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REPETICIÓN GENERATIVA MEJORADA CON APRENDIZAJE POR
REFUERZO PARA EL APRENDIZAJE CONTINUO EN MODELOS DE

DIFUSIÓN: UN ESTUDIO INTEGRAL DE METODOLOGÍAS EXISTENTES
Y NUEVAS

Los modelos generativos de difusión han demostrado capacidades notables en la gen-
eración de datos artificiales de alta calidad en diversas áreas, tales como imágenes, proteínas
y materiales. Sin embargo, estos modelos enfrentan desafíos significativos en escenarios de
Aprendizaje Continuo, donde deben aprender de forma continuada distribuciones de datos
en evolución mientras preservan la información aprendida en etapas anteriores.

Esta tesis investiga la mejora de los modelos de difusión en Aprendizaje Continuo a través
de estrategias de repetición generativa. Los objetivos principales incluyen una evaluación ex-
haustiva de las estrategias existentes de Aprendizaje Continuo y el desarrollo de metodologías
novedosas aprovechando el Aprendizaje Reforzado, específicamente utilizando Denoising Dif-
fusion Policy Optimization (DDPO). Aprovechando esta metodología, proponemos dos mar-
cos de entrenamiento: un enfoque directo y un marco de profesor-estudiante orientado a
mejorar la estabilidad del entrenamiento en Aprendizaje Continuo de estos modelos de di-
fusión.

A través de variados experimentos, replicamos con éxito metodologías existentes y es-
tablecimos puntos de referencia claros con los cuales comparar las metodologías. Nuestras
nuevas propuestas, en particular la repetición generativa mejorada con DDPO, demostraron
mejoras significativas en la calidad de las muestras sintéticas generadas y la retención de tar-
eas previamente aprendidas en Aprendizaje Continuo. El marco profesor-estudiante mejoró
aún más el rendimiento al separar efectivamente las tareas de entrenamiento, enfocándose
en aprender mejores representaciones de datos en el modelo profesor y evitando la so-
breparametrización en el modelo estudiante.

Nuestros hallazgos indican que el Aprendizaje Reforzado puede mejorar significativamente
las capacidades de Aprendizaje Continuo de los modelos de difusión. Sin embargo, el éxito
de estos métodos depende en gran medida de la calidad de las funciones de recompensas
utilizadas. En el futuro se debería explorar recompensa más sofisticadas y estrategias alter-
nativas de Aprendizaje Reforzado para mejorar aún más el rendimiento y la diversidad de
los modelos generativos.

Esta investigación contribuye al avance de los modelos generativos, extendiendo su apli-
cabilidad y eficacia en entornos que requieren aprendizaje continuo.
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REINFORCEMENT LEARNING ENHANCED GENERATIVE REPLAY FOR
CONTINUAL LEARNING IN DIFFUSION MODELS: A COMPREHENSIVE

STUDY OF EXISTING AND NOVEL METHODOLOGIES

Generative diffusion models have shown remarkable capabilities in synthesizing high qual-
ity data across various domains, such as images, proteins, and materials. However, these
models face significant challenges in continual learning scenarios, where they must contin-
uously learn from evolving data distributions while preserving previously learned information.

This thesis investigates the enhancement of generative diffusion models through genera-
tive replay in continual learning. The main objectives include a comprehensive evaluation of
existing continual learning strategies and the development of novel methodologies leverag-
ing Reinforcement Learning, specifically Denoising Diffusion Policy Optimization (DDPO).
Leveraging this methodology, we propose two frameworks for training: a direct approach and
a teacher-student framework aimed at improving the stability of training continually these
generative diffusion models.

Through extensive experiments, we successfully replicated existing methodologies and
established clear benchmarks. Our novel approaches, particularly the DDPO enhanced gen-
erative replay, demonstrated significant improvements in sample quality and retention of
previously learned tasks. The teacher-student framework further enhanced performance by
effectively separating training tasks, focusing on learning better data representations in the
teacher model and avoiding overparameterization in the student model.

Our findings indicate that Reinforcement Learning can significantly improve the contin-
ual learning capabilities of diffusion models. However, the success of these methods heavily
depends on the quality of the reward model. Future work should explore more sophisticated
reward functions and alternative reinforcement learning strategies to further enhance the
performance and diversity of generative models.

This research contributes to the advancement of generative models, extending their appli-
cability and efficacy in settings that require continual learning.
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Chapter 1

Introduction

1.1. Research Problem
Generative models, particularly diffusion models [1] [2], have demonstrated remarkable capa-
bilities in synthesizing high-quality data across various domains, such as multimedia content
(images, video, audio, etc), novel materials, molecules and text. A significant challenge for
diffusion models arises in dynamic environments, where they must continuously learn from
evolving data distributions [3] [4]. These models often struggle to adapt to new data while
preserving previously learned information, a dilemma known as catastrophic forgetting. This
issue is particularly critical in scenarios that demand continual or lifelong learning, where the
ability to integrate new information seamlessly without undermining the previously acquired
knowledge base is essential.

Currently, the problem of catastrophic forgetting in diffusion models is tackled through
various methods that include regularization techniques, finetuning, and replay methods dur-
ing training [5] [6] [7] [8] [9] [10]. Among replay strategies, generative replay, an approach
where the model regenerates its training data, presents an interesting alternative to buffer-
based replay systems. However, existing implementations of generative replay often fall short
in performance, struggling to effectively balance the retention of old knowledge with the ac-
quisition of new information. [3]

This thesis investigates the challenge of enhancing the performance of generative diffusion
models, through generative replay in continual learning. The research primarily focuses on
two aspects: firstly, a thorough examination of the effectiveness of current continual learning
strategies within the framework of generative diffusion models, and secondly, the proposal and
evaluation of novel methodologies that leverage Reinforcement Learning to improve the gener-
ative process. In particular, this study leverages the Denoising Diffusion Policy Optimization
(DDPO) algorithm, hypothesized to significantly enhance the quality and stability of gener-
ated samples, especially in scenarios where leveraging previous data is crucial for continual
learning. The integration of this algorithm enables the generative model to self-generate its
training data, thus retaining proficiency in previously learned tasks while acquiring new ones.

By addressing these challenges, this research aims to contribute to the advancement of
generative models, extending their applicability and efficacy in settings that require continual
learning.

1



1.2. Hypothesis
This thesis proposes two innovative methodologies, grounded in the concept of generative
replay, to enhance the performance of generative diffusion models in continual learning envi-
ronments using the Denoising Diffusion Policy Optimization (DDPO) algorithm.

The first hypothesis predicts that applying DDPO directly to a generative diffusion model,
with custom-designed reward functions, will significantly improve the quality of the model’s
self-generated data. This enhancement is expected to exceed the capabilities of traditional
generative replay by producing samples that more closely align with the original data, thereby
reducing the need for retraining on a buffer of the original data.

The second hypothesis suggests that a "teacher-student" model framework could be ben-
eficial. In this setup, a "teacher" model, a version of the original model optimized with
DDPO, generates refined training samples. These samples are then used to train the "stu-
dent" model, which does not undergo direct optimization with DDPO. This strategy prevents
over-optimization of the student model by utilizing higher-quality, task-specific data from the
teacher model.

Both approaches are hypothesized to expand the capabilities of generative diffusion mod-
els in continual learning settings. They are expected to not only reinforce the models existing
knowledge but also to adapt to evolving or diverse tasks, thereby enhancing the overall scope
and effectiveness of generative replay in these contexts.

1.3. Objectives

1.3.1. General Objectives
The general objective of this research is to enhance the capabilities of generative diffusion
models in continual learning environments. This involves developing and assessing method-
ologies that enable these models to effectively adapt to evolving data distributions while
retaining previously learned information. The aim is to address the challenges of catas-
trophic forgetting and to ensure robust, high-quality data generation in dynamic learning
scenarios.

1.3.2. Specific Objectives
1. To conduct a comprehensive implementation and evaluation of existing continual learn-

ing strategies within the context of generative diffusion models, identifying their strengths
and limitations in dynamic data environments.

2. To develop and implement a novel approach using Denoising Diffusion Policy Optimiza-
tion (DDPO) to directly improve the sample generation quality of generative diffusion
models, focusing on the adaptation and retention of learned information.

3. To create and evaluate a "teacher-student" model framework, where the "teacher" model,
optimized with DDPO, generates training samples for the "student" model. This ap-
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proach aims to leverage high-quality, task-specific data generation without directly in-
volving the student model in the complexities of RL optimization.

4. To assess the effectiveness of the proposed methodologies in mitigating catastrophic for-
getting and enhancing the model’s adaptability to new tasks and data, while comparing
their performance against traditional generative replay techniques.

5. To explore and define optimal reward function configurations in the DDPO algorithm
that align with specific continual learning objectives in generative diffusion models.

6. To conduct empirical experiments in various continual learning scenarios to evaluate the
stability, adaptability, and output quality of the enhanced generative diffusion models,
using appropriate metrics and benchmarks.
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Chapter 2

Background and Theory

2.1. Generative Models
Generative models, as discussed in [11], encompass a broad class of machine learning algo-
rithms designed with the principal goal of learning to represent and generate data that is
similar to the input data they have been trained on. These models are adept at understand-
ing and capturing the underlying probability distributions of data domains to produce new
instances that could plausibly come from the same distributions.

The mechanics of generative models revolve around the concept of modeling the joint
distribution of data samples, which can be either unconditional or conditioned on additional
variables. The distinction between deep generative models (DGMs) and probabilistic graphi-
cal models (PGMs) is prominent, with DGMs relying on neural networks to transform latent
representations into complex data, and PGMs often using simpler, sometimes linear relation-
ships between variables. Both types, along with their hybrids, contribute to the diversity
and flexibility of generative models.

The application of generative models is multi-faceted, ranging from synthetic data gener-
ation and augmentation to complex decision-making frameworks. The utility of these models
in various domains showcases their importance in advancing both theoretical and practical
aspects of machine learning.

We will explore a specific class of generative models known as diffusion models [1]. These
models have received attention for their proficiency in generating high-quality samples and
offer a novel perspective on the generative process.

2.2. Difussion Models
Diffusion models have recently garnered significant interest for their capability to generate
diverse, high-quality samples and their relatively straightforward training methodology. This
enables scaling up to very large model sizes.

The core concept of diffusion models leverages the ease of transitioning from structured
data to noise, a process that is more challenging to perform in reverse. The forward process,
also known as the diffusion process, incrementally transforms observed data x0 into a noisier
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version xT via T iterative applications of a stochastic encoder q(xt|xt−1). After sufficient
iterations, the data converges to a noise distribution, typically Gaussian N (0, I).

Conversely, a learned reverse process or decoder pθ(xt−1|xt) aims to recover the original
data from this noisy state. This bidirectional process outlines the training and generation
phases of diffusion models, encapsulated in a high-level framework illustrated in the Figure
2.1.

Figure 2.1: The denoising diffusion model with the forward process
q(xt|xt−1) adding Gaussian noise, and the learned reverse process pθ(xt−1|xt)
reconstructing the data. Adapted from [11].

2.2.1. Denoising Difussion Probabilistic Models

Denoising Diffusion Probabilistic Models (DDPMs) [1, 11] are a class of generative mod-
els that learn to generate data through the reversal of a diffusion process. The diffusion
process incrementally adds noise to the data, transforming it into a completely noisy state.
Conversely, the reverse process aims to convert the noise back into meaningful data.

Inspired by principles from non-equilibrium thermodynamics, DDPMs employ a series of
latent variables that correspond to various levels of noise. The model is tasked with the
denoising of data at each stage of the diffusion process, effectively learning to negate the
added noise.

2.2.1.1. Encoder (Forward Diffusion)

The encoding process for forward diffusion is characterized by a simple linear Gaussian model:

q(xt | xt−1) = N
(

xt |
√

1 − βtxt−1, βtI
)

. (2.1)

Here, the parameters βt are selected from the interval (0, 1) and are specified by a noise
schedule (discussed further). The joint distribution over all latent stages, with respect to the
input, is formulated as:

q(x1:T | x0) =
T∏

t=1
q(xt | xt−1). (2.2)

As this represents a linear Gaussian Markov chain, it is possible to compute its marginals in
closed form. In particular:

q(xt | x0) = N (xt |
√

αtx0, (1 − αt)I) . (2.3)
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where αt is defined as:

αt ≜ 1 − βt, α1:t =
t∏

s=1
αs. (2.4)

The noise schedule is chosen so that αT ≈ 0, resulting in q(xT | x0) ≈ N (0, I).
The distribution q(xt | x0), known as the diffusion kernel, when applied to the input data

distribution followed by the calculation of unconditional marginals, is equivalent to Gaussian
convolution:

q(xt) =
∫

q0(x0)q(xt | x0)dx0. (2.5)

As t increases, the marginals become increasingly simpler, a process visualized in Figure
25.2. Within the realm of image processing, this leads to an initial removal of high-frequency
content, such as detail and texture, followed by the diminishing of low-frequency content,
which includes the more significant "semantic" information, as demonstrated in Figure 25.1.

2.2.1.2. Decoder (Reverse Diffusion)

In the reverse diffusion phase of the decoder, the objective is to invert the forward diffusion
steps. If the original input x0 is known, we can reverse a single forward step with:

q(xt−1 | xt, x0) = N
(
xt−1 | µ̃t(xt, x0), β̃tI

)
. (2.6)

The mean µ̃t is a function of xt and x0, given by:

µ̃t(xt, x0) =
√

αt−1βt

1 − αt

x0 +

√
αt(1 − αt−1)

1 − αt

xt. (2.7)

The adjusted noise scale β̃t is expressed as:

β̃t = 1 − αt−1

1 − αt

βt. (2.8)

To generate new data points where x0 is not known, the generative model, trained to ap-
proximate the distribution over x0, is described by:

pθ(xt−1 | xt) = N (xt−1 | µθ(xt, t), Σθ(xt, t)) . (2.9)

Typically, Σθ(xt, t) is chosen as σ2
t I. The choices σ2

t = βt and σ2
t = β̃t are natural, corre-

sponding to the bounds on the reverse process’s entropy.
The generative model’s full joint distribution is given by:

pθ(x0:T ) = p(xT )
T∏

t=1
pθ(xt−1 | xt). (2.10)

with the initial distribution p(xT ) = N (0, I). Sampling from this model can be executed as
per the steps detailed in Algorithm 25.2.

2.2.1.3. Model Fitting

The fitting of diffusion models involves maximizing the evidence lower bound (ELBO) [1].
This is accomplished for each data example x0 by computing the log likelihood as an expec-
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tation over the distribution q(x1 : T |x0) and the model’s distribution pθ(x0 : T ), leading to
the ELBO as:

log pθ(x0) ≥ Eq

[
log p(xT ) +

T∑
t=1

log pθ(xt−1|xt)
q(xt|xt−1)

]
= L(x0). (2.11)

We exploit the Markov property of DDPMs and Bayes rule to express the ELBO in terms
of the model’s parameters and the variational posterior [1]. The negative ELBO, which serves
as a variational upper bound, can then be decomposed into time-dependent Kullback-Leibler
(KL) divergences between the variational posterior and the model’s predictive distributions.
These terms can be computed analytically when all involved distributions are Gaussian.

Optimizing the Model—In practice, the optimization of the diffusion model aims at pre-
dicting the noise in the data. The model is trained to estimate the noise, which is then used
to calculate the mean of the denoised version of xt−1 from its noisy input xt. This leads to a
loss function that corresponds to the maximum likelihood estimation and can be simplified
further by setting certain time-dependent weights to one, yielding a simpler loss that often
results in better sample quality:

Lsimple = Ex0∼q0(x0),ϵ∼N (0,I),t∼Unif(1,T )
[
∥ϵ − ϵθ(

√
αtx0 +

√
1 − αtϵ, t)∥2

]
. (2.12)

This summarizes the essential process of fitting diffusion models by maximizing the ELBO,
with the goal of improving the generated samples quality.
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2.3. Reinforcement Learning for Difussion Models

2.3.1. Markov Decision Processes and Reinforcement Learning

2.3.1.1. General Definition

Reinforcement Learning (RL) is defined through its fundamental problem: learning from in-
teractions to achieve specific goals. This problem, which spans a wide range of applications,
characterizes any method capable of solving it as an RL method. The objective here is to
broadly outline the RL problem, emphasizing its potential applications and introducing its
mathematical structure.

2.3.1.2. The Agent-Environment Interface

As defined by Sutton and Barto [12], the reinforcement learning problem centers around the
interaction between an agent and its environment. The agent, as the decision-maker and
learner, selects actions based on the current state of the environment. Each action taken by
the agent leads the environment to present a new state and provide rewards. These rewards
are numerical values that the agent seeks to maximize, representing the core objective of any
reinforcement learning task. A complete specification of the environment, therefore, defines
the learning task and the challenges the agent must overcome to achieve its goal.

This continuous loop of action, state update, and reward is fundamental to the learning
process in reinforcement learning and is depicted in the conceptual model in Figure2.2 that is
described in Sutton and Barto’s text. The model demonstrates how the agent-environment
interaction underpins all decision-making and learning activities in reinforcement learning
systems.

Figure 2.2: The agent-environment interaction in reinforcement learning.

Here, the environment is described using a formal model consisting of state, action, and
reward spaces. Each of these elements plays a crucial role in defining the learning process:
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State Space
The state space S encompasses all potential configurations of the environment or agent,

with each state st ∈ S offering essential information for decision-making. This space can pro-
vide complete details in fully observable environments or limited data in partially observable
settings, affecting the learning and decision-making complexity.

Action Space
The action space A includes all actions available to the agent in any state, where each

action At ∈ A influences state transitions and outcomes. This space can range from a limited
set of discrete choices to a continuous range, depending on the application.

Reward Space
The reward space defines a function Rt : St × At → R, assigning a numerical reward to

each state-action pair. This function measures the immediate value of actions, guiding the
agent to maximize cumulative rewards over time, while balancing short-term gains against
long-term outcomes.

Objective
Combining these spaces, the agent’s objective in reinforcement learning is to discover a

policy π : St → At that maximizes the expected cumulative reward. This involves evaluating
how good it is to be in a certain state or to take a specific action in a state, which is formalized
through the concepts of the value function and Q-function. The learning process adjusts the
policy based on the observed outcomes to improve the expected rewards over time.

The interaction model outlined in Figure 2.2 visually summarizes these concepts, showing
how actions taken by the agent based on the current state lead to new states and rewards,
thus closing the loop of decision-making in reinforcement learning.

2.3.2. Denoising Diffusion Policy Optimization (DDPO)
In the work of Black et al. [13], a novel approach to training diffusion models using reinforce-
ment learning is proposed.

The foundation of this approach is a pre-existing diffusion model that could be pre-trained
or randomly initialized. When a fixed sampler is in place, this model dictates a sample dis-
tribution pθ(x0|c). The reinforcement learning (RL) objective within the denoising diffusion
context aims to maximize a reward signal r based on the generated samples and their re-
spective contexts. Thus, the denoising diffusion RL objective function JDDRL(θ) is expressed
as:

JDDRL(θ) = Ec∼p(c),x0∼pθ(x0|c)[r(x0, c)]

. This sets the framework for applying RL to diffusion models, with the goal of optimizing
for the maximum expected reward.

Denoising Diffusion Policy Optimization (DDPO) reinterprets the denoising process of
diffusion models as a multi-step Markov Decision Process (MDP). This perspective allows
the utilization of policy gradient methods to directly optimize the diffusion model parame-
ters with respect to a reward function r(x0, c), which assesses the quality and relevance of
generated samples in a specific context.
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In DDPO, the denoising process is structured as a sequence of decisions within this MDP
framework:

st ≡ (c, t, xt) π(at|st) ≡ pθ(xt−1|xt, c) P (st+1|st, at) ≡ (δc, δt−1, δxt−1)

at ≡ xt−1 ρ0(s0) ≡ (p(c), δT , N(0, I)) R(st, at) ≡

r(x0, c) if t = 0
0 otherwise

In the MDP framework, transitions span T timesteps culminating in a terminal state. The
aggregate reward for a trajectory is given by r(x0, c), thus optimizing JDDRL(θ) aligns with
the RL objective JRL(π). Employing a standard sampler, π takes the form of an isotropic
Gaussian, simplifying the model from the complex distribution pθ(x0|c). This allows for
straightforward evaluation of log-likelihoods and their gradients with respect to model pa-
rameters.

Given the capacity to compute likelihoods and their gradients, direct Monte Carlo estima-
tion of the gradients of JDDRL(θ) becomes feasible. DDPO leverages this capability to collect
denoising trajectories {xT , xT −1, . . . , x0} and perform parameter updates via gradient descent.

The first variant, DDPO with Score Function (DDPOSF), employs the score function
policy gradient estimator, also known as REINFORCE:

∇θJDDRL(θ) = E
[

T∑
t=0

∇θ log pθ(xt−1|xt, c)r(x0, c)
]

. (2.13)

This expectation is over the denoising trajectories produced by the current parameters θ.
While this estimator is straightforward, it permits only a single optimization step for each
round of data collection.

To facilitate multiple optimization steps, an importance sampling estimator is used (DDPOIS).
This allows the optimization to leverage data collected from a previous policy θold:

∇θJDDRL(θ) = E
[

T∑
t=0

pθ(xt−1|xt, c)
pθold

(xt−1|xt, c)∇θ log pθ(xt−1|xt, c)r(x0, c)
]

. (2.14)

Inaccuracy can arise if pθ diverges significantly from pθold
. To manage this, trust regions are

applied to constrain the magnitude of parameter updates. Practically, this is often achieved
using a clipping mechanism as in Proximal Policy Optimization (PPO).

The success of DDPOSF and DDPOIS hinges on the reward function design, r(x0, c). An
effective reward function is central to guiding the model towards desired outcomes, making its
design an important component in the application of these reinforcement learning algorithms
to diffusion models.

10



2.4. Continual Learning
The following sections on Continual Learning are based on the book [[11]].

2.4.1. General Definition

In this section, we explore the concept of continual learning, also known as life-long learning.
This learning paradigm involves a system acquiring knowledge from a series of varying data
distributions, denoted as p1, p2, . . .. A key characteristic of continual learning is the sequen-
tial nature of the learning process, where at each time step t, the model is presented with a
batch of labeled data:

Dt = {(xn, yn) ∼ pt(x, y) : n = 1 : Nt}. (2.15)

Here, pt(x, y) represents the unknown data distribution, formulated as pt(x)p(y|ft(x)),
with ft : Xt → Yt being the unknown prediction function. Each distinct data distribution
encapsulates a unique task.

The learner’s objective is to continually update its understanding of the underlying dis-
tribution, employing this knowledge to make predictions on an independent test set:

Dt
test = {(xn, yn) ∼ pt

test(x, y) : n = 1 : N t
test}. (2.16)

In class incremental learning, we focus on scenarios where the model encounters new class
labels over time, affecting the evolution of the distribution pt(x, y). At any time t, the test
set may include samples from the current class labels Yt, as well as all previously introduced
labels. This scenario emphasizes the need for the model to prevent forgetting previous classes
while adapting to new ones.

Contrasting this, we also consider situations where the test distribution only includes the
current class labels. Here, the model’s adaptability is tested, requiring efficient learning and
integration of new classes without the need to retain detailed information about past classes.
This approach aligns with online learning principles but poses unique challenges in balancing
new learning with retention of relevant past knowledge.

2.4.2. Class Incremental Learning

Class incremental learning, a widely studied form of continual learning, focuses on scenarios
where new class labels are introduced over time. The model assumes a true static prediction
function f : X → Y , but at each step t, it only encounters samples from (X, Yt) where
Yt ⊂ Y . For example, in digit classification from images, Y1 might include 0, 1, while Y2
might include 2, ..., 9, demonstrating the expanding label set.

This form of learning has been explored under various assumptions. If no well-defined
task boundaries exist, we encounter continuous task-agnostic learning. With well-defined
boundaries, we differentiate two sub-cases: discrete task-agnostic learning when boundaries
are unknown during training, and task-aware learning when boundaries are known.
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In task-aware scenarios, a common approach is to modify the MNIST and FashionMNIST
datasets, either by permuting pixels across all 10 classes (permuted MNIST) or presenting
a subset of 2 classes at each step (split MNIST and split FashionMNIST). The task-aware
setting can vary in whether the task identity is known during testing, impacting the learning
approach.

Class incremental learning can thus be seen as a problem with hierarchical output space,
representing a cross-product of task ID and class label. The challenge lies in efficiently
updating the model to accommodate new classes while retaining knowledge of previous ones,
balancing between catastrophic forgetting and the flexibility to adapt to new information.

2.4.3. Typical Phenomena in Continual Learning

In the realm of continual learning, specifically in scenarios of class incremental learning,
several phenomena are observed that significantly influence the learning dynamics [11]. This
section illustrates these phenomena, each represented through conceptual figures, highlighting
their implications on the learning process.

2.4.3.1. Catastrophic Forgetting

Catastrophic forgetting occurs when a model, upon learning new tasks, loses the ability
to perform well on previously learned tasks. This phenomenon is particularly evident in
class incremental learning, where previously learned classes can become less recognizable as
new classes are introduced. Figure (2.3) illustrates how learning new tasks incrementally
may degrade performance on earlier tasks if not managed properly. Here, the dotted line
represents the expected performance threshold.

Figure 2.3: Catastrophic forgetting

2.4.3.2. Forward Transfer

Forward transfer refers to the beneficial effect where learning previous tasks improves the
performance on future tasks. This phenomenon suggests that earlier learning can establish
foundational knowledge that aids in quicker or more effective learning of subsequent tasks.
In Figure 2.4 its depicted how training on past tasks can enhance the model’s ability to learn
new tasks beyond what would be achievable if it had started learning from scratch.
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Figure 2.4: Forward transfer

2.4.3.3. Backward Transfer

Backward transfer involves the situation where learning new tasks improves performance on
previously learned tasks. This can occur when newer information helps refine or correct the
model’s understanding of earlier tasks. The following visual representations (See Figure 2.5)
shows how training on future tasks can enhance the performance on past tasks, sometimes
correcting past inaccuracies or solidifying the knowledge base.

Figure 2.5: Backward Transfer

As we progress through the exploration of diffusion models within continual learning sce-
narios, we will observe how these phenomena—catastrophic forgetting, forward transfer, and
backward transfer—manifest in practice. The impact of these phenomena will be examined
in detail as we implement different continual learning strategies with our diffusion models.

2.5. Evaluation of Generative Models
Evaluating the effectiveness of generative models, particularly in the domain of image gen-
eration, involves several metrics that capture different aspects of model performance. This
section details the methodologies and metrics implemented to assess the quality and diversity
of the generated samples.
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2.5.1. Fréchet Inception Distance (FID)

The Fréchet Inception Distance (FID) [14, 15] is a widely used metric for evaluating the
quality of images generated by models [15]. It measures the distance between two distri-
butions: the generated images and the real images from the training set. Specifically, the
FID calculates the Fréchet distance between two Gaussian distributions, one fitted to feature
vectors of the real images and the other to the generated images. These feature vectors are
typically extracted using a layer of the Inception network, hence the name.

FID = ∥µm − µd∥2 + tr(Σd + Σm − 2(ΣdΣm)1/2). (2.17)

Here, µm and Σm are the mean and covariance of the model samples, and µd and Σd are
those of the real data samples. A lower FID score indicates better model performance, as
it suggests that the two distributions are closer, implying that the generated images more
closely resemble the real images.

For the evaluation in this research, the FID score is calculated using the ‘torchmetrics‘
library, which utilizes a pretrained Inception v3 model to extract the features from both the
generated and real images. While it is possible to train a custom model for feature extraction,
using a well-established, pretrained model like Inception v3 is preferred in this context. This
approach leverages the model advanced image recognition capabilities to ensure that the
features used for calculating the FID are robust and representative of all sets of images.
Using a pretrained model allows us to focus more on the core aspects of our work rather than
on the intricacies of model training for evaluation purposes.

2.5.2. Accuracy Over Specific Classifiers

Accuracy over classifiers is a key metric used to evaluate the effectiveness of generative models,
focusing on the discriminative accuracy of generated images. This metric quantifies how well
a model’s outputs are classified by a specific, pre-trained classifier and is indicative of the
realism and correctness of the generated images relative to known labels.

Formally, the accuracy is defined as:

Accuracy =
∑N

i=1 1(ŷi = yi)
N

. (2.18)

where N is the total number of images tested, ŷi is the predicted class label for the i-th im-
age, yi is the true class label, and 1 is the indicator function that is 1 if ŷi = yi and 0 otherwise.

This metric is derived by feeding generated images to a classifier that has been trained on
the original dataset. A high accuracy score suggests that the generated images align closely
with the class attributes defined in the training set. Thus, this metric underscores the model
capacity to produce images that are correctly categorized.
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Chapter 3

Proposed Methodology

This chapter outlines the proposed methodology designed to enhance continual learning in
generative models. After reviewing classical approaches and their limitations, we present
improved strategies and novel alternatives. Accompanying these descriptions are illustrative
diagrams depicting the training regimes across three separate tasks, each comprising two
classes. These visual representations serve to clarify the different methodologies and illustrate
how they address the challenges associated with continual learning.
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3.1. Classical Approaches to Continual Learning

3.1.1. Fine-tuning

Fine-tuning is a foundational technique in the field of continual learning for generative mod-
els. It is predicated on the principle of incremental learning, where a model pre-trained on a
specific task is subsequently adjusted to perform additional tasks. As depicted in Figure 3.1,
the model initially trained to generate classes 0 and 1 (Task 1) is sequentially updated to
handle classes 2 and 3 (Task 2), and later classes 4 and 5 (Task 3).

In each stage of fine-tuning, the model parameters are optimized to minimize the loss on
the new tasks data. However, without mechanisms to retain previously acquired knowledge,
the model performance on prior tasks tends to degrade, a phenomenon known as catastrophic
forgetting [5, 7]. This issue will be further explored and demonstrated in subsequent chapters
through corresponding experiments.

Despite the simplicity and directness of the fine-tuning approach, its susceptibility to
forgetting makes it less ideal for scenarios that require the model to maintain performance
across all learned tasks. Figure 3.1 shows the sequential nature of training in fine-tuning,
which, while straightforward, necessitates the development of additional strategies to mitigate
forgetting and sustain model robustness throughout the learning process.

Figure 3.1: Illustration of the fine-tuning process across three sequential
tasks. The DDPM model is first trained on Task 1 and subsequently fine-
tuned for Tasks 2 and 3, with each task introducing new classes.
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3.1.2. Experience Replay

Experience Replay addresses catastrophic forgetting by incorporating the rehearsals of prior
knowledge into the continual learning process [3]. As visualized in Figure 3.2, this method
involves a continual learning model that retains a memory buffer, wich are samples from past
data. When the model progresses to a new task, for example moving from learning classes
0,1 to classes 2,3, it doesn’t only focus on the new classes, instead it reuses the stored samples
from the buffer along side the new samples. This process is repeated as the model encounters
new tasks, with the buffer accumulating a diverse set of samples to ensure comprehensive
rehearsal.

In practical terms, Experience Replay can be implemented in generative models through
mechanisms such as a fixed-size memory buffer that captures the essence of previous data
or through more dynamic approaches that adapt the stored samples based on their signif-
icance. The end goal is to maintain the generative model’s performance across all learned
distributions, ensuring it generates high-quality and diverse outputs as it continues to learn
new tasks.

One significant drawback of Experience Replay is the requirement for additional memory
to store data from previous tasks. This can be problematic when dealing with large datasets
or when the number of tasks is high, leading to scalability issues.

Figure 3.2: The process of Experience Replay in continual learning for gen-
erative models, showing the training sequence over three tasks and the in-
tegration of old and new data in a buffer.
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3.1.3. Generative Replay

Generative Replay, an evolution of Experience Replay, uses a generative model to recreate
the data of previous tasks [3], addressing the problem of catastrophic forgetting with greater
efficiency. As illustrated in Figure 3.3, after the primary model is trained on Task 1 (classes
0,1), the generative model samples examples from this learned distribution to retain the
knowledge. When the model progresses to Task 2 (classes 2,3), it not only learns from the
new data but also from the synthetic samples of Task 1, preserving previous knowledge with-
out the need to store actual past data. This process is cyclically repeated for the next tasks,
such as Task 3 (classes 4,5), each time leveraging synthetic samples from all previous tasks
to ensure learning continually.

This strategic replay of generated samples is not only memory efficient, but also promotes
a more nuanced retention of knowledge, as the generative model can be fine-tuned to produce
samples that are most beneficial for the current learning phase. Consequently, Generative
Replay could be a tool used in continual learning frameworks for generative models, ensuring
that the synthesis of new data does not erode the fidelity of previously acquired knowledge.

A notable drawback of Generative Replay is the degradation of synthetic data quality over
time [3, 16]. As the generative model reproduces data for earlier tasks, slight deviations can
accumulate, leading to a drift from the original data distribution and characteristics. This
issue is known as ’data drift’ and can cause the model to lose its knowledge of previous tasks.

Figure 3.3: The Generative Replay process in continual learning, depict-
ing the training flow over three tasks with synthetic sample generation for
knowledge retention.
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3.2. Proposed Improved Approaches
This chapter introduces two novel approaches that apply reinforcement learning to adjust
diffusion model outputs. The core hypothesis is that a model can be steered to generate more
representative samples of a dataset by employing a reward function that measures sample
quality. By doing so, we aim to align the model closely with the data distribution, enhancing
the utility of generative replay in continual learning scenarios.

3.2.1. Aligning Diffusion Model Outputs in Continual Generative
Replay

Our approach, depicted in the schematic below, is the integration of reinforcement learn-
ing with generative replay, referred to as CL-RL (Continual Learning with Reinforcement
Learning). Our hypothesis is that by enhancing the sample quality through reinforcement
learning, specifically with Denoising Diffusion Probabilistic Models (DDPMs) optimized us-
ing the Denoising Diffusion Policy Optimization (DDPO) algorithm, we can maintain closer
alignment with the original data distribution.

Figure 3.4: Improving Sample Quality Directly on The Diffusion Model

The method involves initially training a diffusion model on the original dataset, referred
to as Task 1. Subsequently, but prior to commencing training on Task 2, a reward model is
employed to enhance the quality of the samples generated by the diffusion model. This iter-
ative process of training and refinement via Reinforcement Learning is repeated throughout
the successive stages of continual learning.

As a result, the model is anticipated to maintain a more consistent performance through
a series of tasks, addressing catastrophic forgetting by progressively preserving its capacity
to regenerate the core attributes of the data.
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3.2.2. Teacher-Student Diffusion Models in Continual Generative
Replay

Experimentation shows that Reinforcement Learning, while improving diffusion model sam-
ple quality, can cause overparametrization, limiting the model’s adaptability to new tasks.
To address this, we introduce a teacher-student method in continual generative replay.

This method uses two versions of the same base model: the Student remains unchanged
after initial training to retain learned information, and the Teacher, actively trained with
Reinforcement Learning, refines sample generation. Guided by a reward function, the Teacher
model produces enhanced samples for retraining the Student alongside new data, mitigating
overfitting to previous tasks.

Figure 3.5: Improving Sample Quality on a Teacher Diffusion Model

This dual strategy ensures the student model continually benefits from refined generative
replay, preventing catastrophic forgetting up to a point, and promoting better performance
throughout successive learning tasks. The model progresses by alternating between receiving
enhanced samples from the Teacher and training on subsequent tasks, thus maintaining a
more balance aproach between learning new information and retaining previous knowledge.
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3.3. Reward Functions Design
The training regimes with Reinforcement Learning heavily rely on the design of its reward
functions. These functions are needed for guiding the learning process and setting the model’s
goals. Specifically in our case, the reward functions must be dynamic and robust, adapting
to evolving data distributions to consistently direct the model toward producing high-quality
outputs.

In this study, we utilize a basic classification model as the reward function. This approach
rests on the premise that a classifier can differentiate between correct and incorrect samples,
without bias towards their specific characteristics. This ensures that the diffusion model
produces samples that accurately reflect the targeted classes. The inherent diversity of the
model’s generative capabilities is assumed to maintain variation in the output.

3.3.1. Classifier Alignment

This approach employs the output of a classifier as the reward mechanism within our rein-
forcement learning framework. The procedure begins by prompting the diffusion model to
generate a sample that ideally belongs to a specified class of interest. Once the sample is
generated, it is fed into a classifier, which then assesses the likelihood that the sample belongs
to the intended class (See Figure 3.6). This probability serves as a measure of alignment and
is used to compute the reward for the diffusion model.

The reward is directly proportional to the classifiers confidence that the generated sample
accurately represents the desired class. This method not only reinforces the generation of
accurate samples but also integrates with the diffusion model capabilities to explore a diverse
set of outputs.

Figure 3.6: Classifier Output Rewards
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3.3.2. Mixed Classifier and Cosine Distance Alignment

In this method, we extend the previous classifier based reward mechanism by incorporating
cosine similarity to further refine the reward system. Initially, the process is similar to that
of the Classifier Alignment, the diffusion model is tasked with generating a sample aimed
to represent a specific class. Simultaneously, a subset of data is sampled from the original
model, before further refinement with Reinforcement Learning, to serve as a reference set.

Once the sample is generated, its probability of belonging to the targeted class is evaluated
by the classifier. In addition, the average cosine similarity between the generated sample and
the reference set is computed. These two metrics, the classifier probability and the cosine
similarity, are then combined to create a mixed reward metric (See Figure 3.7).

This mixed metric approach serves as an implicit regularization technique, ensuring that
the reward does not cause the model to deviate excessively from its original sample generation
capabilities. By integrating both class alignment and similarity to the original generated data
distribution, this method prevents the model from overly concentrating on certain modes of
generation, thus better preserving generative diversity and maintaining high sample quality.

Figure 3.7: Classifier and Cosine Distance Reward
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Chapter 4

Experiments

4.1. Dataset
For our experiments, we employed two datasets: MNIST1 and FashionMNIST2. These datasets
are standard benchmarks in machine learning for image recognition. MNIST, which contains
handwritten digits, is ideal for simple classification and generative tasks. On the contrary,
FashionMNIST offers a more diverse set of classes with various clothing items, posing a more
complex challenge.

Figure 4.1: Sample images from the MNIST (top) and FashionMNIST (bot-
tom) datasets. Image obtained from [17]

In the context of our study, both datasets were adapted to suit continual learning scenar-
ios with diffusion models. We splited these datasets into five separate tasks, composed of
two classes each. For example, in MNIST, the first task correspond to the classes ’0’ and ’1’,
while in FashionMNIST the first task correspond to the classes ’T-shirt’ and ’Trouser’. Table
4.1 contains the dataset divisions in different tasks.

1 MNIST dataset: http://yann.lecun.com/exdb/mnist/
2 FashionMNIST dataset: https://github.com/zalandoresearch/fashion-mnist
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Table 4.1: Tasks and their corresponding classes for MNIST and Fashion-
MNIST datasets.

Task MNIST Classes FashionMNIST Classes
1 0, 1 T-shirt/top, Trouser
2 2, 3 Pullover, Dress
3 4, 5 Coat, Sandal
4 6, 7 Shirt, Sneaker
5 8, 9 Bag, Ankle boot

All the diffusion models used in our experiments were trained sequentially on these tasks.
Each model is tasked with generating images that the classifier, trained on the complete
dataset, evaluates. The classifier provides rewards based on the likelihood that the gener-
ated images belong to the correct classes. This reward system supports the diffusion models
in refining their generative abilities across successive tasks, embodying a continual learning
framework where the model adapts to new data while retaining effectiveness on previously
learned tasks.

24



4.2. Diffusion Model Design an DDPO Training

4.2.1. Architecture of the diffusion model

Our diffusion model utilizes the U-Net architecture with class conditioning, wich is commonly
used in training these smaller models. At its core, it features an embedding layer that
infuses class information into the feature space, enhancing class-specific generation. Attention
mechanisms are embedded within the architecture, vital for preserving spatial details through
both the contraction and expansion paths of the network.

Table 4.2: Key enhancements to the U-Net architecture

Feature Description
Class Embedding An embedding layer to encode class informa-

tion and guide the generative process.
Attention Modules Placed in downsampling and upsampling

stages to retain fine details.
Network Depth Additional ResNet layers increase model ca-

pacity.
Channel Width More channels per layer to capture complex

features.
Resolution Operates on 28x28 images, aligning with

dataset standards.
Output Single-channel output tailored for grayscale

images.

The architecture’s design is specifically tuned for 28x28 images and is configured to gen-
erate single-channel outputs, catering the MNIST and FashionMNIST data structure. By
integrating class-conditioning with a fortified U-Net structure, the model is well-equipped for
continual learning, adept at producing class specific images. For the technical specifics, see
the complete ClassConditionedUnet class definition in Annex A.

4.2.2. DDPO Training Algorithm

We are going to outline the DDPO algorithm used for further refining the sample quality of
the generated images. The algorithm is built to iteratively improve the model by adjusting
to the rewards computed based on classifier outputs. Below we outline the main components
of this training algorithm.

Algorithm Overview
The DDPO training algorithm enhances the diffusion model by leveraging a classifier

model to provide policy updates. The procedure involves generating samples, computing
rewards, and adjusting model weights based on the reward signals.
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Initialization
At the beginning of training:

• Model weights for both the diffusion model and classifier are loaded from predefined
paths.

• The models are transferred to the appropriate computational device (e.g., GPU).

• An AdamW optimizer is initialized with specific learning parameters and weight decay
to manage the model updates.

Advantage Calculation
A custom advantage tracker is used to store and update advantages based on the rewards

received and the predictions made. This tracker helps in normalizing the rewards and scaling
the policy updates effectively.

Sampling and Reward Computation
For each epoch:

• The model samples a set number of images, divided into batches according to class
labels.

• Each sample undergoes evaluation where a reward is computed using a classifier model.
The reward reflects how well the sample aligns with the desired output characteristics.

Policy Update
After collecting samples and rewards, for each inner epoch:

• Rewards and other metrics are consolidated across all batches.

• The model enters a training loop where the optimizer updates the model weights based
on the computed loss, which integrates the rewards (via advantages) and log probabili-
ties.

• Gradient clipping is applied during optimization to stabilize training.

Optimization and Logging
Throughout the training process, the optimization steps are carefully monitored, and per-

formance metrics such as loss are logged for each batch. This iterative process helps in
fine-tuning the model by focusing on enhancing the generation of high-quality, class-specific
images.

Output
At the end of training, the updated diffusion model is returned along with a log of all

rewards collected during the training, providing insights into the model’s performance and
the effectiveness of the training regimen.

This training algorithm is central to our approach, enabling the diffusion model to adapt
continually and effectively to the task requirements while ensuring the generative quality
remains high. The full algoritm can be found below.

26



Algorithm 1 Train diffusion model using DDPO
Require: diffusion_model, classifier_model, diffusion_model_path, classifier_model_path
Require: num_epochs, num_inner_epochs, num_samples_per_epoch, batch_size
Require: lr, eta, clip_advantages, clip_ratio, device, class_labels

1: Load state dicts for diffusion_model and classifier_model from paths
2: Transfer models to computational device
3: Initialize optimizer (AdamW) with learning rate and weight decay
4: Initialize custom advantage tracker
5: for epoch in 1 to num_epochs do
6: Initialize lists for predictions, log probabilities, advantages, labels, rewards
7: Calculate number of batches from num_samples_per_epoch and batch_size
8: Divide class_labels into batches
9: for batch in 1 to num_batches do

10: Sample images with diffusion_model using current batch labels
11: Compute rewards using classifier_model
12: Update advantage tracker with rewards
13: Store intermediate states, log probabilities, rewards
14: end for
15: Concatenate all batch data
16: for inner_epoch in 1 to num_inner_epochs do
17: for sample in batched data do
18: Perform gradient descent to update diffusion_model
19: Apply gradient clipping
20: Log training loss
21: end for
22: Clear computational cache
23: end for
24: end for
25: return trained diffusion_model and all rewards

A key feature of this algorithm is its division into two learning phases: exploration and
exploitation. The exploration phase, defined by the num_epochs parameter, involves gen-
erating new images for evaluation. This phase aims to explore a variety of strategies. The
exploitation phase, defined by the num_inner_epochs, uses these images for multiple learn-
ing rounds to refine the model performance and strengthen successful strategies. A more
detailed analysis of both phases can be found in the Annex B, where the performance of the
Reinforcement Learning algorithm is further studied.
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4.3. Detailed Overview of the Classifiers for Continual
Learning with Reinforcement Learning

This section explores the architectures and performances of classifiers integral to our con-
tinual learning framework. These classifiers are crucial for enhancing the diffusion models,
ensuring the output samples are both diverse and class-accurate. Their ability to accurately
distinguish between correct and incorrect samples significantly impacts the effectiveness and
reliability of the learning process. Thus, developing robust classifiers is essential for improv-
ing model performance in continual learning scenarios.

In the following subsections, we detail the specific architectures employed for the MNIST
and FashionMNIST classifiers, along with performance metrics evaluated on their respective
testing datasets. Additionally, observations on the classifiers performance will be discussed,
providing insights into their efficacy within our continual learning setup.

4.3.1. MNIST architecture and performance

The MNIST classifier utilizes a fully connected neural network architecture. The network
consists of three fully connected layers:

• Input Layer: Flattens 28 × 28 images into 784 units and feeds into the first hidden
layer.

• Hidden Layer 1: Converts 784 units to 256 hidden units.

• Hidden Layer 2: Reduces 256 hidden units to 64 hidden units.

• Output Layer: Maps 64 hidden units to 10 output classes for the digits.

This architecture employs ReLU activations after each of the first two layers and does not
use any convolutional or pooling layers, making it a purely feedforward model. The model
was trained on the MNIST dataset for 10 epochs with a learning rate of 0.001 using the
Adam optimizer and Cross-Entropy Loss as the criterion.

4.3.1.1. Performance Metrics

The performance of the MNIST classifier on the test dataset is summarized as follows:

Table 4.3: Performance metrics of the MNIST classifier.

Metric Value
Accuracy 0.9746
Precision 0.9743

Recall 0.9744
F1 Score 0.9743
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Figure 4.2: Confusion Matrix of the MNIST Classifier (Over 10 classes)

The classifiers high performance is essential for our reinforcement learning algorithm suc-
cess. Its role is critical in accurately predicting whether samples from the diffusion model
represent their respective classes, directly impacting the feedback mechanism.

High accuracy ensures that the reinforcement learning algorithm receives reliable signals
to fine-tune the generative process. In contrast, poor classifier performance can lead to in-
accurate feedback, quickly degrading the quality of the samples. The significance of this
relationship will be further explored in our experiments with the FashionMNIST dataset,
where we find that less than perfect performance can directly affect the model’s genera-
tion capabilities, rendering the reinforcement learning in continual learning methodologies
unstable.
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4.3.2. FashionMNIST Architecture and Performance

The FashionMNIST classifier leverages a simple yet effective neural architecture designed
for the FashionMNIST dataset, incorporating artificially corrupted image data to enhance
training dynamics. The network structure includes:

• Input Layer: Converts flattened 28 × 28 images into a 784-unit vector.

• First Hidden Layer: Maps 784 input units to 256 hidden units.

• Second Hidden Layer: Reduces from 256 to 64 hidden units.

• Output Layer: Extends to 11 output units, 10 for the standard FashionMNIST classes
plus one additional class for corrupted images.

This model was trained over 10 epochs using the Adam optimizer with a learning rate
of 0.001 and Cross-Entropy Loss. The inclusion of an artificial class aimed to simulate and
identify corrupted images, facilitating the model’s capability to handle low quality or altered
images, similar to those generated by diffusion models.

4.3.2.1. Performance Metrics

Performance on the testing dataset is summarized below:

Table 4.4: Performance metrics of the FashionMNIST classifier.

Metric Value
Accuracy 0.8849
Precision 0.8846

Recall 0.8849
F1 Score 0.8847
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Figure 4.3: Confusion Matrix of the Fashion MNIST Classifier (Over 10
classes)

4.3.2.2. Training with Corrupted Images

Training utilized the FashionMNISTWithArtifacts (See Annex C) dataset, which adds a class
for corrupted images to mimic potential quality issues encountered in diffusion models. While
this addition improved the model performance, by helping it distinguish between authentic
and corrupted images, it has not achieved a level of performance that accurately simulates
real preferences.

Consequently, this has sometimes led to the incorrect assignment of rewards, adversely
impacting the reinforcement learning algorithm. This highlights the critical need for well
calibrated reward functions in the learning dynamics of machine learning models, when they
are subjected to Reinforcement Learning enviroments.
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Chapter 5

Results

5.1. Results Overview
In this section, we present tables that include previously discussed metrics essential for in-
terpreting and properly characterizing the success and failure of our implementations.

We will showcase our results through both quantitative metrics and visual examples. This
dual approach will allow us to discuss the relevance of each evaluation method and their
implications.

The tables provide the average values for each task performed on training the diffusion
model in the MNIST and FashionMNIST datasets. While these averages offer a summary
of performance, they do not fully capture the whole behavior of each individual task. For a
more detailed analysis, the complete table of results is available in Annex D.
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5.1.1. Results for Model Trained on MNIST

5.1.1.1. Quantitative Metrics

Table 5.1: MNIST Data FID Score Evolution (Lower is better)

Task Average Value Finetuning Gen Replay Exp Replay CL-RL CL-RL-ts
Basic Mixed Basic Mixed

Task 1 180.89 183.76 179.86 155.13 157.85 165.60 181.53
Task 2 224.98 205.78 153.43 196.75 204.73 214.09 203.40
Task 3 241.61 224.35 140.19 211.94 203.47 207.90 203.96
Task 4 267.50 240.82 141.75 239.08 235.65 225.27 229.21
Task 5 289.28 268.55 140.90 239.16 236.83 217.69 219.69
Average 240.85 224.65 151.22 208.41 207.7 206.10 207.55

Table 5.1 illustrates the FID score evolution across all five tasks, with lower scores indicat-
ing better performance. Experience Replay achieves the lowest FID scores, aligning well
with the expected behavior and demonstrating its effectiveness in preserving sample quality
across tasks. Although Generative Replay performs better than Finetuning, it still falls
short compared to Experience Replay. All of our proposed methodologies outperform
the baseline Generative Replay, with the best-performing one being the Teacher-Student
CL-RL with a Basic Reward. While this approach does not fully bridge the gap between
Experience Replay and Generative Replay, it shows promising results on this metrics.

Table 5.2: MNIST Data Accuracy Evolution

Task Average Value Finetuning Gen Replay Exp Replay CL-RL CL-RL-ts
Basic Mixed Basic Mixed

Task 1 0.845 0.795 0.830 0.913 0.898 0.840 0.735
Task 2 0.380 0.546 0.873 0.457 0.433 0.464 0.470
Task 3 0.320 0.497 0.695 0.405 0.424 0.478 0.453
Task 4 0.266 0.360 0.835 0.385 0.399 0.470 0.393
Task 5 0.187 0.289 0.759 0.367 0.343 0.378 0.377
Average 0.399 0.497 0.798 0.505 0.499 0.526 0.485

Table 5.2 presents the mean accuracy evolution across all five tasks, where accuracy is mea-
sured by the classifier used during training. Higher accuracy indicates better performance.
Consistent with the results from the FID table, Experience Replay demonstrates the best
performance, achieving the highest accuracy scores across all tasks. Our methodology, uti-
lizing Teacher-Student CL-RL with a Basic Reward, obtains the second-best results,
clearly outperforming the baseline implementations of Generative Replay and Finetun-
ing. Although this metric favors our approach, it is important to note that our proposed
reinforcement learning methodology is, in some sense, directly optimized for this metric.
Consequently, while the accuracy scores offers insight into the class preservation capabilities
of our methodology, they also reflect an expected outcome that aligns with our optimization
objectives.

In the following figures we note the temporal evolution of the previously mentioned metrics,
this enables a more comprehensive understanding of the learning dynamics through different
tasks. We will further discuss this behaviour in the next chapter.
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Figure 5.1: FID Evolution of Baselines: Evolution of baselines over the
MNIST dataset

Figure 5.2: FID Evolution Base Methodology: Evolution for both reward
configurations

Figure 5.3: FID Evolution Teacher-Student Methodology: Evolution for
both reward configurations
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Figure 5.4: Accuracy Evolution of Baselines: Evolution of baselines over
the MNIST dataset

Figure 5.5: Accuracy Evolution Base Methodology: Evolution for both re-
ward configurations

Figure 5.6: Accuracy Evolution Teacher-Student Methodology: Evolution
for both reward configurations
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5.1.1.2. Reference Images for Baselines

To provide more context and a deeper analysis, we present reference images of the generations
obtained for every continual learning scenario. These images offer a more qualitative analysis
that is not fully captured by the metrics obtained previously.

Task 1 Task 2 Task 3 Task 4 Task 5

Figure 5.7: Experience Replay: Evolution of the generation capabilities
for each class after each task. Each row corresponds to two classes, with the
first three images of the first class and the last three images of the second
class.

Figure 5.7 represents the best results we obtained in continual learning via replay methods.
We observe a clear evolution over the different stages, with a mode collapse to previously seen
classes, as expected due to the experience replay training setup. However, the performance
aligns with the behavior observed in the previous metrics.

Task 1 Task 2 Task 3 Task 4 Task 5

Figure 5.8: Generative Replay

In Figure 5.8, a representation of the baseline generative replay methodology is presented.
We observe poor performance closely related to the previously obtained metrics. These visual
representations provide a qualitative comparison with our methodology. As this implemen-
tation closely resembles our method, it is important to get a broader view when evaluating
the impact and improvements of the proposed method.

36



5.1.1.3. Reference Images for New Implementations

The following figures provide reference outputs from our implementations and methodology.
We describe the results and offer a qualitative comparison with the baselines. These findings
are related to previously obtained quantitative metrics, further validating the promising
performance of our methodology.

Task 1 Task 2 Task 3 Task 4 Task 5

Figure 5.9: Continual Generative Replay Base Reward

Task 1 Task 2 Task 3 Task 4 Task 5

Figure 5.10: Continual Generative Replay Base Mixed Reward

From the results in Tables 5.1 and 5.2, further validated by visual inspection, we observe
better preservation of previous tasks when training on a new task at each step. Although
this preservation is not balanced (for example, in task 2, "zeros" are better preserved than
"ones"), there is a clear improvement in structure preservation. Later stages exhibit more
structured outputs rather than pure noise, as seen in Figure 5.8.

This indicates that the model aligns better with the preservation task and that the Re-
inforcement Learning process is identifying and favoring structures that closely resemble
numbers. Although it’s still far from perfect, this provides a better understanding of the
methodology capabilities.
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Task 1 Task 2 Task 3 Task 4 Task 5

Figure 5.11: Continual Generative Replay Teacher-Student Reward

Task 1 Task 2 Task 3 Task 4 Task 5

Figure 5.12: Continual Generative Replay Teacher-Student Mixed
Reward

Figure 5.11 corresponds to the best implementation we achieved in terms of metrics and
overall performance, and our best attempt on bridging the gap between Experience Replay
and Generative Replay. Although not all classes perform best (for example, in task two, we
see difficulties in learning the classes "two" and "three"), the overall performance is the best in
contrast with other Generative Replay implementations. By the end of task five, we obtain
reasonable results for the classes "six" and even "four" and "five." Additionally, we observe
some structural preservation in the previous classes.

Figure 5.12 performs similarly, enhancing the results previously obtained with the base
methodology and providing further validation of the proposed Teacher-Student training
methodology. Overall this aproach correspond to our best work at enhancing the contin-
ual learning capabilities in Diffusion Models using Generative Replay.
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5.1.2. Results for Model Trained on FashionMNIST
The following metrics and results come from the implementation of the mehtodology in a
more complex scenario, where our reward model is not very strong, as the classifier suffers
from less from ideal performance. We will show evidence of the pitfalls of our methodology
and where is ill suited to be applied in continual learning. Specifically in the case that the
reward model is sub optimal and doesnt yield informative rewards.

5.1.2.1. Metrics for models trained on FashionMNIST

Table 5.3: FashionMNIST Data FID Score Evolution

Task Average Value Finetuning Gen Replay Exp Replay CL-RL CL-RL-ts
Basic Mixed Basic Mixed

Task 1 267.53 259.46 259.52 241.66 247.45 259.46 257.54
Task 2 301.31 285.79 278.36 292.75 288.88 293.70 289.58
Task 3 254.95 259.11 269.76 294.91 293.31 293.77 287.98
Task 4 261.18 275.02 257.37 317.41 298.98 312.40 289.57
Task 5 265.75 275.61 261.37 298.48 295.27 296.45 298.82
Average 270.14 270.99 265.27 289.04 284.77 291.156 284.69

The table 5.3 gives us a good representation of the pitfalls of using a subpar reward
model, but doesn’t tell the whole story. We clearly see that all baseline implementations have
better results than the implementation using Reinforcment Learning. We find that the best
performance comes from Experience Replay, surprisingly the second best performance
comes from Finetuning. We later see that this doesn´t always correlate with the best
preservation of generative capabilities. Also signaling the limitations of the metrics we are
using for evaluation.

Table 5.4: FashionMNIST Data Accuracy Evolution

Task Average Value Finetuning Gen Replay Exp Replay CL-RL CL-RL-ts
Basic Mixed Basic Mixed

Task 1 0.878 0.811 0.838 0.845 0.871 0.808 0.786
Task 2 0.367 0.600 0.725 0.346 0.401 0.409 0.410
Task 3 0.303 0.508 0.633 0.366 0.386 0.401 0.370
Task 4 0.206 0.260 0.567 0.314 0.232 0.286 0.273
Task 5 0.178 0.219 0.629 0.267 0.258 0.241 0.215
Average 0.386 0.479 0.678 0.427 0.429 0.429 0.410

The table 5.4 provides results that offer a more comprehensive picture. We see that the
reward model, which we are using for evaluation, aligns the diffusion model with outputs that
we identify as belonging to each specific class. The fact that the accuracy of the classifier we
use as a reward does not represent a near perfect preference heavily disrupts the performance
of the model. This is reflected in the results of both tables, where clearly the FID score is
worse than the base Generative Replay implementation, but the final accuracy results are
better or comparable to it. This strongly indicates that we are optimizing for performance
over the reward, and that this performance does not align with the diffusion model generative
capabilities.

The following figures illustrate the temporal evolution of the obtained metrics, providing
a visual representation of behavior across tasks. We will further discuss the results in the
next chapter, offering a more complete and comprehensive analysis.
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Figure 5.13: FID Evolution of Baselines: Evolution of baselines over the
FashionMNIST dataset

Figure 5.14: FID Evolution Base Methodology: Evolution for both reward
configurations

Figure 5.15: FID Evolution Teacher-Student Methodology: Evolution for
both reward configurations
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Figure 5.16: Accuracy Evolution of Baselines: Evolution of baselines over
the FashionMNIST dataset

Figure 5.17: Accuracy Evolution Base Methodology: Evolution for both
reward configurations

Figure 5.18: Accuracy Evolution Teacher-Student Methodology: Evolution
for both reward configurations
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5.1.2.2. Reference Images for Baselines

Task 1 Task 2 Task 3 Task 4 Task 5

Figure 5.19: Experience Replay

In Figure 5.19, we observe reasonable class preservation across tasks, with improvements
in class representation in the later tasks for classes that were learned at the beginning. This
is related to the fact that later classes have great similarities with early classes, for example,
class "T-shirt" (0) and class "Coat" (4). This behavior corresponds to the phenomenon called
Backward Transfer, which we previously explained in the Background and Theory chapter.

Task 1 Task 2 Task 3 Task 4 Task 5

Figure 5.20: Generative Replay

Figure 5.20 shows the generative capabilities of the Generative Replay approach. Sim-
ilar to the previous implementation with the MNIST dataset, we see poor class retention as
we train on subsequent tasks. Although some structure from previous classes is retained,
there is no instance where the classes are clearly defined beyond the task they are trained
on. This is coherent with the obtained metrics that we have previously shown.
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5.1.2.3. Reference Images for New Implementations

Task 1 Task 2 Task 3 Task 4 Task 5

Figure 5.21: Continual Generative Replay Base Reward

Task 1 Task 2 Task 3 Task 4 Task 5

Figure 5.22: Continual Generative Replay Base Mixed Reward

Figures 5.21 and 5.22 highlight the issue with our implementation and the use of a subpar
preference model as a reward. In this case, the classifier aligns the diffusion model with a
downstream objective that is not always aligned with the class we are trying to represent,
making it prone to misaligning the generative diffusion model. We see almost no struc-
ture preservation (generated images are visually much noisier), and there is no retention of
previous knowledge across tasks.
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Task 1 Task 2 Task 3 Task 4 Task 5

Figure 5.23: Continual Generative Replay Teacher-Student Reward

Task 1 Task 2 Task 3 Task 4 Task 5

Figure 5.24: Continual Generative Replay Teacher-Student Mixed
Reward

From visually inspecting the generations in both scenarios of continual learning with the
teacher-student methodology (Figures 5.23 and 5.24), we observe the same drop in perfor-
mance and undesired behavior as seen previously. There is almost no structure preservation
and no previous class retention as we progress with training on new tasks.

The use of the teacher-student methodology allows us to prevent overparametrization and
mode collapse during training. However, if the reward model yields poor and unrepresentative
results, the data used for retraining will inevitably affect the diffusion model negatively,
creating a mismatch between the original target distribution and the optimized one.
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Chapter 6

Discussion

In this chapter, we will discuss the behavior of the different continual learning scenarios that
have been evaluated. We will first review each experiment and highlight the key takeaways,
detailing the important conclusions and providing a comparative analysis between them.
Then, we will summarize all of our findings, detailing the key takeaways from the experimental
process, the proposed methodology, main challenges, and potential improvements.

6.1. Results Overview for MNIST
An overview of the results obtained for MNIST is provided in this section. This includes a
discussion of the different implementations, both qualitative and quantitative observations,
and a comparison between methodologies.

6.1.1. Baseline Implementations
Experimentally, we confirmed that the best performance, and still the state of the art in
replay methods, corresponds to Experience Replay. Both Finetuning and Generative
Replay fall short in terms of output quality and performance across the board. Let us in-
spect them one by one.

The basic approach of Finetuning is an initial approximation in an attempt to contin-
ually learn new concepts and tasks, but it rapidly falls short in terms of performance. It
shows almost no class retention from previous tasks and degrades rapidly as we continually
train the model (see Figure 5.1). This behavior is expected, as we are reparametrizing the
diffusion model without penalizing forgetting in any way, which inevitably leads to subpar
results in continually learning new classes. This provides a good reference for why replay
methodologies are so attractive and what kind of performance we can expect when there is
no learning from previous tasks during training on new tasks.

The results from Generative Replay are objectively better than those from Finetun-
ing. There is clear retention of previous classes and tasks during training, but as we move
from one task to another, we see a progressive downgrade in the performance on the older
classes (more detailed results can be found in Annex D). When visually inspecting the gener-
ative performance of our diffusion model, we find that there is some structure preservation of
the previous classes when training on new tasks. However, this is highly dependent on how
similar the new classes are to the previously learned ones. Most of the images generated from
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previous tasks show noisier samples with almost no discernible pattern of previous classes.
This results serve as the baseline for replay methods and are key to validating the results of
our custom implementation, that is based on this methodology.

Finally, Experience Replay is the state of the art in terms of performance on the
FID score evaluation and accuracy, exceeding by far the results obtained with Generative
Replay. We observe signs of backward transfer during training (see Figure 2.5 for reference).
This behavior is interesting because it suggests that the order in which the different classes
are learned is important. In this particular case, the class "seven" is improved upon when we
learn the class "nine". We will see that in our proposed methodology, this behavior appears
again, indicating that the order in which we learn the classes might be as important as trying
to preserve old classes via replay.

The qualitative results further validate Experience Replay as the goal we are aiming
to achieve. There is visual class retention across the board, and we still get informative and
clear images of the initially learned classes in the later stages of training on new tasks.

6.1.2. Custom Implementations

The use of the proposed methodology, leveraging Reinforcement Learning to refine the sample
quality of the diffusion model in replay scenarios, yields positive results. The best performing
experiment, utilizing Teacher-Student CL-RL with a Basic Reward, obtains the best
results in the Generative Replay based methodologies, all implementations are significantly
better than Generative Replay across the board. In terms of metrics, both the FID score
and accuracy are consistent, strongly indicating that the model is exhibiting previous class
retention behaviors.

Using Reinforcement Learning here enhances two properties of the diffusion model simul-
taneously. Firstly, it improves the sample quality of the task we have just trained on, giving
us control over the type of samples we aim to generate via a reward. Secondly, it realigns the
model on previously seen classes. However, the main restriction is that the model already
needs to be capable of generating samples from these classes to be further optimized, as the
algorithm is a preference enhancement algorithm. so as we progress training and the genera-
tive capabilities deteriorate, we would expect the performance of the algorithm to deteriorate
too, wich is indeed the case.

As we previously observed in the Experience Replay scenario, there are signs of back-
ward transfer during training. This is a desired characteristic and further validates the fact
that using Reinforcement Learning in these scenarios is an interesting approach to improve
the performance of generative models in continual learning settings.

Through visual inspection of the generated samples, we see that all implementations using
our methodology clearly outperform the baseline with Generative Replay. We observe
strong previous class retention, in line with the obtained metrics, and much more structure
preservation of the old classes in later stages of training on new tasks.
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6.2. Results Overview for FashionMNIST
This section provides an interpretation of the results obtained from training a Diffusion
Model on the FashionMNIST dataset. We dive deeper into the results and the complexities
of the implementation that gave us this outcomes, highlighting the pitfalls of our proposed
methodology along with a comparative assessment of the qualities of the trained models.

6.2.1. Baseline Implementations

The baseline implementations provide us with significant information on the expected be-
havior of our diffusion models. Similar to the experiments conducted on the MNIST dataset,
Experience Replay is the most performant. The FID score and accuracy greatly favor this
methodology, with Generative Replay following close behind. In this particular case, the
FID score indicates performance but doesn’t paint the full picture. With higher values, it is
difficult to determine whether the model performance are comparable with one another. For
example, in terms of accuracy, Generative Replay clearly outperforms Finetuning, but
for the FID score, it slightly favors Finetuning. The main reason is that the distribution
of the images is quite complex for this scenario, unlike numbers, so these metrics suffer from
imprecision when evaluating. This pertains its own challenges, so we have to levearge not
just the metrics but also a visual evaluation.

Visually, we can get a clearer picture. We see that Experience Replay performs quite
well, showing some level of backward transfer, which is validated both by the resulting images
in Figure 5.19 and Table 5.3. The evolution of the replay methodologies is far more stable
than finetuning (see Figures 5.13 and 5.16 for reference). This shows that although learning
subsequent tasks is hindered by the complexity of the dataset, there are still advantages in
stability and retention of previous knowledge using replay strategies.

6.2.2. Custom Implementations

The performance of our proposed methodology, leveraging Reinforcement Learning, is worse
across the board both in the qualitative results and in the visual inspection and analysis.
The mean accuracy and FID score are slightly better than Finetuning during training, and
they barely manifest any of the benefits of replay methods. The only instance where the
performance is better than Generative Replay is in the later stages of training, which
correlates with the fact that the classifier is more performant on the last few classes (see the
confusion matrix for reference in Figure 4.3).

The slight improvement in performance in the later stages using our implementation fur-
ther highlights the importance of a good reward model. By using a reward that is less than
ideal, we effectively erase all the benefits of the replay methodologies, rendering the method
useless. It even erases the prevailing structures of the dataset that are otherwise sustained
in Generative Replay. This means that the diffusion model is worsened across the board
with data that is contaminated and hinders the generative capabilities of both seen and un-
seen classes. Previously learning some classes in advance parametrizes the model to generate
some structures that is lost when leveraging a sub par reward.

This can be seen in the metrics performance and evolution (see Figures 5.17 and 5.18),
where there exists some level of forward transfer (Figure 2.4) in subsequent tasks structures
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compared to training on noisier images that do not yield information and are classified
incorrectly.

6.3. Implications of the Findings
There are several key findings that are relevant in the context of continual learning with
diffusion models, especially considering our implementation. There are great advantages in
using Experience Replay, as we have clearly shown through our experiments and validated
with a comprehensive analysis. The use of a generative model to leverage the advantages
of replaying past data emerges as a promising approach. The fact that we are using it to
retrain the generative model itself is even more appealing, as there is a lower computational
cost associated with it, and it could pave the way for improving generative models without
accessing the entire corpus of data needed to train it from scratch.

With this in mind, exploring new alternatives to improve the performance of generative
models, especially in a continual learning scenario, is an important area of work. The pro-
posed methodology builds upon these necessities and shows promising results. The main
advantages are a clear performance boost in its continual learning capabilities, especially
with the Teacher-Student CL-RL implementations, leveraging a form of reinforcement
learning that improves performance when executed correctly.

The main challenges of the proposed methodology are also linked to the use of Reinforce-
ment Learning. It requires that the generative model is capable of generating samples that
still correspond to the class of the data of interest on some level. Additionally, the reward
function used plays a key role, in this case, the use of a classifier with nearly perfect perfor-
mance is vital, as implementing a subpar classifier yields catastrophic results.

To further improve the results, the design of well calibrated rewards is crucial. We ex-
perimented with a very basic but powerful form of reward, leveraging a model that classifies
the produced samples individually. This could be further studied and improved on by trying
rewards that maximize a teacher model to produce better samples, not only one by one, but
considering the whole batch of images generated. The main strength of the methodology is
generating better individual samples, but it does not generate sufficiently diverse samples,
which inherently leads to mode collapse and reparametrizations that negatively affect the
generative model.
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Chapter 7

Conclusion

In this thesis, we investigated different approaches to continual learning applied to diffusion
models, with a particular focus on replay methods. We conducted a comprehensive study
evaluating the generative capabilities of the main known approaches. After establishing these
benchmarks, we developed and implemented two novel approaches leveraging a form of Re-
inforcement Learning called DDPO, to later assess their effectiveness compared to existing
methods.

We successfully conducted experiments replicating existing methodologies, providing clear
and well evaluated benchmarks to compare our implementations. This allowed us to establish
an evaluation methodology and set clear objectives for our research moving forward.

We implemented a novel methodology that took advantage of reinforcement learning to
improve the sample quality of generative models used for replay. Further improvements were
made by designing a teacher-student training scheme, which separated the tasks of each
training step into more focused objectives for each model. This implementation showed con-
siderable improvement.

We explored the use of two reward functions that leverage a classifier as the main driving
force. This type of reward provided key insights into our methodologies and highlighted
the importance of well calibrated reward functions, which are crucial for the success of the
methodology and defining its limitations in this regime.

Our research contributes to the advancement of generative models, extending their ap-
plicability and efficacy in settings that require continual learning. The integration of rein-
forcement learning with generative replay offers a promising direction for future research and
development, indicating a field that requires further study.

While our study provides significant insights, there are clear limitations that need to be
addressed, such as the need for a reward model with perfect preferences and knowledge of
the class of interest. Future work should explore more sophisticated reward functions and
alternative reinforcement learning strategies to enhance the performance and diversity of
generative models.

In conclusion, our research addresses a critical challenge in continual learning for generative
diffusion models. By leveraging reinforcement learning, we have developed methodologies
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that enhance the quality of generated samples used for replay methods. This work opens
new avenues for research and shows a promising path for further improving generative replay
approaches.
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ANNEXES

Annex A. Detailed Architecture of ClassConditione-
dUnet

class ClassConditionedUnet(nn.Module):
def __init__(self, num_classes=10, class_emb_size=8):

super().__init__()

# Increase the embedding size for more rich class representations
self.class_emb = nn.Embedding(num_classes, class_emb_size)

# Enhance the UNet model with increased depth and wider layers
self.model = UNet2DModel(

sample_size=28, # The target image resolution
in_channels=1 + class_emb_size, # Additional input channels for class conditioning

out_channels=1, # The number of output channels
layers_per_block=3, # Increased number of ResNet layers per UNet block for more depth

block_out_channels=(64, 128, 256), # Wider layers for increased capacity
down_block_types=(

"DownBlock2D",
"AttnDownBlock2D", # Retain spatial self-attention in downsampling
"AttnDownBlock2D",

),
up_block_types=(

"AttnUpBlock2D", # Retain spatial self-attention in upsampling
"AttnUpBlock2D",
"UpBlock2D",

),
)

def forward(self, x, t, class_labels):
bs, ch, w, h = x.shape

# Map class labels to embeddings and reshape for concatenation
class_cond = self.class_emb(class_labels)

class_cond = class_cond.view(bs, class_cond.shape[1], 1, 1).expand(bs, class_cond.shape[1], w, h)

# Concatenate input with class conditioning
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net_input = torch.cat((x, class_cond), 1) # Shape: (bs, 1 + class_emb_size, 28, 28)

# Pass through UNet and return prediction
return self.model(net_input, t).sample

Annex B. Study over Stabilization of DDPO

B.1. FID Score Variance Across Sample Size

To assess the resampling impact on our diffusion model’s generative stability, a structured
experimental procedure was implemented, as outlined in Algorithm 1. The model, trained on
digits 0 and 1 from the MNIST dataset, was used to generate a reference set of 300 images.
Iterative FID score computations over sample sizes [2, 5, 20, 50, 200, 500] were conducted.
These scores allowed us to measure the variance, thereby evaluating the model’s stability
across different sampling conditions.

Algorithm 2 Sample Generation and FID Calculation
Require: model, digits, num_iterations, sample_sizes, ref_dataset_size
Ensure: FID_scores

1: Generate ref_dataset_size images for digits using model
2: for each size in sample_sizes do
3: for i from 1 to num_iterations do
4: Sample images of current size from model
5: Calculate and record FID score compared to reference images
6: end for
7: Compute and add variance of recorded FID scores to FID_scores
8: end for
9: return FID_scores

The experimental results, depicted in the following figures, illustrate the variance in FID
scores for the digits 0 and 1 across a range of sample sizes. These box plots reveal a trends
in the models image generation capabilities and its self consistency:
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Figure B.1: FID Score Variance Across Different Sample Sizes Label 0

Figure B.2: FID Score Variance Across Different Sample Sizes Label 1

As the sample size increases, the variance in FID scores tends to decrease, suggesting
enhanced stability in image generation from the model.
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B.2. Evolution of Learning in Exploration

In the exploration phase of DDPO, the model iteratively learns to navigate the generative
space. With each epoch, it generates new images, refining its ability to produce high-quality
outputs.

Figure B.3: FID Score Evolution during the Exploration Phase for Labels
0 and 1

Figure B.3 illustrates the FID scores for labels 0 and 1. While label 1 sees an improvement
in image quality over epochs, indicated by decreasing FID scores, label 0 exhibits an increase
in FID scores, suggesting a need for further model refinement.
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Figure B.4: Accuracy Evolution during the Exploration Phase for Labels 0
and 1

In Figure B.4, we observe that the model’s accuracy for label 1 stabilizes and ascends
post-initial fluctuations, reflecting successful learning. Conversely, the accuracy for label 0
decreases, which corresponds with the FID score trends and highlights disparate learning
trajectories within the model.
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B.3. Evolution of Learning in Exploitation

Figure B.5: FID Evolution of Learning in Exploitation Phase for Labels 0
and 1

The optimization phase is similar to the exploration phase but exhibits a much more stable
behavior. This suggests that we deviate more slowly from the original data distribution when
using the same data for optimization. Top performance is achieved at the 10th training step.

58



Figure B.6: Accuracy Evolution of Learning in Exploitation Phase for La-
bels 0 and 1

The same holds fo the Accuracy evolution, indicating the top performance at the 10th
training step aproximatley.
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Annex C. FashionMNISTWithArtifacts Class Imple-
mentation

The FashionMNISTWithArtifacts class is an extension of the standard FashionMNIST dataset
used to introduce artificially corrupted images into the training process. This class helps sim-
ulate the effects of image degradation that might occur in practical applications, providing
a robust testing scenario for the classifier. Below is the Python code used to implement this
dataset extension.

Code C.1: FashionMNISTWithArtifacts Class Implementation
1 import torch
2 from torchvision import datasets, transforms
3 from torchvision.datasets import VisionDataset
4 from torch.utils.data import DataLoader
5 from PIL import Image
6 from io import BytesIO
7 import numpy as np
8

9 class FashionMNISTWithArtifacts(VisionDataset):
10 def __init__(self, root, train=True, transform=None, target_transform=None, download

↪→ =False, num_artifacts=1000, quality=6):
11 super().__init__(root, transform=transform, target_transform=target_transform,

↪→ download=download)
12 self.dataset = datasets.FashionMNIST(root=root, train=train, transform=None,

↪→ download=download)
13 self.num_artifacts = num_artifacts
14 self.quality = quality
15 self.artifact_indices = np.random.choice(len(self.dataset), self.num_artifacts, replace=

↪→ False)
16

17 def rotate_compress_and_rotate_back(self, img, angle, quality):
18 rotated_img = img.rotate(angle)
19 img_io = BytesIO()
20 rotated_img.save(img_io, format=’JPEG’, quality=quality)
21 img_io.seek(0)
22 compressed_img = Image.open(img_io)
23 return compressed_img.rotate(-angle)
24

25 def __getitem__(self, idx):
26 if idx >= len(self.dataset):
27 original_idx = self.artifact_indices[idx - len(self.dataset)]
28 img, _ = self.dataset[original_idx]
29 img = transforms.ToPILImage()(img)
30 angle = np.random.randint(360)
31 img = self.rotate_compress_and_rotate_back(img, angle, self.quality)
32 label = 10
33 else:
34 img, label = self.dataset[idx]
35 img = transforms.ToPILImage()(img)
36
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37 if self.transform:
38 img = self.transform(img)
39 return img, label
40

41 def __len__(self):
42 return len(self.dataset) + self.num_artifacts
43

44 # Usage example
45 transform = transforms.Compose([
46 transforms.ToTensor(),
47 transforms.Normalize((0.5,), (0.5,))
48 ])
49 train_dataset = FashionMNISTWithArtifacts(root=’./data’, train=True, transform=

↪→ transform, download=True, num_artifacts=6000, quality=6)
50 train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)

Annex D. Detailed Metrics and Results

D.1. Fine-tuning

Table D.1: MNIST data FID Score Evolution Evaluated on Each Task

Evaluated Task After Task 1 After Task 2 After Task 3 After Task 4 After Task 5
Task 1 180.89 292.02 317.01 321.20 340.46
Task 2 - 157.95 274.32 320.99 329.32
Task 3 - - 133.50 282.02 337.04
Task 4 - - - 145.80 294.86
Task 5 - - - - 144.73
Average 180.89 224.98 241.61 267.50 289.28

Table D.2: FashionMNIST data FID Score Evolution Evaluated on Each
Task

Evaluated Task After Task 1 After Task 2 After Task 3 After Task 4 After Task 5
Task 1 267.53 297.34 293.31 277.07 288.71
Task 2 - 305.29 234.47 232.72 254.52
Task 3 - - 237.07 276.42 275.09
Task 4 - - - 258.52 270.22
Task 5 - - - - 240.23
Average 267.53 301.31 254.95 261.18 265.75
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Table D.3: MNIST Data Accuracy Evolution Evaluated on Each Task

Evaluated Task After Task 1 After Task 2 After Task 3 After Task 4 After Task 5
Task 1 0.845 0.016 0.038 0.076 0.010
Task 2 - 0.743 0.006 0.038 0.003
Task 3 - - 0.916 0.011 0.021
Task 4 - - - 0.940 0.015
Task 5 - - - - 0.885
Average 0.845 0.380 0.320 0.266 0.187

Table D.4: FashionMNIST Data Accuracy Evolution Evaluated on Each
Task

Evaluated Task After Task 1 After Task 2 After Task 3 After Task 4 After Task 5
Task 1 0.878 0.016 0.005 0.020 0.039
Task 2 - 0.718 0.053 0.011 0.015
Task 3 - - 0.853 0.133 0.001
Task 4 - - - 0.661 0.008
Task 5 - - - - 0.825
Average 0.878 0.367 0.303 0.206 0.178
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D.2. Experience Replay

Table D.5: MNIST Data FID Score Evolution Evaluated on Each Task
(Experience Replay)

Evaluated Task After Task 1 After Task 2 After Task 3 After Task 4 After Task 5
Task 1 179.86 170.05 162.07 154.44 162.03
Task 2 - 136.82 125.97 143.41 137.01
Task 3 - - 132.54 133.44 131.15
Task 4 - - - 135.73 140.25
Task 5 - - - - 134.10
Average 179.86 153.43 140.19 141.75 140.90

Table D.6: FashionMNIST Data FID Score Evolution Evaluated on Each
Task (Experience Replay)

Evaluated Task After Task 1 After Task 2 After Task 3 After Task 4 After Task 5
Task 1 259.52 261.61 269.81 241.10 272.77
Task 2 - 295.11 297.65 280.07 297.87
Task 3 - - 241.81 243.01 240.25
Task 4 - - - 265.31 254.76
Task 5 - - - - 241.18
Average 259.52 278.36 269.76 257.37 261.37
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Table D.7: MNIST Data Accuracy Evolution Evaluated on Each Task (Ex-
perience Replay)

Evaluated Task After Task 1 After Task 2 After Task 3 After Task 4 After Task 5
Task 1 0.830 0.868 0.578 0.858 0.653
Task 2 - 0.878 0.581 0.731 0.745
Task 3 - - 0.924 0.798 0.745
Task 4 - - - 0.951 0.840
Task 5 - - - - 0.811
Average 0.830 0.873 0.695 0.835 0.759

Table D.8: FashionMNIST Data Accuracy Evolution Evaluated on Each
Task (Experience Replay)

Evaluated Task After Task 1 After Task 2 After Task 3 After Task 4 After Task 5
Task 1 0.838 0.653 0.760 0.696 0.691
Task 2 - 0.798 0.428 0.498 0.546
Task 3 - - 0.711 0.488 0.561
Task 4 - - - 0.588 0.433
Task 5 - - - - 0.911
Average 0.838 0.725 0.633 0.567 0.629
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D.3. Generative Replay

Table D.9: MNIST Data FID Score Evolution Evaluated on Each Task
(Generative Replay)

Evaluated Task After Task 1 After Task 2 After Task 3 After Task 4 After Task 5
Task 1 183.76 277.15 310.75 318.10 338.15
Task 2 - 134.42 228.94 265.32 284.42
Task 3 - - 133.37 246.61 296.31
Task 4 - - - 133.25 275.71
Task 5 - - - - 148.18
Average 183.76 205.78 224.35 240.82 268.55

Table D.10: FashionMNIST Data FID Score Evolution Evaluated on Each
Task (Generative Replay)

Evaluated Task After Task 1 After Task 2 After Task 3 After Task 4 After Task 5
Task 1 259.46 280.86 281.39 291.90 318.46
Task 2 - 290.71 264.56 257.40 267.94
Task 3 - - 231.38 280.66 242.15
Task 4 - - - 270.13 287.02
Task 5 - - - - 262.47
Average 259.46 285.79 259.11 275.02 275.61
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Table D.11: MNIST Data Accuracy Evolution Evaluated on Each Task
(Generative Replay)

Evaluated Task After Task 1 After Task 2 After Task 3 After Task 4 After Task 5
Task 1 0.795 0.238 0.108 0.056 0.036
Task 2 - 0.855 0.503 0.300 0.278
Task 3 - - 0.880 0.203 0.068
Task 4 - - - 0.880 0.155
Task 5 - - - - 0.881
Average 0.795 0.546 0.497 0.360 0.284

Table D.12: FashionMNIST Data Accuracy Evolution Evaluated on Each
Task (Generative Replay)

Evaluated Task After Task 1 After Task 2 After Task 3 After Task 4 After Task 5
Task 1 0.811 0.443 0.315 0.206 0.198
Task 2 - 0.758 0.330 0.151 0.146
Task 3 - - 0.880 0.131 0.083
Task 4 - - - 0.553 0.168
Task 5 - - - - 0.501
Average 0.811 0.600 0.508 0.260 0.219
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D.4. Custom Implementations

D.4.1. CL-RL

Table D.13: MNIST Data FID Score Evolution for CL-RL

Evaluated Task After Task 1 After Task 2 After Task 3 After Task 4 After Task 5
Basic Mixed Basic Mixed Basic Mixed Basic Mixed Basic Mixed

Task 1 155.13 157.85 251.08 260.16 290.52 283.34 311.57 308.73 327.37 334.87
Task 2 - - 142.42 149.30 208.49 201.71 255.15 239.95 295.64 288.32
Task 3 - - - - 136.81 125.38 252.98 243.94 233.55 241.91
Task 4 - - - - - - 136.63 149.99 172.49 174.06
Task 5 - - - - - - - - 166.76 145.01
Average 155.13 157.85 196.75 204.73 211.94 203.47 239.08 235.65 239.16 236.83

Table D.14: FashionMNIST Data FID Score Evolution for CL-RL

Evaluated Task After Task 1 After Task 2 After Task 3 After Task 4 After Task 5
Basic Mixed Basic Mixed Basic Mixed Basic Mixed Basic Mixed

Task 1 241.66 247.45 291.42 289.58 331.78 326.39 330.90 315.30 342.06 340.08
Task 2 - - 294.08 288.17 319.73 307.29 317.31 301.05 303.47 315.82
Task 3 - - - - 233.20 246.26 355.21 308.19 344.01 307.30
Task 4 - - - - - - 266.23 271.39 258.77 280.42
Task 5 - - - - - - - - 244.10 232.73
Average 241.66 247.45 292.75 288.88 294.91 293.31 317.41 298.98 298.48 295.27
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Table D.15: MNIST Data Accuracy Evolution for CL-RL

Evaluated Task After Task 1 After Task 2 After Task 3 After Task 4 After Task 5
Basic Mixed Basic Mixed Basic Mixed Basic Mixed Basic Mixed

Task 1 0.913 0.898 0.156 0.120 0.066 0.035 0.066 0.030 0.046 0.033
Task 2 - - 0.758 0.746 0.253 0.375 0.241 0.315 0.216 0.27
Task 3 - - - - 0.896 0.863 0.280 0.278 0.128 0.166
Task 4 - - - - - - 0.955 0.976 0.59 0.39
Task 5 - - - - - - - - 0.855 0.856
Average 0.913 0.898 0.457 0.433 0.405 0.424 0.385 0.399 0.367 0.343

Table D.16: FashionMNIST Data Accuracy Evolution for CL-RL

Evaluated Task After Task 1 After Task 2 After Task 3 After Task 4 After Task 5
Basic Mixed Basic Mixed Basic Mixed Basic Mixed Basic Mixed

Task 1 0.845 0.871 0.191 0.163 0.083 0.123 0.150 0.091 0.116 0.111
Task 2 - - 0.501 0.639 0.135 0.210 0.106 0.131 0.101 0.078
Task 3 - - - - 0.881 0.825 0.176 0.106 0.060 0.075
Task 4 - - - - - - 0.823 0.600 0.114 0.108
Task 5 - - - - - - - - 0.946 0.916
Average 0.845 0.871 0.346 0.401 0.366 0.386 0.314 0.232 0.267 0.258
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D.4.2. CL-RL-ts

Table D.17: MNIST Data FID Score Evolution for CL-RL-ts

Evaluated Task After Task 1 After Task 2 After Task 3 After Task 4 After Task 5
Basic Mixed Basic Mixed Basic Mixed Basic Mixed Basic Mixed

Task 1 165.60 181.53 255.07 265.37 279.24 281.94 303.18 307.52 319.28 327.08
Task 2 - - 173.10 144.43 205.56 204.23 237.52 240.59 257.48 257.79
Task 3 - - - - 138.91 125.70 231.92 232.07 201.42 206.57
Task 4 - - - - - - 128.46 136.65 166.35 164.53
Task 5 - - - - - - - - 143.92 142.48
Average 165.60 181.53 214.09 203.40 207.90 203.96 225.27 229.21 217.69 219.69

Table D.18: FashionMNIST Data FID Score Evolution for CL-RL-ts

Evaluated Task After Task 1 After Task 2 After Task 3 After Task 4 After Task 5
Basic Mixed Basic Mixed Basic Mixed Basic Mixed Basic Mixed

Task 1 259.46 257.54 293.94 291.25 326.28 325.08 324.67 309.55 315.57 328.80
Task 2 - - 293.47 287.91 316.18 294.03 304.48 287.8 267.34 323.22
Task 3 - - - - 238.85 244.82 352.03 292.39 300.19 309.33
Task 4 - - - - - - 268.41 268.53 339.39 279.08
Task 5 - - - - - - - - 259.77 253.66
Average 259.46 257.54 293.70 289.58 293.77 287.98 312.40 289.57 296.45 298.82
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Table D.19: MNIST Data Accuracy Evolution for CL-RL-ts

Evaluated Task After Task 1 After Task 2 After Task 3 After Task 4 After Task 5
Basic Mixed Basic Mixed Basic Mixed Basic Mixed Basic Mixed

Task 1 0.840 0.735 0.166 0.136 0.130 0.056 0.058 0.048 0.055 0.033
Task 2 - - 0.763 0.803 0.390 0.436 0.238 0.286 0.241 0.211
Task 3 - - - - 0.916 0.868 0.390 0.256 0.148 0.093
Task 4 - - - - - - 0.945 0.981 0.570 0.570
Task 5 - - - - - - - - 0.876 0.781
Average 0.840 0.735 0.464 0.470 0.478 0.453 0.407 0.393 0.378 0.337

Table D.20: FashionMNIST Data Accuracy Evolution for CL-RL-ts

Evaluated Task After Task 1 After Task 2 After Task 3 After Task 4 After Task 5
Basic Mixed Basic Mixed Basic Mixed Basic Mixed Basic Mixed

Task 1 0.808 0.786 0.231 0.135 0.125 0.095 0.159 0.053 0.176 0.055
Task 2 - - 0.586 0.686 0.195 0.211 0.088 0.163 0.015 0.028
Task 3 - - - - 0.883 0.804 0.131 0.153 0.013 0.036
Task 4 - - - - - - 0.765 0.723 0.069 0.046
Task 5 - - - - - - - - 0.931 0.910
Average 0.808 0.786 0.409 0.410 .0401 0.370 0.286 0.273 0.241 0.215
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