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DISEÑO OPTIMIZADO DE MEDIOS Y ESTRATEGIAS DE
ALIMENTACIÓN EN CULTIVOS FED-BATCH DE MAMÍFEROS

UTILIZANDO CONTROL PREDICTIVO POR MODELO Y ESTIMACIÓN
DE HORIZONTE MÓVIL

Las cultivos de células de mamíferos son esenciales para la producción de proteínas ter-
apéuticas complejas debido a su compatibilidad con las modificaciones postraduccionales
humanas. Mejorar la proliferación celular y el rendimiento de biomoléculas es crucial para
aumentar la eficiencia de producción y la rentabilidad de bioproductos. A pesar de los altos
rendimientos logrados a través de la investigación sobre la expresión génica, el metabolismo
y el crecimiento, las estrategias actuales suelen ser empíricas, costosas y lentas. Los avances
en la composición del medio de cultivo y el control procesos han impulsado mejoras en la
productividad. Para elevar aún más los niveles de producción, estos avances deben combina-
rse con estrategias de alimentación y medios de cultivo optimizados, además de monitoreo y
control en tiempo real para asegurar una suplementación precisa y óptima.

Este trabajo presenta un enfoque integrativo para optimizar medios de cultivo y estrate-
gias de alimentación en cultivos fed-batch. Usando un modelo metabólico dinámico con
parámetros optimizables, es posible predecir los requisitos nutricionales específicos de una
línea celular en un proceso de producción particular. Esto permite diseñar medios y estrate-
gias de alimentación personalizadas a cada sistema de producción. El diseño optimizado
se logra mediante control predictivo por modelo (MPC), que ajusta la alimentación según
las necesidades de las células para mantenimiento, crecimiento y generación de producto.
Adicionalmente, se integran Estimación de Horizonte Móvil (MHE) y MPC para manejar la
disponibilidad de datos y la variabilidad del proceso.

La implementación de MPC junto con MHE mantiene las variables controladas dentro de
los rangos deseados y aumenta la concentración de biomasa en comparación con las estrategias
tradicionales de control en lazo abierto y proporcional (P). Utilizando una alimentación
continua, tanto el control P como NMPC logran métricas de rendimiento similares, mostrando
iguales índices de desempeño ITAE, IAE e ISE. Mediante alimentación por pulsos, el NMPC
supera al control P considerando restricciones operacionales y mejorarando los índices de
ITAE, IAE e ISE, reduciéndolos en un 8.30%, 3.43% y 0.24%, respectivamente. En presencia
de variabilidad del proceso, el esquema NMPC-MHE resultó en una disminución del 4.68%
en el índice ITAE y un aumento del 5.34% en el IVCD en comparación con la estrategia en
lazo abierto, mostrando mayor crecimiento de biomasa y una suplementación de nutrientes
más eficiente. Los principales desafíos incluyen tiempos de muestreo rígidos y dependencia
de mediciones precisas. El trabajo futuro debe centrarse en integrar variables fácilmente
medibles para mejorar el modelo, facilitar la estimación de estados y reducir la necesidad de
mediciones complejas. Además, incorporar esquemas de control robustos y mediciones con
tiempos de muestreo variables podría mejorar el rendimiento de la estrategia de control.
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CONTROL AND MOVING HORIZON ESTIMATION

Mammalian cell cultures are essential for producing complex therapeutic proteins due to
their compatibility with human post-translational modifications. Enhancing cell proliferation
and biomolecule yield is crucial for improving production efficiency and cost-effectiveness.
Despite high yields achieved through research on gene expression, metabolism, and growth,
current strategies are often empirical, expensive, and time-consuming. Advances in culture
media composition and process control have driven productivity improvements. To further
enhance biomass and product yield; these advancements must be complemented by designing
optimized feeding strategies, culture media, and real-time monitoring and control to ensure
precise and optimal supplementation.

This work presents an integrative approach for optimizing culture media and feeding
strategies for fed-batch cultures using a predictive mathematical model. The specific nu-
tritional requirements of a given cell line in a particular production process are predicted
by integrating cell and product composition with characteristic process parameters into a
detailed dynamic metabolic model with optimizable parameters. This approach enables the
design of customized media compositions and feeding strategies tailored to each produc-
tion system. The optimized fed-batch design is achieved through model predictive control
(MPC), where the feed is based on the cells’ nutritional needs for maintenance, growth, and
production. Furthermore, real-time monitoring and control challenges are addressed by in-
tegrating Moving Horizon Estimation (MHE) and MPC to manage limited data availability
and inherent process variability.

Implementing MPC combined with MHE improves control accuracy, maintains controlled
variables within desired ranges, and increases biomass concentration compared to traditional
open-loop and proportional (P) control strategies. In continuous feeding scenarios, both
P and NMPC control achieve similar performance metrics, with equal Integral of Time-
weighted Absolute Error (ITAE), Integral of Absolute Error (IAE), and Integral of Squared
Error (ISE) indices. In pulse-feeding strategies, NMPC outperforms P control by managing
constraints and improving ITAE, IAE, and ISE indices, reduced by 8.30%, 3.43%, and 0.24%,
respectively. In the presence of process variability, the NMPC-MHE control scheme resulted
in a 4.68% decrease in the ITAE index and a 5.34% increase in the IVCD compared to the
open-loop strategy, leading to better control, enhanced biomass growth, and more effective
nutrient supplementation. Key challenges include rigid sampling times and heavy reliance on
accurate measurements. Future work should focus on integrating easily measurable variables
to improve the mathematical model, simplify state estimation, and reduce reliance on complex
measurements. Additionally, incorporating robust control schemes and measurements with
varying sampling times could enhance control strategy performance.
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Como no hay tiempo,
siempre es el momento

de corregir
y de empezar

S. Larraín
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Chapter 1

Introduction

1.1. Motivation
Biopharmaceuticals are therapeutic products that are created by genetically modifying living
cells or organisms. Some examples of biopharmaceuticals include proteins, peptides, nucleic
acids, and other large molecules [1–3].

Mammalian cell cultures have become a widely used platform for obtaining bioproducts.
These cells are the preferred hosts for the production of most complex therapeutic proteins, as
their functional and pharmacokinetically relevant post-translational modifications are highly
compatible with humans [1]. Therefore, to increase the production and cost-effectiveness of
these products, it is necessary to increase the proliferation of producing cells and the yield
of the biomolecule of interest per cell.

The fed-batch mode is widely utilized in industrial bioreactor operations for cultivating
mammalian and microbial cells [4]. This method is particularly effective in cell cultures where
achieving high cell density and overcoming common challenges such as substrate inhibition,
catabolite repression, product inhibition, and glucose effects are required [5].

The high yields obtained in current processes are the result of years of research that has
allowed us to better understand gene expression, metabolism, and growth [6]. However, these
strategies are usually empirical, expensive, slow, and require plenty of experiments [7]. Over-
all, this increase in productivity is mainly due to improvements in culture media composition
and process control [6–8].

The development process is usually iterative until the desired levels of growth and pro-
duction are achieved on a large scale [1]. Commonly used strategies for media formulation
and optimization present a series of limitations as they are mainly based on literature studies
of related cell lines and extensive experimentation without considering the specific charac-
teristics of the combination between host cell, clones, or product [1, 9, 10]. Among other
less commonly used strategies are mass balances that allow estimating the minimum require-
ments of a culture based on stoichiometric relationships and cellular composition [11–14],
statistically designed experimentation to obtain data that includes the interactions of the
components without requiring exhaustive experiments (DoE) [9], and medium analysis to
identify and enrich limiting nutrients [15]. Model-based strategies have been used less fre-
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quently in the development of cell culture media due to an incomplete understanding of
metabolic pathways and the vast number of medium components, in addition to their high
complexity [1]. However, as biopharmaceuticals become more complex, the adoption of this
approach is becoming increasingly popular to complement the task of media development
since the use of models facilitates the generation of hypotheses and the preliminary testing
of incipient ideas [16].

To ensure that these advancements in media formulation and optimization translate ef-
fectively into large-scale production, it is crucial to maintain stringent control over the bio-
process. The main aim of controlling a process is to ensure that it operates under the
desired conditions while keeping safety and efficiency in mind and meeting environmental
and product quality standards [17]. Fluctuations in process variables directly impact prod-
uct quality, and the primary objective of process control is to mitigate these deviations. The
most straightforward approach to achieve this is by maintaining rigorous control during the
operation of the process, a strategy that has been preferred within the biopharmaceutical
industry until the present [18].

Nevertheless, ensuring an effective and robust fed-batch operation can be difficult be-
cause of the necessity to sustain an optimal rate of substrate feeding. The concentration of
substrate within the growth medium directly impacts the process affecting cell growth, and
both desired products and by-product formation rates [19–22]. Consequently, maintaining
an optimum substrate concentration is crucial for efficient nutrient utilization, reduction of
unwanted by-products, and maximization of desired product yield [23].

Therefore, to enhance biomass and bioproduct production, it is crucial to implement a
feeding strategy and culture media design that precisely defines the elemental needs of the
cells in both batch and fed-batch culture conditions. This should be complemented with
real-time monitoring and control to ensure adequate supplementation of the cultures.

1.2. Prior work context
Within the framework of the FONDEF ID18i10308 project: “Plataforma para el diseño de
medios de cultivos: Optimización de la manufactura de bioproductos.” [24], a rapid, flexible,
effective, and standardized tool was developed to define the essential needs of cells in cul-
ture, both under batch and fed-batch conditions, to adequately supplement the cultures and
achieve higher productivity. This increase in proliferation and production, in turn, helps to
reduce operational costs and waste production, thereby simplifying the purification of the
final product.

The project is based on a dynamic model for the production of monoclonal antibodies
in GS - NS0 cells [25]. This model is used to predict the requirements for amino acids and
nutrients in animal cell cultures, and subsequently optimize the composition of the culture
medium and the feeding strategy in fed-batch mode.

The proposed solution consists of several modules, one of which is the simulation module
aimed at implementing the model described in [25]. For fed-batch reactors, the module allows
simulation of the reactor operating in open-loop mode, i.e., with a manually defined temporal
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trajectory for glucose and amino acid feed rates, or in closed-loop mode, where the feed rate
trajectories are defined online by a feedback control system using a standard proportional (P)
controller. The objective of the control system is to maintain glucose and glutamine levels at
a desired value, defined as a set-point tracking problem. Since both nutrients play a key role
in ensuring optimal cell growth and product assembly [19, 26, 27] monitoring and controlling
them is essential for obtaining elevated product yields and cost-effectiveness of the process.
The ultimate goal of this project is to provide an optimized feeding strategy and medium
composition to be implemented in open-loop mode in the laboratory.

1.3. Problem Definition
Due to the significant fluctuations in process dynamics during operation, standard controllers
with fixed parameters are insufficient for precise control [23]. This is mainly due to the non-
linear dynamics of the processes associated with exponential growth rates, metabolic changes,
volume changes, and potential disturbances in the feeding process. In addition to changes
in process dynamics, the effects of disturbances such as batch-to-batch variations in feed
composition, initial biomass concentration, and noise in process measurements must also be
considered [28]. The proposed strategies in the literature usually control a limited number
of variables, neglecting the effect of the exhaustion of essential amino acids. Therefore, to
complement the feeding strategy, a tailored media composition is obtained from the simu-
lation of the specific consumption rate of each amino acid, ensuring a more comprehensive
approach to process control and optimization.

In this thesis, a mathematical model for a CHO-tPa cell line was developed in collabo-
ration with the Process Modeling and Distributed Computing Laboratory and Mammalian
Cell Culture Lab. This model was employed to design optimal feeding strategies and enable
real-time control of fed-batch reactors. By determining a media composition tailored to the
nutritional needs of the culture, a model predictive control strategy provides optimized feed-
ing curves, ensuring precise supplementation throughout the culture. The performance of
this advanced control strategy was rigorously evaluated and compared to the existing P con-
troller used on the platform, demonstrating its effectiveness and potential to enhance overall
process efficiency. These dynamic consumption rates also consider particular characteristics
of the cell lines used, such as cell composition, product composition, and the nutritional
requirements of the specific clone.

The novelty of this work lies in its integrative approach to optimizing culture media and
feeding strategy design for fed-batch cultures using a predictive mathematical model for con-
trol and real-time monitoring. This approach allows for incorporating specific parameters for
each cell line, clone, or product. The primary goal of this strategy is to minimize experimental
costs, time, and resource use through well-planned feeding designs and media compositions
supported by extensive in-silico testing. Additionally, this approach accelerates process de-
velopment and enables flexibility and customization, making it applicable to various cell lines
and production scenarios.
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1.4. Thesis Outilne
The thesis is organized as follows: Chapter 2 introduces basic concepts of process control
that will be used throughout the text. Chapter 3 presents a case study, detailing the problem
formulated by Pizarro et al. in a forthcoming publication. Finally, Chapter 4 summarizes
the key findings of this work and guides future research in the field of bioprocess control.
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Chapter 2

Process Control for Fed-batch
Cultures

In the early 1900s, fed-batch cultures were used in yeast production from malt wort. Workers
recognized that an elevated malt concentration in the medium could lead to alcohol forma-
tion, so it had to be maintained low enough to maximize the yield [29].

Since then, fed-batch has become a benchmark for bioprocesses, and it has become a
common choice for production systems for several decades due to its robustness and elevated
product yields [23]. Currently, most biotherapeutics in the market are produced using fed-
batch fermentations [30] and it is the preferred strategy for large-scale production [31]. In
large-scale mammalian cell culture, various bioreactors are employed. Large-scale culture
typically refers to volumes greater than 100 liters of culture medium, which can reach capac-
ities of up to 10.000 liters [32].

Bioprocesses are shaped by the mix of physical, chemical, and biological factors in the en-
vironment and the biochemical processes within microorganisms. Process control is crucial
for ensuring system stability. Even a simple control loop can improve system performance
when faced with disturbances. Therefore, these techniques are extensively applied in con-
trolling biotechnological processes [33].

In this chapter fundamental aspects of process control are introduced. The purpose of
this chapter is to introduce the basic concepts of process control to familiarize the reader
with the terminology and concepts used in the case study presented in Chapter 3. Secondly,
the main strategies based on feed rate manipulation in fed-batch cultures are presented and
discussed.

2.1. Basic Control Definitions
Control is defined as a series of operations aimed at monitoring the state of a system, deter-
mining necessary control actions based on deviations from its desired state, and implementing
these actions to minimize or eliminate these deviations [33].

A system comprises components working together to accomplish a specific goal. Any
system being analyzed should have clearly defined conceptual boundaries but may interact
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with external systems. A schematic process block diagram is depicted in Figure 2.1.a.

(a)

(b)

Figure 2.1: Conceptual Process Block Diagram. Diagram adapted from
[34]. (a) Input-Output representation of a system. (b) Schematic process
block Representation

Inputs are categorized as either disturbances or controllable inputs. Disturbances are
values fixed by an external system that cannot be altered, while inputs can be adjusted
as needed. Outputs are classified as measured or unmeasured. Utilizing measurements of
process outputs or disturbance inputs is crucial for making informed decisions regarding the
appropriate values of manipulated inputs. This is the function of the controller illustrated in
Figure 2.1.b.

The design of a control system according to [34] involves identifying the following:

1. Control objective(s)

2. Input variables

3. Output variables

4. Constraints

5. Operating characteristics

6. Safety, environmental, and economic considerations
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7. Control structure

The above steps will be described in the later sections.

2.1.1. Control Objectives
The objective of a control system can be separated into 3 main strategies:

1. Maintain the system output(s) at a desired value that can either be constant or variable
over time, suppressing the effect of external disturbances.

2. Stabilize the process.

3. Optimize the process performance in terms of yields, productivity or profitability

Specifically, some examples of possible control objectives based on the performance of
fed-batch processes, according to Mears et al [35]. include:

• Maximise product concentration

• Minimise by-product formation

• Maximise process yield or productivity

• Maximise biomass concentration

• Maintain an oxygen concentration profile

In this type of process, the challenge is not only to maintain the optimal feed rate but
to identify how the optimal feed rate is defined. Since both overfeeding and underfeeding
nutrients are detrimental to cell growth and product formation, developing a suitable feeding
strategy is critical in fed-batch cultures [36]. In addition, there are multiple effects of the
feed rate in the process, such as changes in substrate concentration, which can alter the
specific growth rate and product formation rates. These effects are also observed because of
variations in the volume caused by the feeding strategy adopted [35].

2.1.2. Input Variables and Output Variables
Input variables can be categorized as either manipulated or disturbance variables. Manip-
ulated inputs can be adjusted by the control system or process operator, while disturbance
inputs influence process outputs but cannot be altered by the control system [34]. A distur-
bance is a signal that tends to adversely affect the value of the output of the system [37].
Output variables can be classified as measured or unmeasured variables. Measurements may
be made continuously or at discrete intervals of time, and inputs may vary continuously or
at discrete time intervals. The controlled variable is a quantity or condition that is measured
and controlled. Normally, the controlled variable is the output of the system [37]. Depending
on the number of inputs and output systems can be categorized as:

• Single input-Single Output (SISO): For one control (output) variable, there exists one
manipulated (input) variable that influences the process.

• Multiple input-Multiple Output (MIMO): Multiple control (output) variables are influ-
enced by multiple manipulated (input) variables in a given process.
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In fed-batch processes, the manipulated variable to be considered is the flow rate. There
is a challenge in defining the controlled variable due to the lack of online sensors for variables
directly applicable to feed rate, such as substrate concentration [35].

2.1.3. Constraints

All processes have operating constraints, which are classified as hard or soft [34]. An example
of a hard constraint is the maximum allowable volume limit of a reactor —it specifies the
maximum volume the reactor can hold without risking damage or compromising safety. An
example of a soft constraint is a product composition or yield —it’s preferable to define a
composition within specific ranges or achieve a desired yield to ensure process efficiency, but
deviation from these specifications may occur without presenting safety or environmental
risks.

2.1.4. Operating Characteristics

Operating modes are classified as batch, continuous or fed-batch. Batch processes generally
operate for a short period, and the operating conditions may vary during that time [34]. In a
batch reactor, all necessary medium components are added at the beginning of the operation.
Therefore, their concentrations are not controlled but can vary as the living cells grow. Basic
controls for pH, temperature, dissolved oxygen, and foam are applied during batch culture
[38]. In bioprocess engineering, batch culture is frequently used for the production of viruses
for vaccines and gene therapy applications as well as in cell production for immunotherapy
and other therapies [39].

Continuous processes run for long periods under relatively stable conditions before they
are shut down [34]. In a continuous reactor, one or more feed streams containing the neces-
sary nutrients are continuously added. At the same time, an effluent stream containing cells,
products, and residuals is continuously removed [38]. Typically, this process operates in a
steady state, maintaining a constant volume. Although common in the chemical industry, it
is not prevalent in the bioprocessing industry due to challenges in maintaining sterility and
because steady-state operations often produce inferior results compared to dynamic opera-
tions [38]. In continuous culture, the flow rate must be carefully controlled to avoid washing
out cells faster than they can grow. Simultaneously, growth inhibitors and waste metabolites
produced by the cells need to be removed to prevent growth inhibition. Balancing these
requirements often results in low cell and product concentrations, making the process eco-
nomically unfeasible [39]. Unlike chemical processes that remain stable over time, cells can
mutate or undergo epigenetic changes. This can lead to variations in the cell population,
productivity, and product quality.

A typical semi-batch or fed-batch process initially charges the reactor, with additional feed
components introduced during the batch run. The simplest form of fed-batch culture involves
intermittent harvest. At a late exponential growth stage of the culture, a portion of the cells
and product are harvested, and the culture is replenished with fresh medium containing the
nutrients required for cell growth and product formation. This avoids metabolite inhibition of
cell growth and replenishes nutrients for continued cell growth [39]. Carbon sources, nitrogen,
phosphates, nutrients, precursors, or inducers are intermittently or continuously added to the
culture, adjusting feed rates dynamically without an effluent stream [38]. This manipulation
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allows the concentrations of limiting nutrients to be maintained at a constant level or to
follow a predetermined optimal profile.

2.2. Process Models and Dynamic Behavior
According to the McGraw-Hill Dictionary of Scientific and Technical Terms [40], a model is
defined as:

“A mathematical or physical system, obeying certain specified conditions, whose
behavior is used to understand a physical, biological, or social system to which it
is analogous in some way.”

In the context of control-system design, we specifically refer to mathematical models.
A process model, as defined by [34], is:

“A set of equations (including the necessary input data to solve the equations) that
allows us to predict the behavior of a chemical process.”

Models are crucial in control-system design for several reasons:

1. Simulation: They allow us to simulate and predict the behavior of a process with a
proposed control system, helping to anticipate and evaluate its performance.

2. Embedded Control: Models can be integrated into controllers to anticipate the effects
of control actions, enabling more informed and effective adjustments.

Process models provide essential insights and predictions that guide the design and im-
plementation of control systems, enhancing their efficiency and effectiveness.

2.3. Control Structure

2.3.1. Control System Models

Control systems can be broadly categorized into two fundamental types: open-loop and
closed-loop control systems. Each type has distinct characteristics and applications based on
how it manages the relationship between inputs and outputs.

Open-loop Control

In an open-loop control system, the output has no effect on the input signal to the process.
The output is determined solely by the initial setting or a predefined fixed sequence of in-
puts [41]. Open-loop systems have the advantage of being relatively simple and consequently
cheap with generally good reliability, particularly if the process adheres to stable trajectories
and the predictive model is sufficiently accurate [42]. But this is based on having an accurate
process model, which never exists in practice due to modeling errors and system disturbances
[37]. They can be inaccurate since there is no correction for errors in the output which might
result from external disturbances. This is illustrated in Fig. 2.2.a.
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Closed-loop Control

In control systems, the concept of “feedback” is crucial. Without feedback, the system oper-
ates solely based on the input signal [37]. In a closed-loop control system, the system’s output
is “fed back” to the input and compared with the desired value. The resulting difference, or
error, between the actual and desired values is used to adjust the system’s output, ensuring it
maintains the desired performance [41]. This is illustrated in Fig. 2.2.b. In feedback control,
no corrective action is taken until after the disturbance has upset the process, that is, until
after the controlled variable deviates from the set point.

The two standard control types are feedforward and feedback. A feedforward controller
measures the disturbance variable and sends this value to a controller, which adjusts the
manipulated variable. The important advantage of feed-forward control is that corrective
action is taken before the controlled variable deviates from the set point [34]. A feedback
control system measures the output variable, compares that value to the desired output value,
and uses this information to adjust the manipulated variable [34].

(a) Open-loop representation of a control system

(b) Control Representation

Figure 2.2: Eschematic representation of basic control system models

Illustrative Example

To introduce the essential components of a control system an illustrative example is going to
be addressed. A simple process is illustrated in Fig 2.3. In this example, a fluid stream F1 is
fed to a tank, and an effluent stream F2 exits the tank downstream.
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Figure 2.3: Surge Tank Problem: Process Flow Diagram

The control objective is to maintain the height h of the liquid inside the reactor within
certain bounds. More specifically, a fixed height hsp is going to be selected, which is going
to be the setpoint. The input variables are the flows F1 and F2 and the output (controlled)
variable is the height h, which we assume is a measured variable. We also are going to as-
sume that there is a continuous inlet F1 and outlet F2 flow so that the process is continuous
too. The inlet F1 is determined upstream, leaving F2 to be manipulated and defined by the
controller.

Closed-loop feedback control

In this case, the measured output is the height. Since F1 is an external input to the system
and not a controlled variable, it acts as a disturbance. The control system must compensate
for changes in the inlet, adjusting F2 to maintain the controlled variable at its setpoint. The
piping and instrumentation diagram (P&ID) for the feedback case is shown in Fig. 2.4. The
level transmitter (LT ) sends the measured height of liquid in the tank (hm) to the level con-
troller (LC). The LC compares the measured level with the desired level (setpoint) hsp and
sends a pressure signal (Pv) to the valve changing the flow rate F2 through the valve. The dif-
ference between the setpoint and the measured process output hm is also known as the error e.
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Figure 2.4: Surge Tank Problem: Process and instrumentation diagram for
the feedback control case. Dashed lines indicate signals between different
pieces of instrumentation. Figure adapted from [34]

This can be represented as a process control block diagram, shown in Fig. 2.5, where each
block corresponds to a dynamic element within the loop. The diagram illustrates the compo-
nents of a closed-loop control system, clearly showing why it is referred to as a “closed-loop”.
Three essential components are considered in the loop: the sensor or measurement device
(level transmitter) that measures the height of the liquid in the tank, the actuator (valve)
which changes the flow rate, and the controller, which determines the appropriate variation
in the actuator’s position (valve position). The process block itself relates the manipulated
input to the process output (see Fig. 2.2.a).

Figure 2.5: Surge Tank Problem: Block diagram for the feedback control
case. Figure adapted from [34]

Control block diagrams are used to analyze the dynamic effect of feedback control loops.
These diagrams visually represent the system components and their interconnections, show-
ing how input signals are processed to produce output signals. All dynamic elements in a
control loop are combined, usually using their Laplace transfer function representation [34].
A transfer function model characterizes the dynamic relationship of two process variables,
a dependent variable (or output variable) and an independent variable (or input variable) [43].
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Open-loop control

In this scenario, control actions are independent of the system’s actual outputs. The ma-
nipulated variable F2 is manually set or pre-programmed based on anticipated conditions,
with no real-time adjustments made in response to the actual liquid height in the tank.
Consequently, the system cannot compensate for disturbances or deviations, as there is no
feedback mechanism to adjust F2 according to the measured output, potentially leading to
either overflow or underfilling of the tank, depending on the magnitude of the disturbance.
This lack of real-time correction makes open-loop control less effective in maintaining consis-
tent process performance compared to a closed-loop system. The block diagram representing
this scenario is shown in Fig. 2.6.

Figure 2.6: Surge Tank Problem: Block diagram for the feedback control
case.

2.3.2. Control Algorithms
Once the control structure is determined, selecting the appropriate control algorithm becomes
crucial. The control algorithm, sometimes referred to as the control law, uses measured
output variable values to adjust the manipulated input variable. This can be achieved through
an explicit control law, such as PID control, or more advanced methods like model predictive
control, neural network control, or fuzzy logic control. These strategies will be described and
discussed in the next section.

2.4. Review of Different Control Strategies
The creation of a robust control strategy depends on the understanding of the process and
the availability of accurate process models. There is a direct correlation between the level of
process understanding and the robustness of the control system. Low process understanding
paired with inadequate process instrumentation is likely to fail, while elevated process un-
derstanding coupled with an elaborate monitoring system can lead to robust and consistent
processes [44]. Depending on the specific requirements, an optimal choice can be made be-
tween using sophisticated instrumentation with complex control laws or simpler control laws
paired with detailed monitoring systems [44].

2.4.1. Open-loop Control
Open-loop control is employed to apply a pre-calculated feeding profile to the process, based
on the initial states and the operating conditions of the culture [35]. Feed rate profiles can
also be calculated based on a process model, often referred to as model-based control. This
method requires a robust process model, and its effectiveness is heavily dependent on the
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accuracy of the model itself [23]. Examples of open-loop control strategies have been used for
increasing batch-to-batch reproducibility of bioprocesses, by controlling the specific growth
rate µ during the biomass growth phase to achieve improved process control.

Jenzsch et al. [45] propose an open-loop control strategy for recombinant protein produc-
tion in E. coli, where instead of targeting the maximum growth rate, µmax, they maintain the
growth rate, µ, at a lower setpoint, µset, through controlled substrate feeding. This reduces
batch-to-batch variability caused by differences in initial biomass concentration.

Similarly, Aehle et al. [42] addresses the issue of inconsistencies in final cell concentrations
due to small variations in initial cell density. They suggest regulating the glutamine feed rate
to keep the growth rate below the maximum, which stabilizes the process by allowing cells
with excess substrate to grow faster until reaching the target concentration, while cells with
limited substrate slow down their growth. While both approaches enhance process repro-
ducibility, they come at the expense of a slightly extended cultivation time. In the specific
case examined, operating at a lower specific growth rate increased the biomass formation
phase by approximately 2 hours.

In Tebbani et al. [46] the authors’ primary goal is to determine the optimal feed rate pro-
file over time to maximize either biomass growth or the production of desired metabolites.
Once the optimal feeding strategy is determined, the researchers propose a cascade control
system to track this optimal trajectory, ensuring that the actual process closely follows the
calculated ideal.

In open-loop control, there is no adaptation to disturbances, meaning any disturbances
in the feed cannot be corrected. While this approach may not always result in the highest
product yields and does not account for system disturbances, it can still be a valid method
for feed rate control in certain bioprocesses. One of the key benefits of open-loop control is its
simplicity of implementation, as it does not rely on measurements or feedback. However, this
simplicity comes with significant limitations, including the need for pre-computed knowledge
of profiles and the challenges associated with the mathematical formulation of non-linear
systems [44].

2.4.2. Closed-loop Control

Proportional-Intregative-Derivative Control

The standard feedback control algorithms (also called control laws) are widely used in the
process industries [44, 47]. This also applies to biotechnology processes [48]. Proportional-
integral-derivative (PID) control and on-off control are the predominant types of feedback
control [43].

In feedback control, the objective is to reduce the error signal e(t) to zero where:

e(t) = ysp(t) − ym(t) (2.1)

and ysp corresponds to the setpoint and ym the measured value of the controlled variable.
Although the the set point can be time-varying, in many process control problems it is kept
constant [43]. A diagram representing a feedback controller is shown in Fig. 2.7.
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Figure 2.7: Diagram of a simple feedback controller. The output signal is
denoted by u(t), the input signal by ym(t) and the setpoint by ysp. Figure
adapted from [43].

In PID control the control signal is defined by three terms: the proportional term (P), the
integrative term (I) and the derivative term (D):

• Proportional: For proportional control, the controller output (u(t)) is proportional to
the error signal. The controller gain Kc can be adjusted to make the controller out-
put changes as sensitive as desired to deviations between the set point and controlled
variable.

u(t) = Kc · e(t) (2.2)

• Integrative: For integral control action, the controller output depends on the integral
of the error signal over time. Where τI is an adjustable parameter referred to as the
integral time.

u(t) = 1
τI

∫ t

0
e(t)dt (2.3)

Integral control action is widely used because it provides an important practical advan-
tage, the elimination of offset. Thus, when integral action is used, u changes until it
attains the value required to make the error zero [43].

• Derivative: The function of derivative control action is to anticipate the future behavior
of the error signal by considering its rate of change [43]. Then, the controller output is
proportional to the rate of change of the error signal.

u(t) = τD
de(t)

dt
(2.4)

Finally, the control signal can be calculated depending on the type of control strategy
employed. For Proportional-Integral-Derivative (PID) control, the control signal is given by:

u(t) = Kc · e(t) + 1
τI

∫ t

0
e(τ)dτ + τD

de(t)
dt

(2.5)

where u(t) is the control signal, Kc is the proportional gain, τI is the integral time con-
stant, τD is the derivative time constant, and e(t) is the error signal. In this case, the control
law combines proportional, integral, and derivative actions. Closed-loop strategies can also
be adaptive, where the control system automatically adjusts the controller parameters to
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compensate for changing process conditions [34]. In fed-batch processes, PID control is usu-
ally implemented in the form of indirect feedback control schemes that couple the substrate
feed rate with measurements of pH or dissolved oxygen concentration [23]

Other applications of PID control are discussed by Zhang et al., where a method for con-
trolling methanol concentration during fermentation processes using P. pastoris yeast was
developed. The authors implemented a closed-loop control system based on a PID (pro-
portional, integral, derivative) controller, with parameters optimized using a Pichia growth
model and frequency response analysis. This approach proved superior to the conventional
“on-off” control strategy, which often struggled to maintain stable methanol concentrations.

In related work by Hizbullah et al. [49], various control schemes for managing the glucose
feed rate during fed-batch baker’s yeast fermentation were evaluated. The study compared
fixed-gain proportional-integral (PI), scheduled-gain PI, adaptive neural network, and hybrid
neural network PI controllers. The controllers used the difference between the specific car-
bon dioxide evolution rate and oxygen uptake rate as the control variable. The evaluation
focused on setpoint tracking and disturbance rejection. Results indicated that conventional
controllers performed unsatisfactorily, with significant oscillation and offsets.

Finally in a work by Kager et al. [50] MPC was applied to a Penicillium chrysogenum
fed-batch process and compared with PI(D) and MBC controllers. The MPC, which utilized
a particle filter and a simplified kinetic model for state estimation, outperformed PI(D) and
MBC by preventing by-product formation and ensuring efficient substrate utilization, despite
the challenges posed by nonlinear process dynamics. Experimental verification showed that
nonlinear process dynamics caused unstable PI(D) behavior.

Despite its optimal performance in linear processes, the use of PID-based control in non-
linear processes is limited, mainly due to the lack of reliable online or express at-line measure-
ment systems for determining control parameters and the inherent nonlinearity of biological
processes [51, 52]. Although widely used in the bioprocess industry due to their ease of imple-
mentation [53–55], ensuring good performance critically depends on the correct configuration
and tuning of controller parameters to address process variability [48].

Artifical Neural Network based Control

An Artificial Neural Network (ANN) is a data-driven modeling technique that can describe
a complex non-linear system without the need for explicit model equations. The method is
classified as supervised learning and, therefore, receives a set of input data, such as observable
quantities like pH or substrate composition, and returns predictions of a specified quantity,
such as biomass concentration, referred to as outputs [56].

The structure of an Artificial Neural Network (ANN) does not have any physical mean-
ing, despite its origins in modeling neuron interactions. ANNs are composed of layers of
nodes, often called artificial neurons. These nodes are arranged into specific layers: an input
layer, one or more hidden layers, and an output layer, as shown in Fig. 2.8. Each node in
the network is interconnected with others through weighted connections, and it also has a
threshold value. When the node’s output exceeds this threshold, the node becomes activated
and transmits data to the next layer in the network. The transformation from an input
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vector to an output vector is achieved through a series of linear combinations, specified by
the weights, and nonlinear operations, determined by an activation function [56].

input
layer

hidden layer
output
layer

Figure 2.8: Neural network diagram. The circles represent interconnected
neurons.

Artificial Neural Networks (ANNs) have become a valuable tool in bioprocess engineering,
with diverse applications in modeling, optimization, and control. They are commonly used
for online prediction of key process variables or integrated directly into optimization algo-
rithms to determine optimal control strategies [57, 58].

Chaudhuri et al. [59] employed a feedforward neural network (FNN) model, trained on
experimental data, to predict the nonlinear relationships between substrate feed rate and
bioreactor outputs like cell mass and product concentration, according to the authors elim-
inating the need for a detailed kinetic model. They then use the trained FNN model to
optimize substrate feed rate profiles. The effectiveness of this approach is demonstrated
through examples of secreted protein and invertase production, where the FNN model suc-
cessfully predicts bioreactor dynamics and generates optimal feed rate profiles that align
closely with traditional methods.

Pantano et al. focused on designing a multivariable control system for a fed-batch bio-
process using neural networks for state estimation of unmeasurable variables. The neural
networks are trained to estimate state variables over a range of operating conditions, ac-
counting for perturbations and uncertainties to ensure robust performance. The performance
of the controller proposed by Pantano et al. is compared against a PI controller. The study
indicates superior performance of their proposed controller, especially in the presence of dis-
turbances.

In the work presented by Zhang et al. [60] the authors present a hybrid modeling frame-
work that integrates physics-based and data-driven modeling to enable online process mon-
itoring, prediction, and optimization in an in-silico experiment. It utilizes a simple kinetic
model to generate high-quality data from noisy measurements and handles missing data
points, overcoming the limitations of data-driven models that require large, high-quality
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datasets. The ANN, trained on refined data, predicts future process states (biomass, ni-
trate, and product concentrations) and enables the determination of optimal control actions
throughout the process.

While ANNs have shown success in predicting biological system behavior and various con-
trol applications, they come with limitations, such as the need for large amounts of historical
data and limited extrapolation capabilities beyond the training data [61]. These challenges
can be mitigated by integrating ANNs with physics-based models, as this hybrid approach
can compensate for the high data requirements of ANNs and extend their applicability.

Fuzzy Control

Fuzzy inference is a tool to incorporate linguistic rules into computational algorithms for
application to process control. Fuzzy logic requires no initial knowledge of the dynamics of
the system. Instead, the user’s experience with the process is utilized to control the process
based on an evaluation of the current state of the process [35]. Fuzzy control is based on the
principles of fuzzy logic and is categorized into two types: the direct fuzzy control of process
variables such as feed rate in fed-batch culture and temperature in batch operation, and the
indirect control of bioprocesses in which the phase recognition is first done by fuzzy inference
using process variables such as DO, glucose concentration, pH and so on and then the control
strategies having been constructed in each phase are used for the process operation [62].

Fuzzy control utilizes fuzzy set theory, where variables can have degrees of membership
to different sets. For instance, instead of defining a temperature as simply “high” or “low”,
fuzzy control allows for a range of possibilities like “slightly high”, “moderately high”, or
“very high.” This concept is represented by membership functions, which assign a degree of
membership (between 0 and 1) to a specific value within the variable’s range. This process
is called fuzzification [62].

The fuzzy sets are then used to interpret the current state of the system. This con-
trol strategy relies heavily on capturing expert knowledge and translating it into a set of
IF-THEN rules. These rules establish relationships between input variables (e.g., DO con-
centration, glucose level) and output variables (e.g., feed rate, temperature). This is how
the user experience with the process is incorporated into the controller. For instance, a rule
for controlling the glucose feed rate in a bioreactor might be: “IF concentration is Big and
glucose concentration is Small and product concentration is Small, THEN change in feed
rate is Big.” This rule essentially states that if the DO is high (indicating good oxygen avail-
ability for growth) and both glucose and ethanol are low, the feed rate should be increased
(“Big”). The collection of these rules forms the knowledge base of the fuzzy control system.
The output of the rules is called defuzzification [63].

Numers et al. [64] developed a knowledge-based system utilizing fuzzy inference for super-
visory control in bioprocesses, focusing on setpoint regulation and incorporating fuzzy logic
principles. This approach aimed to enhance the control mechanisms in bioprocessing systems
by leveraging fuzzy logic to handle the inherent uncertainties and complexities in biological
systems.

Siimes et al. [65] also explored the application of real-time fuzzy-knowledge-based control
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in Baker’s yeast production, emphasizing the utilization of fuzzy logic and a knowledge base
for fault diagnosis and control in bioprocesses. Their work highlighted the significance of
incorporating real-time control strategies based on fuzzy logic to improve the efficiency and
reliability of bioprocessing operations.

In summary, fuzzy control methods are valuable for managing nonlinear systems and are
often more intuitive for users, as they rely on linguistic rules rather than complex mathe-
matical models. However, their application in substrate feed rate control has become less
common in recent years [23, 35]. The effectiveness of fuzzy logic controllers depends heavily
on a thorough understanding of the bioprocess, as developing an accurate rule base requires
substantial human expertise.

Model Predictive Control

The essence of Model Predictive Control (MPC) is to optimize the forecasts of process be-
havior over the manipulable inputs. This forecasting is achieved through a process model,
making it an essential component of an MPC controller [66]. The control action is obtained
by solving a finite-horizon optimal control problem at each sampling instant. The dynamic
system is optimized over a finite prediction horizon, resulting in a finite control sequence,
with the first control action in this sequence applied to the plant [67]. The prediction is
evaluated based on the optimization of a cost function over the full process time. This may
be to maximize the production or minimize the cost, or to follow a trajectory for a certain
variable [68]. The optimization is also subject to predefined constraints which are built into
the optimal control problem [68]. The simplified block diagram of the MPC control loop is
shown in Fig. 2.9.

Figure 2.9: Simplified block diagram of an MPC-based control loop.

The process model can be either a classical mechanistic model, which typically describes
cell growth and metabolism [69, 70], or an empirical model, such as those based on artificial
neural networks [71, 72], partial least squares [73], and others. While empirical models can
be highly accurate within the range of the process parameters from which they were derived,
they often lack scalability and offer a less analytical perspective compared to mechanistic
models [23]. Consequently, the effectiveness of the controller is closely tied to the quality
of the predictive model used, with performance diminishing as operating conditions deviate
from those under which the model was initially set [67].

One of the key reasons for the success of model predictive control is its capability to
explicitly consider constraints and forecast the system’s behavior [74]. Furthermore, it of-

19



fers intuitive parameterization by adjusting a process model, though it comes at a higher
computational effort cost than classical controllers [75]. While widely applied in the process
industry [75], MPC has found relatively few applications in bioprocess engineering, especially
due to challenges in measuring critical quality attributes and robust measurements of key
state variables [35, 76].

Various examples of MPC applications for the control of yeast cultures [71, 72, 77], bac-
teria [70, 78] and mammalian cells [69, 79, 80]. Some examples of their use are applied in
alcohol biosynthesis [71, 72], recombinant proteins [80], hormones [77], antibiotic production
[73] and maintaining cultures in a specific metabolic state [81]. However, half of these stud-
ies were carried out on various types of simulators and did not study the operation in real
systems.

Kuprijanov et al. [70] demonstrated that an MPC controller can be implemented in indus-
trial bioreactor automation systems for batch fermentation processes. Using only standard
sensors (pH, OD) and online biomass and glucose measurements, and varying the substrate
feed rate, the authors were able to demonstrate the ability of the MPC controller to follow a
pre-set biomass growth profile and thus improve the repeatability and safety of the process
[70].

Aehle et al. [80] used an MPC system to ensure reproducibility in an animal cell culture
(CHO) for the production of a recombinant therapeutic protein. The control aimed to iden-
tify and control an optimal specific growth rate by controlling the rate of oxygen consumed by
the cells by manipulating the glutamine supply. The authors estimated that the performance
of the controller was quite good, given the high batch-to-batch reproducibility obtained in
cultures operated with this controller.

MPC has some important limitations to consider. One key requirement for successfully
implementing an MPC scheme is having a robust process model, which can be challenging
if the system is not well characterized or if limited information is available. Additionally,
the accuracy of the model needs to be validated with experimental data, which may require
multiple runs [82]. Another limitation of MPC is its high computational cost, which can lead
to significant execution times [44, 83]. It also has high hardware and software requirements,
similar to those needed for artificial neural networks (ANNs) [82].

To conclude, model predictive control is a powerful closed-loop control method for sub-
strate feed rate control, optimizing control actions across the entire process duration rather
than just at the current time instant. MPC incorporates the impact of disturbances into the
optimization problem, enhancing its robustness. However, the effectiveness of MPC heavily
relies on the accuracy of the process model and its ability to manage unexpected disturbances.
One of the significant drawbacks of MPC is the need for robust process models, which may
not always be available, and its high computational expense, especially when optimizations
are required at every time point [82]. While MPC is a standard method in other industries,
its broader application in biological processes requires substantial advancements in process
modeling. With robust models, MPC can offer a powerful and flexible control approach,
capable of optimizing entire processes and addressing a wide range of control objectives.
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2.5. Concluding Remarks
To define a proper control strategy, the process should begin with clearly defining the control
problem, identifying the relevant input and output variables, and understanding their effects
on the controlled variable. Next, it is crucial to consider the operating characteristics of the
process and any physical constraints of the system.

The choice of the optimal control strategy depends on several factors. Understanding the
process dynamics, as well as the availability of measurements and sophisticated equipment,
is crucial in this decision. When measurement data is abundant, a simple control loop may
be sufficient. However, in biological processes, where measurements are less frequent, ap-
proaches based on process understanding and mathematical models become more valuable.
These model-based strategies not only help overcome the limitations of sparse data but also
provide in-depth insights into the process.

When a process model is available, utilizing this knowledge to develop flexible control
strategies, such as model-based control or Model Predictive Control, offers significant ben-
efits. In particular, they provide the flexibility to tailor the objective function to meet the
desired outcomes of the process. However, for broader industrial application of these model-
based methods, continuous focus on process model development and uncertainty analysis is
crucial to ensure that models are robust enough and applicable to control processes at an
industrial scale. While PID-based control is commonly used in the bioprocess industry due to
its simplicity, its effectiveness in non-linear processes is limited by the lack of reliable online
measurement systems and the inherent complexities of biological systems.

In situations where developing a reliable first-principles model is challenging due to lim-
ited process understanding or system complexity, Artificial Neural Networks offer a valuable
data-driven alternative. ANNs can learn complex relationships directly from historical data
without requiring a deep understanding of the underlying biological mechanisms, making
them particularly effective for modeling intricate and nonlinear relationships between pro-
cess variables, such as substrate feed rate and product formation.

For an advanced control system to be effective in industrial applications, its performance
must justify its implementation cost. Implementing advanced strategies, especially those re-
quiring models, demands significant time and resources. Therefore, the cost should be min-
imized, and the method should not be overly complex to avoid increasing the cost through
additional user intervention and man-hours. These factors should be carefully considered
when evaluating new control strategies.

In conclusion, this chapter has outlined the basics of process control, including the key
steps in defining and managing control problems. It covered traditional methods like PID
control and advanced strategies such as Model Predictive Control and Artificial Neural Net-
works. While basic methods are easier to implement, they have limitations in handling
complex, non-linear processes. Advanced strategies offer significant benefits but come with
higher costs and complexity. Future advancements will require a balanced approach, com-
bining process understanding with robust modeling and practical considerations to optimize
control strategies effectively.
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Chapter 3

Case Study: Advancing
Biomanufacturing Excellence:
Harnessing Model Predictive Control
for Optimal Process Efficiency in
Mammalian Cell Cultures

This chapter presents a publication in preparation in collaboration with the Process Modelling
and Distributed Computing Lab and the Mammalian Cell Culture Lab. The experimental
data were obtained by Ivan Paredes, and the mathematical model is based on the work of
Kontoravdi et al [84] and later utilized by Quiroga Campano et al [25]. For the CHO cell
line used in this study, the model was developed in collaboration with Ana Quiroga, Aarón
Canales, Bastián Herrera, and the author of this thesis. The development of the control
strategies and optimization of the culture media were carried out by the author of this
thesis. The list of authors includes Aarón Canales, Ivan Paredes, Bastián Herrera, Ziomara
Gerdtzen, J. Cristian Salgado Herrera, Ana Quiroga Campano, and the author of this thesis
(in random order).

3.1. Introduction
According to reports, the biopharmaceutical market is valued at about $516.79 billion in
2024 and is expected to reach $761.80 billion by 2029. However, high-end manufacturing and
burdensome regulatory requirements limit the market’s growth. [85]. In response to these
challenges, the US Food and Drug Administration published the Process Analytical Tech-
nology (PAT) [86]. This guidance aims to accelerate process development, promote efficient
manufacturing, and ensure regulatory compliance, product safety, efficacy, and quality —all
crucial to meeting the increasing demand for biomanufacture. A desired goal of the PAT
framework is to design and develop well-understood processes that will consistently ensure
a predefined quality at the end of manufacturing. Consequently, this transition guides the
industry from a quality-by-testing paradigm to a quality-by-design (QbD) approach [87]. Im-
plementing QbD involves measuring Critical Quality Attributes (CQAs) and Critical Process
Parameters (CPPs). More specifically, one of the guiding principles of QbD is incorporating
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robust control strategies and PAT tools to ensure consistent process performance and prod-
uct quality through monitoring and controlling previously identified CPPs [88, 89].

Mammalian cell cultures have become a widely used platform for obtaining bioproducts
[90]. These cells are the preferred hosts for producing most complex therapeutic proteins due
to their ability to perform post-translational modifications that are pharmacodynamically
and pharmacokinetically relevant and highly compatible with humans [1]. The high yields
achieved with current processes result from many years of research that have led to a better
understanding of gene expression, metabolism, and growth [90]. This increase in productivity
is partly due to improvements in media composition and process control [7, 90], both key
elements in process development [4].

To ensure that these advancements in media formulation and optimization translate effec-
tively into large-scale production, it is crucial to maintain stringent control over the biopro-
cess. One effective way to achieve this is by closely monitoring key nutrient levels, such as
glucose and glutamine, which are essential for optimizing nutrient supply and ensuring opti-
mal cell growth and product assembly. Controlling nutrient levels is vital as they significantly
impact cellular metabolism and productivity. Precise control of glucose and glutamine, the
primary carbon sources in CHO cells [19], has been shown to enhance nutrient utilization ef-
ficiency and improve recombinant protein production [26, 27], with similar benefits observed
in hybridoma and HEK cells [20, 91]. Thus, effective monitoring and control of nutrient levels
are fundamental for achieving desired bioprocess outcomes while ensuring safety, efficiency,
and adherence to environmental and product quality standards [17].

Following the launch of the Quality by Design (QbD) initiative, there has been notable
progress in real-time monitoring, mathematical modeling, and control. The integration of
Process Analytical Technology (PAT) with mathematical models for bioprocess control and
design has been recognized as crucial for successful QbD implementation [92]. Model-based
strategies support hypothesis generation and preliminary testing of new ideas [16], reduce
development times, and enhance productivity [93]. Specifically, knowledge-driven models
offer the highest level of accuracy during the early stages of pharmaceutical development,
especially when experimental data are limited [94].

This progress can be observed in the increasing adoption of advanced control techniques.
For example, Artificial Neural Network ANN-based control [60, 95], deep neural network-
based control [96], and Model Predictive Control (MPC) [27, 50, 97–102] are becoming more
common due to recent improvements in software tools, algorithms, and sensor technology [93].
Advanced strategies effectively manage the complexity of biological and highly non-linear sys-
tems. Both ANN and deep neural network control excel in predicting system behavior but
require extensive data and face challenges with extrapolation beyond the training set [61].
In contrast, MPC can handle operational constraints explicitly and forecast system behavior
but relies on a robust process model, which can be challenging to develop [74].

In comparison, traditional methods like open-loop control [42, 45, 46] and Proportional-
Integral-Derivative (PID) control [49, 103–105] are widely used in industry for their simplicity
[33, 35]. Open-loop control is straightforward to implement as it doesn’t rely on measure-
ments but requires pre-computed profiles and has limitations in managing disturbances and
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the inherent variability of processes [44]. PID control, while more adaptable, struggles with
non-linear processes and the intrinsic nonlinearity of biological systems [51, 52].

In complex non-linear systems, such as mammalian cell processes, Model Predictive Con-
trol has shown effectiveness in managing multiple variables and constraints [44]. MPC aligns
well with the Process Analytical Technology (PAT) initiative, facilitating real-time mon-
itoring and rapid adjustments to maintain process integrity, thus enhancing control and
efficiency [76]. In the presence of measurement and model uncertainties, state estimators
such as the Kalman Filters (KF) [106–108] as well as the Moving Horizon Estimator (MHE)
[97, 99, 109, 110] are used with MPC improve the accuracy of predictions. Moving Horizon
Estimation further complements MPC by providing superior state estimation, particularly
in systems with nonlinear dynamics [111] and subject to constraints compared to the KF
[112]. Integrating MPC with MHE enables precise state estimation and tracking, even when
discrepancies exist between the process and the model, by leveraging historical data and
real-time sensor information to enhance control performance [110].

In the literature, the proposed control strategies for manipulating the feed rate in fed-
batch processes often focus on controlling a limited number of critical process parameters
(CPPs), such as glucose and/or glutamine [98, 100, 108], or aim to maximize cell growth and
productivity by adjusting a single input feed [95, 97]. However, these approaches typically
overlook the exhaustion of other essential amino acids and fail to address nutritional require-
ments for product assembly and energy supply. Additionally, they often neglect important
clone-specific parameters which are crucial for assessing critical quality attribute (CQA) sen-
sitivity and understanding process responses to changes in CPPs [25].

In this work, we present an integrative approach for optimizing culture media and feed-
ing strategies for fed-batch cultures using a predictive mathematical model. By integrating
cell and product composition and characteristic process parameters into a detailed dynamic
metabolic model with optimizable parameters, we can predict the specific nutritional re-
quirements of a given cell line in a specific production process. This allows for the design
of customized media compositions and feeding strategies tailored to each production system.
The optimized fed-batch design is achieved using model predictive control, where the feed is
based on the cells’ nutritional needs for maintenance, growth, and production. Furthermore,
the real-time monitoring and control problem is addressed by integrating MHE and MPC
to manage limited data availability and inherent variability in the fed-batch process. This
approach not only minimizes experimental costs, time, and resource use through extensive
in-silico testing but also accelerates process development. It enables flexibility and customiza-
tion, making it applicable to various cell lines and production scenarios. The effectiveness of
the proposed control strategy is demonstrated by comparing the use of classic P control and
MPC for fed-batch design, highlighting the advantages of the proposed method in optimizing
culture conditions and improving overall process control and efficiency.

In continuous feeding scenarios, both P and NMPC control achieve similar performance
metrics, with equal Integral of Time-weighted Absolute Error (ITAE), Integral of Absolute
Error (IAE), and Integral of Squared Error (ISE) indices. In pulse-feeding strategies, NMPC
outperforms P control by managing constraints and improving ITAE, IAE, and ISE indices,
reduced by 8.30%, 3.43%, and 0.24%, respectively. The NMPC-MHE controller exhibited a
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lower ITAE index, indicating better accuracy in controlling the process under various dis-
turbance scenarios. In the presence of process variability, the NMPC-MHE control scheme
resulted in a 4.68% decrease in the ITAE index and a 5.34% increase in the IVCD compared
to the NMPC open-loop strategy. However, sampling time was found to have a significant
impact on glutamine estimation; frequent sampling is beneficial for maintaining effective
control and ensuring higher cell density. Although the control system can function with less
frequent sampling, performance tends to decrease as the interval between samples increases.
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3.2. Materials and Methods

Culture Conditions

Experiments were conducted on a 500 mL MiniBio bioreactor (Applikon Biotechnology, Ltd.,
Netherlands) with a 200 mL working volume at an initial 0.3 × 106 [cells/mL] concentration.
t-PA producing CHO TF 70R cells were inoculated from an exponential growth phase culture
in 100 mL spinner flasks at 37oC and 100 rpm stirring speed, in a 95% humidity incubator
with 5% CO2, in a 1:1 mixture of Dulbecco’s modified Eagle’s medium (DMEM) and Ham’s
F12 (Gibco, ME090283L1) medium supplemented with 5% FBS (Hyclone, SH30910.03), 200
nM Methotrexate (Sigma, M8407), 0.1 [g/L] pluronic F68 (Sigma, P1300), antifoam C (5
ppm), and 10 [mL/L] of penicillin-streptomycin, with a final concentration of glucose (Sigma,
G5146) and glutamine 4 [mM ] (Sigma, G1517). The culture’s pH, dissolved oxygen (DO),
temperature, and agitation were controlled at constant values of 7.4, 35% of air saturation,
37oC, and 100 rpm, respectively. 1M NaOH and CO2 gas were used to control pH.

Sampling and Sample Analysis

At the time of inoculation, a sample is taken at time zero, and the cell concentration and
viability are measured using microscopy. The remaining volume is centrifuged, and the
supernatant is removed and subsequently filtered. This volume is stored under refrigeration
for later measurement of glucose, lactate, and ammonium using the Y15 biochemical analyzer
and amino acid profiling via HPLC. Daily samples were taken from the culture for 120 hours.

3.3. Model Based Feeding Strategy

3.3.1. Mathematical Model

An unstructured model utilizing Monod kinetics was developed to describe cell growth and
metabolism. This model relies on mass balances and stoichiometric reactions, incorporating
common assumptions such as a well-mixed bioreactor and precise control of culture pH, tem-
perature, and dissolved oxygen concentration. The development of the mathematical model
was based on the analysis of experimental data in batch mode, identifying the main groups
of nutrients influencing cell growth and death, as well as parameters associated with glucose
and amino acid metabolism. For further details on the complete development of the model,
including observability analysis, identifiability analysis, and calibration, refer to the work by
Canales et al. [113].

The model consists of a set of 27 ordinary differential equations (ODEs) describing viable
cells Xv, dead cells Xd, glucose GLC, glutamine GLN , lactate LAC, ammonia AMM , amino
acids AAi (where i denotes each amino acid) and the volume V . AAin,i, GLNin, and GLCin

represent the concentration of amino acids, glutamine, and glucose in their respective feeds,
Finaa and Finglc

. The main equations of the model are expressed as:
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dV

dt
= FinAA

+ Finglc
− Fout (3.1a)

d(V Xv)
dt

= (µ − µd) V Xv − XvFout (3.1b)

d(V Xd)
dt

= µdV Xv − KlysV Xd − XdFout (3.1c)

d(V GLC)
dt

= Finglc
GLCin − FoutGLC − QglcV Xv (3.1d)

d(V GLN)
dt

= FinAA
GLNin − FoutGLN − QglnV Xv − Kd,glnV · GLN (3.1e)

d(V LAC)
dt

= FoutLAC + QlacV Xv (3.1f)

d(V AMM)
dt

= FoutAMM + QammV Xv (3.1g)

d(V AAi)
dt

= FinAA
AAin,i − FoutAAi ± QAAi

V Xv (3.1h)

Where µ, µd, Qglc, Qgln, Kd,gln, Klys QLAC , Qamm and QAAi
are the specific growth rate,

specific death rate, specific consumption rate of glucose, specific consumption rate of glu-
tamine, glutamine degradation constant, specific cell lysis rate, specific lactate production
rate, specific ammonia production rate and specific consumption or production rate for the
rest of the amino acids, respectively. The model parameters were either determined ex-
perimentally by previous work from our group or estimated using a weighted least-squares
objective function. The most relevant parameters are listed in Table 3.1. The detailed model
description is supplied in Appendix A.
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Table 3.1: List of model parameters, their descriptions, and units.

Parameter Description Unit

µd,lacmax Specific death rate from lactate toxicitya [1/h]
µd,max Theoretical maximum deatha rate [1/h]
µmax Theoretical maximum growth ratea [1/h]
Kd,gln Glutamine degradation constanta [mM]
Kd,lac Monod saturation constant for death based on lactate toxicitya [mM]
Kglc Monod saturation constant for growth based on glucose metabolisma [mM]
Kgln Monod saturation constant for growth based on glutamine metabolisma [mM]
Ki,lac Monod constant for metabolic inhibition from lactate a [mM]
Klim,glc Monod inhibition constant for glucose limitationa [mM]
Mgly,glc Maintenance coefficient of biomass from energy production during glycolysis from glucosea [mM/Cells h]
Mk,AA Maintenance coefficient of biomass from energy production during TCA from amino acidsa [mM/Cells h]
Mk,glc Maintenance coefficient of biomass from energy from glucosea [mM/Cells h]
nglc Glucose Hill Coefficient for cell growtha

ngln Glutamine Hill Coefficient for cell growtha

nd Glutamine Hill Coefficient for cell deatha

Rlac,ala Lactate-alanine ratio produced from glucose consumption during glycolysisa

Ygly,glc Yield of ammonia from glutaminea [Cells/mM]
Yk,AA Yield of biomass from energy from amino acidsa [Cells/mM]
Yk,glc Yield of biomass from energy production during TCA from glucosea [Cells/mM]
Yamm,gln Yield of ammonia from glutaminea [mM/mM]
Yx,glc Yield on biomass from glucoseb [Cells/mM]
Yx,gln Yield on biomass from glutamineb [Cells/mM]

a Fitted parameters.
b Experimentally determined parameters.

3.3.2. Optimized Media Composition

The medium composition was obtained from the simulation of the specific consumption rate
of each amino acid for proliferation and energy production in batch mode. These dynamic
consumption rates also consider particular characteristics of the cell lines used, such as cell
composition, product composition, and the nutritional requirements of the specific clone. The
composition of the growth medium is determined by fixing the concentration of glutamine
GLNin and calculating the ratio of the specific consumption rates of other amino acids (q̇AAi

)
relative to q̇gln the specific consumption of glutamine. This calculation follows the equation:

AAin,i = q̇AA,i

q̇GLN

· GLNin (3.2)

Where AAin,i denotes the amino acid concentration in the optimized medium.

3.3.3. Control Objective

The objective of the control problem is to maintain glucose and glutamine levels at a desired
set point, commonly defined as a set point tracking problem. For the closed-loop control
problem, it is assumed that all state variables are measured. The controlled variables are the
glucose and glutamine levels in the culture, and the manipulated variables are the glucose and
glutamine feed rates. For the control problem, a reduced model is used, which includes the
mass balances for glucose, glutamine, lactate, ammonia, viable cells, dead cells, and volume.
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In the proposed strategy, all amino acids are considered implicitly, and the media design
approach is used to ensure their availability, since cells cannot synthesize essential amino
acids. The media composition links all amino acids to glutamine, which simplifies the model
structure by allowing control over a single variable. Without this specific media design, the
strategy would fail, as some amino acids would become depleted, leading to cell death due
to starvation effects not accounted for in the mathematical model.

3.3.4. Bioreactor Operation
The feeding strategy—i.e., glucose and amino acids feeding rates—is determined using three
different control strategies: Classic P control, nonlinear model predictive control (NMPC),
and nonlinear model predictive control with moving horizon estimation (NMPC-MHE). The
first two strategies assume no measurement noise or disturbances and are used to design the
feeding strategy. The reactor operation was simulated in closed-loop mode to determine the
size of the feeding pulses required to maintain glucose and glutamine levels around their set
points. Once the strategy is determined, it is applied in open-loop mode, with no possibility
of adjusting the control action. The third strategy simulates a real-time implementation,
accounting for limited measurement availability and measurement noise. This approach ad-
dresses the challenges posed by the lack of measurements and inherent variability in the
fed-batch process.

The feeding strategy is applied in pulses with an 8-hour interval rather than a contin-
uous or steady flow, causing significant changes in the system’s state trajectories. As a
result, logical operations, known as switches, need to be integrated into the model [114]. A
switch entails updating the state variables, leading to a discontinuous piece-wise dynamic
model. For this, an event-driven method is used to identify discontinuities, and when the
solution encounters an event, the solver updates the states and restarts from that point [115].

3.3.5. PID Control
In PID control, the goal is to minimize the error, which is the difference between the controlled
variables and their setpoints, to zero. For proportional control, the controller output is
directly proportional to the error signal Then, the manipulated variables or inputs u follow
a simple control law defined by:

u = Fin = Kc · e(t) (3.3)

[
Finglc

Fingln

]
=

[
Kcglc

0
0 Kcgln

]
·

[
xglc − xspglc

xgln − xspgln

]
· (3.4)

Where e(t) corresponds to the error signal, which is the difference between the variable x
at time t and its set point xsp. The key idea behind proportional control is that the controller
gains Kc can be adjusted to make the controller output changes as sensitive as desired to
deviations between set point and controlled variable [43]. The controller gains were tuned
by optimizing the objective function presented in Eq. 3.5 using the Nelder-Mead simplex
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method and, it considers the error of the controlled variables glucose and glutamine, weighed
by the matrix QP. An additional regularization term was added to find the optimal values
of Kc weighed by the matrix RP.

min
Kc

∫ tf

t0
t∥x(t) − xsp∥2

QP
+ ∥Kc∥2

RP
(3.5)

However, we are only interested in minimizing the differences between glucose xglc and
glutamine xgln, and their respective setpoints. Therefore, we can rewrite Eq. 3.5 as:

min
Kc

∫ tf

t0
t

(
(xglc(t) − xspglc

)2qp1 + (xgln(t) − xspgln
)2qp2

)
+ ∥Kc∥2

RP
(3.6)

Where qp1 and qp2 are the diagonal elements of the weighting matrix QP corresponding
to glucose and glutamine, respectively.

Despite PID controllers being the predominant choice in industrial settings and their
widespread use in biotechnology due to their ease of implementation [44, 47, 48, 53–55], these
methods encounter notable challenges. Their effectiveness relies on the accurate configura-
tion and tuning of controller parameters to handle process variability [48]. Moreover, while
PID controllers are well-suited for linear processes, their ability to handle the complexities
of nonlinear processes is limited, leading to suboptimal performance in such scenarios [51, 52].

The control strategy using proportional control results in a continuous feeding strategy.
To be suitable for the actual reactor operation, it must be adjusted to a pulse feeding strategy.
For the pulse approximation, the integral of the glucose and glutamine feedings is calculated
using the trapezoidal method at 8-hour intervals from the start of the feeding. The obtained
volume for each step is then converted into a 2-minute pulse, and finally, the feeding strategy
is applied to the system in an open-loop manner.

3.3.6. Model Predictive Control
The essence of Model Predictive Control (MPC) lies in optimizing the forecasts of process
behavior based on controllable inputs. This forecasting relies on a process model, which is a
fundamental component of an MPC controller [66]. In MPC, control actions are determined
by solving a finite-horizon optimal control problem. The dynamic system is optimized over
a finite prediction horizon, generating a sequence of control actions. The first action in this
sequence is then implemented in the process [67]. While widely applied in the process indus-
try [75], MPC and advanced control methods have only found relatively few applications in
bioprocess engineering, especially due to challenges in measuring critical quality attributes
and robust measurements of key state variables [35, 76]. In this regard, existing process
analytical technologies (PATs), such as Raman spectroscopy and near-infrared spectroscopy,
have been utilized to enhance real-time process control and monitoring [116]. However, these
methods require highly sensitive and optimized instrumentation. Moreover, the deployment
of these technologies demands significant investment and specialized expertise, which can be
a barrier for many organizations [117]

We denote the vector of states x ∈ Rnx , the input vector u ∈ Rnu and the vector of
measured outputs y ∈ Rny . The differential equations of the mathematical model are denoted
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as f : Rnx × Rnu → Rnx and g : Rnx → Rny as the measurement function. Then, the system
in its continuous form can be described as follows:

ẋ(t) = f(x(t)), t ̸= τk (3.7a)
x(t+) = f(x(t), u(t)), t = τk (3.7b)

y(t) = g(x(t)) (3.7c)
x(t0) = x0 (3.7d)

Where t0 is the initial time of the culture with an initial condition of the reactor x(t0),
τk, k ∈ N corresponds to discrete-time events where a pulse is applied, and t+ is the time
instant after a pulse. For the feeding strategy design, we assume that all states are measured.

At each time, MPC calculates the optimal feeding pulses of glucose and glutamine by
minimizing an objective function based on predictions of the system over a horizon Tp. The
schematic representation of the MPC framework is shown in 3.1. The interval at which a
measurement is taken, the control action is calculated, and the prediction is updated is called
the sampling time Ts [74]. Similar to the proposed P controller, the objective of the MPC is
to track a predefined fixed set point, i.e., to maintain glucose and glutamine concentrations
around a certain reference level xsp. Two major constraints are considered in the optimization
problem related to operational constraints. First, feeding can only occur at fixed intervals
determined by τk. Second, if feeding occurs, the minimum and maximum flow rates defined
by the controller cannot exceed those values allowed by the pump, Fmin and Fmax.

Figure 3.1: Schematic representation of the MPC framework. At each time
step, MPC calculates the optimal control inputs by predicting the future
behavior of the state variables over a prediction horizon.

The MPC problem is formulated within a finite time horizon Tp over which predictions
are made:
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min
u(t)

∫ t+Tp

t
∥x(t) − xsp∥2

Q + ∥u(t)∥2
R (3.8a)

s.t ẋ = f (x(t)) , t ̸= τk (3.8b)
x(t+) = f (x(t), u(t)) , t = τk (3.8c)
y(t) = g (x(t)) , ∀t (3.8d)
0 ≤ x(t) ≤ xmax, ∀t (3.8e)
Fmin ≤ u(t) ≤ Fmax, t = τk (3.8f)
x(t0) = x0 (3.8g)

Where u(t) denotes the sequence of inputs that minimize the objective function. Q and R
are the state weighting matrix and control weighting matrix, respectively. Similar to the (P)
control problem, the diagonal elements of the weighting matrix Q correspond to the weights
of glucose and glutamine, while the diagonal elements for the remaining state variables are
set to zero. Note that to solve the MPC problem, the current state x0 needs to be known,
which can be either measured or estimated. To solve the optimization problem, a direct
multiple shooting method was used, with a fourth-order Runge-Kutta method for discretizing
the differential equations. Direct methods convert the infinite-dimensional optimal control
problem into a finite-dimensional nonlinear programming problem (NLP). In direct multiple
shooting, control inputs are discretized into piecewise segments on a coarse time grid, and the
ordinary differential equations (ODEs) are solved independently over each interval [118]. The
NLP problem is solved using CasADi [119], an open-source tool for nonlinear optimization
and algorithmic differentiation, and IPOPT [120], a software package for large-scale nonlinear
optimization.

3.3.7. Moving Horizon Estimation
Moving horizon estimation (MHE) uses a model to forecast a system’s behavior over a certain
horizon based on an initial estimate of the system’s state known, as prior, and then optimizes
to find the smallest disturbances necessary to explain the system’s measurements [121]. The
current state of the system is inferred from a sequence of past measurements within a finite
horizon Ne, which includes the most recent Ne + 1 measurements. When estimating, we
assume that the measurements of the states are disturbed by Gaussian noise v and the
model dynamics by state noise w. Then, the MHE problem can be formulated as:

min
xk,vk,wk

∥x0 − x̃0∥2
P +

k+Ne∑
k=0

(
∥vk∥2

R−1
v

+ ∥wk∥2
Q−1

w

)
, (3.9a)

s.t. xk+1 = F (xk, uk, ) + wk, (3.9b)
yk = h (xk, uk) + vk, (3.9c)

0 ≤ xk ∀ k = 0, . . . , Ne (3.9d)

Where xk = [x0 . . . uNe], vk = [u0 . . . uNe−1] and wk = [u0 . . . uNe−1] denote the sequences
of states, measurement noise, and state noise estimates respectively, that are most likely to
have produced the observed measurements and F (·) and h(·) are the discretized version of
Eq. 3.7a and Eq. 3.7c, respectively. The first term on Eq. 3.9a represents the stage cost
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where the a priori estimate of the initial condition for the horizon is given by x̃0, while P
is the weighting matrix reflecting the confidence in the initial condition [122]. The process
noise vector wk and measurement noise vector vk are independent and generally assumed to
follow a Gaussian distribution of zero mean with covariance matrices Qw and Rv, respectively
[121]. By using the Qw matrix, a measure of the parametric uncertainty is obtained and can
be used to reflect the confidence in the process model predictions [112]. The Rv matrix can
be derived from the error statistics of the measurement devices [122] and the P matrix is
updated as in [111].

In real-time simulation, two consecutive optimization problems are solved. First, by solv-
ing the MHE problem, missing state variables are inferred and measured state variables are
estimated from noisy data. Second, MPC determines the optimal feeding strategy based on
these estimated variables. A schematic representation of the real-time implementation of
NMPC and MHE is shown in Fig. 3.2.

Figure 3.2: Schematic representation of the MPC-MHE framework. During
the culture, measurements are taken at regular intervals, analyzed, and used
to infer missing state variables and estimate measured variables from avail-
able data. These estimates are then used in subsequent MPC calculations
to determine the optimal feeding strategy.
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3.4. Results and discussion
3.4.1. Optimised Media Composition
The proposed model is a crucial step in developing and optimizing the medium design and
feeding strategy since it predicts the nutritional requirements of the culture and its future
states. These models are designed to monitor and control critical process parameters (CPPs)
[25, 84]. They facilitate understanding the impact of process parameters on critical quality
attributes (CQAs) and in identifying and managing sources of variability. As a result, the
manufacturing process can be continuously monitored and optimized to maintain consistent
product quality. This approach aligns with the principles of Quality by Design (QbD), which
emphasizes a systematic strategy for ensuring product quality.

Glutamine was selected because of its role as one key energy source in the tricarboxylic
acid (TCA) cycle [19, 123] and its elevated consumption rate throughout the batch culture.
The specific consumption rates observed at 24 hours were selected to calculate this ratio due
to the abundant availability of nutrients in the culture. During this period, cells exhibited a
relatively constant consumption rate as shown in Fig. 3.3.a, thereby minimizing the potential
effects of nutrient starvation. The medium composition obtained is presented in Fig. 3.3.b.

(a) (b)

Figure 3.3: Medium Design Strategy: (a) Simulation results for amino acid
consumption profiles in batch mode. The dashed line represents the specific
consumption rate of glutamine and the solid lines represent the specific
consumption rate of the rest of the amino acids. (b) Comparison between
optimized medium composition and base medium. The blue bars represent
the optimized medium composition, while the orange bars represent the
base medium composition.

This step is crucial for addressing the control problem. Reducing the number of deci-
sion variables reduces the complexity of the optimization problem, from 21 critical process
parameters (20 amino acid feed rates and glucose) to exclusively controlling glucose and glu-
tamine. Furthermore, this methodology eases the implementation of the control scheme on
a laboratory or industrial scale, reducing the amount of equipment and resources required.
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3.4.2. Fed-batch Design

Proportional Control Feeding Strategy

A feedback proportional control scheme was used to estimate the feeding rates of glucose
and glutamine required to maintain the controlled variables at their respective set points.
To determine the feeding rate, two control loops, one for each manipulated variable, were
implemented. The controller’s parameters are tuned simultaneously to optimize the objective
function presented in Eq. 3.5, and the fed-batch culture was simulated for 7 days.

As shown in Fig. 3.4.a despite using a simple control scheme, the system exhibits a fast
response without oscillations or a significant offset. The ITAE, IAE, and ISE performance
index can be seen in Table 3.4.2 and will be compared to the NMPC strategy in the next
section. As expected, conventional control would not initiate control action until the process
variable is below the set point. The use of a closed-loop control strategy combined with an
optimized medium composition ensures the wide availability of key nutrients throughout the
entire culture. By controlling only two variables, a constant specific consumption rate for all
amino acids can be maintained once the set points for the controlled variables are achieved,
as seen in Fig. 3.4.b. This approach prevents their depletion, avoids starvation effects, and
ensures ample availability of all nutrients, not just glucose and glutamine, throughout the
entire culture.

(a) (b)

Figure 3.4: P control Feeding Design Strategy: (a) Simulated glucose and
glutamine profiles in the bioreactor and feeding strategy obtained in closed-
loop operation. The dashed line represents the set points for glucose and
glutamine. Continuous lines represent glucose and glutamine concentrations
and their respective feeding rates. (b) Simulation results for amino acid
consumption profiles in closed-loop operation. The dashed line represents
the specific consumption rate of glutamine and the solid lines represent the
specific consumption rate of the rest of the amino acids.

As shown in Fig. 3.5, the fed-batch culture led to increased biomass and a reduced num-
ber of dead cells after 120 hours of simulation. The proposed feeding strategy led to a 5.8%
increase in maximum cell density at 120 [h] of cultivation. Additionally, culture longevity
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improved, with cell viability increasing from 65% in the batch process to 96% in the fed-
batch process at the same time, indicating a 47.7% increase. This improvement is reflected
in the integral of viable cell density (IVCD), which increased from 823 × 108 cells · h/L to
840 × 108 cells · h/L over the same period compared to the batch experiment. The observed
increase in IVCD highlights the effectiveness of the closed-loop feeding strategy in enhancing
cell growth and reducing cell death. This reduction in dead cell concentration is primarily
due to the continuous feeding of glucose, which helps avoid glucose exhaustion after 80 hours
in the batch culture. Further investigation is needed in a fed-batch experiment to fully un-
derstand the effects of lactate and ammonia accumulation on cell viability beyond 120 hours
of cultivation.

In fed-batch processes, metabolites such as lactate and ammonia eventually accumulate to
levels that inhibit cell growth. Other factors, including high osmolarity and the accumulation
of reactive oxygen species, also likely contribute to growth inhibition and lead to a decline
in cell viability and productivity [124]. The effects of lactate and ammonia in CHO cultures
have been widely studied, with documented impacts on growth, productivity, metabolism,
and product quality [19, 123, 125]. Studies have shown that the accumulation of lactate and
ammonia can induce necrotic cell death [126] and decrease the productivity of recombinant
therapeutic products, as well as cause apoptosis by altering pH and osmolality [127, 128].
By minimizing the accumulation of these metabolites, the duration of the culture can be
extended, achieving higher cell densities and product concentrations. Traditionally, reducing
metabolite accumulation in fed-batch cultures is accomplished by controlling the availability
of glucose and glutamine through feeding strategies that maintain glucose at very low lev-
els since extended exposure to low glucose concentrations shifts cell metabolism to a more
efficient state, significantly reducing lactate production [124].

Figure 3.5: Simulated cell growth, viability and cell death in the closed-loop
operation. Dashed lines represent the batch experiment, while continuous
lines represent the simulated fed-batch design. Gray dashed lines indicate
the time instants at which glucose and amino acid feeding begins.

However, the designed strategy does not align with the reactor operation. Therefore, it
is necessary to adapt the continuous feeding strategy to the specific setup of the experi-
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ment. This adaptation involves designing a pulse feeding strategy that meets operational
constraints, including specific feed-time schedules and the duration of the applied pulse.
These constraints could also be applied to an industrial setting, representing time shifts
based on worker’s availability, maintenance schedules, and specific production requirements.
The pulse approximation and open-loop simulation are shown in Fig. 3.6.

Figure 3.6: P control Pulse Feeding Strategy: Continuous feed rate ap-
proximation from the P control feeding strategy. The blue lines represent
the feeding rates of glucose and glutamine, while the red lines indicate the
step approximation (left). Simulated glucose and glutamine profiles in the
bioreactor using the approximated pulse-feeding strategy. The curves for
glucose and glutamine are colored as follows: yellow for pulse feeding, blue
for continuous feeding, and red for the step feeding. The dashed lines repre-
sent glucose and glutamine setpoints (center). Glucose and amino acid feed
pulses were determined from the approximation of the P control feeding
strategy. The dashed lines represent the minimum and maximum flow rates
allowed by the pump (right).

Despite good performance in closed-loop, the approximated feeding profiles and open-loop
control strategy utilized fail in several aspects: (i) The control strategy is implemented such
that the controlled variables are maintained above their set points rather than within their
neighborhood. (ii) The performance decreases over time due to errors from the approximation
used, namely truncation errors, causing deviations in the glutamine concentration from its set
point. (iii) By design, the controller cannot handle hard constraints like maximum allowed
flux, which would require manually adjusting the pulses. These types of inconsistencies in
the control strategy can lead to both overfeeding and underfeeding. In particular, overfeed-
ing can lead to metabolic imbalances and affect product yields, as observed in studies where
cultures were overfed with glucose, resulting in altered final cell densities and titers [129] and
inefficient nutrient utilization leading to the accumulation of toxic byproducts [130]. Over-
feeding or undersupplying nutrients can also have more profound effects in the later stages
of culture, as the errors accumulate over time. For example, the depletion of a particular
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amino acid can cause amino acid misincorporation in the protein product, where the correct
amino acid in short supply is replaced by an incorrect one, potentially affecting the quality
and functionality of the final product [39]. These limitations highlight the need for further
refinement and adaptation of the control approach to effectively manage these constraints
and improve overall system performance. Therefore, a model predictive control strategy was
employed to overcome these limitations.

NMPC Feeding Strategy

For the NMPC fed-batch design, the strategy is evaluated in both pulse and continuous
feeding scenarios and compared to the proportional control strategy. The NMPC tuning
parameters were experimentally adjusted, considering an 8-hour prediction horizon and a
1-hour sampling time chosen due to the relatively slow dynamics of the process. Increasing
the sampling time to 12 hours did not adversely affect the NMPC controller’s effectiveness,
and similar results were observed with a shorter horizon (data not shown). As shown in
Fig. 3.7, with proper tuning, NMPC can achieve results comparable to those of closed-loop
P control when using a continuous feed. The total absolute error for continuous feedings
using both P and NMPC control strategies was 0.04% for glucose and glutamine feedings,
demonstrating the similarity between the strategies. Additionally, the performance criteria
for both controllers were equivalent, as presented in Table 3.4.2. This equivalence indicates
that, under the simulated conditions, both control strategies are equally effective in meet-
ing control objectives when applying a continuous feed. This similarity also translates to
equivalent biomass growth in both cases.

39



Figure 3.7: Simulated feeding strategy using NMPC for the continuous feed-
ing case is shown at the top. Continuous lines represent glucose and glu-
tamine concentrations, while dashed lines indicate the set points for glucose
and glutamine. The bottom panel shows the optimal glucose and glutamine
feed rates.

In the pulse-feeding scenario compared to the P control strategy, utilizing NMPC with
constraints allows for the determination of the optimal feeding strategy while maintaining
glucose and glutamine concentrations within a set point range. This approach takes into ac-
count equipment limitations and operational constraints determined by the specific feeding
times during optimization. Furthermore, NMPC offers intuitive parameterization by adjust-
ing a process model, including tuning the Q and R weighting matrices, though it comes at
a higher computational effort cost than classical controllers [75].

The same previous horizon of 8 hours was considered with a sampling time of 1 hour. The
weights of the Q matrix of the NMPC objective functions were manually adjusted by trial
and error to avoid feeding at earlier stages of the culture. The simulated feeding strategy
for the NMPC strategy with pulse feeding is shown in Fig. 3.8. Compared to the P control
strategy presented in Fig. 3.6, the controlled variables in the NMPC approach remain nearer
to their respective set points. Specifically, glutamine concentrations do not exceed 1.5 mM,
while glucose concentrations are maintained within 20% of their reference value. Unlike the
P control strategy, where pulses are injected separately, both pulses are injected together at
8-hour intervals. This helps to mitigate the impact of volume changes on the concentration
of both nutrients when fed separately. NMPC for the pulse strategy achieves lower ITAE,
IAE, and ISE criteria values compared to the P control strategy (see Table 3.4.2). The
lower values for these criteria with NMPC suggest it handles errors more effectively across
different aspects like time, magnitude, and duration compared to the P control strategy [131].
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Figure 3.8: Simulated feeding strategy for pulse-feeding NMPC with con-
straints: Continuous lines represent glucose and glutamine concentrations,
while dashed lines indicate the set points for glucose and glutamine. The
bottom panel shows the optimal glucose and glutamine feed pulses.

Since the mathematical model was developed from a batch experiment for the fed-batch
design, it is crucial to account for differences in cell culture between batch and fed-batch
operations [25]. Accumulation of toxic metabolites, growth inhibition, and starvation effects
due to increased biomass, which are not observed during batch operation, could lead to inac-
curate predictions of fed-batch performance. Consequently, relevant parameters of the model
may need to be re-estimated for further optimization to mitigate these effects. Moreover,
open-loop control is generally effective when the process follows stable trajectories with a suf-
ficiently accurate predictive model and there are no significant distortions [42]. In cases where
significant deviations occur—such as model inaccuracies, including process-model mismatch,
incorrect models, poorly fitted parameters, or external disturbances—early corrections are
essential to prevent critical issues like key nutrient exhaustion. These scenarios will be ad-
dressed in the next section on real-time simulation using NMPC.
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Table 3.2: Comparison of the total error-integral performance indexes in
the continuous and pulse feeding strategies between the P and NMPC con-
trollers.

Continuous Pulse

Index P NMPC P NMPC

ITAE 1.40 × 104 1.39 × 104 2.29 × 104 2.10 × 104

IAE 5.31 × 102 5.31 × 104 6.12 × 104 5.91 × 102

ISE 4.11 × 103 4.11 × 103 4.14 × 103 4.13 × 103

3.4.3. Real-time simulation using NMPC-MHE.

The final section of this work assesses the feasibility of implementing the proposed NMPC
framework in real-time. This study aims to replicate a scenario where precise measurements
may be scarce and not all state variables can be measured. In practice, most states cannot
be measured online due to the high cost of equipment and maintenance or the absence of
online devices. Relevant variables like amino acids or ATP, which significantly impact process
performance, are among these states [132].

Among the analytical measurements available, viable cell counts, glucose, lactate, and am-
monium data were considered, with the latter being measurable using a biochemical analyzer.
These measurements can be taken regularly, with processing times of only a few minutes,
which aligns well with the relatively slow dynamics of the system and the 8-hour fixed feed-
ing schedule. However, glutamine is analyzed offline using HPLC, which is generally more
complex and time-demanding to obtain compared to biochemical analyzers, so this variable
must be estimated. Experimental data was generated from the model simulation, and sensor
measurement noise was introduced by adding normally distributed error with zero mean and
standard deviation of 10% the measured value.

The estimation problem’s average time is 0.5 seconds, while the control problem’s aver-
age is 11.5 seconds. The total duration of a 7-day simulation was 403 seconds. Applying
pulses at fixed time intervals helps minimize the processing time. Notably, the average time
is potentially shorter than the sampling interval, suggesting that the optimization could be
efficiently solved and executed in real time applications.

The same NMPC tuning parameters were considered, and an estimation horizon of 8 hours
was used for the estimation problem. A large prediction horizon is required since pulses are
applied at a pre-defined schedule every 8 hours. The obtained feeding strategy and state es-
timates in the presence of measurement noise are presented in Fig. 3.9. From the simulation,
it can be observed that the estimates for glucose, lactate, and ammonia are accurate despite
the presence of noise in the experimental measurements. Additionally, using the measured
variables, it is possible to determine the concentration of glutamine even without having
experimental data for this variable. Similar to the previous NMPC feeding strategy, glucose
and glutamine maintain a trajectory around their respective set points, and the feeding pulses
remain within the acceptable ranges for the pump.
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The proposed MHE approach allows for accurate estimation of glutamine concentration
in the culture despite the absence of direct measurements and provides a correct estimation
of the rest of the state variables subject to measurement noise. The NMPC-MHE framework
effectively addresses the limitations of previous open-loop control strategies by incorporating
information from available state variable measurements, allowing for real-time adjustments
and monitoring of variables that are not directly measurable. This approach ensures effective
control without requiring direct glutamine measurements, which are challenging to obtain.
Additionally, the feedback control mechanism within the framework helps mitigate system
disturbances, leading to robust and effective process management.
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Figure 3.9: Real-time simulation of the NMPC-MHE control strategy. Glu-
cose and Glutamine: The points represent experimental measurements. The
gray dashed line indicates the model simulation. The yellow curves depict
the estimated concentrations of glucose and glutamine, while the solid black
line represents the setpoints for glucose and glutamine (top). Lactate and
Ammonia: The points represent experimental measurements. The gray
dashed line indicates the model simulation. The yellow curves depict the
estimated concentrations of lactate and ammonia (center). Glucose and
Glutamine Feeding: Optimal glucose and glutamine feed pulses (bottom).
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Effect of perturbations on the model and feeding strategy

Creating a perfect bioprocess model is nearly impossible due to inherent variability. Conse-
quently, real-time NMPC applications will inevitably encounter process-model mismatches
[100]. With the developed model, disturbances such as variability in inoculum size, initial
nutrient concentrations, feeding media composition, and changes in volume can be simulated,
allowing their impact to be studied and addressed. However, disturbances in pH, tempera-
ture, and dissolved oxygen are controlled independently, so these variables are not directly
considered in the mathematical model. To assess the NMPC-MHE controller performance,
and response to variability of the process, two types of disturbances were introduced and
evaluated. To highlight the differences between real-time monitoring and the NMPC open-
loop feeding strategy, both scenarios were compared under these perturbations.

The first type of disturbance is process-model mismatch, where the model used for pre-
dictions and estimations deviates from the actual process dynamics. In this case, cell growth
dynamics are impacted by a 10% increase, which may be due to unaccounted changes in
the cells’ physiological conditions. These conditions include variations in pH levels, oxygen
concentration, temperature, or cell density [39]. Such discrepancies between the model and
the actual process can lead to significant differences in the quality attributes of the prod-
uct across different runs. Addressing these unmodeled variations is crucial for maintaining
consistent product quality and ensuring that the control strategy remains effective despite
these disturbances. The second type of mismatch considers that the process and the predic-
tive model share the same dynamics, but at the moment of inoculation, the initial inoculum
contained ±15% more cells than stipulated. Such perturbations reflect common operational
scenarios in bioreactor operation and can significantly impact the availability of glucose and
glutamine in the culture.

The effect of the aforementioned disturbances in the batch experiment can be observed in
Fig. 3.10.a and Fig. 3.10.b. Overall, a larger number of cells and an increased specific growth
rate would lead to earlier nutrient depletion and lactate accumulation at the beginning of the
culture. In the case of glutamine consumption, although parameter fitting from the fed-batch
experiment suggested that its concentration does not significantly affect the specific growth
rate µ, glutamine remains crucial for other essential cellular functions. It plays a key role in
energy production through the TCA cycle and serves as an important source of carbon and
nitrogen [13]. Therefore, maintaining its availability throughout the entire culture is critical
for optimal bioprocess performance.
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(a) (b)

Figure 3.10: Effect of perturbations on the state variables of the system.
(a) An error of 15% was introduced in the initial concentrations of viable
cells. (b) An error of 10% was introduced to the specific growth rate µ.
Simulations were performed using the model fitted to experimental batch
data.

The real-time simulation of the NMPC-MHE controller with process model mismatch is
shown in Fig. 3.11 and compared to the open-loop strategy. During the first 40 hours of cul-
ture, both experiments show similar behavior due to the ample availability of glucose. The
main differences can be observed from hour 72 onwards, where the NMPC-MHE strategy
starts feeding 8 hours earlier than the open-loop strategy. Following the predefined feed-
ing strategy, glucose concentration drops below the desired 20% range around the set point.
Similarly, despite a small offset between the measured and estimated glutamine values, the
NMPC-MHE strategy ensures adequate availability of this amino acid, whereas the prede-
fined strategy results in a considerable deviation from its set point. The most significant
effect of this disturbance in the system is observed in the final concentration of viable cells,
achieving 12.3 × 108 [cell/L] instead of 11 × 108 [cell/L], showing an 11.8% increase in the fi-
nal biomass concentration when monitoring and controlling in real-time. The specific growth
rate and viable cell concentration over time are shown in Fig. 3.12. The IVCD for the NMPC
strategy was 1.37 × 103, while for NMPC-MHE it was 1.44 × 103, indicating higher viable
cell density with the MHE approach. Naturally, the increased biomass growth and higher
specific growth rate would require an increase in the glucose and glutamine feeds compared
to the open-loop when the change in the system’s dynamics is not addressed.

The integration of real-time measurements into the control strategy significantly enhances
its robustness, despite mismatches between model predictions and the actual dynamics of
the process. By continuously updating and correcting the control actions based on real-time
data, the NMPC-MHE framework can adapt to changing conditions, ensuring optimal nu-
trient supply and maintaining the desired cell growth trajectory. This adaptability not only
improves the accuracy of the control strategy but also has the potential to ensure the con-
sistent quality of the bioprocess outcomes even in the presence of disturbances.

The process-model mismatch is a major issue in state estimation and model-based control
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strategy. Even with well-tuned MHE parameters, the problem cannot be fully resolved [122]
and when the mismatch is severe, estimation results get closer too late to be corrected [97].
To mitigate this issue, variations in model parameters need to be identified beforehand and
can be incorporated as additional decision variables in the estimation problem. However,
online parameter estimation can be problematic when there is a high level of signal noise or
unmeasured disturbances [63]. Another important point to highlight is the variability that
can arise from poor estimation of the system parameters in the initial batch experiment.
Since the performance of the control system heavily depends on the predictive model, the
success of the designed feeding strategy requires precise system identification and the recog-
nition of potential sources of variability in the process.
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Figure 3.11: Closed-loop (NMPC-MHE) and open-loop (NMPC) strategies
comparison with process model mismatch added to the viable cell dynamics.
Glucose and glutamine estimated states and simulated process response in
the MPC-MHE strategy (top). Glucose and glutamine simulated process
response when the open-loop feeding strategy is applied (center). Glucose
and amino acids pulse feed rates comparison between the closed-loop and
open-loop strategies (bottom).
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Figure 3.12: Effect on cell dynamics due to the introduced process model
mismatch is illustrated in both closed-loop (NMPC-MHE) and open-loop
(NMPC OL) simulations. The specific growth rate is represented by the
dashed line, and the viable cell concentration is shown by the continuous
line. The NMPC-MHE simulation results are depicted in blue, while the
NMPC OL simulation results are shown in orange.

The second disturbance represents an error during inoculation. For an industrial fed-
batch process this could be seen as batch-to-batch variations in feed concentration or initial
biomass concentration [35]. In practice, this mistake would necessitate adjusting the feeding
strategy based on the magnitude of the error, but this could be done only if it is measured
in advance. This situation increases the risk of inaccuracies and may result in suboptimal
control actions, potentially affecting the overall performance of the process. In the context of
the MHE problem, this situation represents a bad prior estimation of the initial states which
could lead to suboptimal control actions. The real-time in-silico experiment with a 15%
increase in initial concentration, shown in Fig. 3.13, illustrates that, despite initial glutamine
estimation errors, MHE can adjust predicted values as more measurements are incorporated.

Unlike the open-loop strategy, where glucose concentration fails to reach the desired set
point until hour 120 and glutamine drops to critical levels early in the culture—potentially
causing irreversible effects on cell growth and metabolism—the adaptive feeding approach of
MHE ensures earlier feeding of glucose and glutamine pulses in response to increased biomass
growth. Ghaffari et al. [133] found that the absence of key nutrients like asparagine and glu-
tamine caused a significant reduction in cell growth. Specifically, glutamine depletion alone
resulted in about a 40% decrease in final product concentration and over a 30% reduction in
cell-specific productivity for CHO-S cells. The simulations and findings underscore the crit-
ical importance of amino acid availability and real-time monitoring in optimizing fed-batch
cultures. They also highlight the significance of the media design step, which is fundamental
for aligning nutrient supply with the metabolic demands of the cells.
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Figure 3.13: Closed-loop (NMPC-MHE) and open-loop (NMPC) strategies
comparison. An error of +15% was introduced in the initial concentra-
tions of viable cells. Glucose and glutamine estimated states and simulated
process response (top) in the MPC-MHE strategy. Glucose and glutamine
simulated process response when the open-loop feeding strategy is applied
(center). Glucose and amino acids pulse feed rates comparison between the
closed-loop and open-loop strategies (bottom).

A similar analysis can be conducted when the initial inoculum is lower than the amount
used during the design of the feeding strategy, as shown in Fig 3.14. In this scenario, the
advanced control system helps to prevent overfeeding of nutrients, thereby improving the
performance of the implemented feeding strategy in terms of accurately following the reference
values. Moreover, this approach facilitates a more efficient use of resources by aligning the
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nutrient supply more closely with the actual needs of the culture.

Figure 3.14: Closed-loop (NMPC-MHE) and open-loop (NMPC) strategies
comparison. An error of -15% was introduced in the initial concentrations of
viable cells. Glucose and glutamine estimated states and simulated process
response (top) in the MPC-MHE strategy. Glucose and glutamine simulated
process response when the open-loop feeding strategy is applied (center).
Glucose and amino acids pulse feed rates comparison between the closed-
loop and open-loop strategies (bottom).

To justify the use of an advanced control system in industrial applications, it must pro-
vide performance improvements that outweigh its implementation costs. These improvements
typically manifest as increased profitability, which can be achieved through several means:
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enhanced product yields, optimized utilization of materials, and reduced operational expenses
[35]. For instance, by minimizing the amount of excess nutrients and streamlining resource
use, the system can lead to cost savings and better overall efficiency, making advanced control
technology economically viable.

Finally, the effect of the sampling time on the system is considered. Obtaining experimen-
tal data, especially in the case of bioprocesses, can be slow and costly. To address this, the
performance of the proposed NMPC-MHE control scheme was evaluated in scenarios with
fewer measurements with measurement noise and process model mismatch equal to the case
presented in 3.11. These measurements were considered at intervals of 2, 4, and 8 hours, and
the performance was assessed based on ITAE performance criteria and the integral of viable
cell density (IVCD). These results are shown in Figure B.1.

Figure 3.15: Comparison of ITAE Index and IVCD for different sampling
intervals. On the left, the ITAE comparison is shown for 4 sampling intervals
from 1 [h] to 8 [h]. On the right panel, the IVCD comparison is shown.

As shown in Fig. 3.15, using a frequent sampling time in real-time monitoring and control
leads to increased biomass and improved control performance. With a 1-hour sampling time,
the IVCD achieved is the highest, and the ITAE index is the lowest compared to all other
simulated scenarios. A sampling time of up to 2 hours still yields a similar IVCD, despite
the reduction in control performance in the 2-hour sampling case. This suggests that even
with reduced data availability, the control and estimation problems can still be effectively
addressed. Increasing the sampling time beyond 4 hours leads to a rise in the ITAE index
compared to the ideal case with frequent measurements. This deviation in glucose and glu-
tamine from their respective setpoints also results in a slightly reduced IVCD, indicating a
deterioration in the overall performance of the culture. The decline in performance is pri-
marily associated with errors in glutamine estimation. With fewer measurements available,
it becomes challenging to correct the glutamine estimates accurately when no measurements
of this variable are available (simulations available in Annex B). Nevertheless, the control
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system’s performance remains superior to the open-loop case, demonstrating a greater IVCD
overall and lower ITAE. When comparing the NMPC-MHE framework with the open-loop
strategy derived from NMPC, the NMPC-MHE framework consistently results in increased
biomass across all scenarios, as indicated by a higher IVCD and better control performance.
This highlights the critical role of monitoring and control in maintaining optimal conditions
and improving the overall performance of the culture, as evidenced by the superior results
achieved with the NMPC-MHE framework compared to an open-loop strategy.

In scenarios with lower sampling frequencies, glutamine tends to be underestimated, lead-
ing to higher feeding pulses for this nutrient. From these results, we can conclude that more
frequent sampling (e.g., every 1 or 2 hours) is beneficial for maintaining effective control and
monitoring of the system and ensuring a higher cell density. When using a larger sampling
time, the control system relies more heavily on model predictions due to the reduced infor-
mation available to correct potential deviations from measurements. Therefore, the accuracy
of the predictive model must be carefully considered to ensure reliable performance under
these conditions. While the control system can still function with less frequent sampling,
performance decreases as the interval between samples increases. Thus, more frequent sam-
pling is recommended to maintain stringent control during the process and ensure consistent
outcomes. One possible solution to this issue is to increase the frequency of measurements
during the early hours of the cultivation process and focus solely on the estimation problem.
By doing so, accurate estimates of the controlled variables can be obtained once feeding be-
gins, thereby ensuring effective implementation of the control strategy. However, the choice
of sampling time in real-life applications will depend on the level of accuracy required and the
availability of measurements, balancing the need for precision with equipment limitations,
resource availability and time constraints.

Current sensors for measuring organic compounds and other parameters in biomanufac-
turing include electrochemical analyzers and optical sensors [134]. Electrochemical analyzers
such as the Bioprofile FLEX offer automated, rapid sampling of key compounds like glucose,
glutamine, lactate, and ammonia, as well as biomass and by-products, with a sampling time
of up to 4.5 minutes. These analyzers are adaptable for use in both single-use bench-scale
bioreactors and large production bioreactors. Additionally, Raman spectroscopy[135] is uti-
lized for real-time monitoring of metabolites, viable cell density, and cell viability within
bioreactors, providing valuable data for advanced control strategies and has been employed
in various advanced control strategies in the literature, including Model Predictive Control
(MPC) applications [100]. However, Raman spectroscopy requires very sensitive and highly
optimized instrumentation, and for larger-scale bioprocesses, the weak signal may necessi-
tate very expensive machinery to accurately detect variations in analyte concentrations [134].

Advancements in sensor technology have enabled more effective monitoring and control
of bioprocesses, facilitating real-time decision-making and optimization. Despite these ben-
efits, the deployment of such technologies poses challenges due to the need for substantial
investment and specialized expertise [117]. Nevertheless, the adoption of these advanced
tools is becoming crucial in the bioprocess industry to comply with the standards established
by the PAT and QbD frameworks, prioritizing consistent product quality through real-time
monitoring, control and process understanding.

53



3.5. Concluding Remarks
Optimal culture medium design and precise feeding strategies are crucial for maximizing
biomass and bio-product production. While model-based strategies are powerful tools for
media formulation and feeding optimization, their effectiveness is further enhanced when
integrated with real-time monitoring, particularly in the presence of process variability and
unmeasured disturbances. The proposed methodology not only reduces experimental costs,
time, and resource use through extensive in-silico testing but also accelerates process devel-
opment, while also providing flexibility and customization, making it applicable to various
cell lines and production scenarios. The implementation of an advanced control and estima-
tion strategy has proven effective in enhancing the accuracy of control of critical variables
in a CHO cell culture, leading to improved maintenance of process variables within desired
ranges and improved biomass concentration at the end of the culture compared to open-loop
strategies and P control strategies.

While P control can achieve comparable performance to NMPC in continuous feeding
strategies when properly tuned, it struggles with handling constraints in pulse-feeding strate-
gies. NMPC’s capability to manage operational constraints and adapt to real-world scenar-
ios, such as worker availability and maintenance schedules, underscores its advantage in more
complex and variable production environments. The significant improvement in ITAE, IAE,
and ISE indices for pulse-feeding with NMPC illustrates its effectiveness and flexibility in
different control scenarios.

Employing a real-time monitoring and control strategy proved effective in managing the
natural variability of the fed-batch process, a challenge that open-loop strategies cannot
overcome. This approach allows for process monitoring even in the absence of measure-
ments of key variables like glutamine. The NMPC-MHE controller exhibited a lower ITAE
index, indicating better accuracy in controlling the process under various disturbance sce-
narios. This translates to improved quality control, enhanced biomass growth, and adequate
nutrient supplementation throughout the culture. The sampling time was found to have a
significant impact on glutamine estimation; frequent sampling is beneficial for maintaining
effective control and ensuring higher cell density. Although the control system can function
with less frequent sampling, performance tends to decrease as the interval between samples
increases.

Despite these advancements, several challenges remain. The precision of predictive models
and the need for a deeper understanding of metabolic pathways and medium components
are crucial for further improving process management. Future research should focus on
several key areas: enhancing predictive models to better reflect cell culture dynamics by
integrating additional experimental data, improving real-time monitoring technologies with
advanced sensor systems, and refining control algorithms to handle process variability and
disturbances more effectively. Evaluating different control strategies under actual operating
conditions will help identify the most effective approaches in terms of productivity and cost-
efficiency. By addressing these areas, future work can further optimize bioprocesses, enhance
product quality, and contribute to more efficient and adaptable manufacturing practices in
biotechnology.
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Chapter 4

Conclusion and Future Work

In conclusion, the integration of advanced control strategies such as NMPC combined with
MHE, along with real-time monitoring, can significantly enhance process control in cell cul-
tures. This integrated approach not only improves the accuracy of control and state esti-
mation but also leads to better maintenance of critical process variables and higher biomass
concentrations at the end of the culture. The findings of this study demonstrate that both
continuous and pulse-feeding strategies can achieve effective control performance when uti-
lizing NMPC, with the added advantage of better constraint handling and adaptability to
real plant scenarios compared to traditional P control.

Key results from this study include that when designing a continuous feeding strategy,
both P control and NMPC control can achieve equal performance in terms of control per-
formance as they achieve equal ITAE, IAE, and ISE indices. Despite the simplicity of the
proposed P control, proper tuning can adequately manage the non-linearity of the process
and the interdependency between variables.

In contrast, when designing a pulse-feeding strategy, P control struggles to handle con-
straints effectively, adversely affecting control performance. The ease of constraint imple-
mentation with NMPC can accommodate real plant scenarios such as time shifts based on
worker availability, maintenance schedules, and specific production requirements. In the
pulse-feeding strategy, ITAE, IAE, and ISE were improved from 2.29 × 104 to 2.10 × 104,
6.12 × 102 to 5.91 × 102, and 4.14 × 103 to 4.13 × 103, respectively.

The NMPC-MHE controller exhibited a lower ITAE index, indicating better accuracy in
controlling the process under various disturbance scenarios. In the presence of process vari-
ability, the NMPC-MHE control scheme resulted in a 4.68% decrease in the ITAE index and a
5.34% increase in the IVCD compared to the NMPC open-loop strategy. However, sampling
time was found to have a significant impact on glutamine estimation; frequent sampling is
beneficial for maintaining effective control and ensuring higher cell density. Although the
control system can function with less frequent sampling, performance tends to decrease as
the interval between samples increases.

55



4.1. Future Work
One of the main challenges in implementing the proposed strategy is the rigidity in sam-
pling times when solving the control and estimation problem, coupled with the NMPC-MHE
framework’s heavy reliance on the availability and accuracy of measurements. The work
conducted opens avenues for further investigation into related areas of process control and
estimation. Key areas for exploration include:

1. Incorporating Measurements with Different Sampling Times: This approach
would allow the integration of “slow” measurements with “fast” measurements obtained
experimentally, thereby enhancing state estimation accuracy. An example of a strategy
addressing this issue is Multi-rate MHE. See [122] for a review of different strategies for
multi-rate estimation focusing on MHE and the work by [97] for the challenges of its
application in real-time experiments. Also, ANNs offer the capability of functioning as
a soft sensor [112]. These estimators have been increasingly employed for biochemical
process applications but should be trained on real data. Investigating the application of
ANN in this role could provide additional benefits in estimating unmeasured variables
and improving overall process control and estimation.

2. Incorporating Robust Control Schemes: Given the variability inherent in fed-batch
processes, developing a feeding strategy capable of adequately supplementing a culture
under parameter estimation uncertainty is crucial. Although this approach may result in
more conservative control actions, it could represent an improvement over the proposed
open-loop control strategies. See the work presented in [136–138] for examples of robust
control applied to fed-batch cultures. Also in [139] an open-source software for robust
model predictive control in presented.

3. Adding New Measurements to the Mathematical Model: While the current
model relies on nutrient and cell mass balances, it can be supplemented with additional
information from the culture, such as O2 consumption and CO2 generation. These vari-
ables are easier to measure and provide valuable insights into the culture’s state, aiding
in the estimation of components that are difficult to measure directly. Furthermore,
incorporating these measurements can streamline the state estimation process and sim-
plify the implementation of the control loop, reducing reliance on complex measurement
techniques.
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Annexes

Annex A. Detailed description of the mathematical
model

Growth Kinetics and Cell Death

Cell growth

The model assumes that cell growth depends on the availability of two key nutrients, glucose
and glutamine, and the accumulation of lactate. The specific growth rate is determined by
the key nutrients in the culture. These are grouped into nutrients that limit cell growth and
metabolites that inhibit it in blocks. In the case of CHO cells, these limiting nutrients were
glucose and glutamine, and the primary metabolite was lactate. Both relationships were
determined from the analysis of batch experimental data. Therefore, the specific growth rate
can be formulated as:

µ = µmax ·

 1
1 +

(
Kglc

GLC

)ng,glc
+ 1

1 +
(

Kgln

GLN

)ng,gln

 ·

 1
1 +

(
LAC
Ki,lac

)ng,lac

 (A.1)

Where GLC, GLN , and LAC are the glucose, glutamine, and lactate concentrations in
the culture medium, while Kglc, Kgln denotes the Monod’s growth constants and Ki,lac the
Monod’s inhibition constant. The influence of each variable in growth and inhibition is de-
termined by its Hill coefficient ni.

Cell death

The specific death rate µc is composed of the starvation effect STV and toxic effects due to
lactate accumulation. The STV term describes the inhibition of cell growth in the absence
of key nutrients such as glucose and glutamine.

STV =

 1
1 +

(
GLC

Klim,glc

)nd,glc

 µd = µd,max · STV + µd,lac,max ·

 1
1 +

(
Ki,lac

LAC

)nd,lac

 (A.2)

Where Klim,glc is the specific death rate from lactate toxicity, Ki,lac is the Monod constant
for metabolic inhibition from lactate and nd, i its Hill coefficients.
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Glucose and Lactate Metabolism

The specific glucose consumption rate is divided into three terms describing the consumption
of this nutrient for cell proliferation Qx,glc and energy production during glycolysis Qglyc,glc

and the TCA cycle Qk,glc. Each consumption term follows the next equations:

Qi,glc = µ

Yi,glc

+ Mi,glc (A.3)

Where Yi,glc represents the yield of biomass from glucose and the yield of biomass from
energy from glucose on its respective consumption terms and Mi,glc their maintenance coeffi-
cients. Assuming that pyruvate does not accumulate, a glucose molecule can produce lactate
and alanine or enter the TCA cycle via acetyl-CoA formation. Lactate is produced during
glycolysis Qglyc,glc at a stoichiometric rate, and for every molecule of glucose that completes
glycolysis and forms lactate, two lactate molecules are produced. Rlac,ala denotes the pro-
portion between lactate and alanine produced from glucose consumption during glycolysis.
Finally the specific consumption rate of glucose Qglc and specific production rate of lactate
Qlac can be written as:

Qglc =
∑

i

Qi,glc Qlac = 2Rlac,alaQgly,glc (A.4)

Glutamine and Ammonia Metabolism

Similarly to glucose, the specific consumption rates can be separated into terms describing
nutrient consumption used for proliferation Qx,gln, energy production Qk,gln, and product
synthesis if applicable. Yamm,gln represents the yield of ammonia from glutamine. Also, in
the glutamine mass balance, a degradation term is considered Kd,gln, representing glutamine
degradation on the medium. Similarly to Eq. A.4 and following the same structure of Eq.
A.3, the specific consumption rate of glutamine and specific production rate of ammonia can
be written as:

Qgln =
∑

i

Qi,gln Qamm = Qk,glnYamm,gln (A.5)

The specific consumption rates of the rest of the amino acids Qaa follow the same structure
as those of glutamine, considering amino acid consumption for proliferation Qx,aa, energy
production Qk,aa in the case of amino acids that enter the TCA cycle.
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Annex B. Effect of sampling time in the control and
estimation problem

The effect of the sampling time without process model mismatch is shown in Fig. B.1 in term
of control performance and IVCD obtained at the end of the process. Using a sampling time
of 1 or 2 hours allows for equivalent control performance and IVCD. This suggests that with
less data availability, the control and estimation problems can still be addressed optimally.
However, increasing the sampling time beyond 4 hours leads to an increase in the ITAE index
compared to the ideal case with frequent measurements.

Figure B.1: Comparison of ITAE Index and IVCD for different sampling
intervals. On the left, the ITAE comparison is shown for 4 sampling intervals
from 1 [h] to 8 [h]. On the right pannel the IVCD comparison is shown.

The effect of sampling time in the model’s predictions is shown in Fig. B.2 - B.4. A
sampling time of 2 to 4 hours can effectively estimate the glucose concentration from noisy
data. In the case of a sampling time of 8 hours, it can be observed that glucose estimates di-
verge from its desired setpoints. The estimation of glutamine presents a significant challenge,
as its values cannot be corrected with experimental data unlike glucose. The initial offset
in glutamine estimates cannot be adjusted based on observed measurements from available
data.
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Figure B.2: NMPC-MHE simulation with sampling time of 2 hours.

Figure B.3: NMPC-MHE simulation with sampling time of 4 hours.
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Figure B.4: NMPC-MHE simulation with sampling time of 8 hours.
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