
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
ESCUELA DE POSTGRADO Y EDUCACIÓN CONTINUA

PREDICTION OF THE OPTIMAL GROWTH PH OF ACIDOPHILES BY
PROTEIN SEQUENCE ANALYSIS: A DEEP LEARNING APPROACH

TESIS PARA OPTAR AL GRADO DE MAGÍSTER EN CIENCIAS DE DATOS,

DIEGO NAHUEL CORTEZ MILÁN

PROFESOR GUÍA:
FELIPE TOBAR HENRÍQUEZ

MIEMBROS DE LA COMISIÓN:
ALEJANDRO MAASS SEPÚLVEDA

IVÁN SIPIRÁN MENDOZA

Este trabajo ha sido parcialmente financiado por:
Proyecto Basal FB0008.

SANTIAGO DE CHILE
2024

RESUMEN DE LA TESIS PARA OPTAR AL GRADO DE
MAGÍSTER EN CIENCIAS DE DATOS
POR: DIEGO NAHUEL CORTEZ MILÁN
FECHA: 2024
PROF. GUÍA: FELIPE TOBAR HENRIQUEZ

PREDICCIÓN DEL PH ÓPTIMO DE ORGANISMOS ACIDÓFILOS
MEDIANTE ANÁLISIS DE SUS SECUENCIAS PEPTÍDICAS CON DEEP

LEARNING

Las proteínas son moléculas formadas por una cadena de moléculas más pequeñas llamadas
aminoácidos. Las propiedades de cada proteína como su función, familia y propiedades fisi-
coquímicas están codificadas de manera compleja en su secuencia de aminoácidos. Algunas
proteínas son capaces de resistir condiciones extremas, como aquellas presentes en el envolto-
rio de microorganismos llamados acidófilos que viven en condiciones extremadamente ácidas
(pH <3). En este trabajo, se desarrollan modelos de deep learning para decodificar la re-
sistencia a ácido de las proteínas. Más de 150000 proteínas de envoltorio de organismos que
viven a pH 1 a 7 se utilizaron para entrenar múltiples modelos de regresión, desde modelos
lineales simples hasta modelos de NLP. Los resultados muestran que existen cambios en los
patrones de la secuencia aminoacídica de los proteínas a diferentes pH, los cuales reflejan
capacidades de resistencia a condiciones extremadamente ácidas. Los mejores modelos de
machine learning clásico fueron modelos de tipo gradient boosting entrenados en atributos de
las proteínas y codificaciones de transformer. El mejor modelo deep learning fue una nueva
arquitectura que combina LSTM y extracción de atributos mediante CNN y atención. Se
diseñó una heurística para predecir el pH óptimo de crecimiento de organismos unicelulares
en base a la agregación de las predicciones individuales de cada una de sus proteínas, con un
error absoluto medio de 0.61 unidades de pH. Estos resultados representan un importante
paso en el desarrollo de herramientas bioinformáticas para la caracterización de proteínas y
genomas.

i

ABSTRACT OF THE REPORT TO QUALIFY TO THE DEGREE OF
MASTER OF DATA SCIENCE
AND TO THE DEGREE OF INSERT ENGINEERING
BY: DIEGO NAHUEL CORTEZ MILÁN
DATE: 2024
PROF. GUÍA: FELIPE TOBAR HENRIQUEZ

PREDICTION OF THE OPTIMAL GROWTH PH OF ACIDOPHILES BY
PROTEIN SEQUENCE ANALYSIS: A DEEP LEARNING APPROACH

Proteins are molecules formed by a chain of smaller molecules called amino acids. The
properties of the protein are deep coded into its sequence, such as function, family and
physichochemical properties. Some proteins are able to resist extreme conditions such as
the envelope proteins of microorganisms that live at extremely acid conditions (pH <3)
called acidophiles. In this work, machine learning tools were developed to decode the acid
resistance of proteins. Over 150.000 envelope proteins from organisms that thrive at pH 1
to 7 were gathered to train multiple regression models from simple linear models to deep
learning NLP models. The results show that there are changes in the amino acidic patterns
across pH that are probable consequences of the proteins adaptation to resist extremely
acidic conditions. The best performing classical machine learning model was a gradient
boosting model trained on amino acidic features, transformer encodings and manual features
extracted from the proteins sequence. The best performing deep learning model was a novel
architecture that mixes a 2 layer LSTM, CNN layers for keys and values extraction, and
optimized attention mechanisms to extract multiple features from the LSTM outputs. An
heuristic was designed which permitted the prediction of the optimal growth of unicellular
organisms from the aggregation of the individual prediction of their exposed proteins, with
a mean average error of 0.61 pH units. These results represent an important step in the
development of bioinformatic tools for the characterization of proteins and genomes.

ii

Acknowledgements

Quiero agradecer a mi mamá y hermana Gaby por brindar el apoyo necesario en mi casa
para poder realizar este magister. A mi polola Nicole que con infinita paciencia me apoyó
y me brindó los espacios necesarios para desarrollar esta tesis y el magister. A mi hermano
Amaru quien me brindó ayuda en la teoría matemática y así poder nivelarme.

Quiero agradecer también a David Holmes, a quien debo la trayectoria que llevó al desar-
rollo de esta tesis. También al profesor Felipe Tobar que me guió en el proceso académico
y a crecer en el área del machine learning. A mis compañeros de magister con los que nos
acompañamos en las trasnochadas de los proyectos.

Por último, quiero agradecer a Alexandra Elbakyan, sin quien la ciencia no sería posible
en países como Chile.

iii

Table of Content

1 Introduction 1
1.1 Motivation . 1
1.2 Hypothesis . 2
1.3 Objectives . 2

1.3.1 General objective . 2
1.3.2 Specific objectives . 2

1.4 Contributions . 3

2 Background 4
2.1 Biological background . 4

2.1.1 Cell biology . 4
2.1.2 Biochemistry of proteins . 5
2.1.3 Acidophiles . 8

2.2 Machine learning algorithms . 9
2.2.1 Non-deep learning algorithms . 10
2.2.2 Deep learning . 12

2.3 Machine learning on proteins . 16
2.3.1 Classical machine learning on proteins . 16
2.3.2 Deep learning on proteins . 16

2.4 Methodological approach . 17

3 Methods 19
3.1 Dataset . 19

3.1.1 Proteomes and bioinformatic features . 19
3.1.2 Protein selection . 19
3.1.3 Other features . 20

3.2 Deep feature extraction . 20
3.2.1 Secondary structure prediction . 20
3.2.2 Protein autoencoding . 20

3.3 Data preparation . 20
3.3.1 Datasets split . 20
3.3.2 Feature preprocessing . 20

3.4 Exploratory analyses . 21
3.4.1 Gaussian smoothing . 21
3.4.2 Feature exploration . 22

3.5 Machine learning . 22

iv

TABLE OF CONTENT TABLE OF CONTENT

3.5.1 Sample weights . 22
3.5.2 Metrics . 23
3.5.3 Classical machine learning models . 24
3.5.4 Deep learning models . 25

3.6 Organism predictions . 27

4 Results 28
4.1 Dataset Description . 28
4.2 Exploratory Data Analyses . 28

4.2.1 Amino acid composition . 30
4.2.2 Secondary structure . 31
4.2.3 Transformer autoencoder output . 33
4.2.4 Other features . 34
4.2.5 Bivariate analysis . 36

4.3 Classical machine learning models . 37
4.3.1 Ridge regression . 37
4.3.2 Random forest . 37
4.3.3 Gradient boosting . 39

4.4 Deep learning models . 41
4.4.1 Model history . 41
4.4.2 LSTM with attention models . 41
4.4.3 Attention features models . 44
4.4.4 CNN attention . 46

4.5 Organisms predictions . 49
4.5.1 Model selection . 49
4.5.2 Heuristic definition . 49

5 Discussion 51

6 Conclusions and future work 54

Bibliography 55

v

List of Tables

4.1 Metrics of Ridge regression models . 39
4.2 Metrics of random forest models . 39
4.3 Metrics of gradient boosting models . 40
4.4 Model architecture history . 42
4.5 Metrics and training epochs of the deep learning models 43
4.6 Results of models that were further trained with undersampling 44
4.7 Metrics of organism averages . 49
4.8 Organisms pH predictions with different heuristics 50

5.1 Prediction metrics across subcellular localization 53
5.2 Prediction metrics of proteins with different signal peptides 53

vi

List of Figures

2.1 Cell and molecular biology schematics . 5
2.2 Protein structure . 6
2.3 Amino acids compositions and classification . 7
2.4 Acidic hot spring where acidophiles thrive . 9
2.5 Random forest . 11
2.6 Gradient boosting . 11
2.7 Deep learning architecture . 12
2.8 Recurrent neural network architecture . 13
2.9 LSTM architecture . 13
2.10 Convolutional neural network architecture . 14
2.11 General attention mechanism . 15
2.12 Transformer architecture . 16

3.1 Architecture of the proposed attention feature extraction layer 26
3.2 Architecture of the proposed CNN attention feature extraction layer 27

4.1 General genome and proteome distributions of the dataset 29
4.2 Protein attributes distribution . 30
4.3 Amino acid frequency distribution . 31
4.4 Amino acid composition across pH . 32
4.5 Secondary structure distribution . 32
4.6 Secondary structure composition across pH . 33
4.7 ProtBERT embeddings exploratory analyses . 34
4.8 ProtBERT embeddings distribution across pH . 35
4.9 Other features distribution . 35
4.10 Other features across pH . 37
4.11 Bivariate correlation matrix analysis . 38
4.12 Rdge regression hyperparameters optimization . 38
4.13 Ridge regression results . 39
4.14 Random forest result . 40
4.15 Gradient boosting models result . 40
4.16 Best performing deep learning models results . 45
4.17 Best LSTM with attention model architecture . 46
4.18 Best attention features architecture . 47
4.19 Best CNN attention architectures: model 23b . 47
4.20 Best CNN attention architectures: model 24 . 48
4.21 Genome average predictions . 49

vii

LIST OF FIGURES LIST OF FIGURES

4.22 Hyperparameter search for organisms’ predictions 50

viii

Chapter 1

Introduction

1.1 Motivation

Bioinformatics is an area of biology in which living organisms are studied using the informatic
analysis of high-volume data that contains information about the biological traits of the organisms.
Specifically, this involves the analysis of sequence data such as the genomic DNA sequence and
the protein sequence, structure data such as protein structure, and genetic expression arrays [90].
This study revolves around protein sequence analysis.

A genome is the collection of all the DNA sequences that are located inside each cell of an or-
ganism. Together, they contain most of the information necessary to identify and virtually recreate
all the molecular and, indirectly, non-molecular characteristics of the organism. These sequences
are composed of subunits and can be over 1011 characters long, storing 2 bits of information in
each. The analysis of such high-volume data requires the development of efficient computational
algorithms and methods for obtaining, searching, comparing, and analyzing them to mine valu-
able information that describes genomic traits of the organism. The now-not-so-recent boom in
high-throughput sequencing technologies along with the exponential growth of genomic databases
allows for ever increasing availability of the genomes of the organisms known to science [80].
This, together with the development of highly efficient bioinformatic tools and publicly available
genome repositories, enables the possibility of studying organisms without the need for expensive
and time consuming biochemical or biological studies. The usefulness of bioinformatics then relies
on how accurate is the prediction of biological traits from the genome of an organism, for which
the training of accurate machine learning models is crucial.

This study focuses on proteins, which play a pivotal role in the expression and processes of biolog-
ical functions [79], and are the primary effectors of the genes that carry the organisms’ information
across generations. The proteins’ sequence is unambiguously encoded in the DNA sequence, mean-
ing there is a direct translation from DNA to protein sequence. The characteristics of the proteins
are in turn encoded in the protein sequence. However, these are encoded in a complex way which
has not been fully understood. One of these protein traits is the capacity to resist extreme pH condi-
tions, particularly extremely low pH (acid). Some proteins are naturally exposed to extremely low

1

1.2. HYPOTHESIS CHAPTER 1. INTRODUCTION

pH and are able to persist in their unaltered conformation where other proteins can’t. This is the
case of the proteins of acidophilic microorganisms, which are microorganisms that grow optimally
at low pH [3].

The main goal of this study is to be able to decode the acid resisting capabilities of proteins encoded
in the protein sequence using machine learning, deep learning, and NLP tools.

1.2 Hypothesis

In this study the following hypotheses will be explored and tested:

• It is possible to predict the pH at which the proteins are naturally exposed to from their amino
acidic sequences with less than 1 pH units of absolute error.

• The optimal growth pH of unicellular microorganisms can be predicted by aggregating the
individual predictions of their proteins with less than 0.5 pH units of absolute error.

1.3 Objectives

1.3.1 General objective

The main objective of this thesis is to explore and compare classical machine learning algorithms
and deep learning architectures to train models that estimate the acid resistance capabilities of
proteins, and permit the characterization of their respective source organism in terms of optimal
growth pH.

1.3.2 Specific objectives

The specific objectives of this thesis are the following:

1. To obtain a dataset of proteins exposed to the extracellular pH of bacteria and archaea that
have optimal gwoth pH from pH 0 (acidic) to pH 7 (neutral).

2. To extract relevant features of the proteins using existing machine learning models and bioin-
formatic tools to permit higher accuracy in the obtained models.

3. To explore the protein attributes in relation to their associated pH and test whether there are
differences at different pH.

4. To train regression models that predict the optimal pH of the source organism of an exposed
protein from its sequence by exploring classical ML models that use features as input and
deep learning architectures that use the amino acid sequence, selecting the model with best
performance.

5. To design a heuristic to estimate the optimal pH of an organism from the individual prediction

2

1.4. CONTRIBUTIONS CHAPTER 1. INTRODUCTION

of each of its exposed proteins.

1.4 Contributions

The main contributions of this thesis are the following:

• The determination of which traits correlate or are good predictors of the pH a protein can
resist.

• A bioinformatic method to predict the acid resistance capabilities of a protein from its se-
quence.

• A pipeline of bioinformatic methods that permits the estimation of the optimal growth of an
organism from its genomic sequence, thus allowing for characterization of organisms without
the need for laboratory cultures.

• The design and testing of novel deep learning architectures for the processing of protein data
and potentially human language.

• The availability of multiple Python modules for the design and training of diverse deep learn-
ing architectures.

• The exploration and testing of training methods and metrics for the handling of unbalanced
data in regression problems.

3

Chapter 2

Background

2.1 Biological background

Prior to diving into this thesis’ core topics, the general biological concepts necessary to understand
the context of this work will be shortly overviewed.

2.1.1 Cell biology

The cell is the principal physiological and reproductive unit of all living organisms [91]. The
most basic living organisms, the unicellular organisms, are only composed of a single cell, while
the most complex organisms like animals and plants are muilticellular organisms, meaning they
are composed of multiple cells [92]. Cells can multiply by cloning themselves, producing tissue
growth in multicellular organisms and permitting the organisms’ reproduction in both multicellular
and unicellular organisms.

Physically, cells are aqueous compartments typically in the micrometer scale (10−6 m) which are
surrounded by the cell membrane (Fig. 2.1A). The cell membrane is a lipidic bilayer composed
mainly of phospholipids [91, 92]. In simple terms, cells are microscopic water droplets coated in
a thin oil layer. These water droplets are self-sustained by a complex chemical machinery called
the cell’s metabolism which regulates the membrane’s stability and permeability, the cell’s repro-
duction, feeding and motility, the internal environment’s homeostasis and even the processing of
information [93]. This unlikely machinery operates by multiple components working simultane-
ously, which in turn feed on the energy produced by the metabolism itself. This defines a delicate
stability well – life itself – where if one component fails, the whole system collapses, thus defining
the concepts of death and self-sustainable autopoiesis [94].

The organism’s gemome can be found inside the cell, either inside the cell nucleous in complex
(eukaryotic) cells such as animal cells, or suspended in the cytoplasm (the cell’s internal environ-
ment) in simple (prokaryotic) cells such as bacteria and archaea [92]. The genome of an organism
is one or several DNA molecules which contain the information to recreate all cellular functions
and, at least in unicellular organisms, encode all the characteristics of the organism [97]. It is a

4

2.1. BIOLOGICAL BACKGROUND CHAPTER 2. BACKGROUND

Fig 2.1: A) A schematic representation of a gram-positive bacteria, which have a cell wall. Gram-negative bacteria, on the other
hand, have a double membrane and periplasmic space. B) A schematic representtion of the central dogma of molecular biology.
Adapted from [120].

long double strand of smaller molecules called nucleobases or nitrogenous bases, of which there
are 4 types: adenine (A), cytosine (C), guanine (G), cytosine (C) and thymine (T) [95, 96]. Then,
the DNA can be represented as a long string of 4 possible characters with variable length. The
genome of an organism can be from about 1 million (106) bases long in some bacteria up to about
150 billion (1.5 · 1011) bases long in some trees [10, 11].

The genome is subdivided into informational units called genes. Each gene encodes a different
biological function or subfunction, which is effectuated in a process called gene expression [96].
In this process, each gene produces different proteins, which play different cellular functions that
vary depending on the protein’s family and structure (Fig. 2.1B).

2.1.2 Biochemistry of proteins

Proteins are biomolecules involved in most biological functions [79]. Like DNA, proteins are
long molecules formed by smaller subunits called amino acids. The amino acids are linked by
molecular bonds in a chain-like pattern. There are 20 different types of amino acids, so a protein
can be represented by a string of 20 types of characters of variable length. Proteins from unicellular
organisms are typically between 50 and 600 amino acids long but can be over 2000 amino acids
long [12].

Proteins are encoded in the DNA in an unambiguous manner. Every string of 3 consecutive DNA
nucleobases (codon) encodes a single amino acid. As there are 43 = 64 codon combinations, this
translation from DNA to proteins is redundant. The same codon will always encode the same amino
acid [98]. The process in which proteins are created from the information present in genes is called
translation [96].

Protein structure

The protein structure is defined in 4 levels: primary, secondary, tertiary and cuaternary structure
(Fig. 2.2). The chain of amino acids that forms a protein is its primary structure, as it indirectly
defines all the features of the protein. After being created, the proteins fold in a hierarchical way,

5

2.1. BIOLOGICAL BACKGROUND CHAPTER 2. BACKGROUND

Fig 2.2: Structure of a protein. The 3-dimensional structure of a protein is represented in 3 visualization modes. Left visualization
shows the backbone of the amino acidic chain, where the secondary structure is represented as helices for the alpha-helices and
arrows for the beta-sheets. Middle visualization shows the volume of each atom, while the rightmost visualization shows the
rendered atomic surface of the protein. Taken from [117]

first folding locally in micro-folding patterns that define the secondary structure of the proteins. The
tertiary structure is the subsequent macro-folding that gives proteins a 3-dimensional configuration
and is correlated with function [99]. The cuaternary structure refers to the aggregation of multiple
folded protein molecules into a single functional unit, and will not be further addressed in this
thesis [100].

The secondary structure is simple enough to be coded in 3 possible configurations, each of which
presents in individual protein segments: alpha helices which are spiral like patterns, beta sheets
which are paralelly aligned strands, and loops or coils which are segments with no folding pattern,
where the amino acids have more freedom of movement [101, 99]. A single protein can have
multiple segments with different secondary structures. The tertiary structure, on the other hand, is
far more complex and virtually every type of protein has a different tertiary structure, where some
common motifs called domains are observed [102].

The protein undergoes folding due to the physicochemical interactions between the amino acid and
the medium or between themselves [103] (Fig. 2.3). Most amino acids are neutral and non-polar
(A, V, I, L, M, F, Y, W, P and G) and will “repel” the water molecules of the medium and hence
have a propensity to be in the inside of the protein. Other amino acids are neutral and polar (S, T,
N, Q and C) and will form hydrogen bonds with water molecules and between themselves and are
hence most abundant in the protein surface. Lastly, some amino acids are charged either positively
(K, R and H) or negatively (D and E) and will either interact with water, ions or form strong ionic
bonds between themselves conferring the protein with greater stability [106, 93].

The structure of a protein is mainly derived from its amino acidic sequence, as the same sequence
will normally generate the same 3-dimensional structure [103, 99, 76]. However, the ab-initio
sequence-to-structure translation is complex and has been unresolved until transformer-based deep
learning methods arose [88, 87]. The most common way to bioinformatically determine the struc-

6

2.1. BIOLOGICAL BACKGROUND CHAPTER 2. BACKGROUND

Fig 2.3: Amino acids compositions and classification. Taken from [118]

ture of a protein is to perform homology modelling, which involves adapting the structure of an-
other protein that had its structure determined empirically and has high sequence similarity to the
target protein [104]. This is possible because proteins, like DNA, undergo evolution by mutation to
acquire novel functions [105]. Proteins that diverged relatively recently from a common ancestor
will likely have a very similar 3-dimensional structure and function.

Protein function

Proteins play diverse roles in the cell’s complex internal machinery. Proteins can be structural com-
ponents, permit chemical reactions that define the cell’s metabolism, process information, transport
molecules across the cell membrane, control gene expression and DNA division, and a plethora of
other functions which comprise almost the totality of cellular functions [107]. The biological func-
tions of proteins are, like their structure, complexely coded into their amino acid sequence. Proteins
with high similarity will likely have the same function and have similar structures. To this extent,
the distribution of protein sequences is far from uniform, as for most proteins there are numerous
other slightly or highly similar proteins, even in evolutionarily distant organisms, called homolog
proteins [105]. This defines the concept of protein family, which is a cluster of similar (homolog)
proteins with a similar or identic function. There are multiple coding systems for protein families,
such as PFAM, COGs, PRK, TIGRFAMs, etc, which use different criteria for the definition of pro-
tein families [71, 72]. Determining the function of a protein from its sequence is called functional
annotation and is usually achieved with sequence similarity methods or with methods derived from
NLP such as HMM [1, 4, 71].

Protein properties

In addition to the protein structure and function, proteins have physical properties that define their
behavior and stability. Mainly, the molecular weight of a protein is the sum of the mass of all the
atoms present in the protein molecule.

Proteins can be charged. The charge of a protein is the sum of the individual charges of its amino
acids. The charge of a protein affects how it interacts with other proteins and with DNA, its func-
tion, and its localization [13, 14]. However, the charge of a protein changes with pH, as negative
amino acids become neutral at acidic pH and positive amino acids become neutral at basic pH.

7

2.1. BIOLOGICAL BACKGROUND CHAPTER 2. BACKGROUND

Then, there is a pH at which a protein is uncharged, which is the isoelectric point of the protein
[108].

Proteins can also have different water interacting properties. The proteins can be more hydrophilic
(high water affinity) or hydrophobic (low water affinity), depending on their amino acid compo-
sition and disposition [109]. The hydrophobicity of a protein affects its location (hydrophobic
proteins are more likely found embedded in the cell membrane), its stability, and its protein-protein
interaction properties [110, 111, 112].

Proteins can have different stability properties when facing different physicochemical factors. Ex-
treme conditions such as high or low temperature, high or low pH or high salinity normally cause
loss of function or even the unfolding or denaturation of proteins [61]. However, some proteins
can resist or even prefer extreme conditions [59, 60]. For instance, a protein can be thermostable
if it can maintain its folding at high temperatures, or thermophilic if it functions more efficiently
at high temperatures [63]. Low temperature usually causes the proteins to function poorly or even
denaturate, but cold-resistant proteins can function properly at low temperatures [64]. On the other
hand, pH extremes change the ionic proterties of amino acids which affects the charge of the pro-
teins, possibly resulting in denaturation [65, 67]. Proteins can be acidophilic or alkaliphilic if they
are able to resist and have improved function at low or high pH, respectively.

2.1.3 Acidophiles

Both multicellular and unicellular organisms need specific conditions for optimal growth. Usually,
these conditions range around very common or normal levels: around 37°C, neutral pH, 1 atmo-
sphere of pressure, etc. However, some organisms, particularly unicellular organisms, are adapted
to extreme conditions to the point they need extreme conditions to grow optimally. Such is the case
of extremophiles, which are organisms that withstand different types of extreme conditions [53].
Some extremophiles can resist high temperatures, (> 100 °C), low temperatures, high salinity, high
pressure, high pH (alcaline) or low pH (acidic).

This work focuses on the study of acidophiles, which are organisms that live at extremely low pH
(< 3)[3, 54]. Acidophiles can be found in both natural and artificial acidic environments, such as
marine hydrothermal vents, natural acidic pools like those found in the yellowstone national park
(Fig. 2.4), and even acid mine drainages of copper mines. Acidophiles and can even be used in
mining operations to recover metals in a process called bioleaching [113, 114]. At these extremely
low pH values, the concentration of protons in the medium is so high that the non-resistant organ-
isms will become essentially cooked, as their proteins are denaturated. There are several known
acid resistence mechanisms characterized in highly studied organisms such as Escherichia coli that
have also been found in acidophiles, and have been hypothesized to bestow them with resistance
to acidic environments [55, 56, 5]. Amongst them, a membrane highly impermeable to protons,
transporters that pump protons out of the cell, cytoplasmic buffering of protons and pH damage
repair mechanisms have been proposed as acid resistance mechanisms for acidophiles. However,
direct evidence of this is lacking. Therefore, it’s unknown which genomic traits are determinant for
the acidophilic phenotype.

Acidophilic proteins

One of the main reasons why extremely low pH is damaging to the cells is that it affects the proteins
of an organism. As it was exposed in the previous sections, extreme conditions such as low pH can

8

2.2. MACHINE LEARNING ALGORITHMS CHAPTER 2. BACKGROUND

Fig 2.4: Morning glory pool from the yellowstone national park, where multiple acidic hot springs are the home of thermoacidophilic
microorganisms. Taken from [119]

produce the denaturation of proteins, that is, their unfolding and loss of function [65, 61]. The
inside of the cell or internal environment of unicellular organisms (the citoplasm) is usually close
to neutral pH (pH 7), even if that organism is an extreme acidophile [57]. On the other hand, the
space between membranes called periplasm, which can be found in gram-negative bacteria (most
bacteria) has low pH in acidophiles [58]. This implies that, in acidophiles, the proteins located in
the periplasm, outer membrane and exported to the outside of the cell are exposed to extremely
low pH. On the other hand, proteins embedded in the inner membrane of the cell are only partially
exposed to low pH.

As these microorganisms are resistant to low pH, so should, in theory, all their exposed proteins be
[67, 66]. The main challenge of acidophilic proteins is that below pH 3.7, the 2 negative amino acids
glutamic acid (E) and aspartic acid (D) become protonated, as their proton dissociation constants
(pKa) are 3.71 and 4.15, respectively [68]. This causes them to lose their negative charges, which in
turn disrupts the protein’s capacity of forming strong structure-stabilizing ionic bonds, effectively
impairing the stability of the protein.

Several mechanisms have been proposed to confere acidophilic proteins with acid resistance. For
instance, the periplasmic proteins of Acidihiobacillus ferrooxidans have a marked basic shift, as
over 70% of the proteins have high (basic) isoelectric points and therefore are positively charged
at neutral pH [6]. A similar remark has been made on other acidophilic proteins and has been
proposed as an acid adaptation mechanism [8, 70]. However, a lower (acid) isoelectric point (the
opposite adaptation) has also been suggested as an acid resistance adaptation in acidophilic proteins
[66, 69]. Therefore, the traits that allow a protein to resist extremely low pH are yet still unknown.

2.2 Machine learning algorithms

In this thesis, multiple machine learning algorithms were used to predict the pH associated with
proteins in base of their sequence and several features. As the target variable is a continuous
variable (pH), the models described in this section are regressors.

9

2.2. MACHINE LEARNING ALGORITHMS CHAPTER 2. BACKGROUND

2.2.1 Non-deep learning algorithms

This section refers to the machine learning algorithms used in this thesis that are not deep learning,
which will be subsequently referred to as classical machine learning or conventional machine learn-
ing [15]. Classical machine learning algorithms are usually suitable for tabular data with thousands
of data instances, while deep learning is more suitable for complex unstructured data with millions
of data instances.

Ridge regression

Ridge regression is a variation of the ordinary least squares regression (OLS) where an L2 cost is
added to the model’s parameters to deal with the multicollinearity problem and reduce over-fitting
[17, 18]. In ridge regression, the loss function is given by

Jp = ||Y − X̃θ||22 + ρ||θ||22 (2.1)

Where Y is the target variable, θ are the model parameters and ρ is the regularization hyperpa-
rameter that controlls the strength of the L2 regularization. A higher value of ρ imposes a higher
quadratic cost on the parameters which can yield more regularized models. The value of the pa-
rameters θ that minimizes the loss function Jp can then be directly obtained with the following
expression:

θ =
(
X̃⊺X̃ + ρI

)−1

X̃⊺Y (2.2)

Random forest regression

The random forest regression method is a type of bagging machine learning algorithm composed
of multiple decision tree regressors [19]. A single tree is a machine learning method that performs
recursive splitting of the data in consecutive nodes to achieve accurate predictions. In each node,
the feature that best discriminates the target value is selected, and a threshold (if the feature is
numeric) or category (if the feature is categoric) is defined to split the data in 2 sets. For each
set, a single prediction of the target variable is performed using the average of the target varable.
Each set can then be consecutively splitted for higher accuracy [20]. This process can be perfomed
indifenitely until a perfect prediction is achieved in the training data. However, this will usually
result in over-fitted trees, as a tree with a high number of nodes will eventually capture the specific
details of the training data (data memorization).

Random forests circumvent this issue by training many decision trees [21]. Each individual tree
of a random forest is different to a standalone decision tree model, as the random forest trees are
usually weak simple predictors that are trained on a subset of the data and for which only a subset
of the features is searched for the best split in each node. This results in more regularized models,
where each tree is impaired and biased, but the expected tree performs an unbiased prediction. The
prediction of the forest is then the avereage of all the trees predictions (Fig. 2.5). This method
captures the underlying distribution of the data and target variable better than individual trees (even
pruned), and produces better predictions on out-of-sample data (test data).

10

2.2. MACHINE LEARNING ALGORITHMS CHAPTER 2. BACKGROUND

Fig 2.5: Schematics of the random forest regressor algorithm. Taken from [121]

Fig 2.6: Diagram of the boosting machine learning algorithm. Adapted from [116]

Boosting

The bagging models such as random forest are a reliable alternative to reduce overfitting, as many
impaired models will collectively capture the general distribution of the data and the rules to clas-
sify most data points. For bagging models, this is done by randomly selecting data points in the
training of each sub-model. Instead, boosting models [34] accomplish this in a more guided pro-
cess, where models are specifically designed to be biased towards usually misclassified data points.

Boosting models, just as bagging models, are composed of multiple ”weak” predictors. Usually,
these are 1 or 2 node decision trees, for which the prediction is averaged or weighted in the final
prediction step. However, this is done by giving additional weight to points with higher error rates,
thus forcing the models to be impaired in an iterative way. One of the earliest and most pivotal
boosting models, AdaBoost [35], applies the following algorithm: First, a base model is trained in
a standard way, where all data points have the same weight. Next, weights are recomputed by giving
misclassified points (or otherwise points with a higher error rate for regression models) additional
weight. Then, consecutive models are trained using these modiffied sample weights, which lowers
the error rates on data points that previously had higher error rates. Then, the weights are again
re-computed and the process is repeated a set number of iterations. For the final prediction, the
individual predictions are linearly combined by giving additional weight to models with a better
overall performance (Fig. 2.6). This process forces models to be impaired and biased towards a
subset of points that deviate from the general data distribution, or simply put, points that are hard
to classify. On the other hand, bagging models expect this to happen from random subsampling.

11

2.2. MACHINE LEARNING ALGORITHMS CHAPTER 2. BACKGROUND

Fig 2.7: Schematics of the architecture of a deep learning model. Adapted from [122]

A subset of boosting models are called the gradient boosting model [34]. For these models, instead
of training on a re-weighted dataset, consecutive weak predictors are trained on the residuals of the
prediction of the previous iterations, such as when the predictions are added they should converge
to the target values. This is done iteratively using a learning rate such that the expected value of the
additve model does not immediately converge to the target values, but does after several iterations.
A variant of this type of boosting models is LightGBM [16], a boosting algorithm optimized for
large datasets that estimates the information gain more efficiently by using a small sample of the
data for better performance, producing nearly identical results as greedy boosting algorithms nut
with a training process that is over 20 times faster.

2.2.2 Deep learning

Deep learning algorithms are a popular type of machine learning algorithms which are based on
neural networks [36]. The principle behind these type of models is that key features for the pre-
diction are calculated automatically as combinations of the different dimensions (or features) of
the original data or of other automatically learned features, instead of manually as it is in classical
machine learning. The most basic deep learning architecture is the multi-layer perceptron (Fig.
2.7) (MLP). In the MLP, all the original dimensions of the input data are linearly combined with
weights present in the model’s parameters to obtain a single feature of the first hidden layer, which
is called a neuron. This is done multiple times to obtain all the different neurons of the first hidden
layer. This is called a fully-connected or linear layer. Fully-connected layers are then consecutively
applied to obtain the neurons of the second hidden layer by combining the neurons of the first hid-
den layer and so on for the next layers. The last layer, the output layer, contains the prediction
of the model. In each step, a non-linear function (the activation function) is applied to the layer
output, which allows capturing non-linear relations and permits information processing.

Deep learning models are optimal for complex data structures such as images, audio and language.
Specific, optimized deep-learning architectures exist for each type of problem and data structures,
which involves a more directed information processing rather than comparing all data dimensions
between themselves as it is in the multi-layer perceptron.

12

2.2. MACHINE LEARNING ALGORITHMS CHAPTER 2. BACKGROUND

Fig 2.8: Architecture of a typical RNN. xt, ht and ot represent the embedding of the input, the hidden state, and the output at state
t. Taken from [123]

Fig 2.9: LSTM architecture. Taken from [124]

Recurrent neural networks

Recurrent neural networks (RNNs) are a type of neural network specialized for recursive data struc-
tures such as language and time series data [37]. In the RNN, the input x is a series of tokens with
varying length. For each token xi, a different embedding is learned, which is a semantic represen-
tation of the information contained in each token. The embeddings are then subsequently passed to
the RNN, which contains a hidden state vector hi. In each step, the embedding vector of the token
xi is concatenated to the hidden state vector hi, and a fully-connected layer is applied to the con-
catenated vector, producing the next hidden state hi+1 as output by matrix multiplication with the
network’s parameter matrix (Fig. 2.8). Additionally, a token-wise output oi can also be produced
in each step when necessary. The hidden state hi of the RNN represents the contextual information
of the text up to the i-th token, and in the final hidden state hn it represents the information of
the whole document. The final hidden state can be then concatenated to fully connected layers,
similarly to an MLP architecture, to then perform document classification or regression.

The regular RNNs suffer from the vanishing gradients problem [38]. That is, after several recursive
iterations, the gradient derived from the first tokens vanishes. This causes the the final state of the
hidden layer and therefore the output to mostly depend on the last tokens. The LSTM is a subtype
of RNN that has been designed to address the vanishing gradient problems of conventional RNNs
[39]. Besides of containing the RNNs’ hidden state, the LSTMs contain memory blocks which are
connected to the cell’s hidden state through the forget gate (Fig. 2.9). This allows for a part of the
information to be retained across multiple iterations of the RNN.

13

2.2. MACHINE LEARNING ALGORITHMS CHAPTER 2. BACKGROUND

Fig 2.10: Architecture of 1-dimensional CNNs for text classification. Taken from [125]

Convolutional neural networks

Convolutional neural networks (CNNs) are a sub-type of neural network where the data or features
located next to each other are compared using a set-sized kernel that performs the convolution
operation [41]. The CNNs were initially designed for image classification, where a 2-dimensional
kernel compares the nearby pixels to obtain an activation map of the image which is max-pooled
and then passed through consecutive CNNs to obtain a final representation vector of the image (Fig.
2.10). In text document classification and named entity recognition problems [40], this is done with
a 1-dimensional convolution, where the embeddings of the nearby tokens are concatenated and
processed with linear layers that output a set of channels for each position of the document. This is
done by performing matrix multiplication between the layer’s weights and a vector of the relative-
position-specific concatenated embeddings (Fig. 2.10). This process is repeated by centering the
kernel on every token, each time outputing c channels.

More specifically, for an input x composed of n tokens with embedding size k (shape of x is n×k),
and a kernel size s, a single convolution operation on the i-th word performs matrix multiplication
between the vector of size k · s composed by the concatenation of [xi, xi+1, ..., xi+s] by the layer
weights W (k·s)×c which outputs the channels Cc

i . When applied to i = [1, 2, ..., n] (if padding is
used), the overall output has the shape n × c. Finally, a max-pooling is applied across the token
dimension, producing an outupt vector of shape c which can be processed with linnear layers to
produce a single output per-document. The spirit behind using CNNs for text classification is to be
able to automatically learn the relevant n-grams for the task, where the max learnable n-gram is the
kernel size s.

Attention

Attention is currently one of the most important concepts in the deep learning field [42]. It is
inspired by the biological systems of humans that tend to focus on the distinctive parts when pro-
cessing large amounts of information.

The general mechanism of attention layers or attention-based models is summarized in Fig. 2.11.
The inputs for the attention layer are series of embeddings of shape n × k, similar to the input of
an RNN or any text-based deep-learning model. The embedding size k must be pre-defined but the
number of embeddings n (or document length) can be of variable length. The attention layer takes
two n×k shaped inputs: The keys and the values. In simple words, the keys determine the weights
for the linnear combination of the values. In a single attention operation, a f function takes every

14

2.2. MACHINE LEARNING ALGORITHMS CHAPTER 2. BACKGROUND

Fig 2.11: General attention mechanism. Addapted from [42]

key and a query vector (usually learnable) to extract the weights to linearly combine the values.
One of the most common attention mechanisms used is dot-product attention, where f is the dot
product of the key and query. The keys and values are defined separately, but can be the same
vectors.

The attention mechanism allows for capturing directed contextual information from the embed-
dings. In machine translation, attention between the current hidden state and the hidden states of
the encoding has been used to extract additional contextual infromation for the translation of each
token than can be compressed in the encoder output [43]. Attention mechanisms have also been
used for text classification and sentiment analysis as a means to construct a more efficient document
representation [44]. Attention mechanisms can even be applied to computer vision, where a spatial
atention models learns the part of the image that the network should focus on [45].

Transformers

Transformers are one of the most successful deep learning architectures and the current state-of-the
art in generative models for both text and images. They were first proposed on the topic of NLP in
2017 [46]. The transformer was the first model based solely on self-attention mechanisms, where
the keys, values and even queries are all derived from the input embeddings using simple linear
layers. In a single multi-head attention layer, the keys of all input tokens are compared with the
queries of all input tokens to obtain the weights to combine all the values separately for each to-
ken by scaled dot-product attention (Fig. 2.12). The positions of every token in the sequence are
encoded and concatenated to their vectorial representations (embeddings) with positional encod-
ing. Otherwise this architecture would be position insensitive, as the positional relation of tokens
from either CNNs or RNNs is absent. This multi-head attention layer can be performed multiple
times to extract different features, and even with multiple layers of depth, making the transformer
architecture one of the largest to date.

The transformer architecture has achieved great success in many artificial intelligence fields, such
as natural language processing, computer vision, and audio processing [47, 51]. Natural language
processing was the starting point of transformers and continues to be one of its main applications.
The Bidirectional Encoder Representation from Transformers (BERT) is one of the most populars
transformer-based NLP tools, suitable for tasks like document-wise or token-wise classification,
and has between 110 million (base) and 340 million (large) parameters [50, 49]. The recent ex-
plosion in deep generative transformer-based models like ChatGPT [48] and the use of difussion
models for image generation [52] have achieved the level of performing human-like data genera-
tion.

15

2.3. MACHINE LEARNING ON PROTEINS CHAPTER 2. BACKGROUND

Fig 2.12: Transformer architecture. Adapted from [46]

2.3 Machine learning on proteins

There is currently a large number of softwares and algorithms for protein analysis based only on its
amino acid sequence. As previously stated in earlier sections of this thesis, most protein analysis
softwares use sequence-similarity-based or rule-based algorithms [1, 72, 2].

2.3.1 Classical machine learning on proteins

Several classical machine learning and NLP algorithms have been widely used for protein char-
acterization. Hidden markov models have been applied to both classification of proteins and ex-
traction of features from the sequence of a protein [4, 73, 74]. Machine learning has been used
to predict both protein function and structure [76, 77]. SVM has been used to predict protein iso-
electric point [78]. Feature extraction coupled with machine learning classification techniques has
been used to classify thermophilic proteins and several types of extremophilic proteins [62, 75], not
including acidophilic proteins.

Machine learning has also been used to classify the cytoplasmic proteins of acidophiles from their
non-acidophilic homologs [81]. However, as only 6 organisms were used, it is possible the models
captured specific traits of those organisms’ proteins. Additionally, cytoplasmic proteins are not
exposed to low pH, so they are not acidophilic proteins.

2.3.2 Deep learning on proteins

In the past decade, there has been a boom in deep learning techniques applied to protein charac-
terization. Several NLP DL architectures have been applied to protein sequence analysis. CNN

16

2.4. METHODOLOGICAL APPROACH CHAPTER 2. BACKGROUND

based models have been used for tasks as simple as isoelectric point estimation [82]. Deep learn-
ing models have been used to predict protein interfaces of interaction using graph convolutional
networks [83]. Attention-based CNN-LSTM networks have been developed for compound based
interactions prediction [84]. LSTM based models and even CNN-LSTM based models have been
used to predict the secondary structure of proteins [25, 86]. LSTM based models have also even
been used to predict thermophilic traits of the proteins [85].

Proteins have also been the target of transformer-based large models. Most notoriously, the Al-
phaFold model permits the accurate prediction of a protein’s 3-dimensional structure using only its
sequence [87]. This problem is called ab-initio structural prediction, which has been historically
considered an unsolevd problem before AlphaFold [88]. Different types of complex transformer-
based protein encoders resembling the BERT language model have also been developed, such as
the ProtBERT model [26, 89]. Even generative transformer-based models have been developed.
This is the case of ProtGPT2 [9], a model trained on almost 50 million proteins that the authors
claim can sample from unseen regions of the protein space (but that are valid proteins according to
several criteria).

2.4 Methodological approach

The ulterior motivation of this thesis is to be able to develop a model or algorithm that predicts the
optimal growth pH of an organism using only its genomic sequence as input. This includes using
all features that can be obtained with high accuracy from the genome, such as the proteome and
subsequent protein annotations.

This could be accomplished with machine learning by using genomic traits such as the presence
of certain genes, genome length, GC content (nitrogenous bases frequency), codon usage, genome
packaging indicators, or even deep learning language models to classify the genomes. However,
genomes are high dimensionality data, as a single genome is usually well over 106 nitrogenous
bases. Even if a smart feature preprocessing is performed to reduce over-fitting, there are only
hundreds of acidophilic species known.

While these issues could be approached with feature engineering, there is still a major problem:
there is no guarantee that novel groups of acidophiles to be discovered in the future will share the
characteristics of the current acidophiles. Even by performing an efficient model regularization, we
can only speculate the features we are using to distinguish acidophiles from non acidophiles are
universal acidophilic features.

However, we can posit that all the exposed proteins of an acidophiles should be able to resist low
pH. If this genome classification problem is then transformed into a protein classification prob-
lem, all the issues here exposed are taken into account. The data dimensionality would drastically
decrease, as proteins are usually about only 50-500 amino acids long. Secondly, the number of
instances (data points) would increase several times, as the organisms have about 100-300 exposed
proteins. Also, as acid resistance is a physical property of proteins, it should be a less complex
trait encoded in the protein sequence than other complex traits like structure or function. Then, as
proteins are much simpler than DNA, this acid resistance property should be learnable, provided
a large enough protein dataset. From an evolutionary perspective, it should be more likely that
proteins of novel acidophilic groups have the same acid resistance mechanisms in their exposed

17

2.4. METHODOLOGICAL APPROACH CHAPTER 2. BACKGROUND

proteins than for them to have the same genomic traits (acid resistance mechanism genes).

Independently of the organisms’ predictions, obtaining a model for protein classification or re-
gression that predicts its acid resistance capabilities is interesting by itself, as it can be used as a
bioinformatic analysis tool.

Consecuently, machine learning models wil be trained to capture as best as possible the acid resis-
tance capacities of proteins, or more specifically, the optimal pH of the protein’s source organism,
by exploring classical machine learning algorithms and multiple DL architectures. After obtaining
the best possible model, organisms’ predictions will be performed by exploring the average, the
median and the mode of the individual predictions of proteins. By doing this a sort of bagging
approach is used, where while individual predictions can be erratic and have high variance, the av-
erage or median should converge to the actual pH of the organism and produce general predictions,
even if the number of organisms used for training is low.

18

Chapter 3

Methods

3.1 Dataset

3.1.1 Proteomes and bioinformatic features

The genomes and proteomes of acidophiles were obtained from the AciDB database, which con-
tains data and metadata of acidophilic bacteria and archaea [54]. The proteomes of taxonomically
related organisms with optimal growths up to around pH 7 were obtained with the methods present
in [7]. Also with the methods from this work, protein features such as molecular mass, isoelectric
point, transmembrane domains, functional annotation and subcellular localization were obtained
using classical bioinformatic tools.

To improve the quality of the data, only the proteins from genomes that passed a CheckM [24]
genome completeness of > 80% and contamination of < 5% were considered. Additionally, only
laboratory grown microorganisms were used. No metagenomic reconstructions were used in this
study.

Each organism in this study was associated with a pH, which will be referred to as associated pH.
The peer-reviewed laboratory-tested optimal pH of the microorganisms was considered if available.
Otherwise, the pH of the medium used to grow the organisms was used.

3.1.2 Protein selection

In this thesis, only proteins theoretically exposed or partially exposed to the environmental pH
were considered for the analyses. Proteins were considered exposed to the environmental pH if
they followed one of the next conditions:

• PSORTb [22] predicted that the protein was either exported outside the cell, or had a subcel-
lular localization in the periplasmic space or the outer membrane (for gram-negatives) or the
cell wall (for gram-positives and archaea).

19

3.2. DEEP FEATURE EXTRACTION CHAPTER 3. METHODS

• PSORTb was not able to predict the protein’s subcellular localization (Tag Unknown) and the
presence of a signal peptide for protein translocation was predicted with SignalP [23].

In addition, only proteins with 500 or fewer amino acids were selected for training, as the presence
of large proteins would drastically reduce the efficiency of the training of deep learning models,
even if they are only a few of them.

3.1.3 Other features

The predicted transmembrane segments of each protein were calculated by averaging the prediction
of TMHMM and HMMTOP [27, 28]. Additionally, the length of the proteins and the 1-2 gram
amino acidic frequencies were obtained manually.

3.2 Deep feature extraction

3.2.1 Secondary structure prediction

Secondary structure prediction was performed with the pytorch based deep learning tool S4PRED
[25]. The software was modified to be able to perform batch size predictions by introducing
padding. As the original model (a bagging model of 5 LSTMs) did not include a padding index,
the pytorch pack padded sequences tool was used. The predictions of the modified model were
confirmed to be identical to those of the original model using a random sample of 1000 proteins.

3.2.2 Protein autoencoding

The pretrained protein autoencoder transformer type model ProtBERT model [26] was used to en-
code the protein sequences into vectors that capture the necessary information to reconstruct the
amino acidic sequence at high accuracy. The first token of each output of the ProtBert model (con-
taining the whole protein representation) was extracted and saved as numpy vectors (size 1024).

3.3 Data preparation

3.3.1 Datasets split

Each protein and its features were considered a separate datapoint, where the organism’s associated
pH was used as a target variable.

The proteins were splitted into train and test datasets. For the classical machine learning models,
an 85% of the data was placed in the training set, while the remaining 15% was placed in the test
set, resulting in a final size of 129975 proteins for the training set and 22937 proteins for the test
set. For the deep learning models, 120000 proteins were used for the training set (a 78%), 8000
proteins were used for the validation set (a 5%) and the remaining 24912 proteins (16%) were used
for the test set. In all cases, the split was done with sklearn’s train test split tool using a random
state of 1991.

3.3.2 Feature preprocessing

The following numerical features were extracted and preprocessed by standard scaling:

20

3.4. EXPLORATORY ANALYSES CHAPTER 3. METHODS

• The amino acidic composition was extracted from each sequence as a vector of unigram and
bigrams of amino acids. This means that the frequency of each of the 20 amino acids, along
with the frequency of each of the 400 possible amino acid combinations was calculated for
each protein, resulting in a total vector of 420 features by protein.

• The secondary structure composition of alpha helix, beta sheets and loops was calculated for
each protein, resulting in vector of 3 features.

• The full protBERT encoding vector was used as a feature, resulting in 1024 additional features

• Additional features such as molecular weight, isoelectric point, number of transmembrane
segments and protein length were also extracted, resulting in a vector of 4 features.

Additionally, the following categorical features were extracted and encoded:

• The subcellular localization was extracted and encoded with the one hot encoding method. As
there were 5 possible localizations in these proteins, this resulted in a vector of 5 features.

• The presence and type of signal peptide for protein export was extracted and encoded with
the one hot encoding method. As there were 4 possible localizations in these proteins, this
resulted in a vector of 4 features.

• The COG category of the protein was extracted and encoded with the multilabel binarizing
method, resulting in an binary vector of 24 features where more than one feature can be non-
zero.

The previous transformations and encodings were trained in the training set and then applied to both
the training, test and validation (for DL models) sets. All features were concatenated, resulting in
a final feature dimension of 1484. For the deep learning models, the amino acidic sequence along
with the sequence of secondary structure predictions for each amino acid were encoded to integer
sequences and passed to embedding tables.

3.4 Exploratory analyses

3.4.1 Gaussian smoothing

A procedure of smoothing was performed for the expoloratory analyses, the visualization of regres-
sion results and even the calculation of regression metrics. Consider the random variable x ∈ R1

that follows an unknown distribution and X = [x1, ..., xn] a simple random sample of x. A regular
kernel density estimate (KDE) of the likelyhood of x at a given value x∗ by using the sample X
follows the following formula.

KDE(x∗, X, σ) =
∑
xi∈X

exp

(
−(xi − x∗)2

2σ2

)
(3.1)

21

3.5. MACHINE LEARNING CHAPTER 3. METHODS

Which is proportional to the estimated probability at x∗ and can be converted to probability by
normalizing by

∫
R KDE(x)dx.

Similarly, the gaussian smoothing of a variable produces local averages of such variable at specific
values of another variable. Consider the variable y ∈ R with Y = [y1, .., yn] to be smoothened.
The Gaussian smoothing (GS) of Y in relation to X at a given point x∗ is the weighted sum of Y
using the normalized weights of X obtained from the KDE. The weight W of a single value is
given by:

W (x∗, x, σ) = exp

(
−(x− x∗)2

2σ2

)
(3.2)

Then, the gaussian smoothing of Y at x∗ is:

GS(x∗, X, Y, σ) =

∑
i∈[1,n] yi ·W (x∗, xi, σ)∑

i∈[1,n] W (x∗, xi, σ)
(3.3)

For both the kernel density estimate and the gaussian smoothing there is a hyperparameter σ which
is the smoothing parameter. A higher σ produces more smooth but undetailed estimation, while a
lower σ produces a more sharp but noisy estimation.

3.4.2 Feature exploration

For the protein features, univariate and bivariate analyses were conducted to determine their distri-
bution in an unsupervised manner and as a function of pH. For Amino acid composition, secondary
structure composition, molecular weight, isoelectric point and the number of transmembrane seg-
ments their distributions were plotted with histograms and density plots and their means were
compared across optimal growth pH of proteins’ source organisms with gaussian smoothing. The
former features were also explored bivariately with correlation matrices.

For the autoencoder vectorial representations, density estimates were performed to explore the
distribution of each dimension. For the former features and for the amino acidic frequencies, di-
mensionality reduction was performed with PCA using sklearn’s decomposition.PCA module to
explore the general distribution of the features and analyze possible tendencies in relation to pH.

3.5 Machine learning

In this thesis, both classical machine learning models and deep learning models were training to
predict the associated pH of the source organism of each protein. Each model was trained in a
weighted and unweighted. The aim of the weighted version was to reduce the bias of the model
towards overrepresented pH ranges.

3.5.1 Sample weights

For the weighted version of the models, the sample weights were calculated with the following
procedure. Consider the vector of target values (pH) Y = [y1, ..., yn] and the unnormalized kernel

22

3.5. MACHINE LEARNING CHAPTER 3. METHODS

density shown in Eq. 3.1. Then, the initial weight W0 of y ∈ Y is given by:

W0(y, Y, σ, α) =
1

KDE(y, Y, σ) + α · |Y |
(3.4)

Where α is the smoothing parameter which gives all points a base density of α times the number of
points. Considering the vector of initial weights W0(Y) = [W0(y1), ...,W0(yn)], the final weights
W are given by:

W (y, Y, σ, α, q) = min

(
W0(y, Y, σ, α)

Q(W0(Y), q)
, 1

)
(3.5)

Where Q is the quantile function that returns the value that a q fraction of the data is lower to. This
gives a weight of 1 to the 1−q fraction of the highest values of Y and a weight in proportion to such
quantile to the rest of the data. This dampens the weight of rare pH values that would otherwise
have extremely high weights and bias the models.

For all the machine learning models, a σ = 0.2 (a 3% of the pH range) was used for the KDE of
the pH, and a smoothing factor of α = 0.01 and a quantile of q = 0.99 were used for the weight
calculation.

3.5.2 Metrics

Models were trained and evaluated using regression metrics. The main metric used to evaluate
the models was the mean absolute weight (MAE). Additionally, models were evaluated using
mean squared error (MSE) and R2. The scikit-learn’s metrics submodules mean absolute error,
mean squared error and r2 score were used, respectively.

Weighted regression metrics

A weighted version of these metrics was implemented to evaluate how well the models perform
independently of the data imbalance. By doing this, models that outperform other models at all pH
values were selected instead of models that perform better at overrepresented pH values. This was
done by averaging the mean local errors at each pH with the gaussian smoothing method of Eq. 3.3.
For a given metric m of the prediction Y ∗ = [y∗1, ..., y

∗
n] over the real target values Y = [y1, ..., yn],

consider the metric vector function M(Y, Y ∗) so that:

M(Y, Y ∗)i = m(yi, y∗i) ; M(Y, Y ∗) = [m(yi, y
∗
i), ...,m(yn, y

∗
n)] (3.6)

Then, the weighted version of the metric WM is given by:

23

3.5. MACHINE LEARNING CHAPTER 3. METHODS

WM(Y, Y ∗,M, σ) =
1

max(Y)−min(Y)

∫ max(Y)

min(Y)

GS(ŷ, Y,M(Y, Y ∗), σ)dŷ (3.7)

The integral was calculated numerically by using 101 intervals between the minimum and maxi-
mum values of the target variable Y . Consider Ŷ = min(Y)+(max(Y)−min(Y))·[0, 0.01..., 0.99, 1].
Then the numeric version of the weighted metric WM∗ is defined by:

WM∗(Y, Y ∗,M, σ) =
1

101

∑
ŷ∈Ŷ

GS(ŷ, Y,M(Y, Y ∗), σ) (3.8)

A σ of 0.15 (a 2% of the pH range) was used. This defined the metrics WMAE (weighted mean
absolute error) for m(y, y∗) = |y − y∗| and WMSE (weighted mean squared error) for m(y, y∗) =
(y − y∗)2. As for the R2 metric, the weighted version WR2 was calculated using the r2 score
module of sklearn with the sample weights of Eq. 3.5 but using σ = 0.15, α = 0, and q = 1.

Regression-to-classification metrics

Classification metrics were also used as an additional approach to manage the unbalanced repre-
sentation of pH ranges in the dataset. The f1-score macro average is widely used as a metric to
evaluate classification models on unbalanced classes [30]. The pH was segmented in 3 ranges: pH
0 – 3.8, pH 3.8 – 6 and pH 6 – 8.

The pH 3.8 threshold was selected because it is about the average between the glutamic acid and
aspartic acid proton dissociation constants [68]. Below this pH, all amino acids are protonated
and the proteins contain no negative charges, which probably results in entirely different folding
mechanisms. On the other hand, the pH 6 threshold was selected arbitrarily by defining a window
of ±1 pH units around neutral pH 7.

3.5.3 Classical machine learning models

The pH of the proteins’ source organism was predicted using a linear model, a bagging model,
and a boosting model. All models were trained using the machine learning library Scikit-learn
[29]. The models were trained on all the 1484 tabular features, including bioinformatic features,
1-2 gram amino acidic frequency, secondary structure frequency and ProtBERT features. For the
weighted version, the sample weights were included as a parameter in the training function for a
weighted calculation of the loss function.

Ridge regression

For the linear models, the Ridge regression model was used with scikit-learn’s Ridge module. Al-
pha values were explored independently for the weighted and unweighted version of the model. The
best alpha hyperparameter was selected considering the best MAE in test data for the unweighted
version and best WMAE for the weighted version. Ridge models were then trained on the training
data using squared error loss or weighted squared error loss, as it is default by linear regression
models.

24

3.5. MACHINE LEARNING CHAPTER 3. METHODS

Random forest

For the bagging models, the random forest model was used with the scikit-learn’s RandomFore-
stRegressor module. A total of 200 trees were used in the forests. The hyperparameters max samples
and max features were shortly explored manually, selecting the best combinations in test data
MAE. The models were trained on training data using a squared error loss instead of an abso-
lute error loss, as the absolute error loss was found to be extremely computationally inefficient. All
the trees were trained using 8 parallel jobs.

Gradient boosting

For the gradient boosting models, the sklearn’s module called HistGradientBoostingRegressor was
used, which is an alternate implementation of lightGBM [16] recommended for high volume data.
The models were trained using the absolute error as loss function. Besides that, all parameters were
set to default.

3.5.4 Deep learning models

All deep learning models were trained using the pytorch framework [31]. Datasets, dataloaders,
training functions, and deep learning architecture classes were developed and coded manually for
each specific use. For the deep learning models, both the amino acidic sequence and secondary
structure sequence are used as input in the form of integer tensors which are then passed to embed-
ding layers. All models were trained using the Adam optimizer [32] without regularization. Unless
specified, models were trained using a L1 loss function (absolute error). Models were trained until
overfitting or until validation metrics convergence. Dropout probabilities and learning rates were
shortly explored in each architecture and selected by best validation metrics. The model with the
best validation metrics was saved and used to perform predictions in the test data.

The development of deep learning models in this thesis was an iterative process, on which over
25 architectures were tested. For several architectures, different settings than those reported in
this methods section were used, including using squared error loss, different dataset split methods,
using fewer or no features, and even classification models. The architectures here reported are those
best performing in test data.

Undersampling

For the weighted versions of the models, a different approach was used to that of the classical ma-
chine learning models. As the deep learning models are much more computationally intensive than
classical machine learning models, using sample weights for the loss’ calculation would be highly
computationally inefficient, as in each batch most of the data points would have a very small con-
tribution to the loss function. Instead, an undersampling method was used. Instead of performing
stratified sampling once, a custom data loader was designed that contains all the data and performs
undersampling in each epoch. The data loader selects each data point with probabilities given by
the sample weights of Eq. 3.5, where points with rare pH values have a probability of being selected
of 1, while points with common pH values have a low probability of being selected. By doing this,
the model is eventually trained on all the data, but the most common pH values are used far less
frequently. This type of undersampling resulted in epochs of varying size (expected epoch size of
about 27500 data points) and a higher training variance.

25

3.5. MACHINE LEARNING CHAPTER 3. METHODS

Fig 3.1: Architecture of the proposed attention feature extraction layer. The tensors are displayed in a transposed manner, where the
first dimension is shown horizontally and the last dimension (embeddings) is shown vertically, to emulate the language representation
of embedding tensors.

Self-attention

For some models, dot product self-attention layers were used for feature extraction. This imple-
mentation was adapted from Christos Baziotis’ implementation of self-attention in pytorch [33]
which was modified to work with multiple attention vectors simultaneously. The self-attention
layer takes a tensor of shape B × L × E, where B is the batch size, L is the sequence length
and E is the embedding size, and outputs a tensor of size B × N × E by performing dot product
attention with N trainable vectors. The batch size B and the sequence length L of the input can be
of varying length, but the embedding size E has a fixed length. This condition is met by varying
size inputs such as the output of an embedding table or the output of a RNN like a layer. The
self-attention layer performs self-attention between all the E sized vectors of a data point and each
of the N trainable attention vectors of the layer. In each attention process, the vectors of a data
point are linearly combined with weights proportional to the dot product between the vectors and
the trainable attention vector. The final output has a fixed size, thus permitting connection to fully
connected layers.

Attention features

A novel architecture was developed that permits the use of multiple attention vectors for feature
extraction without excessive scaling of the attention layer output (Fig. 3.1). The input tensor of size
L× E first is passed through a fully connected layer to obtain the keys of size L×K. Then, both
tensors are passed through an attention layer with 2N attention vectors of size K that performs
dot product attention by linearly combining the input tensor with weights proportional to the dot
products with the key vectors. The output of the attention layer is size 2N × E, which scales
linearly with the number of attention vectors used.

To reduce the output dimension, 2 types of feature extraction procedures are performed. First, the
attention output is reshaped so the outputs of every 2 self-attention operations are paired, resulting
in a tensor of size N × 2E which is passed through a linear layer that outputs a tensor of size
N × F , where F is the feature dimension which can be as small as desired. We will call these
features vertical features. By doing this, the information is compressed so every vertical feature
captures the information extracted by 2 different attention vectors. Secondly, one dimension of
every attention output is combined in a linear layer with output 1. As this is done to one dimension
of each attention output, the final dimension of this process is a single vector of the same size as
the attention output vectors, which are the same size as the input embedding dimension E. We

26

3.6. ORGANISM PREDICTIONS CHAPTER 3. METHODS

Fig 3.2: Architecture of the proposed CNN attention feature extraction layer. Analog to Fig. 3.1

will call these horizontal features. Finally, the vertical and horizontal features are flattened and
concatenated, resulting in an output of size N · F + E.

The dimensions displayed in this section are for an unbatched example. It is also valid for a batched
input if the batch size dimension B is just be added as the first dimension of all tensors. The custom
python AttentionFeatures class takes the hyperparameters E for the input embedding dimension, K
for the key dimension, N for the number of horizontal attention features and F for the horizontal
feature dimension.

CNN attention

Finally, a variation of the attention features architecture was used (Fig. 3.2). This architecture is
identical to that of the attention features architecture (Fig. 3.1), except that both the key vectors and
value vectors are extracted with convolutional neural networks. By doing this, contextual informa-
tion is used to both determine how the information of the vectors is combined and what information
is extracted from each vector. Then, in addition to the hyperparameters of the AttentionFeatures
class, the CNNAttention class takes the hyperparameters V for the value dimension and ks for the
CNN kernel size. Then, as the vectors that are combined through dot product attention are sized
L× V , the attention output is 2N × V , the horizontal featues size is 1× V and the overall output
of the CNN attention is N · F + V .

3.6 Organism predictions

The pH associated with each organism was predicted by aggregating the individual predictions
for each of its exposed proteins. The model family with best test metrics (MAE) was selected to
perform protein pH predictions. Predictions were then made in test + validation data to first select
between the weighted and unweighted version of the model by best MAE of the average predictions
by genome.

After selection of the weighted or unweighted version, different aggregation heuristics were tested
in train data to obtain the best metrics. The mean of the prediction, median prediction, and mode
prediction with density using different σ were be tested for the best organism predictions on train
data. The selected hyperparameters were then used to perform predictions on test + validation data
to obtain the final model performance.

27

Chapter 4

Results

4.1 Dataset Description

In this study, the proteins of organisms that grow optimally at a wide pH range from extremely
acidic to circumneutral (around pH 7) were studied. The main aim of this study is to predict
the pH that a protein is exposed to and can resist based solely on its amino acid (the building
blocks of proteins) sequence. The organisms here used are acidophilic and neutrophilic Bacteria
and Archaea, which are single cell organisms that contain actively functioning proteins, some of
which are found near or in their envelope [91]. The inner cavity of these organisms or cytoplasm
is usually neutral (pH close to 7), while their envelope is exposed to the outer pH [58]. Hence,
proteins located in the envelope of the cell are theoretically exposed to the pH of the medium that
the organisms thrive optimally in.

In total, the genomes of 696 organisms were obtained, of which 180 were from Archaea and 516
were from Bacteria (Fig. 4.1A). All the genomes had experimentally validated information of their
optimal growth pH, and at least one exposed protein. The optimal pH of the organisms ranged from
pH 0.7 to pH 8, and there was a higher density of genomes with optimal growths around pH 7 (Fig.
4.1C). For each genome, from 9 to up to 1200 exposed proteins were extracted, 314 in average for
Bacteria and 31 in average for Archaea (Fig. 4.1B). Only proteins with 500 amino acids or fewer
were considered as a means to simplify deep learning models which analyze the full amino acidic
sequence. A total of 152912 proteins were obtained.

4.2 Exploratory Data Analyses

After the extraction and obtention of the protein dataset, the source orgenism pH, henceforth re-
ferred to as pH, was obtained and assigned as the target variable to each protein. The proteins’
features and pH were explored in terms of distribution and correlation. The proteins were in aver-
age 266 amino acids long, and had a nearly uniform length distribution between around 50 and 500
amino acids, with a highest concentration around 155 - 180 amino acids long (Fig. 4.2).

28

4.2. EXPLORATORY DATA ANALYSES CHAPTER 4. RESULTS

Fig 4.1: A) Bacterial and archaeal genomes obtained for this study ranging from pH 0.7 up to pH 8. The average number of exposed
proteins extracted from each genome is plotted alongside their optimal growth pH. Locally averaged number of exposed proteins
are shown with a black line (gaussian smoothing) B) Distribution of the number of exposed proteins extracted from each genome
for Bacteria and Archaea as a density plot. C) Distribution of optimal growth pH for Bacteria and Archaea as a density plot.

29

4.2. EXPLORATORY DATA ANALYSES CHAPTER 4. RESULTS

Fig 4.2: Distribution of the protein length (above) and pH (below) of the proteins used in this study.

As for the pH distribution, it was far from uniform. The proteins were highly overrepresented at
around pH 5.5 and pH 7, and only an 11.4% of the proteins had pH < 4. This uneven distribution
raised the need for normalization techniques to handle unbalanced datasets for regression problems.
With this aim, sample weight calculation methods were developed, which assign weights inversely
proportional to the pH density. Also, metrics to measure the performance of models which take the
inbalance in consideration were developed (see methods).

In addition to protein length and pH, protein sequence patterns and other features obtained with
several bioinformatic tools were extracted. Changes in these features across pH were explored to
the extent of evaluating their predictive capacity.

4.2.1 Amino acid composition

The main determinant of the characteristics and features of a protein is its amino acidic sequence.
Technically, all the features used in this study stem directly or indirectly from the amino acidic
sequence of the proteins, and their traits are complexely encoded in it.

To explore the full amino acidic sequence of proteins and changes in them across pH is not straight-
forward. A workaround to this issue is to explore changes in the simple amino acidic frequencies.
Fig. 4.3 shows the distribution of the amino acidic frequencies, where the most common amino
acids are Alanine (A) and glycine (G) while the least common are tryptophan (W) and cysteine
(C). The PCA analysis shows a slight tendency between the vertical (PC2) axis and pH. Indeed,
there is a slight negative correlation between the second principal component of the amino acidic
frequency and pH of 0.14 (p-value ∼ 0), which is an indicator that the amino acidic frequencies are
a good predictor of pH and should change with pH.

30

4.2. EXPLORATORY DATA ANALYSES CHAPTER 4. RESULTS

Fig 4.3: Left plot shows amino acid frequency distribution with boxplots for each amino acid in terms of percentage of the protein.
Right plot shows a dimensionality reduction analysis where the dimension of the frequency of all 20 amino acids was reduced with
PCA. The first 2 principal components are shown with a scatterplot. Points are colored by pH.

An additional analysis was made by comparing the amino acidic frequencies across pH. This is, to
determine if some amino acids are more or less frequent at different pH values. In Fig. 4.4, the
10 amino acids with highest variation across pH are shown. Negatively charged acidic amino acids
exhibit a lower frequency at lower pH (red lines, amino acids D and E). The same is observed for
the positively charged basic amino acid (blue lines) arginine (R), but not for histidine (H). On the
other hand, polar amino acids exhibit an increase in frequency at lower pH, indicating an exchange
of salt bonds by hydrogen bonds as a stabilizing mechanism at lower pH [106]. These results
indicate that pH has some level of predictability, even only using simple sequence traits such as
amino acid frequency, which is the equivalent of bag of words.

4.2.2 Secondary structure

As secondary structure mostly depends on local amino acid neighborhood, efficient machine learn-
ing methods for secondary structure prediction have been developed [25] and were used in this
study as features. A secondary structure prediction is done on each amino acid, and therefore the
output can be summarized as a chain of characters as long as the protein (with only 3 possible
different characters). E.g., ”HHHBBBBHHHCCCC...”. Similarly to the amino acid sequences, it
is simpler to explore the frequency of each type of secondary structure than the complete secondary
structure sequence. In Fig. 4.5, the secondary structure distribution shows that the most common
secondary structure is the loop, with a peak abundance at around 55% of the protein’s secondary
structure. Both the alpha helix and beta sheet secondary structure have a peak frequency at 0%
of the protein, indicating that purely alpha helix or beta sheet proteins are common. Besides, sec-
ondary peaks at around 15% for the beta sheet and around 35% for the alpha helix were found. The
joint distribution indicates that there are peaks of pure alpha helix structures with around 65% alpha
helix, pure beta sheet structures with around 40% beta sheets, and mixed structures with about 40%
alpha helix and 14% beta sheets.

In Fig. 4.6, local averages of secondary structure composition (as frequency) are shown across pH.
Besides from a slight increase in the ratio of beta sheets at pH ∼ 1, no significant differences are
observed. However, as the number of organisms and therefore proteins found at these low pHs is
low, this tendency is likely not significant and probably reflects the individual charasteristics of the
few organisms and proteins that are found at those pH values.

31

4.2. EXPLORATORY DATA ANALYSES CHAPTER 4. RESULTS

Fig 4.4: Amino acid composition across pH. The frequency of each amino acid was calculated as a fraction of the total number of
amino acids. The amino acid frequency was then smoothened against pH with gaussian smoothing and plotted. Only the top 10
amino acids with highest variance relative to the mean frequency of the amino acid were plotted

Fig 4.5: Left plot shows a KDE plot of the distribution of the frequency of alpha helixes, beta sheets and loops in terms of
percentage of the protein. Right plot shows the joint distribution of alpha helix and beta sheet frequency as a 2D histogram. As all
the frequencies add up to 1, this plot indirectly includes the loop frequency.

32

4.2. EXPLORATORY DATA ANALYSES CHAPTER 4. RESULTS

Fig 4.6: Predicted secondary structure of proteins across pH. The average frequency of each type of secondary structure (alpha
helix, beta sheet or loop/coil) was smoothened as in Fig. 4.4.

While the secondary structure frequency tendencies were not robust enough to support them as a
strong pH predictor, the secondary structure sequence could still be used alongside amino acidic
sequence in more complex NLP models. The secondary structure frequencies could still be useful
alongside other features, so they will be included in the training of classical machine learning
models.

4.2.3 Transformer autoencoder output

The pretrained protein autoencoder transformer type model protBERT [26] was used to encode
the protein sequences into vectors that capture the necessary information to reconstruct the amino
acidic sequence at high accuracy. The outputs of the autoencoder were vectors of size 1024. All
dimensions of the vectors had normal-like distributions but with different means and variances
(Fig. 4.7). The average means of the encoding features was around 0.002± 0.18, while the average
standard deviations where around 0.034± 0.023.

Supervised explorations were performed to evaluate if the dimensions of the encoder had any corre-
lation with the target variable pH. Pearson’s correlation index was calculated between each encoder
dimension and pH and the distribution of the correlations was plotted (Fig. 4.7, lower right plot).
Correlations of up to 0.11 and down to -0.11 were found. While no feature had significant correla-
tion with pH individually, the fact that a significant number of them had a slight correlation with pH
indicates that collectively they could be a valid predictor. Similarly, principal component analysis
(Fig. 4.8) shows slight variations in the local pH averages for components 1, 2, 3 and 5.

It is not expected for these encoder dimensions to be individually correlated with pH. The principle
behind the autoencoder is to capture the complex information behind the amino acidic sequence of
a protein in a much lower dimension than all the information a protein can have. This is possible
because the real distribution of the protein sequences is not random: proteins evolve to adapt and
attain new functions, thus producing divergence over time. This causes proteins to retain features
of their ancestors, causing proteins to have a similar sequence than those that have similar function
or structure. Hence, the sequence of a protein could be encoded as slight variations (or noise) of the
evolutionary backbone, which has limited possibilites. By this focus, the encoding of protBERT
would represent the general family, function or structure of a protein, not necessarily the pH.

33

4.2. EXPLORATORY DATA ANALYSES CHAPTER 4. RESULTS

Fig 4.7: Distribution of each individual dimension of the protBERT encoding. Left plot is an histogram heatmap where each row
represents a different dimension of the encoding vector (1024 dimension). For each, its distribution from -0.5 to 0.5 is plotted as a
heatmap. Upper right plot is the same analysis but as distribution density, where each semitransparent line represents the density of
a different dimension. Lower right plot is the distribution of the correlation coefficients of each dimension with pH.

As acidophilic proteins can have the same functions than non-acidophilic proteins, the encoding
of these proteins is probably similar to that of their non-acidophilic counterparts. However, as the
encoding of the protein captures the family, it could still be useful as a feature, as some of the
adaptations could be family-specific.

4.2.4 Other features

Next, the molecular weight, isoelectric point and number of transmembrane segments were ex-
plored. The distributions of the features are shown in Fig. 4.9, and the mean as a function of pH is
shown in Fig. 4.10.

The molecular weight of a protein is the total mass in Daltons of the molecule, which correlates
strongly with the length of the protein. This is reflected on an almost identical distribution shape
to that of protein length (Fig. 4.2 and Fig. 4.9). When compared with pH, a slight decrease in
molecular weight is observed at pH < 3, indicating that the exposed proteins of extreme acidophiles

34

4.2. EXPLORATORY DATA ANALYSES CHAPTER 4. RESULTS

Fig 4.8: Unsupervised and supervised analysis of encoding feature dimensions. Left plot is a scatterplot of the principal component
analysis (PCA) of the feature dimension. The first 2 principal components of the feature dimensions are plotted, where each point
represents a protein. Points are colored according to the protein’s pH. Upper right plot is a smoothed local average pH of the
proteins versus the 6 first principal components. Lower right plot shows the predictions of linnear regressions fitted on each encoder
dimension on the lowest value, the highest value and the midpoint of each encoder dimension.

Fig 4.9: Distribution of other features is shown as histograms. Top plot: molecular weight (in Daltons). Mid plot: isoelectric point.
Bottom plot: average number of transmembrane segments.

35

4.2. EXPLORATORY DATA ANALYSES CHAPTER 4. RESULTS

are smaller. However, this decrease represents only about a 5% decrease of the protein mass and is
negligible when compared to the molecular weight range.

The isoelectric point is one of the most important physicochemical features of a protein. It repre-
sents the pH at which a protein has no charge. The charge of a protein is determined by the presence
of charged amino acids, which are acidic or basic molecules that either release or accept protons to
become negative or positively charged, respectively. This confers them ionic properties that permit
the formation of salt bonds that stabilize the protein [106]. Because these are weak acids or bases, a
different pH may reverse the proton coupling thus removing their charge. As a consequence, there
is always a pH at which the number of negative charges is equal to the number of positive charges,
producing a net charge of zero. This pH is the isoelectric point.

The distribution of isoelectric point follows a typical 2 peak distribution usually observed in this
variable, where proteins are either classified as basic or acid proteins if their isoelectric point is > 7
or < 7, respectively [108]. Contraintuitively, proteins with low pH had higher average isoelectric
points than neutral proteins, meaning that the proteins that resist low pH need a high pH to be
neutral. Therefore, at low pH these proteins are positively charged, which could constitute a defence
mechanism or a protein stabilization mechanism [8, 70]. The change in mean isoelectric point
shifts from around 7 at pH 7 to about 8 at pH 1, which is relatively significant when compared to
the isoelectric point distribution. This implies that basic and acid proteins are equilibrated at neutral
pH but at low pH basic proteins are the majority of the exposed proteins.

Finally, the average number of trans membrane segments was analyzed. These are sections of the
protein that are embeded in the cellular membrane (the envelope), which is a lipid layer. Proteins
with transmembrane segments are not freely exposed to the external medium, but are anchored
and slightly protected from it inside the cell envelope. In this study, the proteins were observed to
have 2 or fewer transmembrane segments in average. Exposed proteins with over 2 transmembrane
segments do exist, but are rare. Proteins with pH < 4 were found to have a higher number of
average transmembrane segments. This could mean these proteins are more protected from the low
pH, or that these organisms have a higher proportion of membrane embedded proteins in relation
to exposed proteins in the periplasmic space (space between cell envelopes in bacteria with double
membrane).

4.2.5 Bivariate analysis

Lastly, all features except for the bert encodings were explored in a bivariate analysis. A correlation
matrix between these features and pH is shown in Fig. 4.11. Protein length and molecular weight
have an almost perfect correlation, which is to be expected as the molecular weight of a protein
deppends mostly on its length. A strong negative correlation is also observed between the sec-
ondary structure frequences. This is expected as the frequencies add up to 1. Next, there are some
somewhat strong correlations between the isoelectric point and basic (positive) or acid (negative)
amino acids, which are determinant of the isoelectric point. Other notable correlation is between
the loops or coils (ss C) and proline (aa P). Proline is a rigid amino acid which usually disrupts the
secondary structure of proteins.

However, there aren’t many strong correlations between pH and other features. The highest corre-
lations observed are with aspartic acid (aa D) and glutamic acid (aa E), and a very slight negative
correlation with isoelectric poing and histidine (aa H).

36

4.3. CLASSICAL MACHINE LEARNING MODELS CHAPTER 4. RESULTS

Fig 4.10: Average of other features was plotted as a function of pH. The features were averaged locally against pH with gaussian
smoothing. Top plot: molecular weight (in Daltons) average across pH. Mid plot: isoelectric point across pH. Bottom plot: average
number of transmembrane segments across pH.

4.3 Classical machine learning models

The term classical machine learning is used to refer all machine learning algorithms that do not
involve deep learning and do not use the full amino acidic sequence as input. This includes from
simple linnear models to complex bagging and boosting models. Some of the models described in
this section do use the output of complex transformer type models as a complementary input along
with other features. As no fine-tuning was done to obtain this transformer output, it will only be
considered as an additional feature.

4.3.1 Ridge regression

For the ridge regression models, different regulariation factors (alpha) were tested and selected with
best metrics in test data. For the unweighted version, alpha values from 10 to 10000 were tested,
while for the weighted versions, alpha values from 105 up to 108 were tested (Fig. 4.12). For
the unweighted version, an alpha factor of 1000 was found to be optimal, while for the weighted
version, an alpha factor of 3 · 106 was found to be optimal. This was determined with the metric
MAE for the unweighted version and WMAE for the unweighted version.

The full metrics are present in the table 4.1. The weighted version of the model had inferior
performance according to all metrics except for the WMAE, which reflects more accurately how
good the predictions is at all pHs.

4.3.2 Random forest

The random forest models had a high computational cost, due to the large dimension of the data
and the high number of proteins to be classified. Features were then shortly explored, aiming for a
high number of trees as long as the computational cost permits it, and testing several max features
and max samples values.

37

4.3. CLASSICAL MACHINE LEARNING MODELS CHAPTER 4. RESULTS

Fig 4.11: Correlation matrix heatmap between all protein features, amino acidic frequency, secondary structure frequency and pH.
The aa preffix indicates amino acid frequency, while the ss prefix indicates secondary structure frequency.

Fig 4.12: Metrics of the ridge regression models in test data using different regularization factors. Upper plot shows the mean
absolute error between the test pH and the prediction with ridge regression models trained without sample weights. Lower plot
shows the weighted mean absolute error between the test pH and the prediction with ridge regression models trained with sample
weights.

38

4.3. CLASSICAL MACHINE LEARNING MODELS CHAPTER 4. RESULTS

Metric Unweighted model weighted model

Mean absolute error (MAE) 1.039 1.326
Weighted mean absolute error (WMAE) 1.609 1.480

R2 score 0.22 -0.11
Classification f1-score macro 0.42 0.31

Table 4.1: Metrics of Ridge regression models in the weighted and unweighted versions.

Fig 4.13: Ridge regression models result. In each plot, the predicted pH is plotted against the real pH of each protein. Each
point represents a single protein. The local average was calculated for each pH with gaussian smoothing (red line) with a standard
deviation of 5% the range of the target variable. Local RMSE was also calculated by weighting the total RMSE with gaussian
smoothing, using a 2% of the pH range as standard deviation. The red shadow shows the area between the local average ± the local
RMSE. A black line shows the perfect prediction (true pH = predicted pH). Left plot shows the unweighted model while the right
plot shows the weighted model

The best models trained had 200 trees, max features of 0.4 and max samples of 0.1. The metrics
and predictions are shown in Table 4.2 and Fig. 4.14, respectively. Surprisingly, there was no
significant difference between the weighted and unweighted version. In fact, the weighted version
had slightly worst weighted metrics, as well as absolute metrics.

4.3.3 Gradient boosting

For the gradient boosting models, the Histogram-based gradient boosting regressor was used. All
hyperaparameters were set to default, except for the use of the absolute error as loss function.

These models had the best results so far and were computationally more efficient than random
forest. This, in terms of unweighted MAE for the unweighted model and weighted MAE for the
weighted model. The metrics and predictions are shown in Table 4.3 and Fig. 4.15, respectively.
Surprisingly, the best f1-score so far of 0.51 was obtained in the weighted version of this model.
This highlights the importance of using weighted models to train on unbalanced date and validates
the novel metric WMAE as a regression analog to the f1-score.

Metric Unweighted model weighted model

Mean absolute error (MAE) 1.015 1.021
Weighted mean absolute error (WMAE) 1.674 1.691

R2 score 0.26 0.25
Classification f1-score macro 0.43 0.42

Table 4.2: Metrics of random forest models in the weighted and unweighted versions.

39

4.3. CLASSICAL MACHINE LEARNING MODELS CHAPTER 4. RESULTS

Fig 4.14: Random forest models result. Analog to Fig. 4.13 but for random forest. Left plot shows the unweighted model while the
right plot shows the weighted model

Metric Unweighted model weighted model

Mean absolute error (MAE) 0.975 1.152
Weighted mean absolute error (WMAE) 1.75 1.270

R2 score 0.24 0.06
Classification f1-score macro 0.46 0.51

Table 4.3: Metrics of gradient boosting models in the weighted and unweighted versions.

Fig 4.15: Gradient boosting models result. Analog to Fig. 4.13 but for gradient boosting. Left plot shows the unweighted model
while the right plot shows the weighted model

40

4.4. DEEP LEARNING MODELS CHAPTER 4. RESULTS

4.4 Deep learning models

As it is specified in the methods section, the development of deep learning models was an iterative
process, where the first models were trained and evaluated on different metrics and settings. Also,
the first models were simpler and did not include all the features used for the classical machine
learning models. Part of the focus of this thesis is to explore different deep learning architectures
to find which is more suitable for this type of problem.

4.4.1 Model history

Models with a total number of 26 different architectures were trained for this thesis. The complete
list is present in Table 4.4. The architectures were explored manually by seeking to maximize
efficiency and prediction capacity while minimizing overfitting. The models were all trained locally
in a 4GB GPU, which limited the models capacity.

The models can be subdivided into 5 generations. From first generation to fifth generation, the
models cycle through bigger and smaller architectures while gradually increasing performance. The
models metrics are shown in Table 4.5. Eventually, some architectures were found to have superior
metrics and were then used in an undersampling approach which increased the performance in
weighted metrics (highlighted in bold in 4.5). Some of them were re-trained using updated settings.
The general development history of all models will be overviewed in this section. However, the
best performing and more complex architectures (generations 3-5) will be described in detail in the
next sections.

Models 1-7 are first generation models, which used a classifier approach where the pH was seg-
mented into 3 intervals: pH 0-3.8, pH 3.8-6 and pH 6-8. These are the same intervals used for
the f1 score calculation in regression models. The aim was to follow the hypothesis that there is a
significant change at around pH 3.8 because of the protonation of acid (negative) amino acids. All
these models were trained with cross-entropy loss. Models 1-2 had simple LSTM architectures,
while models 3-7 used the amino acid frequency (a 20 sized vector) as an additional input, which
is appended to the LSTM output before the fully connected layers. Besides that, models differed
only on the hidden and embedding sizes and number of layers.

Models 8-12 are second generation models. These models have an identic architecture to that of
models 3-7, but are regressors. That is, they have a 1 dimensional output instead of a 3 dimensional
output and are optimized with MSE using the pH as target. Similarly to first generation models, they
only vary in model size. For these models, f1 score was calculated by performing a post-prediction
discretization, as described in the methods section.

In the next sections, third, fourth and fifth generation models are described. All of them had
different attention mechanisms which boosted the extraction of information from the amino acidic
sequence.

4.4.2 LSTM with attention models

Models 13-18 are third generation models. These models are LSTM-based regressors with an
attention layer that extracts relevant protein vectorial representations from the LSTM outputs by
performing dot product attention. The embedings of the input are passed through a Bi-directional

41

4.4. DEEP LEARNING MODELS CHAPTER 4. RESULTS

Model Architecture Layers Hidden Params D.O. A.a. S.s.

1 LSTM clasif. 2 64 150 k 0.6 32
2 LSTM clasif. 3 128 991 k 0.7 64
3 LSTM clasif. + a.a freq 2 64 151 k 0.9 32
4 LSTM clasif. + a.a freq 2 256 2.63 M 0.9 256
5 LSTM clasif. + a.a freq 2 128 596 k 0.85 64
6 LSTM clasif. + a.a freq 2 64 168 k 0 64
7 LSTM clasif. + a.a freq 2 256 2.14 M 0.93 16
8 LSTM reg. + a.a freq 2 64 142 k 0.8 16
9 LSTM reg. + a.a freq 2 112 668 k 0.5 16
10 LSTM reg. + a.a freq 2 256 3.29 M 0.6 16
11 LSTM reg. + a.a freq 2 64 324 k 0.55 16
12 LSTM reg. + a.a freq 2 128 1.14 M 0.95 16
13 LSTM reg. + 1/1 Att + a.a freq 2 64 219 k 0.4 16
14 LSTM reg. + 3/3 Att + a.a freq 2 64 767 k 0.7 16
15 LSTM reg. + 0/0/8 Att + a.a freq 3 128 5.28 M 0.6 64
16 LSTM-CNN reg. + 0/3 Att + feats. 2 128 1.31 M 0.6 64 16
18 LSTM reg. + 0/2 Att +bert 3 128 3.61 M 0.6 104 24
19 Cross LSTM-CNN + 2*16 AttFe 2 64 219 k 0.6 12 4
20 CNN reg. + 2*32 AttFe 2 128 409 k 0.1 24 8

20b CNN reg. + 3*32 AttFe +bert 3 128 1.16 M 0 24 8
21 LSTM reg. + [CNN 2*AttFe] *2 2 64 373 k 0.6 24 8

21b LSTM reg. + [CNN 2*AttFe] *2 +bert 2 64 847 k 0.6 24 8
22 CNN reg. + 2*16 AttFe + Emb. 3 128 2.91 M 0 1024 24
23 CNN reg. + 2*16 CNNAttFe 2 64 562 k 0 48 16

23b CNN reg. + 2*16 CNNAttFe +bert 3 128 1.66 M 0 48 16
24 LSTM reg. + 2*16 CNNAttFe +bert 2 64 472 k 0.35 20 4

Table 4.4: Model architecture history. The architecture of all model architectures trained in this thesis is shown. Layers and Hidden
refers to the number of layers and hidden size of sequence analysis (either LSTM or CNN) layers, not the FC layers. Params is the
total number of model parameters. D.O= dropout probability of the sequence analysis layers. A.a= dimension of the amino acid
embeddings. S.s= dimension of the secondary structure embeddings. The architecture shortly describes the type of architecture of
the model. All LSTM are bidirectional LSTMs. clasif.= classifier. reg.= regressor. a.a. freq= amino acid frequency. feats.= features
(frequencies and other features). bert= all features including bert features, 1-2 gram frequencies and other features. Att= attention.
n/n Att describes the number of attention layers applied to each sequence analysis (LSTM or CNN) layer. AttFe= attention features.
n*F describes F attention features were extracted from each of the n layers. CNNAttFe= CNN attention features.

42

4.4. DEEP LEARNING MODELS CHAPTER 4. RESULTS

Model Epochs MAE MSE R2 WMAE WMSE WR2 F1

1 30 0.378
2 30 0.443
3 20 0.429
4 20 0.317
5 40 0.417
6 50 0.313
7 50 0.506
8 60 1.58 0.54
9 105 1.55 0.58
10 95 1.57 0.59
11 215 1.63
12 20 1.78
13 80 0.905 1.59 0.31 1.42 3.58 0.17 0.58
14 120 1.469
15 40 0.91 1.494 0.34 0.6
16 50 0.904 1.53 1.365 0.61
18 35 1.407
19 105 0.904 1.59 1.463 0.59
20 890 0.942 1.69 0.255 1.662 4.64 -0.01 0.539

20b 340 0.872 1.439 0.366 1.441 3.548 0.232 0.586
21 60 0.904 1.61 0.291 1.361 3.431 0.2 0.6

21b 250 0.88 1.534 0.324 1.274 3.078 0.281 0.616
22 16 0.944 1.7 0.253 1.663 4.644 -0.01 0.539
23 50 0.941 1.691 0.255 1.664 4.648 -0.02 0.538

23b 370 0.869 1.425 0.373 1.355 3.242 0.294 0.609
24 95 0.855 1.444 0.364 1.223 2.907 0.318 0.631

Table 4.5: Metrics and training epochs of the models present in Table 4.4. The metrics represent the performance of the best model
selected with validation metrics, which was MSE for models 1-15 and MAE for models 16-24, except for model 13 which was
re-trained with MAE. Whenever possible, the models were tested in test data. Otherwise, validation data was used.

2 or 3 layer LST, and its outputs are fed to self-attention layers. The attention layers extracted
features from each Bi-LSTM layer for models 13 and 14, and from only the last layer in models
15, 16 and 18. The advantage of doing the latter is that it allowed for some level of parallelization
between the forward pass of the multiple LSTM layers, thus enabling a more efficient training.

Up to 8 attention layers were used, each extracting a vector of the same size as the LSTM hidden
size. This posed a problem, as the output dimension of the attention layers scaled linearly with the
number of attention vectors used. The outputs of the attention layers were then concatenated to the
features associated with each protein. For models 13-15, only the amino acid frequency was used.
For model 16, other additional features like secondary structure frequency were included, and for
model 18, the bert autoencoder output was also included as feature. After concatenation, the tensors
are passed through a 2 layer MLP (usually with a higher dropout probability) that preocesses the
information and outputs a 1 dimensional value. Model 17 was a different version of model 16 with
the same architecture but different dropout, so it was not mentioned.

Additionally, from model 16 onwards the secondary structure sequence is used along the amino
acidic sequence. Both sequences are transformed to integer tensors, passed through embedding ta-
bles and concatenated, hence giving the input embeddings more possible combinations (60 possible
embeddings rather than 20). Also, from model 16 onwards all models use MAE for training.

From these models, model 13 was simple and the best performing model than the ones that came
before, hence it was selected for re-trained to include all the metrics and settings used in the latter
models. Upon re-training, the model effectively had a better performance than several models that

43

4.4. DEEP LEARNING MODELS CHAPTER 4. RESULTS

Model D.O. Epochs Tuning MAE MSE R2 WMAE WMSE WR2 F1
13 0.4 80 Yes 0.988 1.886 0.176 1.136 2.46 0.409 0.605

20b 0 500 No 1.012 1.778 0.217 1.146 2.25 0.503 0.6
23b 0.05 370 Yes 0.976 1.659 0.269 1.138 2.218 0.508 0.613
24 0.4 750 No 0.938 1.715 0.244 1.049 2.251 0.464 0.633

Table 4.6: Results of models that were further trained with undersampling. D.O. indicates the dropout probability used, where bold
indicates the dropout is different to that of the model trained regularly. Tuning indicates if the model was fine-tuned using the best
model trained regularly as a starting point.

came after, with a MAE of 0.905 (Fig. 4.16, top row).

Model 13 had a simple architecture, where one attention vector is trained by self-attention layer for
each of the 2 LSTM layer outputs. Each attention layer performs dot product attention, extracting
a 128 dimensional vector (bidirectional LSTMs have double the hidden size) (Fig. 4.17). Both at-
tention outputs are concatenated with the amino acid frequencies, totallying 276 dimensions which
are passed through 2 FC layers (with dropout probability 0.3) until an output of dimension 1.

This model was trained with both a regular approach and with undersampling. Undersampling
deals with the unbalance in the distribution of the target value by giving additional weight to less
common pH values (in this case, low pH values). The weighted metrics improved significantly,
where the WMAE hits record value so far (and the second best of all models) of 1.136 (Table. 4.6).

4.4.3 Attention features models

Models 19-22b are fourth generation models. These exhibit more complex and highly creative and
diverse architectures. They differ from the previous models in that the attention layers are attention
feature layers (see methods section). These attention layers are able to perform dot product attention
with multiple attention vectors, but are able to compress the information in multiple ways so not to
have extremely high number of dimensions before the fully connected layers.

Model 19 is a cross LSTM-CNN, meaning that both an LSTM and a CNN process the input layer,
their outputs are concatenated and used as input for consecutive LSTM-CNNs. From each layer,
an ”attention features” layer extracts information. This model was very unefficient to train due to
lack of parallelization, and no better than other much simpler models. On the other hand, model
20 is a purely CNN model, in which the output of the first CNN is used by consecutive CNNs.
It was very efficient to train, not prone to overfitting but had low predictive capacity. Model 21
was highly complex. In it, a 2 layer bidirectional LSTM is applied to the input, and then the same
architecture of model 20 is applied to both the LSTM output and the input. Finally, model 22 had a
similar architecture to that of model 20 but using the pretrained ProtBERT amino acid embeddings.
The pre-trained embeddings’ size was 1024 dimension, which caused performance issues so the
development of this type of model was stopped early.

The architectures so far do not use any features as input, only the amino acidic sequence and
secondary structure sequence. These were included in latter versions (b models) to test if good
results were obtained in simpler architectures, which would optimize the computational costs of the
final model. Models 20b and 21b are have similar architectures to model 20 and 21, respectively,
but use all features, including the bert autoencoder output. The models’ performance improved
significantly. Remarkably, the worst performing model of the fourth generation, model 20, had the

44

4.4. DEEP LEARNING MODELS CHAPTER 4. RESULTS

Fig 4.16: Best performing deep learning models in their weighted and unweighted versions. Analog to Fig. 4.13 but for deep
learning models.

45

4.4. DEEP LEARNING MODELS CHAPTER 4. RESULTS

Fig 4.17: Best LSTM with attention model architecture.

best metrics in the version with features (model 20b, Fig. 4.5 and Fig. 4.16 second row), and hence
was selected for undersampling.

The complete architecture of model 20b can be found in Fig. 4.18. First, amino acidic sequences
and secondary structure sequences are converted to 24 dimensional and 8 dimensional embeddings,
respectively, and concatenated to produce 32 dimensional embeddings. As stated above, this model
did not contain any recurrent neural networks. Instead, the embeddings are passed through 3 con-
secutive one dimensional CNN layers of hidden size (N° of channels) 128 and kernel size 11. From
each output and from the input embeddings, attention features extract 32 vectors of size 4 (verti-
cal features) and 1 vector of size 128 and 32 for the hidden layers and input layers, respectively
(horizontal features). Parallely, the features are also preprocessed with a fully connected layer that
reduces their dimension to 256. The frequencies are not processed this way. Finally, all features
are concatenated into a 1184 sized vector which is passed to 2 consecutive fully connected layers,
with an intermediate hidden size of 384.

With resampling, this model reached the best weighted R2 score so far (Fig. 4.16 second row, Table
4.6), but did not perform better than model 13 trained with undersampling in terms of WMAE or
MAE.

4.4.4 CNN attention

Finally, models 23 - 24 are the fifth and final generation of models developed for this thesis. In
these models, CNN attention is used to extract information from the hidden layers (see methods).
The CNN attention mechanism is similar to the attention features mechanism, but both keys and
values are extracted with convolutional networks. By doing this, complex relationships between
the sequences can be captured.

The architecture of model 23 is very simmilar to model 20, as both have consecutive CNN layers
from which features are extracted with attention. They differ on the use of CNN attention layers
and other minor dimension tweaks. It showed similar performance than model 20 in all metrics.

46

4.4. DEEP LEARNING MODELS CHAPTER 4. RESULTS

Fig 4.18: Best attention features architecture: model 20b. A consecutive CNN with attention features is shown. Different colored
blocks in the embedding tensor indicate that part of the embeddings come from secondary structure data.

Fig 4.19: Best CNN attention architectures: model 23b. A consecutive CNN with CNN attention is shown. Different colored blocks
in the embedding tensor indicate that part of the embeddings come from secondary structure data.

47

4.4. DEEP LEARNING MODELS CHAPTER 4. RESULTS

Fig 4.20: Best CNN attention architectures: model 24. A 2 layer Bi-LSTM with CNN attention is shown. Different colored blocks
in the embedding tensor indicate that part of the embeddings come from secondary structure data.

The version with features (model 23b) also had a similar architecture to model 20b (Fig. 4.19).
Specifically, amino acids and secondary structure are converted to embedding tensors of size 48
and 16, respectively. 3 Consecutive CNN layers with kernel size 11 and 128 channels extract
different levels of hidden layers. From each, CNN attention layers with kernel size 11 extract 16
vectors of size 8 (vertical features) and 1 vector of size 64 (horizontal features). Parallely, features
are preprocessed similarly than model 20b, but with an intermediate hidden size of 512 instead of
256.

As for model 24, it was constructed directly in a version with features, as at this point it was clear
that the features increased the predictive capacity of the models. As seen in Fig. 4.20, this model’s
architecture is a 2 layer Bi-LSTM, where CNN attention layers are used to extract information
from their outputs. In this sense, this architecture is a mix between model 13, where attention
is extracted after every LSTM layer, and model 23b, where CNN attention is used. The CNN
attention layers are applied only to the LSTM outputs and not the raw data. In this architecture,
amino acids are converted to embeddings of size 20, and secondary structure to embeddings of size
4. These are concatenated, producing embeddings of size 24. A dropout of 0.35 is applied to the
embeddings, which produces the regularization of the LSTM layers. The embeddings are passed
through 2 consecutive Bi-LSTM layers. From their outputs, CNN attention layers with kernel size
7 are applied. Each CNN attention layer extracts 4 vertical features of size 24 and 1 horizontal
feature of size 64. Parallely, the features are heavily compressed to 16 dimensions. When all
features, including the frequencies, are concatenated, a vector of size 356 is obtained, which is
passed through a fully connected layer of equal output and finally to the model’s output.

Both models had outstanding metrics (Fig. 4.16 third and lower rows), where the model 23b ob-
tained the best MSE of all models, while model 24 obtained the best MAE. Then, undersampling
was applied to both models to obtain more representative predictions. The resulting models have
the best weighted metrics of all the models (Fig. 4.6), with model 24 having the best WMAE and
f1 of all models and model 23b having the best WMSE and WR2.

48

4.5. ORGANISMS PREDICTIONS CHAPTER 4. RESULTS

Metric Unweighted Weighted

MAE 0.826 0.724
WMAE 1.015 0.778

MSE 1.258 0.863
WMSE 1.809 1.016

R2 0.652 0.761
WR2 0.566 0.762

F1 0.736 0.760

Table 4.7: Metrics of organism averages in the weighted and unweighted versions of model 24.

Fig 4.21: Genome average predictions for both the unweighted (left) and weighted (right) versions of model 24.

4.5 Organisms predictions

4.5.1 Model selection

Of all the architectures tested in this thesis, the best performing architecture in terms of MAE,
WMAE and f1-score in both the weighted and unweighted versions was that of model 24. Between
both version, a first selection was made by best metrics in genome average predictions in test +
validation datasets (Fig. 4.21). The weighted version of the model had better performance on all
metrics tested (Table 4.7).

4.5.2 Heuristic definition

Then, after selection of the best model and specific version of the model, several heuristics were
tested for the best method to calculate the organism prediction. This was done in training data, and
then applied to test + validation data, as a means to reduce the overfitting.

For the mode method, different σ values were explored. The optimal σ was selected with best MAE
(Fig. 4.22). While using the median of the proteins predictions for the genome predictions had the
best MAE in training data in comparison to the mode and mean, the mode had best performance
according all other metrics, so it was given priority (Table 4.8). The heuristic was then applied to
test and validation data to confirm the metric’s performance. Indeed, the mode had a significantly
better performance than using the mean according to all metrics (Table 4.7). The genome predic-
tions using the mode of the proteins predictions with a σ = 0.6 had a mean average prediction error
of about 0.609 pH units, a R2 error of about 0.79, and an equivalent f1 score of 0.825.

49

4.5. ORGANISMS PREDICTIONS CHAPTER 4. RESULTS

Fig 4.22: Selection of best σ hyperparameter for density calculation and mode prediction. For each metric, the min-max scaled
metric is plotted and the best metric is shown with a black star.

Metric Train - Mean Train - Median Train - Mode Test + Val - Mode

MAE 0.379 0.367 0.369 0.609
WMAE 0.358 0.357 0.356 0.648

MSE 0.235 0.232 0.228 0.749
WMSE 0.214 0.221 0.215 0.903

R2 0.936 0.937 0.938 0.793
WR2 0.945 0.945 0.945 0.789

F1 0.91 0.908 0.914 0.825

Table 4.8: Organisms pH prediction metrics using mean, median and mode in train and test data.

50

Chapter 5

Discussion

The resulting model for the prediction of source organism’s optimal growth pH from the proteins’
amino acidic sequence was the result of an exhaustive search for the best machine learning model,
where 6 variations of classical machine learning models and over 25 architectures of deep learning
models were tested. The resulting model used a combination of features extracted with bioinfor-
matic softwares, features extracted with deep learning tools, and the amino acidic sequence of the
protein. The model’s architecture was a combination of the architectures of the best performing
models of each subfamily, containing LSTM, CNN and novel attention mechanisms for feature
extraction.

While the genome predictions are satisfactory at least in terms of the weighted and unweighted
R2 metric, this thesis’ objective of a MAE < 0.5 was not accomplished and there is still much
room for improvement for both the genome and the individual protein predictions. In the idividual
protein predictions in test data, the MAE is barely below 1 pH unit in all the models of this thesis.
Considering the full range of the target variable is only 7 pH units and how the target variable is
overrepresented around pH 5.5 and 7, these are poor results. If the mean of the target variable
is used as a constant prediction, a MAE of 1.18 would be obtained, making this model not much
better than a naive model.

The suboptimal performance and metrics of the best performing model of this thesis can be inter-
preted in at least 2 ways:

• The models lacked predictive capacity: A better model could have achieved much better re-
sults.

• The dataset had separability issues: The dataset and preprocessing methods are not clean
enough.

• The problem has separability issues: It is just not possible to predict the pH resistance capacity
of proteins.

51

CHAPTER 5. DISCUSSION

The first hypothesis is plausible. While advanced deep learning architectures with high predictive
capacity were used, these architectures were not the state-of-the-art for deep learning on proteins.
Transformer based architectures were left out from this thesis’ work for computational performance
reasons. Transformer-based encoder models like ProtBERT were still used for feature extraction,
and using these features as input of deep learning models is the technical equivalent of doing
transfer learning with freezed weights. Perhaps a fine-tuning approach might have been the missing
ingredient for a model that effectively predicts the pH of the proteins. However, this model is
excesively large, as it took over 12 hours to just perform inference over the protein dataset (1
epoch), while in this thesis’ trained models 1 training epoch took up to 15 minutes. Hence, this
possibility was put aside for this thesis in favor of simpler and computationally efficient models.
This possibility can be further developed in future work.

On the other hand, the second hypothesis has interesting possibilities. First, in this model it is
assumed that all exposed proteins have the same optimal pH as the source organism, and that
might not be true. Exposed proteins do not need to function optimally at the organism’s optimal
growth pH, they only need to resist it. By that extent, there could be proteins that share identical
physichochemical features and have the same optimal pH, but can be present in organisms that grow
optimally at different pHs as long as the protein can resist both pHs. For such case, the example
proteins would not be separable. Moreover, exposed proteins are not necessarily expressed at the
same time. Organisms that grow over a wide range of pH [115] could have exposed proteins that are
preferentially expressed at different pH values. Such potential variation is not being addressed in
this work, as only the optimal growth is being used for each organism. Additionally, the obtention
of the optimal growth pH of an organism also has unavoidable errors. The ideal scenario would be
a dataset of manually curated optimal pH of individual proteins, but such database was not found.

Another interesting possibility regarding this second hypothesis is related to the prediction of ex-
posed proteins. In this work, the classification of proteins as ”exposed” was achieved by combining
the output of 2 different subcellular localization prediction softwares: PSORTb and SignalP. Psortb
[22] predicts subcellular localization by similarity-based algorithms, while SignalP [23] predicts
the presence of a translocation signal peptide in the proteins. One or both methods could be prone
to classification errors, producing a contamination of the dataset with cytoplasmic proteins which
are not exposed to the pH that the organism is exposed to. Even so, some of the subcellular local-
izations considered in this work could have different forms of exposure to the external pH, or even
no exposure.

To explore this last hypothesis, the main metrics for this thesis MAE and WMAE were calculated
for each prediction of subcellular localization (Table 5.1) and signal peptide presence (Table 5.2).
Effectively, proteins that were predicted to be exported (11.3 % of the proteins) had worse metrics
than the rest of proteins. It is unknown why this was obtained. But there was a specially marked
difference in the metrics by different signal peptide types. Lipoproteins exhibited the best metrics,
while proteins without a signal peptide (11.9%) exhibited by far the worst metrics of all the cate-
gories here analyzed. This could mean that part of these proteins are actually cytoplasmic proteins
which contaminate the dataset.

These possibilities of contamination, and optimal pH diversity by genome were taken into account
in the training of models. Using mean squared error as a loss function gives a high penalty to out-
liers, which causes the predictions to adjust so all points are not-that-far of the target value. MAE,

52

CHAPTER 5. DISCUSSION

Subcellular localization N° of proteins in the test dataset (%) MAE WMAE

Unknown 22863 (69.5%) 0.923 1.04
Periplasm 4236 (12.5%) 0.937 1.006
Exported 3709(11.3%) 1.055 1.172

Outer membrane 1740 (5.3%) 0.924 0.956
Cell wall 364 (1.1%) 0.86 1.021

Table 5.1: Metrics obtained with the weighted version of model 24 by different subcellular localizations

Signal peptide type N° of proteins in the test dataset (%) MAE WMAE

SP 18516 (56.3%) 0.92 1.004
LIPO 7270 (22.1%) 0.884 0.981
None 3574(10.9%) 1.152 1.239
TAT 3552 (10.8%) 0.933 1.178

Table 5.2: Metrics obtained with the weighted version of model 24 by different types of signal peptides

on the other hand, allows for outliers to have high errors as long as a high number of predictions is
very close to the target value. This is probably why aggregating the protein predictions with mode
had better results than using median and than using mean. With mode, the model only expects a
high concentration of predictions around the actual value, even if there are numerous outliers with
huge errors.

Weighted models had a much better performance than unweighted models in the organisms pre-
dictions according to both weighted and unweighted metrics. This is probably because acidophiles
have much fewer proteins than the rest of the organisms (Fig. 4.1). Then, when aggregating by
genome, the number of data points proportionally increases at low pH, and the dataset slightly
balances itself, so models that have better predictive capacity at low pH have a better performance.

As it was mentioned, this work didn’t achieve one of the objectives of this thesis of a MAE < 0.5
in the genome predictions. This could be improved by selecting only a few benchmark proteins
for which the prediction is highly accurate and that are present in most or all organisms. This
would simultaneously tackle the aforementioned issue of an unclean dataset. An alternative could
be aggregating the proteins with different weights, using an additional simple model to learn the
weights from the protein features.

53

Chapter 6

Conclusions and future work

The model here developed corresponts to the first approach to predicting the acid resistance capac-
ities of proteins. In turn, the organism prediction heuristics corresponds to the first protein-based
approach to predict the acid resistance of an organism based solely on its genome and without rely-
ing on homology based methods. This could involve the development of a future tool that permits
the detection of acidophiles from genomes of organisms that have never been grown in the labora-
tory (such as metagenomic reconstructions). The advantage of this method over homology-based
methods is that it could detect acidophiles even if they are not simmilar to known acidophiles.

Future developments for the improvement of the current model include the use of simple trans-
former architectures and the cleaning of potential cytoplasmic proteins or other difficult-to-classify
proteins which impair the learning capacity of the models, by eliminating proteins predicted to be
exported and proteins without a signal peptide. Additionally, a classification approach could be
implemented, where genomes of organisms with optimal pH growths of 4 - 6 are removed and the
model only learns to distinguish from acidophiles and not acidophiles. While this would reduce the
granularity of the prediction, it could potentially increase the predictor’s performance. Addition-
ally, fine-tuning of pre-trained transformer models could be performed as a next step for improved
predictions. The organisms’ prediction heuristic from the aggregation of individual proteins’ pre-
dictions could also be improved by training a simple model that predicts if the protein would have
high or low error rate. which would clean the dataset and also reduce inference costs.

54

Bibliography

[1] Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local
alignment search tool. Journal of molecular biology, 215(3), 403-410.

[2] Artimo, P., Jonnalagedda, M., Arnold, K., Baratin, D., Csardi, G., De Castro, E., ... &
Stockinger, H. (2012). ExPASy: SIB bioinformatics resource portal. Nucleic acids research,
40(W1), W597-W603.

[3] Baker-Austin, C., & Dopson, M. (2007). Life in acid: pH homeostasis in acidophiles. Trends
in microbiology, 15(4), 165-171.

[4] Bateman, A., & Haft, D. H. (2002). HMM-based databases in InterPro. Briefings in bioinfor-
matics, 3(3), 236-245.

[5] Chen, X. (2021). Thriving at Low pH: Adaptation Mechanisms of Acidophiles. Acidophiles -
Fundamentals and Applications.

[6] Chi, A., Valenzuela, L., Beard, S., Mackey, A. J., Shabanowitz, J., Hunt, D. F., & Jerez, C.
A. (2007). Periplasmic proteins of the extremophile Acidithiobacillus ferrooxidans: a high
throughput proteomics analysis. Molecular & Cellular Proteomics, 6(12), 2239-2251.

[7] Cortez, D., Neira, G., González, C., Vergara, E., & Holmes, D. S. (2022). A large-scale
genome-based survey of acidophilic bacteria suggests that genome streamlining is an adaption
for life at low pH. Frontiers in Microbiology, 13, 803241.

[8] Duarte, F., Sepulveda, R., Araya, R., Flores, S., Perez-Acle, T., Gonzales, W., ... & Holmes,
D. S. (2011). Mechanisms of protein stabilization at very low pH. In Proc. 19th International
Biohydrometallurgy Symposium, Changsha, China (pp. 349-353).

[9] Ferruz, N., Schmidt, S., & Höcker, B. (2022). ProtGPT2 is a deep unsupervised language
model for protein design. Nature communications, 13(1), 4348.

[10] Giovannoni, S. J., Cameron Thrash, J., & Temperton, B. (2014). Implications of streamlining

55

BIBLIOGRAPHY BIBLIOGRAPHY

theory for microbial ecology. The ISME journal, 8(8), 1553-1565.

[11] Hidalgo, O., Pellicer, J., Christenhusz, M., Schneider, H., Leitch, A. R., & Leitch, I. J. (2017).
Is there an upper limit to genome size?. Trends in Plant Science, 22(7), 567-573.

[12] Zhang, J. (2000). Protein-length distributions for the three domains of life. Trends in Genetics,
16(3), 107-109.

[13] Sheinerman, F. B., Norel, R., & Honig, B. (2000). Electrostatic aspects of protein–protein
interactions. Current opinion in structural biology, 10(2), 153-159.

[14] Goldenberg, N. M., & Steinberg, B. E. (2010). Surface charge: a key determinant of protein
localization and function. Cancer research, 70(4), 1277-1280.

[15] Chauhan, N. K., & Singh, K. (2018, September). A review on conventional machine learning
vs deep learning. In 2018 International conference on computing, power and communication
technologies (GUCON) (pp. 347-352). IEEE.

[16] Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., ... & Liu, T. Y. (2017). Lightgbm:
A highly efficient gradient boosting decision tree. Advances in neural information processing
systems, 30.

[17] Dorugade, A. V. (2014). New ridge parameters for ridge regression. Journal of the Association
of Arab Universities for Basic and Applied Sciences, 15, 94-99.

[18] Gupta, A., Sharma, A., & Goel, A. (2017). Review of regression analysis models. Int. J. Eng.
Res. Technol, 6(08), 58-61.

[19] Bühlmann, P., & Yu, B. (2002). Analyzing bagging. The annals of Statistics, 30(4), 927-961.

[20] Segal, M. R. Machine Learning Benchmarks and Random Forest Regression. Info:.

[21] Loh, W. Y. (2011). Classification and regression trees. Wiley interdisciplinary reviews: data
mining and knowledge discovery, 1(1), 14-23.

[22] Yu, N. Y., Wagner, J. R., Laird, M. R., Melli, G., Rey, S., Lo, R., ... & Brinkman, F. S. (2010).
PSORTb 3.0: improved protein subcellular localization prediction with refined localization
subcategories and predictive capabilities for all prokaryotes. Bioinform., 26(13), 1608-1615.
doi: 10.1093/bioinformatics/btq249

[23] Almagro, J. J., Tsirigos, K. D., Sønderby, C. K., Petersen, T. N., Winther, O., Brunak, S.,
... & Nielsen, H. (2019). SignalP 5.0 improves signal peptide predictions using deep neural
networks. Nat. Biotechnol., 37(4), 420-423. doi: 10.1038/s41587-019-0036-z

56

BIBLIOGRAPHY BIBLIOGRAPHY

[24] Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., & Tyson, G. W. (2015).
CheckM: assessing the quality of microbial genomes recovered from isolates, single cells,
and metagenomes. Genome research, 25(7), 1043-1055.

[25] Moffat, L., & Jones, D. T. (2021). Increasing the accuracy of single sequence prediction meth-
ods using a deep semi-supervised learning framework. Bioinformatics, 37(21), 3744-3751.

[26] Elnaggar, A., Heinzinger, M., Dallago, C., Rehawi, G., Wang, Y., Jones, L., ... & Rost, B.
(2021). Prottrans: Toward understanding the language of life through self-supervised learning.
IEEE transactions on pattern analysis and machine intelligence, 44(10), 7112-7127.

[27] Sonnhammer, E. L., Von Heijne, G., & Krogh, A. (1998, June). A hidden Markov model for
predicting transmembrane helices in protein sequences. In Ismb (Vol. 6, pp. 175-182).

[28] Tusnady, G. E., & Simon, I. (2001). The HMMTOP transmembrane topology prediction
server. Bioinformatics, 17(9), 849-850.

[29] Kramer, O., & Kramer, O. (2016). Scikit-learn. Machine learning for evolution strategies,
45-53.

[30] Pereira, J., & Saraiva, F. (2020, July). A comparative analysis of unbalanced data han-
dling techniques for machine learning algorithms to electricity theft detection. In 2020 IEEE
congress on evolutionary computation (CEC) (pp. 1-8). IEEE.

[31] Stevens, E., Antiga, L., & Viehmann, T. (2020). Deep learning with PyTorch. Manning Publi-
cations.

[32] Zhang, Z. (2018, June). Improved adam optimizer for deep neural networks. In 2018
IEEE/ACM 26th international symposium on quality of service (IWQoS) (pp. 1-2). Ieee.

[33] Baziotis, C. (2017, August 2). Self-attention (on words) and masking. PyTorch Forums.
https://discuss.pytorch.org/t/self-attention-on-words-and-masking/5671/4

[34] Mayr, A., Binder, H., Gefeller, O., & Schmid, M. (2014). The evolution of boosting algo-
rithms. Methods of information in medicine, 53(06), 419-427.

[35] Solomatine, D. P., & Shrestha, D. L. (2004, July). AdaBoost. RT: a boosting algorithm for
regression problems. In 2004 IEEE International Joint Conference on Neural Networks (IEEE
Cat. No. 04CH37541) (Vol. 2, pp. 1163-1168). IEEE.

[36] Choi, R. Y., Coyner, A. S., Kalpathy-Cramer, J., Chiang, M. F., & Campbell, J. P. (2020).
Introduction to machine learning, neural networks, and deep learning. Translational vision
science & technology, 9(2), 14-14.

57

BIBLIOGRAPHY BIBLIOGRAPHY

[37] Salehinejad, H., Sankar, S., Barfett, J., Colak, E., & Valaee, S. (2017). Recent advances in
recurrent neural networks. arXiv preprint arXiv:1801.01078.

[38] Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent neural nets
and problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, 6(02), 107-116.

[39] Sak, H., Senior, A., & Beaufays, F. (2014). Long short-term memory based recur-
rent neural network architectures for large vocabulary speech recognition. arXiv preprint
arXiv:1402.1128.

[40] Jacovi, A., Shalom, O. S., & Goldberg, Y. (2018). Understanding convolutional neural net-
works for text classification. arXiv preprint arXiv:1809.08037.

[41] Li, Z., Liu, F., Yang, W., Peng, S., & Zhou, J. (2021). A survey of convolutional neural
networks: analysis, applications, and prospects. IEEE transactions on neural networks and
learning systems.

[42] Niu, Z., Zhong, G., & Yu, H. (2021). A review on the attention mechanism of deep learning.
Neurocomputing, 452, 48-62.

[43] Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473.

[44] Letarte, G., Paradis, F., Giguère, P., & Laviolette, F. (2018, November). Importance of
self-attention for sentiment analysis. In Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Networks for NLP (pp. 267-275).

[45] Mnih, V., Heess, N., & Graves, A. (2014). Recurrent models of visual attention. Advances in
neural information processing systems, 27.

[46] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin,
I. (2017). Attention is all you need. Advances in neural information processing systems, 30.

[47] Lin, T., Wang, Y., Liu, X., & Qiu, X. (2022). A survey of transformers. AI Open.

[48] Johnson, D., Goodman, R., Patrinely, J., Stone, C., Zimmerman, E., Donald, R., ... & Whe-
less, L. (2023). Assessing the accuracy and reliability of AI-generated medical responses: an
evaluation of the Chat-GPT model. Research square.

[49] Acheampong, F. A., Nunoo-Mensah, H., & Chen, W. (2021). Transformer models for text-
based emotion detection: a review of BERT-based approaches. Artificial Intelligence Review,
1-41.

58

BIBLIOGRAPHY BIBLIOGRAPHY

[50] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidi-
rectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

[51] Liu, Y., Zhang, Y., Wang, Y., Hou, F., Yuan, J., Tian, J., ... & He, Z. (2023). A survey of visual
transformers. IEEE Transactions on Neural Networks and Learning Systems.

[52] Ho, J., Saharia, C., Chan, W., Fleet, D. J., Norouzi, M., & Salimans, T. (2022). Cascaded dif-
fusion models for high fidelity image generation. The Journal of Machine Learning Research,
23(1), 2249-2281.

[53] Rampelotto, P. H. (2013). Extremophiles and extreme environments. Life, 3(3), 482-485.

[54] Neira, G., Cortez, D., Jil, J., & Holmes, D. S. (2020). AciDB 1.0: a database of acidophilic
organisms, their genomic information and associated metadata. Bioinformatics.

[55] Foster, J. W. (2004). Escherichia coli acid resistance: tales of an amateur acidophile. Nature
Reviews Microbiology, 2(11), 898-907.

[56] Vergara, E., Neira, G., González, C., Cortez, D., Dopson, M., & Holmes, D. S. (2020). Evo-
lution of predicted acid resistance mechanisms in the extremely acidophilic Leptospirillum
genus. Genes, 11(4), 389.

[57] Slonczewski, Joan L., et al. ”Cytoplasmic pH measurement and homeostasis in bacteria and
archaea.” Advances in microbial physiology 55 (2009): 1-317.

[58] Ingledew, W. John. ”Thiobacillus ferrooxidans the bioenergetics of an acidophilic
chemolithotroph.” Biochimica et Biophysica Acta (BBA)-Reviews on Bioenergetics 683.2
(1982): 89-117.

[59] Greaves, R. B., & Warwicker, J. (2009). Stability and solubility of proteins from ex-
tremophiles. Biochemical and biophysical research communications, 380(3), 581-585.

[60] Brininger, C., Spradlin, S., Cobani, L., & Evilia, C. (2018, December). The more adaptive to
change, the more likely you are to survive: Protein adaptation in extremophiles. In Seminars
in cell & developmental biology (Vol. 84, pp. 158-169). Academic Press.

[61] Tanford, C. (1968). Protein denaturation. Advances in protein chemistry, 23, 121-282.

[62] Wang, X. F., Gao, P., Liu, Y. F., Li, H. F., & Lu, F. (2020). Predicting thermophilic proteins
by machine learning. Current Bioinformatics, 15(5), 493-502.

[63] Sawle, L., & Ghosh, K. (2011). How do thermophilic proteins and proteomes withstand high
temperature?. Biophysical journal, 101(1), 217-227.

59

BIBLIOGRAPHY BIBLIOGRAPHY

[64] Siddiqui, K. S., & Cavicchioli, R. (2006). Cold-adapted enzymes. Annu. Rev. Biochem., 75,
403-433.

[65] Yang, A. S., & Honig, B. (1993). On the pH dependence of protein stability. Journal of molec-
ular biology, 231(2), 459-474.

[66] Reed, Christopher J., et al. ”Protein adaptations in archaeal extremophiles.” Archaea 2013
(2013).

[67] Talley, K., & Alexov, E. (2010). On the pH-optimum of activity and stability of proteins.
Proteins: Structure, Function, and Bioinformatics, 78(12), 2699-2706.

[68] Lundblad, Roger L., and Fiona Macdonald, eds. Handbook of biochemistry and molecular
biology. Crc Press, 2018.

[69] Michaux, C., Pouyez, J., Mayard, A., Vandurm, P., Housen, I., & Wouters, J. (2010). Struc-
tural insights into the acidophilic pH adaptation of a novel endo-1, 4-β-xylanase from Scytal-
idium acidophilum. Biochimie, 92(10), 1407-1415.

[70] Chen, X. (2021). Thriving at Low pH: Adaptation Mechanisms of Acidophiles. In
Acidophiles-Fundamentals and Applications. IntechOpen.

[71] Sivashankari, S., & Shanmughavel, P. (2006). Functional annotation of hypothetical pro-
teins–A review. Bioinformation, 1(8), 335.

[72] Higdon, R., Louie, B., & Kolker, E. (2010, June). Modeling sequence and function similarity
between proteins for protein functional annotation. In Proceedings of the 19th ACM Interna-
tional Symposium on High Performance Distributed Computing (pp. 499-502).

[73] Söding, Johannes. ”Protein homology detection by HMM–HMM comparison.” Bioinformat-
ics 21.7 (2005): 951-960.

[74] Mirceva, Georgina, and Dancho Davchev. ”HMM based approach for classifying protein
structures.” International Journal of Bio-Science and Bio-Technology (2012).

[75] Nath, A., & Karthikeyan, S. (2020). Understanding the protein sequence and structural adap-
tation in extremophilic organisms through machine learning techniques. In Physiological and
Biotechnological Aspects of Extremophiles (pp. 307-314). Academic Press.

[76] AlQuraishi, Mohammed. ”Machine learning in protein structure prediction.” Current opinion
in chemical biology 65 (2021): 1-8.

[77] Bonetta, Rosalin, and Gianluca Valentino. ”Machine learning techniques for protein function

60

BIBLIOGRAPHY BIBLIOGRAPHY

prediction.” Proteins: Structure, Function, and Bioinformatics 88.3 (2020): 397-413.

[78] Audain, Enrique, et al. ”Accurate estimation of isoelectric point of protein and peptide based
on amino acid sequences.” Bioinformatics 32.6 (2016): 821-827.

[79] Kessel, A., & Ben-Tal, N. (2018). Introduction to proteins: structure, function, and motion.
Crc Press.

[80] Nasko, D. J., Koren, S., Phillippy, A. M., & Treangen, T. J. (2018). RefSeq database growth in-
fluences the accuracy of k-mer-based lowest common ancestor species identification. Genome
biology, 19(1), 1-10.

[81] Fang, Yaping, C. Russell Middaugh, and Jianwen Fang. ”In silico classification of proteins
from acidic and neutral cytoplasms.” (2012): e45585.

[82] Kozlowski, L. P. (2021). IPC 2.0: prediction of isoelectric point and p K a dissociation con-
stants. Nucleic acids research, 49(W1), W285-W292.

[83] Fout, A., Byrd, J., Shariat, B., & Ben-Hur, A. (2017). Protein interface prediction using graph
convolutional networks. Advances in neural information processing systems, 30.

[84] Shi, Z. (2022). Graph neural networks and attention-based CNN-LSTM for protein classifica-
tion. arXiv preprint arXiv:2204.09486.

[85] Susanty, M., Hertadi, R., Purwarianti, A., & Rajab, T. L. E. (2022). Low Complexity Classi-
fication of Thermophilic Protein using One Hot Encoding as Protein Representation. Interna-
tional Journal of Advanced Computer Science and Applications, 13(12).

[86] Cheng, **yong, Yihui Liu, and Yuming Ma. ”Protein secondary structure prediction based on
integration of CNN and LSTM model.” Journal of Visual Communication and Image Repre-
sentation 71 (2020): 102844.

[87] Jumper, John, et al. ”Highly accurate protein structure prediction with AlphaFold.” Nature
596.7873 (2021): 583-589.

[88] Lee, Jooyoung, Peter L. Freddolino, and Yang Zhang. ”Ab initio protein structure prediction.”
From protein structure to function with bioinformatics (2017): 3-35.

[89] Vig, J., Madani, A., Varshney, L. R., Xiong, C., Socher, R., & Rajani, N. F. (2020).
BERTology meets biology: interpreting attention in protein language models. arXiv preprint
arXiv:2006.15222.

[90] Gauthier, J., Vincent, A. T., Charette, S. J., & Derome, N. (2019). A brief history of bioinfor-

61

BIBLIOGRAPHY BIBLIOGRAPHY

matics. Briefings in bioinformatics, 20(6), 1981-1996.

[91] Alberts, B., Bray, D., Hopkin, K., Johnson, A. D., Lewis, J., Raff, M., ... & Walter, P. (2015).
Essential cell biology. Garland Science.

[92] Schlegel, H. G., & Zaborosch, C. (1993). General microbiology. Cambridge university press.

[93] Champe, P. C., Harvey, R. A., & Ferrier, D. R. (2005). Biochemistry. Lippincott Williams &
Wilkins.

[94] Maturana, H. R., & Varela, F. J. (1991). Autopoiesis and cognition: The realization of the
living (Vol. 42). Springer Science & Business Media.

[95] Travers, A., & Muskhelishvili, G. (2015). DNA structure and function. The FEBS journal,
282(12), 2279-2295.

[96] Cox, M. M., Doudna, J. A., & O’Donnell, M. (2012). Molecular biology: principles and
practice (p. 809). New York, NY. USA:: WH Freeman and Company.

[97] Brooker, R. J. (1999). Genetics: analysis & principles. Reading, MA, USA:: Addison-Wesley.

[98] Wang, L., & Schultz, P. G. (2005). Expanding the genetic code. Angewandte Chemie Interna-
tional Edition, 44(1), 34-66.

[99] Lehrman, S. R. (2017). Protein structure. Fundamentals of protein biotechnology, 9-38.

[100] Janin, J., Bahadur, R. P., & Chakrabarti, P. (2008). Protein–protein interaction and quaternary
structure. Quarterly reviews of biophysics, 41(2), 133-180.

[101] Pirovano, W., & Heringa, J. (2010). Protein secondary structure prediction. Data Mining
Techniques for the Life Sciences, 327-348.

[102] Ponting, C. P., & Russell, R. R. (2002). The natural history of protein domains. Annual
review of biophysics and biomolecular structure, 31(1), 45-71.

[103] Ghélis, C. (2012). Protein folding. Academic Press.

[104] Krieger, E., Nabuurs, S. B., & Vriend, G. (2003). Homology modeling. Structural bioinfor-
matics, 44, 509-523.

[105] Pál, C., Papp, B., & Lercher, M. J. (2006). An integrated view of protein evolution. Nature
reviews genetics, 7(5), 337-348.

62

BIBLIOGRAPHY BIBLIOGRAPHY

[106] Vogt, G., Woell, S., & Argos, P. (1997). Protein thermal stability, hydrogen bonds, and ion
pairs. Journal of molecular biology, 269(4), 631-643.

[107] Eisenberg, D., Marcotte, E. M., Xenarios, I., & Yeates, T. O. (2000). Protein function in the
post-genomic era. Nature, 405(6788), 823-826.

[108] Xia, X. (2007). Protein isoelectric point. Bioinformatics and the Cell: Modern Computa-
tional Approaches in Genomics, Proteomics and Transcriptomics, 207-219.

[109] Salgado, J. C., Rapaport, I., & Asenjo, J. A. (2005). Is it possible to predict the average
surface hydrophobicity of a protein using only its amino acid composition?. Journal of Chro-
matography A, 1075(1-2), 133-143.

[110] Pace, C. N., Fu, H., Fryar, K. L., Landua, J., Trevino, S. R., Shirley, B. A., ... & Grimsley, G.
R. (2011). Contribution of hydrophobic interactions to protein stability. Journal of molecular
biology, 408(3), 514-528.

[111] Chanphai, P., Bekale, L., & Tajmir-Riahi, H. A. (2015). Effect of hydrophobicity on pro-
tein–protein interactions. European Polymer Journal, 67, 224-231.

[112] Rees, D. C., DeAntonio, L., & Eisenberg, D. (1989). Hydrophobic organization of membrane
proteins. Science, 245(4917), 510-513.

[113] Goebel, B. M., Norris, P. R., & Burton, N. P. (2000). Acidophiles in biomining. In Applied
microbial systematics (pp. 293-314). Dordrecht: Springer Netherlands.

[114] Valdés, J., Pedroso, I., Quatrini, R., Dodson, R. J., Tettelin, H., Blake, R., ... & Holmes, D.
S. (2008). Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial
applications. BMC genomics, 9, 1-24.

[115] Dhakar, K., & Pandey, A. (2016). Wide pH range tolerance in extremophiles: towards un-
derstanding an important phenomenon for future biotechnology. Applied microbiology and
biotechnology, 100, 2499-2510.

[116] Zhang, T., Lin, W., Vogelmann, A. M., Zhang, M., Xie, S., Qin, Y., & Golaz, J. C. (2021).
Improving convection trigger functions in deep convective parameterization schemes using
machine learning. Journal of Advances in Modeling Earth Systems, 13(5), e2020MS002365.

[117] Soldera, B. (2023, January 5). Mind the graph and 3D protein imaging. Mind the Graph
Blog. https://mindthegraph.com/blog/mind-the-graph-and-3d-protein-imaging-2/

[118] Cornell, B. (n.d.). Amino Acids. BioNinja. https://ib.bioninja.com.au/standard-level/topic-2-
molecular-biology/24-proteins/amino-acids.html

63

BIBLIOGRAPHY BIBLIOGRAPHY

[119] Szydlowski, M. (2017, May 24). Extremophiles. Columbia Daily Tri-
bune. https://www.columbiatribune.com/story/lifestyle/family/2017/05/24 /ex-
tremophiles/20804947007/

[120] GeeksforGeeks. (2023, August 8). Bacteria - definition, structure, diagram, Classification.
GeeksforGeeks. https://www.geeksforgeeks.org/bacteria/

[121] Chaya. (2022, April 14). Random Forest regression. Medium.
https://levelup.gitconnected.com/random-forest-regression-209c0f354c84

[122] What are neural networks?. IBM. (n.d.). https://www.ibm.com/topics/neural-networks

[123] Recurrent neural network. AILEPHANT. (2018, July 11).
https://ailephant.com/glossary/recurrent-neural-network/

[124] K., P. (2021, April 20). Week 7 - creating initial LSTM model. BASIS Indepen-
dent Silicon Valley. https://siliconvalley.basisindependent.com/2021/04/09/week-7-creating-
initial-lstm-model/

[125] Brownlee, J. (2020, September 2). How to develop a multichannel CNN model for text
classification. MachineLearningMastery.com. https://machinelearningmastery.com/develop-
n-gram-multichannel-convolutional-neural-network-sentiment-analysis

64

	Abstract
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Hypothesis
	Objectives
	General objective
	Specific objectives

	Contributions

	Background
	Biological background
	Cell biology
	Biochemistry of proteins
	Acidophiles

	Machine learning algorithms
	Non-deep learning algorithms
	Deep learning

	Machine learning on proteins
	Classical machine learning on proteins
	Deep learning on proteins

	Methodological approach

	Methods
	Dataset
	Proteomes and bioinformatic features
	Protein selection
	Other features

	Deep feature extraction
	Secondary structure prediction
	Protein autoencoding

	Data preparation
	Datasets split
	Feature preprocessing

	Exploratory analyses
	Gaussian smoothing
	Feature exploration

	Machine learning
	Sample weights
	Metrics
	Classical machine learning models
	Deep learning models

	Organism predictions

	Results
	Dataset Description
	Exploratory Data Analyses
	Amino acid composition
	Secondary structure
	Transformer autoencoder output
	Other features
	Bivariate analysis

	Classical machine learning models
	Ridge regression
	Random forest
	Gradient boosting

	Deep learning models
	Model history
	LSTM with attention models
	Attention features models
	CNN attention

	Organisms predictions
	Model selection
	Heuristic definition

	Discussion
	Conclusions and future work
	Bibliography

	pbs@ARFix@1:
	pbs@ARFix@2:
	pbs@ARFix@3:
	pbs@ARFix@4:

