
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
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PUNTOS ALTOS DE CAMPOS LOG-CORRELACIONADOS.

Los campos log-correlacionados son campos aleatorios cuyas correlaciones dependen logaŕıt-
micamente de la distancia entre los puntos. Se cree ampliamente que, bajo condiciones suaves,
los valores extremos de cualquier campo log-correlacionado caen dentro de la misma clase de uni-
versalidad. En otras palabras, su comportamiento será similar al de un ejemplo representativo
de esta clase.

El campo log-correlacionado más estudiado es el Gaussian Free Field (GFF) en dos dimen-
siones, un campo Gaussiano centrado cuya función de correlación es la función de Green del
Laplaciano. Aunque el GFF en śı mismo no es una función en el sentido tradicional, sus valores
extremos pueden estudiarse de manera significativa regularizando el campo. Espećıficamente,
el punto γ-alto del campo se puede definir como

T (γ)
.
=

{
x ∈ D : lim sup

ε→0

Φε(x)

log(1/ε)
= γ

}
,

donde Φε denota la aproximación de circle-average del campo.
Con el objetivo de explorar las propiedades de universalidad de los thick points en los

campos log-correlacionados, presentamos un nuevo objeto que captura la esencia de todas las
posibles variantes de estos campos: el pseudo Gaussian Free Field (pGFF). Este es un campo
cuyas correlaciones están regidas por la función de Green. En la primera parte de esta tesis,
describimos las caracteŕısticas fundamentales que hacen del pGFF un objeto adecuado para
abordar nuestro estudio. Posteriormente, analizamos los valores extremos del pGFF en el caso
unidimensional.

En la parte final de esta tesis, estudiamos el comportamiento de los thick points para una
clase espećıfica de pGFF. Para esta clase restringida, demostramos que la dimensión de los
thick points exhibe un comportamiento universal, coincidiendo con el del GFF. La idea central
es utilizar la convergencia mod-Gaussiana para mostrar que las probabilidades de cola de ciertas
variables aleatorias se comportan de manera similar a las de las variables Gaussianas.
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MENCIÓN MATEMÁTICAS APLICADAS

Y MEMORIA PARA OPTAR AL TÍTULO DE
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THICK POINTS STUDY OF LOG-CORRELATED FIELDS

Log-correlated fields are random fields whose correlations depend logarithmically on the
distance between points. It is widely believed that, under mild conditions, the extreme values
of any log-correlated field fall within the same universality class. In other words, their behavior
will resemble that of a representative example from this class.

The best-understood log-correlated field is the Gaussian Free Field (GFF) in two dimensions,
a centered Gaussian field whose correlation function is the Green’s function of the Laplacian.
Although the GFF itself is not a function in the traditional sense, its extreme values can be
meaningfully studied by regularizing the field. Specifically, the γ-thick point of the field can be
defined as

T (a)
.
=

{
x ∈ D : lim sup

ε→0

Φϵ(x)

log(1/ε)
= γ

}
,

where Φϵ denotes the circle-average approximation of the field.
With the aim of exploring the universality properties of thick points in log-correlated fields,

we introduce a new object that captures the essence of all possible variants of these fields: the
pseudo Gaussian Free Field (pGFF). This is a field whose correlations are governed by the
Green’s function. In the first part of this thesis, we describe the fundamental characteristics
that make the pGFF a suitable object for our study. Subsequently, we analyze the extreme
values of the pGFF in the one-dimensional case.

In the final part of this thesis, we study the behavior of thick points for a specific class
of pGFF. For this restricted class, we demonstrate that the dimension of thick points exhibits
universal behavior, matching that of the GFF. The core idea is to use mod-Gaussian convergence
to show that the tail probabilities of certain random variables behave similarly to those of
Gaussian variables.
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muy orgullosos de ser parte. Héctor y Julia que desde el cielo siempre nos han cuidado y mi
Omita y mi Opita que desde que tengo memoria siempre nos han acompañado. Gracias a mis
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Introduction

Log-correlated fields constitute a fascinating topic within theoretical physics and applied math-
ematics, particularly in field theory and stochastic processes. They are distinguished by hav-
ing correlations between their values that decay logarithmically with distance, allowing them
to model phenomena involving long-range interactions. These fields are essential for describ-
ing extreme behavior situations, such as the appearance of exceptional points in physical and
mathematical systems. These types of fields have been the subject of extensive study in Gaus-
sian Multiplicative Chaos due to their connection with Liouville Quantum Gravity ([Aru20a],
[BSS14]).

One of the most notable examples of a log-correlated field is the two-dimensional Gaussian
Free Field (GFF), which models complex physical and mathematical phenomena, such as ran-
dom interfaces and quantum field theories. More rigorously, the GFF is defined as the standard
Gaussian random variable in the space H1

0 , and its correlation structure is determined by the
Green’s function. As in dimension bigger than or equal to 2 the Green’s function explodes in the
diagonal, the field cannot be interpreted as a function in the classical sense and, instead, must
be understood as a distribution in the sense of Schwartz. See Figure 1 for a two dimensional
simulation of the GFF. As observed in Figure 1, the pronounced peaks in this random surface

Figure 1: Simulation of a two dimensional Gaussian Free Field

stand out. These exceptional points, known as thick points, are a primary focus of the study
of the geometric landscape induced by the GFF. Since it is not possible to evaluate the GFF
pointwise, the value of a GFF Φ at a point x ∈ D is approximated using a regularizing function
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known as the circle average µx,ε. With this approach, the set of a-high points is defined as

T (a)
.
=

{
x ∈ D : lim sup

ε→0

⟨Φ, µx,ε⟩
log(1/ε)

= γ

}
.

The study of these exceptional points has been addressed in various works, such as in [APP22],
where it was shown that they form a totally disconnected set. Furthermore, their significance
has been highlighted in [Kah85], emphasizing them as the support of limiting measures in
Multiplicative Chaos theory. This underscores the importance of analyzing these points, not
only because they are the most prominent in simulations but also because they represent a
peculiar set with unique characteristics and great theoretical value.

This raises a fundamental question: how general is the behavior of thick points in log-
correlated fields? Although the GFF is a good starting point for exploring this question, its
structure is not general enough to encompass the full range of log-correlated fields. This is
why this work introduces the pseudo Gaussian Free Field (pGFF), an object that retains the
correlation structure of the GFF, maintaining it as a log-correlated field, but allowing for some
flexibility by relaxing the Gaussianity property. With the pGFF, we aim to explore the limits
of universality of thick points in fields with logarithmic correlations.

The interesting aspect of working with the pseudo GFF is that, given a domain D ⊆ R, these
fields can be characterized by a basis (en)n∈N of the Sobolev space H1

0 (D) along with a sequence
of random variables (αn)n∈N. In the case of the GFF, the random variables used are Gaussian;
however, in the pseudo GFF, we use variables whose correlation structure is determined by

E [αn] = 0, E [αnαm] = 1n=m.

Then, Υ is a pseudo GFFs, if that can be written as

Υ =
∑
n

αnen.

In this work, we used two specific bases: the Levy basis in the one-dimensional case and the
Fourier basis in the two-dimensional case. However, this choice does not compromise the gen-
erality of our study, as demonstrated in Section 3, where it is shown that being a pGFF does
not depend on the basis. This property gives the pGFF considerable flexibility, justifying its
usefulness for the objectives of this work.

To poke at the universality question, we began by working with the pseudo Brownian motion
(pBM), which corresponds to the pGFF in the one-dimensional case. The strategy is to compare
this object with its closest counterpart, the Brownian motion (BM), to identify and understand
the differences and similarities that emerge in this scenario. Once these distinctions are estab-
lished, the next step is to generalize the ideas and tools developed to the two-dimensional case.
See Figure 2 for a simulation of a pBM

2



Figure 2: The figures show a Brownian bridge and a pseudo-Brownia bridge. Can you guess
which is which?, Propositions 3.3 and 3.4 give us pointers on where to look.

Figure 2 shows that at first glance, it is extremely difficult to distinguish between the two
processes. However, at a microscopic level, they exhibit significant differences in their behavior.
In this work, these differences were analyzed in terms of regularity, specifically focusing on the
modulus of continuity, which projects the idea of exceptional points in the one-dimensional
context. In Propositions 3.3 and 3.4, we show that the pBM is a continuous object, but its
modulus of continuity is not universal, as it depends significantly on the variables with which
it is defined.

After working on and understanding the one-dimensional case, we turned our attention to
the two-dimensional case, using a basis of the space H1

0 (D) where D ⊆ R2. At this stage, our
goal is to calculate the the Hausdorff dimension of the thick points and compare these results
with those of the GFF, to assess whether there is any form of universality. Figure 3 shows a
simulation

Figure 3: Simulation of the pseudo Gaussian Free Field. The main question of this thesis is
whether this picture is close to Figure 1 or not.

As observed the Figure 1, the two-dimensional pGFF exhibits behavior that is notably
similar to its Gaussian counterpart. Moreover, the extreme peaks and valleys stand out visibly,
intensifying the need to address the question: How does the behavior of these extreme points
differ compared to their Gaussian equivalent? Furthermore, how general is the behavior of these
points in log-correlated fields?

To address these issues, we restrict our work to a smaller subset of the pGFF, where we

3



demonstrate behavior similar to that of the GFF (4.1). Within this subset, we are able to
calculate the Hausdorff dimension of the set of thick points. First, we obtain the upper bound
using an approach similar to that employed in the Gaussian context. That is, we apply a
regularity estimate (4.1) combined with a box-counting argument (4.5).

To establish the lower bound, discussed in Section 4.6, we employed tools from both mod-ϕ
convergence theory and Liouville Quantum Gravity. The latter was particularly challenging
because the approach outlined by Berestycki in [Ber17] relies heavily on the Cameron-Martin
theorem, which essentially depends on the Gaussian nature of the variables involved. Since we
lack this property in our case, we turned to the mod-ϕ convergence theory, addressed in Section
4.4. This theory focuses on the normalization of the moment generating function rather than
normalizing each random variable individually, allowing us to obtain precise bounds for the
generating function, thus facilitating its handling and application.

The thesis is composed of four chapters that we describe below.
Chapter I:We introduce the basic concepts of this thesis. We start by defining the Gaussian

Free Field as a standard Gaussian variable in Hilbert spaces, using this approach to explain its
fundamental properties, particularly its correlation structure given by the Green’s function.
Next, we focus on this function, presenting its detailed calculation for the two-dimensional case.
We then explore the Hausdorff dimension and its application in the analysis of thick points both
in the one-dimensional and two-dimensional GFF. Subsequently, we introduce the concept of
mod-ϕ convergence, with an emphasis on mod-Gaussian convergence. We also define strongly
sub-Gaussian variables, highlighting their main properties. Finally, we present the basis of the
space that we will use in this work, emphasizing their definition and useful properties for the
development of this research.

Chapter II: We present the main object of study of this work, starting with its formal
definition and continuing with an analysis of the properties that underpin its utility for achieving
the objectives outlined in this research.

Chapter III: We address the one-dimensional case of the pGFF. In this chapter, we demon-
strate that this object is continuous and calculate the upper and lower bounds of its modulus
of continuity.

Chapter IV: We focus on the two-dimensional case of the pGFF. We begin by defining
the concept of circle average and thick points within this new non-Gaussian context. We then
show that the pBM naturally embeds into the circle average of a planar pGFF and demonstrate
that this object satisfies the mod-Gaussian convergence property. Subsequently, we calculate
the upper bound of the Hausdorff dimension of the thick points of the pGFF. Next, we develop
the theory of Multiplicative Chaos in this new non-Gaussian context, and finally, calculate the
lower bound of the Hausdorff dimension of the pGFF.
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Chapter 1

Preliminares

1.1 Gaussian Free Field

In probability theory and statistical mechanics, the Gaussian Free Field (GFF) is a random field
that serves as a fundamental model for representing random surfaces. Its continuous version
can be defined both in Rd and in bounded subdomains of Rd, and it is considered a natural
extension of one-dimensional Brownian motion to the context of d temporal dimensions.

A key property of this field is that its correlation structure is governed by the Green’s
function. In particular, in two dimensions, the GFF belongs to the family of log-correlated
fields, which provides a solid theoretical foundation for addressing the central goal of this thesis.

In this chapter, we will present the main features of the GFF. In Section 1.1.1, we will
describe its formal construction step by step. Then, in Section 1.1.2, we will analyze its regularity
to determine which space it belongs to. Finally, in Section 1.1.3, we will delve into its correlation
structure, providing a detailed understanding of this fundamental aspect.

1.1.1 Construction

The main focus of this thesis is deeply inspired by the GFF, making it useful to present its
construction, as many of the properties of the pGFF stem from it. In this section, we will
address the fundamental construction of the Gaussian Free Field. We will begin by reviewing
the concept of a Gaussian variable in Euclidean spaces and then extend this notion to Hilbert
spaces. Through a step-by-step approach, we will explore the construction of the GFF, assessing
the advantages and limitations that arise at each stage, until we reach an optimized definition
of its properties.

Definition 1.1 (Standard Gaussian in a d-dimensional Space). We say that the random
variable X ∈ Rd is a standard if and only if

1. The law of X is given by

P(X ∈ dx) =
1

(2π)d/2
e

−∥x∥2
2 dx.

5



2. For any deterministic vector v ∈ Rd, we have that

⟨X, v⟩ ∼ N (0, ⟨v, v⟩).

3. For any deterministic vector v ∈ Rd,

E[e⟨X,v⟩] = e
∥v∥2

2

With the notion of normal variable in mind, it is more coherent to direct our efforts towards
the generalization of some of the notions present in the previous definition. This is why we
define the Gaussian variable on Hilbert spaces as follows.

Definition 1.2 (Standard Gaussian in a Hilbert Space). Let (H, ⟨·, ·⟩) be a Hilbert space.
We say that a collection of Gaussian random variables (Xh)h∈H is the standard Gaussian if
and only if the following are true

• For any h ∈ H, Xh ∼ N (0, ⟨h, h⟩).

• For any h1, h2 ∈ H and λ ∈ R we have that a.s

Xλh1+h2 = λ⟨X, h1⟩+ ⟨X, h2⟩

The first property is the generalization of the second in Definition 1.1, while the second
requires that the object satisfies the linearity of the inner product in the space.

It is logical to ask now whether there exists a family that satisfies the conditions established
in the previous definition. This result is a direct consequence of Kolmogorov’s Consistency
Theorem.

Theorem 1.1 (Kolmogorov’s Consistency for Gaussian Variables). Let E be a set and
A : E×E → R be a function such that for any finite set Ẽ ⊆ E the matrix (A(e, e′))e,e′∈Ẽ is

symmetric positive definite. Then, there exists a unique probability measure µ in RE on the
product of σ-algebras that satisfies the following. If X is a random variable distributed as µ,
then for any finite set Ẽ ⊆ E the law of (Xe)e∈Ẽ is a centered Gaussian random variable
with covariance (A(e, e′))e,e′∈Ẽ.

Given the above theorem, it is not difficult to prove the existence of the Gaussian variable
is Hilbert spaces by means of the following corollary

9

Corollary 1.2 (Existence of Standard Gaussian in a Hilbert Space). Let (H, ⟨·, ·⟩) be a
Hilbert space. Then there exists a probability measure µ on RH for the product σ-algebra
such that if X is a random variable distributed as µ, then X es a standard Gaussian in H.

Proof: Let A : H×H → R be the function A(h, h′) = ⟨h, h′⟩H. The commutative property is
obvious by the definition of inner product. Note that if E ⊆ H is a finite set, we have that the
matrix M

.
= (A(h, h′))h,h′∈E is a positive definite matrix because for any λ ∈ R|E|,

λTMλ =
∑

h,h′∈E

λh⟨h, h′⟩Hλh′ = ⟨
∑
h∈E

λhh,
∑
h∈E

λh′h′⟩H ≥ 0.

6



We can use Theorem 1.1 to obtain a measure µ, such that if X distributed as µ, for any finite
E ⊆ H, (Xh)h∈E is distributed as a centred Gaussian random variable with covariance matrix
(A(h, h′)h,h′∈E). In fact, for all h ∈ H, Xh is a centered normal random variable with variance
E[X2] = ⟨h, h⟩H. On the other hand, for fixed h1, h1 ∈ H and λ ∈ R,

E[(Xλh1+h2 − λXh1 +Xh2)
2]

= E[X2
λh1+h2

+ λ2X2
h1

+X2
h2

− 2λXλh1+h2Xh1 − 2Xλh1+h2Xh2 + 2λXh1Xh2 ]

= 0,

which proves that a.s Xλh1+h2 = λXh1 +Xh2 and X is a Gaussian variable of H. □
The problem with the above definition is the σ-algebra on which it is defined, since it is

quite small. We will now turn to a discussion of this.

Remark. In a Hilbert space H, the σ-algebra induced by the cylinders of RH is reduced in
the sense that it only allows measuring “countable questions”. That is, events indexed by an
uncountable set are not measurable. For example, the following events are not measurable

1. For h ∈ H fix. The event {Xλh = λXh}.

2. For h ∈ H fix. The event {Xh+h′ = Xh +Xh′}

Informally, the main idea of this problem is that the only measurable events in the product
σ-algebra are those to which a “countable number” of questions can be asked.

In general, it is useful to construct the GFF in a Hilbert space that makes certain events
indexed by uncountable sets to be measurable. However, the cost of this is the need to add the
separability hypothesis to the Hilbert space in which we are working. Within this context, we
can state the following proposition.

Proposition 1.3. Let (H, ⟨·, ·⟩H) be a separable Hilbert space with (en)n∈N an orthonormal
base and (αn)n∈N an i.i.d sequence of standard Gaussian variables. If we define Xh as the
following limit in L2,

Xh = ⟨X, h⟩H =
∑
n∈N

αn⟨h, en⟩H = lim
N→∞

N∑
n=0

αn⟨h, en⟩H, ∀h ∈ H,

then X is the Gaussian variable of H.

Proof: Let us first verify that the variable is well-defined as a limit in L2 and then that it
is a Gaussian variable in the Hilbert space H. Let h ∈ H be fixed and for N ∈ N, denote the
partial sum as:

XN =
N∑
k=0

αk⟨h, ek⟩H.

Then, for N,M ∈ N, with N ≥M , it holds that:

E[(XN
h −XM

h )2] = E

( N∑
k=M+1

αk⟨h, ek⟩H

)2
 =

N∑
k=M+1

⟨h, ek⟩H.
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Now, taking N,M → ∞, we obtain that E[(XN
h − XM

h )2] → 0 since the above series cor-
responds to the tail of ⟨h, h⟩H. With this, we conclude that (XN

h )h∈H is Cauchy in L2, and
therefore, the limit is well-defined.

To verify that it is a Gaussian variable in H, we will rely on the result stated in [Gal18,
Prop 1.1]. With this property,

lim
N→∞

E[(XN
h )2] = lim

N∑
k=0

⟨h, ek⟩2H = ⟨h, h⟩H.

Finally, to prove that it satisfies the second condition for Gaussians in Hilbert spaces, we
take h1, h2 ∈ H and λ ∈ R. Then,

Xλh1+h2 = lim
N→∞

N∑
k=0

αk⟨λh1 + h2, ek⟩H = λXh1 +Xh2 ,

and we conclude. □
Note from the previous proposition that the equality Xλh1+h2 = λXh1 +Xh2 holds with full

probability, not just almost surely. Furthermore, this allows us to define Xλh simultaneously for
all λ ∈ R, thus understanding X as a linear operator from H to R. However, a natural question
arises: does X belong to H? The answer is negative, and we will discuss this in the following
remark.

Remark. Let H denote a separable Hilbert space and define the random variable

X = lim
N→∞

N∑
n=0

αnen.

We remark that X a.s. does not belong to the space H. The reason for this is that

∥X∥2H = ⟨X,X⟩H =
∞∑
n=0

α2
n.

We know that, for every n ∈ N, P(αn > 1) > 0, which implies that
∑

n∈N P(αn > 1) diverges.
The Borel-Cantelli Lemma ensures that there are infinitely many terms in the above sum that
are greater than 0, thereby guaranteeing that the norm of X in H is infinite.

This leaves open the question of whether the random variable X can be defined in a bigger
Hilbert space. The answer to that question is given in Section 1.1.2.

To close this chapter, let us establish the formal definition of the GFF as a Gaussian variable
of the space H1

0 (D). Let D ⊆ Rd be an open set and consider the inner product in C∞
0 (D).

⟨f, g⟩∇ =
1

2π

∫
D

∇f(x)∇g(x)dx, (1.1)

where the term 1
2π

is used to normalize the Green’s function that we will see later.
We define the Sobolev space H1

0 by completing C∞
0 with the inner product defined before,

that is,

H1
0 (D) = C∞

0 (D)
∥·∥∇

.
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When f ∈ H1
0 it is possible to define ∇f ∈ L2(D). With this, the inner product H1

0 (D) is given
by

⟨f, g⟩∇ =
1

2π

∫
D

∇f(x)∇g(x)dx, ∀f, g ∈ H1
0 (D).

Definition 1.3 (Gaussian Free Field). TheGFF Φ inD is defined as the standard Gaussian
variable of (H1

0 (D), ⟨·, ·⟩∇).

1.1.2 Regularity of the GFF

En esta sección, continuaremos en el estudio del GFF, enfocándonos en su regularidad y en
la identificación del espacio funcional adecuado al que pertenece. Para ello, Comenzaremos
introduciendo la generalización del espacio de Sobolev H1

0 (D) hacia el espacio Hβ
0 (D), con

β > 0. A continuación, determinaremos la regularidad precisa, caracterizada por el parámetro
β, que define el espacio al que pertenece el GFF.

Let us consider a domain D ⊆ Rd and the space of functions (L2(D), ⟨·, ·⟩). Let (ek)k∈N
denote the orthonormal basis of this space, formed by the eigenfunctions of the operator (−∆)
with zero boundary conditions, and let (λk)k∈N denote the corresponding eigenvalues. With
this, we can obtain an orthonormal family of the space H1

0 as follows

⟨en, em⟩∇ = ⟨en, (−∆)em⟩ = ⟨en, λmem⟩ = λm⟨en, em⟩ = λn1n=m.

This implies that ((
√
λk)

−1ek)k∈N is an orthonormal basis of the space H1
0 (D) and let us

denote by (êk)k∈N this family. We then consider the generalization of this space given by

Hβ
0 (D)

.
= {f ∈ L2(D) :

∑
k≥0

λβk⟨f, êk⟩
2 <∞}.

In Hβ
0 (D), we consider the natural norm ∥ · ∥β defined by

∥f∥2β =
∑
k≥0

λβk ⟨f, êk⟩2. (1.2)

The goal is to find the appropriate value of β for which the GFF belongs to Hβ
0 (D). Before

proceeding, we will present a small lemma, whose proof can be found in [Wey12], that provides
the growth rate of the eigenvalues of (−∆). This lemma will be essential for analyzing the
finiteness of the norm defined in (1.2) for the GFF.

Lemma 1.4 (Weyl’s Law). There exist constants C1, C2 > 0 such that for all n ∈ N,

C1 n
2/d ≤ λn ≤ C2 n

2/d.

We now present the central result of this section:

Proposition 1.5. For β < d/2− 1, we have that Φ ∈ Hβ
0 (D).
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Proof: The proof of this proposition is relatively simple by following the following calculation.
For Φ a GFF and β ∈ R, we have that

∥Φ∥2β =
∑
k≥0

λβk⟨Φ, êk⟩
2 =

∑
k≥0

λβ−1
k ⟨Φ, λkêk⟩2 =

∑
k≥0

λβ−1
k ⟨Φ, êk⟩2∇

Then, using 1.4, we can compute

E[∥Φ∥2β] =
∑
k≥0

λβ−1
k ≤

∑
k≥0

k2/d(β−1) (1.3)

which is finite if b < d/2− 1. □

1.1.3 Correlations

In this section, we will delve into the correlation structure of the GFF Φ, defined in a domain
D ⊆ Rd. As we previously observed, for a function f ∈ H1

0 (D), the corresponding Gaussian
random variable is given by Φf ∼ N (0, ⟨f, f⟩∇). This result raises a fundamental question:
what more can we deduce about the term ⟨f, f⟩∇? Our goal here is to address this question
and provide a deeper insight into that expression. To do so, we will first derive an equality that
links the term of interest to the Laplace operator. Subsequently, we will introduce the Poisson
problem, which plays a key role in understanding the Green’s function. Finally, we will discuss
a crucial property that relates any stochastic process with Green’s correlations with the GFF.

Using the property of integration by parts, we obtain the following equality:

⟨f, f⟩∇ = ⟨∇f,∇f⟩ = ⟨f,−∆f⟩. (1.4)

This equality motivates us to explore the term−∆f . To do this, we need the following definition:

Definition 1.4 (Poisson Problem). Let D ⊆ Rd and f ∈ C2(D). We define the Poisson
problem as

(Pf )

{
−∆u(x) = f(x), x ∈ D,

u(x) = 0, x ∈ ∂D.

We know that the problem defined above has a solution given by

u(x) =

∫
D

GD(x, y)f(y) dy,

where GD is the Green’s function defined over D, of which we will study in more detail in
Section 1.2. Using this solution, we can reformulate the result obtained in 1.4 as follows:

⟨u, u⟩∇ = ⟨u,−∆u⟩ = ⟨
∫
D

GD(·, y)f(y) dy,−∆u⟩ = ⟨
∫
D

GD(·, y)f(y) dy, f⟩

=

∫
D×D

f(x)GD(x, y)f(y) dx dy.

This final equality leads us to formulate the following property:
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Proposition 1.6. Every Gaussian process with Green’s correlations is a GFF. In other
words, if ψ is a Gaussian process with

E[⟨Ψ, f⟩⟨Ψ, g⟩] =
∫
D×D

f(x)GD(x, y)g(y) dx dy,

then Ψ is a GFF.

1.2 Estimates on the Green’s Function

The Green’s function is a widely studied concept in mathematics, particularly in the field of
partial differential equations (PDEs). We have already mentioned its intrinsic connection to the
correlations of the GFF, and notably, when working in two-dimensional spaces, this function
takes on a logarithmic form. In other words, the GFF becomes a log-correlated field when
D ⊆ R2. Given its importance, in this section, we will thoroughly examine the structure and
specific form of the Green’s function. We will begin by presenting it as the solution to the
Poisson problem, then define it in terms of the transition density in general domains, and
finally, demonstrate its logarithmic form in the two-dimensional context.

As shown in [MP10, Remark 8.7], the solution to the Poisson problem defined in Definition
1.4 can be expressed as

f(x) = Ex

[∫ τD

0

F (B(t))dt

]
, (1.5)

where Ex denotes expectation starting from a point x ∈ D, B is a d-dimensional Brownian
motion, and τD = inf{t > 0 : B(t) ̸∈ D}. Moreover, it follows from [MP10, Theorem 3.30] that
there exists a transition density pD : [0,∞)× Rd × Rd such that

Ex[F (Bt)1t≤τ ] =

∫
D

pD(t, x, y)dy.

Using this transition density, we can provide a formal definition of the Green’s function.

Definition 1.5 (Green’s Function). Let D ⊆ Rd be a bounded domain. We define the
Green’s function of D as

GD(x, y)
.
=

∫ ∞

0

pD(t, x, y)dt

Computing the Green’s function using the transition density p gives us explicit expressions
that vary significantly depending on the dimension of the space. In this work, we focus exclu-
sively on the two-dimensional case, where the specific properties of the Green’s function play a
crucial role in analyzing log-correlated fields and the associated singularities.

Proposition 1.7. Let D ⊆ R2 be a subset. The Green’s function on D is given by

GD(x, y) = log

(
1

∥x− y∥

)
(1 + o(1)).

Proof: From the explicit form of the transition density p,

GD(x, y) =

∫ ∞

0

e−t

t
· e

−∥x−y∥
2t dt.
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Rewriting the exponential in integral form, we obtain

G(x, y) =

∫ ∞

0

e−t

t
· e

−∥x−y∥2
2t dt =

∫ ∞

0

e−t

t

∫
∥x−y∥

2t

e−sds dt =

∫ ∞

0

e−s

∫ ∞

∥x−y∥
2s

e−t

t
dt ds.

The idea now is to find upper and lower bounds for the inner integral. For the upper bound,
we have ∫ ∞

∥x−y∥
2s

e−t

t
dt ≤

{
log( 2s

∥x−y∥2 + 1), if ∥x− y∥ ≤ 2s,

1, if ∥x− y∥ > 2s.

For ∥x− y∥ ≤ 1, we have on one hand,∫ 1

0

e−t

t
log(

2s

∥x− y∥2
) + 1 = (1− e−1)(log(2) + 1− 2 log ∥x− y∥).

And on the other hand,∫ ∞

1

e−t

t
log(

2s

∥x− y∥2
+ 1) = e−1(1 + log(2)− 2 log ∥x− y∥) + ξ̃,

where ξ̃ =
∫∞
1
e−s log(s)ds <∞.

The previous computations give us the upper bound

G(x, y) ≤ 1 + log(2) + ξ̃ − 2 log ∥x− y∥.

To calculate the lower bound, we use the fact that∫ ∞

∥x−y∥
2s

e−t

t
dt ≥ log(

2s

∥x− y∥2
)− 1.

Denoting by ξ = −
∫∞
0
e−s log(s)ds denoting Euler’s constant, we obtain

G(x, y) ≥ 1 + log(2)− ξ − 2 log ∥x− y∥.

Thus, we conclude that

G(x, y) = log

(
1

∥x− y∥

)
(1 + o(1)).

□

1.3 Fractal Dimensions

The concept of fractal dimension is used in geometry to quantify, through a real-valued index,
the roughness of a set. Fractal dimensions are applied to describe a wide range of objects, from
abstract structures to practical phenomena. In probability theory, the Hausdorff and Minkowski
dimensions have been employed to measure the fractality or irregularity of various stochastic
processes. In this case, we will use the Hausdorff dimension to quantify the rarity of the set of
thick points of the GFF and, subsequently, of the pGFF.

In Section 1.3.1, we introduce the fundamental concepts necessary to understand the defi-
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nition of the Hausdorff dimension, followed by its formal definition. Next, in Section 1.3.2, we
explore the fast points of Brownian motion and calculate the dimension of the set they form.
Finally, in Section 1.3.3, we present the calculation of the dimension of the thick points of the
GFF.

1.3.1 Hausdorff Dimension

The Hausdorff dimension measures the local size of a set by considering the distance between
its points. More specifically, it seeks to determine the minimum exponent needed so that the
sum of the diameters of the balls covering the set goes to zero as the radius of these balls tends
to zero. Throughout this thesis, we will use this concept to analyze the behavior of the Thick
Points of the pGFF. In this section, we will introduce the fundamental concepts underlying the
definition of the Hausdorff dimension and then formalize this definition.

Definition 1.6. Let (X, d) be a metric space. Let A ⊆ X and δ > 0 a real number. Define

Hb
δ(A)

.
= inf

{
∞∑
i=1

diam(Ui)
b : A ⊆

∞⋃
i=1

Ui, diam(Ui) < δ

}

Let us note that Hb
δ(A) is non-increasing in δ, since as δ increases, more collections of sets

are allowed. Therefore, it makes sense to take limδ→0H
b
δ(A), although it could be infinite. We

then define the Hausdorff outer measure as

Definition 1.7 (Hausdorff Mesure). Let (X, d) be a metric space. Let A ⊆ X and δ > 0 a
real number. Define

Hb(A)
.
= lim

δ→0
Hb

δ(A) = sup
δ>0

Hb
δ(A)

It turns out that Hb(A) can have a finite, non-zero value for at least one b > 0. In other
words, the Hausdorff measure is zero for any value above b and infinite below b, analogous to
the idea that the area of a line is zero and the length of a 2D figure is, in a certain sense, infinite.
This leads us to define the Hausdorff dimension as follows

Definition 1.8 (Hausdorff Dimension). Let (X, d) be a metric space. Define the Hausdorff
Measure as

dimH(A) = inf{b > 0 : Hb(A) = 0} = sup{b > 0 : Hb(A) = ∞}

With this definition it can be seen that the idea of this dimension is to determine the
minimum exponent necessary so that the sum of the diameters of the balls that cover the set is
zero.

1.3.2 Extremes Values in Dimension 1

In this section, we will explore the fast times of Brownian motion, exceptional moments when
the velocity of the process exceeds the expectations set by the law of the iterated logarithm.
Our goal is to demonstrate how the Hausdorff dimension can be used to quantify the rarity and
structure of these exceptional points in the one-dimensional context.
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We will begin by reviewing the law of the iterated logarithm, which describes the expected
behavior of points in a Brownian motion. Next, we will present the definition and properties of
fast times and, finally, perform the calculation of the dimension of the set of these points, thus
illustrating a concrete application of the Hausdorff dimension in this case.

The law of the iterated logarithm describes the magnitude of the fluctuations of a random
walk. Specifically, in [MP10, Corollary 5.3] they calculate the following proposition for the
Brownian motion

Proposition 1.8 (Law of the Iterated Logarithm). Suppose (Bt)t≥0 is a standard Brownian
motion. Then, almost surely,

lim sup
h→0

|B(h)|√
2h log(log(1/h))

= 1.

Using Markov’s property it can be rewritten and we can see that for t ∈ [0, 1], almost surely,

lim sup
h→0+

|B(t+ h)−B(t)|√
2h log(log(1/h))

= 1.

This abruptly contradicts the following result (note the absence of the iterated logarithm)

Theorem 1.9 (Theorem 10.1 in [MP10]). Almost surely, we have

max
0≤t≤1

lim sup
h→0+

|B(t+ h)−B(t)|√
2h log(1/h)

= 1.

What Theorem 1.9 tells us is that the maximum change a Brownian motion can experience,
when t ∈ [0, 1], is of the order of

√
log. This is faster than what Law of the iterated logarithm

indicates, which states that for each t ∈ [0, 1], the rate of change is of the order of
√
log log.

This makes such t ∈ [0, 1] an exceptional time. To explore how frequent these exceptional times
are, we introduce a spectrum of exceptional points. Given a > 0, we will call a time t ∈ [0, 1]
an a-fast time if

lim sup
h→0

|B(t+ h)−B(t)|√
2h log(1/h)

≥ a

The proof of Theorem 1.9 in [MP10] shows that the set of fast times forms a countable
intersection of non-countable open sets in [0, 1], making them dense and non-countable. Addi-
tionally, according to the law of the iterated logarithm, this set has Lebesgue measure zero. For
these reasons, the Hausdorff dimension emerges as the appropriate tool to measure the quantity
of a-fast times.

Theorem 1.10 (Orey and Taylor 1974). Suppose (Bt)t≥0 is a Brownian motion. The, for
every a ∈ [0, 1], we have almost surely,

dimH

({
t ∈ [0, 1] : lim sup

h→0+

|B(t+ h)−B(t)|√
2h log(1/h)

≥ a

})
= 1− a2.

This result allows us to understand how the Hausdorff dimension can be used to quantify
the rarity and structure of these exceptional points in the one-dimensional context.
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1.3.3 Extremes Values in Dimension 2

The thick points of a GFF Φ are specific points where Φ reaches exceptionally high or low
values. In this section, we will focus on understanding the nature of these points within the
context of the GFF. This analysis is crucial as it will provide us with fundamental techniques
and strategies, which will be essential for understanding the thick points in the context of the
pGFF.

Since Φ cannot be defined pointwise, this set must be determined through regularization.
We denote by µx,ε the uniform measure over ∂B(x, ε), that is,∫

f(y)µx,ε(dy) = E[f(BτB(x,ε)
)], (1.6)

where f ∈ C(D) and τB(X,ε) corresponds to the first moment when a Brownian motion launched
from x reaches the boundary of the ball B(x, ε).

For a fixed x ∈ D and ε ≥ 0, we define the circle average process as F (x, ε) = ⟨Φ, µx,ε⟩. This
process is particularly interesting because, as demonstrated in [HMP10, Proposition 2.1], there
exists a version of it such that, with probability one, for each 0 < γ < 1/2 and δ, ξ > 0, there
is a constant M =M(γ, δ, ξ) such that

|F (x, ε)− F (y, ε′)| ≤M log(1/ε)ξ
∥(x, ε)− (y, ε)∥

εγ+δ

γ

,

In the rest of the paper, we will always consider a GFF that complies with this version of
circular mean.

Moreover, we can define the process (Φt(x))t≥0 as

Φt(x) = F (x, e−t),

which is shown in [HMP10] to describe a one-dimensional Brownian motion.

Remark. Usually, in the literature, the process (Φt(x))t≥0 is defined as Φt(x) =
√
2πF (x, e−t).

In our case, by defining the product of the space H1
0 as in 1.1, the constant

√
2π is implicitly

included within this definition.

In particular, it almost surely holds that

lim
ε→0

F (x, ε)

log(1/ε)
= lim

t→∞

Φt(x)

t
= 0. (1.7)

However, this does not rule out the possibility that there exist exceptional points for which this
limit is different from zero. These points are called thick points of Φ. Therefore, a natural
definition that arises for γ > 0 is

Definition 1.9 (Thick Points for the GFF). Let x ∈ D be a fixed point and Φ a GFF. We
will define the set of γ-thick points of Φ as

T (γ) =

{
x ∈ D : lim sup

ε→0

F (x, ε)

log(1/ε)
= γ

}
.

An equivalent definition can be obtained using the equality shown in 1.7. With it, the set
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is defined by

T (γ) =

{
x ∈ D : lim sup

t→∞

Φt(x)

t
= γ

}
.

In Lemma 3.1 of [HMP10], they calculate the upper bound of the Hausdorff dimension of
the set defined above. This result is expressed by the following property

Proposition 1.11 (Upper bound of the thick points of the GFF). If 0 ≤ γ ≤ 2, then almost
surely dimH(T (γ)) ≤ 2− γ2/2. If γ > 2, then T (γ) is a.s. empty.

The proof of this property is very similar to that of Property 4.5, which we will demonstrate
in Section 4.4. Thus, we decided not to write this proof here but ask the reader to look at that
proof instead.

1.4 Mod-ϕ Convergence

The notion of mod-ϕ convergence was initially introduced in [JKN09] in the context of mod-
Gaussian convergence. Later, [DKN11] extended this concept to include other types of conver-
gence within the general framework of mod-ϕ convergence.

The core element of this theory lies in the natural renormalization of the characteristic
function of random variables that do not converge in distribution, instead of renormalizing the
variables themselves. This strategy allows the sequence of characteristic functions to converge
to a non-trivial limit function, facilitating the analysis of situations where classical convergence
fails.

In this work, we follow the definition of mod-ϕ convergence proposed in [FMN16], specifically
adapting it to the Gaussian case. This adjustment was crucial for deepening the analysis of Non-
Gaussian Multiplicative Chaos. Mod-ϕ convergence enabled us to apply proper renormalization
to the moment generating function, which facilitated control over this function and, in turn,
the study of extreme field fluctuations in this context.

The objective of this section is to formally present the definition of mod-ϕ convergence in
the Gaussian case and demonstrate how this notion influences the behavior of the distribution’s
tails.

Definition 1.10 (Mod-G Convergence). Let (Xk)k∈N be a sequence of real-valued random
variables, and let us denote by φk(z) = E[ezXk ] their moment generating functions, which
we assume exist in a interval (c, d) ⊆ R. Suppose for all z ∈ (c, d) the following convergence
holds as k → ∞,

φk(z)e
−tk z2/2 → ψ(z) (1.8)

where (tk)k∈N is some sequence going to +∞ and ψ is an analytic function. We then say
that (Xk)k∈N converges mod-G in (c, d), with parameters (tk)k∈N and limiting function ψ.

In Theorem 4.3 of [FMN16], the rate of convergence of the tails is shown for the general case
of mod-ϕ convergence. Applied to the case where the convergence is Gaussian, this theorem is
expressed as follows:
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Theorem 1.12. Take a sequence (Xk)k∈N that converges mod-G on a interval (c, d). Then,
for x ∈ (c, d),

P(Xk ≥ tkx) =
exp(−tk · x2/2)

x
√
2πtk

ψ(x)(1 + o(1))

Remark. It is important to highlight that, to demonstrate the mod-G convergence of the circle
average of the pGFF, a result presented in Section 4.4, it was necessary to use the Fourier basis,
defined in 1.13. However, it is not ruled out that, by using another type of basis, one could
conclude a mod-ϕ convergence that is not necessarily Gaussian.

1.5 Strongly Sub-Gaussianity

A random variable is considered strongly sub-Gaussian when its tails exhibit a sharper decay
than those of a Gaussian distribution. In other words, the tails of a sub-Gaussian variable
are bounded by those of a Gaussian distribution, implying stronger concentration around its
mean. This type of variable is fundamental to our work, as it forms one of the key assumptions
regarding the variables used to construct the two-dimensional pGFF. Therefore, in this section,
we will present its formal definition and explore its basic properties.

We define Strongly sub-Gaussian variables as

Definition 1.11 (Strongly Subgaussian Random Variable). Let X be a centered random
variable with σ2 = Var(X). X is said strongly subgaussian if

∀t ∈ R, E[etX ] ≤ eσ
2t2/2. (1.9)

This characteristic influences other aspects of the variable, such as the tail decay or the
boundedness of the exponential of its second moment. For this reason, we present the following
proposition.

Proposition 1.13. Let X be a centered random variable with σ2 = V ar(X). Each statement
bellow implies the next

(1) Laplace Transform Condition: X satisfies the definition 1.11, that is, for all
t ∈ R, E[etX ] ≤ eσ

2t2/2.

(2) Subgaussian Tail Estimate: For all λ > 0, P(|X| ≥ λ) ≤ 2 exp(− λ2

2σ2 )

(3) Moment Condition: For any p ≥ 1, exists C(p) such that E[X2p] ≤ C(p) σ2p.

(4) Orlicz Condition: Exists a < 4 such that E[exp(aX2

σ2 )] <∞.

Proof: Like is usual, we will proof implications downward until the last implies the first.
(1) ⇒ (2) : First, we set that, for all λ > 0,

P(|X| ≥ λ) = P(X ≥ λ) + P(−X ≤ λ).
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Then, by the Markov’s Inequality and for a t > 0,

P(X ≥ λ) = P(etX ≥ etλ) ≤ E[etx] · e−tλ ≤ exp

(
σ2t2

2
− tλ

)
≤ exp

(
− λ2

2s2

)
,

where in the last inequality, we take infs∈R
σ2t2

2
− tλ = λ

s2
. The idea is the same for P(−X ≤ λ)

and we conclude.

(2) ⇒ (3) : We have that

E[X2p] =

∫ ∞

0

P(X2p ≥ t) dt =

∫ ∞

0

P(|X| ≥ t1/2p) dt ≤ 2

∫ ∞

0

e−t1/p/(2σ2) dt.

In this part, we applied the change of variable u = t1/p/(2σ2) and the calculus continuing with

E[X2p] = 2pσ2

∫ ∞

0

(2σ2u)p−1e−u du = 2ppσ2p

∫ ∞

0

up−1e−u du = 2ppp!σ2p ≤ 4pp!σ2p.

Taking the C(p) = 4pp! we conclude.
(3) ⇒ (4) : By the definition of the exponential in power series

E
[
exp

(
a
X2

σ2

)]
= E

[∑
k≥0

ak
X2k

σ2k

1

k!

]
=
∑
k≥0

ak

k!

E[X2k]

σ2k
≤
∑
k≥0

(a4)k <∞

□
A key property of strongly subgaussian variables is the stated in [BCG23, Corollary 2.3]

which tells us about the necessary condition for an infinite sum of strongly subgaussian variables
to be subgaussian

Proposition 1.14. If
∑

k≥1 V ar(Xk) <∞ for independent, strictly subgaussian summands
Xk, then the series X =

∑
k≥1Xk represents a strictly subgaussian random variable.

After exploring the definition and basic properties of strongly sub-Gaussian variables, it is
useful to consider some examples that allow for a new construction of the pGFF. These examples
are detailed in [BCG23].

The first example, although basic, is the standard normal variable. It is evident from its
definition that this variable is strongly sub-Gaussian. A somewhat more interesting example,
used in our simulations, is the symmetric Bernoulli variable with support in {−1, 1}. This
variable satisfies E[etX ] = cosh(t). A final example, slightly more elaborate, is a variable X
whose density p(x) is given by p(x) = x2φ(x), where φ(x) = 1√

2π
e−x2/2. In this case, E[X] = 0,

E[X2] = 3 and

E[etX ] = (1 + t2)et
2/2 ≤ e3t

2/2.

Remark. In this context, there is another type of variable worth highlighting: subgaussian
variables. The difference between these and strongly subgaussian variables lies in the fact that
the former satisfy Definition 1.9 with a constant c > 0, instead of σ2 = Var(X).
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1.6 Basis

In Section 1.1.1, we demonstrated how the GFF can be constructed using a basis of a separable
Hilbert space, which inspired the creation of the pGFF. In this chapter, we will present the basis
of the space H1

0 (D) that we will use in constructing our object of study. These basis are crucial
because the correct choice not only facilitates the construction of the pGFF but also allows for
a more efficient verification of the key properties of the object, thereby optimizing our analysis.

We will begin by defining the basis that we will primarily use when working with the object
in a one temporal dimension, which we will refer to as the Lévy Basis. We will analyze its
indexing form and highlight its most important properties. Subsequently, we will introduce the
Fourier basis that will be predominantly used in the two-dimensional context and then present
its most relevant properties.

1.6.1 Levy Basis

The basis used in the Levy’s construction for the construction of Brownian Motion, explained
in [MP10] and [Gal18], is indexed through the dyadic sets defined as D = ∪n∈NDn, with

Dn =
{
k · 2−n : k ∈ {0, . . . , 2n}

}
.

That is, an element d ∈ D is of the form d = k · 2−n.
In this work, we will change the indexing of the basis and use the set {(n,m) ∈ N × In},

with In = {1, . . . 2n}. Additionally, through this enumeration, we define the Levy basis as

Definition 1.12 (Levy’s Basis). We will call Levy’s basis the family of functions {ℓn,m}n∈N,m∈In
defined by

ℓn,m(x) =


2π · 2n/2 · (x− (2m− 2) · 2−(n+1)), if x ∈ [(2m− 2)2−(n+1), (2m− 1)2−(n+1))

2π · −2n/2 · (x− 2m · 2−(n+1)), if x ∈ [(2m− 1)2−(n+1), 2m · 2−(n+1))

0, else.

Proposition 1.15. This family is an orthonormal basis of H1
0 ([0, 1]).

Proof: We have that

∥ℓn,m∥∇ =
1

2π
⟨ℓn,m, ℓn,m⟩∇ = (2π)−1∥ℓ′n,m∥2

Since,

ℓ′n,m(x) =

{
2π · 2n/2, if x ∈ [(2m− 2)2−(n+1), (2m− 1)2−(n+1))

2π · −2n/2, if x ∈ [(2m− 1)2−(n+1), 2m · 2−(n+1))

Then

∥ℓ′n,m∥22 =
∫
ℓ′n,m(x)

2 dx = 4π2 · 2n · 2−(n+1) + 4π2 · 2n · 2−(n+1) = 4π2

So we can conclude that ∥ℓn,m∥∇ = 1 □
Graphically, the elements of the aforementioned family look like this
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Figure 1.1: Simulations of Levy Basis when n = 0 and m = 1 in the figure up-left. In figure
up-right n = 1 and m ∈ {(1, 2}. In the figure below n = 2 and m ∈ {1, 2, 3, 4}

1.6.2 Fourier Basis

Definition 1.13 (Fourier’s Basis). We will call Fourier basis the family of functions {fn,m}m,n∈N
defined for x = (x1, x2) ∈ [0, 1]2 by

fm,n(x) =
2 sin(2πnx1) sin(2πmx2)√

n2 +m2

Proposition 1.16. This family is an orthonormal basis of H1
0 ([0, 1]

2).

Proof: We have that

∥∇fn,m∥22 =
∫ 1

0

∫ 1

0

∥∇fn,m(x1, x2)∥22 dx1 dx2 = 4π2

Hence,

∥fn,m∥∇ =
1

2π
∥∇fn,m∥2 = 1

□

1.7 Gaussian Multiplicative Chaos

The Theory of Gaussian Multiplicative Chaos (GMC) was initially introduced by Kahane in 1985
in his article [Kah85]. In simple words, this theory allows for the study of mass concentration
phenomena and singularities in physical and mathematical systems modeled by Gaussian fields.
Specifically, GMC is interpreted as a measure that captures the extreme fluctuations of the
GFF by applying an exponential transformation to the field. Furthermore, this theory is used
to calculate the lower bound of the dimension of the thick points of the GFF.

En forma general, el Gaussian Multiplicative Chaos busca estudiar medidas sobre un dominio
D ⊆ Rd de la forma

M(dz) = exp(γΦ(x)− E[Φ(x)2])σ(dz), (1.10)
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donde Φ es una Gaussian free field, γ > 0 es un parámetro y σ es una medida de referencia.
Debido a la complejidad de evaluar el GFF en un punto, la definición de la medida en 1.10 no

resulta inmediatamente clara. Para abordar esta dificultad, se introduce un kernel regularizador
θx,ε, con x ∈ D y ε > 0. Bajo este enfoque, al definir Φε(x) = ⟨Φ, θx,ε⟩, resulta razonable estudiar
la convergencia de la medida descrita en 1.10 a través del análisis de la medida

Mε(dz) = exp(γΦε(x)− E[Φε(x)
2])σ(dz),

En el caso de la Gravedad Cuántica de Liouville bidimensional, se toma la medida de Lebesgue
como σ, y la elección natural para el kernel θ es la distribución uniforme en el ćırculo unitario.
En dimensiones más generales, como se muestra en [Ber17], se analiza la convergencia de esta
construcción, demostrando que converge a la medida definida en 1.10 cuando γ <

√
2d. Además,

se establece que esta convergencia es independiente del kernel de regularización utilizado. Este
resultado se formaliza en el siguiente teorema

Theorem 1.17. Assume that γ < 2. Then Mε(S) converges in probability and in L1

to a limit M(S). Furthermore, the random variable M(S) does not depend on the choice
of the regularising kernel σ subject to the above assumptions. Additionally, M defines a
Borel measure on D, and Mε converges in probability towards M for the topology of weak
convergence of measures on D.

Este resultado es de gran relevancia, ya que en el contexto de la Gravedad Cuántica de Liouville
bidimensional, Berestycki y Powell demuestran en [BP24] que, en un dominio acotado, cualquier
punto z ∈ D muestreado según la medida 1.10 es un γ-thick point. De manera más formal, este
resultado puede entenderse en el siguiente teorema

Theorem 1.18. Suppose D is bounded. Let z be a point sampled according to the Liouville
measure M. Then, almost surely,

lim sup
ε→0

Φε(x)

log(1/ε)
= γ. (1.11)
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Chapter 2

The pseudo Gaussian Free Field

In this section, we will introduce the abstract object we are working with and check that its
definition is coherent. We will also present its main properties, regardless of the dimension
in which it is defined. We will begin by introducing its definition and then prove that it is
independent of the basis in which it is formulated. Next, we will demonstrate that the object
we are studying belongs to the distribution space H

d/2−1−ε
0 , for ε > 0. Finally, we will outline

the main property of the object, highlighting its ability to represent log-correlated fields in the
two-dimensional case.

Definition 2.1 (Pseudo Gaussian Free Field). Let (αk)k∈N be random variables with the
correlation structure E[αk] = 0 and E[αnαm] = 1n=m and (ek)k∈N is an orthonormal basis
of H1

0 (D). We define the pGFF as the following limit in L2(Ω)

Υ
.
= lim

N→∞

N∑
k=1

αkek =
∑
k≥1

αkek. (2.1)

To make sure that the above definition is consistent we must prove that it does not depend
on the base from which it is defined. That is why we present the following proposition:

Proposition 2.1. Let (ek)k∈N and (ẽk)n∈N be two bases of the space H1
0 (D). Let Υ be

a pGFF defined from the variables (αk)k∈N and the base (ek)k∈N. Then, there exists a
modification of Υ, Υ̃ defined from (ẽk)n∈N. By modification we mean that for any f ∈ C∞

0 ,
it holds almost surely that ⟨Υ, f⟩ = ⟨Υ̃, f⟩.

Proof: Consider the bases (ek)k∈N and (ẽk)n∈N of the space H1
0 (D), and let Υ be the pGFF

defined from the variables (αk)k∈N and the first base. Now define the modification Υ̃, which is
expressed as

Υ =
∑
k≥0

α̃kẽk, (2.2)

where αk =
∑

n αn⟨ek, ẽn⟩.
First, we will prove that Υ̃ is a pGFF and then show that it is a modification. To establish

the former, it is sufficient to verify that E[α̃kα̃j] = 1k=j, as they clearly satisfy the expected
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value condition. Thus,

E[α̃kα̃j] = E

[∑
n≥0

αn⟨ek, ẽn⟩
∑
m≥0

αm⟨ej, ẽm⟩

]
=
∑
n≥0

∑
m≥0

⟨ek, ẽn⟩⟨ej, ẽm⟩E[αnαm] = ⟨ek, ej⟩ = 1k=j.

(2.3)
Finally, let us show that Υ̃ is a modification of Υ. Let f ∈ C∞

0 (D), then

⟨Υ, f⟩ =
∑
k≥0

αk⟨ek, f⟩ =
∑
k≥0

∑
n≥0

αk⟨ek, f⟩⟨ẽn, f⟩ =
∑
n≥0

∑
k≥0

αk⟨ek, f⟩⟨ẽn, f⟩ =
∑
n≥0

α̃n⟨ẽn, f⟩ = ⟨Υ̃, f⟩.

(2.4)
Thus, we conclude that Υ̃ is a modification, and hence, the property is satisfied. □ This last
proposition tells us that the definition of pGFF is independent of the base space being used to
construct it. This allows us to conclude that, like Proposition 1.5

Proposition 2.2. For ε > 0 and D ⊆ Rd the sum described in (2.1) a.s. belongs to the

space H
d/2−1−ε
0 .

The proof of this property is identical to the one presented in Proposition 1.5. This makes
it clear that the regularity of the GFF is not an intrinsic property of the Gaussianity of the
variables with which it is defined.

The key proposition of the work and the one that allowed us to deepen the study of correlated
log fields is as follows

Proposition 2.3. Let (Ψf )f∈C∞
0

be a collection of centred random variables such that

E [⟨Ψ, f⟩⟨Ψ, g⟩] =
∫∫

D×D

f(x)GD(x, y)g(y)dxdy.

There exist a pseudo GFF Ψ̃ that is a modification of Ψ.

The proof of the previous property relies on the following steps: we start with a collection of
centered variables (Ψf )f∈C∞

0
that satisfy the required property and define a modification of it.

We then show that this modification constitutes a pGFF, and finally, we confirm that it is
indeed a modification.

Proof: Given a collection of variables (Ψf )f∈C∞
0

such that

E [⟨Ψ, f⟩⟨Ψ, g⟩] =
∫∫

D×D

f(x)GD(x, y)g(y)dxdy,

we define the variables αk = ⟨Ψ, ek⟩, where (ek)k∈N is an orthonormal basis of the space H1
0 (D).

From these, consider the modification given by

Ψ̃ =
∑
k≥0

αkek.

To see that ψ̃ is a pGFF let us prove that the variables (αk)k∈N from which it is defined fulfill
the required correlation structure. Trivially one has that they are centered since (Ψf )f∈C∞

0
is
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centered. Then,

E[αnαm] = E[⟨Ψ, en⟩⟨Ψ, em⟩] = ⟨en, (−∆)−1em⟩ = ⟨en, em⟩∇ = 1n=m.

Thus, we conclude that Ψ̃ is a PGFF.
Let us now see that this is indeed a modification. To do so, let us show that E[(⟨Ψ, f⟩ −

⟨Ψ̃, f⟩)2] = 0 for all f ∈ C∞
0 . In effect, we have that

E[(⟨Ψ, f⟩ − ⟨Ψ̃, f⟩)2] = E[⟨Ψ, f⟩2]− 2E[⟨Ψ, f⟩⟨Ψ̃, f⟩] + E[⟨Ψ̃, f⟩2].

If we analyze each of the terms in the previous expression, we will conclude that the expec-
tations of each correspond to

∑
k≥0⟨f, ek⟩2, given that E[⟨Ψ, ek⟩] = E[⟨Ψ̃, ek⟩]. Thus, the terms

in the previous expression cancel out, thereby obtaining the required result. □
To conclude the section, we could emphasize the relevance of the recent propositions with

the following remark

Remark. It is crucial to highlight the importance of the recently presented propositions, as
they justify and support the use of the pGFF as a tool to explore the limits of universality in
log-correlated fields. First, Proposition 2.1 grants us the flexibility to work with any chosen
basis, allowing the properties derived from one specific basis to be generalized, thus endowing
the pGFF with greater versatility. Furthermore, Proposition 2.3 validates the use of the pGFF
in the study of log-correlated fields by demonstrating that its correlations are determined by the
Green’s function. As proven in Section 1.2, in two dimensions, this function has a logarithmic
form, which makes the pGFF a log-correlated field in that dimension.
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Chapter 3

Pseudo GFF in Dimension 1

The main objective of this thesis is to analyze the behavior of the thick points of log-correlated
fields. In particular, we will study these points in the pseudo Gaussian free field. To better
understand their behavior, we begin by examining a simpler case: the pseudo Brownian Motion
(pBM). The latter, as its name suggests, is a particular case of the pGFF in a one-dimensional
domain.

The goal of this section is, first, to ensure that the pBM is well-defined and remains con-
tinuous when the random variables in its construction are slightly changed with respect to the
Brownian motion. Then, we will study its modulus of continuity to understand whether or not
this is a property of universality.

We will begin by proving that our object can be properly defined as a continuous function.
In Section 3.2, we will demonstrate that, under the assumption that the variables (αk)k∈N
have a finite moment γ > 2, it is possible to establish an upper bound for the modulus of
continuity. Then, in Section 3.3, we will show that, by adding the assumption of independence
for the variables (αk)k∈N and assuming reasonable conditions, a lower bound for the modulus
of continuity can be obtained. Finally, in Section 3.4, we will calculate the upper bound of the
law of the iterated logarithm for the pBM.

3.1 Continuity

In this section, we will demonstrate that, under certain hypotheses on the variables αk, the
pseudo Brownian motion is well-defined in [0, 1] and, furthermore, is continuous.

From this point on, and only in this section, we will enumerate the variables (αk)k∈N using
the indexing (n,m) ∈ N× In, which was used to enumerate the Levy basis presented in section
1.6.

Proposition 3.1 (The pBM can be defined as a continuous function). Let X be a pBM
constructed from the Lévy base and defined with random variables (αn,m)n∈N,m∈In such that
there exists γ > 2 with supn,m E[αγ

n,m] < ∞. Then, almost surely, X is well-defined and
continuous.

Proof: Take γ > 2 such that supn,m E[aγn,m] <∞. Then, using Markov, inequality for c > 0,

P(|αn,m| ≥ 2nc/2) ≤ E[|αn,m|γ] · 2−ncγ/2.
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Now, the series∑
n≥0

P({∃m ∈ In : |αn,m| ≥ 2nc/2}) ≤
∑
n≥0

∑
m∈In

P(|αn,m| ≥ 2nc/2) ≤
∑
n≥0

E[|αn,m|γ] 2n · 2−ncγ/2.

Which converges as soon as c > 2/γ. For that type of c, by Borel-Cantelli lemma there exists
a random n such that for all n > n and m ∈ In we have |αn,m| < 2nc/2. Then, for t ∈ [0, 1] and
by the definition of the pBM,

|X(t)| ≤
∞∑
n=0

2n∑
m=1

|αn,m| · |ℓn,m(t)| ≤
∞∑
n=0

2nc/2
2n∑

m=1

|ℓn,m(t)|,

By how the Lévy basis is defined, with n fixed, the terms of ℓn,m(t) will all be null except
for a one value of m ∈ In, which depends on t. For this reason,

|X(t)| ≤
∞∑
n=0

2nc/2
2n∑

m=1

|ℓn,m(t)| =
∞∑
n=0

2nc/2 · |ℓn,m(t)(t)| ≤
∞∑
n=0

2nc/2 2−(n+2)/2 (3.1)

Which converges as soon as c < 1
It remains to verify that it is continuous. For the latter, let us proof is a uniform limit of

continuous functions. Le us denote the partial sum as XN by the form

|XN(t)| =
N∑

n=0

2n∑
m=1

|αn,m| · |ℓn,m(t)|. (3.2)

Then, for the same arguments presented before

∥X −XN∥∞ ≤ sup
t∈[0,1]

∞∑
n=N+1

2n∑
m=1

|αn,m| · |ℓn,m(t)| ≤
∞∑

n=N+1

2nc/2 2−(n+2)/2 (3.3)

which tends to 0 as N → ∞ is increasing. With this we conclude that the pBM is a well-defined
and continuous function. □

3.2 Upper Bound on the Modulus of Continuity

An important microscopic property of Brownian motion is that its modulus of continuity is not
random and can be computed.

Theorem 3.2 (Theorem 1.14 in [MP10]). Let B be a Brownian Motion. Then, almost
surely,

lim sup
h↘0

sup
0≤t≤1−h

|B(t+ h)−B(t)|√
2h log(1/h)

= 1.

In this section, we will focus on establishing an upper bound for the modulus of continuity of the
pBM. This analysis is essential for two reasons. First, it will allow us to determine whether such
a bound is a universal property of pBM or if it depends on its specific construction. Secondly,
we will see that this same bound will be key for the circle average process described in Section
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1.3.3, when applied in the context of the pGFF. This will provide us with a solid foundation
for better understanding the regularity of this process in more general cases.

To begin the analysis, let’s start by presenting the following property

Proposition 3.3 (Upper Bound). Let X be a pBM constructed from the Lévy base and
(αn,m)n∈N,m∈In such that supn,m E[αγ

n,m] <∞ for some γ > 2. Then, almost surely,

lim sup
h↘0

sup
0≤t≤1−h

|X(t+ h)−X(t)|
h1/2−1/γ

≤ 1.

Proof: Let us take γ > 2 such that supn,mE[α
γ
n,m] <∞. By the definition of the pBM from

the Levy Basis, we can easily check that

∥X ′
n,m∥∞ ≤ 2∥Xn,m∥∞

2−n
≤ C 2n(c+1)/2, (3.4)

where C > 0 is a constant and c ∈ (2/γ, 1). Now, for each t, t + h ∈ [0, 1], by the definition of
the Lévy base

|X(t+ h)−X(t)| = |
∑
n≥0

2n∑
m=1

αn,m(ℓn,m(t+ h)− ℓn,m(t))|

= |
∑
n≥0

αn,m(t,h)(ℓn,m(t,h)(t+ h)− ℓn,m(t,h)(t))|

Now, splitting the sum and using the average value theorem

|X(t+ h)−X(t)| ≤
j∑

n=0

|αn,m(t,h)| · |(ℓn,m(t,h)(t+ h)− ℓn,m(t,h)(t))|

+
∞∑

n=j+1

|αn,m(t,h)| · |(ℓn,m(t,h)(t+ h)− ℓn,m(t,h)(t))|

≤ h

j∑
n=0

∥X ′
n,m∥∞ + 2

∞∑
n=j+1

∥Xn,m∥∞

Hence, using (3.4), for j > n,

|X(t+ h)−X(t)| ≤ h

n∑
n=0

∥X ′
n,m∥∞ + C1 h

j∑
n=n

2n(c+1)/2 + C2

∞∑
n=j

2n(c−1)/2,

where j > n is chosen such that h(γ−2)/(c−1) ≤ 2j ≤ h−(γ+2)/(γc+γ).
Now, we prove that each term of the sum above can be upper bounded by φ(h) = h1/2−(1+ε)/γ

. The first term can easily be upper bounded by taking h ≪ φ(h). For the second term, we
have that

C1 h

j∑
n=n

2n(c+1)/2 ≤ C̃1 h 2j(c+1)/2 ≤ C̃1 h h
−(γ+2)/(γc+γ) = C̃ h1/2−1/γ, (3.5)
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and for the last one, we can compute

C2

∞∑
k=j

2n(c−1)/2 ≤ C̃2 2
j(c−1)/2 ≤ h(γ−2)(γc−γ)·(c−1)/2 = C̃2 h

1/2−1/γ.

With this computation, we conclude that for each t and t + h ∈ [0, 1], |X(t + h)−X(t)| is
less than or equal to h1/2−1/γ multiplied by a constant that not depends of γ > 2. □

Remark. In the case that the variables (αn,m)n∈N,m∈In are bounded by a constant a > 0, we
will have that

∥X ′
n,m∥∞ ≤ 2∥Xn,m∥∞

2−n
≤ a 2n/2.

Now, following the same calculation we did before and taking j > n,

|Xk(t+ h)−Xk(t)| ≤ h
n∑

n=1

∥X ′
k∥∞ + C1

j∑
n=n

2n/2 + C2

∞∑
n=j

2−n/2.

Finally, taking j > k tal que h−1 ≤ 2j ≤ h−1/3, it follows that

|Xn,m(t+ h)−Xn,m(t)| ≤
√
h.

With the calculation just performed, we can negatively answer the question posed at the
beginning of the section. The modulus of continuity is not a universal property of pBM. This
is because it clearly depends on the moments of the variables with which it is defined.

3.3 Lower Bound on the Modulus of Continuity

In this section, we aim to derive a lower bound that complements the result obtained in the
previous section. The order of this new bound matches that of the upper bound, although
the associated constant differs significantly. Unlike the upper bound, this new bound explicitly
depends on the moments of the random variables αk. It is worth noting that, to reach this
result, it was necessary to add the assumption of independence for the variables (αn,m)n∈N,m∈In
and a slight condition on their tails.

Proposition 3.4 (Lower Bound). Let X be a pBM constructed from the Levy base and
independent random variables (αn,m)n∈N,m∈In such that

P(|αn,m| ≤ 2n/γ+1/γ−3/2) > 0. (3.6)

Also,
∞∑
n=1

P(En) = ∞, (3.7)
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where En = {∃m ∈ In : |αn,m| ≥ 2nc/2}, for c ∈ ( 2
γ
, 1). Then, almost surely,

lim sup
h↘0

sup
0≤t≤1−h

|X(t+ h)−X(t)|
(2−1/2−1/γ − 2−1)(h1/2−1/γ)

≥ 1.

The proof is based on the following strategy: first, we will demonstrate that if the algorithm
presented below concludes, the desired lower bound is obtained. Subsequently, we will prove
that the algorithm indeed terminates.

Proof: For γ > 2 let us define the function φ(h) = h1/2−1/γ, with h > 0.
Starting whit a n ∈ N, let us apply the following algorithm

For m in range 2n:
t = (2m− 1)2−n

h = 2−(n+1)

If |XN−1(t+ h)−XN−1(t)| ≥ φ(h)/2:
If |αn,m| · 2−(n+2)/2 ≤ φ(h)/4:

Return (t, h)
Elif |αn,m| ≥ 2nc/2:

Return (t, h)
n = n+ 1
go to line (1)

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)

Let us first prove that if for any initial n ∈ N the algorithm finishes in finite steps then, we
obtain the bound we are looking for. Fix n ∈ N and assume that the algorithm returns (t, h).
It means that we either enter in the line (6) or the line (8). In the first case, it indicates that
the conditions (4) and (5) are met. Then,

|Xn(t+ h)−Xn(t)| = |Xn−1(t+ h)−Xn−1(t) + αn,m(t) · ℓn,m(t)(t)− αn,m(t,h) · ℓn,m(t,h)(t+ h)|
= |Xn−1(t+ h)−Xn−1(t)− αn,m(t,h) · 2−(n+2)/2|,

where the last equality is due to the choice of t and h that we made in the algorithm. Then,

|Xn(t+ h)−Xn(t)| ≥ |Xn−1(t+ h)−Xn−1(t)| − |αn,m(t)| · 2−(n+2)/2

≥ φ(h)

2
− φ(h)

4

≥ φ(h)

2
.

On the other hand, if it reaches the line (8), it means that the condition (4) is not met and

29



the condition (7) is met. Then,

|Xn(t+ h)−Xn(h)| = |Xn−1(t+ h)−Xn−1(t)− αn,m(t,h) · 2−(n+2)/2|
≥ |αn,m| · 2−(n+2)/2 − |Xn−1(t+ h)−Xn−1(t)|

≥ φ(h) · 2−1/2−1/γ − φ(h)

2
≥ φ(h)(2−1/2−1/γ − 2−1)

And we can conclude that of the algorithm finishes we obtain the bound we are looking for.
Now, it remains to prove that the algorithm finishes in finite time for any n ∈ N. To prove

this, we will separate into two disjoint events that will help us in the demonstration. The first
event is when (4) occurs finitely many times, and the second is when it occurs infinitely many
times. If we are in the first scenario, note that hypothesis (3.4) of property (3.4) coincides with
the hypothesis of the divergent Borel-Cantelli Lemma. This latter result gives us that condition
(7) occurs infinitely many times. On the other hand, if (4) occurs finitely many times, then (4)1

occurs infinitely many times. Thus, eventually, when (4) and (7) coincide, the algorithm will
terminate.

In the second scenario, let’s define the family of stopping times {τk}k∈N as

τ1 = inf{k > 0 : (4)k happens}
τ2 = inf{k > τ1 : (4)k happens}
...

τM = inf{k > τM−1 : (4)k happens}

which seeks to count the number of times the condition (4) is fulfilled. Then,

P(A.D.E) = P(A.D.E, τM <∞) + P(A.D.E, τM = ∞)

= P(A.D.E, τM <∞) = P(A.D.E|τM <∞) P(τM <∞).

where P(A.D.E) is the probability that the Algorithm Does not End. Now, note that P(A.D.E |
τM < ∞) is bounded by the probability that a random variable G ∼ Geo(p) is greater than
M ∈ N, where p is the probability that condition (5) is met. With this, we obtain that

P(A.D.E) ≤ P(Geo(p) > M) ≤ (1− p)M

and by the hypothesis (3.7) we conclude that this probability tends to 0 whenM is large enough.
□

3.4 Law of the Iterated Logarithm

The law of the iterated logarithm describes the magnitude of fluctuations in the trajectories
of stochastic processes, offering a precise description of their extreme behavior. In the case of
standard Brownian motion, [MP10, Theorem 5.1] establishes the following fundamental prop-

1We will use the overline to refer to the non-occurrence of the condition.
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erty:

Theorem 3.5 (The law of the iterated logarithm). Let (Bt)t≥0 be a standard Brownian
motion. Then, almost surely,

lim sup
t→0

B(t)√
2t log(log(t))

= 1.

In this section, we aim to replicate this idea, but only considering an upper bound, in the
case of pseudo Brownian Motion (pBM). This analysis is relevant for the study of thick points
in log-correlated fields, as explored in Section 4.3, where pBM plays a key role in describing
the behavior of the circle average process. Finding an accurate measure of the fluctuations of
this process is crucial for understanding its dynamics and establishing connections with log-
correlated fields.

Proposition 3.6. Let (Yt)t≥0 be a pseudo Brownian Motion defined like in Proposition 3.3.
Then, almost surely,

lim sup
h→0+

Yh
h1/2−1/γ

≤ 1.

Proof: Let us consider the pBM (Xt)t∈[0,1] and note that the process (tX1/t)t∈[0,1] describes
a pBM on [1,∞). Thus, we define the process (Yt)t∈[1,∞) as

Yt
.
= (tX1/t).

Then, the following holds:

lim sup
t→∞

Xt

f(t)
= lim sup

s→0+

sX1/s

f(1/s)s
.

On the other hand, from the calculation in Section 3.4, we have

lim
h→0+

sup
0≤s≤1−h

Ys+h − Ys
h1/2−1/γ

.

Fixing ω, there exists h0 = h0(ω) such that if h ∈ (0, h0), then

Ys+h − Ys
h1/2−1/γ

≤ 1, ∀s ∈ [0, 1− h].

In particular, taking s = 0,
Yh

h1/2−1/γ
≤ 1

and therefore,

lim sup
h→0+

Yh
h1/2−1/γ

≤ 1.

□

31



Chapter 4

Pseudo GFF in Dimension 2

In this section, we will conduct a detailed analysis of the central object of this thesis: the
pseudo Gaussian Free Field (pGFF) in two dimensions. As mentioned earlier, this field is a key
representative within the class of log-correlated fields in this dimensional context. Throughout
this section, we will explore how the pGFF allows us to examine the limits of the universality of
this class. In particular, we will focus on the study of the extreme values of these fields, known
as thick points, and their Hausdorff dimension.

We will begin in Section 4.1 by defining thick points in this new context and demonstrating
the regularity of the circle average process. In Section 4.2, we will prove that the circle average
process associated with the pGFF behaves like a pseudo Brownian Motion, which will allow
us to leverage the theory developed in Chapter 3. In Section 4.3, we will address the mod-ϕ
convergence of the pGFF, a fundamental property for understanding the behavior of our object
of study and essential for working with Non-Gaussian Multiplicative Chaos theory. Next, in
Section 4.4, we will calculate the upper bound of the Hausdorff dimension of the thick points.
Finally, in Section 4.5, we will study the Multiplicative Chaos Theory applied to the pGFF,
which will provide crucial tools for calculating the lower bound of the Hausdorff dimension of
the thick points, a result that will be demonstrated in Section 4.6.

4.1 Circle Average and pGFF

To study the thick points of the pGFF, it is essential to first formalize the concept of the
circle average process in this non-Gaussian context. In this section, we will define this process,
enabling us to precisely characterize the set of points under analysis. Additionally, we will
demonstrate the process’s inherent regularity, which is crucial for the subsequent examination
of thick points. Achieving this required introducing additional assumptions on the (αk)k∈N
variables. Specifically, these variables must not only be i.i.d. but also strongly sub-Gaussian, as
defined in 1.11. Therefore, from this point forward, we will always assume the (αk)k∈N variables
to be strongly sub-Gaussian.

Let us consider Γ a pGFF over a domain D ⊆ R2 and define the circle average as

Γε(x)
.
= ⟨Γ, µx,ε⟩ =

∑
k≥0

αkck, (4.1)

where ck(x) = ⟨ek, µx,ε⟩ and (ek)k∈N is the basis of the space in which we will work and specify
later. This notion applied to the new log-correlated model allows us to define the set of thick
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points as follows

Definition 4.1 (Thick Points for the pGFF). Take ε > 0 and Γ a pGFF. We will define
the set of γ-thick points of Γ as

T (γ) =

{
x ∈ D : lim sup

ε→0

Γε(x)

log(1/ε)
= γ

}
. (4.2)

Similarly, we also define T≥(γ) as the set of points where the aforementioned lim sup is
greater than or equal to a.

As described in [HMP10, Proposition 2.1] for the GFF , the circle average process of the
pGFF also satisfies some notion of regularity. This is best described by the following property

Proposition 4.1. Let us consider the family of random variables (αk)k∈N strictly subgaus-
sian and independent. Then, the circle average process Γ(z, r) possesses a modification
Γ̃(z, r) such that for every 0 < γ < 1/2 and δ, ξ > 0 there exists M =M(γ, δ, ξ) such that

|Γ̃(z, r)− Γ̃(w, s)| ≤M log(1/r)ξ
∥(z, r)− (w, s)∥γ

rγ+δ
, (4.3)

for all z, w ∈ D and r, s ∈ (0, 1] with 1/2 ≤ r/s ≤ 2.

To perform this proof, it suffices only to verify that the pGFF satisfies the conditions of the
[HMP10, Lemma C.1]. That is that for certain p, q > 0

E[|Γ(z, r)− Γ(w, s)|p] ≤ C

(
∥(z, r)− (w, s)∥

r ∧ s

)1+q+2

.

Proof: Let us consider Φ a GFF and Γ a pGFF and recall that it is satisfied that

E[|Γ(z, r)− Γ(w, s)|2] = E[|Φ(z, r)− Φ(w, s)|2]

Let’s take p = 2e, with e ∈ N. Then, since Γ is strongly sub-Gaussian,

E[|Γ(z, r)− Γ(w, s)|p] = E[|Γ(z, r)− Γ(w, s)|2e] = E[(|Φ(z, r)− Φ(w, s)|2)e].

Finally, since Φ satisfies the [HMP10, Lemma C.1] for arbitrarily large values of p, q with p/q
arbitrarily close to 1/2, it satisfies it for these values as well. □

It is important to mention that from now on we will always consider a pGFF Γ that satisfies
this regularity property.

4.2 pBM inside PGFF

In this section, we will delve deeper into the analysis of the circle average process of the pGFF.
Specifically, we will demonstrate that the pBM can naturally integrate into the circle average
process of a pGFF. Furthermore, we will prove that given a pBM (X)t≥0, there exists a pGFF
whose circle average process is represented by X. We will begin by constructing a semi-infinite
cylinder C ⊆ C from the unit ball in the complex plane. Next, we will show that the function
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space H1
0 (C) can be orthogonally decomposed into two subspaces, P and Q, whose definitions

we will detail later. Finally, we will demonstrate that the circle average of a pGFF is entirely
described by its projection onto the subspace P .

Let us take the complex unit disk of radius ε0 and denote it as D0 = {z ∈ C : ∥z∥ ≤ ε0}.
Then, if we denote z = εeiθ as a point in the disk, note that by applying the conformal
transformation φ(z) = ln(ε−1) + iθ to the entire disk, we transform it into an infinite cylinder.

φ

Let C denote the cylinder and r = ln(ε−1). Note that the function space H1
0 (C) can be

decomposed orthonormally into

P = {p ∈ H1
0 (C) : p(r, θ) is constant in θ}

Q = {q ∈ H1
0 (C) : ∀r > 0,

∫
q(r, θ)dθ = 0}

We will prove this condition in the following lemma:

Lemma 4.2. The function space H1
0 (C) can be decomposed orthonormally into P and Q.

Proof: First, let us prove that they are orthogonal subspaces. By density, we can take p ∈
P ∩ C∞

0 and q ∈ Q. Then,

⟨p, q⟩∇ =

∫
C
∂rp ∂rq drdθ +

∫
C
∂θp ∂θq drdθ

=

∫ ∞

0

∂rp(r, θ) ∂r

(∫ 2π

0

q(r, θ) dθ

)
dr

= 0

On the other hand, to verify that these spaces are a direct sum, consider q ⊥ P and p ∈ P .
Then,

⟨p, q⟩∇ = 0 ⇔
∫ ∞

0

∂rp(r, θ) ∂r

(∫ 2π

0

q(r, θ) dθ

)
dr = 0

⇔ ⟨p,
∫ 2π

0

q(·, θ) dθ⟩∇r = 0.

Finally, since the above equality holds for all p ∈ P , we conclude q ∈ Q and hence the sum. □
With this orthonormal decomposition, we can also decompose the pGFF into projections

onto the respective spaces, i.e., Γ = ΓP + ΓQ. Then, given the symmetries of the GFF,

⟨Γ, µz,e−r⟩ = ⟨ΓP , µz,r⟩+ ⟨ΓQ, µz,r⟩.
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However, by the very definition of the subspace Q, the second term in the above sum is zero,
so we obtain ⟨Γ, µz,e−r⟩ = ⟨ΓP , µz,r⟩.

On the other hand, it is easy to see that there is an isometry between the spaces P and
H1

0 (R+), so the projection onto the real axis of the basis of P will be a basis for H1
0 (R+). This

analysis allows us to understand the following equality:

Γe−r(z) =
∑
k≥0

αk⟨fk, µz,e−r⟩ =
∑
k≥0

αk⟨pk, µz,r⟩,

where pk = πP (fk) is the projection onto P .
After this analysis, we can easily construct the following proposition:

Proposition 4.3. Given a pBM (Xt)t≥0, there exists a pGFF Γ such that X almost surely
represents its circle average process.

Proof: The proof is quite straightforward. Given a pBM X = (Xt)t≥0, we simply consider
a collection of variables βk that respect the appropriate correlation structure (for example,
Gaussian). We then use the circle average process, defined as

Γe−t(z) = Xt +
∑
k≥0

βk⟨qk, µz,t⟩,

where (qk)k∈N represents a basis of the space Q. □

4.3 Mod-ϕ Convergence of the pGFF

Este resultado lo presentamos en la siguiente propiedad

Proposition 4.4 (Mod-G convergence of the pGFF). Let (αk)k∈N be a sequence of i.i.d.
strongly subgaussian random variables. Let Γ be a pGFF defined from these variables and
using the base of Fourier. Under these assumptions, for z ∈ D and λ ∈ R,

E[exp(λ Γε(z))] exp(− log(ε−1)λ2/2)
ε→0−−→ ψ(λ),

for some analytic function ψ.

Proof: Take z ∈ D, λ ∈ R and denoting cεk(z) = cεk, we have that

E[exp(λ Γε(z))] = E

[
exp

(
λ
∑
k≥0

αkc
ε
k

)]
=
∏
k≥0

E[eλαkc
ε
k ] = exp

(
log(

∏
k≥0

E[eλcεkα])

)

= exp

(∑
k≥0

log(E[eλcεkα])

)
.

If we define κεi,k as the i-th cumulant of the variable cεkα, we can denote κεi,k = (cεk)
iβi, where
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βi is the i-th cumulant of α. Now, we can write

E[exp(λ Γε(z))] = exp

(∑
k≥0

∑
i≥2

κεi,k ·
λi

i!

)
= exp

(∑
k≥0

(cεk)
2λ

2

2
+
∑
k≥0

∑
i≥3

(cεk)
i βi ·

λi

i!

)

=⇒ E[exp(λ Γε(z))] exp

(
−λ

2

2

∑
k≥0

(cεk)
2

)
= exp

(∑
k≥0

∑
i≥3

(cεk)
i βi ·

λi

i!

)
.

Finally, as pGFF is a strongly sub-Gaussian variable, by Property 1.14, we can conclude using
dominated convergence theorem. □

Remark. It is important to note that this convergence holds for all λ ∈ R largely due to the
sub-Gaussianity assumption. However, we believe that this assumption could be relaxed, which
would imply that the convergence might no longer hold for all λ ∈ R, but only on a subset of
R.

4.4 Upper Bound on the Hausdorff Dimension of the

Thick Points

One of the central results of this work is the calculation of the upper bound of the Hausdorff
dimension of the thick points of the pGFF. In this section, we present this key result along with
its formal proof. The proof closely follows the methodology used for the GFF, as described in
[HMP10], adapting the necessary techniques to address the case of the pGFF.

Proposition 4.5. Let us considered the family of random variables (αk)k∈N strictly sub-
gaussian and independents and Γ a pGFF constructed from them. If 0 ≤ γ ≤ 2, then almost
surely dimH(T (γ)) ≤ 2− γ2/2 and if γ > 2, T (γ) is empty.

To demonstrate the previous proposition, we will prove that dimH(T≥(γ)) ≤ 2−γ2/2. Since
it is clear that T (γ) ⊆ T≥(γ), this will allow us to conclude the desired result. Moreover, for
r > 0, we will start by showing that it is sufficient to consider the values of Γ(x, r) at the
sequence rn = n−K , where K = ε−1. In other words, we will focus on studying the discrete radii
of the form rn = n−K .

Proof: Let us assume that 0 ≤ γ ≤ 2. Let ε > 0 be arbitrary, and fix K = ε−1. For each
n ∈ N, define rn = n−K . Taking ξ ∈ (0, 1) and η ∈ (0, 1/2), set M = M(η, ε, ξ) as described
in Proposition 4.1. Now, to verify that it is sufficient to analyze the discrete values of rn, let’s
examine the following inequality for a fixed x ∈ D and r > 0 such that rn+1 < r < rn. By
Property 4.1, the following holds

|Γ(x, r)− Γ(x, rn)| ≤M log(1/rn)
ξ ∥(x, e−t)− (x, rn)∥η

rη+ε
n

≤MKξ log(n)ξ
|e−t − rn|η

r
(1+ε)η
n

≤MKξ log(n)ξ
|rn+1 − rn|η

r
(1+ε)η
n
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Now, since |rn+1 − rn|η = |(n+1)−K − n−K |η = O(n−(K+1)η) and r
(1+ε)η
n = n−K(1+ε)η = n−Kη−η,

it follows that
|Γ(x, r)− Γ(x, rn)| = O((log n)ξ). (4.4)

Therefore, since the constant M depends only on η, ε, and ξ, by dividing by log(r−1
n ) on both

sides of the above equation, we obtain that the difference |Γ(x, r) − Γ(x, rn)| tends to zero as
n → ∞. This leads us to conclude that whether x belongs to T≥(γ) depends on the circle
average over a countable number of rings around x. To finalize this idea, with a very similar
calculation, we can conclude that if ∥x− y∥ ≤ r1+ε

n , then

|Γ(x, rn)− Γ(y, rn)| = O((log n)ξ). (4.5)

Now consider a grid over the set D ⊆ R2 with mesh size r1+ε
n , and denote by znj the center of

each square in the grid. With this and the inequality described in (4.5), we have that

|Γ(x, rn)− Γ(znj, rn)| = O((log n)ξ). (4.6)

Let us define δ(n) = C log(n)ξ−1 and

In
.
= {j : |Γ(znj, rn)| ≥ (γ − δ(n)) log(r−1

n )},

which corresponds to the set of indices of the centers of squares that are nearly thick points.
With this, we define the covering set of T≥(γ) as

I(γ,N) =
⋃
n≥N

{B(znj, r
1+ε
n ) : j ∈ In}. (4.7)

Let us prove that the set defined in (4.7) indeed covers T≥(γ). For x ∈ T≥(γ), by the definition
of the grid we used, there will exist a znj ∈ D such that ∥znj − x∥ ≤ r1+ε

n . Then, from the
calculation in (4.6), we have that

−Γ(znj, rn) ≤ C̃ log(n)ξ − Γ(x, rn) ⇐⇒ Γ(znj, rn) ≥ Γ(x, rn)− C̃ log(n)ξ

⇐⇒ Γ(znj, rn)

log(r−1
n )

≥ Γ(x, rn)

log(r−1
n )

− C log(n)ξ−1.

Thus, for sufficiently large n > N , we obtain that

|Γ(znj, rn)| ≥ (γ − δ(n)) log(r−1
n ),

and therefore j ∈ In. With this, we conclude that B(znj, r
1+ε
n ) ∈ I(γ,N) and that I(γ,N)

covers T≥(γ).
Now it remains to calculate the Hausdorff measure to obtain a bound for the dimension. We

have that

E[Hb(I(γ,N))] ≤ E

∑
n≥N

∑
{j∈In}

diam(B(znj, r
1+ε
n ))b


=
∑
n≥N

(2r1+ε
n )b E[|In|].
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To calculate the term E[|In|], note that E[|In|] =
∑

j 1 · P(j ∈ In). Then,

P(j ∈ In) = P

(
|Γ(znj, r−1

n )|√
log(r−1

n )
≥ (γ − δ(n))

√
log(r−1

n )

)

≤ exp

(
−1

2
(γ − δ(n))2 log(r−1

n )

)
= O(rγ

2/2+o(1)
n ),

where the first inequality holds because Γ(znj, r
−1
n ) is strongly sub-Gaussian. With this, we

obtain that

E[|In|] ≤ o

(
r
γ2/2+o(1)
n

r
2(1+ε)
n

)
= o(rγ

2/2−2(1+ε)+o(1)
n ). (4.8)

Returning to the previous calculation,

E[Hb(I(γ,N))] ≤
∑
n≥N

(2r1+ε
n )b E[|In|] ≤ 2b

∑
n≥N

rb(1+ε)+γ2/2−2(1+ε)+o(1)
n .

Thus, this sum is null if b > 2(1−2ε)
(1+ε)

− γ2

2(1+ε)
, and by taking the inf{b > 2(1−2ε)

(1+ε)
− γ2

2(1+ε)
: ε > 0},

we conclude that dimH(T≥(γ)) ≤ 2− γ2/2 and therefore dimH(T (γ)) ≤ 2− γ2/2. Furthermore,
from equation (4.8), we can deduce that for γ > 2, E[|In|] → 0 as n→ ∞. □

4.5 Non Gaussian Multiplicative Chaos

In this section, we will delve into the construction of the Liouville Quantum Measure following
a similar approach to that proposed by Berestycki in [Ber17]. This theory is essential for
estimating the lower bound of the dimension of thick points in the GFF. Although the pGFF
is not strictly Gaussian, we will demonstrate that it is possible to obtain an equivalent lower
bound in this context, thus highlighting the flexibility of multiplicative chaos even in non-
Gaussian settings. An alternative and complementary approach can be found in the work of
Junnila in [Jun16], where non-Gaussian multiplicative chaos is also examined under different
hypotheses, though with results that could be equivalent to ours regarding the convergence of
the measure.

In this section, we will first introduce the fundamental definitions that support our analysis.
Subsequently, we will present the central proposition and proceed to prove the crucial lemmas
that underpin this proposition. Finally, we will conclude by integrating all elements to reach
the desired conclusion.

Let us define the measure σ as

σ(dx) = eΓ(x)−
1
2
γ2E[Γ(x)2]dx, (4.9)

where Γ represents a pGFF under certain construction conditions and γ > 0 is a parameter of
which we will give more details later. Since Γ is not defined pointwise, we approximate it using
the circle average. Thus, we define the approximate measure σε as

σε(dx) = eΓε(x)− 1
2
γ2E[Γε(x)2] dx. (4.10)
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Our goal of this section is demonstrate that σε converges to the measure σ defined in (4.9).
More formally, the objective is to prove the following proposition:

Proposition 4.6. For γ < 2, σε(D) converges in probability and in L1 to a limit σ(D).

To prove this proposition, we will follow the approach outlined in [Ber17]. In particular, we
will consider a parameter κ > γ and classify the points x ∈ D as bad points if their thickness
exceeds κ, and as good points otherwise (we will elaborate on this classification later). We will
then show that the contribution in L1 of the bad points is negligible, while that of the good
points is Cauchy in L2, which implies their convergence.

Throughout this analysis, we will verify that our object satisfies the same properties pre-
sented by Berestycki in his article if we assume the necessary hypotheses to ensure mod-G
convergence. Moreover, since our object shares the same correlations as the GFF, we will be
able to reproduce the estimates made by Berestycki in Lemma 3.5 of his article.

Lemma 4.7 (Lemma 3.5 in [Ber17]). Let (αk)k∈N be strongly sub-Gaussian random variables
and Γ a pGFF constructed from them and the Fourier basis. For x, y ∈ D, we have the
following estimate:

Cov(Γε(x),Γr(y)) = log 1/(|x− y| ∨ r ∨ ε) +O(1). (4.11)

Moreover, if η > 0 and |x− y| ≥ η, then

Cov(Γε(x),Γδ(y)) = log(1/|x− y|) + g(x, y) + o(1), (4.12)

where o(1) tends to 0 as δ, ε→ 0, uniformly in |x− y| ≥ η.

Throughout this section, we will always consider Γ as a pGFF constructed from strongly
sub-Gaussian random variables and the Fourier basis. We will consider κ > γ and introduce
the following notation: for r > 0, we define,

r
.
= inf{e−m : m ∈ N, r < e−m}, (4.13)

and for x ∈ D, we define a good event as

Gκ
ε (x)

.
= {Γr(x) ≤ κ log(1/r), ∀r ∈ [ε, ε0]}, (4.14)

with ε0 ≤ 1. Finally, for ease of notation, we will denote Γε(x) = γΓε(x)− (γ2/2)E[Γε(x)
2] and

Iε = σε(D).
The first objective is to prove the following proposition

Proposition 4.8. Iε is uniform integrable.

To develop this proof, we will first need the following lemmas followed by their proofs.

Lemma 4.9. For any κ > 0 and uniformly over x ∈ D, we have that P(Gκ
ε (x)) ≥ 1−p(ε0),

where the function p may depend on κ. Also, for fixed κ > γ, p(ε0) → 0 as ε0 → 0.

Proof:
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Let us consider the process Υt = Γε(x), where ε = e−t. Take m ∈ N and by the strong
sub-Gaussianity of Γ,

P(Υm(x) ≥ κm) ≤ 2 exp

(
− κ2m2

2 log(em)

)
≤ Ce−λm,

for C, λ strictly positive constants.
By other side,

P(Gγ
ε (x)

c) = P(∃r ∈ [ε, ε0] : Γr(x) ≥ κ log(1/r)) ≤ P(∃m ≥ m0 : Υm ≥ κm),

where m0 has to be found. Then,

P(∃m ≥ m0 : |Γm(x)| ≥ κm) ≤
∑

m≥m0

P(|Γm(x)| ≥ κm) ≤ C̃e−λm0 .

Finally, taking m0 = ⌈log(1/ε0)⌉ and calling p(ε0) on the right-hand side, we conclude as
requested. □

Another important result allows us to conclude that the Liouville points are no more than
γ-thick is the following lemma

Lemma 4.10. For κ > γ, we have that P(Gκ
ε (x)) ≥ 1−C p(ε0), with C a positive constant.

Proof: Let us first note that

E[eΓε(x)1Gκ
ε (x)] = P̃(Gκ

ε (x)),

where P̃ is the measure defined from the Radon-Nikodym derivative

dP̃
dP

=
eΓε(x)

E[eΓε(x)]
. (4.15)

Then,
P̃(Gκ

ε (x)
c) ≤ P̃(∃r ∈ [ε, ε0] : Γr(x) ≥ κ log(1/r))

Now, if we index by m ∈ N to the values of r ∈ [ε, ε0], we have that

P̃(Gκ
ε (x)

c) ≤
∑

m≥m0

P̃(Γm ≥ κm),

where m0 = ⌈log(1/ε0)⌉. Now, multiplying and dividing by e−(λ2/2+λγ)m we have that

P̃(Gκ
ε (x)

c) ≤
∑

m≥m0

E[e(λ+γ)Γm ]e−(λ+γ)/2m

E[eΓm ]
· e(λ2/2+λγ−λκ)m.

Due to the convergence of mod-G, the ratio in the equation above converges to a bounded
function ψ(λ, γ), as dictated by the convergence, for all λ > 0.

Finally by Lemma 4.9,

P̃(Gκ
ε (x)) ≥ 1− C̃1e

(λ2/2+λγ−λκ)m0 ≥ 1− C̃2p(ε0)
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and taking λ = κ > γ we can conclude. □
We will now see that points which are more than γ-thick do not contribute significantly to

Iε in expectation and can therefore be safely removed. Fix κ > γ, let us write Gε(x) as G
κ
ε (x)

and introduce

Jε =

∫
D

eΓε(x)1Gε(x)dx,

which corresponds to the contribution on Iε of the good points and let us denote by J c
ε the

contribution of bad points.

Lemma 4.11. For κ > γ sufficiently close to γ, Jε is bounded in L2 and hence uniformly
integrable.

Proof: By Fubini’s theorem and the strongly sub-Gaussianity of Γ,

E[J2
ε ] =

∫
D2

E[eΓε(x)+Γε(y)1Gε(x)∩Gε(y)]dxdy

≤
∫
D2

eγ
2E[Γε(x)Γε(y)]P̃(Gε(x) ∩Gε(y))dxdy (4.16)

where P̃ is the probability measure defined from

dP̃
dP

=
eΓε(x)+Γε(y)

E[eΓε(x)+Γε(y)]
.

The idea from now on will be to find a good upper bound for probability P̃(Gε(x) ∩Gε(y)).
Now, if we take ε ≤ ε0 y |x− y| ≤ ε0, then

P̃(Gε(x) ∩Gε(y)) ≤ P̃(Γr(x) ≤ κ log(1/r)), (4.17)

where r = |x− y| ∨ ε (recall the notation r = inf{e−n : n ∈ N, r < e−n}). Then,

P̃(Γr(x) ≤ κ log(1/r)) = P(e−λΓr(x) ≥ e−λκ log(1/r)) ≤ Ẽ[e−λΓr(x)] eλκ log(1/r). (4.18)

Let us now seek to bound the expectation of the above equation. We have that

Ẽ[e−λΓr(x)] =
E[e−λΓr(x)+γΓr(x)+Γr(y)]

E[eΓε(x)+Γε(y)]
.

Multiplying by a suitable one, we can form the exact term for the convergence mod-G of both
the numerator and denominator of the fraction. This implies that for ε0 sufficiently small,

Ẽ[e−λΓr(x)] ≤ C exp (λ2/2− 2λγ) log(1/r).

With this computation, we can bound Equation (4.18) and with it the Equation 4.17 to obtain
that

P̃(Gε(x) ∩Gε(y)) ≤ C exp
(
(λ2/2− 2λγ + λκ) log(1/r)

)
(4.19)
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Using the Lemma 4.7 and the just calculated coordinate we obtain that

E[J2
ε ] ≤ O(1)

∫
D2

(|x− y| ∨ ε)−γ2 P̃(Gε(x) ∩Gε(y))dxdy

≤ O(1)

∫
D2

(|x− y| ∨ ε)−γ2

r−λ2/2+2λγ−λκ dxdy (4.20)

Finally, for this integral to be finite, it must be satisfied that

−γ2 − λ2

2
+ 2λγ − λκ > −2

and taking λ and κ as arbitrarily close to γ, it is concluded that

−γ2 − γ2

2
+ 2γ2 − γ2 > −2 or γ < 2 (4.21)

□

Remark. Let us note that in this last section, we have worked with considerable flexibility
regarding the parameter λ ∈ R. This is possible because, under the assumption of strong
sub-Gaussianity in the variables (αk)k∈N, the mod-ϕ convergence holds for any value of this
parameter. However, if this hypothesis were relaxed, we believe that it would be necessary to
optimize λ within a specific subset of R where the convergence is still preserved.

Since we already have all the lemmas necessary to prove the main proposition of this section,
we can proceed to its formal proof.

Proof(Proposition 4.8): First, we observe that Iε = Jε+J
c
ε . From Lemma 4.10, we know

that E[J c
ε ] ≤ Cp(ε0), which implies that the contribution of the bad points becomes negligible.

On the other hand, Lemma 4.11 establishes that J2
ε is bounded in L2 for a fixed ε0 and uniformly

in ε. Therefore, we conclude that Iε is uniformly integrable. □

As a final result of the section, we will seek to demonstrate that Iε converges. Since E[J c
ε ]

can be made arbitrarily small by choosing ε0 sufficiently small, it is enough to show that Jε
converges in probability and in L1. In fact, we will show that it converges in L2, from which
the convergence will follow. To do this, we will show that Jε forms a Cauchy sequence in L2

and will start by writing

E[(Jε − Jδ)
2] = E[J2

ε ] + E[J2
δ ]− 2E[JεJδ]. (4.22)

The idea in this part is basically to find a better lower bound estimate for E[J2
ε ] and an upper

bound estimate for E[JεJδ]. We will start by proving the following lemma:

Lemma 4.12. We have

lim sup
ε→0

E[J2
ε ] ≤

∫
D2

eγ
2g(x,y)

|x− y|γ2 fκ(x, y)dx dy

where fκ(x, y) is a non negative function depending on κ, ε0 and γ such that the above
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integral is finite.

Proof: From Equation (4.16) we have

E[J2
ε ] ≤

∫
D2

eγ
2E[Γε(x)Γε(y)] P̃(Gε(x) ∩Gε(y)) dx dy. (4.23)

The idea, then, is to find a better estimate for P̃(Gε(x) ∩Gε(y)) when |x− y| > η, with η > 0
arbitrarily small. This is the relevant case, since if |x − y| ≤ η, we can apply the same upper
bound as in (4.20). In such a situation, the contribution of these points can be bounded by a
function f(η), where f(η) → 0 as η → 0, uniformly in ε.

Consider a finite set {rm}Nm=1 of e-adic approximations in (0, ε0] (recall the notation r =
inf{e−n : n ∈ N, r < e−n}). Let us also denote by Γm(x) = Γrm(x) and take the vector
λ = (λm)

N
m=1 ∈ RN . Now take the expectation

Ẽ[e
∑N

m=1 λmΓm(x)] = E[e
∑N

m=1 λmΓm(x)+Γε(x)+Γε(y)].

and it is not difficult to verify that multiplying and dividing by the term

exp

(
−

N∑
m=1

λm
2

log(r−1
m )− 2γ2 log(ε−1)−

N∑
i,j=1,i ̸=j

λiλjE[Γi(x)Γi(x)]

)

this expression converges, as ε → 0, in mod-G to some bounded function ψ(λ, γ). This allows
us to conclude that, under P̃, the process (Γr(x))r≤ε0 converges to the process (Γ̃r(x))r≤ε0 as
ε → 0. Repeating this reasoning, we obtain that the joint law of (Γr(x),Γr(y))r≤ε0 converges,
under P̃ and as ε→ 0, to the process (Γ̃r(x), Γ̃r(y))r ≤ ε0.

Since we have the convergence of the joint law (Γr(x),Γr(y))r≤ε0 , we can define G̃(x) =
{Γ̃r(x) ≤ κ log(1/r), for all r ∈ (0, ε0]} and verify that

P̃(Gε(x) ∩Gε(y)) → P(G̃ε(x) ∩ G̃ε(y))
.
= fκ(x, y), (ε→ 0). (4.24)

Consequently, applying Lemma 4.7 and (4.20) to justify the dominated convergence, we obtain
that∫

D2:|x−y|>η

eγ
2E[Γε(x)Γε(y)] P̃(Gε(x) ∩Gε(y)) dx dy →

∫
D2:|x−y|>η

eγ
2g(x,y)

|x− y|γ2 fκ(x, y) dx dy (4.25)

Finally, to verify that the right side remains bounded as η → 0, we can use the fact that, in
inequality (4.19), we established that P̃(Gε(x) ∩ Gε(y)) ≤ O(1)|x − y|−λ2/2+2λγ+λκ. Therefore,
this inequality should also apply to fκ(x, y), which allows us to conclude in a manner similar to
(4.21). □

In a very similar manner and following a very similar scheme, we can conclude the following
result

Lemma 4.13. We have

lim inf
ε,δ→0

E[JεJδ] ≥
∫
D2

eγ
2g(x,y)

|x− y|γ2 fκ(x, y) dx dy,
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where fκ(x, y) is a non negative function depending on κ, ε0 and γ such that the above
integral is finite.

Proof: The proof is the same as in Lemma 4.12 except that in this case, we will use the measure
P̃ defined through eΓε(x)+Γδ(y). These changes do not alter any argument, so (4.24) and (4.25)
remain valid. Since we obtain a lower bound by restricting to |x − y| > η, we immediately
deduce that

lim inf
ε,δ→0

E[JεJδ] ≥
∫
D2

eγ
2g(x,y)

|x− y|γ2 fκ(x, y)dx dy

□
Finally, to close this section, we present the following proposition:

Proposition 4.14. Jε is Cauchy in L2.

Proof: With the results obtained in Lemmas 4.12, 4.13 and equation (4.22), we can conclude
that Jε is Cauchy in L2. □

This proposition will allow us to formalize the behavior of Jε and advance in the analysis of
the object of study.”

4.6 Lower Bound on the Hausdorff Dimension of the

Thick Points

In this section, we will calculate the lower bound of the Hausdorff dimension of the thick points
using the theory developed in the previous section. We will start by proving that the limiting
measure σ provided by Proposition 4.6 is supported on the set of γ-thick points. Then, we
will apply the Energy Method [MP10, Theorem 4.27], through which we will conclude that
dimH(T (γ)) ≤ 2− γ2/2 for γ ∈ (0, 2) and thus equality.

Let us begin by proving that the measure σ defined in 1.10 is supported on γ-thick points
through the following lemma. The proof follows the line for the Gaussian case as in [Aru20b]
Section 2.6

Lemma 4.15. Suppose D is bounded. Let Γ be a pGFF defined by strongly sub-Gaussian
variables, and let z be a point sampled according to the limiting measure σ. Then, almost
surely,

lim sup
ε→0

Φε(x)

log(1/ε)
= γ. (4.26)

Proof: This proof follow by a classical argument that goes as follows

1. Define the probability measure P̃ϵ on pairs (x,Γ) where x ∈ D and Γ is a distribution as

P̃ϵ(dx, dΓ) =
exp(γΓϵ(x))

E [exp(γΓϵ(x))]
dxP(dΓ),

where P is the measure of the pGFF.

2. It is clear that P̃ε converges weakly as ϵ→ 0 to the measure σ

P̃(dx, dΓ) = p(x)σγ(dx)P(dΓ),
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where σγ is the Liouville measure of the Γ with parameter γ and

p(x) = lim
ϵ→0

eγ
2 log(1/ϵ)

E [exp(γΓϵ(x))]
<∞.

3. The marginal law of x under P̃ϵ is that of a uniform in D. Thus the maginal law of x
under P̃ is a uniform in D.

4. The marginal law of Γ under P̃ϵ has Radon-Nykodim derivative with respect to P given
by
∫
p(x)σγ

ϵ (dx) →
∫
p(x)σγ(dx). Thus Γ under P̃ is absolutely continuous with respect

to the pGFF.

5. The conditional law of x given Γ under P̃ϵ is taken proportionally to σγ
ϵ (dx). Thus, under

P̃, given Γ, x is taken proportionally to its Liouville measure σγ(dx).

6. Finally, the conditional law of Γ given x under P̃ϵ is proportional to e
γΓϵP(dΓ). For δ > ϵ

and γ < γ+

P̃ϵ(Γδ(x) ≥ γ+ log(1/δ)) ≤ E [exp(λΓδ(x) + γΓϵ(x)− λγ+ log(1/δ))]

E [exp(γΓϵ(x))]

≤ K exp

(
λ2

2
log(1/δ) + λγ log(1/δ)− λγ+ log(1/δ)

)
≤ K exp(

γ

2
(γ − γ+) log(1/δ)),

where we use λ = γ/2. Doing the same for γ− < γ

P̃ϵ(Γδ(x) ≤ γ− log(δ)) = P̃ϵ(−Γδ(x) ≥ −γ− log(1/δ))

≤ E [exp(−λΓδ(x) + γΓϵ(x)− λγ+ log(1/δ))]

E [exp(γΓϵ(x))]

≤ K exp

(
λ2

2
log(1/δ)− λγ log(1/δ) + λγ− log(1/δ)

)
≤ K exp(

γ

2
(γ− − γ) log(1/δ)).

As the bounds do not depend on ϵ, we know that this bounds are true for Γ under P̃.

To conclude we note that as Γ is absolutely continuous with respecto to the pGFF, (4.4)
together with Borel-Cantelli, implies that x ∼ σγ(dx) is a thick point of Γ.

□
With the result of the previous Lemma, to compute the lower bound of the thick points it is

sufficient to apply the Energy Method. To introduce this technique, let us first recall Definition
1.6 and present the following notation

Iα(µ) =

∫∫
µ(dx)µ(dy)

d(x, y)α
(4.27)

where µ is a mass distribution on a metric space (E, d(·, ·)). Now, the Energy Method corre-
sponds to the following theorem
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Theorem 4.16 (Energy Method). Let α ≥ 0 and µ be a mass distribution on a metric
space (E, d(·, ·)). Then, for every ε > 0, we have

Hα
ε (E) ≥

µ(E)2∫∫
d(x,y)<ε

µ(dx)µ(dy)
d(x,y)α

Hence, if
∫∫

Iα(µ) <∞ then Hα(E) = ∞ and, in particular dimH(E) ≤ α.

In particular, in order to show for a random set E that dimH(E) ≥ α, almost surely, it suffices to
show that E[Iα(µ)] <∞ for a (random) measure on E. In our case, we will seek to demonstrate
that for δ > 0,

E
[∫

D2

1

|x− y|2−γ2/2−δ
σ(dx)σ(dy)

]
<∞

Now that we understand the outline we will follow, we present the main result of the section

Proposition 4.17. Let Γ be a pGFF defined by strongly sub-Gaussian variables, and let
γ ∈ [0, 2]. Then, almost surely, dimH(T (γ)) ≥ 2− γ2/2.

Proof: Take δ > 0 and γ ∈ [0, 2]. For N ∈ N define the function fN : R2 → R as

fN(x, y) =
1

|x− y|2−γ2/2−δ
∧N.

By Fatou’s lemma and the convergence given by 4.6, we have that

E
[∫

D2

fN(x, y) σ(dx)σ(dy)

]
≤ lim inf

ε→0
E
[∫

D2

fN(x, y)1Gε(x),Gε(y) σε(dx)σε(dy)

]
.

Also, we have that

E
[∫

D2

fN(x, y)1Gε(x)∩Gε(y) σε(dx)σε(dy)

]
=

∫
D2

fN(x, y)E[1Gε(x)∩Gε(y)e
Γε(x)+Γε(y)] dx dy

≤
∫
D2

fN(x, y) P̃(Gε(x), Gε(y)) E[eΓε(x)+Γε(y)] dx dy,

where P̃ is a new probability measure obtained by the Radon-Nikodyn derivative

dP̃
dP

=
eΓε(x)+Γε(y)

E[eΓε(x)+Γε(x)]
.

By the Inequation (4.19), we have that

E
[∫

D2

fN(x, y)1Gε(x)∩Gε(y) σε(dx)σε(dy)

]
≤ O(1)

∫
D2

|x− y|γ2/2−2+δ−γ2−γ2/2+2γ−γ2

dx dy

= O(1)

∫
D2

|x− y|−2+δ dx dy

Finally, by Theorem 4.16 we can conclude that dimH(T (γ)) < 2− γ2/2. □
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To finish this section and with this the result of the thesis, through the calculations made
in the previous sections, we obtain the following result

Theorem 4.18. Let Γ be a pGFF defined by strongly sub-Gaussian variables, and let γ ∈
[0, 2]. Then, almost surely, dimH(T (γ)) = 2− γ2/2.

Proof: Applying Proposition 4.17 and 4.5 we conclude this property. □
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(1985), pp. 105–150.

[MP10] Peter Mörters and Yuval Peres. Brownian Motion. Vol. 30. Cambridge University
Press, 2010.

[Wey12] Hermann Von Weyl. “Das asymptotische Verteilungsgesetz der Eigenwerte linearer
partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraum-
strahlung)”. In:Mathematische Annalen 71 (1912), pp. 441–479. url: https://api.
semanticscholar.org/CorpusID:120278241.

49

https://arxiv.org/abs/1606.08986
https://arxiv.org/abs/1606.08986
https://api.semanticscholar.org/CorpusID:120278241
https://api.semanticscholar.org/CorpusID:120278241

	Resumen
	Resumen
	Introduction
	Preliminares
	Gaussian Free Field
	Construction
	Regularity of the GFF
	Correlations

	Estimates on the Green's Function
	Fractal Dimensions
	Hausdorff Dimension
	Extremes Values in Dimension 1
	Extremes Values in Dimension 2

	Mod- Convergence
	Strongly Sub-Gaussianity
	Basis
	Levy Basis
	Fourier Basis

	Gaussian Multiplicative Chaos

	The pseudo Gaussian Free Field
	Pseudo GFF in Dimension 1
	Continuity
	Upper Bound on the Modulus of Continuity
	Lower Bound on the Modulus of Continuity
	Law of the Iterated Logarithm

	Pseudo GFF in Dimension 2
	Circle Average and pGFF
	pBM inside PGFF
	Mod- Convergence of the pGFF
	Upper Bound on the Hausdorff Dimension of the Thick Points
	Non Gaussian Multiplicative Chaos
	Lower Bound on the Hausdorff Dimension of the Thick Points

	Bibliography

