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Resumen

Abundancias de la fase gaseosa de la Via Lactea sondeado por
lineas de vision de quasares

El medio circumgaldctico (CGM) media los procesos cruciales que regulan la formacién
de estrellas en las galaxias al restringir la entrada de gas pristino del medio intergalactico
(IGM) y las salidas de gas enriquecido con metales del medio interestelar (ISM). El estudio
de la composicién quimica y cinematica de su gas ha llevado a una mejor comprension de la
historia de la formacién estelar de una galaxia. En esta tesis, he utilizado espectros UV de
espectros de archivo HST /COS de 209 QSOs a z = 0.002 — 1.648 para estudiar los reservorios
de gas de la Via Lactea (MW) en absorcién tomograficamente. De cada uno de los espectros
UV de la muestra, he derivado densidades de columna para varios elementos (H, Fe, Ni, C, Si,
S, Al) usando perfiles de Voigt para modelar los perfiles de absorcién y encontré que ~ 38 de
las lineas de visién presentan N(H1) lo suficientemente alto como para ser llamado Damped
Lyman-alpha systems (DLAs). La metalicidad resultante y [a/Fe] en cada linea de visién
muestran variaciones impulsadas por diferencias quimicas en lugar de variaciones impulsadas
por la incertidumbre. Estas variaciones se contrastan con los resultados de la literatura de
314 sistemas Damped Lyman-a tinicos encontrados en una sola linea de vision QSO.

Los resultados pueden resumirse como sigue: 1) Para las lineas de vision DLA de la Via
Léctea la metalicidad media ponderada N(H1) es [M/H]= —0.440.2, donde las metalicidades
més bajas se pueden encontrar en la mayoria de los entornos ricos en H1. 2) La desviacién
estdndar en metalicidad encontrada en z = 0 en la MW es 40 % de la desviacién estandar en
metalicidad medida en DLAs de z ~ 0 a z ~ 5. Esto significa que las variaciones quimicas
dentro de una sola galaxia son un componente significativo de la dispersion en la metalicidad
a la relacién z. 3) La media [a/Fe] medida en la MW es 0.5 dex superior a la misma media
medida en los DLA, lo que significa que es probable que provengan de diferentes poblaciones
de galaxias. Asumiendo que la condensaciéon a polvo afecta a ambas poblaciones de DLA
de manera similar, el [a/Fe| de la MW estd més de acuerdo con los patrones observados en
las estrellas de MW, por otro lado, los DLA de alto z [o/Fe] estdn mds de acuerdo con los
patrones observados en las galaxias enanas. Esto significa que el tipo de galaxia dominante
en los huéspedes DLA sea probablemente las galaxias enanas.



Abstract

The circumgalactic medium (CGM) mediates the crucial processes that regulate star for-
mation in galaxies by constraining the inflow of pristine gas from the intergalactic medium
(IGM) and outflows of metal-enriched gas from the interstellar medium (ISM). Studying the
chemical composition and kinematics of its gas has led to a better understanding of the star
formation history of a galaxy. In this thesis, I have used UV spectra from HST/COS archival
spectra of 209 QSOs at z = 0.002 — 1.648 to study the gas reservoirs of the Milky Way
(MW) in absorption tomographically. From each UV spectra in the sample, I have derived
column densities for several elements (H, Fe, Ni, C, Si, S, Al) using Voigt profile fitting and
found that ~ 38% of the sightlines present N(H1) high enough to be called Damped Lyman-
a systems (DLAs). The resulting metallicity and [a/Fe] at each sightline show variations
driven by chemical differences rather than uncertainty-driven variations. These variations
are contrasted with literature results from 314 unique DLAs found on a single QSO sightline
at 0.008 < z < 5.179.

The results can be summarized as follows: 1) For the Milky Way DLA sightlines the
N(H1) weighted mean metallicity is [M/H]= —0.4 £ 0.2, where the lowest metallicities can
be found in the most H1-rich environments. 2) The standard deviation in metallicity found
at z = 0 in the MW is 40% of the standard deviation in metallicity measured in DLAs
from 0.008 < z < 5.179. This means that chemical variations within a single galaxy are
a significant component of the scatter in the metallicity to z relation. 3) The mean [a/Fe]
measured in the MW is 4+0.5 dex higher than the same mean measured in DLAs, meaning
MW DLAs are likely to come from a different galaxy population compared to DLAs at higher
z. Assuming dust depletion affects both DLA populations similarly, the MW’s [« /Fe| agrees
more with the patterns observed in MW stars, on the other hand, high-z DLAS’ [a/Fe] is in
closer agreement with patterns observed in dwarf galaxies. This means that the dominant
galaxy type in DLA hosts is likely to be dwarf galaxies.

i



Estoy sobre hombros de gigantes y gracias a ellos el horizonte es cada vez mds claro.
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Chapter 1

Introduction

1.1 Motivation for this work

The chemical composition of the gas in a galaxy is governed by the accretion of pristine gas
from the intergalactic medium (IGM) to the circumgalactic medium (CGM; Tumlinson et al.
2017). The global process that controls the ejection, accretion, and recycling of gas in a
galaxy is called the baryon cycle. The most sensitive technique to probe the very diffuse gas
around galaxies has proven to be quasar sightline spectroscopy, which studies the absorption
lines foreground galaxies imprint into the spectra of bright background quasars.

Quasars (QSOs) are energetic astrophysical sources powered by accretion onto supermas-
sive black holes in galaxies and present unique observational signatures that cover the full
electromagnetic spectrum over more than twenty orders of magnitude in frequency (Padovani
et al. 2017). The light from QSO that we see on Earth has the chemical composition of all
the gas that happened to be between us and the QSO imprinted into the spectrum of that
QSO. One QSO spectrum can be used to study the chemical composition of several absorp-
tion systems present in the light path, however, more than one QSO rarely probes a single
galaxy, thus the total chemical composition of a galaxy is derived from a single measurement
on a random point of the galaxy gas reservoir. Contrarily, our position within the Milky
Way provides us with a unique vantage point from where it is possible to use the light from
hundreds of QSOs to study the chemical composition of a single galaxy in a tomographic way.
This tomographic view of the gas chemical composition in a single galaxy provides important
insight into the distribution of these abundances in galaxies at earlier cosmic times. This
tomographic approach has been used before to study high-velocity clouds in the Milky Way
halo (Richter et al. 2017), to study galaxies in the local group like the Magellanic clouds
(Konstantopoulou et al. 2024) and the Andromeda galaxy (Lehner et al. 2020).

The motivation is to use this interesting approach to study one CGM and try to answer
questions, which are impossible to answer in galaxies beyond the Local Group.
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Figure 1.1: Equation representation of the pp-chain types.
1.2 Metallicity in galaxies

Astronomers refer to elements heavier than H and He as metals. Metals originate inside
the nuclei of stars. With increasing stellar mass the temperature and pressure in the core
increase, this allows for different modes of nuclear fusion each yielding heavier elements.
Elements as heavy as Fe can be fused in this process.

Stars with a mass of less than 1.5 M, during their life in the main sequence produce most
of their energy with the proton-proton chain (pp-chain), this process comes in three flavors,
pp-I, pp-II, and pp-III, they use different nuclei, but always yield *He in the end (Bethe 1939;
Hansen et al. 2004). The different pp-chains are illustrated in Figure 1.1 and Figure 1.2,
both Figures can be found in Hansen et al. (2004) Section 6.3.

In the nuclei of massive stars, the dominant process to generate energy during their time
in the Main Sequence is the CNO-cycle, a process in which carbon, nitrogen, and oxygen
(CNO) isotopes are consecutively capturing protons and % decaying ending in a proton
capture that yields a He nuclei. The reactions are shown in Figure 1.3 where each block is
a type of CNO-cycle, and the or means that that particular reaction can either mark the
end of the cycle or connect to the other chain. Figure 1.4 shows a CNO-cycle diagram from
Gamow (1952).

After the main-sequence atomic nuclei start to fuse into metals via triple-aw and He-
burning. Triple-a takes place when the nuclei 7' < 108K and takes two *He to form ®Be
and another “He to form an stable 2C, and subsequently absorb one more *He to form '¢0O.
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Figure 1.2: Graphical representation of the pp-chain types. Here the vertical axis represents
the atomic number Z, and the horizontal axis the mass number A. Each arrow represents one

type of pp-chain and the end product is *He.
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Figure 1.3: Equation representation of the CNO-cycles, where each block represents a CNO-
cycle, and the most commonly referred to as CNO-cycle is the connection between the first
and second cycle. The end of a cycle is reached when the reaction yields the isotope of C, N,
or O it started with plus a *He nuclei.
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Figure 1.4: CNO-cycle diagram from Gamow (1952). The cycle begins with the 2C at the
top of the diagram, and ends in the reaction that yields back a '2C and a a-particle (*He).

He-capture, or a-capture is responsible for fusing nuclei starting from %O into 2°Ne, then
through another a-capture, fuse into Mg, and so on until the Iron-peak elements, around
Ti, Fe or Ni. Elements created by He-capture are called a-elements. Examples of these
elements are C, O, Ne, Mg, Si, S, Ca, and Ni. Carbon and oxygen are also created via
triple-a, and Ti, Fe, and Ni are also called Iron-peak elements, thus these elements are not
usually referred to as a-elements.

While metals are created during the star’s life, they are locked in the nuclei and are
rarely expelled from the star. However, some processes can bring metals to the star’s surface
and after a coronal flare, these metals may be released from the star. For example, dredge-
ups occur to medium-mass stars in the red giant branch when the convection zone of the
star extends into the surface, this brings metals from the core into the surface of the star
(Mowlavi 1999).

After massive stars leave the main sequence and enter the He fusion phase, the He-flash
can evacuate part of the star mass into the interstellar medium, thus enriching the medium
around them. However, the main process that enriches the gas of a galaxy is supernovae
(SNe) (Tinsley 1979; Binney and Tremaine 2008).

There are two main SN types: thermonuclear SN (SN Ia) and cataclysmic SN (SN II).
SN IT occurs at the end of the life of massive stars due to gravitational collapse when nuclear
fusion stops generating energy. SN type II occurs quickly after the star formation event by
no more than ~ 40 Myr. On the other hand, SN Ia occurs after one component of a stellar
binary system evolves into a compact object like a white dwarf and later accretes sufficient
mass from the companion to start a runaway nuclear fusion reaction releasing enough energy
to explode in an SN. SN type Ia needs a longer process to start, thus presenting a lag from
0.5 to 10 Gyr with respect to star formation (Binney and Tremaine 2008).



When an SN explodes it enriches the interstellar medium (ISM) with the metals that
were once locked into the nuclei of the star, plus, depending on the initial condition of the
SN, neutron capture elements, which are elements heavier than Fe, formed in environments
with heavy isotopes and overdensities of neutrons.

SN type II yields mostly a-elements (C, O, Ne, Mg, Si, S, and Ca) and Fe-peak elements
(Ti, V, Cr, Mn, Fe, Co, and Ni), while SN Ia yields mostly Fe-peak elements.

This makes it so that the ratio between the number of a-elements and Fe-peak elements
([a/Fe]) is sensitive to the ratio between the number of SN II and the number of SN Ia
that have happened in a galaxy, and since SN events are related to star formation events,
studying [« /Fe] delivers information about the star formation history (SFH) of a galaxy.
Further discussion about this is found in section 4.3 and section 5.2.

1.2.1 The Circumgalactic Medium at high redshift

The replenishment of gas from the IGM into a galaxy is necessary to explain the star for-
mation (SF) rate measured in galaxies at all redshift, which is large enough to consume all
resources within a few Gyrs (Fox and Davé 2017). The CGM is the gas that surrounds a
galaxy typically within a virial radius (R,;) and the ISM, while outflows of gas can reach
further than this limit they are also considered part of the CGM. The CGM is of the utmost
importance because it mediates interactions between galaxies and the larger-scale IGM. The
CGM is multi-phased and the total gas mass and, metal mass can exceed their corresponding
masses inside the galaxy (Tumlinson et al. 2017). Galactic-scale winds driven by AGN or by
SN control star formation by expelling metal-enriched gas into the CGM, where it can cool
down and be cycled back into the ISM or if it has enough energy it can flow out into the
IGM.

A schematic view of the CGM is shown in Figure 1.5, it shows the dynamic and rich
constitution of the CGM and how important it is to study it in a large range of scales.

The physical properties of the CGM depend on competing gravitational gas infall and gas-
cooling, whether the free fall time is faster or slower with respect to cooling will determine if
the gas is hot (roughly virial temperature) or cold (T" ~ 10* K) respectively (Faucher-Giguere
and Oh 2023).

Cold gas is the main observational probe of the CGM because it is observed in absorption
with high resolution by QSO sightline spectroscopy and in emission by integral field units
(IFU) on large ground-based telescopes in Keck or VLT (Faucher-Giguere and Oh 2023).
On the other hand, hot gas direct observations come far and between, except for X-ray
observations on the most hot environments, like galaxy clusters, groups, or massive elliptical
galaxies. In this work, I will focus on the cold gas that can be seen in absorption.
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Figure 1.5: Figure 1 from Faucher-Giguere and Oh (2023) showing the complex multiple
phases with dynamics ranging from 100 kpc to as small as sub-parsec scales. The bottom
panel shows a central galaxy whose star formation is fueled by a mix of cold (blue) and
hot (yellow) accreting gas, which powers a multi-phase galactic wind. The top two panels
zoom onto a highly structured cloud complex (left) and a turbulent mixing layer (right).
Figure credit: Aaron M. Geller (Northwestern University/CIERA/IT Research Computing
Services). (©)2022 Aaron M. Geller
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Figure 1.6: Representation of a QSO spectrum where the different absorption system classes
can be seen. The metal lines marked are associated with the DLA because they are at the
same redshift. The Lyman-« forest is associated with the pristine gas from the IGM, thus
they present a forest of narrow lines starting from the Lyman-a of the QSO.

1.2.2 Damped Lyman Alpha systems

To classify absorption systems seen in QSO spectroscopy astronomers classify them by their
H1 column density. In increasing H1 column density there are: Lyman-« forest, Lyman Limit
systems, which have N(H1)< 10%cm™2; sub-Damped Lyman alpha systems (sub-DLAs), with
10%em™2 < N(H1) < 2 x 10*cm~2%; and finally Damped Lyman systems (DLAs) that have
N(H1) > 2 x 102%m~2. Figure 1.6 shows an example of absorption systems, where the most
prominent absorption feature is a DLA and its associated metal lines. An example of the
absorption profile of a DLA is shown in Figure 1.7.

The most common systems are the ones with the lowest N(H1), and DLAs and sub-DLAs
are the least abundant systems. This can be seen in Figure 1.8, from Noterdaeme et al.
(2009), which shows the frequency of encountering a system given its N(H 1), where the most
common systems are the ones with the lowest

Despite being less frequent than any other absorption system 20% of the total mass
density of H1 in the Universe is contained in sub-DLAs, and a larger portion of the total
is associated with DLAs (Noterdaeme et al. 2009; Prochaska and Wolfe 2009a). Figure 1.9,
from Noterdaeme et al. (2009) shows the cumulative total density of N(HT), and it is clear
to see that the most dense systems dominate the H1 cosmic budget.

Indeed, DLAs are distinctive because at log(N(H1)) > 20.3 the Lyman-« absorption shows
large damping wings, as can be seen in Figure 1.7. At such high N(H1) the absorption system
becomes self-shielded from ionization, therefore abundances for chemical elements are mostly
on their neutral phase (Wolfe et al. 2005), thus effectively for the chemical element present in
the DLA the dominant ionization states is such that the ionization potential is greater than
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Figure 1.7: Example of a DLA-like absorption. The solid black line is the absorption profile,
the red line is the Voigt profile fitted that characterizes the absorption and the dashed blue
line shows the continuum. The most stand-out feature in DLA profiles is the damping wings
seen at |v| > 500 km/s. Velocity is measured with respect to z = 0

Hr1 (13.598 eV). For example for O and N the dominant ionization state is O1 and N1, and
for C and S the dominant ionization state is once ionized C11 and S11. A table compiling the
ionization potential of elements can be found on Lide (2008).

As DLAs contribute the majority of the neutral gas in the Universe they arise as important
tracers for metallicity evolution. The metallicity evolution of DLAs across cosmic time has
been studied thoroughly. Rafelski et al. (2012), Rafelski et al. (2014), and Berg et al. (2016)
study the metallicity evolution of DLAs and find a consistent trend of increasing metallicity
at lower redshift as can be seen in Figure 1.10.

One important feature of the metallicity enrichment history is the large scatter found at
every redshift studied which cannot be explained by the uncertainty in the measurements.
This large scatter in the metallicity evolution is then explained physically by different origins
such as differences in stellar mass on the DLA host leading to differences in metallicities at
the same redshift (Baker and Maiolino 2023), or even differences in metallicity within the
same galaxy can affect the measured metallicity depending on the path the QSO sightline
takes through the CGM or ISM in the host galaxy (Péroux et al. 2020).

Most DLAs nowadays are only observed in absorption and are not associated with any
galaxy in emission, especially at z > 1 (Kulkarni et al. 2022). DLA hosts are often referred
to as a mized bag of galaxies for this reason, and the dominant galaxy type associated with
DLAs is still under debate (Wolfe et al. 1986; Rao et al. 2003; Cooke et al. 2015; Kulkarni
et al. 2022).
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Figure 1.8: Figure and caption from Figure 11 in Noterdaeme et al. (2007). N(H1) frequency
distribution of DLA systems in SDSS-DR7 from their automatic procedure. Fits to the
observations by a single power law, a double power law and a gamma function are given as,
respectively, a dotted blue, dashed green and solid red line. The double-power law fit to the
Prochaska and Wolfe (2009a) sample is indicated by the dashed orange line. The I'-function
fit to the frequency distribution obtained by Zwaan et al. (2005) from 21-cm observations at
z = 0 is also indicated as a solid grey line for direct comparison.



141 7
121 .
< 1.0F - ]
a en
a
_g 0.8+ 7]
k= I
g L
= 0.6_— N
@) L
0.4 Discrete evaluation
------------------ Single power law
—————— Double power law
0.2+ I" function 7]
0-0_ Il | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 Il

20.5 21.0 21.5 22.0 22.5 23.0

log Ny,
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This figure highlights the importance of DLAs to the total budget of H1 in the Universe.
The apparent flattening of the curve at log N(H1) ~ 21.7 implies convergence.
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Figure 1.10: Figure and caption from Figure 3 in Rafelski et al. (2014). DLA metallicity
versus redshift, showing a sharp decrease in metallicity at z > 4.7. The gray plus signs
are metallicities of DLAs at z < 4.7, and the green triangles are DLAs at z > 4.7. The
blue crosses show the cosmic metallicity, (Z), with the vertical error bars representing lo
confidence levels from our bootstrap analysis. The black dotted line is a linear fit to the (Z)
data points in redshift space for DLAs z < 4.7. The brown circle is (Z) deduced from DLAs
at z > 4.7 and is significantly below the linear fit.
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1.3 Metals in the Milky Way

Stars in our galaxy are usually so bright they can be studied individually and metallicities can
be obtained one by one modelling their atmosphere using models such as local thermodynamic
equilibrium (LTE) (Reddy et al. 2003; Reddy et al. 2006; Frebel 2010). These metallicities
measured in the atmosphere of stars reflect the metal content of the gas they are made of,
thus, in combination with age estimates, they are useful to study the enrichment history of
a galaxy.

The metallicity or metal content in the Milky Way’s gas can be measured directly using
emission line ratios from star-forming regions in molecular hydrogen (H11) clouds (Arellano-
Coérdova et al. 2020; Arellano-Cérdova et al. 2021); in the atmosphere of stars, using spectro-
scopic observations, and different models for the atmosphere of these stars it is possible to
retrieve accurate. This is not possible in the case of other galaxies, except for galaxies in the
Local Group, like the Magellanic Clouds and Andromeda galaxy, because of the difficulty of
resolving individual stars with spectrographs.

In this thesis, however, the focus is on the cold neutral gas that can be studied with quasar
sightline spectroscopy. Studying the Milky Way’s (MW) gas in this way has the advantage
that the light from any visible QSO must have gone through the MW’s ISM and CGM to
reach Earth.

QSO sightline spectroscopy allows astronomers to study the present-day chemical abun-
dances in the cold gas reservoirs of galaxies in the direction of the QSO, and in cases where
N(H1)> 2 x 10% the gas is neutral in that sightline and the MW can be studied the same
way a DLA is.

1.4 This thesis

In this thesis, I study metallicity variations in the neutral gas reservoirs of the Milky Way. 1
discuss these variations in metallicity and [«/Fe| in the context of the MW’s gas to see if it
is comparable to similar studies that use different methods. I discuss the use of metallicity
variations in the neutral gas reservoirs of one evolved galaxy to explain the same variations
seen on high redshift DLAs.

Thus, the goals of this thesis are to address the following questions:

e What is the metal content of the MW’s neutral gas?
e [s it possible to find the distribution of metals by using quasar sightline spectroscopy?

e What can the metallicity variations in the MW tell us about the cosmic metallicity
evolution of DLAs?

The rest of this thesis is organized as follows: chapter 2 describes the sample of QSO
spectra used; biases, and their possible consequences are discussed as well. In chapter 3

12



the method followed to fit voigt profiles to the spectra in the sample, the calculation of the
column density is described and the limitations of the modeling are discussed. Chapter 4
discusses the variations in the metallicities and [«/Fe] measured in the previous chapter, in
the context of the Milky Way. Chapter 5 discusses the same variations in chemical abundances
in the context of the cosmic chemical evolution of DLAs. Finally, chapter 6 summarizes and
discusses the results. Additionally, chapter 7 describes ways of moving forward with this
work in the future.
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Chapter 2

Data

In this chapter, I characterize the QSO spectra sample used. I used publicly available QSO
spectra in rest-frame UV observed by the Cosmic Origin Spectrograph (COS) aboard the
Hubble Space Telescope (HST') from the COS-Galactic Absorption Lines (COS-GAL) archive
(Zheng et al. 2019). The resolving power R = 12.000 — 20.000 enables fitting Voigt profiles,
measuring column densities, and therefore estimating chemical abundances of several impor-
tant metal lines, and the Lyman-a absorption.

In addition, in this chapter, I also asses the biases in the sample selection because of
possible dust reddening of the QSO, and how the contamination of high redshift absorbing
systems can affect the column densities measured.

2.1 Sample selection

The Milky Way is seen in absorption at z ~ 0 and rest-frame, furthermore, most element
transitions lie in the near and far-UV; hence, UV spectroscopy is essential to study chemical
abundances of several key elements that have different ionization levels and nucleosynthetic
origin in the gas phase of galaxies. However, the UV range is absorbed by the Earth’s
atmosphere, making it necessary to use space-based telescopes.

In this thesis data obtained with the Cosmic Origin Spectrograph (COS) are used. The
COS is a UV spectrograph aboard Hubble Space Telescope (HST) that across the years
has accumulated a large amount of now publicly available data. The Hubble Spectroscopic
Legacy Archive (HSLA Peeples et al. 2017) provides combined spectra of publicly available
data from COS, data from different epochs, grating, observing programs of the same target
are co-added to increase the S/N and the wavelength coverage. The COS-GAL (Zheng et al.
2019) archive is a compilation of 401 QSO spectra with S/N > 5 from the HSLA reduced
with the goal of studying the absorption lines of the MW. Spectra in the COS-GAL archive
have been continuum-fitted with Linetools (Prochaska et al. 2016), however, those authors
do recommend users to be on the lookout for intervening absorption of higher z systems as
they did not run a detailed analysis into the presence of higher redshifts interlopers. For this
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1D Glon Glat  S/N z 1D Glon Glat  S/N A
©) ) ) )

J141949.39+-060654.0 351.9189 60.2851 6.8 1.648 | SBS1122+594 141.8033 54.7097 11.9 0.851
PG-1630+377 60.3421 429393 36.8 1.478 | SDSSJ101622.60+470643.3  169.0288 53.7423 6.7 0.822
HB89-0232-042 174.4627 -56.1555 17.5 1.437 | VV2006-J222836.3-095009 53.2369 -52.1801 8.7 0.797
PG-1522+101 14.8922  50.1217 22.6 1.328 | SDSS-J141038.394-230447.1 24.5712  71.6404 10.3 0.795
LBQS-1435-0134 348.7184 51.3746 31.1 1.31 | SDSSJ234500.43-005936.0 88.7929 -59.3884 6.4 0.79
SDSS-J135726.274+043541.4  340.7675 62.5141 10.0 1.234 | SDSSJ102218.99+013218.8 242.16  46.0656 6.7  0.79
HE0435-5304 261.0247 -41.3746 11.5 1.231 | SDSSJ100102.55+594414.3  152.5697 46.3865 10.8 0.747
PG-1338+416 90.587 724837 16.6 1.217 | VV2006-J125901.74+413055  117.238  75.5287 9.6  0.745
PG-1206+459 144.6291 69.6209 22.8 1.164 | SDSSJ091440.38+282330.6 ~ 198.1323 42.4466 7.4 0.735

FIRST-J020930.7-043826 165.9922 -60.8074 10.4 1.128 | SDSSJ155304.92+354828.6  57.2591  50.6668 7.2 0.722
SDSS-J100535.244-013445.7  238.5271  42.7859 10.5 1.08 | SDSSJ155504.39+362848.0  58.3163  50.2662 5.7 0.714
VV2006-J092542.34+-344108  189.9464 45.7029 7.6 1.067 | SDSSJ124511.254+-335610.1  133.7244 83.0607 5.8 0.711

HE0439-5254 260.6931 -40.9014 16.9 1.053 | SDSSJ113457.624-255527.9  212.6185 72.8679 6.9 0.709
LBQS-0107-0235 134.0062 -64.7985 10.8 0.957 | SDSSJ144511.28+342825.4  56.7398  64.5904 5.9 0.697
HB89-0107-025-NED05 134.0292 -64.7794 114 0.956 | PKS0552-640 273.4656 -30.6114 29.7 0.68
PG-14074-265 34.6687 72.5886 38.8 0.94 | 3C57 173.0773 -67.2617 24.3 0.67

SDSSJ112244.894+-575543.0  143.6452  55.4883 6.2 0.906 | SDSSJ105958.824+251708.8  210.811 64.9832 7.9 0.662
SDSSJ141910.20+420746.9  78.5766  66.6566 5.7  0.874 | SDSSJ080908.13+461925.6  173.3223 32.2889 11.6 0.658
VV2006-J095243.04+-515121  163.927 48.5444 9.1 0.862 | PKS0637-752 286.3684 -27.1584 24.8 0.653
Q2251+155 86.111  -38.1839 5.4 0.859 | 3C263 134.1592  49.744 374 0.646

Table 2.1: The 20 QSO with highest zgso. Columns from left to right are: ID name as
they appear in HSLA first data release (Peeples et al. 2017), Galactic Longitude in degrees,
Galactic latitude in degrees, S/N ratio as reported in HSLA first data release.

reason section 3.2.1 describes the process to find possible interlopers, and more details on
the reduction process are available on (Zheng et al. 2019).

The sample of QSO spectra used in this work was retrieved from COS-GAL with a Python
script shared with me by Trystyn Berg in private communication. I downloaded every spectra
from the COS-GAL archive that had coverage of both G130M and G160M gratings, in order
to have access to H 1, low ionization ions, and the high ions C1v and Si1v. From these spectra
those that present higher-redshift Lyman Limit Systems (LLS) whose higher-order Lyman-«
lines are blended with the MW Lyman-a were discarded from the sample because the column
density of H1 is important to later measure metallicity-more details into this can be seen on
Section 3.3 and the Lymana for these sightlines is available in Annex D.

In the COS-GAL archive, there were 223 QSO spectra observed with both G130M and
G160M gratings, from which 14 spectra were discarded because the Lyman-a of the MW
was completely covered by the geocoronal Lyman-« emission, or was obscured by Lyman
limit absorption from higher z systems, and did not allow for the measurement of H1 column
density . Using these criteria the sample is composed of 209 QSO spectra, their position on
the sky and S/N can be seen in Figure 2.1. A table characterizing 20 spectra from the used
sample is shown in Table 2.1, and the full table can be found in Annex G.

Each spectrum in the COS-GAL archive has a resolving power R = 12.000—16.000 for the
G130M grating, and R = 13.000 — 20.000 for the G160M. Figure 2.3 shows a representation
of every spectrum in the COS-GAL archive that has coverage to both G130M and G160M
grating and the wavelength of the absorption lines at zpy that were analyzed later on
Chapter 3. A representative spectrum in terms of S/N can be found in Figure 2.2.

IFor these 14 systems the unobscured metal lines were fitted for completion, but these results were not
taken into account for the later analysis
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Figure 2.1: Present sample of 209 COS spectra in galactic coordinates in Hammer-Aitoff
projection, symbol color represents S/N as measured in ~ 1300(A). The background is a
21-cm emission map of the Milky Way from (HI4PI Collaboration et al. 2016).

Spectra in this sample are characterized by MW absorption lines, but also by intervening
systems outside the MW at wildly different z plus the absorption and emission of the MW at
z ~ 0. The representation of the spectra in Figure 2.3 shows absorption lines as red spots and
emission lines with white, while black regions show regions with no coverage. The narrow
vertical red lines are absorption lines of the Milky Way at z ~ 0, the narrow vertical white
line at 1215 A is the geocoronal HT emission, and the one at 1302 A is the airglow line of O1.
This figure also shows that the spectra taken from QSO at higher z — shown higher in the
plot — present more absorption lines of absorption systems at high redshift, some of these
are metal lines, but most of them are just absorption from the Lyman-« forest, which also

explains why at the lower right part of the figure there are fewer absorption lines other than
the MW'’s.

2.2 Sample Biases

The sight lines in this sample lie mostly above the galactic plane — 90% of sightlines are at
|b| > 30 deg — this is because most of the QSO are selected for observations using an optical
color criteria and the presence of dust in the MW, or the QSO host, or in a foreground
absorber can lead to a reddening effect in the optical, which introduces a bias to preferentially
observe unreddened QSO (Pontzen and Pettini 2009; Krogager et al. 2015; Krogager et al.
2023). Observing QSOs through the MW’s disk would allow us to see sightlines with much
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Figure 2.3: Every spectra in the COS-GAL archive with coverage using both G130M and
G160M gratings. The horizontal axis is the spectral axis, and in the vertical axis is every
sightline ordered from top to bottom by decreasing zgso. White regions are emission lines,
and black regions are regions with no coverage, and red spots are absorption lines. The boxes
on the upper part of the Figure have the name of ion transitions fitted in this work, and the
blue arrow points towards the wavelength of these lines. For clarity lines of the same ion
close to each other occupy the same box.



more dust because this component of the Galaxy is more dense than the Halo. The ISM
is the component of the galaxy where star formation happens, so this is the place where it
is expected to find the most metals and these metals to condense back into dust. As there
are few observations of QSOs across the MW disk, the metallicity measured here may be
underestimating the metallicity of the MW.

Higher redshift quasars show more contamination from absorption systems at higher
redshift, these extra lines make it more likely that MW lines are blended. This effect can be
seen in Figure 2.3 where the spectra on the upper part have more dark regions compared to
the spectra at the lower part of the Figure.

To avoid contamination from absorption systems at higher redshift I thoroughly looked
for every absorption system in the spectra, by looking for the Lymana of these systems
between the Lymana of the QSO and the Lymana of the MW, the method used is explained
in detail in Section 3.2.1. But if zgso > 0.561 then the Lymana of the QSO is outside
the wavelength range of COS, and therefore it is possible for intervening systems to have
their Lymana outside the wavelength range too, making them harder to find, hence for these
sightlines it is possible that some absorption systems are unaccounted for.

Figure 2.4 shows a histogram of the redshift distribution of the QSOs in this sample, the
red dashed line marks z = 0.561, the limit below which I am confident about having found
all the intervening systems.

I am confident to have found every absorption system present in the spectra of quasars
with zgso < 0.561. For 23% of the zgso > 0.561 population, blending by higher redshift
systems does not affect the present results. This is because, for the Voigt profile fitting
process, multiple lines were used for many of the species, and since these lines have known
f-value ratios it is possible to identify blending of intervening systems. However some species
show just one transition in COS wavelength coverage and if they are blended it would be
difficult to distinguish possible blends, for this reason, these elements are not used for the
following analysis but fitted anyway for the sake of completion.

Using voigt profile fitting to measure column density in saturated lines can be inaccurate,
and just saturated lines can appear unsaturated on a first glance. This phenomena is called
hidden saturation and it will be discussed in section 3.4.2.

2.3 Note on velocity plots

In this thesis, spectra are mostly plotted using velocity as the independent variable because
it is more meaningful for the later analysis of the velocity structure. This is because velocity
components in a velocity profile share the same z and here they are easier to spot. The
transformation from wavelength A to velocity v used here is

Au _ A y A=A
C _)\0 B )\l

L x ¢+ g (2.1)
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Figure 2.4: Cumulative histogram of the zggo in this sample. Red dashed line marks z =
0.561, maximum 2z at which the QSO’s Lymana is covered by the COS G130M and G160M
grating. Spectra of QSOs at larger redshift may exhibit contain more intervening systems at
high redshift.
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where )\ is the rest-frame wavelength of transition [ ¢ is the speed of light, and vy is an
arbitrary velocity offset that depends on the frame of reference used.

The velocity offset is not relevant to the measurement of column density but is necessary
for display reasons. I decided to use the Local Standard of Rest (LSR) as the frame of
reference. The LSR is the frame of reference that follows a circular motion around the
galactic center that passes the position of the sun today and has a circular velocity equal
to the mean circular velocity of the stars in the solar neighborhood (Bland-Hawthorn and
Gerhard 2016). In the LSR frame of reference, the directions are for a coordinate system
based at the Sun, where the ¢ unit vector points towards the Galactic Centre, j in the
direction of rotation, and k is upwards from the disk, vy = Ugi + V5 + Wik,

The peculiar motion of the sun with respect to the LSR used here is (Ug, Vi, Wg) ~
(9,12,7) km/s from Delhaye (1965), which was later revised by Bland-Hawthorn and Gerhard
(2016). This velocity vector in galactic coordinates has a magnitude of 16.5km/s in the
directions bg = +25° and [ = 53°.

To use the LSR as the frame of reference for a particular QSO sightline, the velocity
offset was calculated using the dot product of the peculiar velocity in the direction of the
QSO sightline. In galactic coordinates, this is calculated using the law of cosine in spherical
coordinates

vy = Ve X [cos(be)cos(bgso)(cos(le — lgso)) + sin(be)sin(bgso)] (2.2)

where vy is calculated for each QSO with it’s angular coordinates (bgso,lgso)-
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Chapter 3

Voigt profile fitting

The spectral resolving power of COS enables a component-by-component analysis, with a
precise measurement of column density and Doppler parameters, as long as the components
are not saturated. In this chapter, I describe the Voigt profile fitting process of features at
z = 0 in the spectral sample presented in the previous chapter, and the physical interpretation
of the results of the fits.

3.1 Why Voigt profile fitting

To extract the column densities from an absorption profile there are three main methods:

1. Equivalent width measurements (Draine 2011, see Figure 3.1, Equation 3.1) where the
measured missing power is directly translated to column density using the curve of
growth (COG; Figure 3.2), this method is useful even when the resolving power is low
and the lines are unresolved. Equivalent width (EW) and the conversion to column
density when the line is not saturated is defined as

o(A)) dA Ih(v)\ dv
EW = 1— — 3.1

J(-1) %= (-75) o

EW
N, =1.130 x 10%2cm ' —— if Thas < 1 (3.2)

fAo
where [; is the continuum flux, [ is the observed flux, )\q is the central wavelength of
the transition in (cm), ¢ is the speed of light, and f is the oscillator strength of the
transition. This method is the fastest at the same time it is subject to blending issues.
Without enough resolving power it is impossible to measure the Doppler parameter b

and the formula used to calculate column density from EW in saturated lines is very
sensitive to b. This formula is:

b
N; = 46.2
I 6. 9(f)\0)exp

2b

E 2
(C W> ]Cles 1f 10 ,S Tmazx 5 Tdamp (33>
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Figure 3.1: Equivalent width and missing power demonstration. The blue line is a normalized
absorption profile and the red and blue areas are the same. The red area corresponds to the

integral in Formula 3.1, while the blue area corresponds to a rectangle with height = 1 and
base = E'W , hence the blue area corresponds to EW x 1.
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Figure 3.2: (Left) The curve of growth and the different regimes (Right) an example absorp-
tion belonging to each regime. Blue the line is optically thin, red is a saturated line, and
green is a damped line. This COG was modelled from the Lyman-« transition using b =
10km/s.

2. Apparent Optical Depth Method (AODM) (Savage and Sembach 1991) which converts
the observed absorption line profile to apparent optical depth (7,(v)) to apparent col-
umn density per unit velocity (N,(v)). The total apparent column density is obtained
by integrating the N, (v) profile over the velocity limits of the absorption profile.

N, = / N, (v)dv = WZZSA / To(v)dv = WZ’;@;A / In (I;g))) dv (3.4)

When multiple transitions of the same ion are available with different f\ values, each
N,(v) profile should agree with each other. Any saturation or blend in one of the lines
can be identified by analyzing the differences in the N,(v) profiles, so long there is
at least one unsaturated profile. When the N, (v) profiles agree with each other then
N = N,, otherwise N, is underestimating the total column density.

3. Voigt profile fitting (VPF), a Voigt profile is a function that uses physical properties of
the absorbing gas —namely column density, oscillator strength, thermal and turbulent
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broadening — to model the optical depth of an absorption profile. A Voigt profile is
defined as -
V(z;0,7) =/ G(y; 0)L(x —y;7)dy (3.5)

o0

where G(z,0) is a Gaussian profile of standard deviation o and L(x;~) is a Lorentzian
profile with FW HM = ~. Finally, y is the convolution parameter and z is the di-
mensionless frequency offset from the line center in units of the Doppler frequency
AVD7

v—u/(1+2) b N (3.6)

= A = — =
o AVD YD )\0 /\0

where Avp is the Doppler frequency, and b is the Doppler parameter, which is de-

composed in quadrature into a turbulent component, by, accounting for macroscopic

2kT
Matom

ing for microscopic atomic motions, where k is the Boltzmann constant, Mg, is the
atomic mass of the ion.

velocity motions in the cloud, and a temperature component, b;, = , account-

Effectively a single component line profile is modeled as
I(A) = I()()\)G_T — Io(A)e_NaOH(a’z)

where [ is the observed flux, [j is the continuum, N is the column density, ay contains
the atomic parameters of the line and H (a, ) is the Voigt integral, both given by

a [ exp(—y)dy
Heo) =2 [ G

N r

a =
mec? Avp A7t Avp

ap = (3.7)
where f, Ao, [" are the oscillator strength, rest-frame wavelength, and transition rate of
the line respectively, a is the damping parameter, and 7' is the temperature of the gas.
Therefore using Voigt profiles to model the absorption profile directly provides physical
properties of the absorbing gas. On the other hand, this method is significantly more
time-consuming because of the large amount of parameters it has to fit.

The COG method is susceptible to blending and hidden saturation, and to prevent such
issues a visual inspection is necessary, and hope the EW is within the linear regime. With
the AODM it is possible to identify blends or saturation in an absorption profile, only when
multiple lines of the same ion are available, which is not always the case. COS resolution
allows one to resolve velocity components in an absorption profile, and perform Voigt profile
fitting, this makes VPF the best method among those available. The biggest advantage
VPF has over the other methods is that all absorption profiles of the ions present in one
absorbing cloud are characterized by the same z, by, T', which means that it is possible
to draw information about the cloud from the absorption profile of every ion present in the
cloud.
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Ion Transition Wavelength (A) f—value | JIon Transition Wavelength (A) f—value

Hri A1215 1215.6700 0.4164 | Ni1r A1751 1751.9157 0.0277
Aln A1670 1670.7886 1.740 S1I A1250 1250.5780 0.0054
Cu*  A1335b 1335.7077 0.1150 | S1 A1253 1253.8110 0.0109
Cir*  A1335a 1335.6627 0.0127 | Su A1259 1259.5180 0.0166
Cn A1334 1334.5323 0.1278 | Si1r A1190 1190.4158 0.2920
Fe1r A1142 1142.3656 0.0040 | Sitr A1193 1193.2897 0.5820
Fe1r A1143 1143.2260 0.0192 | Si1t A1260 1260.4221 1.180
Fe1r A1144 1144.9379 0.0830 | Sitr A1304 1304.3702 0.0863
Fenn A1608 1608.4508 0.0577 | Sitt A1526 1526.7070 0.1330
Ni1r A1317 1317.2170 0.057 Civ A1548 1548.2049 0.1899
Ni1r A1370 1370.1320 0.056 Civ A1550 1550.7784 0.0947
Ni1r A1703 1703.4119 0.0060 | Sitv A1393 1393.7601 0.513
Ni1r A1709 1709.6042 0.0324 | Si1v A1402 1402.7729 0.254
NiIr A1741 1741.5531 0.0427

Table 3.1: Lines fitted with ALIS. Wavelength is in Angstrom. Rest-frame wavelengths and
f—values come from the atomic data file provided in Cooke (2013)

3.2 Voigt profile fitting

In this thesis, I use Absorption LIne Software (ALIS; Cooke 2013) ! to perform Voigt profile
fitting on the MW absorption profile. ALIS is a y? minimizing Voigt profile absorption line
fitting software, similar to VPFIT (Carswell and Webb 2014), out of these two software ALIS
is more user-friendly and self-contained, as all tools necessary to use it are readily available in
the same repository. ALIS is a physically inspired Python code that simultaneously models
emission and absorption using all information from all ion lines available in the data provided
to the program. ALIS models are flexible with several functions to use, plus the possibility
to add custom functions if needed. The input data must be provided with a Line Spread
Function (LSF), which could be a simple constant FW HM,, or an instrument-specific LSF,
which is very useful in this case because it has implemented an easy-to-use option to include
COS’” LSF. This is very useful for this work because when fitting ions with saturated lines
and ions with unsaturated lines simultaneously it is possible to break the degeneracy between
b and N and can therefore obtain reliable N values even on saturated lines.

To carry out the fits a default starting template was used, and was adjusted on a sightline-
by-sightline basis. Table 3.1 shows the ions, rest-frame wavelength, and f-values of the lines
available in the wavelength coverage of the data used when fitting Voigt profiles with ALIS.
Ions with largely different f-values lines in the UV were selected because fitting unsaturated
lines constrains b values for all the elements for the same cloud, which is important because
saturated lines poorly constrain b values, as was discussed in Section 3.1.

For each transition in Table 3.1, the absorption profile was modeled in a region of the
spectra that allows one to see the full absorption profile and has enough featureless continuum.
For low-ionization species a region of +300km/s from z = 0 was used, for high ionization
species a region around £450km/s from z = 0 was used, finally, for Ly-« a region as large

Thttps://github.com /rcooke-ast /ALIS
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Figure 3.3: Example of Voigt profile fitting with ALIS. In this case, all transitions use the
same spectral region to do the Voigt profile fitting. The grey line is the masked-out flux to
run the fit, the dashed blue line is the continuum fitted by ALIS, and the red line is the fit by
ALIS, red vertical lines denote the centroid of the transition at z = 0 and do not represent
the centroid of any component in this case.

as necessary, usually £2000km/s from z = 0, this larger regions is necessary to cover the
damping wings. Any absorption flagged in Section 3.2.1 was masked out and to make sure
the continuum could be correctly fitted the fitting region velocity limit was increased.

In some cases, lines lie within 300 km/s from each other, so for ALIS to get a reliable
fit of the continuum the wavelength ranges for those lines were merged into one, this is not
a problem for ALIS because it uses all the spectral regions at the same time to model all
lines. The larger spectral range considered spectra within —300km/s from the bluer line,
and 300km/s from the redder line. This was the case for C11 A\1334 with C1r* A1335b and
C1r* A1335a; Ferr A1143 and Ferr A1142; Sitr A1260 and S11 A1259; and, when the S/N was
too low for a good continuum estimation, for C1v A1548 and C1v A1550 too. As seen in
Figure 3.3.

The optical depth profile of a given line in a given ion was modeled as a sum of (1) Voigt
profiles as

I(A\) = Iy(\) exp <Z —Nlao,lH(al,:c)> (3.8)
1
where X, a, ag, are defined in 3.6 and 3.7 and are related to b, T, and z.

Each Voigt profile in a given ion has independent z, column density (V), turbulent
Doppler parameter (by,.), and temperature (7'). Each of these Voigt profiles is referred
to as a velocity component.
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Each velocity component represents a single cloud of gas along the line of sight. One
cloud of gas has a set of physical properties that all ions present in the cloud should share,
like z, T, and b, if by, dominates b, so all ions in a velocity component share these values,
however, it is a different case for N where the relative abundance of each ion is unknown and
so N is independent of each species alone.

Since the spectra are already normalized by the COS-GAL pipeline and the spectral
windows are small, it is expected that the relative flux should already be close to 1, so the
continuum is modeled as a second-degree Legendre polynomial with low initial values for the
first and second-order coefficients and 0 for higher coefficients as

3(A— )2 —1
2

LX) = Co+ Ci(A— Xg) + Cs (3.9)
where Cj sets the continuum level at the center of the absorption, C; is the slope at the
center of the absorption, and (5 represents the curvature at the center of the absorption.
The initial values of Cy, C7, and Cy were set to 1.00; 0.01; 0.01 respectively. In a few cases,
the continuum had additional curvature not modeled by a second-degree polynomial to model
the continuum correctly so a third-degree polynomial was used.

Before adjustment of the starting template of the model, the starting parameters for each
velocity component were:

A typical N value for that given ion, acquired by trial and error.

z to get the line centered at the velocity centroid of the absorption relative to the
systemic redshift= 0.

e bu» =10km/s to match the velocity dispersion of the metal lines typically measured
in DLAs of 5-10km/s (Noterdaeme et al. 2007).

e T was always fixed to 10000 K because the temperature dispersion in velocity is too
small to measure at this resolution. For example at 7' =10000 K and by, =10km/s

2kT

Matom

b= /b4 + 7, =10.5km/s ~ by,

so the typical values of the Temperature and by, in DLAs Ab = b — by, are lower than
what can be resolved at this resolution.

by, = =3.2km/s

3.2.1 Interloper systems identification

To account for blends with absorption systems from outside the MW that can affect column

density measurements, I visually inspected every spectrum to identify all absorption systems
at z higher than the z of the MW.

The finding algorithm followed for the visual inspection was:

27



1. Visually inspect the spectra from the Ly-a at zgso to the Ly-a at 2 = 0 looking for
Ly-a of possible intervening systems.

2. When any strong absorption line was found it was assumed to be Ly-a, then to confirm
the system I looked for more Lyman-series or metal lines at that redshift, specific
lines from Table F.1, this would confirm that line to be Ly-«a, and the presence of an
absorption system.

3. If no other lines were found at that redshift the system was discarded and the visual
inspection continued.

For most intervening systems it was only possible to detect some Ly-series lines, and high
ionization species such as C1v, Si1v, and O V1. The lines found at this stage were later used
to mask out any portion of the spectra contaminated by absorption from gas that does not
belong to the MW.

3.3 Ly-alpha fitting

To measure metallicities it is essential to quantify the total abundance of H, which can be
estimated by the abundance of HT in the case the system is a DLA, as they contain mostly
neutral gas. The best way to measure HI column densities is by performing a Voigt profile
fitting on the only available H1 transition covered: A1215 (Ly-«).

H1 A1215 in the MW shows intense saturation, having large damping wings, as seen in
the left panels of Figure 3.4. The H1 column density is high enough to suspect the MW is a
DLA or sub-DLA. Absorption systems that have a N(H1)> 2 x 10* cm™2 are shielded from
ionization and the ions are mostly in the neutral phase (Wolfe et al. 2005), thus hydrogen is
mostly in its neutral form H1. When absorption lines are damped the column density can
be accurately determined with the absorption wings.

There is a geocoronal Ly-a emission line from the H in Earth’s atmosphere that blends
with the absorption and can obscure the Ly-a absorption of the MW at low N(HT1). However,
if N is that low, then it is definitely not a DLA, and the H1 column density would under-
estimate the H column density, and metallicity measurements would be inaccurate. Cases
like this are discussed later in this section. This simple picture allowed me to run these fits
automatically using a simple model in manually selected fitting regions.

The kinematic structure of the metal line profiles is much narrower than H1 A1215 and
the continuum placement is simple, the Ly-a wings also extend much more, which makes
the continuum fitting by COSGAL unreliable. Since the main source of error in the fitting
of such wide absorption is continuum placement, to avoid this it was preferred to use the
un-normalized spectra and let ALIS fit the continuum.

For each sightline, the wavelength range was manually selected to contain the H1 A1215
absorption and as much continuum as needed to fit the emission of the QSO. Any other
absorption line contained in this range and the H 1 emission from the atmosphere were masked
out. As seen in the left panels of Figure 3.4.
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ALIS fits simultaneously the continuum and the absorption. The continuum was mod-
eled as a second-degree Legendre polynomial, as described in Section 3.2, where the initial
parameters were set to start the fitting with a flat continuum at the level of the flux near H1
A1215, which contrary to the continuum in the metal lines is not expected to be flat, because
of the emission lines from the QSO, but it is a reasonable point to start. The absorption was
modeled as a single Voigt profile with initial parameters: z = 0, log (N) = 20.3, b =10km/s.

A fit is considered successful when the wings of the absorption are well-fitted and the
continuum fitted by ALIS is not bent in any unnatural way.

ALIS was ran in series in all spectra, without human intervention, and yielded successful
fits for 196 spectra out of the 223. Twelve systems had poor continuum fits and needed a
third-order polynomial to fit the continuum. In these cases, it was necessary to use a larger
region to fit the continuum and/or add a higher order to the polynomial for the continuum.
In the end, it was possible to have reliable H 1 measurements for 209 systems. However, there
were 14 systems for which it was impossible to fit Ly-a because it was either completely
blended with lines from unidentified systems, or the QSO continuum was completely absorbed
by Ly-limit absorption from high 2z absorption systems. The Ly-« fit for the first 20 QSO in
alphabetical order can be seen in the right panels of Figure 3.5, and the rest is in Annex D.

A sub-sample of H1 A\1215 fits can be seen in Figure 3.5, while the full sample of fits is in
Annex C. In Figure 3.5 each panel shows the H1 A1215 fit, the continuum estimation, and the
velocity centroid of the fit. The continuum for most sightlines is very flat and follows well the
trend of the continuum. The sightline 1saxj1032.3+5051 is one of the systems that needed
a third-order Legendre polynomial for the continuum fitting, in this case, to compensate for
the emission near —1500 km/s from z = 0.

3.4 Metal lines fitting

To model the absorption profile of the metal lines in a spectrum the low-ionization species
and high ionization species were modeled separately because they are expected to occur in
different gas volumes and do not share physical properties with the rest of the gas. The high
ionization ions were modeled and the column densities were reported for completeness but
were not considered for the latter discussion.

Before modeling a visual inspection of all the spectral regions around the lines fitted
(Table 3.1) was done to identify the number of velocity components, check that every region
was wide enough to model the continuum, and check if there were any blends or unidentified
lines near the fitting regions.

When absorption lines unrelated to the MW were present within the velocity range around
the MW absorption they were in most cases masked out and more spectra were added to the
range. In cases where there was no remaining flux or it was heavily blended, the blends were
also modeled, but the column density from the blended lines was not included in the final
column density of the Milky Way.
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Figure 3.4: Example of H1 A1215 absorption. The left panels are spectra for which a fit
was possible, and the panels on the right side show spectra for which Ly-a absorption was
dominated by absorption from interlopers. In black is the un-normalized spectra, in grey is
the masked-out spectra, and in solid blue is the 1 — ¢ error array. On the left panels, the red
solid line is the fit, and the dashed blue line is the fitted continuum.

A template model was used where the initial parameters and number of velocity compo-
nents were adjusted manually for each spectrum in the sample.

Figure 3.6 shows the result of the ALIS fit to the metal lines of the low and high ionization
species. The next few paragraphs describe the fitting process followed to model the absorption
of metal lines in one spectrum applied to the system RXS-J23218-7026 as an example of the
logic used to model these lines in the sample.

The number of components in each model is selected via a visual inspection using all
transitions available, where a velocity component is identified if it can be seen in more
than one transition at the same ionization level. The system in Figure 3.6 has three velocity
components for the low-ionization ions, and, coincidentally, three for the high-ionization ions.
Red vertical lines represent the center of each component, and blue vertical lines represent
blended lines from other systems, vertical lines with a star are from the MW but are not
from the same absorption profile.

For the low-ionization ions, the main absorption feature at v ~ 0 has asymmetric wings
which indicates the presence of at least two velocity components with similar velocities. In
this case the bluest component has the largest N out of the three, and the middle component
has a lower N but has a larger b which gives the asymmetric wings. The red-most component
is completely resolved from the other two, but it is much weaker than the first component
and is not detected on the weaker lines like Ni1r lines. It is possible to see that Sitt A1190 is
blended with St111 A\1190, also the blends on C11 A1334 and other SiiI lines are HT lines from
an absorption system at z = 0.3013 identified previously in Section 3.2.1.
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For the high ionization ions (C1v and Si1v) there are three velocity components, the
bluest component is the main component, but the other two are similar in N, and b and
resolved from the main component. In the Civ A1550 profile there are two blends, these
are lines from unidentified systems. Since they are unresolved from the C1v A1550 profile
I decided not to mask them out and instead fit them as metal lines from two independent
systems outside of the MW. These blends are not accounted for when measuring total column
density but are necessary to include to have a good fit to the data and not overestimate the
column density of C1v.

The fits for all the spectra can be seen in Annex A.

3.4.1 Observation on the Line spread function

For a model to be accurate it is important to use the correct Line Spread Function (LSF),
which is all the more important for COS spectra because COS LSF is unique, and changes
depending on the grating used and the Lifetime Position?(LP).

Figure 3.7 shows a simple Gaussian with a FFW HM similar to COS LSF’s FW HM and
their difference. The main difference between the Gaussian profile and the LSF of COS is that
the COS LSF decays slower compared to a Gaussian, meaning the lines measured by COS
expand wider than when convolved by a Gaussian profile. For this reason, it is important to
use the correct LP, grating, and central wavelength of the spectra to obtain the corresponding
LSF for each spectra, rather than using a simple Gaussian LSF.

3.4.2 On saturated lines

Once every spectrum is fitted, it is important to review the limitations of the fitting method
used, the interpretation of the results obtained, and the possible issues presented.

COS resolution is rather low to resolve the kinematic structure present in the MW gas
when velocity components are blended. This means that the b value of the velocity compo-
nents is not always constrained even when fitting multiple lines. VPF performed to saturated
lines at this R underestimates column density and can only be used as lower limits.

Hidden saturation is also a problem that comes from the spread of absorption lines when
observed with an instrument. A saturated line can be identified because the flux reaches
zero, but when a saturated line is convolved with the LSF the observed profile looks like an
unsaturated line. This effect is illustrated in Figure 3.8, here narrow and barely saturated
lines when observed with COS can be saturated even when the minimum of the profile does
not reach 0.

To address possible hidden saturation I modeled narrow just saturated lines for every
transition of every ion fitted using different b values, these modeled lines were then convolved

2To mitigate the effect of gain sag, COS FUV spectra are obtained at multiple positions on the detector
that are offset from each other in the cross-dispersion direction (Soderblom 2023)
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in QSO RXS-J23218-7026, the grey line is the normalized flux masked out, the dashed blue
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shows 20 contours, and finally, the light blue line is the residuals. The contour and residuals
are displaced lower and scaled down for bet’ce31r3 display. The zero velocity is at vy gg.
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Figure 3.7: COS LSF comparison to Gaussian LSF with similar FWHM. In Blue is a
Gaussian profile with o = 24km /s, and the rest are the COS LSF for different gratings and
lifetime positions. The left panel shows the LSF in the bluer grating of the spectra and the
right panel is the LSF in the reddest grating. The lower panels show the residual difference
between the approximated Gaussian profile with the different COS LSF.

with COS LSF to find the minimum flux of these lines. To do this I used a large grid of
Doppler parameters and N to model Voigt profiles, and for each b value I find the minimum
N for which the minimum flux of the Voigt profile is < 0.001. This Voigt profile was then
convolved with the corresponding COS LSF for that line and the minimum flux is then
recorded in Table 3.2.

It is important to note that at a given b-value the simulated Voigt profile of just saturated
lines are always similar to each other, because of the way N is selected. This means that the
shape - and minimum flux - of the convolved profile depends mostly on the LSF used, this
makes it so the minimum flux is mostly consistent between every line in the same grating
regardless of the ion used.

Figure 3.8 shows the minimum flux of the convolved profile of different lines of different
ions using the same colors to signify the lines in the same grating. In this figure, it is possible
to see that the minimum flux of lines in the G160M grating is consistently lower than lines
on the G130M grating.

A line is considered saturated if the minimum flux of the fit reaches its corresponding flux
limit, rather than 0.

In the presence of saturated lines, a reliable determination of b is impossible and the
degeneracy between b and N becomes important thus the column density measured from
ALIS is unreliable. For this reason, column densities from saturated lines are reported as
lower limits, and not used in this analysis. Users of the column density tables reported in
this thesis are advised to operate with caution when considering to use column densities
of saturated lines. The lower limits are calculated using the COG method (Draine 2011)
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Ion  Line Minimum flux Grating

Hi 1215 0.32 G130M
Nimm 1317 0.29 G130M
Nimr 1370 0.27 G130M
Nimr 1703 0.24 G160M
Nimr 1709 0.24 G160M
Nimm 1741 0.23 G160M
Nimr 1751 0.23 G160M
S11 1250 0.31 G130M
S1 1253 0.31 G130M
S1I 1259 0.3 G130M
Cno 1334 0.28 G130M
Cir* 1335 0.28 G130M
cir* 1336 0.28 G130M
Ferr 1142 0.34 G130M
Ferr 1143 0.34 G130M
Ferr 1144 0.34 G130M
Ferr 1608 0.26 G160M
Sim 1190 0.33 G130M
Sim 1193 0.33 G130M
Siir 1260 0.3 G130M
Sirmt 1304 0.29 G130M
Sirt 1526 0.28 G160M
Alir 1670 0.25 G160M
Civ 1548 0.28 G160M
Civ 1550 0.28 G160M
Sirv - 1393 0.26 G130M
Sitv 1402 0.26 G130M

Table 3.2: Table showing transition and minimum flux recorded for a just saturated line at
b =10km/s. The values here show that the trend of lower minimum flux values correlates to
transitions in the higher-order grating.
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expecting to have better results than ALIS, following Equation 3.3

cEW\?
(%)
where b is the velocity dispersion, f, A are the oscillator strength and rest-frame wavelength
of the line with the lowest oscillator strength available for that ion, c is the speed of light in
the vacuum and EW is the Equivalent width of the whole profile calculated with Eq. 3.1.
The b measured by ALIS of the velocity component with the largest column density was

used. Even with these precautions the COG method is still unreliable when b is not reliably
determined. A detailed number of saturated lines is provided in Table 3.3.

cm?s (3.10)

b
Ngor = 46.29 (ﬂ) exp

3.4.3 Possible issues with Voigt profile fitting

Some of the issues encountered while fitting were:

1. Blends on top of the lines, or artifacts from the data reduction. In cases where blends
were on top of the line, the line was either not used to model, or the blended line was
modeled as a second independent system and the column density of the blend is not
considered for the latter analysis. When a given fitting region had too many blends
or an unreliable continuum, it was discarded, especially if other lines for the same ion
were available.
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2. Near Siir A1304 there was usually a broad emission, possibly the airglow of O 11 A1302
in the atmosphere, if it blended with SiiI then it was discarded.

3. Sitr A1190 was in many cases blended with S1i1 A\1190 and when the blending was
strong, then S111 A\1190 was fitted as a blend or Sitt A1190 was discarded. N(S1II) is
not reported in the final table of results.

For C11 only one transition was considered, for C11* onlyA1335 and\1336 are considered
but they are mostly blended, and for Al1l there is only one transition available, meaning that
if there was an unresolved blend unaccounted for then /N for that ion is overestimated. There
are very few ways of knowing if this is the case, so these column densities are measured and
have a different flag for the user to be careful when using these values.

3.5 Results

The parameters obtained from the ALIS fit need to be interpreted to handle saturation and
non-detections because ALIS always delivers a value for the parameters fitted and does not
care if the results are physical as long as the model fits the data.

A velocity component is considered saturated if the minimum flux measured for that line
is lower than the threshold for hidden saturation. If at least one transition of an ion fitted is
not saturated, then the line is considered a detection.

On the other hand, to classify an absorption as a non-detection, near the wavelength range
where the fit was performed the minimum N that could be measured with 3o confidence
with the signal-noise ratio present was calculated using Equation 3.11 from (Berg et al. 2016;
Pettini et al. 1994)

3me.cEFW HM
N = A1
7e2 fA2(1 + zaps)S/N’ (3:11)

where m, and e are the mass and charge of the electron, c is the speed of light in vacuum,
FW HM is the full width at half maximum of the instrument, f, A are the oscillator strength,
and rest-frame wavelength of the line, S/N is the signal-noise ratio measured within the fitting
region. The FW H M of the instrument is used because these weak line profiles are probably
limited by the instrument resolution rather than the gas kinematics.

If the column density measured by ALIS was lower than this 3 — ¢ limit then it is flagged
as a non-detection and the value reported is as calculated with Equation 3.11.

The total column density of a species is calculated by summing the column density of all
detected velocity components fitted. When there are saturated components, the lower limit
measured by the COG method is reported rather than the sum of all components. Again,
users of the column density tables reported in this thesis are advised to operate with caution
when considering to use column densities of saturated lines. When there are non-detections
and detections, the total column density is just the sum of the detections, and if there are
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Ion ‘ #detected %detected ‘ #non detected %non detected ‘ #saturated %saturated ‘ Total

Hr1¢ 209 100 0 0.0 0 0.0 209
Nin 69 33.0 139 66.5 1 0.5 209
S11 166 79.8 2 1.0 40 19.2 208
Cn 1 0.5 1 0.5 201 99.0 203
Cir* 121 60.8 13 6.5 65 32.7 199
Fe1r 182 88.8 0 0.0 23 11.2 205
Sitn 1 0.5 0 0.0 208 99.5 209
Al 3 1.4 0 0.0 205 98.6 208
Crv 172 82.7 6 2.9 30 14.4 208
Sitv 191 92.7 3 1.5 12 5.8 206

Table 3.3: Percentage of detection, non-detection, and saturation per sightline per ion. The
last column Total is the total number of sightlines in which it was possible to fit that ion.

@ H1 is detected on 209 sightlines and that is a condition of the sample (read Chapter 2 for details), there
were 11 sightlines without H1 detection, but were left out of the sample and shown on Annex D.

only non-detections then an upper limit calculated using the strongest transition of that ion
available is reported. A change in this manner of interpreting the results of the model results
in a change in the total column density reported and thus a change in the relative abundances
and the following analysis.

Moreover, in cases where there was only one transition for one species, there could be an
unexpected blend and I marked them with an asterisk on the flag and should be taken with
caution.

Table 3.3 shows a detailed account of the number of detections, non-detections, and
saturated lines per ion fitted.

An excerpt of the table can be seen in Table 3.4 and the full table is available in Annex
B.
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Chapter 4

Milky Way metals and alpha elements
abundances

In this chapter, I study the distribution of N(H1) across galactic latitude and compare
it to N(H1) from 21-cm maps of the MW. I also study the relation between metallicity
in these absorption systems and galactic latitude and compare it to other ISM metallicity
measurements. Finally, I compare the [«/Fe| ratio from this work to the same ratio measured
in the atmosphere of stars, and separately, with [a/Fe] measured in the ISM of the solar
neighborhood, to confirm whether it is feasible to compare the [o/Fe| ratio measured with
different methods.

4.1 N(HI) spatial distribution.

The 209 QSO sightlines from which there are H1 column density measurements are plotted
against Galactic latitude (b) in Figure 4.1. There is a trend of increasing N with decreasing
b, which is expected from N(HT1) studies in 21-cm emission (HI4PI Collaboration et al. 2016)
and the disk morphology of the MW that presents higher densities of gas near the disk, at
low galactic latitudes.

To confirm the robustness of the column density measurements, they were compared to the
H 1 column density calculated from 21-cm emission from (HI4PI Collaboration et al. 2016) in-
tegrated over the full velocity range covered by their observations (—600 < vsg < 600km/s).
To compare both measurements I use the relative difference between these measurements and
the column density in the same direction measured by (HI4PI Collaboration et al. 2016) cal-
culated following:
|N(H I)H]4p[ — N(H I)|

N(H1)grapr

A% =100 x (4.1)

Figure 4.2 shows this relative difference as a function of column density. From this Figure
it is possible to see that the 75" percentile of the differences is < 20%, meaning that overall
N(H1) from this work is in agreement with what can be measured in emission. This is as

40



21.50
o
21.25 A o
21.00 A o %% o
20.75 o ° .go > [}
.75 le}
—~ e [ Og
£ 2050 .ooa&g‘é ‘DO‘) Q°F o e ®
z o .:_‘ P ied ¢ o._:‘ Q’.ﬂ%’g&.-ﬁ-o-°
D’20.25- _______ S Tt Tt T T T T T E T - . 8- ) ¢ N
ke 80 X) o Og) @ @? % o
@
20.00 L o ® Milky Way DLAs °F & @ °°,°
) ® @
10.75 . r © Milky Way sub-DLAs o ® O ®
' 3 O N(HI), no N(S) 0® o°° ° .
Mean error in
19.50 1 [ ourdata ®
-80 —-60 —-40 -20 0 20 40 60 80

Galactic latitude (deg)

Figure 4.1: H1 column density as a function of galactic latitude. Black points are the MW
DLAs, green circles are the sub-DLA sample, and blue open circles are sightlines for which one
is able to measure N (H1), but no N(S11), and the blue dashed line marks log(N(HI)) = 20.3.

expected because the velocity range measured in this thesis includes the full range of velocities
probed by (HI4PI Collaboration et al. 2016).

Moreover, the larger differences, except for one sightline, tend to be at lower column
densities, which is to be expected as gas clouds with N lower than 20.3 are affected by
ionization and the column density could be underestimated. These larger differences can also
happen because the absolute differences decrease slower than the column density, increasing
the relative difference.

There is one particular system that has a large A, = 89% despite having N(H1)>
102%3cm ™2, system SDSSJ122035.10+385316.4, the model for this system was done again
with a larger spectral region for the continuum, and a higher order polynomial to account
for a previously missed shallow emission line. With this new model, the column density did
not change significantly, confirming the robustness of the model.

To stress the similarities between these measurements of column density and the 21-cm
emission column density Figure 4.3 shows both samples in galactic coordinates in Hammer-
Aitoff projection using the same color scale. Here it is possible to see that the points from
this work blend in very well with the background, which is a sign that both measurements
are well in agreement.

4.2 Metallicity distribution.

Now that the column density for HT is reliably measured, the next step is to measure the
abundance of metals to derive the metallicity of the gas phase. Systems with log(N(HI)) >
20.3 are self-shielded from ionization and H is mostly neutral (N(H1)~N(H)). Abundance
of element X is measured relative to solar abundances as [X/H| = log(N(X)/N(H)) —
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Figure 4.2: Relative error of N(H1) measured here relative to the N(H1) 21cm emission map
from (HI4PT Collaboration et al. 2016). The red dashed line shows the position of the 75"
percentile, demonstrating that 75% of the relative errors in the sample are below 20%.

log (N(X)o/N(H)w), where the solar abundances are from (Asplund et al. 2009).

Metallicity is measured following the scheme by Rafelski et al. (2014) that uses the abun-
dance of either O, or N, Si, S, or Fe, in that order of priority depending on the availability of
reliable measurements. This scheme uses mostly a-elements and is the most common scheme
when studying DLAs. In this work, column densities for O or N were not measured, and Si
was saturated in 99% of the sample, so the abundance of S is taken as the metallicity proxy
([S/H] = [M/H]; [M/H] is metallicty).

After excluding sightlines that do not have both S11 and H1 column densities the remain-
ing sample comprises 163 sightlines. Out of these, 79 have log(N(HI)) > 20.3. Absorption
systems that have log(N(HI)) > 20.3 are thought to be shielded by ionization, at high red-
shift they are called Damped Lyman-« systems (Wolfe et al. 2005). For this reason, column
densities in these systems are not corrected by ionization. This sub-sample will be referred
to as MW DLAs.

The other 84 sightlines have sub-DLA HT1 column density and will be referred to as MW
sub-DLAs. At z < 3 sub-DLAs appear more metal-rich than DLAs at the same redshift
(Khare et al. 2007), particularly for z < 1.5 sub-DLAs are selected for the presence of strong
Mg 11 lines, which can bias selection to metal-rich systems. However, in the redshift range

3 < z < 4.3 metal enhancement comes from ionization effects, and correcting for this effect
leads to sub-DLAs being up to ~ 1 dex lower metallicity than DLAs (Berg et al. 2021).
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Figure 4.3: Comparison of N(H1) column density map in galactic coordinates in Hammer-
Aitoff projection. Circles are N(H1) measured here, and the background is a column density
map from (HI4PI Collaboration et al. 2016) 21-cm emission of the Milky Way.

43



Exploring the possibility of ionization corrections to the MW sub-DLAs is beyond the
scope of this thesis, instead, I focus only on the MW DLAs for which metal abundances are
accurately measured.

The total H1 weighted metallicity of MW DLAs calculated as

| s 10N D
[M/Hsotar = Z (ZZ[MX/:i](;N(Hl& ) (4.2)

7

is [M/H]iotar = 0.39 and is overall constant with b, and has a scatter larger than expected
from the uncertainties. Figure 4.4 shows [M/H] as a function of galactic latitude with the
addition of metallicity measurements from (de Cia et al. 2021), who used solar neighborhood
stars as background sources to do spectroscopy of the gas in the solar neighborhood.

To better see any possible trend of metallicity with galactic latitude the MW DLAs
were binned into groups of 11 — 13 systems and calculated the H1 weighted mean in each
bin. The binned metallicities in Figure 4.4 do not show any trend with galactic latitude,
but at b ~ —40° there is a group of the most metal-poor sightlines that coincide with the
galactic latitude Magellanic Stream (MS). The MS is the most massive (3 x 10°Mg) high-
velocity structure in the MW, and over the next 0.5— 1.0 Gyr it is expected to feed the MW
with large amounts of mostly metal-poor gas (Richter et al. 2017), which makes this dip in
metallicity expected.

Figure 4.5 shows a galactic projection map of metallicity. In both Figure 4.4 and 4.5 it
is possible to see the same trend that metallicity changes non-systematically with galactic
latitude, this is in agreement with (de Cia et al. 2021) where they found that metallicity
in the solar neighborhood ISM changes drastically with position in the sky even when the
sightlines were close in angular separation.

The ISM metallicity is mostly sub-solar in the solar neighborhood (de Cia et al. 2021),
this agrees with the metallicities of the MW DLAs that probe the CGM and ISM as seen on
4.4. To confirm this, I decided to use a Monte Carlo approach for a two-sided Kolmogorov-
Smirnov test by resampling the data 10,000 times within their Gaussian uncertainties and
running one KS test each time. This approach provides one with a p-value distribution. This
process will be referred to as an MC KS test. The mean of the distribution is 0.38 and the
middle 50% of the distribution is within +0.228 and -0.168. This result cannot confidently
reject the hypothesis of both samples coming from the same parent distribution < 70% of
the time.

Moreover, this confirms that the hypothesis of the MW having solar metallicity is bi-
ased by regions in the MW affected by ionization (sub-DLAs sightlines) and that the true
metallicity of the MW’s neutral gas is sub-solar.

4.3 Alpha-element abundances

SNe are the main source of metals in the ISM. Depending on the type of SN they yield
different elements to the ISM and occur on different timescales. SN type II occurs in the
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Figure 4.5: [M/H] in galactic coordinates in Hammer-Aitoff projection. Circles are measured
from this work, and stars are from (de Cia et al. 2021). Background is a column density map
from (HI4PI Collaboration et al. 2016) 21-cm emission of the Milky Way.
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Figure 4.6: Schematic representation of [«/Fe| as a function of [Fe/H] from McWilliam (1997).

most massive and short-lived stars. In contrast, SN type Ia takes longer to start occurring
because they need a binary system where one star has to evolve into a white dwarf and the
other star has to develop into a giant red star and accrete mass into the first. Both types
of SN yield different metals into the ISM and the ratio of a-elements and Fe-peak elements
([a/Fe]) is sensitive to the number of SN of each type that has occurred in the history of
a galaxy. This effect is illustrated in Figure 4.6 from McWilliam (1997), where the plateau
at [Fe/H]< —1 represents times where only SN II occur, and at [Fe/H]> —1 SN Ia starts
happening and the [«/Fe] ratio decreases.

As a galaxy is enriched only by SN II, then [a/Fe] stays constant at the yield of SNII,
which is ~ 0.3 in the MW this regime is called the plateau and when SN Ia starts to happen
they dominate Fe production and [«/Fe] lowers, the metallicity at which this change occurs
is referred to as the knee. The metallicity of the knee constrains the level of enrichment and
the mass of the system (Tolstoy et al. 2009).

[a/Fe] has been studied extensively in the MW (Reddy et al. 2003; Reddy et al. 2006;
Frebel 2010) measuring abundances on the atmosphere of stars, that reflect the metal en-
richment of the ISM at the moment of birth, and therefore track the star-forming history of
the ISM of the MW.

On the other hand, chemical abundances measured in the gas phase of a galaxy are a
consequence of the integrated enrichment history until the present day, moreover, in this
work the method used probes the ISM and the CGM of the Milky Way. Regardless both
methods may be comparable and later this hypothesis will be tested.

Alpha elements include Ne, Mg, Si, S, Ar, Ca, Ti, and Fe-peak elements are Cr, Mn,
Fe, Co, and Ni. At higher redshift for alpha enrichment in DLAs [a/Fe] Si or S are used as
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Figure 4.7: [Ni/H] and [Fe/H| abundances histogram in the sample, the box on the right
shows the median p-value from the MC KS test, with the 75" and 25" percentile.

the tracer for the a—elements and Fe as the tracer for the iron peak elements, to study this
abundance ratio S is used to trace the a—elements, and Ni to trace the Fe-peak elements
because it is less susceptible to saturation compared to Fe.

In this work, to confirm that the relative abundances of Ni and Fe trace the same abun-
dances a MC KS test yielded a mean ~ 31% confidence.

Figure 4.7 shows a histogram of both abundances. This suggests that [Ni/H] and [Fe/H]
are likely drawn from the same parent distribution.

Finally, Figure 4.8 shows gas-phase [a/Fe] measurements from this thesis compared to
the same relative abundances in the atmosphere of stars from the Halo, the thin and thick
disk. It is clear to see from this figure that the mean [«/Fe] measured in this work is 0.5 dex
higher than the plateau, and it does not align with any population of stars.

To test this a MC KS test rejects the null hypothesis of [a/Fe] in MW DLAs at 99.9%
confidence when compared to any of the star populations. This confirms that both methods
of measuring [«/Fe| are not comparable, a reason for this is that the abundances measured
here could be affected by condensation to dust. Refractory elements like Fe and Ni easily
condense into dust grains and lower the column density measured in the gas, which makes
[a/Fe] to be overestimated.

The effects of dust depletion make it so that a comparable sample to the one presented
here also has to use the same method. For this, the abundances measured in (de Cia et al.
2021) are used to compare to the [o/Fe| measured in the MW DLAs, Figure 4.9 shows this
comparison. Dust depletion patterns in the MW vary around 1 dex (Konstantopoulou et al.
2022), and both (de Cia et al. 2021) abundances and the MW DLAs are affected by similar
depletion patterns, thus both ratios are comparable.

From Figure 4.9 it is possible to see the decline of the [a/Fe] ratio with metallicity
characteristic at higher metallicity than the knee. [Ni/H]~ —1.3 is the lowest metallicity
probed by the MWDLASs, and the lower limits provided from de Cia et al. (2021) are not
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Figure 4.8: Relative abundance of [a/Fe|. Black dots circles are [o/Ni] measured from this
work, colored circles were obtained from literature, and they show the metallicity of stars:
in cyan are stars in the Halo from Frebel (2010); in green are stars found in the thick disk
from Reddy et al. (2006), and in red stars found in the Thin disk from Reddy et al. (2003).
In the lower right corner is the mean error in the [Ni/H] for the MW DLA sample.

sufficient to find a plateau. With this is possible to set an upper limit for the [« /Fe| knee at

Ni/Fe] ~ —1.6.

This upper limit on the metallicity of the knee is in agreement of the metallicity of the
knee in the MW and the Sagitarius arm measured by de Boer et al. (2014), that measured

the knee at [Fe/H]= —1.27 £ 0.05
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the (de Cia et al. 2021) sample.
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Chapter 5

The Milky Way as a consequence of
the DLA cosmic evolution history

In this section, I look into the metallicity scatter found in the MW and compare it to the
scatter found in the cosmic metallicity history of DLAs. Secondly, I look into the [a/Fe]
vs [Fe/H] relation in the MW compared to DLAs at high redshift to discuss what is the
dominant type of galaxy in the high redshift selection of DLAs.

5.1 Metallicity evolution in cosmic time

The spatial distribution of metals in the MW studied in Chapter 4, uses multiple sightlines
intercepting the MW’s ISM and CGM through different directions. In this section, the
abundances in the MW DLAs are compared with the same abundances measured using a
compilation of DLAs from Berg et al. (2017) and Berg et al. (2017), consisting of DLAs in
the redshift range 0 < z < 5 to find a relation between the variation of metallicity seen in
the MW and the cosmic metallicity variations seen at any redshift in DLAs.

The DLA sample from Berg et al. (2017) consists of the DLAs found on the spectra from
the XQ-100 survey Lépez et al. (2016) that observed 100 quasars at 3.5 S 245 S 4.5 with
VLT /X-Shooter, while Berg et al. (2015) is a compilation of all publicly available DLAs
published from 1994 to 2014 plus the observations presented there. The DLA sample from
Rafelski et al. (2012) is included in Berg et al. (2015) sample and consists of a literature
compilation of DLAs observed in spectra with R > 5000 and S/N > 15 pixel ' that in
general avoided samples with biases for metal-poor or metal-rich systems, except for the
DLAs with z < 1.5 where DLAs are generally found by their strong metal lines, for more
details on these see Rafelski et al. (2012). Berg et al. (2015) includes the DLAs that Rafelski
et al. (2012) avoided and in this work, the larger sample was preferred because DLAs at
z < 1.5 are relevant to this work. It is important to note that including DLAs at z < 1.5
introduces a possible bias in favor of metal-rich systems because DLAs in this range are
identified by their strong metal lines.
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Z Zrange [M/H] O[M/H] Mean €ITOI[M/H]

143 ]0.01,2.16] -0.81  0.48 0.13
2.52 [2.18,2.79] -1.24  0.52 0.11
3.18 [2.8,3.61] -1.26 047 0.13
411 [3.65,5.18] -1.43  0.52 0.15

Table 5.1: Binned metallicity for high redshift DLAs.

Both Rafelski et al. (2012) and Berg et al. (2015) have significant overlap, and to account
for this the combined sample was sorted with z and DLAs with a Az < 0.0001 ~ 30km/s
and A[M/H]< 0.0001 were considered to be the same DLA and taken out of the sample.

Proximate DLAs have a relative velocity separation from the background quasar Av <
3000km/s and are in interaction with the QSO. Proximity to a QSO could invalidate the
assumption of neutral gas in the DLA and lead to erroneous abundance determinations unless
photoionization modeling is used (Ellison et al. 2010). Regardless, they were not removed
from the sample, because their low numbers (5) would not affect the statistics of the sample.
The combined DLA sample consists of 314 unique DLAs.

To measure the metallicity and scatter evolution in DLAs at high redshift the combined
sample was binned into groups of similar redshift. I binned the combined sample into 3 bins
of 79 and 1 bin of 77 systems for these groups to contain a similar number of systems as MW
DLAs are found (79), to avoid any bias for any particularly metal-poor or metal-rich systems
in the bins that could change the mean metallicity or increase the scatter significantly in a
particular bin.

The H1 weighted mean metallicity of the binned DLAs are calculated with Eq. 4.2

M/ H], x 10N(H1)z
(M /H]iota1 = Z (ZZ[ z/:z 1]ON(HI)¢ )

and reported in Table 5.1. In the same fashion, the HI weighted mean metallicity of MW
DLAs, at z = 0, was calculated to be [M/H]yw = —0.440.2 using S as the metalliciy tracer.

The top panel of Figure 5.1 shows the metallicity enrichment history of DLAs and the MW
DLAs. A linear fit to these metallicity finds [M/H](z) = (—0.22 £0.06)z — (0.5 £ 0.1). This
linear fit is in agreement with similar models reported by Rafelski et al. (2014) ([M/H](z) =
(—0.204£0.03)z — (0.68 +0.09)). Extrapolating the linear fit to z = 0; we find a metallicity of
—0.540.1 which is consistent with the measured value of —0.4 4+ 0.2 measured using the MW
sightlines. This substantiates that the overall metallicity of the MW gas coincides with the
expectation from DLA metallicity enrichment history, and not necessarily solar metallicity.

The binned metallicities (yellow stars) in Figure 5.1 show large error bars which in the x-
axis represent the redshift range of the bin, and in the y-axis represent the standard deviation
from the mean metallicity of the bin, not the overall uncertainty in the metallicities in the
redshift bin. The typical standard deviation in the literature DLA is opr4 =~ 0.5, while for
the MW: o = 0.2, this represents 40% of the standard deviation at any redshift bin. The
standard deviation (0.5; which measures the scatter of DLAs within a redshift bin) is much
larger than the uncertainties in each measurement of metallicity (0.1) and thus dominates
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the error in the metallicity evolution. Thus there must be an underlying reason for this large
scatter at all redshifts and also in the MW. The scatter in metallicity can have different
origins:

e Variations in a galaxy stellar mass lead to variations in metallicity.
The metallicity of a galaxy is characterized by its mass, following the mass-metallicity
relation (MZR), which physical origin is often attributed to the higher capability of
massive galaxies to retain metals against the action of galactic outflows, in comparison
to less massive galaxies. Although Baker and Maiolino (2023) argues that the stellar
mass of the galaxy is more important than dynamical mass or halo mass because
ultimately it is the stars that enrich the gas of a galaxy.

¢ CGM and ISM metallicities are not homogeneously distributed. The CGM
plays a pivotal role in star formation regulation, because there flows pristine gas from
the IGM into the ISM, and enriched gas flows out from stellar or Quasar feedback
processes. These enriched gas outflows are concentrated near the minor axis of galaxies
Péroux et al. (2020), thus metallicity in the CGM is expected to be higher at high-
azimuthal angle. This is relevant to DLAs, because their relative orientation from their
galaxy host is randomly probed by QSOs.

¢ Different components of the galaxy ISM or CGM have different metallicities.
The different gas structures present in the CGM of the MW like satellite galaxies or
High Velocity Clouds (HVCs) add to the in-homogeneity of metallicity. This is most
likely what is probed by QSOs in galaxies at high redshift, and the metal abundances
measured with spectroscopy include the metals from these structures.

Esteban et al. (2022) discusses in detail the possible origin for the variation in the metal-
licity measured in neutral gas in the local ISM by de Cia et al. (2021) - metallicities that this
works agrees with - and metallicity measured in H 11 regions and in the atmosphere of young
stars. In Esteban’s paper, the main conclusion is that the gas in the ISM of the MW is well
mixed, and metallicity variations cannot be explained as pockets of low metallicity that were
accreted and survived the accretion without mixing with the rest of the gas. According to
Esteban et al. (2022), this means that either the metallicities from de Cia et al. (2021) are
wrong, or they do not account correctly for dust depletion.

The metallicities measured in this work could be lightly affected by dust depletion, but
that would affect all metallicities in a similar magnitude and move the mean metallicity up,
and does not explain the variations from one sightline to another. I argue that the main
driving factor for the large scatter in metallicity in the MW DLAs here is due to the QSO
sightlines probing the CGM and ISM simultaneously and that in this case, contrary to de Cia
et al. (2021), the low metallicity pockets of gas present in the CGM from pristine infalling
gas is affecting the total metallicity towards that sightline.

Going back to DLAs, if all DLAs were MW-like with the same stellar mass, same feedback
processes, and QSO probed only one impact parameter, then the scatter in Figure 5.1 would
be the same as found in the MW, 40% of its present value, and that the rest of parameters
affect the variations with the other 60%.
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Figure 5.1: Top. [M/H] as a function of redshift. Black circles at z = 0 show the metallicity
in the MW DLAs, Blue points are from the literature DLA compilation, squares are from
Berg et al. (2016), and circles are from Rafelski et al. (2012). The black point next to the
MW DLAs is the binned metallicity with a 1 — ¢ standard deviation. The yellow stars show
the H1 weighted mean metallicity of DLA bins described in Table 5.1. The dotted black line
is a fit to the binned metallicities, and the black region around it shows a 1 — ¢ uncertainty
for this linear fit. In the lower right corner is the mean uncertainty in [M/H] for the samples
plotted using the same marker and color as before.

Bottom. oy m) as a function of redshift. The standard deviation of the MW DLAs at z =0
is shown in a black point, and the standard deviation in metallicity measured in each redshift

bin is shown in yellow stars. The yellow dashed line represents the mean standard deviation
across DLA bins. The black dashed line represents the standard deviation in the MW DLAs.
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5.2 Alpha elements in the MW and DLAs

We now turn our attention to [«/Fe] in DLAs compared to the MW DLAs to explore the
eventual differences between them.

The identification of the host responsible for a DLA is difficult, due to the often small
angular separation and their low surface brightness relative to the background QSO. To-
day only 115 galaxies at redshifts 0jzj4.4 are believed to be associated with DLA /sub-DLA
absorbers (either as the primary absorbing galaxies or as members of the same group of
galaxies) (Kulkarni et al. 2022).

At z < 1 where it is more likely to resolve the galaxy host imaging studies as well as [FU
observations have studied the galaxies associated with DLAs (Rao et al. 2003). These studies
suggest that dwarf galaxies are the dominant population among DLA hosts (Kulkarni et al.
2022).

Cooke et al. (2015) studies the chemical evolution and kinematic properties of the most
metal-poor DLAs at 2 < z < 3, where they find that DLAs [o/Fe] vs [Fe/H] is statistically
different than what can be seen in MW halo stars, but is broadly similar to what can be seen
on dwarf galaxies in the Local Group (Tolstoy et al. 2009).

Figure 5.2 shows a comparison of [a/Fe| in the MW DLAs to DLAs from the combined
sample, with a histogram of [«/Fe| for both populations.

It is clear to see that [a/Fe] in the MW DLA sample is different from the literature sample
as confirmed by an MCMC KS-test which says that the samples are not drawn from the same
parent distribution beyond a < 1% confidence level. An important feature to be seen here
is that the mean [a/Fe] in the literature DLAs is ~ 0.5 dex lower than the mean for the
MW DLAs and that both samples have similar standard deviations. This is to be expected
following the results of Cooke et al. (2015), while here the comparison is more direct because
both column densities are measured in the neutral gas rather than using the abundances
from Halo stars.

It is important to note that since Fe and Ni are not volatile, both elements —and thus
[a/Fe] as well- are affected by dust depletion. For DLAs in the literature, it is difficult to
make dust corrections, because most studies do not cover the elements necessary to do so.
This is also true for the [o/Fe] measured in this work. To correct for dust depletion the
ratio of the iron-peak elements [Zn/Fe| is very useful (De Cia et al. 2016; Konstantopoulou
et al. 2024), also Guber and Richter (2016) suggests that the [Ti/Ca] ratio represents a
useful measure for the gas-to-dust ratio and overall metallicity in intervening absorption-line
systems.

These differences in the mean [o/Fe] between the MW DLAs and DLAs are either ex-
plained by: (i) both the MW DLAs and DLAs populations are being affected by dust deple-
tion in different magnitudes, which does not explain why both samples have similar standard
deviation in [o/Fe| and cannot be demonstrated without more observations and a careful
study of each DLA in the sample and the MWDLAs (Berg et al. 2015); or (ii) assuming that
both the DLA sample and MWDLAs are affected by dust depletion in the same order of
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Figure 5.2: Left Relative abundance of [S/Ni] in DLAs and the MW (present work). Black
dots are measured from MW DLAs, blue empty circles are measured by Berg et al. (2016) on
DLA halos, and blue empty squares are from Rafelski et al. (2012). In the upper right corner
is the mean error in the [Ni/H] or [Fe/H] for samples plotted in using the same marker and
color as before.

Right Histogram of the frequencies for [o/Fe|, with a corresponding Gaussian profile charac-
terizing the histogram.

magnitude, which supports that this difference of ~ 0.5 dex in mean [a/Fe| is statistically
relevant and differentiate both samples.

Moreover Cooke et al. (2015) studying the most metal-poor DLAs, at z ~ 2 — 3 and Berg
et al. (2015) studying the most metal-rich DLAs, at z ~ 2, both find evidence that [«/Fe| of
DLAs are not representative of galaxies similar to those that merged to form the bulk of the
MW. Berg et al. (2015) finds that [o/Fe] of DLAs is consistent at ~ 0.5 at the metallicity
of the MW’s «v knee, but they use [Zn/H]| as their metallicty tracer —instead of [Ni/H] used
here— element which doesn’t necessarily follow the same nucleosynthetic origin as Fe, and
is not clear they can be used for this at metallicities higher than —1.0, thus they cannot
conclude about a drop of [a/Fe| below the knee.

The MWDLAS bring a more direct point of comparison when studying [« /Fe| in MW-like
galaxies because the ratios measured are affected by the same assumptions on dust depletion
and both measure chemical abundances in the neutral gas of a galaxy, contrary to previous
studies that used abundances from MW’s halo stars. This more direct comparison allows us
to also conclude that the population of DLAs is more likely dominated by dwarf galaxies.
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Chapter 6

Summary

The goal of this section is to summarize the conclusions from the discussion on Chapter 4
and 5, and relate them to the goals of this thesis:

1. What is the metal content of the Milky Way’s gas?
2. Is it possible to find the distribution of metals with this method?

3. What can the metallicity variations in the MW tell us about the cosmic
metallicity evolution of DLAs?

6.1 Metallicity of the MW and possible gradients

The method of measuring column densities used here is robust and probes the neutral gas
reservoirs of the MW. Column densities for volatile elements like Ni or Fe are, however,
possibly affected by dust depletion, and given that at z = 0 there is no coverage of the
elements necessary to do dust correction, (Ti1l as suggested by Guber and Richter (2016)
and Berg et al. (2016), or Zn11 as suggested by Konstantopoulou et al. (2022) and De Cia et
al. (2016)) then it is not possible to correct for dust depletion. To ensure that the metallicities
measured here are robust, the refractory element S was used as a metallicity tracer. With
this, it is possible to conclude that:

e The measured metallicities in the MW DLAs are mostly sub-solar (Figure 4.4), with a
mean metallicity [M/H|=-0.4 + £0.2, which is a larger than the average uncertainty
(0.7 dex) of the measurements.

e There is no trend of metallicity with galactic latitude, but there is a region at ~ —40°
with lower average metallicity (Figure 4.4), and this is most likely due to the presence
of the Magellanic Stream, the largest known inflow of low metallicity gas of the MW
(Richter et al. 2017).

e There is, however, a trend of increasing column density of H1 with decreasing galactic
latitude as expected from 21-cm radio emission maps (Figure 4.1 and 4.3). To compare
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the robustness of the column density measurements of H1 I compare them to column
density from the 21-cm radio emission map from (HI4PI Collaboration et al. 2016).
From this comparison, it is possible to see that both methods and results agree within
20% of each other 75% of the time (Figure 4.2).

e [a/Fe| in the MW DLAs shows a large difference compared to the same relative abun-
dances measured in the atmosphere of stars in the MW as seen in Figure 4.8, but agrees
with [a/Fe] measured in the local ISM by (de Cia et al. 2021) as seen in Figure 4.9.
This is most likely due to the abundances in the ISM(+CGM) being affected by dust
depletion while abundances measured from the atmosphere of stars are not. There are,
however, not enough points at low [Fe/H] to estimate the position of the [«/Fe] knee,
and it is only possible to say that the knee is at [Fe/H] < —1.3.

In the context of the enrichment history of the neutral gas in the universe, DLAs play a
major role, because they are the main neutral gas reservoirs in the Universe, more than 70% of
the total density cosmic H1 density (Noterdaeme et al. 2007). In this thesis 79 sightlines have
log N(H1) > 2 x 10%°, and so these systems are treated as DLAs at z = 0. The metallicities
measured in these MW DLAs were compared to a compilation of DLAs from (Berg et al.
2016) and (Rafelski et al. 2012) to see how the MW fits into this history and confirm if it is
possible to consider the MW as a DLA.

From this thesis, I conclude:

e A linear fit to the cosmic metallicity history of DLAs reports [M/H](z) = (—0.22 £
0.06) x z — (0.5 £0.1) and extrapolating the linear fit to z = 0; we find a metallicity of
—0.5 4+ 0.1 which is consistent with the measured value of —0.4 £ 0.2 measured using
the MW DLA sightlines. (Figure 5.1 upper panel).

e The standard deviation in the DLASs bins is constant with redshift at 0.5 dex, while the
standard deviation in the MW DLAs is 0.2 dex, corresponding to 40% of the standard
deviation in DLAs (Figure 5.1, lower panel). This discrepancy likely originates from the
larger range of galaxy host masses, stellar masses in the galaxy host, impact parameter,
and azimuthal angle probed by DLAs in a singular redshift bin, while in the MW most
of these quantities are fixed.

From these discrepancies, it is possible to say that if all DLAs’ hosts at high redshift
were MW-like, then the standard deviation would be 40% of the present value.

o [a/Fe] of the MW DLAs is 0.5 dex higher than what is seen in DLAs (Figure 5.2), and
assuming both samples are affected by dust depletion with the same order of magnitude,
then this difference is significant enough to say that DLAs show [«/Fe] patterns closer

related to dwarf galaxies, rather than MW-like, as supported by the work of Cooke
et al. (2015) and Berg et al. (2015).
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Chapter 7

Future work

To advance this work further it would be useful to:

e Use the chemical abundances measured here to model the ionization correction of the
MW sub-DLAs, in order to use all chemical abundances measured in this work. Possibly
using an approach like Berg et al. (2021).

e Find complementary datasets for the same QSO in order to get column densities of
key elements to study the effects of dust depletion. We could benefit of works that
studied the dust depletion patterns in the MW such as Konstantopoulou et al. (2022),
Konstantopoulou et al. (2024), and De Cia et al. (2016).

e The 4AMOST-Gaia Purely Astrometric Quasar Survey (4G-PAQS) will carry out the
first large-scale, colour-independent quasar survey selected solely on the basis of as-
trometry from Gaia (Krogager et al. 2023). This survey will provide us with a larger
dataset of spectra that can be used to perform this same study on a larger sample of
QSO spectra, unbiased by color selection.
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Annex A

ALIS fits

Here are the ALIS fits for 5 systems, and just as Figure 3.6 the black line is the normalized
spectra used to run the fit, the grey line is the normalized flux masked out, the dashed blue
line is the continuum fitted by ALIS, the red line is the fit by ALIS, red vertical lines denote
the velocity centroid of Milky Way lines, red crosses mark the velocity centroid of HVCs,
blue vertical lines denote velocity centroid of blend lines, a blue star above a vertical line
means a line from the MW from another species, the grey area shows 20 contours, finally,
the light blue line is the residuals. The contour and residuals are displaced lower and scaled
down for better display. The zero velocity is at vy gg.

The rest of the ALIS fits is in here. The files are named XX _metal.pdf, where XX is the
HSLA ID of the Quasar.
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Annex C

ALIS Ly-alpha fits

Here are the fits to the Ly-a of the galaxies in the sample, and like Figure 3.4. The black line
is the flux used to run the fit, the grey line is the normalized flux masked out, the dashed
blue line is the continuum fitted by ALIS, the red line is the fit by ALIS, the red vertical line
denote the velocity centroid of the absorption. The zero velocity is at vigg.
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Figure C.1: Ly-« fit with ALIS to systems in the sample.
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Figure C.2: Ly-« fit with ALIS to systems in the sample.
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Figure C.5: Ly-« fit with ALIS to systems in the sample.
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Figure C.6: Ly-a fit with ALIS to systems in the sample
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Figure C.7: Ly-« fit with ALIS to systems in the sample.
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Figure C.8: Ly-a fit with ALIS to systems in the sample. The black line is the flux used
to run the fit, the grey line is the normalized flux masked out, the dashed blue line is the
continuum fitted by ALIS, the red line is the fit by ALIS, red vertical lines denote the velocity
centroid of Milky Way lines. The zero velocity is at vyggr.
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Figure C.9: Ly-« fit with ALIS to systems in the sample.
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Annex D

Systems unable to fit Ly-alpha

In this section I show the spectra for which it was impossible to run ALIS to fit HI. Figure
D.1 shows the region of the spectra around the rest-frame wavelength of Ly-a, and Table
D.1 shows the ID given by Peeples et al. 2017 in the first data release of HSLA, the galactic
latitude and longitude, S/N and z of the QSO. In Table D.1 QSO marked A all flux from the
QSO were completely absorbed by Ly-limit systems, spectra marked B interlopers absorption
dominated the spectra near the MW Ly-«a. In the case of NGC-4051 it was blended with
the emission of the Ly-a of the QSO and possibly absorption from the QSO host galaxy,
finally the case of FBS0150+396 the spectra does not resemble QSO spectra, for this reason
I decided to exclude it from the QSO sample.
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ID Glon Glat S/N  z
) ©)

ES0292-G24 334.8992° -68.1571 22.3 0.03
FBS0150+396 135.5828 -21.4226 6.2 0.211
FIRST-J020930.7-043826¢ 165.9922 -60.8074 10.4 1.128
NGC-4051 148.8831  70.0851 19.6 0.002
PG-1206+459° 144.6291  69.6209 22.8 1.164
PG-1338-+416° 90.587 724837 16.6 1.217
PHL1598% 40.5381  -40.9564 154 0.501
RXJ0439.6-5311° 261.216  -40.9268 16.9 0.243

SDSS-J135726.27+043541.4*  340.7675 62.5141 10.0 1.234
SDSSJ021218.32-073719.8" 171.1493 -62.6554 8.2 0.173
SDSSJ100102.55+594414.3"  152.5697  46.3865 10.8 0.747
SDSSJ100902.06+071343.8*  232.656  46.6973 5.1 0.456
SDSSJ113327.78+032719.1°  261.3508  59.8747 5.7 0.524
SDSSJ161649.42+415416.3*  66.2768 459124 6.5 0.441

Table D.1: COS-GAL spectra for which it was impossible to fit Ly-a absorption. Columns
from left to right are: ID name as they appear in HSLA first data release Peeples et al. 2017
, Galactic longitude in degrees, Galactic latitude in degrees, S/N ratio as reported in HSLA
first data release.

85



Annex E

AODM

Before deciding to use Voigt profile fitting to get column densities I tried using the AOD
method and noticed that saturation could largely affect the column densities of Fe or Si,
which are important to study the [a/Fe| ratio. Figure E.1 shows [a/Fe] measured in the
atmosphere of stars in the MW, and the cluster of orange stars at the bottom are the [a/Fe]
measured with AODM.

The large discrepancy between the [«/Fe] measured with Si or S, rises suspicion that Si
is saturated, and that the measured [Si/Fe] is a lower limit. Also saturation from Fe could
make [S/Fe] appear higher than it should. Also if Si and Fe are both saturated, then neither
[a/Fe] is relevant, because it is both an upper limit and a lower limit.

To avoid any conflict with saturation, I decided to not use the AODM, and star Voigt
profile fitting.
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Figure E.1: Relative abundance of [Si/Fe]. Circles show [a/Fe| from the atmosphere of stars,
they were obtained from literature. In cyan are stars in the Halo Frebel 2010; in green are
stars found in the thick disk Reddy et al. 2006, and in red stars found in the Thin disk Reddy
et al. 2003. Stars show the measured [«/Fe] measured with AODM from this work. Orange
stars show [Si/Fe| and blue stars are [S/Fe].
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Annex F

Identified lines at higher z
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Ion  Line Wavelength (A) f-value Ref‘ Ion  Line Wavelength (A) f-value Ref

Hi 1215 1215.6700 4.1640e-01 1 | Mnix A2606 2606.4620 1.9800e-01 1

.. | NI A1083 1083.9937 1.1100e-01 1
Hr1 A911 911.7633 0.630e-17 5 | Nimm  A1370 1370.1320 7.6900e-02 1
O1  A1302 1302.1685 4.8000e-02 1 Niir  A1709 1709.6042 3.2400e-02 1
O1  A1355 1355.5977 1.1600e-06 1 Nimm  A1741 1741.5531 4.2700e-02 1
B 1362 1362.4610 1.0100e4+00 3 | Nimm  Al1751 1751.9157 2.7700e-02 1
Cir \1036 1036.3367 1.1800e-01 1 S A1250 1250.5780 5.4300e-03 1
Cimr A1334 1334.5323 1.2800e-01 1 S A1253 1253.8050 1.0900e-02 1
Colr  A\1466 1466.2110 3.1000e-02 1 S A1259 1259.5180 1.6600e-02 1
Comr  A1574 1574.5508 2.5000e-02 1 Sirm A1190 1190.4158 2.9200e-01 1
Comr  A1941 1941.2852 3.4000e-02 1 Sirm A1193 1193.2897 5.8200e-01 1
Colr  A2012 2012.1664 3.6800e-02 1 Sirr - A1260 1260.4221 1.1800e4-00 1
Ferr  A\1142 1142.3656 4.0100e-03 1 | Zn1ir  )A2026 2026.1370 5.0100e-01 1
Ferr  A\1143 1143.2260 1.9200e-02 1 | Znix A2062 2062.6640 2.5300e-01 4
Ferr A1144 1144.9379 8.3000e-02 1 | Simr 1206 1206.5000 1.6300e+-00 1
Ferr  A1608 1608.4511 5.7700e-02 1 Civ  A1548 1548.2040 1.8990e-01 1
Mgi  A2796 2796.3543 6.1550e-01 1 Civ  A1550 1550.7810 9.4750e-02 1
Mgir  A2803 2803.5315 3.0580e-01 1 | Sitv A1393 1393.7602 5.1300e-01 1
Mni1r A1197 1197.1840 2.1700e-01 1 | Sitv 21402 1402.7729 2.5400e-01 1
Mnir A1199 1199.3910 1.6900e-01 1 Ovr 1031 1031.9261 1.3250e-01 1
Mni1r A2576 2576.8770 3.6100e-01 1 Ovr A1037 1037.6167 6.5800e-02 1
Mnir 2594 2594.4990 2.8000e-01 1

Table F.1: Tons identified in Section 3.2.1. Element and ion is show in Ion column, wavelength
is in Angstrom, Ref is the reference number from which I got these values. Ref numbers are:
1 = citeMorton03, 2 = citeMorton00, 3= citeVerner96, 4= citeVerner94, 5= citeALIS
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Annex G

Full table of QSO used here
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Annex H

High velocity cloud detections

High Velocity Clouds (HVCs) are defined as gaseous structures observed in HT 21 c¢m radio
emission on as line absorption absorption against extra-galactic background sources at LSR
velocities |vpsg| >90km/s Richter et al. 2017. Having fit voigt profiles to all velocity compo-
nent present in a velocity range of |upggr| < 300km/s It’s possible to find the detection rate
of HVC in this sample, and compare it to the results of Richter et al. 2017, where they did
visual inspection in almost exactly the same sample of spectra.

Table H.1 characterizes known HVC complexes around the MW this is part of Table 3
from Richter et al. 2017, who compiled these characteristics from literature papers therein.
The last column is the detection rate from the the Voigt profile fits from this work.

The spectra sample used in Richter et al. 2017 is a QSO+Galaxy COS spectra subsample
from the HSLA, where S/N> 6 and had coverage in both G130 and G160 gratings. The
main difference in this sample with the one used here is that here the S/N cutoff is 5, and I
only used QSO spectra. For the detection rate = Nf"* the total number of sightlines is the
number of sightlines that are pointing within the galactic coordinates of an HVC complex as
described in Table H.1, and one of these sightlines is considered to have an HVC detection
when at least one velocity component in the fitted absorption profile has |visr| >90km/s.

The detection rate here is 72.1% and the reported detection rate in Richter et al. 2017
is 80.2%. They aren’t far off and I attribute the difference to them using a larger sample of
spectra, but it could also be that visual inspection is not as accurate as this method.

The effects of HVCs to the overall metallicity in a sightline is not looked into further in
this work.
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HVC complex Lnin  lmaz  bmin bPmae  Vimin Vmaz | Det. rate(Richter 2017) Det. rate (This work)

) O ) (km/s) (km/s)

Complex GCN 0 60  -60 -30 -350 -100 2/2 3/5
Complex GCP (Smith Cloud) | 0 60  -30 0 80 200 1/1 1/1
Magellanic Stream (MS) 0 180 -90 -60 -500 -80 41/46 41/55
60 120 -60 0 -500 -80
180 360 -90  -60 80 500
210 360 -60  -30 150 500
210 300 -30 0 150 500
Leading Arm (LA) of MS 300 360 -30 0 150 500 8/10 4/5
240 360 0 60 150 500
Complex C 40 90 15 45 -250 -80 31/32 9/9
60 110 25 65 -250 -80
110 150 35 65 -250 -80
Outer Arm (OA) 45 90 0 15 -150 -80 0/0 0/0
90 160 0 20 -150 -80
Complex G 60 105 -20 0 -150 -80 0/0 0/0
Complex H 105 150  -20 20 -250 -80 2/2 4/4
Complex M 120 200 45 75 -150 -80 12/24 19/30
Complex A 145 175 30 45 -250 -140 5/6 3/5
130 145 20 35 -250 -140
Anti-Center (AC) 130 200 0 -60 -500 -80 2/6 0/0
AC Shell + ACO 160 210 -20 20 -130 -80 0/0 0/0
Complex WE 290 340 -30 0 80 150 0/1 0/1
Complex WA + WB 210 260 0 60 80 200 21/25 7/10
HVC toward LMC 275 285 -38  -28 80 150 0/0 1/1
Complex L 300 360 20 60 -200 -80 5/7 1/3
Total 130/162~80.2% 93/129~72.1%

Table H.1: HVC detection rate table and characteristics of HVC from Richter et al. 2017
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