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FECHA: 2024
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LA FIRMA DEL NÚCLEO DE CALOR INFORMADA CON FIBROSIS:
PREDICCIÓN DE INDUCIBILIDAD DE FIBRILACIÓN AURICULAR

LIBRE DE SIMULACIONES

La fibrilación auricular (AF) es el tipo de arritmia más común en seres humanos, llegando
a ser prevalente en la población a escala epidémica. Los modelos computacionales pueden
contribuir a la mejora de las tasas de éxito para tratamientos terapéuticos de la AF, como la
ablación cardíaca, donde partes del tejido son cauterizadas con el fin de bloquear puntos de
iniciación de AF. Sin embargo, evaluar la eficacia de distintas estrategias de ablación requiere
realizar costosas simulaciones donde se estimulan eléctricamente diferentes puntos y se evalúa
si un episodio de fibrilación se indujo o no, obstaculizando la implementación clínica de estos
modelos. En el presente trabajo de tesis se propone un método de clasificación eficiente capaz
de predecir confiablemente la inducibilidad de AF en modelos cardíacos personalizados sin la
necesidad de correr simulaciones adicionales. La metodología no requiere de re-entrenamiento
cuando se introducen cambios en la anatomía cardíaca, distribución de fibrosis o líneas de
ablación. Para lograr esto, se desarrolla un conjunto de atributos dados por una variante
anisotrópica de la firma del núcleo de calor (heat kernel signature - hks) que incorpora la
información de fibrosis y la orientación de fibras en el corazón: La firma del núcleo de calor con
información fibrótica (fibrotic kernel signature - fks). La fks es más rápida de calcular que una
simulación puntual de AF y puede predecir mapas de inducibilidad en la totalidad del dominio
auricular cuando se emplea en conjunto con algoritmos de clasificación. Para evaluar la
relación entre la fks y la inducibilidad de arritmia se realizaron dos estudios: uno para probar
la capacidad de la firma en capturar el efecto de ablación sobre un modelo auricular simple,
y otro para demostrar la generalidad del método propuesto en varias anatomías cardíacas
sujetas a múltiples distribuciones de fibrosis. Los estimadores basados en la fks predicen la
inducibilidad de AF con alta precisión y aproximan el porcentaje inducible de mejor manera
que métodos alternativos. El flujo de trabajo de la fks puede acelerar significativamente los
cálculos necesarios para testear eventos de arritmia, lo que es crucial para optimizar terapias
de AF dentro de las restricciones del contexto clínico.

i



THESIS ABSTRACT FOR THE
MASTER’S DEGREE IN ENGINEERING SCIENCES,
MINOR APPLIED MATHEMATICS
THESIS FOR THE DEGREE OF
MATHEMATICAL ENGINEER
BY: TOMÁS BANDUC MORENO
DATE: 2024
GUIDE PROF.: FRANCISCO SAHLI COSTABAL
CO-GUIDE PROF.: AXEL OSSES ALVARADO

THE FIBROTIC KERNEL SIGNATURE: SIMULATION-FREE
PREDICTION OF ATRIAL FIBRILLATION INDUCIBILITY

Atrial fibrillation (AF) is the most common type of cardiac arrhythmia, being prevalent
at epidemic scale. Computational models can help improve success rates for therapeutic
treatments of AF, such as ablation procedures, where regions of tissue are destroyed in a
controlled fashion to block AF initiation points. However, evaluating the efficacy of different
ablation strategies requires performing costly simulations by pacing at different points and
checking whether AF has been induced, hindering the clinical application of these models. For
this thesis work, an efficient classification method that can reliably predict AF inducibility
in patient-specific cardiac models without running additional simulations is proposed. The
methodology does not require re-training when changing atrial anatomy, fibrosis distribution
or ablation lines. To achieve this, a set of features given by an anisotropic variant of the
heat kernel signature (hks) that incorporates fibrosis information and fiber orientation is
developed: the fibrotic kernel signature (fks). The fks is faster to compute than a single AF
simulation, and it can predict AF inducibility in the entire atrial domain when paired with
machine learning classifiers. To assess the relationship between the FKS and AF inducibility
two studies were conducted: one study to evaluate the capability of the signature to capture
the effect of ablation lines in a single atrial model, and another study to demonstrate the
generality of the method across several anatomies subject to various fibrosis scenarios. fks-
based estimators predicted AF inducibility with high accuracy and could approximate overall
inducibility better than alternative methods. The fks pipeline can significantly speed-up the
calculations required for AF testing, which is crucial to optimize therapies for AF within the
time constraints of the clinical setting.
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Introduction

Atrial fibrillation (AF) is the most common type of cardiac arrhythmia in humans (Tsao et
al., 2023; as cited in Banduc et al., 2024). AF is described as an aberrant and self-sustained
electrical activation in the atrial region of the heart (Schotten et al., 2011; as cited in Banduc
et al., 2024). Research for its pathophysiological mechanisms and treatment is motivated by
its incidence at epidemic scale (Kornej et al., 2020; as cited in Banduc et al., 2024) and co-
occurrence alongside clinical conditions that contribute to its onset and perpetuation, such
as age, hypertension, diabetes, thyroid disease, cardiomyopathy, heart failure and valvular
disease (Schotten et al., 2011). It is expected that AF prevalence may increase in the future
as longevity grows within the world population (Trohman et al., 2023).

About 25% of ischemic strokes are estimated to be caused by AF (Marini et al., 2005; as
cited in Banduc et al., 2024), as thrombosis often occurs during arrhythmia events due to
blood stasis. This disease not only increases the chances of ischemia but worsens prognosis
in patients with preexisting heart conditions (Kornej et al., 2020; as cited in Banduc et al.,
2024). Overall, independently of previous cardiac disease, death rates double in patients with
AF (Schotten et al., 2011; as cited in Banduc et al., 2024).

AF is progressive. Initially, episode duration is at most 7 days (Joglar et al., 2024), which
occur between extended periods of sinus rhythm (paroxysmal AF). The intermediate state is
characterized by frequent and prolonged episodes of fibrillation, lasting longer than a week
to terminate (persistent AF). Eventually, the disease becomes chronic (permanent AF). This
progression is mainly explained by its self-generative nature: AF causes gradual processes of
remodeling in the functionality of ionic channels of cardiac myocytes and fibrosis deposition
in the atria (Schotten et al., 2011; as cited in Banduc et al., 2024), while fibrosis increases ab-
normalities in electrical conductivity throughout cardiac tissue and perpetuates AF (Pezzuto
et al., 2018; as cited in Banduc et al., 2024).

Cardiac fibrosis is one of the main drivers of AF (Allessie et al., 2002; as cited in Banduc
et al., 2024). It is defined as a pathological scarring event caused by collagen accumulation
and fibroblast activation in the cardiac muscle (Hinderer & Schenke-Layland, 2019; as cited
in Banduc et al., 2024). Fibrosis distribution in the atria is patient-specific and unfolds
with AF in a vicious systemic loop. During fibrillation events, cellular hypertrophy leads to
scar formation and atrial stretching. This increases tissue heterogeneity and anisotropy in
conduction in the cardiac muscle, creating pathways for electrical re-entry and altering the
extracellular matrix, which enhances AF inducibility and complexity (Gharaviri et al., 2020;
Sahli Costabal et al., 2023; Schotten et al., 2011). In this sense, the more fibrosis is present,
the more AF events are likely to occur, which triggers more fibrosis deposition.
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There is a demonstrated positive correlation between fibrotic tissue distribution and point
localization for AF initiation. McDowell et al. (2015) showed that unique fibrosis patterns
determine persistent reentry events during the propagation of voltage that are independent
of the stimulation points (known as pacing points) selected for testing AF inducibility and
that mechanisms for atrial sites to initiate sustained episodes of AF given a standard stimu-
lation protocol act in a distance-to-fibrosis manner. Likewise, recent evidence suggests that
surrounding residual fibrosis from non-conductive cauterized tissue may generate a strong ar-
rhythmogenic substrate (Bifulco et al., 2023). These findings suggest that fibrosis allocation
in the human atria is informative as to determine whether stimuli in certain pacing locations
can potentially induce AF (Gander et al., 2022; as cited in Banduc et al., 2024).

Therapeutic approaches are widely used for the treatment of AF as they require less re-
source management and cause less fibrillation recurrence than pharmacological cardioversion
methods (Blomström-Lundqvist et al., 2019; Saad-Omer et al., 2020;Yi et al., 2019). Within
this framework, catheter ablation is a technique used in patients with different states of
progression of the disease. Ablation is a non-invasive surgical procedure in which sections
of cardiac tissue are destroyed with radio-frequencies in a controlled fashion, to block AF
initiation points (Joglar et al., 2024; as cited in Banduc et al., 2024). In patients with parox-
ysmal AF, this treatment induces optimal results when performed around pulmonary veins
(PVs) due to the electrical blockage of ectopic pacemaker cells in the PV area (Haissaguerre
et al., 1998; Chen et al., 1999; as cited in Banduc et al., 2024). However, for advanced stages
of arrhythmia, the complexity in fibrosis patterns and cardiac structural remodeling lead to
a shift in electrical abnormalities (Boyle et al., 2019), causing PVI to underperform in the
reduction of inducible surface (Verma et al., 2015; Kawai et al., 2019; Gharaviri et al., 2021;
as cited in Banduc et al., 2024), prompting the need to design ablation strategies fitted to
each patient’s cardiac geometry and heart electrical properties.

As shown in recent retrospective and prospective studies, therapeutic approaches to AF,
such as catheter ablation, tend to lead to better outcomes when tailored to patient fibrosis
distribution and anatomy (Boyle et al., 2019; Loewe et al., 2019; McDowell et al., 2015; as
cited in Banduc et al., 2024). These findings imply that it is possible to use patient-specific
in silico models to estimate AF inducibility for various ablation scenarios, and then select
the best treatment for the patient.

Patient-specific models of AF are typically based on the monodomain system. The model
consists of a single reaction-diffusion equation coupled with a possibly large system of or-
dinary differential equations accounting for ionic dynamics through the cellular membrane
and within each cardiomyocyte (Colli Franzone et al., 2014; as cited in Banduc et al., 2024).
Despite considering intracellular and extracellular spaces superimposed and homogenized
(Rosilho de Souza et al., 2024; as cited in Banduc et al., 2024), the stiffness in the temporal
dynamic caused by the rapid upstroke of action potentials raises the requirement for high
spatial resolution of the monodomain model to obtain accurate approximations of the con-
duction velocity (Pezzuto et al., 2016; Niederer, Kerfoot, et al., 2011; as cited in Banduc
et al., 2024), being usually below 500[µm] for normal conduction and much higher for slow
conduction velocities (Bishop & Plank, 2024; as cited in Banduc et al., 2024).

Pacing at a fixed number of well-distributed atrial locations is a standard method to assess
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AF inducibility (Boyle et al., 2019; as cited in Banduc et al., 2024). However, each protocol
needs to be repeated when ablation lines are added, fibrosis distribution is changed, or a
new cardiac anatomy is considered. Monodomain solvers designed for running on many-core
CPU or GPU systems have sped-up inducibility simulations (Niederer, Mitchell, et al., 2011;
Neic et al., 2012; Kaboudian et al., 2019), but testing if a stimulation protocol in the atria
can degrade into a sustained episode of arrhythmia remains costly both in terms of time
and computational resources, hindering the clinical feasibility of this approach. The need to
decrease costs to assure availability of personalized therapy has led some authors to propose
adaptive pacing protocols (Azzolin et al., 2021), surrogate models of AF (Serra et al., 2022)
and analysis of geometrical features (Bifulco et al., 2023) to pinpoint regions that could
induce fibrillation. Methods integrating image-based modeling and deep learning have also
been reported to successfully determine personalized ablation strategies without the burden
of simulation, showing great potential to clinically translate as efficient tools for non-invasive
treatment (Muffoletto et al., 2021; as cited in Banduc et al., 2024).

To control the computational burden of AF simulations with the monodomain equations,
testing AF inducibility can be recast as a classification problem (Gander et al., 2022; as cited
in Banduc et al., 2024), where a set of customized features encoding atrial geometry, fibrosis
patterns and electrical parameters are used through a machine learning classifier trained to
determine whether pacing from a given location produces a stable AF event. This thesis aims
to offer a solution to the limitations of conventional AF simulations by proposing a general
simulation-free classification method for AF inducibility: The fibrotic kernel signature (fks).
The fks retains full anatomical properties and the structural complexity of a conventional
simulation, including fiber direction and scar distribution. Instead of having to re-run the
monodomain solver when fibrosis is modified, ablation strategies are adjusted or the atrial
geometry is changed, the electrical and architectural information is stored in this set of fea-
tures, which is based on the heat kernel signature (hks) (Sun et al., 2009). The hks is a
time series that describes multi-scale geometrical and topological properties of compact do-
mains via homogeneous diffusion within them. The hks is extensively used in shape analysis,
particularly shape matching. Formally, the hks is defined as a point restriction of the heat
kernel function, whose values can be efficiently computed using the Laplace operator spec-
trum. Intuitively, it can be explained as instantaneously applying an infinitely intense heat
source at a point for an infinitely small window of time, and then measuring the temperature
evolution at the same point. At first, the temperature changes will heavily depend locally on
the geometry around the point, and ultimately will be influenced by the overall shape.

In the context of cardiac electrophysiology, the fks complements the previous method by
considering heterogeneous and anisotropic processes of electrical propagation, hence includ-
ing information not only from the atrial geometry but also the specific fibrotic distribution
and fiber orientation. The fks can be interpreted as measuring the temporal evolution of the
transmembrane voltage after applying a Dirac-delta potential at a point in the atria. The
fks is paired with classic machine learning classifiers to predict if AF can be induced when
pacing from a particular point.

In this work, a large dataset was created comprising different anatomies, a diversity of
fibrotic levels, ablation strategies and multiple pacing locations to assess the relationship
between the fks and AF inducibility. In this way, once a classifier was trained, only the
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fks computations were required for studying inducibility in new cases, which was done at a
fraction of the cost of a standard AF simulation. The mathematical basis, work related to
AF inducibility characterization, computational methods, results and discussion are reviewed
in this thesis with the following structure:

• Chapter 1 - Preliminaries: This chapter shows the theoretical results that evidence the
functionality of the fks method. Sobolev spaces are defined, results from semigroup
theory regarding parabolic equations and heat kernels are shown, and a spectral decom-
position theorem is presented.

• Chapter 2 - Related Work: In this chapter, recent advancements in AF inducibility
characterization are summarized. The reviewed bibliography consists of fast biophysical
cardiac emulators (Serra et al., 2022), the use of a multi-fidelity Gaussian process for
accelerated inducibility classification (Gander et al., 2022) and AF substrate description
with geometric properties of non-conductive atrial tissue through an ML-based approach
(Bifulco et al., 2023).

• Chapter 3 - General Methodology: This chapter encompasses the mathematical model
used for the monodomain simulations, fks computations and dataset creation. Here, the
hks features are introduced, its main properties are described and the concept of diffusion
for point description is extended to a cardiac electrophysiology scenario, obtaining the
fks time series. In the chapters that follow, the proposed method is validated with atrial
geometries from real patients in two application studies: overall inducibility reduction
from cardiac ablation and AF inducibility estimation for different fibrosis levels.

• Chapter 4 - Study 1: This study exhibits preliminary results for the capability of the
fks method to efficiently predict the effect of distinct cardiac ablation strategies over
AF inducibility for a single atrial model in various fibrosis scenarios, with common ML
classifiers.

• Chapter 5 - Study 2: In this part, a larger dataset is used to test the generality of the
introduced method, where the efficiency and accuracy of the fks features are evaluated
for the task of identifying AF initiation points and estimate overall inducibility in un-
observed cardiac anatomies with classifiers trained by several atrial models subject to
diverse fibrosis levels.

• Chapter 6 - General Discussion: This chapter globally discusses the results of both
studies regarding the reduction of time complexity for inducibility prediction with the
fks, the behavior of the signature along varying atrial architectures, scar severity and
fibrosis patterns, its proficiency to detect AF substrate for multiple designs of conduc-
tivity across the atria, and limitations to sufficiently characterize cardiac pro-arrhythmic
structures.

• Chapter 7 - Conclusion: This section details the main features of the fks, highlights the
competence of the signature to reliably and efficiently determine if pacing from a given
location could degenerate into fibrillation, and concludes about the use of the proposed
method in therapy planning for the clinical setting.
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Chapter 1

Preliminaries

1.1. Notation
– L(X,Y ): Space of linear bounded operators from X to Y .

– C(X, Y ): Space of continuous functions from X to Y .

– Ck(X, Y ): Space of k-continuously differentiable functions from X to Y .

– C∞(X, Y ): Space of infinitely differentiable functions from X to Y .

– D(X, Y ): Space of compactly supported functions in C∞(X, Y ).

– M(X,Y ): Space of measurable functions from X to Y .

– Lp(X,Y ): Space of p-integrable functions from X to Y .

– L∞(X, Y ): Space of essentially bounded functions from X to Y .

– Hk(X, Y ): Space of L2(X,Y ) functions with 2-integrable (weak) derivatives of order k.

– Hk
0 (X, Y ): Closure of D(X,Y ) with respect to the norm ∥ · ∥Hk .

– X∗: Dual space of X.

– X: Closure of X.

– D(L): Domain of operator L.

– (·, ·)X : Inner product of X.

– ∥ · ∥X : Norm of X.

– ∥ · ∥p: Lp-norm.

– Pk : Space of polynomials of degree k.

– ΩH : Cardiac domain, assumed bounded with Lipschitz boundary.

– Ωh: Polyhedral approximation of cardiac domain ΩH .

– 1AF (p,M): Inducibility indicator function for protocol p and model M.
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1.2. Sobolev Spaces
Definition 1.1 (Lp Space - Cazenave & Haraux, 1999) Let (X,A, µ) be a measure
space, Y be a Banach space and p ∈ [1,∞). The space Lp(X, Y ) is defined as the equivalence
class of p-integrable functions from X to Y given by the a.e. equality relation

Lp(X, Y ) := Lp/ ∼; Lp :=
{
u ∈M(X, Y ) :

∫
∥u∥p

Y dµ <∞
}

; u ∼ v ⇔ u = v a.e.

Additionally, the space of locally p-integrable functions is defined as

Lp
loc(X,Y ) := {u ∈M(X, Y ) : u|K ∈ Lp(K,Y ),∀K ⊆ X,K compact} .

Definition 1.2 (L∞ Space - Cazenave & Haraux, 1999) Let (X,A, µ) be a measure
space and Y a Banach space. The space L∞(X, Y ) is defined as the equivalence class of
essentially bounded functions from X to Y given by the a.e. equality relation

L∞(X, Y ) := L∞/ ∼; L∞ := {u ∈M(X, Y ) : ∃α > 0 s.t. ∥u∥Y ≤ α a.e.} ; u ∼ v ⇔ u = v a.e.

Proposition 1.1 (Hytönen et al., 2016) The space Lp(X, Y ) is a Banach space provided
the norm

||u||p :=


(∫
||u||pY dµ

)1/p

, if p ∈ [1,∞);
inf{α : ∥u∥Y ≤ α a.e.}, if p =∞.

Corollary 1.1 The space L2(X,R) is a Hilbert space, with the following inner product:

(u, v)L2 :=
∫
X

uvdx.

Definition 1.3 (Distributional Derivative - Hytönen et al., 2016) Let X be an open
set of Rd equipped with the Lebesgue measure and Y a Banach space. For any multi-index
α, v ∈ L1

loc(X, Y ) is said to be the distributional (or weak) derivative of order α of u ∈
L1

loc(X, Y ), written Dαu = v, provided∫
X

u∂αϕdx = (−1)|α|
∫
X

vϕdx, ∀ϕ ∈ D(X,R).

Definition 1.4 (Sobolev Space - Hytönen et al., 2016) Let X ⊆ Rd be an open set and
Y a Banach space. For 1 ≤ p ≤ ∞, the Sobolev space of order k and exponent p is defined as

W k,p(X,Y ) := {u ∈ Lp(X, Y ) : Dαu exists and Dαu ∈ Lp(X, Y ), ∀α multi-index with |α| ≤ k} .

When p = 2, W k,p(X,Y ) is denoted by Hk(X,Y ).

Proposition 1.2 (Hytönen et al., 2016) The space W k,p(X, Y ) is a Banach space endowed
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with the norm

||u||W k,p :=
 ∑

|α|≤k

∥Dαu∥p
p

1/p

.

Corollary 1.2 The space H2(X,R) is a Hilbert space with inner product

(u, v)H2 :=
∑

|α|≤k

∫
X

(Dαu)(Dαv)dx.

1.3. Heat Semigroups
Definition 1.5 (Contraction Semigroups - Cazenave & Haraux, 1999) Let X be a
Banach space. A semigroup is a one-parameter family {T (t)}t≥0 ⊆ L(X,X) such that

• T (0) = I;

• T (s+ t) = T (s)T (t),∀s, t ∈ (0,∞);

• T (·)x ∈ C([0,∞), X), ∀x ∈ X.

Additionally, {T (t)}t≥0 is said to be a contraction semigroup if ∥T (t)∥L ≤ 1,∀t ≥ 0.

Definition 1.6 (Semigroup Generator - Cazenave & Haraux, 1999) The generator
of a semigroup {T (t)}t≥0 ⊆ L(X,X) is a linear operator L defined by

D(L) =
{
x ∈ X : T (t)x− x

t
has limit in X as t→ 0+

}
, Lx = lim

t→0+

T (t)x− x
t

.

Definition 1.7 (Maximally Dissipative Operator - Cazenave & Haraux, 1999) Let
X be a Banach space. A linear operator L : D(L) ⊆ X → X is dissipative if

∥x− λLx∥X ≥ ∥x∥X , ∀x ∈ D(L),∀λ > 0.

Moreover, if a dissipative operator L is such that for every λ > 0 and every f ∈ X, there
exists x ∈ D(L) such that x− λLx = f , then L is said to be m-dissipative.

Proposition 1.3 (Cazenave & Haraux, 1999) Let H be a Hilbert space and L : D(L)→
H be a linear operator in H. Then L is dissipative if and only if (Lu, u)H ≤ 0, ∀u ∈ D(L).

Proposition 1.4 (Cazenave & Haraux, 1999) Let H be a Hilbert space and L : D(L)→
H be a linear operator in H. If L is self-adjoint and dissipative, then L is m-dissipative.

Theorem 1.1 (Hille-Yosida-Phillips Theorem - Arendt, 2006) Let L : D(L)→ H be
a self-adjoint and dissipative linear operator acting on a Hilbert space H. Then, L generates
a contraction semigroup {T (t)}t≥0 ⊆ L(H,H) of self-adjoint operators. Moreover, if L has
compact resolvent, then T (t) is compact for all t > 0.

Theorem 1.2 (Heat Semigroup Generation - Cazenave & Haraux, 1999) Let L :
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D(L) → H be a self-adjoint and dissipative linear operator acting on a Hilbert space H.
Then, for all u0 ∈ D(L), the contraction semigroup {T (t)}t≥0 generated by L guarantees that
u = T (·)u0 satisfies the following heat equation:

(H)


u ∈ C([0,∞), H) ∩ C((0,∞), D(L)) ∩ C1((0,∞), H);
∂u

∂t
− Lu = 0, ∀t > 0;

u(0) = u0.

The family {T (t)}t≥0 is called the heat semigroup of L, and is typically denoted by {etL}t≥0.

1.4. Kernel Spectral Decomposition
Definition 1.8 (Ultra-contractivity - E. Davies, 1987) Consider the spaces H :=
L2(Ω,R) and Y := L∞(Ω,R) for some domain Ω ⊆ Rd. Let {T (t)}t≥0 ⊆ L(H,H) be a
contraction semigroup. {T (t)}t≥0 is said to be ultra-contractive if T (t)H ⊆ Y .

Theorem 1.3 (Kernel Existence - Arendt, 2006) Consider some domain Ω ⊆ Rd and
let {T (t)}t≥0 be an ultra-contractive semigroup in L2(Ω,R). Then, there exists a unique
function K : (0,∞)× Ω× Ω→ R such that K(t, ·, ·) ∈ L∞(Ω× Ω,R),∀t > 0, and

(Tu) (x) =
∫
Ω

K(t, x, y)u(y)dy a.e.

The function K is called the heat kernel.

Theorem 1.4 (Spectral Theorem for Operators with Compact Resolvent - Arendt,
2006) Let L : D(L)→ H be a linear operator over an infinite-dimensional separable Hilbert
space H. If L is self-adjoint, dissipative and has a compact resolvent, then there exists an
orthonormal basis {φi}∞

i=0 ⊆ D(L) of H and an increasing sequence of non-negative real
numbers {λi}∞

i=0 such that −Lφi = λiφi and lim
i→∞

λi =∞. Moreover, L is given by

D(L) =
{
u ∈ H :

∞∑
i=0
|λi(u, φi)H |2 <∞

}
; −Lu =

∞∑
i=0

λi(u, φi)Hφi.

Theorem 1.5 (Mercer’s Theorem - Dodziuk, 1981) Let Ω be a bounded domain and
K ∈ L2(Ω × Ω,R) be an integral kernel of an operator T in L2(Ω,R). Assume further that
K ∈ C(Ω×Ω,R) and that K is symmetric. If T is compact, self-adjoint and (Tu, u) ≥ 0,∀u ∈
L2(Ω,R), then there exists an eigenbasis {ψi}i∈N of L2(Ω,R) with non-increasing eigenvalues
{µi}∞

i=0 ⊆ [0,∞) approaching 0 such that

K(x, y) =
∞∑

i=0
µiψi(x)ψi(y)
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1.5. Heat Kernels of Second Order Elliptic Operators
Definition 1.9 (Elliptic Tensor - Allaire, 2007) Let Ω be a measurable set in Rn and let
A : Ω→ Rd×d be an operator with tensorial coefficients, that is A(x) = (aij(x))1≤i,j≤d. A is
elliptic (or uniformly positive, or coercive) if there exists α > 0 such that, a.e. in Ω

(A(x)ξ, ξ)ℓ2 ≥ α · ∥ξ∥2
ℓ2 , ∀ξ ∈ Rd.

Definition 1.10 (Second Order Elliptic Operator in Divergence Form - Arendt,
2002) Let Ω be an open set in Rd and let A : Ω→ Rd×d be an elliptic tensor. Assume that
A has bounded tensorial coefficients, that is A(x) = (aij(x))1≤i,j≤d, with aij ∈ L∞(Ω,R). A
second order elliptic operator in divergence form is a mapping LA : H1

loc(Ω,R) → D(Ω,R)∗

given by

LAu = −∇ · (A∇u) = −
d∑

i,j=1

∂

∂xi

(
aij

∂u

∂xj

)

A realization of LA in L2(Ω,R) is defined as the operator LA : D(LA)→ L2(Ω,R) given by

D(LA) :=
{
u ∈ V : ∃f ∈ L2(Ω,R) s.t. a(u, v)L2 = (f, v)L2 , ∀v ∈ V

}
; LAu := LAu;

where a(u, v) : V × V → R corresponds to the bilinear form associated to LA:

a(u, v) =
∫
Ω

 d∑
i,j=1

aij
∂u

∂xi

∂v

∂xj

 dx;

and V is a closed subspace of H1(Ω) encoding a boundary condition. In the pure Dirichlet
case, V = H1

0 (Ω), and in the pure Neumann case, V = H1(Ω). It can be noticed that a(·, ·)
is a bounded and coercive form, and a(·, ·) is symmetric whenever A(x) = A(x)T .

Proposition 1.5 (Arendt, 1999/2000; Glück & Mui, 2024) Let Ω be a bounded domain
with Lipschitz boundary and A be a symmetric and elliptic tensor with bounded coefficients.
Then, the operator −LA (equipped with Neumann or Dirichlet boundary conditions) is dissi-
pative, self-adjoint and has a compact resolvent.

Theorem 1.6 (Existence of Heat Kernel - Arendt & ter Elst, 1997) The operator
−LA (equipped with Neumann or Dirichlet boundary conditions) generates a heat semigroup
{e−tLA}t≥0 on L2(Ω,R). The semigroup is self-adjoint, compact, non-negative and given by
a kernel K defined on (0,∞)× Ω× Ω.

Proposition 1.6 (E. B. Davies, 1989; Grigor’yan, 2006; Griepentrog et al., 2001)
The heat kernel K induced by −LA satisfies the following properties:

• K is a fundamental solution of the heat equation (H);

• K ∈ C((0,∞)× Ω× Ω,R);

• K is symmetric, i.e., K(t, x, y) = K(t, y, x), ∀t > 0, ∀x, y ∈ Ω;
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• K is strictly positive;

• K satisfies the semigroup identity:

K(t+ s, x, y) =
∫

Ω
K(t, x, z)K(s, z, y)dz, ∀t, s > 0,∀x, y ∈ Ω.
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Chapter 2

Related Work

This chapter reviews three articles proposing novel methods to assess AF vulnerability in
patient-specific cardiac models. The studies presented are driven by the compelling need
to reduce the computational burden of monodomain simulations, so as to enable clinical
translation of in silico models to the treatment of arrhythmia, allowing non-invasive and
personalized therapy, which could potentially reduce prevalence and recurrence of this disease.
Full mathematical background and detailed methodology are not thoroughly described on this
chapter, but the essential ideas, basic methods and key results of each work are exhibited to
set a precedent of the current state-of-the-art techniques to computationally guide treatment
for AF.

2.1. Surrogate Models of Atrial Fibrillation
This section reviews the methodology and results of the study conducted by Serra et al.
(2022), where a cardiac electrophysiology simulator based on a cellular automaton (CA) was
informed with controlled biophysical simulations to predict sudden cardiac death in subjects
who had suffered myocardial infarction.

From a microscopic view, the Hodgkin & Huxley (Hodgkin & Huxley, 1990) ion-gating
representation of the cellular layer was used to model action potentials for ground-truth
simulations. In this model, electrical dynamics are represented by a circuit of parallel com-
ponents, where multiple resistors are connected to a capacitor, accounting for the flow of
current across the cellular membrane through active ion channels. From a macroscopic mod-
eling perspective, biophysical dynamics of cardiac tissue were determined by the monodomain
reaction-diffusion system (see Section 3.1.3).

To model cardiac electrophysiology, an asynchronous CA with 3-dimensional elements was
programmed. Each of the nodes of the automaton represented a portion of myocardial tissue.
Events were processed sequentially and queued with a first-in-first-out criterion, updating a
binary state variable that modeled cell depolarization (active) and repolarization (inactive).
When a traveling wavefront of activation reached an inactive node or an external stimulus
was applied, the node changed to an active state where it could, in turn, excite adjacent nodes
before reaching a resting state and deactivate. Surrounding nodes could only be excited with
a non-zero time delay depending on distance and local conduction velocity, which adjusted
according to a fixed mathematical model for action potential in ventricular myocytes (Serra
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et al., 2022; ten Tusscher et al., 2004).

The automaton-based method was validated using a slab model of tissue and a left ven-
tricular geometry with scar. For the slab model, results show that the CA could generate
activation time maps with small difference from ground-truth values in both isotropic and
anisotropic configurations for electric potential diffusion, and could also replicate spiral waves
similar to the ones observed in biophysical simulations, exhibiting the same rotation period
and meandering of the spiral tip (see Figure 2.1). Moreover, by mimicking clinical pac-
ing protocols, ventricular tachycardia could be induced with the CA model. The method
reproduced spatial distribution of action potentials and electroconic effects similar to the
biophysical simulations (Serra et al., 2022), as observed in Figure 2.2.

Figure 2.1: Comparative of simulated rotor spiral waves using a CA and a biophysical model in a
slab of tissue. Simulations are shown for five consecutive times, 120[ms] after the rotor stabilized.
The CA simulation is color-coded by time in milliseconds (ms) from the activation (red tones) to
the resting state (blue tones). The biophysical simulation shows the equivalent phenomenon, where
colors represent transmembrane potential in millivolts (mV) (Serra et al., 2022). Figure adapted
from Serra et al. (2022).

The CA approach captures the electrodynamics of cardiac cells and replicates the behavior
of arrhythmia in macroscopic ventricular models, only requiring a desktop machine to run
simulations, rendering activation time maps 300× faster than a biophysical solver on a high-
performance computer (Serra et al., 2022). Furthermore, the automaton implementation can
be extended to efficiently mimic other alterations in the electric cycle of the heart, such as
focal atrial tachycardia, flutter, and atrial fibrillation sustained by rotors (Serra et al., 2022).

Although this method could emulate AF in a considerably less amount of time than mon-
odomain and could be used to estimate overall inducibility, there is a significant difference
between the local activation of nodes from the CA model and the state of depolarized my-
ocytes that could lead to some error in the determination of fibrillation events. This can be
observed from the 3D left-ventricular simulations in Figure 2.2, where an irregular cloud of
cells remain active near the base of the ventricle and seems to interact with the ectopic pulse
coming from the pacing region, which is not observed during the biophysical simulation. Ad-
ditionally, the CA and the monodomain model appear to display distinct activation patterns
from the source of stimulation, suggesting that some of the directionality in the spread of
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voltage might not be properly captured.

Figure 2.2: Simulation time instants (ms) for CA and biophysical model. A ventricular tachycardia
(VT) episode resulted from applying an S1–S2 protocol at the location labeled as ‘Stm’. First row
shows the endocardial layer (light gray) and the activity in the border zone (BZ) of scar region in
the CA model (the core zone, ‘CZ’, and healthy tissue are transparent), while second row shows
the equivalent in the biophysical model with all tissue types visible (CZ in dark gray color). Colors
in the CA simulation represent time (ms), and in the biophysical simulation represent potential
(mV). A conduction block can be observed a few milliseconds after the S2 (white cross). VT is
subsequently sustained across the slow conduction channel (SCC). White arrows show the direction
of the wavefront (Serra et al., 2022). Figure adapted from Serra et al. (2022).

2.2. ML-based Geometrical Features Approach
Here, the work presented by Bifulco et al. (2023) is summarized. Motivated by the problem of
arrhythmia recurrence in persistent AF patients, arrhythmogenic properties of post-ablation
substrate were assessed in silico by analyzing the mechanistic interactions between patterns
of residual fibrosis and ablation-induced scarring through a set of spatial features designed
to explain post-ablation anchored reentry.

The methodology presented consisted in clustering non-conductive regions from left atrial
models and then measuring for each cluster their corresponding area, perimeter, surrounding
residual fibrosis and proximity to non-conductive tissue. Then, a random forest classifier
was trained with the latter attributes in a supervised setting to determine whether non-
conductive tissue was arrhythmogenic after an ablation procedure. A region was tagged
as pro-arrhythmic if it caused anchored reentry, and non-arrhythmogenic otherwise. The
inducibility of anchored reentry was determined by manually sub-classifying episodes of ar-
rhythmia from simulations of the monodomain system performed with the Finite Element
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method (Bifulco et al., 2023).

The area of each cluster was computed as the total surface of scar, vein and valve tissue
composing the cluster; perimeter, was obtained by adding up the lengths of the outer facets
of each group; surrounding fibrosis was defined as the percentage of excitable fibrotic cells
within a ∼1cm band set in the periphery of the non-conductive region; and the proximity
index was calculated as the total element layers stacked from the boundary of the cluster
before encountering another group of non-conductive tissue (Bifulco et al., 2023). Parameter
extraction is illustrated in Figure 2.3 below.

Figure 2.3: Feature extraction for a potentially arrhythmogenic non-conductive tissue region, in-
cluding the area, perimeter, surrounding fibrosis, and proximity to nearest non-conductive tissue
(Bifulco et al., 2023). Figure adapted from Bifulco et al. (2023).

The influence of spatial features from non-conductive tissue to characterize arrhythmo-
genicity via classification was quantified with SHAP analysis (Lundberg & Lee, 2017), which
is displayed in Figure 2.4. Perimeter was shown to be the most important attribute in the
classification of pro-arrhythmic substrate after cauterization, where an increased likelihood
for anchored reentry presented for perimeters in the range ∼15-60cm; followed closely by area,
with an optimal predictive interval ∼2-20cm2. Non-conductive regions with values outside
these ranges tended to progressively weigh in favor of non-arrhythmogenicity. Furthermore,
increasing surrounding fibrosis translated to a linear increase in the likelihood of identifica-
tion of pro-arrhythmic substrate (Bifulco et al., 2023).
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Figure 2.4: A, dependence plot for perimeter. B, dependence plot for area. C, dependence plot of
surrounding residual fibrosis percentage. D, dependence plot for proximity index. SHAP indicates
Shapley additive explanations (Bifulco et al., 2023). Figure adapted from Bifulco et al. (2023).

The findings from this study suggest that the juxtaposition of ablation-induced scar and
residual fibrosis bear a strong structural substrate for reentry mechanisms in subjects with
persistent AF, while the formation of isthmus is not a main driver for arrhythmia recurrence
in post-ablation models (Bifulco et al., 2023).

Although the feature-extraction procedure elucidates the relationship between geometrical
properties of scar regions and their propensity to trigger AF, it is not sufficient to establish
pointwise inducibility in the cardiac domain, since the methodology proposed only consid-
ers clusters of non-conductive tissue rather than evaluating specific points from the geometry.

2.3. Multi-Fidelity Gaussian Process Classification
In this section, the method developed by Gander et al. (2022) is summarized. This work
exploits the statistical correlation between low-fidelity and high-fidelity models of the elec-
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trophysiology equations by informing multi-fidelity Gaussian process (GP) classifiers with
both type of models to predict AF inducibility on the atrial surface from the high-fidelity
source. This multi-fidelity approach offsets the monodomain computational burden to faster
coarser models, with the goal to reduce the cost of estimation for a targeted accuracy and
improving performance for limited computational resources (Gander et al., 2022).

This study employed zero-mean Gaussian process priors alongside Matérn-like covariance
kernel functions (Gander et al., 2022) to model inducibility outcomes from the different fi-
delity sources. Since a non-euclidean geometry was considered, the covariance kernels were
estimated by using the eigenpairs of the Laplace-Beltrami operator equipped with homoge-
neous Neumann boundary conditions. To construct the multi-fidelity classifier, the relation-
ship between the latent functions of the GPs governing the high-fidelity and the low-fidelity
models was postulated to be an auto-regressive prior, where the high-fidelity function cor-
responded to a scaled low-fidelity prior plus a nuisance function explaining the difference
between models. Consequently, a multi-fidelity joint distribution over the latent functions
could be obtained.

To assess the performance of classifiers in this setting, synthetic examples from a single
atrial geometry under three fibrosis scenarios and three ablation cases were used. For each
fibrosis/ablation case, the evaluation of the multi-fidelity GP approach was carried out by
using a dataset where each element of the set was composed of a feature vector containing
a point coordinate in the atrial surface and a binary tag representing the inducibility out-
put from an AF simulation after applying a stimulation protocol from that point. Here,
the data used for the inducibility tags in the training set were dichotomically comprised of
two sources: an expensive and hard-to-acquire high-fidelity source based in the monodomain
system on a fine mesh, and an inexpensive and faster-to-compute low-fidelity model obtained
with a coarser grid. On the other hand, the set used for testing only had samples from
the high-fidelity model. The multi-fidelity GP classifiers were trained using an active learn-
ing approach, where singleton samples were iteratively added by promoting the selection of
locations near the decision boundary (Gander et al., 2022). Their performance was then
tested against single-fidelity classifiers and a nearest neighbor algorithm, both trained with
the high-fidelity data.

Results showed that single and multi-fidelity models with an active learning approach
yielded better results than a fixed training design, and that both cases outperformed the
nearest-neighbor estimator (Gander et al., 2022), showing a high dependence on the length-
scale of the classifier (see Figure 2.5 A). Moreover, comparing the accuracy with the single-
fidelity model, the proposed method rendered better predictions for AF inducibility when a
reduced budget of 40 pacing sites was available (see Figure 2.5 B).

The multi-fidelity Gaussian process classifier can reduce the computational overhead of
monodomain simulations while competitively maintaining or improving accuracy to the
single-fidelity strategy. Moreover, the proposed method does not demand intrusive changes
to existing implementations (Gander et al., 2022) and could lead to clinical translation to
evaluate ablation strategies in real patient-specific anatomies. However, although allowing to
reduce the number of high-resolution simulations in exchange for low-fidelity information, the
multi-fidelity approach still relies on the monodomain system and depends on the cardiac
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geometry explicitly, making it necessary to re-run simulations to train the classifier again
after fibrosis is changed or the anatomy is modified.

Figure 2.5: A, average balanced accuracy change for increasing length scale when the classifiers
are trained with 100 samples. The dashed vertical line represents the average geodesic distance
between training points of the fixed design. B, balanced accuracy comparison for the nearest
neighbor, single-fidelity, and multi-fidelity classifiers, for all nine model scenarios and with a fixed
budget of 40 high-fidelity simulations (Gander et al., 2022). Figure adapted from Gander et al.
(2022).
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Chapter 3

General Methodology

3.1. Atrial Fibrillation Modeling
In this section, three mathematical models that describe the propagation of voltage in the
heart are summarized. First, the microscopic bidomain model is introduced, where cardiac
tissue is conceptualized as a composite of two distinct conductive domains that interact by
actively passing current across a conductance barrier separating the two media. Then, the
macroscopic bidomain model is presented as a homogenized version of the previous model,
where physical quantities are obtained through local averaging. Finally, the macroscopic
monodomain model is derived by simplifying the bidomain model under the assumption of
proportionality between the conductivities of intra- and extracellular spaces.

3.1.1. Microscopic Bidomain Model

Heart muscle is an ensemble of elongated excitable cells coupled longitudinally and laterally
by aggregates of intracellular ionic channels (Colli Franzone et al., 2014; Goodenough & Paul,
2009). From a modeling perspective, cardiac tissue consists of an ohmic system composed
by a conducting intracellular medium Ωi overlaid by an active membrane Γm and immersed
in a conductive matrix Ωe. This can be thought of as a collection of roughly cylindrical con-
joined cables submerged in a conductive material, separated from it by a series of capacitors,
where current flow varies because of changes in the resistance of the electrical units and the
variations in permittivity of the separating layer.

Mathematically, Ωi and Ωe are regarded as two connected open sets of R3, and the car-
diac domain ΩH as a whole can be defined as their union alongside membrane bounds:
ΩH = Ωi ∪ Γm ∪ Ωe (see Figure 3.1). The microstructural effects in current flow caused
by local variations in conductance because of media heterogeneity, gap junctions, collagen
allocation and presence of blood vessels are accounted by the positive-definite conductivity
tensors Σi(x) and Σe(x) (Colli Franzone et al., 2014).
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Figure 3.1: Illustration of cellular connectivity from slice of cardiac tissue. The structure presented
repeats periodically to form extended layers of heart muscle.

Let Vi, Ve denote the potentials for the intra- and extracellular matrix, respectively. By
Ohm’s law, their corresponding current densities Ji and Je satisfy the following equations:

Ji,e = −Σi,e∇Vi,e in Ωi,e × (0, T ].

Considering an external septal stimuli and assuming that active sources only lie on the
cellular membrane, the transmembrane current per unit area Im can be expressed in terms
of a capacitor term, an ion gating component and a stimulus current (Colli Franzone et al.,
2014; Bader et al., 2021):

Im = Cm
∂Vm

∂t
+ Iion + Istim on Γm × (0, T ];

where Cm is the membrane capacitance, Vm := Vi − Ve is the transmembrane potential, Istim
is the external stimulus and Iion is the ionic current. The latter is a function depending on
the electrophysiological model. Namely, Iion = Iion(Vm,w), where w is a vector containing
the ion gating and concentration variables that satisfies the following ODE system:


∂w
∂t

= g(Vm,w) on Γm × (0, T ];
w(·, 0) = w0 on Γm.

Let ni, ne be the exterior boundary normals of Ωi and Ωe, respectively. Kirchoff’s junction
rule implies that normal current flux is continuous through the membrane. Under the as-
sumption of an outward current, the following transmission boundary conditions are obtained
(Colli Franzone et al., 2014):Ji · ni = χIm on Γm × (0, T ];

−Je · ne = χIm on Γm × (0, T ];

with χ being the surface-to-volume ratio, computed as the fraction between membrane sur-
face and its enclosed volume for a given length of fiber.
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Moreover, under the assumption that intracellular and extracellular regions are source-
free, the conservation law for electric charges provides the following equation:

∇ · Ji,e = 0 in Ωi,e × (0, T ].

With the additional supposition of an insulated cardiac domain, homogeneous Neumann
conditions are imposed for the potentials in the outer boundaries Γi,e := ∂Ωi,e\Γm, namely

Ji,e · ni,e = 0 on Γi,e × (0, T ].

Putting together the equations above, with proper initial conditions for the potential
difference Vm, the microscopic bidomain system is assembled for ΩH :

(Bm)



−∇ · (Σi,e∇Vi,e) = 0 in Ωi,e × (0, T ];
∂w
∂t

= g(Vm,w) on Γm × (0, T ]; ,

(Σi,e∇Vi,e) · n = −χ
(
Cm

∂Vm

∂t
+ Iion + Istim

)
on Γm × (0, T ];

(Σi,e∇Vi,e) · n = 0 on Γi,e × (0, T ];
w(·, 0) = w0; Vm(·, 0) = V0 on Γm;

where n is ni on Γm and equal to ni,e on ∂Ωi,e\Γm.

3.1.2. Macroscopic Bidomain System

The system presented in the previous section corresponds to a microscopic concept of cardiac
structure that does not take into consideration its global properties. To capture the macro-
scopic behavior of heart muscle, a model that averages myocyte conduction characteristics
into a continuum representation of tissue that can hold momentarily stationary with respect
to individual cell activity is used. It stems from the consideration of interpenetrating extra-
cellular and intracellular spaces (Colli Franzone et al., 2014; Schmitt, 1969).

Let ΩH be a heart volume such that in every point from the domain both cytoplasmic and
interstitial media coexist and are separated by a continuously distributed cellular membrane.
For every point x ∈ ΩH , denote by Ji,e(x, t) the macroscopic current densities computed from
local averaging and Im the transmembrane current per unit area. From the current conserva-
tion law, for any neighborhood V ⊆ ΩH of x, the average flux entering interstitial volume and
exiting cytoplasmic space equals the average current across the membrane (Colli Franzone
et al., 2014). More specifically,

1
|V |

∫
∂V

Je · nds = − 1
|V |

∫
∂V

Ji · nds = 1
|V |

∫
V

χImdx,

where n is the outward-pointing normal on ∂V . Taking the limit |V | → 0, the equation for
conservation of electric charges is recovered (Colli Franzone et al., 2014):∇ · Ji = −χIm in ΩH × (0, T ];

∇ · Je = χIm in ΩH × (0, T ];
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Moreover, regarding extra- and intracellular media as ohmic, current densities can be written
in terms of the macroscopic potentials Ve and Vi as

Ji,e = −Σi,e∇Vi,e.

Applying an external stimulus on the membrane and taking into consideration the insulated
heart hypothesis, the macroscopic bisyncytial model is expressed in its parabolic-parabolic
formulation as follows (Colli Franzone et al., 2014; Bader et al., 2021):

(BM)



−∇ · (Σi∇Vi) = −χ
(
Cm

∂Vm

∂t
+ Iion + Istim

)
in ΩH × (0, T ];

−∇ · (Σe∇Ve) = χ

(
Cm

∂Vm

∂t
+ Iion + Istim

)
in ΩH × (0, T ];

∂w
∂t

= g(Vm,w) in ΩH × (0, T ];
(Σi,e∇Vi,e) · n = 0 on ∂ΩH × (0, T ];
w(·, 0) = w0; Vm(·, 0) = V0 in ΩH .

3.1.3. Macroscopic Monodomain System

The solution from the macroscopic bidomain system presented in the previous section ex-
hibits a wavefront propagation with a rapid and steep upstroke during the excitation phase
of the heartbeat. This causes numerical methods to require meshes with high resolution for
both time and space in order to accurately estimate the transmembrane potential in cardiac
models (Colli Franzone et al., 2014; Dal et al., 2012). Thus, high processing speed and a
significant amount of memory are needed to numerically solve the corresponding bivariate
reaction-diffusion system for large scale simulations. This motivates a reduction of the model
to a less demanding approximation of the electrical behavior of the heart: the monodomain
system, that tackles the issue of different electrophysiological properties between cytoplasmic
space and the extracellular matrix by taking the bulk medium conductivity.

Let J := Ji +Je and Σ := Σi +Σe. Furthermore, the conductivity tensors are regarded in
the form of an orthonormal basis {al, at, an} describing the local direction of cardiac tissue
(Colli Franzone et al., 2014; Johnston & Johnston, 2020):

Σi,e = σl
i,eal(x)⊗ al(x) + σt

i,eat(x)⊗ at(x) + σn
i,ean(x)⊗ an(x);

where al is parallel to the fiber, at, an are tangent and normal to the fiber’s laminar sheet, and
σl

i,e, σt
i,e, σn

i,e denote the intra- and extracellular conductivities measured along the respective
directions, which are assumed constant (Colli Franzone et al., 2014; Johnston & Johnston,
2020).

Since Vm = Vi − Ve and the current densities are given by the potentials Vi,e, J can be
expressed as

J = −Σi∇Vm −Σ∇Ve.
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Furthermore, given that Σi,e are positive definite, Σ is invertible, and ∇Ve can then be
written as

∇Ve = −Σ−1Σi∇Vm −Σ−1J.

Figure 3.2: Illustration of muscle composition in ventricular tissue with orthonormal vectors aligned
with laminae and fiber direction. Figure based on illustration from Kocica et al. (2006).

Therefore, the second equation from (BM) is equivalent to (Colli Franzone et al., 2014)

∇ · (ΣeΣ−1ΣiVm) +∇ · (ΣeΣ−1J) = χ

(
Cm

∂Vm

∂t
+ Iion + Istim

)
,

Taking into consideration a transverse isotropy regime for conductivities (σt
i,e = σn

i,e)
and equal anisotropy ratios (σl

e/σ
l
i = σt

e/σ
t
i = σn

e /σ
n
i ), the conductivity tensor in the second

divergence term from the previous equation simplifies to (Colli Franzone et al., 2014; Hurtado
& Henao, 2014)

ΣeΣ−1 = σl
e

σl
i + σl

e

I.

This result, along with the fact that the two first bidomain equations yield ∇·J = 0, reduces
the original evolution system to a PDE describing only the dynamics of transmembrane
potential:

∇ · (Σm∇Vm) = χ

(
Cm

∂Vm

∂t
+ Iion + Istim

)
in ΩH × (0, T ];

with Σm := ΣeΣ−1Σi being the conductivity tensor of the bulk medium, having the explicit
form

Σm = σl
eσ

l
i

σl
e + σl

i

(al ⊗ al) + σt
eσ

t
i

σt
e + σt

i

(I− al ⊗ al).

To derive a Neumann boundary condition for the approximate model, it suffices to use
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ΣeΣ−1 = σl
e/(σl

i + σl
e)I and recall that Σ−1Σi∇Vm = −∇Ve −Σ−1J, which yields

(Σm∇Vm) · n = − (Σe∇Ve) · n−
σl

e

σl
i + σl

e

(Ji + Je) · n = 0 on ∂ΩH × (0, T ].

Putting together the deduced relations for Vm, along with the ionic model, the monodomain
system is obtained:

(M)



−∇ · (Σm∇Vm) = −χ
(
Cm

∂Vm

∂t
+ Iion + Istim

)
in ΩH × (0, T ];

∂w
∂t

= g(Vm,w) in ΩH × (0, T ]; ,
(Σm∇Vm) · n = 0 on ∂ΩH × (0, T ];
w(·, 0) = w0; Vm(·, 0) = V0 in ΩH .

The variability in conductivity across different cardiac regions and the presence of struc-
tural abnormalities are encoded in the conductivity tensor Σm. Thus, the solution to the
monodomain system can change depending on the availability of information regarding the
anatomical parts of the patient’s heart, the direction of muscle fibers and fibrosis distribution.
The dependency between the monodomain solution and the variation in conductivity can be
exploited to identify AF substrate by creating markers that are flexible to the data that is
accessible through Σm.

3.2. Pacing Protocols
The efficacy of therapeutic approaches for treating AF can be tested by measuring the post-
procedural vulnerability of the cardiac muscle to initiate sustained episodes of arrhythmia.
In clinical practice, electrical stimulation is used to diagnose and guide treatment (Azzolin et
al., 2021), making AF inducibility a landmark for targeting proarrhythmic regions and con-
sequently determining optimal outputs for conventional therapy, such as catheter ablation.
However, the progressive nature of this disorder and inherent complexity explain its preva-
lence even after standard-of-care treatments are performed (Azzolin et al., 2021; Chae et al.,
2007; Verma et al., 2015; Kawai et al., 2019; Gharaviri et al., 2021). Moreover, the multi-
faceted causes of heart rhythm abnormalities and intrinsic processes that rise susceptibility
for AF lead to a variety of criteria for defining inducibility, deciding pace-point collocation
and modulating each stimulation intensity. This results in the creation of various pacing
techniques to quantify AF vulnerability in different levels.

Patient-specific in silico models have shown to be effective for the design of better treat-
ments for AF (Azzolin et al., 2021; Boyle et al., 2019; Loewe et al., 2019; McDowell et
al., 2015), as they not only enable the comparison between different therapeutic procedures
through simulation, but allow testing multiple pacing protocols to measure the propensity
of cardiac tissue to initiate and maintain fibrillation events. In this section, three state-of-
the-art protocols are reviewed: phase singularity distribution (PSD), rapid pacing (RP) and
pacing at the end of the effective refractory period (PEERP). In this work, the last two
techniques are used to characterize pro-arrhythmic sites in the atria.
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3.2.1. Phase Singularity Distribution

A phase singularity (PS) is defined as the tip of a rotational front from the electrogram
(EGM) phase map Φ(x, t), which is a function that uniquely describes the excitation state
of a cell x at any time t (Iyer & Gray, 2001; Clayton et al., 2006) (see Figure 3.3). Some
techniques used to construct cardiac phase maps are the Sawtooth and the Hilbert Transform
methods, which are illustrated in Figure 3.4. The first method converts the signal through a
linear interpolation from π to −π between consecutive local activation times, and the second
uses the argument of the analytical form of the EGM, where the real part corresponds to the
signal and the imaginary part to its Hilbert transform (Lootens et al., 2024).

Figure 3.3: Phase singularity below left pulmonary veins on atrial model with counterclockwise
spiral rotation from electrical potential recordings (mV).

Figure 3.4: Illustration of converted EGM signal to phase maps with Sawtooth and Hilbert Trans-
form methods. Figure adapted from Lootens et al. (2024).
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The phase singularity distribution method (PSD) creates initial conditions for a mon-
odomain propagation with the prior knowledge of wave dynamics and the location of reentry
circuits in the heart surface (Matene & Jacquemet, 2012; Azzolin et al., 2021). It starts
by positioning an arbitrary amount of phase singularities on a monolayer approximate of
the atria, and then it initializes all state variables of the system from a re-entrant acti-
vation map computed through an eikonal-based shortest path algorithm that considers an
anisotropic medium and assumes known conduction velocities (Matene & Jacquemet, 2012).
This method requires the cycle length of the re-entrant front, the number of PSs and their
direction of rotation (Azzolin et al., 2021; Matene & Jacquemet, 2012).

Although effective for simulating different types of AF and creating arbitrary large fibril-
lation episodes (Matene & Jacquemet, 2012), the PSD can only be applied to computational
modeling, as it includes a priori information from the location and behavior of active sources
for the maintenance of arrhythmia that are not known in practice (Azzolin et al., 2021).

3.2.2. Rapid Pacing
In the clinical setting, rapid pacing (RP) is a commonly used protocol to test arrhythmia
inducibility in patients (Azzolin et al., 2021). This method consists in the application of a
progression of stimuli with decreasing coupling intervals (CI), where a CI is defined as the
time interval comprising a foregoing action potential followed by the onset of an ectopic pulse
(de Vries et al., 2018), as illustrated in Figure 3.5 A.

Figure 3.5: A, electrogram of single cardiomyocyte under RP stimulation protocol. B, electrogram
of cardiomyocyte with PEERP pacing strategy. The colored vertical lines correspond to the instants
of stimulation. Note that the coupling interval from the PEERP protocol depends on the effective
refractory period.
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The RP protocol is parameterized by a collection of CI lengths L := {li}n
i=1, the number

of stimuli before each CI decrease N := {Ni}n
i=1 and an indicator of successful initiation of

fibrillation I ∈ {E,B}, that checks AF induction after every beat (B) or at the end of the
protocol (E) (Azzolin et al., 2021).

For example, the most typical rapid pacing plan corresponds to a train of CIs in the
decreasing range 200 − 130[ms] with time step 10[ms] and AF indicator at the end of the
protocol. This is, L = {200, 190, ..., 140, 130}, N = {1, 1, ...1, 1} and I = E (Krummen et al.,
2012; Zahid et al., 2016; Boyle et al., 2019; as cited in Azzolin et al., 2021):

RP (L,N, I) = {200, 190, ..., 140, 130, c}.

Another instance of a RP stimulation can be given by the set of CIs as in the previous
example, but with duplicate repetitions for each interval and checking arrhythmia initiation
at the end of every beat:

RP (L, {2, ..., 2}, B) = {200, c, 200, c, 190, c, 190, c, ..., 130, c, 130, c}.

Despite the flexibility of the RP method to render point inducibility through a multi-
parameter setting, and its versatility to be utilized in both computational simulations and in
vivo experiments, the protocol bears the difficulty of reproducibility, because of the strong
dependence in the choice of variables and individual criteria for fixing a configuration to
consistently quantify AF vulnerability. However, given that RP is commonly used in clinical
applications, its use is justified for the first study performed for this thesis.

3.2.3. Pacing at the End of the Effective Refractory Period

Pacing at the end of the effective refractory period (PEERP) is a method that depends only
on the maximum number of pulses to apply to a specific location. This protocol fixes a
set of pace-points in the cardiac geometry and delivers a premature beat as soon as the
underlying tissue is able to spread a new front of propagation (Azzolin et al., 2021). The
instant for stimulation initiation is queued by the effective refractory period (ERP), which
corresponds to the largest CI where the impulse fails to locally spread (Katritsis & Morady,
2022; Issa et al., 2009) (see Figure 3.6). The end of the ERP is estimated with a binary
search algorithm that computes the minimum time at which a new depolarization wave can
successfully propagate to a set of neighboring cells from the pacing location (Azzolin et al.,
2021). In practice, local estimation of ERP is performed with a pacing protocol that looks
for the longest stimulus-stimulus repolarizing interval (Azzolin et al., 2021; Issa et al., 2009).
However, stimulus-free methods could also be used for this task (Verrier et al., 2016).

Although PEERP works under the assumption of high resolution in repolarization intervals
and brings about more time complexity to put in the external pulse at the end of the ERP,
this protocol was selected to assess AF inducibility for the second study related to this thesis
work, as it maximizes chances of reentry when adaptively selecting the stimulus and because
it only depends on a fixed current strength and maximum number of beats, thus facilitating
standardization (Azzolin et al., 2021).
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Figure 3.6: ERP representation for myocyte action potential and binary search strategy for end
of ERP estimation. The colored bands indicate the pulse application and their width the state of
iteration. The color green indicates that the delivered stimulus successfully spread in neighboring
cells, and red otherwise.

3.3. The Fibrotic Kernel Signature

3.3.1. The Heat Kernel Signature

The heat kernel signature (hks) is a time-dependent point descriptor used in shape analy-
sis. It embeds intrinsic geometrical information from a figure by accounting for the diffusion
process through its surface after applying an infinitely large amount of heat for an infinitely
small window of time on a fixed location (Sun et al., 2009). Mathematically, this signature
is defined as a spatial restriction of the kernel induced by the Laplace-Beltrami operator on
manifolds (Banduc et al., 2024).

Let M be a compact Riemannian manifold with Lipschitz boundary embedded in a n-
dimensional space. The heat distribution u on M provided an initial condition u0 ∈ L2(M,R)
for an observation interval [0, T ] is governed by the following equation:

(H0)


∂u

∂t
−∆Mu = 0 in M × (0, T ];

u = u0 in M × {t = 0};

where ∆M denotes the Laplace-Beltrami operator in M . The solutions for (H0) are built
from the heat semigroup T (t) = et∆M , where the function defined by u(t) := T (t)u0 satisfies
the heat equation for the initial distribution u0 and suitable boundary conditions on ∂M .
(Cazenave & Haraux, 1999; Grigor’yan, 2018; Choulli et al., 2015)

Moreover, there exists a unique function (Norris, 1997; Grigor’yan, 1997; Choi & Kim,
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2013) K : (0,∞)×M ×M → R such that for any u0 ∈ L2(M,R)

T (t)u0(x) =
∫

M
K(t,x,y)u0(y)dy,

The heat kernel K(t,x,y) is smooth, positive, symmetric, obeys the semigroup property
K(t + s,x,y) = (K(t,x, ·), K(s, ·,y))L2 and satisfies the diffusion problem for an initial
Dirac-delta temperature (Grigor’yan, 2018; Grieser, 2004)

(Hδ)


∂K

∂t
−∆MK = 0 in M ×M × (0,∞);

lim
t→0+

K(t,x,y) = δ(x,y) in M ×M ;

where δ(x, ·) denotes a Dirac distribution on x ∈M .

The heat kernel lists several useful properties to analyze shapes undergoing isometric
transformations, small deformations and multi-scale comparison. In the properties stated
below, manifolds are assumed compact and Riemannian, with Lipschitz boundary.

Proposition 3.1 (Intrinsic Property - Sun et al., 2009) Let M1, M2 be two manifolds,
and let Ki ∈ C∞((0,∞) ×Mi ×Mi,R) be the heat kernel induced by ∆Mi

. If T : M1 → M2
is an isometry, then K1(t,x,y) = K2(t, T x, T y), ∀x,y ∈M1, ∀t > 0.

Proposition 3.2 (Informative Property - Sun et al., 2009) Let T : M1 → M2 be a
surjective map between two manifolds M1 and M2, and Ki as described above. If K1(t,x,y) =
K2(t, T x, T y), ∀x,y ∈M1, ∀t > 0, then T is an isometry.

Proposition 3.3 (Multi-scale Property - Dodziuk, 1983; Sun et al., 2009) Let
M1 ⊆ M2 and Ki be the Dirichlet heat kernel induced by ∆Mi

. Then, for all r > 0,
K2(t,x,y) − K1(t,x,y) = O(tr) uniformly on M1 × M1 as t → 0+, and K1(t,x,y) ≤
K2(t,x,y), ∀t > 0,∀x,y ∈ M1. Moreover, let M be a manifold with Dirichlet heat kernel
K and {Mi}∞

i=1 a strictly expanding sequence of open subsets of M such that
∞⋃

i=1
Mi = M .

Then, the family of Dirichlet heat kernels {Ki}∞
i=1 corresponding to {Mi}∞

i=1 converges to K
pointwise: lim

i→∞
Ki(t,x,y) = K(t,x,y), ∀t > 0, ∀x,y ∈M .

The heat kernel arises as a natural fit for a point signature. Furthermore, since it describes
a diffusion process, its spatial variations manifest from its changes in time (Sun et al., 2009).
In consequence, up to mild assumptions regarding the multiplicity of the eigenvalues of ∆M ,
the properties previously shown are overdetermined for K, making it possible to restrict
its space component without dropping valuable information from the geometry (Sun et al.,
2009).

Definition 3.1 Let M be a compact Riemannian manifold with Lipschitz boundary and K be
the heat kernel derived from ∆M . The heat kernel signature (hks) is defined as the diagonal
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argument of K:

hks : (0,∞)×M → R
(t,x) 7→ K(t,x,x).

This definition can be made proper when considering the expansion of the kernel in terms
of the eigenpairs {(λi, φi)}∞

i=0 of the operator −∆M . This is

K(x,y) =
∞∑

i=0
e−tλiφi(x)φi(y).

The hks can be regarded as the measurement of a physical quantity in a point x ∈ M
at time t > 0 after instantly applying a concentrated source of that quantity in that same
specific location at time 0. For instance, this could be interpreted as the time course of an
ink drop as it diffuses through a glass of water (Sahli Costabal et al., 2023).

This signature inherits the essential properties from the heat kernel. However, an hypoth-
esis regarding the eigenvalues of the Laplace-Beltrami operator must be added to preserve
its informative property.

Theorem 3.1 (hks Informative Property - Sun et al., 2009) Let T : M1 → M2 be
an homeomorphism between two compact Riemannian manifolds M1 and M2 with smooth
boundary, and let hksi be the heat kernel signature induced by ∆Mi

. If the eigenvalues of
the Laplace-Beltrami operator on each manifold are simple and hks1(t,x) = hks2(t, T x),
∀x ∈M1,∀t > 0, then T is an isometry.

Although exhibiting notable performance and efficiency among spectral methods for tasks
such as segmentation, shape matching and feature localization (Boscaini et al., 2016; Wang
& Solomon, 2019; Banduc et al., 2024), the hks is based in a homogeneous phenomenon
of propagation. Thus, the functionality of the hks can be extended to problems involving
heterogeneity and direction in the propagation of a quantified variable using second order
elliptic operators in the general form LAu = −∇M ·(A∇Mu), where A = A(x) is a symmetric
and uniformly bounded elliptic tensor.

3.3.2. Fibrosis Information Inclusion
To study AF vulnerability from intrinsic geometrical features and conduction properties in
the cardiac domain with main focus on fibrosis distribution and fiber direction, a simplifica-
tion of the monodomain model (M) is proposed.

Considering a Dirac impulse through a fixed point xstim and neglecting the reaction term
Iion, the monodomain system reduces to a single diffusion equation

−∇ · (Gm∇Vm) + ∂Vm

∂t
= 0 in ΩH × (0, T ];

(Gm∇Vm) · n = 0 on ∂ΩH × (0, T ];
limt→0+ Vm(t, ·) = δ(xstim, ·) in ΩH ;
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where Gm := (χCm)−1Σm. Depending on data availability, Gm can be modeled with a
tensor F inscribing prior knowledge of electrical conductivity through cardiac tissue. Instead
of taking the Dirichlet Laplacian, the fks is obtained as a generalization of the hks given by
a fibrosis-informed elliptic operator LFu = −∇ · (F∇u) with Neumann boundary conditions
in the entire volume ΩH equipped with the usual cartesian coordinates (Banduc et al., 2024).
Assuming a sufficiently regular cardiac geometry, LF induces a heat kernel in ΩH .

Definition 3.2 (Fibrotic Kernel Signature) Let ΩH ⊆ R3 be a cardiac domain with
Lipschitz boundary and F(x) be a symmetric elliptic conductivity tensor in ΩH with bounded
coefficients encoding fibrosis distribution and fiber direction. The fibrotic kernel signature
(fks) is defined as the diagonal argument of the heat kernel KF : (0,∞) × ΩH × ΩH → R
induced by the operator LFu = −∇ · (F∇u) with Neumann boundary conditions:

fks : (0,∞)× ΩH → R
(t,x) 7→ KF(t,x,x);

The regularity of the domain allows to decompose its corresponding kernel by the eigen-
pairs of the differential operator LF. Since ΩH is bounded and has a Lipschitz boundary, then
−LF has compact resolvent and, by the Spectral Theorem (Arendt, 2006; Dodziuk, 1981),
there exists a sequence {ϕi}∞

i=0 of functions in H1(ΩH ,R) that form a basis of L2(ΩH ,R) and
a collection of non-negative real numbers {λi}∞

i=0 tending to infinity, such that

(EF)
LFφi = λiφi in ΩH ;

(F∇φi) · n = 0 on ∂ΩH .

Moreover KF yields the semigroup {e−tLF}t≥0 of compact and non-negative operators. Thus,
by Mercer’s Theorem (Dodziuk, 1981; Sun et al., 2009), KF allows the following representa-
tion:

KF(t,x,y) =
∞∑

i=0
e−tλiφi(x)φi(y);

where the series converges uniformly and absolutely. Then, the fks admits the eigendecom-
position

fks(t,x) =
∞∑

i=0
e−tλiφi(x)2.

3.3.3. Signature Computation with Finite Elements

Numerically, the problem (EF) is solved with the P1 Finite Element method.

Let Ωh be a polyhedral approximation of ΩH and Th a tetrahedral mesh of Ωh. The finite
elements of order 1 associated with Th are defined by the discrete space (Allaire, 2007)

Vh =
{
v ∈ C

(
Ωh,R

)
: v|T ∈ P1, ∀T ∈ Th

}
.
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Since the integral formulation of (EF) is given by∫
ΩH

(F∇φi) · ∇ψ = λi

∫
ΩH

φiψ, ∀ψ ∈ H1(ΩH ,R);

then the internal approximation of the problem turns to looking for a collection of eigenpairs
{(λi, φi)}dim Vh−1

i=0 in R×Vh such that 0 ≤ λ0 ≤ λ1 ≤ ... ≤ λdim Vh−1 and {φi}dim Vh−1
i=0 is a basis

of Vh orthonormal in L2(Ωh,R) (Allaire, 2007) satisfying

(Eh
F)


φi =

dim Vh−1∑
k=0

αk
i ψk,

{
αk

i

}dim Vh−1

k=0
⊆ R;

Shα⃗i = λiMhα⃗i, α⃗i := (α0
i , α

1
i , ..., α

dim Vh−1
i )T .

Here, {ψk}dim Vh−1
k=0 is the finite element basis of Vh. Sh and Mh denote, respectively, the

stiffness matrix and the mass matrix of the discrete problem, defined as

(Sh)ij :=
∫

Ωh

(F∇ψi) · ∇ψj; (Mh)ij :=
∫

Ωh

ψiψj.

Then, the fks can be computed in an atrial mesh provided the solution {(λi, φi)}dim Vh−1
i=0 of

the eigenproblem (Eh
F) through the estimate

fks(x, t) ≃
n∑

i=0
e−λitφi(x)2, 1≪ n≪ dim Vh − 1.

For the experiments performed in this work, the discrete spectral problem (Eh
F) was solved

using the FEniCSx software (Baratta et al., 2023; Scroggs, Dokken, et al., 2022; Scroggs,
Baratta, et al., 2022; Alnaes et al., 2014) along with the SLEPc library (Hernandez et al.,
2005).

3.3.4. Method Workflow for AF Prediction

The problem of predicting which points in the atria could potentially trigger AF events can
be handled in a supervised learning setting by solving a classification task. Let 1AF (p,M) :
ΩH → {0, 1} be an indicator function for a given cardiac electrophysiology modelM, where
1AF (p,M)(xstim) = 1 if pacing from xstim ∈ ΩH with a protocol p can develop a sustained
fibrillation episode according to the model M, and 1AF (p,M)(xstim) = 0 otherwise. For
instance, p could be set as the PEERP protocol, whileM could correspond to the parameters
of the monodomain model (M) (see Figure 3.7). Typically, pace-points are positioned on a
smooth surface inside of ΩH .
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Figure 3.7: Example of inducibility criterion 1AF for PEERP protocol and monodomain model.

The function 1AF not only depends on the atrial geometry, but also on the pacing strategy,
the criteria applied for categorizing arrhythmic behavior and the parameters necessary for
solving the equations given by the model. Thus, a formal definition can be given for point
inducibility in terms of AF testing:

Definition 3.3 (Inducible Point) Let ΩH be an atrial domain. For fixed p,M, let 1AF (p,M) :
ΩH → {0, 1} be as described above. A point xstim ∈ ΩH is said to be inducible if

1AF (p,M)(xstim) = 1.

This brings the following definition for surface inducibility:

Definition 3.4 (Overall Inducibility) For a pacing protocol p and electrophysiology model
M, overall inducibility SAF is defined as the fraction of tissue where AF can be induced:

SAF := 1
|ΩH |

∫
ΩH

1AF (p,M)(x)dx

The goal of classification is to learn the set of AF-inducible stimulation points ΩAF
H :=

1AF (p,M)−1({1}) and, more specifically, approximating the overall inducibility of the model,
because ablation strategies look for minimizing the inducible surface. Here, the objects of
interest to account for are the atrial architecture, fibrosis distribution and fiber direction.

The current approach to estimate the inducible set ΩAF
H is to run monodomain-based

simulations at multiple stimulation points evenly distributed on the atrial domain (Banduc
et al., 2024). Ideally, for a given amount of locations P ∈ N, the family of pacing points
Xstim := {xi

stim}P
i=1 maximizes the pairwise geodesical distance d on a mid-wall smooth surface

SH ⊆ ΩH :

min
i,j=1,...,P

i ̸=j

d(xi
stim,x

j
stim) = max

X⊂SH
|X|=P

min
x,y∈X

x̸=y

d(x,y).

In practice, a farthest point sampler algorithm is employed to representatively select the
pacing sites, which iteratively incorporates the farthest element from the current set until
matching the desired set size. Usually P = 100, but given the convergence of overall in-
ducibility for an increasing number of pacing locations, an initial speed-up can be done by
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only considering a sample of 40 simulations, as suggested in Boyle et al., 2019.

The main idea of this work is to learn the inducibility function 1AF with the fks time
series from a finite set of simulations for a selected pair (p,M), such that for new cardiac
anatomies or geometry changes due to ablation, the inducible set can be estimated quickly,
without the need to re-run simulations (Banduc et al., 2024). Here, a classifier C(·) is trained
with the features corresponding to the fks on a discrete collection of times T ⊆ (0,∞) to
predict the outputted tags {1AF (xi

stim)}P
i=1 from the model:

C
((
fks(t,xi

stim)
)

t∈T

)
≃ 1AF (xi

stim), ∀i ∈ {1, ..., P}.

Although C learns inducibility targets from the fks evaluated in the subset Xstim, the sig-
nature as a function is independent of the pacing points chosen for simulation, thus allowing
to compute 1AF in the entire atrial geometry.

After training with several cardiac cases and fibrosis scenarios, the fks is expected to
accurately estimate the inducibility map 1AF for a new domain ΩH′ :

C
(
(fks(t,x))t∈T

)
≃ 1AF (x), ∀x ∈ ΩH′ .

With the objective to enable comparability between the fks across different atrial geome-
tries, it is necessary to scale the signature and define an interval that describes its stages of
evolution.

Following the heuristics suggested in Sun et al. (2009), for the discrete setting Ωh, the fks
is divided by an estimate of the heat trace:

fks(t, x)←−

n∑
i=0

e−tλiφi(x)2

n∑
i=0

e−tλi

, 1≪ n≪ dim Vh − 1.

The idea of normalization comes from the exponential decrease in the difference between
signatures from distinct locations, making spatial variations negligible at larger times when
compared to smaller ones, thus becoming necessary to scale these variations to give uniform
significance to the difference between signatures through all times.

Taking into account that λ0 = 0 with constant function φ0 = |ΩH |−11ΩH
for the eigenprob-

lem (EF), the summations are in practice carried out starting from the smallest non-negative
eigenvalue (λ1), denoted as λmin in what follows. Then, the discrete set of times T to evaluate
the signature is defined by a logarithmic progression {t0, ..., tNT

} in the interval [tmin, tmax],
where the endpoints of the set are determined by λmin and the largest eigenvalue (λmax)
computed for the differential operator inducing the kernel:

tmin = α/λmax; tmax = β/λmin;

with α, β positive hyper-parameters.
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The notion of a domain-dependent time interval discretized with a logarithmic progression
to evaluate the signature arises from the requirement of establishing consistent comparison
between domains, where the signature must be evaluated at characteristic stages of diffusion.
To achieve this, the pronounced changes of the fks for initial times and long-term stability are
captured with an even spacing on logarithmic scale, and the relevant interval of observation
is controlled through the terms e−tminλmax and e−tmaxλmin of the series. Here, tmin marks the
beginning of measurements by fixing the minimal value of each exponential component of
the fks expansion at e−α, while tmax indicates the endpoint for observation at the instant the
signature decreases to a value in the order of e−β.

Finally, the pipeline for the fks method can be summarized in two phases, which are
schematically shown in Figure 3.8:

• Offline phase: On this phase, a set of meshed anatomies with different fibrosis sce-
narios {Ωi

h}
NH
i=1 is used for training. For each polyhedral domain Ωi

h, a set of pacing
points {xi

j}
Pi
j=1 is extracted from the node set of its mesh and computationally tested

for arrhythmia inducibility using a specified protocol and electrical model of the heart,
obtaining a set of binary tags {yi

j}
Pi
j=1, where yi

j = 1 if pacing from xi
j ∈ Ωi

h degrades into
a fibrillation episode and yi

j = 0 if not. On a separate process, a scaled fibrotic kernel
signature fksi is computed for a user-specified tensor Fi for a logarithmic progression
of times {tik}NT

k=1 as previously described, where NT is fixed across all cases. Then, the
signature is sub-sampled for each collection of pacing locations and paired with the AF
inducibility outcomes, creating a fks-inducibility dataset

D :=
NH⋃
i=1

{((
fksi(tik,xi

j)
)NT

k=1
, yi

j

)}Pi

j=1
⊆ RNT × {0, 1}.

Once D is assembled, a simple machine learning classifier C(·) is trained with all the
data available. The costliest part of the offline phase in terms of computational time
and memory comes from the monodomain simulations, because its associated system
must be solved individually for each pacing point used for the construction of D.

• Online phase: On this stage, a new meshed anatomy ΩNH+1
h is introduced. The fks is

computed for all of its points and for the times {tNH+1
k }NT

k=1 as in the previous phase,
outputting the set {(

fks(tNH+1
k ,x)

)NT

k=1

}
x∈ΩNH +1

h

⊆ RNT .

Then, an estimate 1C
AF of the inducibility map 1AF is defined by using this data as

input:

1C
AF (x) := C

((
fks(tNH+1

k ,x)
)NT

k=1

)
, ∀x ∈ ΩNH+1

h .

With this, overall inducibility is approximated through the integral over all points in
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the mesh:

SAF ≃
1

Vol
(
ΩNH+1

h

) ∫
ΩNH +1

h

1C
AF (x).

For evaluating the performance of the classifier, a similar procedure to the offline phase
can be followed to create a testing set with AF inducibility outcomes for the new case.

Since evaluating the classifier is inexpensive, the major complexity in time and memory
usage of the online phase comes with the fks computation. As reported in Banduc et al.,
2024, the signature can be up to 40- or 100-fold faster to estimate overall inducibility
than a typical monodomain-based method.

Figure 3.8: fks method pipeline. In the offline phase (top), classifiers are trained with the fks
features to predict monodomain inducibility tags. Then, in the online phase (bottom), the fks is
computed for a new geometry and passed through the classifier to generate an inducibility map.
Figure adapted from Banduc et al. (2024).
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Chapter 4

Study 1

4.1. Introduction
In this study, the method for AF inducibility in patient-specific cardiac models with the
fibrotic kernel signature is proposed (Sahli Costabal et al., 2023). The fks is deduced from
the diffusion component of the monodomain model, where the conductivity tensor is reduced
to a function accounting for tissue heterogeneity caused by fibrosis. The signature is then
introduced as an extension of the hks, encoding both the intrinsic geometry of the atrial re-
gion of the heart and the spread of electrical potential by incorporating conductivity changes
in presence of fibrotic tissue into the elliptic operator inducing the heat kernel.

The relationship between the proposed signature and variability in AF vulnerability gen-
erated by ablation lines and scar tissue was learned from testing in a supervised setting 9
cases that combined different ablation strategies and fibrosis distributions for a single atrial
geometry. In general, the fks does not require re-training for new anatomies, fibrosis pat-
terns, and ablation lines, and is fast to compute when compared to standard models like the
monodomain system. In the classification task, maximum balanced accuracy ranging from
75.8 to 95.8% with simple machine learning classifiers was achieved when tested on single
points, and overall inducibility of each model was predicted with small error (Sahli Costabal
et al., 2023).

4.2. Methods

4.2.1. Atrial Modeling

This study utilized the simulations and inducibility outcomes from Gander et al. (2022),
where a previously developed human atrial fibrillation model on a volumetric domain with
variable wall thickness was employed (Gharaviri et al., 2020; Potse et al., 2018). Three
cases of endomysial fibrosis were considered, one moderate (m), with fibrosis covering 50%
of the atria, and two severe (s1, s2), with fibrosis at 70%. For each fibrosis pattern, three
ablation scenarios were surveyed: no ablation (NA), pulmonary vein isolation (PVI) and PVI
with posterior box isolation (PVI+BOX). Since scarring may affect the structure of the atria
in the cauterized region and fibrosis can induce cardiac remodeling (Dzeshka et al., 2015),
each fibrosis distribution a ∈ {m, s1, s2} and ablation case f ∈ {NA,PVI,PVI+BOX} was
assigned a specific geometry Ωf

a. These models are exhibited in Figure 4.1.
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Figure 4.1: Atrial models considered in first study. Different shades of gray are used to mark healthy
tissue, fibrosis and ablation scars.

For the simulation of AF episodes, the monodomain model (M) of the heart was used
(Sahli Costabal et al., 2023):

−∇ · (Σm∇Vm) = −χ
(
Cm

∂Vm

∂t
+ Iion(Vm,w) + Istim(x, t)

)
in Ωf

a × (0, T ],
∂w
∂t

= g(Vm,w) in Ωf
a × (0, T ].

The membrane capacitance Cm was set to 1µFcm−2 and the surface-to-volume ratio χ was
constant and equal to 800cm−1. The Courtermanche-Ramirez-Nattel model (Courtemanche
et al., 1998) was considered for the nonlinear ionic current Iion across the membrane and
the stimulus Istim corresponded to a rapid pacing protocol comprising 14 stimuli of strength
800µAcm−2 and duration 4ms (Gander et al., 2022), where inducibility was checked roughly
20ms after the end of the protocol. Here, for each pacing point xstim ∈ Ωf

a, 1AF (xstim) = 0 if
both the transmembrane voltage Vm and state vector w approached asymptotically to their
resting states V0,w0; and 1AF (xstim) = 1 otherwise. A unique set of 100 pacing locations was
selected, such that all the stimulation points were common to all geometries, totaling 900
AF inducibility outputs.

The numerical solutions of the system were computed with the Propag-5 software on
the Swiss National Supercomputing Centre (CSCS), using a second order difference scheme
in space (see Clayton & Panfilov, 2008) and an explicit first-order Euler scheme for time
stepping (Potse et al., 2006; Krause et al., 2012; as cited in Gander et al., 2022).
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4.2.2. Fibrotic Kernel Signature in the Atria

Inspired by the diffusion operator of the monodomain equation and taking into consideration
that fibrosis is the main structural driver of AF, an isotropic elliptic operator Lisou = −∇ ·
(Fiso(x)∇u) was taken to describe passive diffusion of electrical potential in the geometry
to characterize the chance of triggering an arrhythmia (Sahli Costabal et al., 2023). The
fibrosis-informed tensor Fiso was of the form

Fiso(x) = σfib(x)I,

where σfib is a positive uniformly bounded scalar function in Ωf

a and I is the 3-dimensional
identity matrix. In this work, σfib(x) equals 1 if x belongs to healthy tissue, 0.5 if the point
is in a fibrotic region and 0.01 if x belongs to an ablation scar. The function was estimated
with discontinuous Galerkin elements.

To obtain the fks, the geometry was normalized and the first 100 non-constant eigen-
functions were computed, sorted by eigenvalue magnitude. For each fibrosis pattern f and
ablation strategy a, the eigenproblem was solved with P1 elements on the tetrahedral mesh
of Ωf

a, which had around 700,000 nodes. The logarithmic time progression of the signature
was constructed as suggested in Section 3.3.4, with α, β set to ln(104). To accentuate the
effect of ablation lesions, for each fibrosis distribution, the signature of each ablation case
was scaled by the heat trace of the ablation-free model (Sahli Costabal et al., 2023).

4.2.3. Prediction of Atrial Fibrillation

Once the fks was computed across all cardiac domains, the subset of signatures associated
with the pacing locations was sampled and paired with the inducibility tags. Since the
dataset was conformed by a single geometry in 9 distinct scenarios and evaluated at the
same locations, the performance of the method was assessed with a leave-one-out by case
cross-validation technique (Sahli Costabal et al., 2023). First, classifiers were trained with 8
out of 9 configurations of fibrosis and ablation, adding up to 800 data points, and then tested
with the remaining case, with 100 unseen fks-inducibility results (see Figure 4.2).

Three classifiers were considered: k-nearest neighbors (KNN), random forest (RF) and
gradient boosting (GB), as implemented in scikit-learn (Pedregosa et al., 2011; as cited in
Sahli Costabal et al., 2023). Additionally, a majority voting naïve classifier was implemented
to evaluate whether classifiers were predicting based on point location or learning new in-
formation from the signature (Sahli Costabal et al., 2023), with a tie-breaking criterion in
favor of the negative class. For example, if 5 out of 8 models were inducible at a given pacing
location, the point was assigned y = 1, and if 4 out of 8 were inducible, then the given tag
was y = 0.
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Figure 4.2: Instance of leave-one-out by case technique. A sample of size 100 is taken from each
configuration (adding up to 800 samples), excluding the case with s1 fibrosis distribution and PVI
ablation, which is set aside for testing.

Two metrics were used to measure the performance of the naïve classification and fks-based
methods: balanced accuracy (Mosley, 2013), which is the average of sensitivity and specificity,
and overall inducibility, which was estimated by the ratio of inducible points predicted on
each sample. The latter is the most important to prove effectiveness in a proposed ablation
treatment (Sahli Costabal et al., 2023).

4.3. Results
The computation of the fks in the entire geometry was reported to have taken approximately
10 minutes on a modern workstation (Apple M2 Ultra, with 24-core CPU and 64GB unified
memory), while running one monodomain simulation from a single pacing site took 1 hour
on a GPU node at the CSCS. Disregarding the hardware differences and discounting the
simulations needed for training, this represents a 600-fold speed-up for the prediction of AF
inducibility (Sahli Costabal et al., 2023).

Different profiles of the fks over time are shown in Figure 4.3 for 20 randomly selected
points across all cases. It can be noticed that non-inducible pacing locations generally have
higher signature than inducible points, and the application of ablation lines modifies the
signature more significantly at the late stages of the diffusion process. This is complemented
from what is observed in Figure 4.5. The fks tends to rise in the regions enclosed by the
lines of the PVI and PVI+BOX lesions, indicating electrical accumulation in the parts of the
domain where originally there was a free flow of current and post-procedural non-inducibility
is expected. PVI predominantly affects the signature in the area of the pulmonary veins, and
including BOX ablation extends the observed electrical barrier effect towards the rest of the
geometry in the roof of the left atrium (Sahli Costabal et al., 2023).
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Figure 4.3: fks over time for 20 randomly selected points for 9 different cases: moderate fibrosis
(m), severe fibrosis - case 1 (s1) and severe fibrosis - case 2 (s2). The red curves represent points
where AF was induced and the blue curves are points where AF was not induced. Figure reprinted
from Sahli Costabal et al. (2023).
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Results regarding the predictions of AF are summarized in Figures 4.4 and 4.6. When
analyzing data efficiency for balanced accuracy score in Figure 4.6, RF performs better than
KNN and GB in most cases. The accuracy obtained with the fks-trained classifiers ranges
from 75.8% for the severe scenario s1 with no ablation to 95.8% for the moderate case m
with PVI+BOX. The naïve classifier shows similar performance than the rest of the classifiers.
However, for some instances, the classifiers trained with the signature have higher or lower
accuracy than the majority voting algorithm, indicating that they are not simply memorizing
the locations of the training points and matching them to the test cases.

Figure 4.5: Three time steps for fks map in moderate fibrosis case under three ablation patterns:
no ablation (NA), pulmonary vein isolation (PVI) and PVI with box enclosure (PVI+BOX).

In Figure 4.4 substantial differences are displayed for overall inducibility prediction when
ablation lines were applied to each fibrosis model, showing a marked reduction in tissue
prone to AF. PVI decreased inducibility in the range of 11 to 14 percent points, while
PVI+BOX reached reductions between 16 and 19 percent points. As expected, the majority
voting classifier predicted the same level of inducibility independent of the treatment used,
obtaining values between 40 and 43 percent points. The RF trained with the fks on 800
samples could detect overall inducibility variation with higher fidelity, obtaining errors from
1 to 6 percent points. Also, the trend that the NA case was more inducible than PVI and
that, in turn, PVI was more inducible than PVI+BOX was also correctly captured by the
fks-based classifier.
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Figure 4.6: Data efficiency for balanced accuracy across all cases following a leave-on-out by case
strategy. The solid lines show the performance of k-nearest neighbors, random forest and gradient
boosting as the training data increases. The dashed line corresponds to the naïve approach. Figure
reprinted from Sahli Costabal et al. (2023).

4.4. Discussion and Conclusions
In this study, an efficient simulation-free method to accurately predict the inducibility of AF
was presented: the fibrotic kernel signature (fks). This was achieved by creating a time-
dependent descriptor of fibrosis distribution and cardiac architecture, rooted in the passive
diffusion process of electric potential spread across the atria. The fks can be computed for all
points in a geometry at a fraction of the time spent in running the monodomain simulations
typically used for testing AF vulnerability, speeding-up the calculation of inducibility maps,
which is crucial to plan personalized ablation treatments within the time constraints of the
clinical setting (Azzolin et al., 2021; Boyle et al., 2019; as cited in Sahli Costabal et al., 2023).
The fks prediction requires only the essentials in terms of computing resources: a desktop
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computer is sufficient to run the signature in a reasonably fine mesh of the cardiac structure.

Paired with simple machine learning algorithms, the fks is capable to estimate pointwise
inducibility and approximate the proportion of surface prone to AF with great accuracy. As
seen in Figure 4.6, the accuracy of classifiers trained with the fks tends to increase with data
availability. Thus, it is expected that performance could be improved with a larger dataset for
training. The fks method allows to take advantage of previously ran simulations in different
anatomies in order to strengthen the predictions of the signature. Additionally, no mapping
between distinct anatomies is required when evaluating the fks, since the geometrical infor-
mation flows into the fks, on which the classifier depends directly. More importantly, the
fks is easily extendable thus to include local fiber direction, just by redefining the fibrosis-
informed elliptic operator inducing the kernel. For instance, the fiber direction and fibrosis,
combined in the conductivity tensor, can be estimated from electro-anatomical mapping sys-
tem data, as recently proposed (Grandits et al., 2021; Kotadia et al., 2020; Ruiz Herrera et
al., 2022; as cited in Sahli Costabal et al., 2023).

Although the method introduced shows promising results in terms of computational effi-
ciency to elaborate effective ablation treatments for atrial fibrillation, this study has some
limitations. First, despite the variety of fibrosis patterns and ablation strategies changing
the geometry and electrical behavior of both the monodomain and the fks models, the point
descriptor used was only tested in a single anatomy, and the pacing locations were all the
same, making necessary to verify whether the signature generalizes to arbitrary pacing loca-
tions and other patient cases. Numerical experiments did not consider fiber orientation nor
cell type distribution into the fks construction. A preliminary study including myocardial
fibers was conducted, but there were no conclusive improvements in the results. This could
be explained by the regularizing effect of the diffusion model, which could attenuate the
influence of local fiber direction when restricting measurements of temperature to a single
point. Also, the mesh used had a resolution of 0.4mm, which possibly affected inducibility
outcomes when compared to finer meshes (Gander et al., 2022; as cited in Sahli Costabal et
al., 2023). Refining the mesh will affect the time to solve the eigenproblem required by the
fks decomposition, but given that only modest hardware was used, larger models could be
managed with more computational resources. On the other hand, the current mesh resolu-
tion was in line or already finer than those from other studies (Gander et al., 2022; as cited
in Sahli Costabal et al., 2023). Finally, uncertainty in the fibrosis pattern was not accounted
for, which is known to be highly affected by the threshold strategy. Ideally, uncertainty could
be introduced into the fks definition as an average of the original fks with an associated co-
variance. This information then could be used in the classification problem.

In summary, this study proposes a novel method to predict atrial fibrillation without
running simulations. The fibrotic kernel signature time-series combined with machine learn-
ing techniques could enable faster and better planning of therapeutic treatment in atrial
fibrillation patients.
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Chapter 5

Study 2

5.1. Introduction
This study is an extension of the previous work done in Sahli Costabal et al., 2023, and re-
viewed in Chapter 4. Here, the motivation and concept of fks is revisited as a simplification of
the monodomain system that arises in cardiac electrophysiology to a single diffusion model,
characterized by the heat kernel of an elliptic operator encoding fibrosis patterns and other
cardiac structures. The further spatial restriction of the resulting kernel and observation of
key stages of decay in electrical potential outputs a time-dependent point descriptor that
captures atrial architecture and conductivity variations across the cardiac muscle at multiple
scales, building up to a method that can lift the burden of monodomain-based simulations to
test AF inducibility by reusing information from observed patient models to rapidly detect
substrate for arrhythmia.

In comparison to the previous study, several enhancements are introduced to guarantee the
robustness, reproducibility and fidelity of the fks method. First, the number of monodomain
simulations performed was more than double the size of the original set, constituting one
of the largest studies in terms of AF simulations. Three different anatomies were consid-
ered for training, as opposed to the only one from the previous study. Furthermore, pacing
points were relocated for different fibrosis scenarios when the same anatomy was utilized,
and the methodology was tested on three unseen geometries. Finally, the pacing protocol
was changed to the PEERP strategy and simulations were ran on an open cardiac electro-
physiology simulator to facilitate cross-validation and methodology adoption and refinement
by others (Banduc et al., 2024).

The fks computations were still carried out by a modern workstation, but remained faster
than the monodomain solver executed in the CSCS. In the classification problem, high pre-
cision and accuracy scores were obtained and overall inducibility was estimated with a mean
absolute error of 2.76 percent points (Sahli Costabal et al., 2023).
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5.2. Methods
5.2.1. Atrial Modeling
As in the previous study, the electrical activity of the atria was modeled with the monodomain
equation (M) in volumetric cardiac domains. The values of transmembrane capacitance Cm

and surface-to-volume ratio χ were set to 1µFcm−2 and 800cm−1, respectively. The ionic
current Iion(Vm,w) was defined by a variation of the Courtermanche-Ramirez-Nattel model
(Courtemanche et al., 1998) reflecting AF-induced remodeling (Loewe et al., 2014; as cited
in Banduc et al., 2024), and the stimulus term Istim(x, t) was changed to a PEERP protocol
(see Section 3.2.3), where the S2 stimulus is adaptively selected at the end of the effective
refractory period for a fixed current strength and stimulation region.

A transverse isotropy regime was imposed for the atrial model, as done in Section 3.1.3.
Thus, the conductivity tensor Σm had an explicit form depending only on fiber direction al

and the fiber and cross-fiber conductivities of the bulk medium σl, σt. The specific values on
each region are specified in Table 5.1 along with the observed conduction velocities.

Table 5.1: Summary of fiber (f) and transverse (t) conductivity and the re-
sulting conduction velocities measured for planar wavefront propagation on a
computational grid of average spatial discretization of ∆x ≈ 425µm for normal
atrial tissue, Bachmann’s bundle, inferior/superior Vena Cava and electrically
remodeled tissue (Banduc et al., 2024). Table reprinted from Banduc et al.
(2024).

σi σe σ CV
[mScm−1] [mScm−1] [mScm−1] [cms−1]

normal atria f 2.0 2.0 1.0 53.0
t 0.25 1.0 0.2 15.5

Bachmann’s bundle f 2.0 4.0 1.33 62.0
t 0.25 1.0 0.2 15.5

Inferior/Superior Vena Cava f 1.0 1.0 0.5 33.0
t 1.0 1.0 0.5 33.0

remodeled f 2.0 2.0 1.0 44.0
t 0.25 1.0 0.2 13.5

Fibrosis tissue was included in the regions of the atria exhibiting most often this type of
substrate in subjects with AF, which are the pulmonary veins antrum, the left lateral wall,
anterior wall, posterior wall and septum in the left atrium (Bifulco et al., 2023; Benito et al.,
2018; Higuchi et al., 2018; as cited in Banduc et al., 2024), as well as right atrial appendage
and septum in the right atrium (Bifulco et al., 2023; Cao et al., 2010; as cited in Banduc et
al., 2024). These regions were identified in the different geometries via the universal atrial
coordinates (Roney, Pashaei, et al., 2019; as cited in Banduc et al., 2024). For each anatomy
and fibrosis pattern, three different severity stages were implemented: low (l), covering from
24.7 to 34.0% of the atrial volume, medium (m), ranging from 30.5 to 42.6%, and high (h),
affecting from 35.9 to 44% of tissue (see Table 5.2).
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To account for structural remodeling and the presence of scarring, the elements at the
core of fibrotic regions were removed. This approach modeled the macroscopic barrier phe-
nomenon caused by the electrical decoupling of myocytes due to percolation of fibrosis in the
tissue (Vigmond et al., 2016; as cited in Banduc et al., 2024). Moving away from the core,
fibrosis was gradually mixed with remodeled active tissue, where several ionic conductances
were re-scaled to consider effects of cytokine-related remodeling (Roney, Whitaker, et al.,
2019; as cited in Banduc et al., 2024) (-50% gK1, -40% gNa and -50% gCaL).

AF inducibility was tested with the OpenCARP software (Augustin et al., 2021; Plank
et al., 2021), which was used to numerically solve the monodomain equations applying finite
elements in space (Plank et al., 2021; openCARP consortium et al., 2023; Colli Franzone
et al., 2014) and a semi-implicit Crank-Nicolson scheme for time stepping (Allaire, 2007)
complemented with an operator splitting technique (Plank et al., 2021; openCARP consor-
tium et al., 2023). The Rush-Larsen scheme (Rush & Larsen, 1978) was employed to update
gating variables and ionic concentrations (Plank et al., 2008; as cited in Banduc et al., 2024).
The computational domain corresponded to a tetrahedral mesh with an average resolution
of 425µm and the time step was fixed at 0.05ms.

For inducing AF, this study made use of the PEERP protocol available in carputils
(Augustin et al., 2021). This pacing strategy was selected among other methods because it
maximizes chances of reentry, is open-source and depends in fewer human-defined parame-
ters. The number of ectopic beats was set to 3 and the stimulus was defined by a current of
strength 70µAcm−2 applied at a fixed pacing point during a 4ms interval. APD94 was used
for the refractory period calculations (Banduc et al., 2024). The determination of initial
states characterizing the tissue limit cycle, as well as model parameter calibration and con-
duction velocity measurements were performed using the ForCEPSS framework (Gsell et al.,
2024; as cited in Banduc et al., 2024) included in carputils (Plank et al., 2021; openCARP
consortium et al., 2023; as cited in Banduc et al., 2024).

For each pacing location xstim, 1AF (xstim) = 0 if no activity of the tissue was registered
during a 20ms time window, and 1AF (xstim) = 1 if AF or flutter was observed. A reentry
apparatus was classified as flutter if the maximum dominant frequency was at most of 4.7Hz
or if at least 50% of the atrial domain reached the maximum dominant frequency. The
remainder cases were regarded as AF (Azzolin, Eichenlaub, Nagel, Nairn, Sanchez, et al.,
2023; as cited in Banduc et al., 2024).

5.2.2. Data
A total of 24 cases were included in this work. For each, 101 stimulation points were at-
tempted to run for inducibility. The pacing locations were equally distributed in the sense
of geodesical distance, using the farthest point sampling criterion described in Section 3.3.4.
For the 3 anatomies considered for training (shown in Figure 5.1), one was studied under 3
different fibrosis distributions and the remaining were evaluated for 2 fibrosis patterns each,
all of which had three levels of increasing severity (see Table 5.2), summing up to 2,121 at-
tempted simulations through a total of 21 cases. The test set was comprised of other 3 atrial
meshes (shown in Figure 5.2), each with a distinct fibrosis pattern of different level, totaling
303 attempted monodomain runs across 3 cases (Banduc et al., 2024).
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Table 5.2: Summary statistics for all the simulations performed. Active points refers to the pacing
points that were not passive tissue. Re-entries correspond to the sum of AF and flutter cases
(Banduc et al., 2024). Table adapted from Banduc et al. (2024).

anatomy fibrosis fibrosis fibrosis simulations active AF flutter re-entries inducibility average
case level ratio points walltime

training
1 1 l 28.3% 101 101 74 0 74 73.3 % 02:58:36

m 37.6% 101 101 68 0 68 67.3 % 03:12:24
h 43.8% 100 100 59 1 60 60.0 % 02:58:33

2 l 24.7% 101 101 71 0 71 70.3 % 02:57:24
m 30.5% 100 100 66 0 66 66.0 % 03:10:20
h 36.1% 101 101 70 0 70 69.3 % 03:00:47

3 l 34.0% 100 100 74 0 74 74.0 % 03:07:53
m 39.5% 101 99 63 1 64 63.4 % 02:55:33
h 42.7% 99 98 68 0 68 68.7 % 03:12:36

2 1 l 31.0% 101 100 77 0 77 76.2 % 02:15:37
m 36.9% 100 100 64 0 64 64.0 % 02:08:55
h 42.6% 101 101 62 0 62 61.4 % 02:26:13

2 l 26.7% 99 98 71 0 71 71.7 % 02:23:48
m 32.5% 100 100 71 0 71 71.0 % 02:45:12
h 38.6% 100 99 72 0 72 72.0 % 02:24:09

3 1 l 28.3% 101 101 75 0 75 74.3 % 02:33:53
m 36.1% 101 100 72 16 88 87.1 % 02:17:30
h 44.0% 101 101 62 0 62 61.4 % 02:43:45

2 l 26.2% 101 100 78 0 78 77.2 % 02:40:49
m 33.9% 101 101 71 0 71 70.3 % 02:47:17
h 35.9% 101 100 76 0 76 75.2 % 02:28:47

testing
4 2 l 26.4% 81 79 60 0 60 74.1 % 02:16:38
5 3 m 42.6% 91 89 48 0 48 52.7 % 01:51:47
6 1 h 40.2% 88 87 49 16 65 73.9 % 02:17:58

Pre-procedural CT scans from patients included in the local AF ablation registry of the
Medical University of Graz were used. This registry was approved by the ethics committee
of the Medical University of Graz (reference number 26-217 ex 13/14) and all patients gave
written informed consent. Six subjects were selected (4 male, 2 female) undergoing their
first catheter ablation for persistent AF. CT data were automatically segmented (Payer et
al., 2017; as cited in Banduc et al., 2024), obtaining labels of all cardiac and vascular blood
pools, and the left ventricular myocardium. Volumetric biatrial walls were generated by
extruding right and left atrial blood pools, and by meshing of the extruded walls using
Meshtool (Neic et al., 2020; as cited in Banduc et al., 2024). A fully automated Laplace–
Dirichlet-Rule-Based method was employed to annotate the different atrial regions and for
generating fiber orientation, based on the algorithm proposed in Azzolin, Eichenlaub, Nagel,
Nairn, Sánchez, et al., 2023; as cited in Banduc et al. (2024).
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Figure 5.1: Train geometries used in second study, the first was comprised of 3 fibrosis configurations
with 3 severity patterns each, while the second and third had 2 fibrosis patterns with 3 severity
scenarios each (Banduc et al., 2024).

Figure 5.2: Test geometries used in second study. Each case corresponded to a different severity
scenario (Banduc et al., 2024).

The average mesh size was of around 900,000 nodes (Table 5.3). All simulations were
performed on the Swiss National Supercomputing Centre (CSCS) using one node with 12
CPU cores (Banduc et al., 2024).

Table 5.3: Mesh information. Table
reprinted from Banduc et al. (2024).

anatomy num. nodes num. cells

1 1,135,921 6,054,425
2 835,509 4,323,575
3 974,811 5,047,035
4 942,965 4,812,877
5 671,827 3,434,286
6 937,972 4,821,153
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5.2.3. Fibrotic Kernel Signature in the Atria

Local fiber orientation takes a significant role in directionality of electrical wave-front prop-
agation in the atria, participating along with fibrosis in the prevalence and progression of
AF due to enhanced anisotropy (Kharche et al., 2014). Thus, subject to data availability,
the fks isotropic operator encompassing fibrosis distribution can be complemented with a
positive-definite uniformly bounded tensor Faniso encoding fiber direction in Ωh.

Although fibrosis and fiber direction jointly affect the behavior of electrical conductance,
their impact could be weighted differently for the generation of arrhythmia. For this reason,
the two cases Fiso and Faniso were taken separately, resulting in the computation of two fks
options that were later concatenated, as illustrated in Figure 5.3. For the experiments, the
corresponding tensors were of the form

Fiso(x) = σfib(x)I; Faniso(x) = Σm(x);

where σfib equals 1 in healthy tissue and 0.01 in fibrotic regions. For each case, as in the
previous study, the fks was computed using the same methodology for eigenvalue extraction,
time progression and normalization of the cardiac domain, taking on average 17 minutes
(see Table 5.4) on a local workstation (Apple M2 Ultra, with 24-core CPU and 64GB unified
memory) on the same meshes used for the monodomain simulations. Once the feature vectors
were obtained for both iso- and anisotropic options, their concatenation was done along the
same axis, obtaining an array of size 2NT , with NT = 50 being the number of timesteps for
the signature.

Figure 5.3: fks extraction from aniso- (top) and isotropic (bottom) options. The first case considers
the monodomain conductivity tensor to account for fiber direction, and the second an heterogeneous
conductivity function modeling conduction variations due to fibrosis (Banduc et al., 2024).
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Table 5.4: Computation time for fks eigenproblem on each model and con-
ductivity option (Banduc et al., 2024).

anatomy fibrosis case fibrosis level time aniso. time iso.

training
1 1 l 00:21:10 00:22:20

m 00:20:42 00:19:58
h 00:20:41 00:20:27

2 l 00:21:11 00:21:54
m 00:21:09 00:19:54
h 00:19:49 00:20:22

3 l 00:20:56 00:20:58
m 00:22:25 00:20:45
h 00:19:49 00:19:58

2 1 l 00:14:33 00:13:50
m 00:14:23 00:13:54
h 00:14:27 00:13:36

2 l 00:14:22 00:13:53
m 00:14:19 00:13:37
h 00:14:20 00:13:37

3 1 l 00:13:26 00:13:47
m 00:13:26 00:14:23
h 00:14:25 00:13:31

2 l 00:13:41 00:12:50
m 00:13:33 00:14:27
h 00:13:42 00:13:29

testing
4 2 l 00:14:30 00:14:32
5 3 m 00:08:52 00:08:55
6 1 h 00:17:00 00:17:12

5.2.4. Prediction of Atrial Fibrillation

For each case presented, after the monodomain outputs for inducibility and fks features were
computed, each signature associated with a specific pacing location was paired with the
corresponding tag, as long as the AF simulation associated to that point was terminated
successfully.

For the AF inducibility classification task, a random forest (RF) algorithm with default
parameters and a multi-layer perceptron (MLP) with three hidden layers were tested using
the scikit-learn library (Pedregosa et al., 2011). Other classifiers were also considered, such
as gradient boosting and nearest neighbors, but did not perform as good as the ones just
described. All these classifiers took in the order of seconds to train and fractions of a second
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to evaluate. Thus, the most time-consuming task came from the fks computation.

The performance of each classifier was measured with the F1 score, which is defined as
the harmonic mean of precision and recall, and overall inducibility, which was estimated on
each case as the ratio of inducible points among the pacing set. The F1 metric is suitable for
imbalanced classes, such as the case of the dataset considered, while overall inducibility acts
as an endpoint metric, since it is used in practice for quantifying the propensity of cardiac tis-
sue to AF. Other standard metrics were also used, such as accuracy, sensitivity and specificity.

Given that fibrosis patches were expected to predominantly have non-inducible points, a
naïve classifier Cnaive based on scar distribution was evaluated against the fks method to set
a baseline result and show that classifiers trained with the signature were not only learning a
fibrosis indicator function. For x ∈ Ωh, if x belonged to healthy tissue, then Cnaive = 1, and
if x was sited inside a fibrosis region, then Cnaive = 0. That is, pacing from healthy sections
degrades into arrhythmia and stimulating scar tissue does not (Banduc et al., 2024). Besides
the naïve approach, the inducibility ratio of 40 simulations was used as a second estimator
for overall inducibility, as done in Boyle et al., 2019.

5.3. Results

5.3.1. Atrial Fibrillation Simulations

In Table 5.2 a summary of the dataset that was constructed is presented. From the total
of 2,424 attempted simulations, 2,371 of them were successfully executed, with an average
wall time for each case between 2 and 3 hours, summing up to 264 days of computation.
Inducibility ratios ranged from 52.7 to 87.1% and were not associated with the fibrosis level.
Most of the cases induced AF and only a few cases of flutter were observed (1.4% of all
simulations) (Banduc et al., 2024).

Overall inducibility values stabilize as more simulations are used to compute them, as seen
in Figure 5.4. It can be noticed from the three leftmost panels that the rate of convergence
is similar, regardless the variability of inducible points and the level of fibrosis. In the
rightmost panel, the error evolves when more pacing points are used when compared to the
output obtained with all available points. As expected, this error is reduced as more points
are included albeit there are some oscillations. When computing overall inducibility with 40
simulations, the median absolute error is of 4.17 percent points and the maximum is of 13.76
percent points (Banduc et al., 2024).
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Figure 5.4: Convergence of inducibility. Changes in computed inducibility are shown as more
simulations are considered. Cases are grouped by fibrosis severity. Each of the three leftmost panels
show 8 different cases, while the rightmost sub-plot shows the evolution of percent error when
considering the inducibility computed with all simulations as ground truth (Banduc et al., 2024).
Figure reprinted from Banduc et al. (2024).

5.3.2. Prediction of Inducibility

In Figures 5.5 and 5.6 the fks for the test anatomies are shown at initial, intermediate and
advanced stages of diffusion. The isotropic version of the signature presents high variability
between cases, increasing in areas infiltrated by fibrosis, while the fks computed with the
monodomain conductivity tensor tends to be consistent across the different geometries, with
some structures displaying distinct values, such as the pulmonary veins. Then, in Figure 5.7,
some examples from the fks are shown for the test anatomies and both signature options,
showing a characteristic behavior of non-inducible points, which generally reach greater val-
ues of the signature, and inducible sites, which in most cases turn out to be more stable in
time (Banduc et al., 2024).

When trained with the fks, machine learning classifiers can accurately predict whether
pacing points could trigger arrhythmia. RF obtained F1 scores ranging from 84.4 to 86.2%
on the test set with 10 random initializations. The MLP classifier obtained F1 scores between
83.6 and 85.7%. Figure 5.8 shows how the F1 score varies as more data is available for the 3
different test cases. First, it is observed although RF and MLP reach similar results, for the
second test anatomy RF notably outperforms the MLP. In all scenarios, the classifiers get bet-
ter outputs than the naïve estimator, but this difference is of the order of roughly 5%. For the
amount of data used for training, it can be noticed that there is not a marked dependency on
the number of sample size used for training, except when very few points are used. A similar
behavior can be observed with other standard metrics (see Figure .A.1) (Banduc et al., 2024).

Overall inducibility predicted for the test cases are presented in Figure 5.9. The ground
truth values were computed from all the available simulations on each case (see Table 5.2).
Here, the fks method had the lowest mean absolute error, with 2.76 percent points for the
RF classifier, which is nearly doubled by the fibrosis-based naïve approach, with 5.26 percent
points, and the 40-simulations estimator, with 5.86 percent points of error (Banduc et al.,
2024).
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Figure 5.5: Isotropic fks map evolution across the three test cases for the 1st, the 20th and the 50th

time step computed. Figure reprinted from Banduc et al. (2024).
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Figure 5.6: Anisotropic fks map evolution across the three test cases for the 1st, the 20th and the
50th time step computed. Figure reprinted from Banduc et al. (2024).
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Figure 5.7: fks samples from test anatomies for isotropic (top) and anisotropic (bottom) options
of the signature. For each case, 20 points are randomly selected from the pacing sites and their
corresponding fks evolution in time is shown. A curve is colored red if the pacing point induced
AF, and blue if not. Figure reprinted from Banduc et al. (2024).

Finally, in Figure 5.10, inducibility maps for the test anatomies are displayed. Here, a
considerable correlation between the location of fibrosis and the inducible points can be seen.
That is, when applying the stimulation protocol in fibrotic tissue, there is a high chance
of not inducing AF, while there is a large possibility of triggering arrhythmia when pacing
from healthy tissue. This supports the fact that the naïve classifier obtains good accuracy
metrics and overall inducibility estimates. Interestingly, the fks-based RF can identify non-
inducibility in both fibrosis sections and non-fibrotic regions. Notably, near the inferior vena
cava, test cases 1 and 3 are not inducible, while test case 2 is. The classifier trained with
the signature can correctly predict this variation, even though the pacing location is always
positioned on healthy tissue (Banduc et al., 2024).
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Figure 5.8: Data efficiency for F1 score across test cases for a random forest (blue) and a multi-layer
perceptron classifier (mlp, red). The solid line represents the median F1 score, while the shaded
area represents the range between minimum and maximum F1 score over 10 runs with different
random seeds (Banduc et al., 2024). Figure reprinted from Banduc et al. (2024).
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Figure 5.9: Overall inducibility predicted by the fks-trained RF and the naïve classifier. The error
bars for the fks classifier represent the standard deviation over 10 runs with different random seeds.
For reference, the inducibility computed using only 40 simulations is also included. The ground truth
inducibility was computed using all available simulations (Banduc et al., 2024). Figure reprinted
from Banduc et al. (2024).

Figure 5.10: Inducibility maps and pacing locations for test cases. In the top row, fibrotic patterns
are shown in gray/black, inducible sites are colored in red and non-inducible points are colored in
blue. In the bottom row, predicted inducibility maps from the RF classifier are shown and colored
under the same criterion used for inducible points (Banduc et al., 2024). Figure reprinted from
Banduc et al. (2024).
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5.4. Discussion and Conclusions
In this study, a simulation-free method to predict atrial fibrillation based in electrical passive
diffusion was successfully implemented, where a set of features that intrinsically incorporate
patient-specific fibrosis patterns and anisotropy in conduction was engineered to identify
through learning algorithms pro-arrhythmic substrate in the atria. This tool can greatly ac-
celerate the design of different treatments, disposing the need of running an extensive number
of simulations to assess AF vulnerability.

To train classifiers with the fks features, an extensive dataset consisting of 2,371 mon-
odomain runs for AF inducibility was built, which constitutes one of the largest in terms of
number of simulations (Roney, Whitaker, et al., 2019; as cited in Banduc et al., 2024). With
a total computational runtime of 264 days, the database created provides unique insights
into the calculations of inducibility. For instance, it was shown that considering only 40
simulations, which is a number of simulations that had already been used in previous studies
to predict overall inducibility, can lead to large errors. It can be noticed that it is possible
to trigger AF in many of the cases when pacing from healthy tissue. This is to be expected
from the pacing protocol selected, since PEERP is designed to maximize chances of initiating
fibrillation (Azzolin et al., 2021; as cited in Banduc et al., 2024). Nonetheless, a diversity
of inducibility levels were observed, showing that the fibrosis and cardiac geometry play a
major role in this quantity.

After training simple machine learning classifiers it is possible to accurately predict whether
pacing locations are prone to AF and estimate overall inducibility with small error in unseen
anatomies with specific fibrosis patterns at a fraction of the cost of running monodomain
simulations. The cost of computing together the two options of the fks is less than the cost
of running a single simulation. Even if these 2 costs were equated, the speed up when at-
tempting to compute overall inducibility would still be from 40- to 100-fold depending on the
number of points needed.

The naïve approach, which evaluates whether a pacing point is located on healthy tis-
sue or scar, does a good job in predicting AF. However, this classifier will probably not
generalize well to other pacing locations, fibrotic models or ablation patterns, because it
is only based on local knowledge. For instance, the idea of this classifier was tested with
endomysial fibrosis (Gharaviri et al., 2020; Pezzuto et al., 2019; as cited in Banduc et al.,
2024), and it was not a good predictor (Sahli Costabal et al., 2023; as cited in Banduc et al.,
2024). Furthermore, it is known that inducibility is a non-local phenomenon, which is why
ablation lines can prevent AF. The naïve estimator will predict the same output, regard-
less if there is an ablation lesion nearby. Thus, the accuracy results of the naïve approach
are circumstantial to this study and cannot be expected to be replicated in different scenarios.

Even though this study shows great promise to reduce the computational time of AF
prediction, it has some limitations. First, the method is constrained in accuracy to perfectly
estimate inducibility. The fks should fully characterize the changes in fibrosis and geometry,
but some cases cannot be correctly predicted. This could be explained by the pre-pacing
step, which is common for all the points and might prompt some directionality in how AF
forms, which is not currently included in the proposed method. The reduction from reaction-
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diffusion of the monodomain system to passive diffusion may also explain the limitations
of the model. Another option is that structures that are responsible for the generation of
arrhythmia are far away from the pacing location and cannot be sufficiently characterized by
the signature. Alternative signatures based on other kernels might perform better (Wang &
Solomon, 2019; as cited in Banduc et al., 2024). In this work, a homogeneous ionic model for
healthy tissue was considered, even though there is some spatial heterogeneity to be taken
into account (Krueger et al., 2013; as cited in Banduc et al., 2024). Finally, a relatively coarse
mesh of element size 425µm was used, but this is in line with what other clinical studies have
employed (Boyle et al., 2019; Azzolin et al., 2021; as cited in Banduc et al., 2024).

In summary, the fks shows to be a fast and robust method for the prediction of AF, that
could be used to improve therapy planning. It is hoped that the adoption of this technique
will enable the design of optimal ablation strategies within the demands of clinical practice.
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Chapter 6

General Discussion

For this thesis work, two studies were conducted to introduce and evaluate the capacity of
the fibrotic kernel signature to efficiently capture the electrical properties and multi-scale
architecture of human atrial domains, to assess AF vulnerability through the prediction of
monodomain outputs with specific protocols of stimulation. The first study encompassed a
single volumetric anatomy, where distinct ablation lines were applied under three different
scenarios of endomysial fibrosis, and the second study served as an extension of this work to
multiple atrial geometries subject to high variability in patchy fibrosis.

The computation of the fks was performed in a modern workstation, taking 10 minutes
in a mesh with around 700,000 nodes and 17 minutes for meshes with an average of 900,000
nodes. On the other hand, running on the CSCS, the monodomain solvers took for each of
the pacing sites 1 hour on the first case, and between 2 to 3 hours on the second case. From
what is observed in Figure 5.4, the inducibility ratio stabilizes past 40 simulations, which is
consistent with the naïve speed-up approach of considering pacing sets of size 40 instead of
a collection of 100 points.

It is observed that the isotropic option of the signature tends to have increased values
in regions that are not prone to AF (see Figures 4.3 and 4.5 from Study 1, and Figures 5.5
and 5.7 from Study 2). This behavior is also replicated in sections of tissue enclosed by
ablation, where non-inducibility is expected. The anisotropic option exhibits distinct decay
for different structures within the same anatomy and stays invariant to changes in geometry
(Figure 5.6 from Study 2). Although the presence of muscle fiber effectively affects the spread
of electrical potential across the atria, its influence may be considerably attenuated by the
passive diffusion model from which the fks is rooted, because of the smoothing effect of the
heat kernel.

Different machine learning algorithms were employed for the AF classification task: ran-
dom forest, k-nearest neighbors, gradient boosting and multi-layer perceptron. All of the
fks-trained estimators could accurately predict inducibility, with random forest outperform-
ing the rest of classifiers across the diversity of fibrosis scenarios and ablation strategies, as
observed in Figures 4.6 and 5.8. Classifiers presenting a consistent difference in accuracy in
comparison to the majority voting approach from the first study shows that the signature
captures additional information from the phenomenon described in the monodomain model
and not simply memorizes outputs based on pacing location. This is reaffirmed by what is
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observed from the second study, where high-accuracy results were still obtained even though
the pacing set changed for each anatomy, fibrosis pattern and severity case. Furthermore,
utilizing a naïve scar-based approach allows to separate classifiers trained with the fks from
a trivial fibrosis indicator. Their average agreement in prediction is reported to be in the
range of 64.0 to 76.5%. Although the naïve estimator achieved competitive accuracy with
the method proposed, these results were incidental and are not guaranteed to extend to other
configurations, pacing techniques or electrophysiological models. The well-behavior of this
approach is explained by the inducibility maximization capacities of the PEERP protocol
and the patchy distribution of fibrosis.

From the overall inducibility outcomes on each study (see Figures 4.4 and 5.9), it is ob-
served that the signature method can estimate this value with small absolute error. The
random forest classifier trained with the fks features properly predicts inducibility ratios in
all the tested geometries when no electric isolation procedures are performed and presents
the expected post-ablation reduction of inducible surface. Although the naïve approach from
the second study returns close estimates to the ground truth values, these results will not
reproduce when ablation lines are added to the model.

Even though the method was tested to predict AF inducibility, the fks could be used
to predict other quantities that depend on the fibrotic pattern and the geometry, such as
the density of reentrant drivers (Boyle et al., 2019), ectopic activity, or even mechanically
derived quantities. Preliminary results show that the signature can be used to approximate
via regression the phase singularity density in some atrial models, explaining a fair amount
of variance in this quantity, with decreased mean absolute error and performing better than
an averaging dummy regressor.

Aside from the limitations discussed on each study, it comes as an inherent restriction of
the fks model to disregard the cellular ionic structure to characterize a phenomenon that is
governed by a reaction component. The exclusive consideration of passive diffusion sets a
bound for the capability of the signature to predict fibrillation. This can be seen, for instance,
between signatures of different points within the same anatomy presenting very similar values
but opposite inducibility outcomes, where the difference may be drawn from ionic reaction
of myocytes after stimulation.

Given that the fks comes from the extension of the hks model via anisotropy derived from
the monodomain cardiac model, the intrinsic and informative properties from the original sig-
nature should be inherited up to certain extent by the fks. However, changing the boundary
conditions and adding an elliptic tensor arises the requirement of more detailed properties
involving the encoding of extrinsic quantities and the multi-scale behavior of the signature.

Firstly, including a conductivity tensor into the diffusion operator raises to the question if a
diagonal restriction of the associated heat kernel retains the changes in conduction residing in
the original matrix. From what has been seen empirically, there is some correlation between
the fks values and presence of fibrosis. Thus, from an inverse problem perspective, full
information regarding the signature within the domain should at least allow to reconstruct
some estimate for the fibrosis-informed isotropic tensor. Finally, the homogeneous Neumann
boundary condition from the fks leads to the problem of domain-monotonicity from the heat
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kernel. For instance, as opposed to the Dirichlet case, the Neumann heat kernel reaches
progressively lower values with domain expansion when approaching the stationary state,
since there is convergence to the square of the first eigenfunction of the associated elliptic
operator over the set, which is a constant equals the inverse of the volume of the domain.
However, there are counterexamples that also demonstrate that the Neumann case is not in
general monotonically decreasing with domain expansion (Bass & Burdzy, 1993; Hsu, 1994).
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Chapter 7

Conclusion

In this thesis work, a novel method to efficiently estimate atrial fibrillation inducibility has
been developed: the fibrotic kernel signature (fks). Inspired by the heat kernel signature,
the fks is a time-dependent point descriptor derived from the spatial restriction of the kernel
induced by an intrinsic fibrosis-informed elliptic operator in the human atria. This signature
encodes cardiac architectural properties and conduction variability due to the presence of
scar tissue and muscle fibers, which allows it to characterize pro-arrhythmic substrate for
patient-specific models. The fks dispenses from the computational burden of typical AF
simulations by reducing the monodomain system to a problem of diffusion of electric poten-
tial across the geometry after instantaneously applying a stimulus of high magnitude to a
fixed stimulation point. The computation of the signature can be performed on a modern
machine with modest hardware, taking a considerably less amount of time to execute than a
monodomain-based solver.

When paired with simple machine learning classifiers, the fks can accurately predict if
whether pacing from a specific location for a given stimulation protocol may degrade into a
sustained event of fibrillation. Furthermore, the proposed method allows to reliably estimate
overall inducibility, which is a quantity that serves as an endpoint metric to evaluate the
effectiveness of therapeutic treatments for AF.

It has been proven that the fks can adapt to the inducibility outcomes from different
fibrosis events, being shown to obtain accurate results in at least two scarring models: reac-
tive interstitial fibrosis, which is the one presented in the first study, and reparative patchy
fibrosis, which was used in the second study. Similarly, via training of machine learning clas-
sifiers, the fks can predict inducibility tags from different pacing protocols, thus capturing
pacing-independent mechanisms of AF residing in the heart structure. This can be seen from
the results in accuracy obtained for both rapid pacing and PEERP protocols.

The signature method reflects the action of isolating cauterization in the periphery of
ablated regions, exhibiting a characteristic barrier effect after the generation of the lesion,
expressing the reduction in overall inducibility after the procedure. The ablation patterns
tested were pulmonary veins isolation and roof lines, since they are the standard-of-care en-
closures in clinical practice, but other ablation lines could be added to reduce arrhythmia
vulnerability in other locations.
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In addition to the speed-up for inducibility map generation and the benefits exhibited
above, the fks has several other advantages that are worth mentioning in the context of
patient-specific modeling. First, it can be adapted to data availability of the cardiac domain,
where fibrosis, cardiac fibers and other structures and processes affecting the spread of elec-
tric potential across the atria can be included as required, as long as they can be represented
through the geometry or incorporated via the conductivity tensor. Second, it can be used in
several configurations to construct a set of signatures that allow to weight the influence of
different anatomical components of the heart into the AF model, where multiple classifiers
can be trained with different signature options and then combined into an ensemble to obtain
an averaged output. Third, the employment of features from a straightforward model and the
utilization of well-known classification algorithms allows reproducibility of the fks method
and interpretability of the results, which is convenient when planning an optimal ablation
strategy for the patient. Even in algorithms that rely on attributes of the reentrant patterns
to design the ablation strategy, the fks predictions can be used as prior knowledge, informing
where to pace to successfully induce AF (Banduc et al., 2024).

Finally, the associated process of passive diffusion rooted in the monodomain reaction-
diffusion system leads to a trade-off between model complexity to better explain the AF
phenomenon and the computational resources needed to implement these models within the
restrictions of the clinical context, which translates into the fks method not reaching perfect
accuracy even if trained with large amounts of data, albeit greatly reducing the computa-
tional time for measuring AF inducibility.

In the future, it is planned to enhance the fks method by incorporating the activation time
from sinus rhythm as one of the features of the classifier, as this could be quickly computed
with an eikonal solver (Pezzuto et al., 2017; as cited in Banduc et al., 2024), and include some
information from cellular action potential, such that spatial heterogeneity can be accounted
for. Another proposed task to complement the reviewed studies is to evaluate the signature
to compute phase singularity density estimates through regression, where preliminary exper-
iments have already been carried out and show promising results.

In summary, the fks provides a powerful methodology for encoding the electrical properties
of cardiac muscle and describing the underlying pro-arrhythmic substrate in the atria. Given
the time restraints and computational resources required to predict inducibility, the proposed
method is a step forward to improve non-invasive therapy planning and is expected to be used
as a proficient tool to optimally design personalized treatment for AF patients undergoing
ablation surgery within the demands of clinical practice.
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Annex

Annex .A. Performance with Standard Metrics

70

95

ac
cu

ra
cy

 [
%

]

test 1 test 2 test 3

naive
random forest
mlp

70

95

se
ns

it
iv

it
y 

[%
]

200 2000number of training points
40

95

sp
ec

ifi
ci

ty
 [

%
]

200 2000number of training points 200 2000number of training points

Figure .A.1: Data efficiency for accuracy, sensitivity and specificity across test cases for a random
forest (blue) and a multi-layer perceptron classifier (mlp, red). The solid lines represent the median
values, while the shaded area represents the range between minimum and maximum scores over 10
runs with different random seeds (Banduc et al., 2024).
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In addition to the F1 score used for measuring the performance of the proposed method
in the second study, other standard metrics for evaluating the models were considered and
are exhibited in Figure .A.1: Accuracy, which is the ratio of correct predictions; sensitivity,
which is the fraction of true positives and the size of the positive class; and specificity, which
is the fraction of true negatives and the size of the negative class.

From the results presented, it can be observed that the fks-based estimators generally
reach higher levels of accuracy and outperform the naïve classifier, where the random forest
algorithm yields better results. However, the predictive power of the negative class tends
to be significantly less effective for the first test case, indicating that the classifier could be
overestimating inducibility on this setting.
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