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Abstract

In this thesis, the Sun and its behavior are studied by means of complex net-

works. The complex network was built using the Visibility Graph algorithm. This

method maps time series into graphs in which every element of the time series is

considered as a node and a visibility criterion is defined in order to connect them.

Using this method, we construct complex networks for magnetic field and sunspots

time series encompassing four solar cycles, and various measures such as degree,

clustering coefficient, mean path length, betweenness centrality, eigenvector central-

ity and decay exponents were calculated. In order to study the system in several

time scales, we perform both a global, where the network contains information on

the four solar cycles, and a local analysis, involving moving windows. Some metrics

correlate with solar activity, while others do not. Interestingly, those metric which

seem to respond to varying levels of solar activity in the global analysis, also do in

the moving windows analysis. We study these correlations with different methods

such as quantile-quantile plot, correlation matrix and student’s t-test. Our results

suggest that complex networks can provide a useful way to follow solar activity, and

reveal new features on solar cycles.
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Resumen

En esta tesis se estudia el Sol y su comportamiento mediante el uso de redes

complejas. La red compleja se construyó utilizando el algoritmo Visibility Graph.

Este método convierte las series temporales en grafos en los que cada elemento de

la serie temporal se considera un nodo y se define un criterio de visibilidad para

conectarlos. Con este método, construimos redes complejas para las series temporales

de campos magnéticos y manchas solares que abarcan cuatro ciclos solares, y diversas

medidas como el grado, el coeficiente de clustering, el camino medio, medidas de

centralidad como betweenness y eigenvector y los exponentes de decaimiento. Para

estudiar el sistema en varias escalas temporales, realizamos tanto un análisis global

donde la red contiene información sobre los cuatro ciclos solares, y un análisis local,

con ventanas móviles. Algunas métricas se correlacionan con la actividad solar,

mientras que otras no. Curiosamente, las métricas que parecen responder a distintos

niveles de actividad solar en el análisis global, también lo hacen en el análisis de

ventanas móviles. Estudiamos estas correlaciones con distintos métodos, como el

gráfico cuantil-cuantil, la matriz de correlación y el método estad́ıstico student’s t

test. Nuestros resultados sugieren que las redes complejas pueden proporcionar una

forma útil de seguir la actividad solar y revelar nuevas caracteŕısticas de los ciclos

solares.



Chapter 1

Introduction

Various measures of complexity can provide relevant ways to study the dynamics of

magnetized plasma and, in particular, complex networks have been largely used to

study a vast number of physical systems [1, 2], as their graph representation has been

found to be helpful to characterize and model their phenomenology. Complementing

these studies, mathematical tools from statistical physics have also proven to be

particularly suitable for studying and understanding complex networks [3].

These works show that the underlying phenomenology in various systems can be

inferred from their complex behavior, thus suggesting the great potential of complex

networks to tackle problems in a variety of fields, such as economy [4–8], biol-

ogy [9, 10], or in the study of geophysical problems such as earthquakes, magnetic

storms or atmospheric flows [11–15], which prove the versatility of the method and

its robustness.

The Sun is a particularly interesting system to study from the point of view

of complexity. The interaction of particles and magnetic fields in the Sun’s plasma,

leads to a nonlinear dynamics which, in turns, leads to varying levels of solar activity,

as manifested in the evolution of sunspots on the Sun’s photosphere, velocity and

turbulence levels of the solar wind, events such as solar flare or coronal mass ejections,

1



2

etc. Since the Sun is our closest star, it is essential to understand its behavior and

the impact of solar activity on our planet, especially the impact of its magnetic

activity and its effects on the Earth through the Earth’s magnetic field and solar

wind coupling [16, 17], which may lead to intense geomagnetic storms that may

affect human communications and spacecrafts in periods of high solar activity [18].

In fact, the study of geomagnetic storms is quite relevant because they can have

significant impact in a wide range of technological instruments such as damages and

disruptions to satellites and communication systems [19, 20]. Their relation and

occurrence with solar activity has been studied showing that descending phase of

the solar cycle correlates with the following maximum phase [21] of the next solar

cycle.

Various complexity analyses have been carried out to study this rich behavior.

For instance, fractal and multifractal features have been identified in the Sun’s pho-

tosphere, which have been shown to correlate with the evolution of solar activity [22],

and have been proposed to be related to the emergence of solar flares [23–25].

Other works have focused on the chaotic and persistent features of the sunspots

time series [26, 27]. Also, self-organized critical models have been proposed to rep-

resent the Sun’s flare activity [28] and its power-law statistics [29].

In this work, we intend to follow a different approach, based on complex net-

works. Various recent works have carried out complex network analyses to study the

Sun’s activity, focusing on its major features: sunspots. For instance, in Ref. [30],

the spatiotemporal patterns of sunspots are mapped into a complex network, show-

ing that some topological measures of the network correlate with the solar cycle,

while others anticorrelate, or remain essentially invariant. This is consistent with

the fact that different measures inform about different features of the network topol-



3

ogy, so that some measures vary in response to the changes in sunspots number and

location, whereas others point at complex properties which remain invariant along

the solar cycle.

The previous work maps the spatiotemporal evolution of the sunspots distribution

into a complex network. Nodes represent their location, and links represent their

time sequence. However, various works have shown that valuable information about

complex systems can be extracted by focusing on the time domain, by mapping time

series into complex networks.

This was introduced by Lacasa et al. [31], and thanks to this and other works, it

has been established that the resulting complex network has topological properties

that reflect properties of the original time series [32, 33]. Thus, the Visibility Graph

method (see details in Section 3.3) becomes an interesting tool, allowing, through the

study of complex networks, to infer properties of the underlying dynamics. In the

context of space physics, Suyal et al. [34] applied it to analyze the solar wind, a

turbulent plasma whose origin is the upper atmosphere of the Sun and which leads

to dynamic phenomena throughout the heliosphere on various temporal and spatial

scales. In the following years, several authors have further explored the use of VG

to various issues related to space and astrophysical physics, such as the analysis of

reversibility in the turbulent states of solar wind simulations [35], the analysis of

high-energy emission mechanisms of blazars [36], characterization of sunspot time

series [37], statistical studies of solar flares [38], discrimination between types of

variable pulsating stars [39], among others.

In particular, the work of Zou et al. [37] is interesting, since the VG analysis

provides a complexity perspective to the analysis of the number of sunspots, which

has been the traditional indicator of solar activity for centuries. There, the authors
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perform a global analysis, constructing the VG from the complete time series of

the number of sunspots, from the mid-nineteenth century to the first decade of the

twentieth century.

Nonetheless, since the solar magnetic activity is not constant, which manifests

itself, e.g., in 11-year cycles [40], it is also relevant to study the complex properties

of the sunspot configuration as a function of time. For example, it has been shown

how the fractal dimension of the solar photosphere correlates with solar activity [22],

and more recently, it has been studied how complex networks constructed from the

spatio-temporal configuration of sunspots, also present various metrics that correlate

or anti-correlate with the solar cycle [30].

Considering these results, we propose to carry out a VG study of the sunspot

time series, using moving time windows to establish whether the complexity of this

time series and its evolution provide information about variations in solar activity,

complementing similar results based on fractal dimensions and complex networks

[22, 30].

We also notice that both works just mentioned are based on image analysis of

solar magnetograms. However, these images are actually a representation of the

magnitude of the solar magnetic field, so, as a first approach to consider the physical

information contained in the magnetic field itself, we will analyze, in this work,

the time series of the average solar magnetic field.

Given a complex network, a large variety of measures could be calculated in order

to characterize its topological structure. In Ref. [37], the VG analysis is focused on

the degree distribution. However, other measures may provide additional insight,

or may turn out to be less useful, depending on the specific system studied. For

instance, Muñoz et al. [30] have shown that some metrics are correlated with so-
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lar activity (degree centrality), or anti-correlated (eigenvector centrality), or remain

constant throughout the variations in solar activity (clustering coefficient) 1. This is

a clear example that the complex network contains nontrivial information from a sys-

tem, since metrics such as degree centrality are expected to be sensitive to variations

due to their explicit dependence on the number of connections, while others, more

elaborate metrics such as clustering coefficient, that quantify the grouping between

neighbors, do not exhibit major variations throughout the cycle. All this suggests

that the topology of the complex network contains nontrivial information about the

physical state of the system, which is an important motivation for this work.

Thus, following Ref. [30], in this work, besides the degree distribution, we will

focus on the clustering coefficient and various centrality measures (which are a mea-

sure of importance within the network), in order to examine the complex network

from multiple perspectives. Furthermore, we will not only consider their average

values, but also their distributions, by means of their respective critical exponents

and Gini coefficients.

Thus, the interest and objective of this project lies in characterizing nonlinear

dynamical processes (in this case, the evolution of solar activity) through the com-

plexity parameters that the system itself can provide.

1These metrics and other are a measure of the properties of the network. They will be discussed
later in Section 3



Chapter 2

Solar Activity

The Sun, being a magnetically active star, undergoes intense eruptions capable of

influencing and distorting Earth’s magnetosphere, leading to significant disruptions.

These disturbances extend to both Earth and the technological facilities in orbit.

Over the course of decades, continuous observation of the Sun has offered a remark-

ably detailed perspective on its structure and day–to–day changes in the life of a

star. Recent high-resolution observations from both Earth and space have signifi-

cantly enhanced our comprehension of the Sun’s interior and atmosphere, providing

deeper insights into its structure and evolution. All the behavior of the Sun is driven

by its magnetic field, which induces the manifestations we observe, such as sunspots,

solar flares, coronal mass ejections, among others. All these processes are part of

what we know as solar activity.

2.1 Solar Magnetic Field

Getting a handle on what drives the magnetic system is crucial for understanding

the nature of interplanetary space throughout the solar system. The Sun’s mag-

netic field is responsible for everything from the solar explosions that cause space

weather phenomena on Earth, such as auroras, to the interplanetary magnetic field

6
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and radiation. Therefore, the Sun’s magnetic field is fundamental to driving all the

phenomena that define solar activity. It is generated by the motion of conductive

plasma inside the Sun. When charged particles move, they naturally create mag-

netic fields, which in turn have an additional effect on how the particles move. The

plasma in the Sun, therefore, sets up a complicated system of cause and effect in

which plasma flows inside the Sun create the Sun’s magnetic fields. This system is

known as the solar dynamo. Within the Sun, it is widely agreed upon that a con-

ductive fluid resides in the interior, moving amidst a turbulent environment. This

fluid’s motion generates electric currents, altering the original magnetic field and en-

hancing its strength. Consequently, this process becomes self-perpetuating, ensuring

its continuity. This cyclical renewal of the Sun’s extensive magnetic field forms the

basis for all phenomena grouped under the term “solar activity”.

We can observe the shape of the magnetic fields above the Sun’s surface because

they guide the motion of the plasma and we can measure its strength and direc-

tion using an instrument called magnetograph, which produces solar magnetograms.

In figure 2.1 we can observe the Marshall Space Flight Center magnetograph from

NASA, which has a gold plated H-alpha telescope mounted on the side of the magne-

tograph telescope. This H-alpha (Hydrogen-alpha) filter is a combination of several

filters that are designed to provide additional safety to the viewer and remove all

out of band transmission from the etalon or Fabry-Pérot interferometer [41] (two flat

and parallel optical surfaces separated by a gap of air or solid material), allowing

only the transmission at 656.28 nm to pass. The magnetograph works by measuring

the polarization of light at various wavelength positions within a solar spectral line.

Circular polarization in the opposite sense on either side of a magnetically sensitive

spectral line gives a measure of the longitudinal magnetic field (the strength of the
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Figure 2.1: Photograph of MSFC (Marshall Space Flight Center) mag-
netograph. James Smith (retired), former chief observer, is shown be-
sides the instrument. Photograph taken from NASA repository https:

//magnetograph.msfc.nasa.gov

field directed toward and away from the instrument). Linear polarization provides

information on the strength and direction of the magnetic field transverse to the line

of sight.

A solar magnetogram is an image that shows the strength, polarity, and location

of the magnetic fields on the Sun. In a grayscale magnetogram, regions of strong

magnetic field (active regions) are shown as white (positive polarity, magnetic field

lines coming towards the observer) and black (negative polarity, magnetic field lines

pointing away from the observer) areas, while gray areas indicate regions of weak

magnetic fields. A complete understanding of the Sun’s magnetic field, including

knowing exactly how it is generated and its structure deep inside the star is not yet

available. What we know is that the solar magnetic system is known to drive the

approximately 11-year activity cycle on the Sun. The Sun’s magnetic field grows

https://magnetograph.msfc.nasa.gov
https://magnetograph.msfc.nasa.gov
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more complicated over time until it peaks at solar maximum, some 11 years after

the previous solar maximum (the same interval applies for solar minimum). From

that moment and with every eruption, the Sun’s magnetic field smooths out slightly

until it reaches its simplest state. At that point, the Sun experiences what is known

as solar minimum, when solar explosions are least frequent. Then, the process is

perpetuated over time, considering that the energy released during eruptions is not

enough to mitigate the increase in complexity in the magnetic field until the new

solar maximum is reached.

2.2 Sunspots

Sunspots are phenomena of the Sun’s photosphere (the visible surface of the Sun)

that appear as temporary spots that are darker than the surroundings. They are

regions of reduced surface temperature caused by concentrations of magnetic flux

that inhibit convection. In other words, these magnetic fields keep some of the heat

within the Sun from reaching the surface. Sunspots appear within active regions,

usually in pairs of opposite magnetic polarity. Their number varies according to the

approximately 11-year solar cycle. Sunspots appear in a wide variety of shapes and

forms. The darkest area of a sunspot (also the first to be observed) is called the

umbra. As the sunspot matures (becomes more intense), a less dark, outlying area

of well-defined fibril-like structure develops around the umbra, called penumbra (see

Figure 2.2).

In the umbra, the large magnetic field and its almost vertical inclination inhibits

the convective energy transport, lowering its temperature to T = 3500–5000 K and

making it appear darker than the quiet photosphere, where Tpho = 6000–6500 K.

In the umbra, the average magnetic field is orientated vertically with respect to
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Figure 2.2: Image of a sunspot where the dark region corresponds to the
umbra and the lighter, more diffuse area corresponds to the penumbra.

the solar surface, becoming slightly inclined as we approach the umbral–penumbral

boundary. The magnetic field strength ranges from B = 2000–3500 G, achieving the

largest values for big sunspots. Except for some oscillatory phenomena, the umbra

is commonly found to be at rest. If many phenomena observed in the umbra remain

unknown, the penumbra overtakes its darker brother by a large amount. Even the

question of why sunspots have a penumbra and how does it form remains unanswered.

Sunspots can grow from an individual unipolar spot into more organized bipolar

spot groups; or even evolve into immense, very complex sunspot groups with mixed

magnetic polarities throughout the group, as we can see in the magnetogram shown

in Figure 2.3. The largest sunspot groups can cover large swaths of the Sun’s surface

and be many times the size of Earth. Individual sunspots or groups of sunspots

may last anywhere from a few days to a few months, but eventually decay. Sunspots

expand and contract as they move across the surface of the Sun, with diameters rang-

ing from 16 km to 160 000 km. Larger sunspots can be visible from Earth without

the aid of a telescope. They may travel at relative speeds, or proper motions, of a
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few hundred meters per second when they first emerge. Indicating intense magnetic

activity, sunspots accompany other active region phenomena such as coronal loops,

prominences, and reconnection events. Most solar flares and coronal mass ejections

originate in these magnetically active regions around visible sunspot groupings. A

new solar cycle is considered to have begun when sunspot groups emerge at higher

latitudes with the magnetic polarities of the leading spots opposite that of the pre-

vious cycle.

Figure 2.3: Examples of magnetograms taken during solar minimum (left)
and solar maximum (right). The complexity of the magnetic morphology
during periods of high level of solar activity during solar maximum is
clear. Images taken from the National Solar Observatory https://nso.

edu/data/nisp-data/magnetograms/

There is a model that postulates various characteristics of sunspots and their

active regions stem from the emergence of sizable magnetic flux tubes across the

solar surface [42]. As a result of the Sun’s convection, plasma rises, allowing solar

magnetic field lines to surface, curve, and re-enter the solar photosphere. This model

suggests that near the solar surface, these flux tubes fragment into smaller ones, with

https://nso.edu/data/nisp-data/magnetograms/
https://nso.edu/data/nisp-data/magnetograms/
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the larger segments forming visible sunspots. Essentially, the observable sunspot

represents the point where this flux tube intersects the solar surface (see Figure 2.4).

Within an electrically conductive atmosphere, a horizontal magnetic flux tube floats

and naturally ascends. This magnetic buoyancy is potent enough to occasionally

draw flux from the broader solar toroidal field to the photosphere [43].

Figure 2.4: Emergence of flux bundle and coalescence of spots. For sim-
plicity a small number of tubes constituting the bundle was chosen [44].



Chapter 3

Method

To study solar activity, we use time series data of the number of sunspots observed

on the solar surface [45], and Sun’s global magnetic field [46]. Both series will

be considered between 1975 and 2015 with a one-day resolution, comprising Solar

Cycles 21, 22, and 23, and the beginning of Solar Cycle 24. Data are shown in

Figure 4.1. Three solar cycles are chosen in order to have a relevant sample of solar

activity in the last years. Since the Wilcox Solar Observatory (WSO) project started

collecting data in 1975, while the sunspot data date back to 1818, we chose to collect

the characteristic parameters of solar activity since 1975. We set as day zero the

measurements of 16 May 1975, ending in day 14,185, corresponding to 16 December

2015.

Using these data, the method consists of constructing complex networks from the

time series, using two variations of the visibility algorithms as connection criteria,

aiming to extract statistical properties of the system. Thus, for each time series, two

complex networks will be constructed, so that we will have a total of four networks.

13
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3.1 Complex Networks

Complex networks have been studied extensively due to their relevance to many

real-world systems such as the worldwide web, the internet, energy landscapes and

biological and social systems [47]. They have become, in recent decades, a very

popular strategy to study complex systems, since they allow to abstract in a very

general way systems composed of a large number of components somehow interre-

lated. Then, we will present some basic concepts about complex networks, which

will be useful in the development of this work.

A complex network is a graph consisting in a set of nodes and their connec-

tions with non-trivial statistical and topological properties [48]. By representing an

abstraction of some system, the definition of nodes and connections must consider

both the properties of that system and the type of study to be performed. There-

fore, different complex networks can be obtained from the same system, depending

on the construction method and what is the question of interest about that system.

If the connections of a network have an assigned direction, we are in the presence

of a directed network. We can find examples of this type of networks in works that

considered connections in the temporal direction such as earthquakes [49], sunspots

[30] and non-thermal plasmas [35]. If the connections have no privileged direction,

then we have an undirected network. In this work, we will consider this type of con-

nections. The usual way to picture a graph is by drawing a dot for each node and

joining two dots by a line if the two corresponding nodes are connected by a link.

How these dots and lines are drawn is irrelevant, and the only thing that matters

is which pair of nodes form a link and which ones do not. Examples of directed

and undirected graphs are shown in Figure 3.1. As the size of a network increases,
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Figure 3.1: Graphical representation of an undirected (a) and directed (b)
graph. In this example we consider N = 8 nodes and K = 15 connections
or links. In the directed graph, the arrows indicate the direction of each
connection.

it becomes impossible to analyze just visually, and the development of statistical

measures of connectivity becomes necessary [50].

A central concept in graph theory is that of reachability of two different nodes of

a graph. In fact, nodes that are not adjacent can still be linked through a reachable

path. A walk from node i to j is an alternating sequence of nodes and edges (a

sequence of adjacent nodes) that begins in i and ends in j. A path is a walk in which

no node is visited more than once. The length of the walk is defined as the number

of edges in the sequence. The walk of minimal length between two nodes is known as

shortest path or geodesic. A graph is said to be connected if for every pair of nodes

(i, j), there is a path from i to j. Otherwise, it is said to be disconnected. It is

often useful to consider the matrix representation of a graph given by the adjacency

matrix A. This matrix is an N × N square matrix whose element aij is equal to

1 when there is a connection between i and j, and zero otherwise. The diagonal

of A contains zeros. This is thus a symmetric matrix for undirected graphs. The

adjacency matrix for the network shown in Figure 3.1 (the undirected case) can be
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written as shown in equation (3.1). We must note that this is the adjacency matrix

for the node labeling that we have chosen, which is arbitrary. Therefore, depending

on the labeling chosen for the nodes, there will be a corresponding adjacency matrix,

which is a permutation of rows and columns of other possible labelings, without

affecting the topology of the network.

A =



0 1 0 0 0 1 1 0

1 0 1 0 0 0 1 1

0 1 0 1 0 0 0 1

0 0 1 0 1 0 0 1

0 0 0 1 0 1 1 1

1 0 0 0 1 0 1 1

1 1 0 0 1 1 0 0

0 1 1 1 1 1 0 0


. (3.1)

We build the networks using the Visibility Graph method (described in detail in

Section 3.3) on the magnetic field and sunspots time series. After the networks are

built, various measures must be calculated in order to study their possible correla-

tion with solar activity along the 3 solar cycles previously mentioned. In particular,

we considered node degree as a measure of connections, clustering coefficient as a

measure of groupability among nodes, mean path length between nodes as an indi-

cator of network performance in terms of connectivity, and two centrality measures,

namely, betweenness and eigenvector centrality, as a measure of importance within

the network.
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3.2 Metrics

As mentioned in Section 3.1, we calculate several metrics to characterize the net-

works, which are quantities containing information about the network structure and

dynamics. Usually, one single metric is not enough to characterize the network, so

several of them are necessary to describe it adequately. Here we define the metrics

that we will use in the rest of the thesis, which are various ways to describe the

connectivity within the network. The node degree is the number of connections that

a node has [51]. We will use a normalized degree, to make it independent of the

network size. If ν is an arbitrary node, and it has nν connections then its normalized

degree is

g(ν) =
nν

n− 1
, (3.2)

where n is the total number of nodes in the network and n−1 denotes the maximum

number of possible connections for a node ν.

Additionally, the degree or connectivity g(ν) of a node ν in terms of the adjacency

matrix A is the number of edges incident with the node, and is defined as

g(ν) =
∑
j∈N

aνj . (3.3)

For directed graphs, the degree of a node has components, the number of outgoing

links gout(ν) =
∑

j aνj and the number of ingoing links gin(ν) =
∑

j ajν . The total

degree is then defined as g(ν) = gout(ν) + gin(ν).

The clustering coefficient of a node ν is the fraction of possible triangles which
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contain that node, and is defined as

c(ν) =
2T (ν)

g(ν)(g(ν)− 1)
, (3.4)

where T (ν) is the number of triangles containing node ν. This metric quantifies how

clustered the nodes are within the network. It shows the tendency for two neighboring

nodes of a node ν to be connected to each other. We can think of this metric as the

probability that pairs of neighboring nodes of a node ν are connected. If this node

ν has g(ν) neighbors, then there are at most g(ν)(g(ν) − 1)/2 connections among

them, which occurs when every neighbor of ν is connected to all of its neighbors.

Then, c(ν) is the fraction of these allowed connections that actually occur [52].

The clustering coefficient of the graph is then given by the average c(ν) over all

the nodes

C = ⟨c⟩ =
∑
i∈V

c(ν) . (3.5)

The mean path length corresponds to the average number of steps along the

shortest paths for all possible pairs of network nodes. It then may be considered

as a measure of the efficiency of information or mass transport on a network. It is

defined as

l =
∑
s,t∈V

d(s, t)

n(n− 1)
, (3.6)

where V is the set of nodes and d(s, t) is the minimum distance from node s (source

node) to node t (target node).

The centrality metrics measure the relevance of a node within the network. Be-

tweenness centrality is the sum of the fraction of all-pairs shortest paths that pass
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through a node ν [53–56],

b(ν) =
∑
s,t∈V

σ(s, t|ν)
σ(s, t)

, (3.7)

where V is the set of nodes, σ(s, t|ν) is the number of paths passing through some

node ν other than s, t and σ(s, t) is the number of shortest paths between s and

t. When s = t, then σ(s, t) = 1 and if ν = s or ν = t, then σ(s, t|ν) = 0 [57].

This metric quantifies the importance of a node within the network in the sense of a

bridge of information, which connects other nodes. This metric is one of the standard

measures of node centrality, originally introduced to quantify the importance of an

individual in a social network [53, 54, 58].

If a node of high betweenness centrality is removed, it should have a large ef-

fect on the connectivity between any two nodes of the network, and thus between-

ness centrality is expected to have some relationship with node degree. In fact,

betweenness-degree correlations have been studied in [59–61]. We will further dis-

cuss this correlation in Chapter 5.

Eigenvector centrality computes the centrality for a node based on the centrality

of its neighbors. The intuition is that a node is important if it is connected to

important nodes. Following this argument, let xi be the centrality of node i and we

assume xi is proportional to the sum of the centralities of its neighbors (xj for j ̸= i).

Then we have the equation

xi =
1

λ

∑
j

aijxj , (3.8)

where aij is an element of the adjacency matrix that indicates the connection (or not)

between node i and j, and λ is a proportionality constant. The above-mentioned
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equation can be expressed in matrix form, obtaining

Ax = λx , (3.9)

which is an eigenvalue equation for x.

Then, the problem of computing node importance is equivalent to solving the

eigenvalue problem for the adjacency matrix. In principle, there can be many solu-

tions for this problem, but when computing eigenvector centrality, the eigenvector

associated with the largest eigenvalue is used because it represents the most dominant

and stable influence within the network.

Finally, we will calculate the degree probability distribution (degree distribution)

of a node having degree k, P (k), which corresponds to the fraction of nodes with k

connections nk over the total amount of nodes n, that is

P (k) =
nk

n
. (3.10)

The probability distribution satisfies that

n∑
k=1

P (k) = 1 . (3.11)

We consider these abovementioned metrics to analyze information about underly-

ing processes (given by the degree distribution) of the solar time series, to study the

behavior of the solar cycles (by clustering coefficient), and to analyze the dynamics

in the resulting networks (by betweenness and eigenvector centrality).
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To clarify these concepts, we consider a network example, as shown in Figure

3.2. This netowrk consists of seven nodes and eleven connections. We will calculate

the metrics abovementioned for this network and we will show the results in Figures

3.3-3.6.

Figure 3.2: Example of an illustrative network with 7 nodes and 11 con-
nections.

The colorbar indicates values of the corresponding metric, from darker (small

values of the metric) to lighter colors (large values of the metric). As we can see in

Figure 3.3, each node has an assigned color depending on the value of its metric, in

this case, its degree centrality. We can clearly see in this case that node 5 is the node

with the maximum value of degree because it has more connections than the others.

In figure 3.4, we can see that node 5 is the node with the largest value of betweenness,

because it connects more times other pair of nodes in the network (acts as bridge).

For instance, connects these pair of nodes (2, 4), (3, 6) and (3, 2). In figure 3.5, we

can see that node 6 has the largest value of clustering in the network (and also the

maximum possible value, 1), in this case it is not because it is grouped with many
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other nodes, but instead the connections it has are well-grouped, i. e., it is connected

to two other nodes and forms only triangle, matching the necessary criteria to be

well-grouped, according to the definition. Finally, in Figure 3.6 we observe once

again that node 5 is the one with the largest value of eigenvector centrality, and we

can graphically see this by noticing it is connected to other important nodes in the

network.

Figure 3.3: Degree centrality for the network shown in Figure 3.2, where
the colorbar indicates values of this metric.
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Figure 3.4: Betweenness centrality for the network shown in Figure 3.2,
where the colorbar indicates values of this metric.

Figure 3.5: Clustering coefficient for the network shown in Figure 3.2,
where the colorbar indicates values of this metric.
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Figure 3.6: Eigenvector centrality for the network shown in Figure 3.2,
where the colorbar indicates values of this metric.

3.3 Connection Criteria

Visibility Graph

We use the Visibility Graph (VG) algorithm (or also known as Natural Visibility

Graph), whose statistical properties have been studied in several publications [62,

63]. The definition of VG for time series comes from the concept of visibility between

nodes. Each element of the time series can be identified by a time t and its respective

associated value x(t), which represents some physical quantity. Therefore, a node in

the network is defined by the point (t, x(t)). Two nodes are connected if they “see”

each other, i.e. if there is a straight line connecting them without being interrupted

by other intermediate nodes. Formally, given a data series XN , two arbitrary nodes

xa and xb are connected if, for every node xc between them, then [63, 64]

xc ≤ xb + (xa − xb)
tb − tc
tb − ta

. (3.12)
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Therefore, the edges of the network take into account the temporal information

explicitly. The key question is to know whether the associated graph in-

herits some structure of the time series, and consequently whether the

process that generated the time series may be characterized by using

graph theory. Most other methods for constructing complex networks from time

series data are dependent on the choice of some parameters, e.g., the threshold ϵ of

recurrence networks [65]. In contrast, the visibility graph is not affected by these elec-

tions since its construction relies purely on the geometric or topological relationship

between the points, specifically on the visibility criterion. For the current discussion,

we prefer the simplicity of the visibility graph. The visibility graph method becomes

especially intriguing in the case of specific stochastic processes in which the statisti-

cal characteristics of the resultant network can be directly correlated with the fractal

characteristics of the time series [63, 66–69]. A graphical example of this algorithm

can be seen in Figure 3.7.

Horizontal Visibility Graph

A variant of VG known as Horizontal Visibility Graph (HVG) consists of restricting

the visibility between nodes to a horizontal line (a simplification of the visibility

algorithm). If {Xi}{i=1,2,...,N} is a time series of size N , two nodes i and j will be

visible if for all nodes n such that i < n < j, then [62, 70, 71]

Xi , Xj > Xn . (3.13)

Therefore, horizontal visibility for two nodes occurs if there is no other node

greater in magnitude between them. We must note that the geometric criterion
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Figure 3.7: Example of a time series. The visibility rays between the data
define the links connecting nodes in the graph.

defined for the HVG is more visibility restrictive than its analogous for the general

case. That is to say, the nodes within the HVG will have less visibility than their

counterparts within the VG. As a matter of fact, notice that given a time series,

its corresponding horizontal visibility graph is always a subgraph of its associated

visibility graph. Accordingly, as in the former case, the HVG is always connected,

each node sees at least its nearest neighbors (adjacent nodes). This method is well

fitted to distinguish different degrees of chaos from a sequence of uncorrelated random

variables. A graphical example of this method can be seen in Figure 3.8.
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Figure 3.8: Example of a time series. The horizontal visibility rays be-
tween the data define the links connecting nodes in the graph.



Chapter 4

Solar activity results

Construction of the complex network from the time series involves not only the

decision on what will be regarded as a node, and what will be the criterion to

connect two nodes, but also the length of the time window within which data will be

considered. Figure 4.1 shows that solar activity has variations on various timescales.

Thus, in order to obtain a better perspective of the solar activity, we carry out two

analyses: a global analysis, considering the complete time series, and a local one,

using time windows.

SC21 SC22 SC23 SC24 SC21 SC22 SC23 SC24

Figure 4.1: Time series used in this work. The solar cycles are indicated
in the figure (from solar cycle 21 to 24) and separated with vertical dashed
lines. Left panel: mean magnetic field on the surface of the Sun. Right
panel: number of sunspots.

28
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4.1 Global Analysis

We first consider the global analysis. For this case, we take time series of sunspots

and magnetic field from 1975 to 2015, comprising Solar Cycles 21, 22, 23 and the

beginning of Solar Cycle 24 (see Figure 4.1). We then build a complex network

for each time series using two connection criteria, visibility graph and horizontal

visibility graph. For these networks we compute the metrics described in Section 3.

The results are shown in two consecutive panels, where the left panel represents

the results for the networks built with the visibility graph method, while the right

panel represents the results for the networks built with the horizontal visibility graph.

In order to distinguish the time series, we use purple for magnetic field and green

for sunspots. Figure 4.2 shows the resulting degree for each node, normalized to the

network size. Thus, the ordinate axis represents the fraction of nodes that each node

is connected to.

We first observe that the number of connections is larger for the networks built

by the VG method (note the different scales in the vertical axes), which is expected,

since the HVG method restricts visibility to a horizontal line, and therefore, less

connections can be established. We also notice that there is no particular dependence

of this metric with the solar cycles. There are some prominent values for the VG

graph (time t ∼ 5500), which match high values of the magnetic field (ascending

phase of Solar Cycle 22, Figure 4.1), but as a general rule, no correlation is observed.

Given the definition of the VG, one would expect that maxima in the time series

would “see” more data in the rest of the time series, as they would tend to be

unobstructed by intermediate points, thus leading to maximum degree. However,

except for the very large maximum noticed above, this does not hold in general, due
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Table 4.1: Results for average clustering for both networks, subscripts ss
and mf refers to sunspots and magnetic field, respectively.

VG HVG

Css 0.721 0.448

Cmf 0.739 0.458

to the rapid fluctuations. This result suggests that the degree is too simple a metric

to study these time series, thus justifying the need for more elaborate metrics.
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Figure 4.2: Degree for every node in the network, normalized by the size
of the network, for the sunspots time series (green line) and the mean
magnetic field time series (purple line). Left panel: VG; right panel:
HVG.

No particular dependence on the solar cycle is observed for the clustering co-

efficient and the shortest path length per node, which is why we have not shown

the corresponding plots. For the clustering coefficient one obtains average values for

both VG and HVG, which are shown in Table 4.1.

These results indicate the presence of well-defined clusters within the time series,

corresponding to solar cycles, for the VG networks, based on a large value for the

clustering for both time series (≈ 0.7). The solar cycle shows that most of the tem-
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poral points of the decreasing phase of one cycle are connected to those points of the

increasing phase of the next solar cycle (see Figure 4.1). Therefore, the network is

clustered into communities, each of which mainly consists of the temporal informa-

tion of two subsequent solar cycles. When the sunspot number reaches a stronger but

more infrequent extreme maximum, we have inter-community connections, since they

have better visibility contact with more neighbors than other time points, forming

hubs in the graph. The inter-community connections extend over several consecutive

solar cycles encompassing the temporal cycle-to-cycle information.

In the case of VG networks, the results obtained for both mean magnetic field

and sunspots mean paths are lmf ≈ 6.36 and lss ≈ 5.73, respectively. Both values

are much smaller than the network size (N = 14 185), indicating that, although the

network is large, nodes are close to one another on average, separated by at most 6

nodes.

The short distance between nodes notices above can be due, for instance, to a

large number of connections between nodes, or to the presence of some highly im-

portant nodes, acting as bridges that connect different parts of the network. This

can be quantified with the concept of betweenness centrality (BC) which, as other

centrality measures, provides a way to assess the importance of nodes in the net-

work. In this case, how important a node is to establish connection between nodes

(see Equation (3.7)).

The results obtained for this metric can be seen in Figure 4.3. For the VG network

(left panel), we observe three zones where a few nodes have BC values much larger

than other nodes in the network. For the HVG case (right panel), these zones can

also be seen, with better statistics, as more nodes have large BC values. These results

hold for both time series (sunspots and mean magnetic field). The most interesting
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feature of these results is the clear match between BC and variations in solar activity

(Figure 4.1). As mentioned when Figure 4.2 was discussed, one would expect the

highest points in the time series to be very well connected, as they should be able to

“see” more nodes. However, this is not captured by the number of connections itself,

as shown in Figure 4.2. This is unlike BC, where Figure 4.3 shows higher values of

sunspots and mean magnetic field do not have, on average, more connections that

the rest of the data, but they do play an important role in connecting nodes. In this

sense, it is also interesting to note that the important nodes for the VG method are

very few, where the nodes with large values of the BC belong to a narrow zone around

solar maxima; whereas for the HVG, the BC has a wider distribution, following the

sunspots and mean magnetic field time series in a smoother way. This behavior

can be explained with the visibility criteria used by the two methods, in which for

VG is more “relaxed” than the HVG, and therefore, the former method tends to

create denser networks where nodes have more connections. This means that there

are multiple alternative paths between nodes, whereas for HVG there will be fewer

alternative paths, increasing their betwenness centrality.

We have computed a further centrality measure, namely the Eigenvector Cen-

trality (EC). The results are shown in Figure 4.4.

Several features are interesting to observe, which differ from the previous plots.

First, this metric clearly exhibits different results for each time series, as maximum

values for the sunspots time series do not occur for the same nodes as for the magnetic

field time series. This highlights the nontriviality and nonlinearity of the metrics,

and supports the fact that it is interesting to calculate several metrics for a given net-

work, as they may reveal different features. This is specially noticeable as both time

series in Figure 4.1 show a similar behavior: sequences of maxima and minima which
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Figure 4.3: Betweenness Centrality for every node in the network, nor-
malized by the size of the network. Left panel: VG method; right panel:
HVG method.
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Figure 4.4: Eigenvector Centrality for every node in the network, normal-
ized by the size of the network. Left panel: VG method; right panel:
HVG method.

clearly mark all the solar cycles in the dataset, at essentially the same time. How-

ever, there are two different datasets being analyzed here, and this is clearly evident

when considering to the eigenvalue centrality, not the metrics previously discussed.

Another interesting fact is that, in the VG case, maximum values of the eigenvec-

tor centrality tend to occur in between solar maxima, suggesting an anticorrelation
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with the solar cycle. Notice, for instance, the EC maxima for the magnetic field time

series, between the 21st and 22nd solar cycle, and the maxima for the sunspots time

series, between the 22nd and 23rd solar cycle. However, there are three intercycle

time windows in the data set, but only two noticeable maxima of the EC for both

the magnetic field and the sunspots time series. Since the EC is related to the impor-

tance of neighboring nodes, it is possible that the analysis is affected by boundary

effects, as no data exist before and after the selected time window. However, it is

worth noticing that several papers have been devoted to the prediction of features of

the next solar cycle [72–74], such as its intensity. Since the EC for the VG seems to

be most sensitive during the intercycle period, with different behaviors for each time

series (e.g., the existence of maxima for the magnetic field series at day ∼13 000,

while no important maxima occur for the sunspots series) it would be interesting to

explore to what extent the EC could provide useful information on the next solar

maximum before it is actually reached.

As for the HVG method, Figure 4.4 also shows that EC maxima do not occur

simultaneously with sunspots maxima. Rather, they seem to cluster during the

ascending or descending phase of cycles.

The analysis so far has focused on the value of network measures per node.

However, the distribution of values P (k) may also have information, as it can provide

insight about the physical processes underlying the network formation [48, 75].

For instance, the VG method typically leads to power-law distributions,

P (k) ∼ k−γ, and the HVG method typically leads to exponential degree distri-

butions, P (k) ∼ exp(−γk), and it has been suggested that its decay exponent γ is

related to the type of randomness [76]. Specifically, it has been suggested that a

threshold value γth = ln(3/2) ≈ 0.405 exists, such that γ < γth corresponds to a
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chaotic process, whereas γ > γth corresponds to a correlated stochastic process.

In figure 4.5 we can observe the expected power-law behavior for the networks

built using the VG method. We calculate its respective γ by computing the slope of

the linear fit of the log-log distribution at the tail.

(a) (b)

Figure 4.5: Log-log plot of the degree distributions. Left panel: magnetic
field time series; right panel: sunspots time series.

Table 4.2: Values for γ for the two networks built by the VG method.

Magnetic Field Sunspots

γvg 3.13 ± 0.08 3.04 ± 0.05

We can also observe in Figure 4.6 that networks for both time series follow an

exponential distribution P (k), as expected. The value of γ in this case is also given

by the slope of the linear fit, but of the semi-log distribution, considering only the

tail [77], where a linear relation for lnP (k) and k holds.

The estimated values for γvg are 3.13 and 3.04 for the magnetic field and sunspots

networks, respectively. The estimated values of γhvg are 0.55 and 0.88 for the mag-

netic field and sunspots networks, respectively, which suggests an underlying corre-
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(a) (b)

Figure 4.6: Semi-log plot of the degree distributions. Left panel: mag-
netic field time series; right panel: sunspots time series.

Table 4.3: Values for γ for the two networks built by the HVG method.

Magnetic Field Sunspots

γhvg 0.55 ± 0.03 0.88 ± 0.05

lated stochastic process [76].
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4.2 Local Analysis

Now, we employ moving time windows to follow the evolution of the network mea-

sures along the solar cycle. Two window sizes were chosen: 1-year windows, with a

1-month overlap; and 11-years windows, with a 1-year overlap. This leads to 493

windows of 1-year width, and 30 windows of 11-years width. We then plot results

by associating, to each window, the time corresponding to its center.

The same metrics as in the global analysis were calculated. Results for the degree

are shown in Figures 4.7 and 4.8. In this analysis, we present the results in two

consecutive panels, where the left panel represents the magnetic field networks and

the right panel represents the sunspots networks. The line color indicates the method

used to build the networks, in black we have the VG method and in magenta we

have the HVG. As expected, the VG method leads to larger number of connections

than the HVG.
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Figure 4.7: Degree for 1-year windows. Left panel: magnetic field net-
works; right panel: sunspots networks. Line color indicates the type of
graph: VG (black line) and HVG (magenta line).

In general, results are consistent with the global results in Figure 4.2: the degree
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Figure 4.8: Degree for 11-year windows. Left panel: magnetic field net-
works; right panel: sunspots networks. Line color indicates the type of
graph: VG (black line) and HVG (magenta line).

does not correlate with the solar cycle, regardless of the timescale of observation.

The only exception is the HVG analysis for the sunspots time series, with 1-year

windows (Figure 4.7), where clear minima close to solar minima can be found. This

shows the nontriviality of the metrics involved. Although the degree is the simplest

metric, it does not exhibit a clear correlation to the solar cycle, either for the complete

time series of using a moving windows analysis, unless a specific strategy and time

series is involved: an HVG for 1-year windows using the sunspots time series.

Figures 4.9 and 4.10 show the corresponding results for the clustering coefficient.

Larger values are obtained for the VG method, for both window types. Fur-

thermore, results do not show clear correlations with solar activity, but notably,

the HVG method has the same kind of oscillating behavior as for the degree (Fig-

ure 4.7), but more pronounced (notice that both measures are normalized, so that

their maximum possible value is 1). Interpretations of this behavior will be discussed

later, in Section 7.
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Figure 4.9: Clustering coefficient for 1-year windows. Left panel: mag-
netic field networks; right panel: sunspots networks. Line color indicates
the type of graph: VG (black line) and HVG (magenta line).
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Figure 4.10: Clustering coefficient for 11-year windows. Left panel: mag-
netic field networks; right panel: sunspots networks. Line color indicates
the type of graph: VG (black line) and HVG (magenta line).

Betweenness centrality results are shown in Figures 4.11 and 4.12. We already

noticed, in the global analysis (Sec. 4.1), that BC was an interesting metric, due to its

apparent sensitivity to the solar cycle (Figure 4.3). This is found here for the wider

windows as well, Figure 4.12, showing peaks associated to maxima in solar activity

(Figure 4.1). Thus, BC correlates well with solar activity, but if large timescales are
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studied (full time series in Figure 4.3, 11 years in Figure 4.12), and if the HVG is

used. If shorter, 1-year windows are taken, or if the VG method is used, then the

BC does not convey information on solar activity.
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Figure 4.11: Betweenness centrality for 1-year windows. Left panel: mag-
netic field networks; right panel: sunspots networks. Line color indicates
the type of graph: VG (black line) and HVG (magenta line).
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Figure 4.12: Betweenness centrality for 11-year windows. Left panel:
magnetic field networks; right panel: sunspots networks. Line color in-
dicates the type of graph: VG (black line) and HVG (magenta line).

Finally, we compute the eigenvector centrality, shown in Figures 4.13 and 4.14.

Unlike Figure 4.4, this measure does not show interesting results for the local analysis,
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regardless of the moving window width, thus highlighting again the nontriviality of

the results, as the usefulness of the network approach to follow solar activity depends

both on the metric and the timescale observed.
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Figure 4.13: Eigenvector centrality for 1-year windows. Left panel: mag-
netic field networks; right panel: sunspots networks. Line color indicates
the type of graph: VG (black line) and HVG (magenta line).
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Figure 4.14: Eigenvector centrality for 11-year windows. Left panel:
magnetic field networks; right panel: sunspots networks. Line color in-
dicates the type of graph: VG (black line) and HVG (magenta line).

Regarding the degree distribution for the HVG method, all networks, for all time

windows, exhibit an exponential topology, as in the case of the global networks,
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consistent with previous results for the HVG [76]. The degree distributions P (k) of

every window are shown in Figures 4.15 and 4.16, for 1-year and 11-year windows,

respectively.
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Figure 4.15: Degree distribution for each 1-year window. Left panel:
magnetic field network; right panel: sunspots network. Each color rep-
resents a given window.
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Figure 4.16: Degree distribution for each 11-year window. Left panel:
magnetic field network; right panel: sunspots network. Each color rep-
resents a given window.

The decay exponent γ for each window is shown in Figure 4.17. For both window

types, 1-year and 11-year windows, similar values γ ∼ 0.6 are found along the solar



43

cycle. As mentioned before, this suggests correlated stochastic processes for every

window, regardless of its length [76].
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Figure 4.17: Evolution of the decay exponent for the degree distribution
obtained from the HVG. Left panel: 1-year windows; right panel: 11-
year windows. Line color indicate the time series used: magnetic field
(purple line) and sunspots (green line).

4.3 Betweenness Centrality and Mean Magnetic

Field

In the spirit of understanding the apparent sensitivity of the betweenness centrality

with respect to the solar activity, we will focus the results only in this metric and the

mean magnetic field. We will use the Savitsky-Golay filter [78] on the time series in

order to obtain smoother curves without losing the original shape of the series, such

as peaks and valleys. In Figure 4.18 we can observe the results for a smoothened

magnetic field using the Savitsky-Golay filter and the betweenness centrality.

Additionally, we need to further analyze the relation between the BC metric and

the solar cycle, because we only have a qualitative relation between these two vari-

ables. In order to analyze this behavior we employed a statistical method which quan-
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Figure 4.18: Betweenness centrality and mean magnetic field time series.
Left panel: BC computed with the VG analysis; right panel: BC com-
puted with the HVG analysis.

tifies correlations between variables, namely, the quantile-quantile plot [79]. This is

an empirical method which determines if two data sets come from populations with

common distribution. As the name indicates, it is a plot of the quantiles of the

first data set against the quantiles of the second data set. By a quantile, we mean

the fraction of points below a given value. If the two data sets being compared are

similar, the Q-Q plot will approximately lie on a line. The advantages of the Q-Q

plot are that the sample sizes do not need to be equal and we can test simultaneously

many distributional aspects. This method has been used to study the time evolution

for intraplate earthquakes [80] suggesting strong correlation between seismic events

magnitudes and the fractal dimension of the events.

We carry out a Q-Q analysis to compare the betweenness centrality and the mean

magnetic field datasets, for the moving windows strategy. That is, the datasets to

be compared correspond to the average betweenness centrality for a certain time

window, and the mean magnetic field during the same window.

Results for various window sizes, with various overlaps, are shown in Figs. 4.19–

4.25. It can be seen that, for all window sizes, an approximately linear behavior
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is found, showing that both time series are indeed correlated across all timescales

examined. This correlation opens many possibilities for solar studies. For example,

temporal calculations of the betweenness centrality or other sensitive metrics may

be used to forecast solar activity, a possibility which is also suggested by previous

results based on spatiotemporal networks [30].
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Figure 4.19: 1-year windows with 1-month overlap.
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Figure 4.20: 548-days windows with 1-month overlap.



46

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Y
 q

u
a
n
ti

le
s
: 

b
e
tw

e
e
n
n
e
s
s
 c

e
n
tr

a
li
ty

X quantiles: magnitude

y(x) = 0.25x + 0.64

(a) VG analysis

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Y
 q

u
a
n
ti

le
s
: 

b
e
tw

e
e
n
n
e
s
s
 c

e
n
tr

a
li
ty

X quantiles: magnitude

y(x) = 0.35x + 0.54

(b) HVG analysis

Figure 4.21: 548-days windows with 2-months overlap.
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Figure 4.22: 730-days windows with 1-month overlap.
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Figure 4.23: 730-days windows with 2-months overlap.
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Figure 4.24: 1000-days windows with 1-month overlap.
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Figure 4.25: 11-years windows with 1-year overlap.



Chapter 5

Correlations in the Networks

For the two networks described in Chapters 3 and 4, we seek to find the relation

among metrics in order to obtain universal parameters that help to characterize the

solar activity.

For example, both the degree and betweenness centrality, to some extent, quan-

tify how important a node is within the network and we expect to obtain some

correlation between these two metrics. The latter is based on the assumption that

a node with high degree should also have high betweenness. We have found that

the centrality measures (betweenness centrality and eigenvector centrality) and the

clustering coefficient correlate with the degree as in [81], where real-world networks

were studied.

The calculation of the betweenness is based on the global information on paths

connecting all pair of nodes, while the degree, by definition, is a quantity that depends

only on local information. As we said before, it is expected for the two metrics to be

correlated if we understand them as a measure of importance in the network. The

results are shown in the scatter plot (logarithmic scale) of node betweenness (BC)

versus node degree (D) in Figures 5.1 and 5.2, for the global network. Both the

magnetic field and the sunspots networks show clear signs of correlation between the

48
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degree and the betweenness.
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Figure 5.1: Node betweenness centrality versus node degree for the
sunspots network. Both graphs are in log-log scale.
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Figure 5.2: Node betweenness centrality versus node degree for the mag-
netic field network. Both graphs are in log-log scale.

A similar case occurs in Figures 5.3 and 5.4 for the eigenvector centrality. That

is, on average, higher values of the eigenvector centrality are found for nodes with

higher degree.

The results shown in Figures 5.5 and 5.6 correspond to the scatter plot between

the clustering coefficient and the degree. It is interesting to notice not only a clear

correlation between the variables, but also a power-law behavior, suggesting that
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Figure 5.3: Eigenvector degree versus degree for the sunspots network.
Both graphs are in log-log scale.
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Figure 5.4: Eigenvector centrality versus degree for the magnetic field
network. Both graphs are in log-log scale.

the node clustering coefficient decays as c(ν) ≈ k(ν)−δ, with δ the characteristic

exponent of the decay.

In order to further understand if there are correlations or not, we compute the

linear correlation coefficient ρ(i, j) (or usually abbreviated as r for no good reason

except that there are two r’s in “correlation”) between any two metrics i and j defined

in Section 3.2. This correlation coefficient is computed using a statistical definition

named “standard units”, which is a way of putting different kinds of observations on
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Figure 5.5: Clustering coefficient versus degree for the sunspots network.
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Figure 5.6: Clustering coefficient versus degree for the magnetic field
network.

the same scale following the next idea: replace a datum by the number of standard

deviations it is above the mean of the data, if a datum is above the mean it is positive

and if it is below it is negative. The definition of the conversion can be expressed as

original datum−mean of original data

standard deviation of original data
.

The objective of this conversion is to obtain a new set of data with mean zero and

the standard deviation is one. The matrix ρ is called the correlation matrix. The

absolute value 0 ≤ |ρ(i, j)| ≤ 1 characterizes the strength of the correlation between

the corresponding metrics i and j. If |ρ(i, j)| is close to zero, the two metrics are
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almost uncorrelated whereas a |ρ(i, j)| close to 1 implies a strong correlation. The

sign of ρ(i, j) is not further explored (positive or negative correlation), because it is

the strength that indicates to which extent a metric can be predicted from the other.

The results are shown in the following figures: VG analysis for magnetic field

network (Fig. 5.7) and sunspots network (Fig. 5.8), and HVG analysis for magnetic

field (Fig. 5.9) and sunspots networks (Fig. 5.10). The colors are indicated in the

color bar at the right of every figure, where lighter colors are larger values for |ρ(i, j)|,

and darker ones are lower values. In the figures we analyze the four metrics: de-

gree, clustering coefficient, betweenness centrality and eigenvector centrality, and the

magnetic field time series. Each row or column represents one of these data.

In the case of VG, as we can see in the Figures 5.7 and 5.8, there is a strong cor-

relation between the degree and the clustering coefficient for both networks, there is

also a good correlation for the eigenvector centrality and the degree for the magnetic

field network, and for the sunspots network this correlation is weaker, but still the

correlation value is greater than 0.5, closer to 1 than 0. The other metrics show

lower values of correlation, indicating an uncorrelated rather than correlated behav-

ior, with the particular case of betweenness centrality and degree, which is just in

the limit of 0.5, indicating neither correlated nor uncorrelated behavior.

On the other hand, for both networks constructed by the HVG method, we can

observe that there are only uncorrelated behaviors for the metrics, indicating that

this case is not good enough for the purpose of predicting metrics from one another.

The previous plots show correlations within the network, but we should also

analyze the correlations between the network metrics and the time series, particularly

with the magnetic field times series which is indeed the physical variable of interest.
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Figure 5.7: Correlation matrix for the metrics of the magnetic field net-
work constructed by using the VG method.
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For this purpose, we have computed in Chapter 4 the quantile-quantile plot for several

time windows and for the particular case of betweenness centrality and magnitude

of magnetic field.

As we can see from Figures 5.7, 5.8, 5.9 and 5.10, there is no sign of strong

correlation between the magnetic field and any metric, except for the clustering

coefficient in the VG network (Fig. 5.7), where the maximum value for correlation is

obtained, but still it is not strong. In principle this result for the magnetic field is not

so promising as we would have expected, considering the evident visual correlation

for betweenness centrality and magnetic field time series. In this sense, we have

to keep in mind that the correlation matrix is used to analyze or measure lineal

relationships between variables. In this case, the results are saying that we have no

linear corellation between the magnetic field and the betweenness centrality or to

some extent, the correlation coefficient may not accurately capture the strength of

the relationship.

Following this idea, we have to further explore other correlation methods because,

as we have said before, in this work we are interested in studying possible correlations

of the metrics and the magnetic field and for this reason we need to further quantify

the significance of correlations. Another test to measure the statistical significance

of a correlation between time series is the Student t-test, which is a measure of

the significance of a difference of means between two distributions Xa and Xb. In

particular, for this case we use the Welch’s t-test or the unequal-variance t-test.

If Na and Nb correspond to the total number of data of the Xa and Xb time

series, respectively, and Var(X) is the variance of the time series X, then a quantity

called the t value is computed, which measures how many standard errors the sample

means are apart, that is, the correlation is determined by analyzing the disparity in
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their averages.

Two statistical values are relevant in the test, namely the t value and the degrees

of freedom df :

t =
Xa −Xb√

Var(Xa)

Na

+
Var(Xb)

Nb

, (5.1)

and

df =

(
Var(Xa)

Na

+
Var(Xb)

Nb

)2

(Var(Xa)/Na)
2

Na − 1
+

(Var(Xb)/Nb)
2

Nb − 1

, (5.2)

which represent the number of independent values in a dataset that are free to vary.

Given the expressions for the t value and the degrees of freedom, the definition

of the p value, for a two-tailed test, is given by [82]

p = 2 [1− F (|t|, df)] , (5.3)

where F (x, df) is the cumulative distribution function (CDF) for the variable x, with

df degrees of freedom. Multiplying by 2 accounts for the two-tailed nature of the

test (deviations in both directions or tails from the null hypothesis).

The hypothesis will be satisfied if the p-value is p < 0.05 (which means that there

is a 5% chance of obtaining a significant result by chance alone), meaning that the

difference of the means of the time series is statistically significative.

We have applied this analysis for betweenness centrality (obtained through VG

and HVG), and the magnetic field time series. We have obtained p values close to

zero (p < 10−5) and t values of 184.23 and 180.72, for VG and HVG betweenness

centrality, respectively.



Chapter 6

Method Robustness

In the examination of network vulnerabilities, the method by which nodes are cho-

sen for removal follows an open selection process. It is indeed possible to enhance

the extent of damage when a specific number of nodes (or edges) are eliminated.

Nevertheless, achieving this requires a comprehensive understanding of the entire

network’s structure. In this chapter we propose an attack to the networks, in which

we will remove data from the time series using two different methods. The first

method, namely Periodic Removal, consists of removing an amount N of data from

the time series separated by a certain gap T . The second method, Random Removal,

consists in removing N random data from the time series. As more nodes are re-

moved, the structure of the network should change, and therefore, different values

and distributions for the metrics would be obtained. For the two removal methods,

the same analysis for the networks as in Chapter 4 was carried on.
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6.1 Periodic Removal

This method consists of creating gaps in the time series. This can simulate, for

instance, the existence of observational gaps in the observation of a physical phe-

nomenon. For example, if the time series corresponds to the light intensity received

from a star, as measured by a telescope on the Earth’s surface, there will be periodic

gaps due to Earth’s rotation [39].

We focus on the betweenness centrality, from the global networks, since it exhibits

the best correlations with the magnetic field time series as shown in Chapters 4 and

5. Figures 6.1–6.4 show the results for both the VG and HVG analysis, for various

choices of the windows and gap lengths: removal of 30 nodes every 365 days (Fig. 6.1),

100 nodes every 50 days (Fig. 6.2), 200 nodes every 75 days (Fig. 6.3), and 365 nodes

every 30 days (Fig. 6.4). We chose these window sizes and gaps to test over different

possibilites, without a preferential selection.
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Figure 6.1: Removing 30 nodes every 365 days.

It can be observed that, despite data removal, the same trend is observed: be-

tweenness centrality maxima and minima follow solar activity maxima and minima.

The peaks in BC are sharper for the VG graphs, while the HVG graphs show a slower
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Figure 6.2: Removing 100 nodes every 50 days.
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Figure 6.3: Removing 200 nodes every 75 days.
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Figure 6.4: Removing 365 nodes every 30 days.
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variation, which is consistent with previous plots, but the overall trend is the same.

In all cases, the result is essentially not affected by the existence of gaps. Similar

results have been observed for light curves of pulsating variable stars [39] , suggesting

that the VG/HVG graph is a useful tool to study systems where observational gaps

are unavoidable.

As noted in Section 4, degree distributions follow a power-law for the VG graph,

and an exponential decay for the HVG graph (see, e.g., Figures 4.5 and 4.6). This

is also observed for the time series with gaps, except that, as the number of deleted

data increases, the statistics worsens. This can be seen in Figs. 6.5–6.12.

(a) VG analysis (b) HVG analysis

Figure 6.5: Degree distribution analysis associated to the magnetic field
networks built by removing 30 nodes every 365 days. Left panel: Shows
the power-law behavior for VG method; right panel: shows exponential
behavior for HVG method.

A variation of the decay exponent is observed with the different gaps introduced,

but the functional form is the same, suggesting again the robustness of this approach,

as the network topology is not significantly modified to missing data.
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(a) VG analysis (b) HVG analysis

Figure 6.6: Degree distribution analysis associated to the sunspots net-
works built by removing 30 nodes every 365 days. Left panel: Shows
the power-law behavior for VG method; right panel: shows exponential
behavior for HVG method.

Table 6.1: γ values for the different removal intervals selected

γvg γhvg

Removing 30 nodes every 365 days
Mean magnetic field

Sunspots

3.01

3.1

0.6

0.81

Removing 100 nodes every 50 days
Mean magnetic field

Sunspots

2.88

2.81

0.61

0.74

Removing 200 nodes every 75 days
Mean magnetic field

Sunspots

3.06

2.96

0.7

0.74

Removing 365 nodes every 30 days
Mean magnetic field

Sunspots

3.04

2.49

0.8

0.61
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(a) VG analysis (b) HVG analysis

Figure 6.7: Degree distribution analysis associated to the magnetic field
networks built by removing 100 nodes every 50 days. Left panel: Shows
the power-law behavior for VG method; right panel: shows exponential
behavior for HVG method.

(a) VG analysis (b) HVG analysis

Figure 6.8: Degree distribution analysis associated to the sunspots net-
works built by removing 100 nodes every 50 days. Left panel: Shows
the power-law behavior for VG method; right panel: shows exponential
behavior for HVG method.
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(a) VG analysis (b) HVG analysis

Figure 6.9: Degree distribution analysis associated to the magnetic field
networks built by removing 200 nodes every 75 days. Left panel: Shows
the power-law behavior for VG method; right panel: shows exponential
behavior for HVG method.

(a) VG analysis (b) HVG analysis

Figure 6.10: Degree distribution analysis associated to the sunspots net-
works built by removing 200 nodes every 75 days. Left panel: Shows
the power-law behavior for VG method; right panel: shows exponential
behavior for HVG method.
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(a) VG analysis (b) HVG analysis

Figure 6.11: Degree distribution analysis associated to the magnetic field
networks built by removing 365 nodes every 30 days. Left panel: Shows
the power-law behavior for VG method; right panel: shows exponential
behavior for HVG method.

(a) VG analysis (b) HVG analysis

Figure 6.12: Degree distribution analysis associated to the sunspots net-
works built by removing 365 nodes every 30 days. Left panel: Shows
the power-law behavior for VG method; right panel: shows exponential
behavior for HVG method.



65

6.2 Random Removal

This method also intends to test the robustness of the network analysis and recreate

common conditions in space observational data, where missing data appears often.

In this case, we consider the case where data is missing at random places in the time

series. As in the previous section, Sec. 6.1, we only show results for the betweenness

centrality, due to its better sensitivity to solar activity (as observed in Chapter 4).

In Figures 6.13, 6.14, and 6.15 the results are shown for the betweenness centrality

after removing 1000 (6.75% of the total data), 5000 (33.75% of the total data), and

10000 (67.5% of the total data) points at random locations in the series, using uniform

randomness. The procedure consisted in removing n random data, then rearrange

the new time series from 0 to N − n (with the total number of data in the original

time series) and compute the metrics, following the same steps as in Section 3. We

repeat this process 10 times for each n, the take an average of the metrics for every

corresponding node of the resulting networks.

The plots suggest the method is robust against missing data, because we can

observe the same 4 zones detected, each one corresponding to a different solar cycle.
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Figure 6.13: Randomly removing N = 1000 data of the time series.
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Figure 6.14: Randomly removing N = 5000 data of the time series.
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Figure 6.15: Randomly removing N = 10000 data of the time series.

Analogous to the previous section, we computed the degree distribution for the

modified networks. This is shown in Figs. 6.16–6.21 and the γ exponents are shown

in Table 6.2.

We obtained expected behaviors for each network, power-law for networks con-

structed using the visibility graph and exponential behaviors for networks con-

structed with the horizontal visibility graph. The decay exponents are affected by

data removal, as shown in Table 6.2, but the overall topology is not changed by the

removal.
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Table 6.2: γ values for the different removal intervals selected

γvg γhvg

Removing 1000 random data
Mean magnetic field

Sunspots

3.18

3.05

0.55

0.85

Removing 5000 random data
Mean magnetic field

Sunspots

2.96

3.0

0.55

0.74

Removing 10000 random data
Mean magnetic field

Sunspots

2.74

2.64

0.47

0.59

(a) VG analysis (b) HVG analysis

Figure 6.16: Degree distribution analysis associated to the magnetic field
networks built by removing 1000 random data. Left panel: Shows the
power-law behavior for VG method; right panel: shows exponential be-
havior for HVG method.
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(a) VG analysis (b) HVG analysis

Figure 6.17: Degree distribution analysis associated to the magnetic field
networks built by removing 5000 random data. Left panel: Shows the
power-law behavior for VG method; right panel: shows exponential be-
havior for HVG method.

(a) VG analysis (b) HVG analysis

Figure 6.18: Degree distribution analysis associated to the magnetic field
networks built by removing 10000 random data. Left panel: Shows the
power-law behavior for VG method; right panel: shows exponential be-
havior for HVG method.
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(a) VG analysis (b) HVG analysis

Figure 6.19: Degree distribution analysis associated to the sunspots net-
works built by removing 1000 random data. Left panel: Shows the power-
law behavior for VG method; right panel: shows exponential behavior
for HVG method.

(a) VG analysis (b) HVG analysis

Figure 6.20: Degree distribution analysis associated to the sunspots net-
works built by removing 5000 random data. Left panel: Shows the power-
law behavior for VG method; right panel: shows exponential behavior
for HVG method.
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(a) VG analysis (b) HVG analysis

Figure 6.21: Degree distribution analysis associated to the sunspots net-
works built by removing 10000 random data. Left panel: Shows the
power-law behavior for VG method; right panel: shows exponential be-
havior for HVG method.



Chapter 7

Discussion

In this work, we have studied and characterized solar activity using a complex net-

work approach. By means of the visibility algorithms mentioned in Chapter 3, time

series related to the Sun’s dynamics, are mapped into a complex network. We have

also tested the robustness of this method (see Chapter 6) and obtained consistent

results with the ones shown in Chapter 4, confirming empirically that the method

is particularly robust to time series that are not necessarily complete, either by

observational periodic gaps or random missing data.

Various network metrics are calculated, which are related to node connectivity,

edge density, distance between nodes, and node relative importance. In general,

larger values of the degree are found for the VG as compared with the HVG (Fig-

ure 4.2). This is an expected result since the HVG has a limited visibility, restricted

to horizontal lines, and therefore less connections can be established.

For the global analysis, using the full time series, the most interesting metrics

were the centrality measures. From Figure 4.3, we can observe sensitivity of the

betweenness centrality to the solar cycle both for VG and HVG (even more clear

in Figure 4.18). This is a nontrivial result, because larger values of the time series

would be expected to have more connections, because they should be more “visible”
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to other nodes. However, the degree itself does not capture variations in solar activity,

whereas the betweenness centrality, which is a more elaborate measure, clearly does.

The eigenvector centrality also shows a dependence on the solar activity, but of

a different kind. First, behavior is different for both time series (magnetic field and

sunspots), thus this is the only metric, among those studied here, that distinguishes

the physical quantity being observed. Besides, for the VG, maxima tend to lie

close to solar minima, whereas for the HVG they tend to lie in the ascending or

descending phases of the cycle. It is also interesting to observe the small values

obtained for SC24, with the VG method, representing almost non-influence in the

network, consistent with the substantially lower activity of this cycle with respect

to other recent solar cycles. The HVG, on the other hand, yields different results

to the VG ones. Considering that EC tends to show maxima outside solar maxima,

and that it distinguishes between sunspots and magnetic field times series, it should

be interesting to study to what extent this measure is able to provide information

on the next solar maximum, before it is actually reached. We plan to examine this

in more detail in the future.

The results for the local analysis are, in general, consistent with the global analy-

sis. Figures 4.7 and 4.8 show the expected result that the VG yields larger values for

the degree than the HVG. It is also interesting to notice that the HVG degree shows

a slight trend to decrease during its evolution, for the 1-year windows. However, one

should take into account that values are normalized to the interval [0, 1], and that

the obtained values are very small ∼10−2, thus the degree could be regarded as es-

sentially constant, regardless of the size of the time windows. However, a similar and

clearer trend is observed for the HVG, if other metrics are considered.

Figure 4.9 shows that, whereas the degree is different for VG and HVG, the clus-
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tering coefficient for the magnetic field and sunspots time series has about the same

value, ∼0.75, for the VG method. On the other hand, the HVG method is able to

pick variations associated to the solar cycle in the sunspots network. This sensitivity,

though, is not present for the larger timescales, when the 11-year windows are used.

We have also observed interesting variations in the BC, for both the VG and HVG

methods, with the larger scale time windows (11 years), as seen in Figure 4.12. This

is consistent with the behavior found for the BC for the global analysis. One should

consider, anyway, that calculated values are normalized to 1, and thus the variations

shown in those figures are very small, of the order of 10−2. In this sense, the behavior

of the BC for the global analysis is much stronger, but the subtle variations in the

local analysis may also be interesting, specially because they are consistent with the

local analysis for the degree and the clustering coefficients, which did not exhibit any

special dependence on solar activity in the global analysis.

In general, most curves shown in Figures 4.7–4.14 are featureless, with a few of

them, as discussed above, showing noticeable variations which are consistent with

the solar cycles. This is worth pointing out, because, although the sunspots and

magnetic field time series clearly show variations in solar activity along solar cycles,

and despite the interesting capabilities of the VG approach to identify statistical

features in time series, it is interesting to point out when the VG can be most useful

to study solar activity, and when it does not provide useful information.

The degree distributions are found to show an exponential behavior at the tail,

as seen in Figure 4.6. The fast decay shows that on average, most nodes are connected

to only a few nodes (degree probability is different from zero for k < 6). However,

the mean path length is very small compared with the size of the network, suggesting

a small-world behavior. Basically, the information within magnetic field and sunspots
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networks is efficiently transferred toward the entirety of the system, locally and

globally [83]. These results are preserved when the analysis is carried out in moving

windows, as shown in Figures 4.15 and 4.16. For this latter analysis, we also observe

an essentially constant value of the decay exponent despite variations in solar activity,

as shown in Figure 4.17.

Despite simple metrics like the degree may not exhibit strong dependence with

solar activity, more elaborate ones like the clustering coefficient and centrality mea-

sures may show clear variations with the solar cycle. The centrality measures are

particularly interesting, due to the strong dependence of the BC for the global anal-

ysis, and the distinction between the magnetic field and sunspots time series that

the EC displays. Further analysis should be carried out to determine to what extent

these findings may contribute to characterize future solar cycles in advance, but our

findings highlight the nontriviality of the information extracted by each metric, as re-

sults depend on the algorithm used, and the time scale examined, complementing

other, recent works, on complex network analyses for solar activity [84–86]. In par-

ticular, we have previously observed that observing with different network metrics

the same time series (sunspots number), various results can be found, with some

metrics correlated, others anti-correlated, and other being essentially constant along

the solar cycle [30]. The present work also complements these results. Our findings

also show that different time series, although they may be related to the same un-

derlying physics (solar dynamics), are not equivalent for the VG algorithm, which

is consistent with the fact that one cannot expect a single technique to provide all

the possible information on a given phenomenon. Besides, the correlation of certain

metrics, for some timescales, with solar activity, opens the question of to what extent

this correlation may be used to either characterize solar cycles, or inform us about
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the dynamo process driving sunspots emergence and magnetic field variability along

the solar cycle. In this sense, we have used several methods for correlations, includ-

ing the ones presented in Chapter 5 and the quantile-quantile plot shown in Chapter

4, which is indeed another correlation analysis. These results have shown interesting

results for the metrics and specially for the magnetic activity measured in terms

of the betweenness centrality, given the fact that from both the quantile-quantile

plot and the student t-test analysis support the qualitative correlation observed in

graphs, and further exploration of this metric combined with prediction algorithms,

could break new ground in the context and challenge of solar activity prediction.

Therefore, our future interest would be the analysis of additional solar cycles, in or-

der to understand in detail why some metrics perform better and their connections

to physical features, beyond the results presented here.
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“Non-universal critical exponents in earthquake complex networks,” Physica

A: Statistical Mechanics and its Applications, vol. 491, pp. 445–452, 2018.

[Online]. Available: https://doi.org/10.1016/j.physa.2017.09.064

[50] M. E. Newman, “The structure and function of complex networks,”

SIAM review, vol. 45, no. 2, pp. 167–256, 2003. [Online]. Available:

https://doi.org/10.1137/S003614450342480

https://doi.org/10.1086/146010
https://doi.org/10.1007/BF00156523
https://doi.org/10.1007/BF00156523
https://www.sidc.be/silso/datafiles
wso.stanford.edu
https://doi.org/10.1038/nature03248
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1016/j.physa.2017.09.064
https://doi.org/10.1137/S003614450342480


85

[51] M. Newman, Networks. Oxford university press, 2018. [Online]. Available:

https://doi.org/10.1093/oso/9780198805090.001.0001

[52] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-

world’networks,” nature, vol. 393, no. 6684, pp. 440–442, 1998. [Online].

Available: https://doi.org/10.1038/30918

[53] S. Wasserman and K. Faust, “Social network analysis: Methods and applica-

tions,” 1994. [Online]. Available: https://doi.org/10.1017/CBO9780511815478

[54] J. Scott, Social network analysis. Sage Publications, 1992. [Online]. Available:

https://doi.org/10.4135/9781529716597

[55] L. C. Freeman, “A set of measures of centrality based on betweenness,”

Sociometry, pp. 35–41, 1977. [Online]. Available: https://doi.org/10.2307/

3033543

[56] L. C. Freeman et al., “Centrality in social networks: Conceptual clarification,”

Social network: critical concepts in sociology. Londres: Routledge, vol. 1, pp. 238–

263, 2002. [Online]. Available: https://doi.org/10.1016/0378-8733(78)90021-7

[57] U. Brandes, “On variants of shortest-path betweenness centrality and their

generic computation,” Social networks, vol. 30, no. 2, pp. 136–145, 2008.

[Online]. Available: https://doi.org/10.1016/j.socnet.2007.11.001

[58] V. Latora and M. Marchiori, “A measure of centrality based on the

network efficiency,” New Journal of Physics, 2007. [Online]. Available:

https://doi.org/10.1088/1367-2630/9/6/188

https://doi.org/10.1093/oso/9780198805090.001.0001
https://doi.org/10.1038/30918
https://doi.org/10.1017/CBO9780511815478
https://doi.org/10.4135/9781529716597
https://doi.org/10.2307/3033543
https://doi.org/10.2307/3033543
https://doi.org/10.1016/0378-8733(78)90021-7
https://doi.org/10.1016/j.socnet.2007.11.001
https://doi.org/10.1088/1367-2630/9/6/188


86

[59] K.-I. Goh, E. Oh, B. Kahng, and D. Kim, “Betweenness centrality correlation

in social networks,” Physical Review E, vol. 67, no. 1, p. 017101, 2003. [Online].

Available: https://doi.org/10.1103/PhysRevE.67.017101

[60] R. Guimera and L. A. N. Amaral, “Modeling the world-wide airport network,”

The European Physical Journal B, vol. 38, pp. 381–385, 2004. [Online].

Available: https://doi.org/10.1140/epjb/e2004-00131-0

[61] R. Guimera, S. Mossa, A. Turtschi, and L. N. Amaral, “The worldwide

air transportation network: Anomalous centrality, community structure,

and cities’ global roles,” Proceedings of the National Academy of Sciences,

vol. 102, no. 22, pp. 7794–7799, 2005. [Online]. Available: https:

//doi.org/10.1073/pnas.0407994102

[62] B. Luque, L. Lacasa, F. Ballesteros, and J. Luque, “Horizontal visibility

graphs: Exact results for random time series,” Physical Review E, vol. 80,

no. 4, p. 046103, 2009. [Online]. Available: https://doi.org/10.1103/PhysRevE.

80.046103

[63] L. Lacasa, B. Luque, J. Luque, and J. C. Nuno, “The visibility graph: A new

method for estimating the Hurst exponent of fractional Brownian motion,”

EPL (Europhysics Letters), vol. 86, no. 3, p. 30001, 2009. [Online]. Available:

https://doi.org/10.1209/0295-5075/86/30001
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