in practical scenarios of 3D shape retrieval. Specifically, we col-
laborate on two works, “A sketch-aided retrieval approach for incomplete 3D objects” and
“Motif-driven Retrieval of Greek Painted Pottery”.

55

Figure 7.2: Results for Motif-driven Retrieval of Greek Painted Pottery

The first work “A sketch-aided retrieval approach for incomplete 3D objects” defines
an appropriate workflow for content-based retrieval of 2D image data from incomplete 3D
objects. We need to extract features from the image for their representation and further
processing to fulfill this. We explore engineered and learned features using artificial neural
network techniques in this step. However, due to the lack of annotated data, engineered
features proved to be a more efficient technique in this scenario.

In the second work “Motif-driven Retrieval of Greek Painted Pottery.”, we propose an
approach for retrieval of Greek painted pottery present. This approach consists of an in-
tegrated retrieval system that combines a user’s interactive specification of a query motif
with a suitable unsupervised motif extraction pipeline of search space to allow for a search
of specific scenery depicted on painted pottery. We use a neural network-based approach to
extract the motif from the pottery. Specifically, we adapt a pre-trained deeplabv3+ model
for semantic segmentation. In this case, the deep learning approach outperforms every other
segmentation algorithm since we could obtain proper segmentation for most images in the
entire dataset.

56

Chapter 8

A New Convolutional Architecture for 3D
Model Embedding and Retrieval (SE3D)

We propose a convolutional architecture for 3D model embedding (SE3D) 8.1 “Reproduced
with permission from Springer Nature” [43]. The idea is to obtain a deep 3D model rep-
resentation for effective 3D model retrieval. To this end, first, we represent the 3D models
as a set of image views. Then, this representation is used as input to train our proposed
convolutional model. The problem is that a standard convolutional network uses an image as
input; in our case, we have a set of images as input. To solve this, we model the information
as a multichannel image where the number of channels is the number of image views that
we use to represent a 3D model. In other words, we combine all the image views in a single
tensor with no specific order. Then, we use this tensor as the input of our network.

With this representation to handle the image view sets as input, we develop our con-
volutional architectures for 3D model embedding. We start with a standard Autoencoder
architecture, and we iterate, adding new components to our architecture to refine and enhance
the performance of our proposal. We combine our architecture for 3D model embedding with
a technique to refine the image views. This last step aims to find better image views from a
set of image views instead of using fixed viewpoints to render image views for each 3D model.

8.1 Autoencoder Network

As mentioned before, our proposal starts from a base convolutional Autoencoder architecture.
In this model, we connect our proposed multichannel input to a standard convolutional
neural network, which serves as the model’s encoder. Then, we connect the encoder to a
fully connected layer (the bottleneck), which, at the same time, we link to the decoder of the
network.

57

Figure 8.1: Proposal overview: A deep architecture for computing embeddings. It uses an
Autoencoder combined with a classification network and various constraints to improve the
quality of the embeddings that are later used in 3D shape retrieval tasks.

The network’s encoder has four blocks of two convolutional layers and one max pooling
layer with stride two, which means that each block reduces the dimensionality by half. Each
convolutional layer has a kernel of 5×5 and channels equal to 64∗2k, where k is the respective
block (1, 2, 3, 4).

The network’s decoder also has four blocks composed of one transposed convolutional
layer, also known as a deconvolutional layer. One un-pooling layer with stride two doubles
the dimensionality of each block. We select a zero-padding technique for the un-pooling
layer. We implement the un-pooling layer to copy the values in the input feature map to
their respective position in the output feature map and set all the other positions to zero.
Many works have used zero padding techniques to increase a feature map dimensionality
with excellent results [95, 22, 26]. Figure 8.2 “Reproduced with permission from Springer
Nature” [43] shows the un-pooling layer used in the model. Each deconvolutional layer has
a kernel of 5× 5 and channels equal to 64 ∗ 2k, where k is the respective block (4, 3, 2, 1).

Finally, we use the L2 norm of the difference between the output and the model’s input
as reconstruction loss. Equation 8.1 shows the formula of the loss function, where the Ii are
each of the pixels in the input, and the Oi are the respective pixels in the network’s output
(the reconstruction of the input). Figure 8.3 “Reproduced with permission from Springer
Nature” [43] shows our convolutional Autoencoder model.

58

Figure 8.2: Un-pooling layer used for the decoder of the model

Loss =

√√√√ n∑
i

(Ii −Oi)2 (8.1)

8.2 Classification Network

Autoencoder models are dominant in compressing and computing representations of the data.
However, these models do not learn relations between objects because they only use the input
information to train. We address this problem with another network consisting of a CNN for
classification. This network uses the same architecture as the Autoencoder network until the
bottleneck component. After that, we connect the bottleneck to a fully connected layer of size
C, where C is the number of classes for classification. Then, we apply a standard soft-max
activation function over this layer. Finally, we use cross-entropy as the loss function. We
train this model until we obtain very high accuracy, and then, we use the bottleneck layer
as the embedding. Equation 8.2 shows the formula of the loss function, where the N is the
number of classes, the yi are the truth labels, and the pi are the predicted probability for
each class. Figure 8.4 “Reproduced with permission from Springer Nature” [43] shows the
convolutional model for classification.

Loss = −
n∑
i

yi × Log(pi) (8.2)

59

Figure 8.3: Network for computing 3D shape embeddings using an Autoencoder architecture
composed of its three main components: encoder (four blocks of two convolutional layers and
one max pooling layer), bottleneck (one fully connected layer), and decoder (four blocks of
one deconvolutional layer and one un-pooling layer).

8.3 Combination of the Autoencoder and the classification network

We want our 3D model embedding network to have high compression power and learn the
relation between the 3D models. To address this, we use a combination of both already
described models. This model uses the Autoencoder and the classification network architec-
ture simultaneously. In other words, for a given input, we compute two losses (Loss1 and
Loss2). Loss1 is the L2 norm of the difference between the output of the Autoencoder and
input, and Loss2 is the loss computed with the cross-entropy function in the classification
network. Finally, the complete loss of this model is the sum of Loss1 and Loss2. After the
training, we again use the bottleneck layer as the embedding of the 3D models. Figure 8.5
“Reproduced with permission from Springer Nature” [43] shows this combined model.

8.4 Improving the embedding

With the combination of the classification network and the Autoencoder, we achieve high
compression power, and we also manage that our model learns the relation between the 3D
models. However, we still need to solve two major problems. First, the number of images in
our input must be small because our model needs to learn the input after the encoded phase

60

Figure 8.4: Network for computing 3D shape embeddings, using a classification architecture
composed of four blocks of two convolutional layers and one max pooling layer. Each block
reduces the dimensionality of the input from 128 × 128 to 16 × 16 in the last block before
connecting it to two consecutive fully connected layers and applying the soft-max activation
function over the last layer.

from 1024 sized vector. Second, our embedding representation is also a 1024 sized vector,
and we would like to have a more compressed representation.

To solve the second problem, we add two more fully connected layers, the encoder com-
ponent of the network. The first one reduces de dimensionality of the vector to 512, and the
second reduces the dimensionality further to 256. We also add the respective two fully con-
nected layers to the decoder of the model. However, these changes increase our first problem
since now our model needs to learn the input from a 256 sized vector.

To address this aggravated second problem, we incorporate skip connections between
the encoder and decoder of the model. This architecture aims to learn the input using the
bottleneck of the network and the information before the bottleneck as well. Figure 8.6
“Reproduced with permission from Springer Nature” [43] shows our proposed architecture
for computing the 3D model embeddings. As shown in this figure, we add the output of the
fully connected layers in the encoder to their respective fully connected layers in the decoder.
By doing this, we reinforce the amount of information passed to the decoder of the network,
which allows a better reconstruction of the input. This improvement of the embedding over
the last architecture constitutes our full proposal named SE3D.

61

Figure 8.5: Network for computing 3D shape embeddings using a combination of Autoencoder
and classification architectures. These architectures share the first half of the network and
then compute two losses for the Autoencoder and classification separately. Finally, the losses
are combined into a single final loss function.

8.5 Image view extraction

A recurrent problem in the 3D model processing field using image views is precisely how to
extract the image views. Many methods to extract the “best image views” from a given 3D
model have been proposed over the years. However, these methods are very task-dependent,
and there is no wide-accepted agreement on the best way to extract image views [37, 35, 2].

We propose a method to select the “best image views” from a large set of image views
representing a 3D model. To do this, we train a deep convolutional architecture for clas-
sification using the whole set of image views. After the training phase, we use the trained
network to select the views that best classify the 3D model. We describe this process below.

8.5.1 Network for classification of the image views

The first stage of our proposal for selecting the best image views is to train a CNN for 3D
model classification using the whole set of image views representing the 3D models. We
require that our network classify the 3D model using the entire collection of image views.
We use a standard convolutional neural network for image classification as the core of this
proposed architecture to fulfill this. Then, we use this core network for two tasks for each

62

Figure 8.6: Full network proposal for computing 3D shape embeddings using a combination of
an Autoencoder architecture and a classification architecture, incorporating skip connections
and increasing the bottleneck capacity by adding fully connected layers.

image view. The first task is to compute classification loss for each image view, and the
second task is to obtain a deep representation for each image view. We accumulate both these
losses and deep representations by adding them. Finally, we use the accumulation of deep
representations as the input to another fully connected network to produce a classification
loss. The final loss of our model is the sum of this last loss with the accumulation of
classification losses for each image view. Figure 8.7 “Reproduced with permission from
Springer Nature” [43] shows the architecture of this network.

8.5.2 Selection of the image views

We use the trained network to compute the class of the 3D models and the network’s output
for each image view (the probability vector without applying the softmax function). Then,
we sort the image views according to the probability of the views to belong to the same class
as the 3D model. For example, if the class of a 3D model is one, we sort all the image views
according to the value in the position one of their probability vectors. Finally, we use this
sorted list to select the potential “best image views” according to two different criteria: the
number of views we want for the final representation of the model and the proximity between
the views. We use this last criterion to ensure that all the views selected are not from the
same perspective of the 3D model. For example, we could choose the first n views of the

63

Figure 8.7: Network architecture for image view classification optimized to refine a view set
representing a 3D shape. The goal is to identify and select the image views best suited for
accurately classifying the 3D shape in question.

sorted list, where n is the final number of image views that we will use to represent the 3D
model.

8.6 Overview

We propose a pipeline for 3D shape retrieval using image view representations. We begin the
retrieval process by extracting the image views from the 3D shapes. We use the Stanford-
Shapenet-renderer script, but any technique or tool can be used for this end. After this, we
are ready to feed the image to the neural networks to train our models. However, we add an
intermediate step for filtering the image views when dealing with noisy data.

After we train our artificial neural network models with the sets of image views, we select
the output of a specific layer as the representation of the 3D shape. After that, we use cosine
similarity to measure the distance between these representations. Finally, we retrieve similar
3D models according to the distance between them. Figure 8.8 “Reproduced with permission
from Springer Nature” [43] shows the complete pipeline for the retrieval process.

8.7 Experiments and Results

In this section, we discuss all the experimental setups, describe the benchmark and the
preprocessing of the data, and give the technical aspects of our three proposed architectures.

64

Figure 8.8: Entire pipeline for the retrieval process. We start from the offline stage, where
we train an artificial neural network to compute embedding representations for every 3D
shape. In the online stage, we compute the embedding for a given 3D shape and measure
the distance from this embedding to every previously computed embedding to obtain the
retrieval results.

8.7.1 Data configurations

We use two different datasets for the experiments, the ShapeNet benchmark [14] and the
ModelNet [99]. On the one hand, the ShapeNet benchmark comprises 51,300 3D models
grouped into 55 categories, and they are provided in OBJ format. The dataset count with
two versions, consistently aligned (normalized dataset), and a more challenging dataset where
random rotations perturb models. The dataset provides a split 70%/10%/20% for training,
validation, and testing, respectively. We conducted several experiments using both versions
of the dataset. On the other hand, ModelNet [99] has two versions: ModelNet10 where the
models are categorized into ten classes, and ModelNet40, where the models are categorized
into 40 classes. Both versions are composed of CAD models manually aligned but not scaled.
This dataset also provides its own training/testing split.

As mentioned before, our proposed models consume sets of image views as input. An
image view is a picture of a 3D model from a predefined viewpoint. So, after choosing our
dataset of 3D models for the experiment, we have to render the image views from each 3D
model.

In the case of the ShapeNet benchmark, to extract the image views, we use the Stanford-
Shapenet-renderer script. This script uses the API from the Blender software to render
images from different angles of a given 3D model in OBJ format. This code is public on
Github1 and fully parameterizable for various tasks. In our case, we use the code to render
48 images by sampling in the vertex of a regular icosahedron containing the 3D models.

1https://github.com/panmari/stanford-shapenet-renderer

65

However, our models are not powerful enough to handle sets of 48 image views as input. To
solve this problem, we use two different approaches to reduce images per 3D model. The first
approach is to define a fixed number of viewpoints and use the image views extracted from
those viewpoints for all the 3D models. The second approach is to use our proposal to select
the possible best image views from the whole set of 48 image views for each 3D model.

In the case of the ModelNet benchmark, we use a prerender dataset of image views used
in the RotationNet [38] experiments. In this case 20 image views are extracted per 3D model
with a resolution of 224× 224. This dataset is public on Github2.

8.7.2 Experimental setup

For all the experiments, we use adam for the optimization, ReLU as the activation function,
and a batch of size 100 for the training. In the case of the Autoencoder, the Combination
Network, and the full proposal, we train for 50,000 iterations since the Autoencoder com-
ponent takes more time to converge. On the other hand, for the Classification Model (our
second base model), we only use 20,000 iterations since the classification accuracy quickly
achieves values above 98 percent.

We aim to use the embeddings computed with all the architectures for 3D model retrieval.
To do that, we use the cosine distance to measure the similarity between the embeddings
and build a ranked list for each 3D model. After that, we apply the two mentioned metrics
to measure retrieval performance over the ranked lists.

8.7.3 Ablation study

Given the multi-stage nature of our proposal, it is necessary to perform multiple experiments
to verify how much each of these stages contributes to the overall performance of the full
proposal. We perform an ablation study of our proposal for computing 3D model embedding.
Below, we detail each step of this study.

Comparison of architectures

Our first stage of experimentation consists of computing 3D model embedding using each
of the three base models of our architecture. This means to compute embeddings using the
Autoencoder, the classification network and the combination of the Autoencoder and the
classification network. The goal of these experiments is to prove that each stage improves
over the last one.

2https://github.com/CabinfeverB/RotationNet-TensorFlow

66

We use four image views per 3D model for these experiments using fixed viewpoints. We
also use one fully connected layer after the encoder of the network with an embedding size
of 1024. Table 8.1 shows the results of all three models using the normalized version of the
dataset.

The experiments show that the network with the worse results was the Autoencoder
since, as we already mentioned, this model does not learn relations between the 3D models.
Instead, to compute the embeddings for a given 3D model, it uses the 3D model itself. On the
other hand, our second proposal highly outperforms the first one. Since the second proposal
uses a classification network, this model intrinsically learns relations between the 3D models,
specifically, if two 3D models belong to the same class or not. However, we obtain the best
result using the third proposal, which combines the first two models.

Comparison of the number of fully connected layers

Our second stage of experimentation is to find out how adding multiple layers after the
encoder of the network affects the performance. We use the combination of the Autoencoder
and the classification network for these experiments since it was the best architecture from
stage one of experimentation. We select the number of fully connected layers in the set
{1, 3, 5} and we use again embedding size of 1024. Table 8.2 shows these results.

These experiments show that varying the amount of fully connected layers does not
constitute a significant change in the performance. This is a desirable feature in our case
since we need to add multiple fully connected layers in our complete proposal.

Comparison of embedding sizes

Our third stage of experimentation is to obtain the optimum size of our embedding. To fulfill
this task, we use five fully connected layers from the core of our architecture, and we reduce
the dimensionality from one layer to another. We perform our experiments by choosing the
embedding size in the set {1024, 512, 256, 128}.

We perform these experiments using the network that combines the Autoencoder with the
classification network. We also use fixed viewpoints for these experiments with four image
views per 3D model. Table 8.3 shows the results of our second stage of experimentation.

For the experiments, we can see that as the embedding size reduces, the network’s per-
formance increases until the embedding size is 256. From there, the performance heavily
deteriorates with an embedding size of 128.

67

Comparison for the full proposal

Our fourth stage of experimentation compares the best model so far against our complete
proposal. In other words, we compare the network that combines the Autoencoder with the
classification network using five fully connected layers and embedding size 256 against our
full proposal with the same parameters. We also use fixed viewpoints for these experiments
with four image views per 3D model. Table 8.4 shows the results of these experiments.

The result shows that our complete proposal outperforms the best network so far. We
can conclude that adding skip connections can improve the network’s performance.

Comparison of the number of image views per 3D model

Our fifth experimentation stage consists of a study of how the number of image views repre-
senting a 3D model affects the proposal’s performance. We use our full proposal to fulfill this
requirement, selecting the number of image views per 3D model in the set {4, 8, 16}. When
increasing this number, we expect an improvement in performance and an increase in the use
of computation resources. We want to study this trade-off. Table 8.5 shows these results.

From these experiments, we can see that as the number of images increases, the perfor-
mance of the model only shows a slight increase. We believe that these small performance
gains do not justify increasing the number of image views.

Comparison of the image views selection techniques

Our last stage of experimentation is to find out how our proposal for selecting the potential
best image views affects the model’s performance. First, we experiment using image views
extracted from fixed viewpoints. Then we use our proposal for the image view selection,
and we use those selected images for the experiments. Finally, we compare both results.
Table 8.6 and Table 8.7 show the result for these experiments using the normalized version
of the dataset and the perturbed version of the dataset, respectively.

We can arrive at several conclusions from these experiments. First, we can see that using
fixed viewpoints to extract the image views in the normalized version of the dataset achieves
better results. We hypothesize that by selecting image views, we lose the information of the
viewpoint since, in the normalized version of the dataset, all the 3D models are consistently
aligned. However, in the perturbed dataset, using fixed viewpoints can lead to a lot of
variation in the image view extraction process because of the random rotation of the 3D
models. This variation leads to a bad performance of our model when used in the perturbed
dataset. In this case, we increase the model’s performance using the image view selection

68

technique.

8.7.4 Inference time Study

As mentioned, our proposal learns features from the whole set of views simultaneously instead
of using the standard approach in the field to combine the features from each image view
by incorporating view pooling layers. Our goal for avoiding this type of architecture is
to propose a network for computing 3D shape embedding using image views, fast and low
resource demanding while being competitive with state-of-the-art techniques.

To support this claim, we compare the inference time of our network against several state-
of-the-art techniques. We generate a 2000 image view set to conduct these experiments, and
each set is composed of 50 views with a resolution of 128× 128. Finally, we make inferences
with each selected network using the described dataset and batch of size one. The state of
the art methods are PANORAMA-ENN [79], MVCNN [91], 3D2SeqViews [35], and Rota-
tionNet [38]. Table 8.8 shows the average inference time for each network. The experiment
results show that our proposal inference time is much lower than the other methods, being
between 8 times and 50 times faster.

8.7.5 Proposal results against the state of the art

We compare the best results obtained by our proposed model (SE3D) against several other
works (PANORAMA-ENN [79], RotationNet [38], GIFT [104], ReVGG [104], MVFusionNet,
CM-CNN [104], VoxelNet [104], DLAN [104], ZFDR [104], PointNet [69], DensePoint [60],
FMVAC [62], MVLA [58]) using both versions of the ShapeNet dataset. We chose these
works because, to our knowledge, they report the best results over the ShapeNet dataset.
Also, we include works for different types of 3D shape representation (voxel, image views,
and point cloud).

The methods that use image view representation, except for ZFDR, which uses hand-
crafted features, also use some form of image view aggregation technique. This technique
means these methods must compute features from each image view separately, in contrast to
our proposal that extracts features from a tensor containing all the image views, making the
training and the inference of the network faster.

For the works PointNet and DensePoint, we could not find results for retrieval over the
ShapeNet dataset. In these cases, we run the experiment ourselves. To accomplish this, we
first train both models over their original datasets to reproduce the results reported by the
author. Then, we use a point cloud version of the normalized version of ShapeNet, and we
train both models for classification using the default configuration proposed by the authors.

69

After the training, we use the layer’s output before the last fully connected layer to represent
the 3D shapes. Finally, we use the cosine distance between these representations to measure
the similarity and obtain the retrieval results. The point cloud version of the ShapeNet
dataset is public on Github 3. The implementation of PointNet and DensePoint are also
public on Github 4, respectively.

Table 8.9 and Table 8.10 show the results using the normalized and the perturbed version
of the dataset. Note that the perturbed version of the dataset does not include point clouds.
Thus, we present results for PointNet and DenseNet only for the normalized version. We
also compute the micro and macro averages of both metrics used in our experiments.

In addition, Table 8.11 shows the available results over the ModelNet benchmark for
the methods presented in Table 8.9. These results include the classification accuracy for all
techniques and some techniques’ retrieval MAP. The DCG metric is not reported for the
ModelNet Benchmark.

We compare our proposal against several state-of-the-art works, including some of the
more recent ones to our knowledge. The results show that our proposed model achieves very
competitive effectiveness, especially in the normalized version of ShapeNet, where we obtain
the highest DCG among all methods.

However, the effectiveness of our proposed method is affected when we use the perturbed
version of the ShapeNet dataset. In this dataset, we use a different technique to select the
image views representing the 3D models, improving the effectiveness of the retrieval. However
we still fall behind the best state-of-the-art results, which means that our proposal still needs
improvement to capture the information in rotated objects. An alternative solution is the
pose normalization of the 3D models in the dataset.

In the case of the ModelNet dataset, the DCG results are not reported, so we can only
make a comparison using the MAP for retrieval and the accuracy for classification. Regarding
this last metric, our results fell behind the best results. However, our proposal is optimized
for classification, so we were not expecting the best results for this particular task.

Finally, we get these results while avoiding using image view aggregation techniques or
view pooling layers. Instead, we learn features from the complete set of image views as a
single object, making our proposal faster and easier for training and inference computing.

3https://github.com/AnTao97/PointCloudDatasets
4https://github.com/charlesq34/pointnet, https://github.com/Yochengliu/DensePoint

70

Table 8.1: Evaluation of the performance of the embedding for 3D models Retrieval using
the normalized version of the ShapeNet.

Model Views FC layers Embedding size DCG MAP
Autoencoder 4 1 1024 0.655 0.290
Classification 4 1 1024 0.857 0.567
Autoe.+Class. 4 1 1024 0.896 0.680

Table 8.2: Evaluation of the performance changing the amount of fully connected layers for
3D models Retrieval using the normalized version of the ShapeNet.

Model Views FC layers Embedding size DCG MAP
Autoe.+Class. 4 1 1024 0.896 0.680
Autoe.+Class. 4 3 1024 0.898 0.673
Autoe.+Class. 4 5 1024 0.897 0.679

8.8 Summary

We propose an artificial neural network architecture for computing 3D model embeddings
using sets of image views extracted from them. The core of this proposal consists of two
different networks: a convolutional Autoencoder and a convolutional neural network for
classification. We impose restrictions on these networks and add new parameters to improve
the quality of the embedding computed by the network. We use the same technique for
modeling the input for all the networks. This technique transforms a set of image views
representing a 3D model into a multichannel image where each channel is an image view.

We conducted several experiments using our proposals, and we can conclude that our work
has three main contributions. First, we propose a convolutional architecture that can handle
the 3D models represented as sets of image views faster and easier for training and inference
computing. Second, we present an analysis of the performance of different convolutional
architectures for computing 3D model embedding. Finally, we present a study of how the
different parameters affect the quality of the computed embedding.

The most important conclusion is that our proposed models can successfully compute
embedding representations for 3D models. We obtain good results for the two evaluation
metrics, especially with our last model, which shows results for the MAP above 73 percent
and DCG above 91 percent. These results are very competitive within the ShapeNet Dataset
results, especially in the normalized version of the dataset. We will continue this research
by using our computed embedding in other 3D model processing tasks, like cross-modal 3D
shape retrieval.

71

Table 8.3: Evaluation of the performance changing the embedding size for 3D models Re-
trieval using the normalized version of the ShapeNet.

Model Views FC layers Embedding size DCG MAP
Autoe.+Class. 4 5 1024 0.897 0.679
Autoe.+Class. 4 5 512 0.902 0.694
Autoe.+Class. 4 5 256 0.907 0.710
Autoe.+Class. 4 5 128 0.828 0.600

Table 8.4: Evaluation of the performance adding skip connection for 3D models Retrieval
using the normalized version of the ShapeNet.

Model Views FC layers Embedding size DCG MAP
Autoe.+Class. 4 5 256 0.907 0.710
Autoe.+Class+Skip 4 5 256 0.911 0.721

Table 8.5: Evaluation of the performance for different number of image views per 3D model
using normalized version of the ShapeNet.

Model Views FC layers Embedding size DCG MAP
Autoe.+Class+Skip 4 5 256 0.911 0.721
Autoe.+Class+Skip 8 5 256 0.916 0.728
Autoe.+Class+Skip 16 5 256 0.919 0.732

Table 8.6: Evaluation of the performance for the two different techniques to select image
views using normalized version of the ShapeNet with 16 views, five fully connected layers
and embedding size 256.

Model Views selec. DCG MAP
Autoe.+Class+Skip Fixed 0.919 0.732
Autoe.+Class+Skip Network 0.892 0.693

Table 8.7: Evaluation of the performance for the two different techniques to select image
views using perturbed version of the ShapeNet with 16 views, five fully connected layers and
embedding size 256.

Model Views selec. DCG MAP
Autoe.+Class+Skip Fixed 0.646 0.354
Autoe.+Class+Skip Network 0.745 0.532

Table 8.8: Comparison of the Average Inference Times

Network Average Inference Time
Autoe.+Class+Skip 0.187
PANORAMA-ENN 0.980
MVCNN 1.043
SeqViews2Seq 2.167
RotationNet 11.501

72

Table 8.9: Comparison of our computed embedding against other 3D model retrieval methods
using the normalized version of the ShapeNet.

Metric Calculation Micro Average Macro Average
Model DCG MAP DCG MAP
SE3D 0.919 0.732 0.774 0.513
RotationNet 0.865 0.772 0.656 0.583
GIFT 0.827 0.722 0.657 0.575
ReVGG 0.828 0.749 0.559 0.496
DLAN 0.762 0.663 0.563 0.477
PANORAMA-
ENN

0.845 0.739 0.656 0.588

MVFusionNet 0.732 0.622 0.502 0.418
CM-CNN 0.654 0.540 0.404 0.339
ZFDR 0.330 0.199 0.377 0.255
VoxelNet 0.277 0.192 0.337 0.232
PointNet 0.769 0.580 0.416 0.639
DensePoint 0.807 0.679 0.700 0.515
VFMVAC 0.862 0.778 0.677 0.607
MVLA 0.867 0.809 0.667 0.630

Table 8.10: Comparison of our computed embedding against other 3D model retrieval meth-
ods using the perturbed version of the ShapeNet.

Metric Calculation Micro Average Macro Average
Model DCG MAP DCG MAP
SE3D 0.745 0.532 0.546 0.371
RotationNet 0.702 0.606 0.407 0.327
GIFT 0.701 0.567 0.513 0.406
ReVGG 0.783 0.696 0.479 0.418
DLAN 0.754 0.656 0.560 0.476
PANORAMA-
ENN

0.759 0.703 0.554 0.462

CM-CNN 0.642 0.524 0.395 0.329
ZFDR 0.303 0.172 0.336 0.215
VoxelNet 0.043 0.009 0.109 0.047

73

Table 8.11: Comparison of our computed embedding against other 3D model retrieval meth-
ods using ModelNet.

Model Classification(Accuracy) Retrieval(MAP)
SE3D 0.883 0.847
RotationNet 0.973 -
GIFT 0.831 0.819
PANORAMA-ENN 0.955 0.863
FusionNet 0.908 -
VoxelNet 0.830 -
PointNet 0.892 -

74

Chapter 9

SHREC 2021: A practical application of our
proposal for the 3D shape retrieval

SHREC (3D Shape Retrieval Challenge) is a yearly initiative with the general objective of
evaluating the effectiveness of 3D shape retrieval algorithms. We participate in SHREC2021,
the sixteenth edition of the contest, specifically in the Retrieval of Cultural Heritage object
track [87].

9.1 SHREC 2021: Retrieval of Cultural Heritage Objects

The cultural heritage domain has benefited substantially from 3D shape processing. This
track presents an initiative to promote the research of 3D shape analysis methods in cultural
heritage domains. To this end, two retrieval challenges are presented considering two aspects:
the shape and the culture. Regarding the shape, archaeologists in the Josefina Ramos de
Cox (JRC) museum classified the scanned objects by shape using specific taxonomies for
Peruvian pre-Colombian artifacts. Regarding culture, the JRC museum keeps records of the
pre-Colombian cultures to which the artifact belongs. This metadata is collected for the
scanned models, which serves as input for our retrieval tasks.

The proposed challenges have different degrees of complexity. Retrieval-by-shape is prob-
ably the more affordable challenge given that there exist suitable methods in the 3D shape
retrieval literature to deal with geometric characterization. Nevertheless, there are cases
where the distinction between objects in different classes is barely perceived. On the other
hand, retrieval-by-culture is a more difficult challenge. Models from the same culture can
have varied shapes, and probably the most distinguishable characteristic is the combination
of geometry and painting style.

75

9.1.1 Dataset

The dataset for this track consists of 3D scanned models from cultural heritage objects
captured in the Josefina Ramos de Cox museum in Lima, Perú. The technology used to
acquire the 3D models was a structured-light desktop scanner, which produces high-resolution
3D textured models. A post-processing step is applied to normalize the position by translating
the objects’ center to the origin of 3D space. The orientation is also changed manually,
such that shapes are oriented up on the Y-axis. However, the original scale of models is
kept because the scale can be a distinctive feature that differentiates objects. Finally, the
triangular mesh of each shape is simplified to have nearly 40,000 triangle faces.

9.1.2 Challenge description

Figure 9.1: Example of each class for the shape challenge

The dataset for the shape challenge consists of 938 objects classified into eight categories:
jar, pitcher, bowl, figurine, basin, pot, plate, and vase. The dataset is split into a collection
set (70% of the dataset) and a query set (30% of the dataset). The collection set contains 661
objects, and the query set has 277 objects. The bowl class contains the highest number of
models (with 221 models in total), and the vase class contains the lowest number of models
is (with 34 objects in total). Figure 9.1 shows examples of models in each class.

The dataset for the cultural challenge consists of 637 objects classified into six categories:

76

Figure 9.2: Example of each class for the cultural challenge

Chancay, Lurin, Maranga, Nazca, Pando, and Supe. It is split as before into a collection set
(70% of the dataset) and a test set (30% of the dataset). The collection set contains 448
objects, and the test set has 189 objects. The class with the highest number of models is
Lurin (with 455 shapes in total), and the class with the lowest number of models is Nazca
(with seven shapes total). Figure 9.2 shows examples of objects in each class.

It is worth noting that, in both challenges, the classes are not balanced. This phenomenon
is even more noticeable in the retrieval-by-culture challenge. Nevertheless, these challenges
propose a real application for 3D retrieval algorithms; hence, one of the goals is to evaluate
the robustness of methods against unbalanced data.

9.2 Proposal

We propose a convolutional architecture to compute 3D shape embedding based on our
previous model described in Chapter 8. Our goal is to transform the 3D shapes into vectors
with enough information to substitute the 3D shape itself in further processing. In this case,
we use the computed embeddings for 3D shape retrieval. To better understand the proposal,

77

we divide the description into the 3D shape representation and the network architecture.

For the 3D shape representation, we first extract a set of image views from each 3D shape.
Then, we represent the 3D shapes as multichannel objects, where each channel is an image
view. Finally, we conduct different experiments using different amounts and types depending
on the task we are tackling (shape challenge, cultural challenge). In the shape challenge, the
image views are single channel (grayscale), and the number of image views per 3D shape is
selected in the set [4, 8]. We use three channels (RGB) in the cultural challenge, and the
number of image views per 3D shape is selected in the set [2, 4].

We use this multichannel representation of the 3D shapes to train our convolutional
network, which is composed of a combination of a convolutional Autoencoder and a convolu-
tional neural network for classification. For the Autoencoder part of the network, we use the
standard encoder-bottleneck-decoder architecture with reconstruction loss L2 norm of the
difference between the output and the input. As for the classification part, we use the same
Autoencoder network until the bottleneck component. Then, we connect the bottleneck to a
fully connected layer of size C, where C is the number of classes for classification. After we
train our model, we use the bottleneck layer to represent the 3D shapes and cosine distance
to compute the similarity between embeddings.

9.3 Experiment and results

Along with our method for 3D Shape Embeddings (SE3D), another nine proposals competed
in the contest. Deep Node Embedding (DNE), Normalized Profile Curve (NPC), Deep Rep-
resentative Learning and Feature Learning (DRF-L), Triplet Loss and Autoencoder Architec-
tures (TL), Ring View Net (RVN), Multi-view CNN on Silhouettes (MVCNN), Mesh-based
Neural Networks (MeshNN), Multi-view ResNet (MVResNet), and CNN on Principal Com-
ponent Images (PCI). All the methods were evaluated using five retrieval metrics (NN, FT,
ST, mAP, nDCG) and the precision-recall curve. Finally, there was a maximum of five runs
per submission on each of the two challenges. We submit all the five-run in each challenge
with the next configuration:

• Run 1: Embeddings created with 10,000 epochs in training and four views.

• Run 2: Embeddings created with 30,000 epochs in training and two views.

• Run 3: Embeddings created with 30,000 epochs in training and four views.

• Run 4: Embeddings created with 60,000 epochs in training and two views.

• Run 5: Embeddings created with 60,000 epochs in training and four views.

78

Figure 9.3: Precision-recall plot for the retrieval-by-shape challenge.

We show the results of the precision-recall curve for both challenges in Figure 9.3 and
Figure 9.4, respectively. The retrieval metrics are shown in table 9.1 and table 9.2 for the
two challenges. As the results show, we achieved good results, ranking around the middle of
all proposals.

9.4 Summary

We participated in the SHREC 2021 contest, specifically the Retrieval of Cultural Heritage
Objects track. We submit a version of our proposal for 3D shape embedding adapted for
the two specific challenges of the contest. Our proposal was evaluated against the other nine

79

methods, achieving results around the middle of the performances.

We created our method to be trained using the ChapeNet dataset, which consists of
around 50000 3D shapes in contrast with the two challenges of the contest, which count with
less than 1000 objects. This small amount of training data compared to the amount of data
in the ShapeNet dataset could hurt the performance of our proposal. Another observation is
that most methods that perform better than our proposal use machine learning techniques to
render/select the best views of the 3D shapes. These encourage us to use similar techniques
in our process for the image views extraction in future works.

80

Figure 9.4: Precision-recall plot for the retrieval-by-culture challenge

81

Table 9.1: Evaluation measures for the retrieval-by-shape challenge

Methods NN FT ST mAP nDCG
DNE (run1) 0.7509 0.5813 0.4385 0.6273 0.8704
DNE (run2) 0.8014 0.5933 0.4037 0.6303 0.8746
DRF-L (run1) 0.7256 0.6494 0.5162 0.6780 0.8755
DRF-L (run2) 0.7220 0.4744 0.3493 0.4841 0.8220
MVCNN (run1) 0.7509 0.6164 0.4927 0.6489 0.8794
MVCNN (run2) 0.7545 0.6006 0.4995 0.6350 0.8756
MVCNN (run3) 0.7545 0.8010 0.8860 0.8235 0.9122
MVResNet (run1) 0.1841 0.1430 0.1409 0.1761 0.6281
MeshNN (run1) 0.5054 0.3678 0.2941 0.3673 0.7587
MeshNN (run2) 0.5993 0.6388 0.7358 0.6915 0.8428
MeshNN (run3) 0.7220 0.7871 0.8788 0.8054 0.9013
MeshNN (run4) 0.7906 0.8356 0.9174 0.8518 0.9256
NPC (run1) 0.6751 0.3766 0.3106 0.4019 0.7874
NPC (run2) 0.6787 0.4151 0.3237 0.4274 0.7996
PCI (run1) 0.6751 0.7100 0.7827 0.7496 0.8695
RVN (run1) 0.7942 0.6675 0.5863 0.7084 0.8995
RVN (run2) 0.7726 0.6715 0.5763 0.7074 0.8989
RVN (run3) 0.7762 0.6694 0.6168 0.7086 0.8992
RVN (run4) 0.7798 0.6680 0.6095 0.7069 0.8994
RVN (run5) 0.8087 0.8471 0.9065 0.8604 0.9286
SE3D (run1) 0.7112 0.4380 0.3340 0.4514 0.8068
SE3D (run2) 0.6029 0.4903 0.4126 0.5081 0.8119
SE3D (run3) 0.6354 0.4757 0.4035 0.5065 0.8149
SE3D (run4) 0.5993 0.5090 0.4147 0.5431 0.8205
SE3D (run5) 0.5848 0.5018 0.4358 0.5395 0.8169
TL (run1) 0.8159 0.8230 0.8551 0.8409 0.9262
TL (run2) 0.6751 0.4727 0.3578 0.4897 0.8247
TL (run3) 0.7870 0.7252 0.6895 0.7693 0.9106
TL (run4) 0.8412 0.8297 0.8357 0.8428 0.9293
TL (run5) 0.7437 0.5385 0.4667 0.5717 0.8482

82

Table 9.2: Evaluation measures for the retrieval-by-culture challenge

Methods NN FT ST mAP nDCG
DNE (run1) 0.7831 0.7466 0.7767 0.7457 0.8799
DNE (run2) 0.7566 0.7074 0.7673 0.7190 0.8715
DRF-L (run1) 0.7302 0.6302 0.7831 0.6729 0.8648
DRF-L (run2) 0.7249 0.5516 0.7670 0.5713 0.8383
MVCNN (run1) 0.1852 0.8088 0.7989 0.7410 0.8532
MVCNN (run2) 0.2063 0.8292 0.8130 0.7626 0.8675
MVCNN (run3) 0.1534 0.7932 0.7925 0.7882 0.8748
MVCNN (run4) 0.1799 0.8130 0.8077 0.8081 0.8889
MVCNN (run5) 0.7566 0.6354 0.7783 0.6772 0.8686
MeshNN (run1) 0.7249 0.7418 0.7354 0.7415 0.8353
NPC (run1) 0.7037 0.5489 0.7539 0.5736 0.8267
NPC (run2) 0.6772 0.5523 0.7565 0.5776 0.8273
RVN (run1) 0.8254 0.8497 0.8536 0.8484 0.9043
RVN (run2) 0.8360 0.8738 0.8783 0.8698 0.9186
RVN (run3) 0.8307 0.8080 0.8257 0.8207 0.9138
RVN (run4) 0.8201 0.8252 0.8420 0.8320 0.9176
SE3D (run1) 0.6772 0.6029 0.7605 0.6091 0.8374
SE3D (run2) 0.7619 0.6916 0.7656 0.7133 0.8663
SE3D (run3) 0.7778 0.6957 0.7612 0.7181 0.8663
SE3D (run4) 0.7090 0.7444 0.7727 0.7487 0.8611
SE3D (run5) 0.7037 0.7180 0.7582 0.7321 0.8542
TL (run1) 0.8254 0.8356 0.8229 0.8291 0.8989
TL (run2) 0.7619 0.6481 0.7661 0.6510 0.8542
TL (run3) 0.8360 0.8477 0.8503 0.8450 0.9112
TL (run4) 0.7989 0.8092 0.8034 0.8031 0.8827
TL (run5) 0.7937 0.5960 0.7639 0.6210 0.8543

83

Chapter 10

Deep learning architectures for Image-based
3D Shape Retrieval (CrossSE3D)

3D model retrieval is the problem of searching for an object in a 3D model collection. Instead
of using a textual query that describes what the user needs, we are interested in the case
where the query is an object similar to the 3D models in the collection. For example, the
search in traditional 3D model retrieval starts with a 3D shape as a query object. While this
is a common approach in multimedia information retrieval, known as query-by-example, there
could be a contradiction in the assumption that the user has available a 3D shape for making
the query. Indeed, the query-by-example approach supposes that there is a mechanism to
obtain or search the 3D query object before using the retrieval algorithm. From the user
perspective, it would be easier for many practical applications of 3D object retrieval if the
search algorithm received an image as input. Thus, a relevant problem is how to find a 3D
model given an image that depicts it, which we call “image-based 3D shape retrieval”.

Applying deep learning techniques for solving the 3D model retrieval problem is a current
interesting trend, as this type of technique has shown promising results in several computer
vision tasks during the last decade [37, 34]. So, the question is how to train a deep neural
network capable of finding relevant 3D objects given an image as a query. In a deep learning
context, one challenge is to have good representations for both the query image and relevant
3D models such that these representations share a common place in the feature space (also
known as the latent space). To solve this, we need to find an appropriate artificial neural
network architecture that allows us to train it so that it learns to match images with 3D
objects effectively.

Another challenge related to this problem is the data. Images and 3D objects are complex
data types. In addition, these data may be subject to several types of transformations
(scale, translation, orientation, mirroring, noise, etc.), so there is a crucial need to develop
retrieval algorithms that are robust to these transformations. Moreover, in our case the

84

retrieval algorithms must tackle the invariance problem in both domains (image and 3D
shape) simultaneously, making the search problem even harder than when the user uses the
same type of object as in the collection for processing a query.

We study and propose deep learning models for image-based 3D shape retrieval. The first
model is based on computing embeddings for both the 3D shapes and the images, which can
be used to implement the retrieval phase. In this model, we use an image-view approach for
representing the 3D shapes. However, the experimental evaluation of this model shows that
it has poor performance in solving the image-based 3D shape retrieval problem. This result
indicates us that metric learning struggles to find a suitable joint space for image embeddings
and 3D model embeddings. Therefore, we need to explore novel architectures for improving
the effectiveness of the retrieval.

The insights obtained during the evaluation of our first model led us to propose a second
model, which is an end-to-end architecture that directly learns how to match images and 3D
shapes. We show that the development of this second model requires us to present solutions
to a number of technical difficulties, as each data object is represented as a multichannel data
source but with (most probably) a different number of channels. We explain how to tackle
all these difficulties. Finally, we conduct an experimental evaluation with this second model
and show that the end-to-end architecture is far more effective than the embedding-based
architecture for the image-based 3D shape retrieval task.

10.1 A deep learning architecture for Image-based 3D Shape Re-
trieval

We propose a deep learning model for solving the task of image-based 3D shape retrieval
(CrossSE3D). The idea is to train our network to learn whether an image and a 3D shape
are similar. To accomplish this, our network comprises two major components: compute em-
beddings from 3D shapes and images and compute the similarity between those embeddings.

10.1.1 Architecture for computing embeddings

To compute embeddings from the 3D shapes and the image, we use a variation of the network
architecture in Chapter 8 (A New Convolutional Architecture for 3D Model Embedding and
Retrieval (SE3D)). This model uses a convolutional Autoencoder architecture with a standard
convolutional neural network for classification to compute embeddings of 3D shapes.

To represent the 3D shapes, we use an image views approach. We first extract a set of
image views from each 3D shape, and then we transform this set into a multichannel object

85

similar to an RGB image where each channel is an image view.

This representation is the input to our network architecture for embedding computation.
As mentioned before, this network is composed of a convolutional Autoencoder and a con-
volutional neural network for classification. The Autoencoder uses the standard approach
of encoder-bottleneck-decoder. The encoder is composed of four blocks combining convolu-
tional layers and max-pooling layers to reduce the blocks’ dimensionality. We connect the
encoder to the network’s bottleneck, a fully connected layer of size 1024. Finally, we connect
the bottleneck to the network’s decoder composed of four blocks combining transposed con-
volutional layers, also known as deconvolutional layers and un-pooling layers, to increase the
dimensionality of the blocks. Figure 10.1 shows the un-pooling technique used in the model.
We want the decoder output to reconstruct the input. To this end, we use the L2 norm as
the loss function between the input and the decoder output.

Figure 10.1: Un-pooling layer used for the decoder of the model

We use the same convolutional Autoencoder architectures for the model’s convolutional
neural network component until the bottleneck layer (a fully connected layer of size 1024).
From there, we connect this layer to another fully connected layer of size C, where C is the
number of classes for classification. Then, we apply the standard softmax activation function
over this last layer and use cross-entropy as the classification loss. Finally, the whole model’s
loss is the sum of the classification and reconstruction losses. After the training phase, we
use the model’s bottleneck as embeddings for the 3D shapes.

Finally, we add parameters and restrictions to the network to improve the quality of the
embeddings. First, we increase the number of fully connected layers in two on the encoder
component of the network. The first of these layers reduces the embedding size to 512, and
the second reduces the size again to 256. We also add the respective two fully connected
layers to the decoder of the model. Second, we incorporate skip connections between the
encoder and decoder of the model. By doing this, we add the output of the fully connected
layers in the encoder to their respective fully connected layers in the decoder, reinforcing the

86

amount of information passed to the decoder of the network, which allows a better

This architecture aims to compute embeddings with the high compression power of an Au-
toencoder while preserving information about the class of the original 3D shape. Figure 10.2
shows the architecture of the model.

Figure 10.2: Network architecture for computing embeddings

10.1.2 Compute similarity between embbeddings

Once we have the embeddings, we need a network to learn whether the two embeddings
representing a 3D model and an image respectively are similar or not. For that particular
task, we use a Siamese network architecture.

This network consists of five fully connected layers with dimensions 1024, 2048, 4096,
2048, and 1024. We train this architecture using three elements tuples, an embedding of a
3D shape, an embedding of an image, and a binary label with the information of whether those
embeddings belong to the same class or not. Finally, we use the cosine distance combined
with binary cross-entropy as the loss function using the binary label.

After we train the model, we use the last fully connected layer’s output as the embedding
of the 3D shapes and the images as well. Finally, we use a similarity metric between the
embeddings for the image-based 3D shape retrieval task. In our case, we experiment using
the cosine distance.

87

10.2 Experiments and Results

In this section, we discuss all the experimental setups, describe the benchmark and the
preprocessing of the data, and give the technical aspects of our proposed architecture.

10.2.1 Data configurations

We use the ShapeNet [14] benchmark dataset for the experiments. This dataset comprises
51,300 3D models grouped into 55 categories, and they are provided in OBJ format. The
dataset counts with two versions: the normalized and the perturbed datasets. The dataset
provides a split 70%/10%/20% for training, validation, and testing, respectively. We exper-
iment using the normalized versions of the dataset.

10.2.2 Image views represenation

As mentioned before, our proposed models need 3D shapes represented as sets of image views
and images as input for training and testing. To solve this, we use the Stanford-Shapenet-
renderer script for the image views extraction. The script uses the Blender software’s API to
render images from different angles sampling uniformly around a circumference surrounding
a given 3D model in OBJ format. This code is public on Github 1 . To represent the 3D
shapes, we use the code to render image views from the 3D shapes starting with the camera
on coordinates origin sampling one image every 90 degrees, which provides 4 image views
per 3D shape. On the other hand, we use the same Stanford-Shapenet-renderer script to
render one image view from the 3D shapes from a random viewpoint to obtain the images
from training and testing.

10.2.3 Proposal setups and results

To train our proposal, we first use our model for computing embeddings from 3D shapes and
images. We train this model using a batch with size 50 with Adam optimizer and 40000

iterations. We first train with the 3D shapes to obtain the 3D shapes embedding, and then
we train with the image to obtain the image embedding. After that, we use our siamese
network to learn whether 3D shape embeddings and image embeddings are similar. We use
the three-element input, a 3D shape embedding, an image embedding, and the binary label
to train this network. However, we need our training dataset to be balanced according to
the label. In other words, if we build this three-element input randomly since there are 55

1Stanford-Shapenet-renderer

88

https://github.com/panmari/stanford-shapenet-renderer

categories in the dataset, the odds of the label being one will be 1
55

. To handle this, we
manually built the training dataset by iterating for each 3D shape and adding 50 images
that belong to the same class and 100 other images randomly. With this, we assure that
the odds of the label being one is at least 1

3
. Since the training data is considerably bigger

now, we train the siamese network for 100000 iterations with a batch size of 1000 and Adam
optimizer. Table 10.1 shows the results of our proposed model.

This model shows poor performance for solving the image-based 3D shape retrieval prob-
lem with a DCG of 59 and a MAP below one. This result indicates that metric learning fails
to find a suitable joint space for images and 3D shapes. We hypothesize that this problem
occurs because we divide the learning into two processing stages, each stage with a different
neural network trained for very different tasks.

10.3 An end-to-end neural network for image-based 3D shape re-
trieval

To address the problem of the first model, we design an end-to-end network for image-
based 3D shape retrieval. To fulfill this requirement, we need our network to compute both
embedding from the 3D shape and the image and penalize the similarity between them at the
same time. This proves to be a very challenging task since our network’s input layer needs
to process multichannel objects with different numbers of channels in the same iteration. For
instance, the 3D shape representation could have as many channels as image views used for
its representation. In contrast, we use greyscale images, which are single-channel objects. To
solve this, we use an approach similar to a recurrent neural network for our model’s input.
The idea here is that we iterate over the number of channels of a given object, and we pass
each channel to the input layer to produce an output per channel. We compute the average
of these outputs, and this average is the input for the rest of the network.

We train this network using tuples of five elements as inputs. A 3D shape with the
respective class, an image with the respective class, and a binary label with value one if the
3D shape and the image belong to the same class and value zero otherwise. With this input,
we first compute the embedding of the 3D shape using its multichannel representation and
the information of its class. Then, we compute the embedding of the image in the same way.
Finally, we use a loss function between the two embeddings to penalize de model according
to the distance between the two embeddings and the label representing whether or not they
belong to the same class. We experiment using the same loss function as before, the cosine
distance between the embeddings, with binary cross-entropy using the binary label.

We can compute both embedding losses and the similarity loss between the embeddings in
each iteration with our proposed architecture and the five elements input. This is necessary

89

to compute the whole loss of our end-to-end model by adding all three losses.

After we train the model, we use the encoded layer output as the embedding of the 3D
shapes and the images. The rest of the process is the same as the first model for image-based
3D shape retrieval.

10.3.1 Experiments and Results for the end-to-end proposal

We use the five-element input (3D shape, category of the shape, image, category of the image,
binary label) to train this last proposal. We need the network to learn the embeddings and
the similarities between them in the same pass. We built the training dataset in the same way
as before to balance the categories. We train the model for 100000 iterations and a batch size
of 15 because that is the maximum our hardware allows us. Finally, we use Adam optimizer
for the training. Table 10.2 shows the results of this last model, along with the results of
the previous model and our first proposal for image-based 3D shape retrieval described in
Chapter 6 (Deep features for image-based 3D model retrieval).

These results show that the end-to-end network obtains the best result of all proposals,
heavily outperforming the first model. Especially in the MAP metric, in which the result
is one magnitude above. We confirm that the end-to-end model successfully learns a joined
space for image and 3D shapes. We complement these findings by extending the experiments
to the modelNet dataset. Specifically, to ModelNet40, where the models are categorized into
40 classes manually aligned but not scaled, this dataset also provides its training/testing
split. Table 10.3 shows the results of these last experiments for our proposed Image-based
3D shape retrieval methods.

10.4 Summary

We explore the problem of image-based 3D model retrieval using a learning approach. We
compare the use of pre-trained embeddings with embeddings obtained through an end-to-
end learning approach. From our experiments, we observe that learning embeddings jointly
for images and 3D objects is beneficial to increase the retrieval performance compared to
embeddings learned separately. The challenge is to provide a clever way to let the network
receive inputs from different modalities. We solve this problem in an effective method that
processes image representation with an arbitrary number of channels.

However, although our end-to-end approach shows promising retrieval results, the prob-
lem is far from being solved. We believe that the study and analysis of complementary
representations for 3D objects (point clouds, meshes, or implicit surfaces) could enrich the

90

input data for a learning approach. There is also an imperative need for a suitable dataset
to evaluate the image-based 3D model retrieval problem.

Table 10.1: Evaluation results for the embedding-based proposal

Model Views DCG MAP
embedding-
based

4 0.59 0.092

Table 10.2: Evaluation results for both proposal

Model Views DCG MAP
embedding-
based

16 0.590 0.092

Learned Fea-
tures

- 0.641 0.280

end-to-end 16 0.707 0.379

Table 10.3: Evaluation results over the ModelNet dataset

Model Views DCG MAP
embedding-
based

16 0.617 0.184

end-to-end 16 0.747 0.454

91

Chapter 11

Conclusions and future work

This work exposes and details our research and contributions to several 3D model retrieval
tasks. This task includes engineered features and deep features for 3D model representation
and different mid-level representation techniques, and 3D model embedding techniques.

11.1 Summary of Contributions

Our first approach in this research field consists of using engineered features. These features
were the standard approach in the area for many years and maintain their relevance in
scenarios where deep learning techniques are not suitable, like, for example, lack of training
data. In our case, we compute the engineered features using Gabor filters, which have proven
to be very efficient in image representation. After that, we use the extracted features to build
bag-of-words to represent the 3D models and the images. Finally, we use these representations
for 3D model retrieval and image-based 3D model retrieval achieving competitive results
against similar methods.

We further extend this research in engineered features by proposing a new mid-level
representation technique called slider to substitute the previous bag-of-words methods. This
technique allows us to explore a full spectrum of mid-level representation for multimedia
data.

We then expand our research to deep representations of 3D shapes using deep learning
techniques. First, we experiment with a naive approach using a standard Convolutional
network for classification tasks. The idea is to train this network to classify the image
views until we achieve high accuracy. Then we use the trained network to produce image
view representations. Finally, we use these learned representations for 3D shape retrieval by
measuring the similarities between image views. With this proposal, we obtained the best

92

result for 3D retrieval so far.

Then we further increase our retrieval performance by proposing a sophisticated new
artificial neural network to compute 3D model embeddings. In this case, we combine different
network architectures while imposing additional restrictions on the whole model to improve
the quality of the calculated embeddings. With this proposal, we obtain results competitive
with state-of-the-art with an easier-to-train and less resource-demanding network. We also
integrated our proposed network for computing 3D model embedding into another end-to-end
network to measure the similarity between an image and a 3D model. This last proposal
aims to build a framework for image-based 3D model retrieval.

With this last work, we successfully computed embedding representations for 3D models
using image views and applied those embeddings to 3D shape retrieval, obtaining competitive
results with state-of-the-art methods. However, our proposal avoids the standard approach in
the field to combine the features from each view by incorporating view pooling layers. Instead,
our approach learns features directly from a single tensor with all the views. Besides, we do
not need to specify an order for the image views. Which makes our architecture significantly
more time and resource-efficient than the standard approach.

We also use our research on more practical applications in the works: “Motif-driven
Retrieval of Greek Painted Pottery” and “A sketch-aided retrieval approach for incomplete
3D objects”. Finally, we test our best model against the state-of-the-art proposals with our
participation in the SHREC (3D Shape Retrieval Challenge), achieving competitive results.

Throughout our research, we believe that we have accomplished our proposed objectives.
Table 11.1 summarizes all proposed goals and the chapters where we tackled them.

11.2 Future Work

3D model retrieval involves a wide variety of issues yet to be explored, especially in fields like
cross-modal retrieval. Although this thesis contributes with new techniques in this direction,
we can still expand or add to our research. We detail below some of these possible future
works.

Improvement of the computed embedding for 3D model: Our network to compute em-
beddings from 3D models was very competitive when used over the normalized 3D models.
However, we see a decrease in the performance of our model when used with rotated 3D
models. In this case, we increase the proposal’s performance using a different image view
selection technique. We could enhance this performance even further if we manage to reduce
the impact of the rotation in the learning process of our network. Some work has proposed
before rotation-invariant features extraction from 3D models. So this is an achievable goal.

93

Application of the computed embeddings in different tasks: One of the most relevant
contributions of our research is precisely our technique to compute 3D model embeddings.
We obtain good results for the two evaluation metrics, especially with our last model, which
shows results for the MAP above 73 percent and DCG above 91 percent. These results are
very competitive with the Shapenet Dataset results, especially in the normalized version of
the dataset. However, we could extend this research to other tasks related to 3D model
processing like recognition, classification, segmentation, compression, or even another cross-
modal 3D model retrieval like sketch-based retrieval. In these cases, we need to adapt the
network to impose specific learning restrictions according to the tackled task.

Improvement of our proposal for image-based 3D model retrieval: We also explore the
problem of image-based 3D model retrieval using a learning approach. We propose two tech-
niques: the use of pre-trained embeddings and embeddings obtained through an end-to-end
learning approach. We observe that learning embeddings jointly for images and 3D objects is
beneficial to increase the retrieval performance compared to embeddings learned separately.
However, although our end-to-end approach shows promising retrieval results, the problem
is far from being solved. The study and analysis of complementary representations for 3D
objects could enhance the input data for a learning approach. There is also an imperative
need for a suitable dataset to evaluate the image-based 3D model retrieval problem. Also,
we tackled the issue of learning similarities between images and 3D models with a siamese
network. We could use another metric learning approach like Triplet Networks. Finally,
since this proposal depends on the computed embeddings for 3D models and images, we
could improve the overall performance by improving the quality of the embeddings.

Table 11.1: Objectives by Chapter

Objective Chapters
Develop methods to solve the 3D shape retrieval (cross-modality 3D
shape retrieval, partial 3D shape retrieval) and classification tasks us-
ing neural networks

4,5,6,8,10

Select and implement the current methods that perform best in the area
of 3D shape retrieval (cross-modality 3D shape retrieval, partial 3D shape
retrieval) and classification

4,8

Establish standard benchmarks for experimentation 4,5,6,8,10
Establish metrics to measure the performance of the methods 4,5,6,8,10
Make comparisons between the proposed methods and the most impor-
tant methods in the area

4,8,9

Test the proposed methods in real scenarios and refine them if necessary
to improve the results

7,9

94

Bibliography

[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas J. Guibas. Learn-
ing representations and generative models for 3d point clouds. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Workshop Track Proceedings. OpenReview.net, 2018.

[2] Eman Ahmed, Alexandre Saint, Abd El Rahman Shabayek, Kseniya Cherenkova, Rig
Das, Gleb Gusev, Djamila Aouada, and Björn E. Ottersten. Deep learning advances
on different 3d data representations: A survey. CoRR, abs/1808.01462, 2018.

[3] Sakifa Aktar and Md Al Mamun. Multi-view 3d object retrieval using autoencoder &
deep embedding network. In 2019 International Conference on Electrical, Computer
and Communication Engineering (ECCE), pages 1–6. IEEE, 2019.

[4] Raquel Almeida, Benjamin Bustos, Zenilton Kleber G. do Patrocínio Jr., and Silvio
Jamil Ferzoli Guimarães. Human action classification using an extended bow formal-
ism. In Image Analysis and Processing - ICIAP 2017 - 19th International Conference,
Catania, Italy, September 11-15, 2017, Proceedings, Part I, pages 185–196, 2017.

[5] Aymé Arango, Jesus Perez-Martin, and Arniel Labrada. Hateu at semeval-2022 task
5: Multimedia automatic misogyny identification. In Guy Emerson, Natalie Schluter,
Gabriel Stanovsky, Ritesh Kumar, Alexis Palmer, Nathan Schneider, Siddharth Singh,
and Shyam Ratan, editors, Proceedings of the 16th International Workshop on Se-
mantic Evaluation, SemEval@NAACL 2022, Seattle, Washington, United States, July
14-15, 2022, pages 581–584. Association for Computational Linguistics, 2022.

[6] Emad Attalla and Pepe Siy. Robust shape similarity retrieval based on contour segmen-
tation polygonal multiresolution and elastic matching. Pattern Recognit., 38(12):2229–
2241, 2005.

[7] Authors. A brief survey on 3d semantic segmentation of lidar point cloud with deep
learning. In 3rd Novel Intelligent and Leading Emerging Sciences Conference, NILES
2021, Giza, Egypt, October 23-25, 2021, pages 405–408, 2021.

95

[8] Dana H. Ballard. Modular learning in neural networks. In Kenneth D. Forbus and
Howard E. Shrobe, editors, Proceedings of the 6th National Conference on Artificial
Intelligence. Seattle, WA, USA, July 1987, pages 279–284. Morgan Kaufmann, 1987.

[9] Silvia Biasotti, Andrea Cerri, Mostafa Abdelrahman, Masaki Aono, Abdessamad Ben
Hamza, Moumen T. El-Melegy, Aly A. Farag, Valeria Garro, Andrea Giachetti, Daniela
Giorgi, Afzal Godil, C. Li, Y.-J. Liu, H. Y. Martono, Chika Sanada, Atsushi Tatsuma,
Santiago Velasco-Forero, and C.-X. Xu. Retrieval and classification on textured 3d
models. In Eurographics Workshop on 3D Object Retrieval, Strasbourg, France, 2014.
Proceedings, pages 111–120, 2014.

[10] Y-Lan Boureau, Francis R. Bach, Yann LeCun, and Jean Ponce. Learning mid-level
features for recognition. In The Twenty-Third IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2010, San Francisco, CA, USA, 13-18 June 2010,
pages 2559–2566, 2010.

[11] Yuri Boykov and Gareth Funka-Lea. Graph cuts and efficient N-D image segmentation.
Int. J. Comput. Vis., 70(2):109–131, 2006.

[12] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah.
Signature verification using a siamese time delay neural network. In Advances in Neural
Information Processing Systems 6, [7th NIPS Conference, Denver, Colorado, USA,
1993], pages 737–744, 1993.

[13] Andrea Cerri, Silvia Biasotti, Mostafa Abdelrahman, Jesús Angulo, K. Berger, Louis
Chevallier, Moumen T. El-Melegy, Aly A. Farag, F. Lefebvre, Andrea Giachetti,
H. Guermoud, Y.-J. Liu, Santiago Velasco-Forero, Jean-Ronan Vigouroux, C.-X. Xu,
and J.-B. Zhang. Shrec’13 track: Retrieval on textured 3d models. In Eurograph-
ics Workshop on 3D Object Retrieval, Girona, Spain, 2013. Proceedings, pages 73–80,
2013.

[14] Angel X. Chang, Thomas A. Funkhouser, Leonidas J. Guibas, Pat Hanrahan, Qi-Xing
Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao,
Li Yi, and Fisher Yu. Shapenet: An information-rich 3d model repository. CoRR,
abs/1512.03012, 2015.

[15] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L.
Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell.,
40(4):834–848, 2018.

[16] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig
Adam. Encoder-decoder with atrous separable convolution for semantic image seg-
mentation. In Proceedings of the European conference on computer vision (ECCV),
pages 801–818, 2018.

96

[17] Xuelin Chen, Baoquan Chen, and Niloy J. Mitra. Unpaired point cloud completion on
real scans using adversarial training. In 8th International Conference on Learning Rep-
resentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020.

[18] Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc Barrault, and Antoine Bordes.
Supervised learning of universal sentence representations from natural language infer-
ence data. In Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2017, Copenhagen, Denmark, September 9-11, 2017,
pages 670–680, 2017.

[19] Nicu D. Cornea, M. Fatih Demirci, Deborah Silver, Ali Shokoufandeh, Sven J. Dickin-
son, and Paul B. Kantor. 3d object retrieval using many-to-many matching of curve
skeletons. In 2005 International Conference on Shape Modeling and Applications (SMI
2005), 15-17 June 2005, Cambridge, MA, USA, pages 368–373, 2005.

[20] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR 2005), 20-26 June 2005, San Diego, CA, USA, pages 886–893. IEEE Computer
Society, 2005.

[21] Eli David and Nathan S. Netanyahu. Deeppainter: Painter classification using deep
convolutional autoencoders. CoRR, abs/1711.08763, 2017.

[22] Omid E. David and Nathan S. Netanyahu. Deeppainter: Painter classification using
deep convolutional autoencoders. In Alessandro E. P. Villa, Paolo Masulli, and Antonio
Javier Pons Rivero, editors, Artificial Neural Networks and Machine Learning - ICANN
2016 - 25th International Conference on Artificial Neural Networks, Barcelona, Spain,
September 6-9, 2016, Proceedings, Part II, volume 9887 of Lecture Notes in Computer
Science, pages 20–28. Springer, 2016.

[23] Sandra Eliza Fontes de Avila, Nicolas Thome, Matthieu Cord, Eduardo Valle, and
Arnaldo de Albuquerque Araújo. BOSSA: extended bow formalism for image clas-
sification. In 18th IEEE International Conference on Image Processing, ICIP 2011,
Brussels, Belgium, September 11-14, 2011, pages 2909–2912, 2011.

[24] Doug DeCarlo, Adam Finkelstein, Szymon Rusinkiewicz, and Anthony Santella.
Suggestive contours for conveying shape. ACM Transactions on Graphics (TOG),
22(3):848–855, 2003.

[25] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-
training of deep bidirectional transformers for language understanding. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis,
MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 4171–4186, 2019.

97

[26] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep
learning. CoRR, abs/1603.07285, 2016.

[27] Mathias Eitz, Ronald Richter, Tamy Boubekeur, Kristian Hildebrand, and Marc Alexa.
Sketch-based shape retrieval. ACM Trans. Graph., 31(4):31–1, 2012.

[28] Mathias Eitz, Ronald Richter, Tamy Boubekeur, Kristian Hildebrand, and Marc Alexa.
Sketch-based shape retrieval. ACM Trans. Graph., 31(4):31:1–31:10, 2012.

[29] Takahiko Furuya and Ryutarou Ohbuchi. Dense sampling and fast encoding for 3d
model retrieval using bag-of-visual features. In Stéphane Marchand-Maillet and Yiannis
Kompatsiaris, editors, Proceedings of the 8th ACM International Conference on Image
and Video Retrieval, CIVR 2009, Santorini Island, Greece, July 8-10, 2009. ACM, 2009.

[30] Andrea Giachetti, Francesco Farina, Francesco Fornasa, Atsushi Tatsuma, Chika
Sanada, Masaki Aono, Silvia Biasotti, Andrea Cerri, and Sungbin Choi. Retrieval
of non-rigid (textured) shapes using low quality 3d models. In Eurographics Workshop
on 3D Object Retrieval, Zurich, Switzerland, May 2-3, 2015., pages 137–144, 2015.

[31] Albert Gordo, Jon Almazán, Jérôme Revaud, and Diane Larlus. Deep image retrieval:
Learning global representations for image search. In Computer Vision - ECCV 2016 -
14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Pro-
ceedings, Part VI, pages 241–257, 2016.

[32] Robert Gregor, Danny Bauer, Ivan Sipiran, Panagiotis Perakis, and Tobias Schreck.
Automatic 3d object fracturing for evaluation of partial retrieval and object restora-
tion tasks - benchmark and application to 3d cultural heritage data. In Eurographics
Workshop on 3D Object Retrieval, Zurich, Switzerland, May 2-3, 2015., pages 7–14,
2015.

[33] Haiyun Guo, Jinqiao Wang, Yue Gao, Jianqiang Li, and Hanqing Lu. Multi-view 3d ob-
ject retrieval with deep embedding network. IEEE Trans. Image Process., 25(12):5526–
5537, 2016.

[34] Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Mohammed Ben-
namoun. Deep learning for 3d point clouds: A survey. CoRR, abs/1912.12033, 2019.

[35] Zhizhong Han, Honglei Lu, Zhenbao Liu, Chi-Man Vong, Yu-Shen Liu, Matthias
Zwicker, Junwei Han, and C. L. Philip Chen. 3d2seqviews: Aggregating sequential
views for 3d global feature learning by CNN with hierarchical attention aggregation.
IEEE Trans. Image Process., 28(8):3986–3999, 2019.

[36] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In
Proceedings of the IEEE international conference on computer vision, pages 2961–2969,
2017.

98

[37] Anastasia Ioannidou, Elisavet Chatzilari, Spiros Nikolopoulos, and Ioannis Kompat-
siaris. Deep learning advances in computer vision with 3d data: A survey. ACM
Comput. Surv., 50(2):20:1–20:38, 2017.

[38] Asako Kanezaki, Yasuyuki Matsushita, and Yoshifumi Nishida. Rotationnet for joint
object categorization and unsupervised pose estimation from multi-view images. IEEE
Trans. Pattern Anal. Mach. Intell., 43(1):269–283, 2021.

[39] Shun Kawamura, Kazuya Usui, Takahiko Furuya, and Ryutarou Ohbuchi. Local goe-
metrical feature with spatial context for shape-based 3d model retrieval. In Eurograph-
ics Workshop on 3D Object Retrieval 2012, Cagliari, Italy, May 13, 2012. Proceedings,
pages 55–58, 2012.

[40] Michael M. Kazhdan, Thomas A. Funkhouser, and Szymon Rusinkiewicz. Rotation
invariant spherical harmonic representation of 3d shape descriptors. In First Euro-
graphics Symposium on Geometry Processing, Aachen, Germany, June 23-25, 2003,
pages 156–164, 2003.

[41] Douwe Kiela and Léon Bottou. Learning image embeddings using convolutional neural
networks for improved multi-modal semantics. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, pages
36–45, 2014.

[42] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in Neural Information Processing
Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012.
Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States.,
pages 1106–1114, 2012.

[43] Arniel Labrada, Benjamin Bustos, and Ivan Sipiran. A convolutional architecture for
3d model embedding using image views. The Visual Computer, pages 1–15, 2023.

[44] Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, Richard E.
Howard, Wayne E. Hubbard, and Lawrence D. Jackel. Backpropagation applied to
handwritten zip code recognition. Neural Comput., 1(4):541–551, 1989.

[45] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learn-
ing applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[46] Tang Lee, Yen-Liang Lin, HungYueh Chiang, Ming-Wei Chiu, Winston H. Hsu, and
Polly Huang. Cross-domain image-based 3d shape retrieval by view sequence learning.
In 2018 International Conference on 3D Vision, 3DV 2018, Verona, Italy, September
5-8, 2018, pages 258–266. IEEE Computer Society, 2018.

99

[47] Stefan Lengauer, Alexander Komar, Arniel Labrada, Stephan Karl, Elisabeth Trinkl,
Reinhold Preiner, Benjamin Bustos, and Tobias Schreck. Motif-driven retrieval of greek
painted pottery. In Selma Rizvic and Karina Rodriguez-Echavarria, editors, GCH 2019
- Eurographics Workshop on Graphics and Cultural Heritage, GCH 2019, Sarajevo,
Bosnia and Herzegovina, November 6-9, 2019, pages 89–98. Eurographics Association,
2019.

[48] Stefan Lengauer, Alexander Komar, Arniel Labrada, Stephan Karl, Elisabeth Trinkl,
Reinhold Preiner, Benjamin Bustos, and Tobias Schreck. Sketch-aided retrieval of
incomplete 3d cultural heritage objects. In Silvia Biasotti, Guillaume Lavoué, and
Remco C. Veltkamp, editors, 12th Eurographics Workshop on 3D Object Retrieval,
3DOR@Eurographics 2019, Genoa, Italy, May 5-6, 2019, pages 17–24. Eurographics
Association, 2019.

[49] Stefan Lengauer, Alexander Komar, Arniel Labrada, Stephan Karl, Elisabeth Trinkl,
Reinhold Preiner, Benjamin Bustos, and Tobias Schreck. A sketch-aided retrieval ap-
proach for incomplete 3d objects. Comput. Graph., 87:111–122, 2020.

[50] Bo Li, Afzal Godil, Masaki Aono, X. Bai, Takahiko Furuya, L. Li, Roberto Javier
López-Sastre, Henry Johan, Ryutarou Ohbuchi, Carolina Redondo-Cabrera, Atsushi
Tatsuma, Tomohiro Yanagimachi, and S. Zhang. Shrec’12 track: Generic 3d shape
retrieval. In Eurographics Workshop on 3D Object Retrieval 2012, Cagliari, Italy, May
13, 2012. Proceedings, pages 119–126, 2012.

[51] Bo Li and Henry Johan. View context: A 3d model feature for retrieval. In Advances
in Multimedia Modeling, 16th International Multimedia Modeling Conference, MMM
2010, Chongqing, China, January 6-8, 2010. Proceedings, pages 185–195, 2010.

[52] Bo Li and Henry Johan. Sketch-based 3d model retrieval by incorporating 2d-3d align-
ment. Multimedia Tools and Applications, 65(3):363–385, 2013.

[53] Bo Li, Yijuan Lu, Afzal Godil, Tobias Schreck, Benjamin Bustos, Alfredo Ferreira,
Takahiko Furuya, Manuel J Fonseca, Henry Johan, Takahiro Matsuda, et al. A com-
parison of methods for sketch-based 3d shape retrieval. Computer Vision and Image
Understanding, 119:57–80, 2014.

[54] Bo Li, Yijuan Lu, Afzal Godil, Tobias Schreck, Benjamin Bustos, Alfredo Ferreira,
Takahiko Furuya, Manuel J. Fonseca, Henry Johan, Takahiro Matsuda, Ryutarou
Ohbuchi, Pedro B. Pascoal, and Jose M. Saavedra. A comparison of methods for
sketch-based 3d shape retrieval. Computer Vision and Image Understanding, 119:57–
80, 2014.

[55] Bo Li, Tobias Schreck, Afzal Godil, Marc Alexa, Tamy Boubekeur, Benjamin Bustos,
J. Chen, Mathias Eitz, Takahiko Furuya, Kristian Hildebrand, S. Huang, Henry Johan,

100

Arjan Kuijper, Ryutarou Ohbuchi, Ronald Richter, Jose M. Saavedra, Maximilian
Scherer, Tomohiro Yanagimachi, Gang-Joon Yoon, and Sang Min Yoon. Shrec’12 track:
Sketch-based 3d shape retrieval. In Eurographics Workshop on 3D Object Retrieval
2012, Cagliari, Italy, May 13, 2012. Proceedings, pages 109–118, 2012.

[56] Bo Li, Tobias Schreck, Afzal Godil, Marc Alexa, Tamy Boubekeur, Benjamin Bustos,
Jipeng Chen, Mathias Eitz, Takahiko Furuya, Kristian Hildebrand, et al. Shrec’12
track: Sketch-based 3d shape retrieval. In 3DOR, pages 109–118, 2012.

[57] Haisheng Li, Li Sun, Shuilong Dong, Xiaobin Zhu, Qiang Cai, and Junping Du. Efficient
3d object retrieval based on compact views and hamming embedding. IEEE Access,
6:31854–31861, 2018.

[58] Dongyun Lin, Yiqun Li, Yi Cheng, Shitala Prasad, Tin Lay Nwe, Sheng Dong, and
Aiyuan Guo. Multi-view 3d object retrieval leveraging the aggregation of view and
instance attentive features. Knowl. Based Syst., 247:108754, 2022.

[59] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge
Belongie. Feature pyramid networks for object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2117–2125, 2017.

[60] Yongcheng Liu, Bin Fan, Gaofeng Meng, Jiwen Lu, Shiming Xiang, and Chunhong
Pan. Densepoint: Learning densely contextual representation for efficient point cloud
processing. In 2019 IEEE/CVF International Conference on Computer Vision, ICCV
2019, Seoul, Korea (South), October 27 - November 2, 2019, pages 5238–5247. IEEE,
2019.

[61] Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong Pan. Relation-shape convolu-
tional neural network for point cloud analysis. In IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pages
8895–8904. Computer Vision Foundation / IEEE, 2019.

[62] Zehua Liu, Yuhe Zhang, Jian Gao, and Shurui Wang. VFMVAC: view-filtering-based
multi-view aggregating convolution for 3d shape recognition and retrieval. Pattern
Recognit., 129:108774, 2022.

[63] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for
semantic segmentation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3431–3440, 2015.

[64] Anh Nguyen and Bac Le. 3d point cloud segmentation: A survey. In IEEE 6th Inter-
national Conference on Robotics, Automation and Mechatronics, RAM 2013, Manila,
Philippines, November 12-15, 2013, pages 225–230, 2013.

101

[65] Weizhi Nie, Minjie Ren, Anan Liu, Zhendong Mao, and Jie Nie. M-gcn: Multi-branch
graph convolution network for 2d image-based on 3d model retrieval. IEEE Transac-
tions on Multimedia, 2020.

[66] Panagiotis Papadakis, Ioannis Pratikakis, Theoharis Theoharis, Georgios Passalis, and
Stavros J. Perantonis. 3d object retrieval using an efficient and compact hybrid shape
descriptor. In Eurographics Workshop on 3D Object Retrieval, 3DOR 2008, Crete,
Greece, 2008. Proceedings, pages 9–16, 2008.

[67] Panagiotis Papadakis, Ioannis Pratikakis, Theoharis Theoharis, and Stavros J. Peran-
tonis. PANORAMA: A 3d shape descriptor based on panoramic views for unsupervised
3d object retrieval. International Journal of Computer Vision, 89(2-3):177–192, 2010.

[68] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global
vectors for word representation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha,
Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, pages 1532–1543,
2014.

[69] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep
learning on point sets for 3d classification and segmentation. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July
21-26, 2017, pages 77–85, 2017.

[70] Charles Ruizhongtai Qi, Hao Su, Matthias Nießner, Angela Dai, Mengyuan Yan, and
Leonidas J. Guibas. Volumetric and multi-view cnns for object classification on 3d data.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016, pages 5648–5656. IEEE Computer Society,
2016.

[71] Xin Rong. word2vec parameter learning explained. CoRR, abs/1411.2738, 2014.

[72] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In International Conference on Medical image
computing and computer-assisted intervention, pages 234–241. Springer, 2015.

[73] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning internal
representations by error propagation, 1985.

[74] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 4510–4520, 2018.

[75] Michalis A. Savelonas, Ioannis Pratikakis, and Konstantinos Sfikas. Partial 3d object
retrieval combining local shape descriptors with global fisher vectors. In Eurographics

102

Workshop on 3D Object Retrieval, Zurich, Switzerland, May 2-3, 2015., pages 23–30,
2015.

[76] Manolis Savva, Fisher Yu, Hao Su, M Aono, B Chen, D Cohen-Or, W Deng, Hang Su,
Song Bai, Xiang Bai, et al. Shrec16 track: largescale 3d shape retrieval from shapenet
core55. In Proceedings of the eurographics workshop on 3D object retrieval, volume 10,
2016.

[77] Alize E. H. Scheenstra, Arnout C. Ruifrok, and Remco C. Veltkamp. A survey of
3d face recognition methods. In Takeo Kanade, Anil K. Jain, and Nalini K. Ratha,
editors, Audio- and Video-Based Biometric Person Authentication, 5th International
Conference, AVBPA 2005, Hilton Rye Town, NY, USA, July 20-22, 2005, Proceedings,
volume 3546 of Lecture Notes in Computer Science, pages 891–899. Springer, 2005.

[78] Konstantinos Sfikas, Ioannis Pratikakis, Anestis Koutsoudis, Michalis A. Savelonas,
and Theoharis Theoharis. Partial matching of 3d cultural heritage objects using
panoramic views. Multimedia Tools Appl., 75(7):3693–3707, 2016.

[79] Konstantinos Sfikas, Ioannis Pratikakis, and Theoharis Theoharis. Ensemble of
panorama-based convolutional neural networks for 3d model classification and retrieval.
Computers & Graphics, 71:208–218, 2018.

[80] Konstantinos Sfikas, Theoharis Theoharis, and Ioannis Pratikakis. Rosy+: 3d object
pose normalization based on PCA and reflective object symmetry with application in
3d object retrieval. International Journal of Computer Vision, 91(3):262–279, 2011.

[81] Konstantinos Sfikas, Theoharis Theoharis, and Ioannis Pratikakis. Pose normalization
of 3d models via reflective symmetry on panoramic views. The Visual Computer,
30(11):1261–1274, 2014.

[82] Konstantinos Sfikas, Theoharis Theoharis, and Ioannis Pratikakis. Exploiting the
PANORAMA representation for convolutional neural network classification and re-
trieval. In Eurographics Workshop on 3D Object Retrieval, 3DOR 2017, Lyon, France,
April 23-24, 2017, 2017.

[83] Ariel Shamir. A survey on mesh segmentation techniques. Comput. Graph. Forum,
27(6):1539–1556, 2008.

[84] Philip Shilane, Patrick Min, Michael M. Kazhdan, and Thomas A. Funkhouser. The
princeton shape benchmark. In 2004 International Conference on Shape Modeling and
Applications (SMI 2004), 7-9 June 2004, Genova, Italy, pages 167–178, 2004.

[85] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. In Yoshua Bengio and Yann LeCun, editors, 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015.

103

[86] Ayan Sinha, Jing Bai, and Karthik Ramani. Deep learning 3d shape surfaces using
geometry images. In Computer Vision - ECCV 2016 - 14th European Conference,
Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VI, pages 223–
240, 2016.

[87] Ivan Sipiran, Patrick Lazo, Cristian Lopez, Milagritos Jimenez, Nihar Bagewadi, Ben-
jamin Bustos, Hieu Dao, Shankar Gangisetty, Martin Hanik, Ngoc-Phuong Ho-Thi,
et al. Shrec 2021: Retrieval of cultural heritage objects. Computers & Graphics, 2021.

[88] Ivan Sipiran, Patrick Lazo, Cristian Lopez, Milagritos Jimenez, Nihar Bagewadi, Ben-
jamin Bustos, Hieu Dao, Shankar Gangisetty, Martin Hanik, Ngoc-Phuong Ho-Thi,
Mike Holenderski, Dmitri Jarnikov, Arniel Labrada, Stefan Lengauer, Roxane Licandro,
Dinh-Huan Nguyen, Thang-Long Nguyen-Ho, Luis A. Pérez Rey, Bang-Dang Pham,
Reinhold Preiner, Tobias Schreck, Quoc-Huy Trinh, Loek Tonnaer, Christoph von Ty-
cowicz, and The-Anh Vu-Le. SHREC 2021: Retrieval of cultural heritage objects.
Comput. Graph., 100:1–20, 2021.

[89] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias Nießner, Gordon Wetzstein,
and Michael Zollhöfer. Deepvoxels: Learning persistent 3d feature embeddings. In
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long
Beach, CA, USA, June 16-20, 2019, pages 2437–2446, 2019.

[90] Michela Spagnuolo and Bianca Falcidieno. 3d media and the semantic web. IEEE
Intelligent Systems, 24(2):90–96, 2009.

[91] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik G. Learned-Miller. Multi-
view convolutional neural networks for 3d shape recognition. In 2015 IEEE Interna-
tional Conference on Computer Vision, ICCV 2015, Santiago, Chile, December 7-13,
2015, pages 945–953, 2015.

[92] Yu Ting Su, Yu Qian Li, Dan Song, An-An Liu, and Jie Nie. Joint intermediate domain
generation and distribution alignment for 2d image-based 3d objects retrieval. IEEE
Transactions on Multimedia, 2020.

[93] Kai Sun, Jiangshe Zhang, Junmin Liu, Ruixuan Yu, and Zengjie Song. DRCNN:
dynamic routing convolutional neural network for multi-view 3d object recognition.
IEEE Trans. Image Process., 30:868–877, 2021.

[94] H. Sundar, Deborah Silver, Nikhil Gagvani, and Sven J. Dickinson. Skeleton based
shape matching and retrieval. In 2003 International Conference on Shape Modeling
and Applications (SMI 2003), 12-16 May 2003, Seoul, Korea, pages 130–142, 290, 2003.

[95] Volodymyr Turchenko, Eric Chalmers, and Artur Luczak. A deep convolutional auto-
encoder with pooling - unpooling layers in caffe. CoRR, abs/1701.04949, 2017.

104

[96] Fang Wang, Le Kang, and Yi Li. Sketch-based 3d shape retrieval using convolutional
neural networks. In IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2015, Boston, MA, USA, June 7-12, 2015, pages 1875–1883, 2015.

[97] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and
Justin M. Solomon. Dynamic graph CNN for learning on point clouds. CoRR,
abs/1801.07829, 2018.

[98] Xin Wei, Ruixuan Yu, and Jian Sun. View-gcn: View-based graph convolutional net-
work for 3d shape analysis. In 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages 1847–
1856. Computer Vision Foundation / IEEE, 2020.

[99] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang,
and Jianxiong Xiao. 3d shapenets: A deep representation for volumetric shapes. In
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston,
MA, USA, June 7-12, 2015, pages 1912–1920. IEEE Computer Society, 2015.

[100] Kwang Moo Yi, Eduard Trulls, Vincent Lepetit, and Pascal Fua. LIFT: learned invari-
ant feature transform. In Computer Vision - ECCV 2016 - 14th European Conference,
Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VI, pages 467–
483, 2016.

[101] Kuangen Zhang, Ming Hao, Jing Wang, Clarence W. de Silva, and Chenglong Fu.
Linked dynamic graph CNN: learning on point cloud via linking hierarchical features.
CoRR, abs/1904.10014, 2019.

[102] Long Zhao, Shuang Liang, Jinyuan Jia, and Yichen Wei. Learning best views of 3d
shapes from sketch contour. Vis. Comput., 31(6-8):765–774, 2015.

[103] Jing Zhu, John-Ross Rizzo, and Yi Fang. Learning domain-invariant feature for robust
depth-image-based 3d shape retrieval. Pattern Recognit. Lett., 119:24–33, 2019.

[104] Keneilwe Zuva and Tranos Zuva. Evaluation of information retrieval systems. Inter-
national journal of computer science & information technology, 4(3):35, 2012.

105

	INTRODUCTION
	Information Retrieval
	3D shape retrieval

	Objectives
	General objective
	Specific objectives

	Hypothesis
	Research problem
	3D shape retrieval
	Image-based 3D shape retrieval

	Publications
	Thesis organization

	Background
	Hand-engineered features for multimedia objects
	Bag of Words (BOW): a mid-level representation for multimedia objects
	Other mid-level representations (BOH and BossaNova)

	Basic concepts of deep learning
	Artificial Neural Network
	Activation Functions
	Optimizers

	Important Artificial Neural Networks Architectures
	Convolutional Neural Networks
	Autoencoders
	Siamese Networks

	Transfer Learning
	Semantic Image Segmentation
	Evaluation metrics
	Precision-Recall plot
	Mean average precision
	Nearest Neighbor (NN)
	Discounted cumulative gain (DCG)
	Micro and macro average

	Datasets
	SHREC’12
	ShapeNet
	ModelNet

	Image views extraction
	Image views extraction from scratch
	Image views extraction using Stanford-Shapenet-renderer
	Image views refining using Convolutional Neural Networks

	Summary

	State of the Art of 3D Model Processing
	Image views representation for 3D deep learning
	Deep Features
	Data Embedding
	Image-based 3D Shape Retrieval

	 SC-GALIF: A new method for image-based 3D model retrieval
	Suggestive contours
	Sketch-based 3D shape retrieval using Gabor local line-based feature (GALIF)
	Gabor Local Line-Based Feature (GALIF)
	Our approach: SC-GALIF
	Summary

	Slider: A new mid-level representation
	Others mid-level representations
	Proposal description
	3D shapes Representation
	Features extraction
	Building of the visual dictionary.
	Experiment and results
	Summary

	Deep features for image-based 3D model retrieval
	Proposal description
	Experiments and Results
	Summary

	Retrieval techniques for Cultural Heritage objects
	A sketch-aided retrieval approach for incomplete 3D objects
	Content-Based-Retrieval
	Deep Features for Content-Based-Retrieval

	 Motif-driven Retrieval of Greek Painted Pottery
	Segmentation and Feature Extraction for Pottery Motifs

	Experiment and results for sketch-aided retrieval approach for incomplete 3D objects
	Experiment and results for Motif-driven Retrieval of Greek Painted Pottery
	Summary

	A New Convolutional Architecture for 3D Model Embedding and Retrieval (SE3D)
	Autoencoder Network
	Classification Network
	Combination of the Autoencoder and the classification network
	Improving the embedding
	Image view extraction
	Network for classification of the image views
	Selection of the image views

	Overview
	Experiments and Results
	Data configurations
	Experimental setup
	Ablation study
	Inference time Study
	Proposal results against the state of the art

	Summary

	SHREC 2021: A practical application of our proposal for the 3D shape retrieval
	SHREC 2021: Retrieval of Cultural Heritage Objects
	Dataset
	Challenge description

	Proposal
	Experiment and results
	Summary

	Deep learning architectures for Image-based 3D Shape Retrieval (CrossSE3D)
	A deep learning architecture for Image-based 3D Shape Retrieval
	Architecture for computing embeddings
	Compute similarity between embbeddings

	Experiments and Results
	Data configurations
	Image views represenation
	Proposal setups and results

	An end-to-end neural network for image-based 3D shape retrieval
	Experiments and Results for the end-to-end proposal

	Summary

	Conclusions and future work
	Summary of Contributions
	Future Work

	Bibliography

