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SEGUIMIENTO MULTIPLE DE OBJETOS EXTENDIDOS CON EL
ALGORITMO DE SEGMENTACION DE INSTANCIAS EN 3D

Los algoritmos clésicos de seguimiento de miltiples objetos (MOT) asumen la generacién
de mediciones tinicas por objetivo, pero la evolucion hacia el seguimiento de objetos extendidos
(MEQOT) asume que un objetivo pueda generar miltiples mediciones. El MEOT enfrenta
desafios en entornos congestionados, donde mediciones cercanas pueden interpretarse
erréneamente.

Presentamos el algoritmo 3D-INSEG (Segmentacién de Instancias en 3D) usando cdmaras
estéreo y redes neuronales (NNs) para segmentacion y profundidad en 3D. La visién estéreo
permite la obtencién de profundidad, mediante la cual la segmentaciéon 2D producida mediante
NNs puede ser llevada a coordenadas en 3D, de esta forma cada pixel perteneciente al objetivo
genera una medicién 3D.

Validamos con datos LIDAR Velodyne, enfocandonos en el seguimiento humano. Aplicamos
3D-INSEG a secuencias estéreo, extrayendo informacién 3D para cada objeto detectado.
Las mediciones se procesan con un filtro PMBM de objetivo extendido con implementacién
GGIW.

ElI MEOT se beneficia de los datos generados mediante el algoritmo 3D-INSEG, demostrado
comparativamente con datos LIDAR Velodyne. Este trabajo mejora el seguimiento en
entornos desafiantes con segmentacién y estimacién de profundidad en 3D.
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MULTIPLE EXTENDED OBJECT TRACKING WITH THE 3D-INSTANCE
SEGMENTATION ALGORITHM

Classical multiple object tracking (MOT) assumes each target gives one measurement. Newer
work considers extended object tracking (MEOT), where one target can generate multiple
measurements. Good measurements are key for accurate tracking.

We propose 3D-INSEG (3D-INstance SEGmentation) using stereo cameras and neural
networks for depth and 3D segmentation. Stereo vision helps with depth info, making 2D
segmentation from CNNs better. We check this against traditional clustering with Velodyne
LIDAR data.

We focus on tracking individual humans, estimating depth with RAFT-stereo, and using
Mask-RCNN for 2D segmentation. We test MEOT with simulated and real laser data in
open spaces, seeing limits in crowded or tight spots where close measurements can be wrong.

Then, we use 3D-INSEG for MEOT with stereo image sequences, getting 3D info for each
target. We use an extended target PMBM filter with a GGIW setup to process measurements.
MEQOT does better with 3D-INSEG data, shown by comparing with Velodyne LiDAR-based
MEOT in the same spots. This improves tracking accuracy in tough spots using segmentation
and depth.
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-Jacques (Dans La Radio)



Acknowledgments

Quiero agradecer a mi madre por haberme apoyado siempre y haberme dado grandes mo-
mentos: largas conversaciones, consejos, idas al C.D.A., y una lista interminable de hermosos
recuerdos que atesoro con mucho carino.

A mi padre por su apoyo constante, carino y consejos, asi como a todos los Fierro Car-
mona. Agradezco a mis hermanos por su visita en el verano previo al término de mi tesis;
fue un hermoso momento.

A mi familia por siempre estar ahi y haber sentido su carifio: a los de Santiago, Parral,
Antofagasta y Tomé. En especial a mi Tata Lucho y Tio Pepe.

A mis amigos que han estado en este proceso universitario, que me ha llenado de alegrias y
buenas experiencias: Matraqueo& W, Rancagua extendido, PxB, La Champa, los de Francia,
el CC y Kongberzion. Una mencion especial a Paul Lieutier, que desde que lo conoci siempre
me apoyd y se convirtié en un gran amigo, gracias a €l pude conocer a los amigos de La
Champa y vivir dos anos y medio muy valiosos en Francia, y ahora continuamos en Chile,
compartiendo en el trabajo y en los entrenamientos de BJJ. Mencién especial a Sebastian
Brzovic, con quien comenzamos juntos el proyecto de paracaidismo y con quien nos motivamos
mutuamente, Simén Vidal, que probablemente sea de las pocas personas que lean esto y
Eduardo Agiiero y Juan Grant que me pidieron ser mencionados.

Quiero agradecer de forma especial a mi polola Javiera Aguila, quien me ha acompafiado
en todo este proceso: cuando envié los documentos para ser aceptado en el programa de
magister, cuando obtuve la beca Magister Nacional de ANID, y ahora tltimo, en el cierre del
ciclo universitario, estando a mi lado en la redaccion de varios capitulos de esta tesis.

Agradezco a mi profesor guia Martin Adams por su apoyo y guia en el desarrollo de este
trabajo, asi como a Leonardo Cament por su gran dedicacién en los proyectos del Laboratorio
de Vision Computacional y el apoyo que me dio en todas las etapas de la tesis. Sin su apoyo,
esta tesis no veria la luz. Agradezco al resto de los estudiantes del laboratorio con quienes
pasé muy buenos momentos, en particular a Ignacio Dassori, que me ayud6 en todas las
tomas de datos, en la instalacion de sensores y registros, y que se encuentra en algunas de
las fotos de esta tesis.

v



Table of Content

1

2

Introduction

1.1 Motivation . . . . . . . . L
1.2 Hypothesis . . . . . . . . .
1.3 General Objectives . . . . . . . . . . .
1.4 Specific Objectives . . . . . . . . . .
1.5 Thesis Structure . . . . . . . . ..

Literature Review

2.1 Extended Object Tracking . . . . . . . . . .. ... ... ... ...
2.1.1 Random Matrix Approaches . . . . . . . . . .. ... ... ... ...
2.2 Random Finite Set Modelling . . . . . . . .. ... ... ... ... .. ...
2.2.1 Poisson Point Process . . . . . .. ... ... L.
2.2.2 Bernoulli Process . . . . . . .. .o
2.2.3 Multi-Bernoulli Process. . . . . . . ... ...
2.2.4  Multi-Bernoulli Mixture . . . . . ... ... .. ... ..
2.2.5 Standard Extended Object Measurement Model . . . . . . . . . . ..
2.2.6  The Poisson Multi-Bernoulli Mixture filter . . . . . .. ... ... ..
2.3 The Challenge of Data Association in MEOT and its complexity . . . . . . .
2.3.1 Extended PMBM filter . . . . . . . .. ...
2.4 Instance Segmentation . . . . . . . .. ..o
2.5 Stereo Matching . . . . . . . ...

10

10

11

12

13

14

14



3 The 3D Instance Segmentation Algorithm
3.1 Introduction . . . . . . . . ..
3.2 Image Undistortion . . . . . . . . . . . . ..
3.3 Depth Estimation Using the RAFT-Stereo algorithm . . . . ... ... ..
3.4 Instance Segmentation . . . . . . . .. ...
3.5 FErosion . . . ...

3.6 3D Projection: Transforming 2D Inferences to 3D Cartesian Space . . . . .

3D Instance Segmentation for Single Extended Object Tracking

4.1 Implementation . . . . . . . . . . . ...
4.1.1 Demonstration of the 3D-INSEG algorithm . . . . . . . .. ... ..

4.2 Benchmark Clustering Approach . . . . . . . . . ... ... ... .. ....

3D Instance Segmentation for Multiple Extended Object Tracking

5.1 Imtroduction . . . . . . . ..
5.2  GGIW implementation for a single target . . . . . . . ... ...
5.3 GGIW-PMBM filter for MEOT . . . . . .. .. ... ... ... ......

Results

6.1 SEOT scenarios. . . . . . . . . .
6.1.1 Human Detection . . . . . . . ... ... 0oL
6.1.2 Simulations on SEOT . . . . . . .. . ... ... L.
6.1.3 SEOT using 3D-INSEG data . . . . . . ... ... ... .......
6.1.4 Discussion . . . . . . ..

6.2 MEQOT scenarios . . . . . . . . . .
6.2.1 GOSPA . . . .
6.2.2 MEOT Simulation Results . . . . . . .. ... ... ... .. ....
6.2.3 MEOT Experimental Results . . . . . ... ... ... .......

6.2.4 Experiment 1 . . . . . . . ... ...

vi

16
16
17
18
18
19
19

21
22
23

25

26
26
26

27

30



6.2.5 Experiment 2 . . . ... ..o

6.2.6 Experiment 3 . . . .. . ..o

6.2.7 Experiment 4 . . . .. ..

6.2.8 DISCUSSION . . . . . .

7 Conclusion

7.1 Future Work

Bibliography

Annex A Camera Intrinsic Parameters and Camera Matrix

Annex B 3D-INSEG detections animation

vil

69
69

74

75

76



List of Tables

2.1

6.1

6.2

Values of the first ten Bell numbers

Comparison of human detection over time using the Clustering approach and
3D-INSEG data.

MEQOT results summary. . . . . . . . . . . . .. ..

viil

44



List of Figures

2.1 Example for data association with |Z| = 15 measurements in green and |Z| = 2
predictions inred. . . . . . . ... 12
2.2 The MaskR-CNN framework for instance segmentation. Extracted from [1] . 14
2.3 The RAFT-Stero framework for stereo matching extracted from [2] . . . . . 15
3.1 The 3D-INSEG algorithm diagram. . . . . . ... ... ... ... ...... 17
4.1 Demonstration of the 3D-INSEG algorithm: Stereo pair of images. . . . . . . 23
4.2  Demonstration of the 3D-INSEG algorithm Disparity Map. . . . . . . . . .. 24
4.3 Demonstration of the 3D-INSEG algorithm: Segmentation. . . . . . . .. .. 24
4.4 Demonstration of the 3D-INSEG algorithm: 3D Segmentation with LiDAR
Pointcloud data. . . . . . . . ... o 24
6.1 Human detection comparison at time to =0s. . . . . . ... .. ... .... 31
6.2 Human detection comparison at time tg =0.60s. . . . . . . . . .. ... ... 32
6.3 Human detection comparison at time to =1.31s. . . . . . . . . .. ... ... 33
6.4 Simulation of the SEOT algorithm. . . . . . ... ... ... ... .. .. ... 35
6.5 RMS target extension error versus time k. . . . . . ... ... 35
6.6 RMS target location error versus time k. . . . . . . ... ... 36
6.7 Human Tracking with the 3D-INSEG and SEOT algorithms. . . . . . . . .. 37
6.8 RMS target extension error versus time &k in human tracking scenario. . . . . 37
6.9 RMS target location error versus time k£ in human tracking scenario. . . . . . 38
6.10 GGIW-PMBM simulation 1: Ground truth. . . .. . ... ... ... .. .. 40

X



6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23

6.24

6.25

6.26
6.27
6.28
6.29
6.30

6.31

6.32

6.33

6.34

GGIW-PMBM simulation 1: GOSPA. . . . . . . . ... ... ... ... ...
GGIW-PMBM simulation 1 Cardinality estimation. . . . . . . . .. ... ..
GGIW-PMBM simulation 2: Ground truth. . . . ... ... ... ... ...
GGIW-PMBM simulation 2: GOSPA.. . . . . .. ... .. ... ... ....
GGIW-PMBM simulation 2: Cardinality estimation. . . . ... .. ... ..
GGIW-PMBM simulation 3: Ground truth. . . . ... ... ... .. ....
GGIW-PMBM simulation 3: GOSPA. . . . . . .. ... ... ... ... ...

GGIW-PMBM simulation 3: Cardinality estimation. . . . . . ... ... ..

Experiment 1: Reference images from the sequence of the left camera images.

Experiment 1: Ground truth. . . . .. ... ... ... .. 000
Experiment 1: Comparison of estimates at time ¢t =1.11s. . . . . . . . . ..
Experiment 1: Comparison of estimates at time ¢t =6.65s. . . . . . . . . ..
Experiment 1: Comparison of estimates at time ¢ = 10.58s. . . . . . . . . ..

Experiment 1: GOSPA errors and their decomposition against time for the
extended target scenario using the extended PMBM with laser data and the
3D-INSEG data. . . . . . . . .

Experiment 1: Target cardinality estimated by the extended PMBM filter
using the laser data and the 3D-INSEG data. . . . . .. ... ... ... ..

Experiment 2: Reference images from the sequence of the left camera images.

Experiment 2: Ground truth. . . . .. .. .. ...
Experiment 2: Comparison of estimates at time t=0s. . . . . . . . . . . . ..
Experiment 2: Comparison of estimates at time t=3.26s. . . . . . . . . . ..
Experiment 2: Comparison of estimates at time t=6.58s. . . . . . . . . . ..

Experiment 2: GOSPA errors and their decomposition against time for the
extended target scenario using the extended PMBM with laser data and the
3D-INSEG data. . . . . . . ..

Experiment 2: Target cardinality estimated by the extended PMBM filter
using the laser data and the 3D-INSEG data. . . .. ... ... .......

Experiment 3: Reference images from the sequence of the left camera images.

Experiment 3: Ground truth. . . . .. .. .. ...

50

90
51
51
93
54

55

o6

o7
o7



6.35
6.36
6.37
6.38

6.39

6.40
6.41
6.42
6.43
6.44

6.45

6.46

B.1
B.2
B.3

B.4

Experiment 3: Comparison of estimates at time t=0s. . . . . . . . . . . . ..
Experiment 3: Comparison of estimates at time t=5.92s. . . . . . . . . . ..
Experiment 3: Comparison of estimates at time t=11.72s.. . . . . . . . . ..

Experiment 3: GOSPA errors and their decomposition against time for the
extended target scenario using the extended PMBM with laser data and the
3D-INSEG data. . . . . . . ..

Experiment 3: Target cardinality estimated by the extended PMBM filter
using the laser data and the 3D-INSEG data. . . . ... ... ... ... ..

Experiment 4: Reference images from the sequence of the left camera images.

Experiment 4: Ground truth. . . . .. ... ... o000
Experiment 4: Comparison of estimates at time t=0s. . . . . . . . . . . . ..
Experiment 4: Comparison of estimates at time t=7.26s. . . . . . . . . . ..
Experiment 4: Comparison of estimates at time t=14.53s.. . . . . . . . . ..

Experiment 4: GOSPA errors and their decomposition against time for the
extended target scenario using the the extended PMBM with laser data and
the 3D-INSEG data. . . . . .. .. ... ... ...

Experiment 4: Target cardinality estimated by the extended PMBM filter
using the laser data and the 3D-INSEG data. . . . . ... ... ... ....
Experiment 1: 3D-INSEG detections animation. . . . . . . . ... ... ...
Experiment 2: 3D-INSEG detections animation. . . . . . . .. ... .. ...
Experiment 3: 3D-INSEG detections animation. . . . . . . .. ... .. ...

Experiment 4: 3D-INSEG detections animation. . . . . . . . . ... .. ...

x1

62

62
63
63
64
65
66

67

68

76
77
77
78



Chapter 1

Introduction

1.1 Motivation

Autonomous systems, such as self-driving vehicles [3], heavily depend on robust environ-
mental perception to identify and monitor moving objects within their surveillance area.
Scan-based sensors, such as RAdio Detection And Ranging (RADAR) [4] [5], and LIght
Detection And Ranging (LIDAR) [6], are commonly employed for this task. While these
sensors provide precise point measurements of detected objects, they lack information about
the types of objects and are susceptible to noise, without detailing the origin of reflections.
Consequently, the development of algorithms that can effectively mitigate sensor noise and
extract labeled object tracks is imperative. This intricate problem is commonly known as
Multiple Object Tracking (MOT).

The sensors utilized frequently offer high resolution, resulting in numerous detections for
a single object. This situation presents the challenge of tracking multiple objects, where in-
dividual objects may generate multiple spatially dispersed detections without accompanying
labels. This specific tracking challenge is referred to as Multiple Extended Object Tracking
(MEOT). In MEOT, accurately determining the spatial boundaries of an object becomes
crucial, because these extents aid in distinguishing between multiple objects. They facilitate
robust tracking by ensuring that each object is uniquely identified and monitored over time.

Recently extended target tracking solutions based on Random Finite Sets (RFSs) have
been proposed in which detection as well as state uncertainty is taken into account. [7]
introduces a Generalised Labelled Multi-Bernoulli (GLMB) based extended object tracker
in which the target estimate is composed of several Multi-Bernoulli (MB) components. In
the GLMB tracker, the number of feasible associations, and consequently MB components,
increases exponentially with the number of measurements and objects. In MEOT the data
association task involves both delineating the origin-based clusters of measurements and
determining the connections between these measurement cells and potential sources. The
Methods for this task can be grouped into three categories: Gating [8], Clustering followed
by assignment [9] and Sampling [9]. To deal with this problem previous work such as [10]
has used clustering techniques based on distance such as DBSCAN [11] to generate the most



probable associations.

The Poisson multi-Bernoulli mixture (PMBM) filter [12], has demonstrated its status as
one of the leading methods in target tracking. This filter is grounded in the concept of RFS,
where a potentially detected target is represented as a Bernoulli RFS, and the ensemble of
potential targets is modeled as a Poisson Point Process (PPP).

The extended version of the PMBM filter for MEOT, incorporating the gamma Gaussian
inverse-Wishart (GGIW) implementation, is detailed in [13]. This version utilizes a two-
step clustering and assignment approach [14], to identify relevant global hypotheses during
the update of each preceding global hypothesis. The process involves applying DB-SCAN
[11] and subsequently employing Murty’s algorithm [15] for each measurement partition and
global hypothesis, facilitating the determination of optimal cluster-to-Bernoulli component
assignments.

While this implementation demonstrates promising results in simulated scenarios, chal-
lenges arise when applied to real laser data. The clustering approach may become computa-
tionally expensive due to the sheer volume of data. Moreover, the abundance of objects and
data in the scene can contribute to misdetections, thereby complicating the MEOT task.

The surge of Artificial Intelligence (AI) technologies in recent years has revolutionized
the landscape of computer vision applications. This study harnesses the potential of these
advancements by synergistically integrating depth estimation [16] and 2D segmentation tech-
niques [17] employing state-of-the-art Al approaches to address the challenges posed by the
assignment of measurements to a single target in multi-object tracking.

In this work, we introduce the 3D-INSEG (3D INstance SEGmentation) algorithm, aimed
at mitigating the complexities of the data association problem. By detecting objects across
various classes and identities in a 3D spatial context, the algorithm enables the effective
grouping of multiple measurements and the establishment of connections with potential
sources. The 3D-INSEG algorithm offers advantages over traditional techniques based on
the clustering and gating of point cloud data. The primary goal of this article is to assess the
effectiveness of the 3D-INSEG Algorithm via a comparative analysis with alternative meth-
ods. Additionally, we show the utility of the detections produced by the 3D-INSEG algorithm
within an extended tracking algorithm [18], which estimates target extent, approximated as
an ellipsoid, jointly with the target’s kinematic state. The first part of this study focuses
on Single Extended Object Tracking (SEOT). A SEOT algorithm is proposed based on the
integrated depth estimation and 2D segmentation techniques are applied to enable robust
3D human tracking. The subsequent application of a SEOT algorithm, based on random
matrices [18], will demonstrate the potential of Al-based methodologies in augmenting track-
ing precision. The success of this approach is gauged by assessing the accuracy of the 3D
detections. This evaluation relies on comparisons with ground truth data acquired through
LIDAR measurements and manual annotations. In the second part of this study, we imple-
ment the 3D INstance SEGmentation (3D-INSEG) algorithm [19] for MEOT to address the
challenges posed by the data association problem. By detecting objects across various classes
and identities within a 3D spatial context, the algorithm facilitates the effective grouping of
multiple measurements and the establishment of connections with potential sources. The 3D-
INSEG algorithm offers advantages over traditional techniques that rely on the clustering and



gating of point cloud data. We demonstrate the benefits of utilizing masked and clustered
data when integrated into the PMBM filter, showcasing improved performance compared to
scenarios where Velodyne data alone is employed.

1.2 Hypothesis

Our hypothesis suggests that in environments with dense and extensive laser data, the task of
MEQOT becomes challenging due to the complexity arising from numerous object detections.
To address this challenge, we propose integrating stereo vision with Neural Networks (NNs)
for 3D depth estimation and segmentation. This integration aims to achieve 3D instance
segmentation within both SEOT and MEOT contexts.

We expect that leveraging stereo vision combined with NNs-based segmentation will sig-
nificantly enhance tracking accuracy and reduce computational complexity, especially in en-
vironments with dense object populations. By incorporating 3D instance segmentation into
the tracking framework, we anticipate improved object identification and localization, which
are essential for robust and reliable tracking performance. The structured data, modeled as
a set of clusters, is anticipated to facilitate this enhancement.

1.3 General Objectives

The general objectives of this research are threefold. Firstly, the study aims to integrate stereo
vision with CNN-based segmentation to achieve 3D instance segmentation. This integration
will leverage the depth information from stereo vision and the object recognition capabilities
of CNNs to enhance the segmentation process. Secondly, the research will evaluate the
performance of the 3D-INSEG algorithm in scenarios involving extended object tracking. By
testing this algorithm in various challenging environments, the study seeks to determine its
effectiveness and accuracy in tracking objects over time. Thirdly, the research will focus on
the implementation and validation of the proposed algorithm using real-world data. This will
involve practical experiments and data collection to ensure that the algorithm performs well
under real-world conditions. By addressing these objectives, the study aims to contribute to
the development of more advanced and reliable object tracking systems, which are crucial
for applications such as autonomous driving and surveillance.

1.4 Specific Objectives

The specific objectives of this thesis are as follows:

e Implement a stereo disparity estimation model for images obtained using the ZED 2
camera. This model will compute the disparity between stereo pairs of images, which
will then be used for inverse projection to create a 3D representation of the scene.



e Implement instance segmentation model in 2D images. The instance segmentation
model will then be applied to stereo images to extend the segmentation into 3D space.

e Develop the 3D-INSEG algorithm, which will use the stereo disparity estimation and 2D
instance segmentation models to generate 3D segmentations from stereo image pairs.
This algorithm will identify and segment objects in 3D, providing detailed measure-
ments for each segmented object, which can then be associated with different sources.

e Integrate the 3D segmentations generated by the 3D-INSEG algorithm into MEOT
filters. This integration aims to enhance the accuracy of tracking extended objects by
utilizing the detailed 3D segmentations, and to simplify data association in MEOT by
using clusters derived from the segmentation.

e Collect data in various scenarios using the ZED 2 stereo camera and Velodyne LiDAR.
The data collection will include different environments with varying numbers of objects
and different scene characteristics, ensuring a comprehensive dataset for testing and
validation.

e Conduct a qualitative and quantitative comparison of MEOT performance using data
from LIDAR and the 3D-INSEG algorithm. This comparison will evaluate the strengths
and weaknesses of each approach in different scenarios, assessing their effectiveness in
terms of tracking accuracy, data association complexity, and overall robustness.

1.5 Thesis Structure

The remainder of this thesis is structured as follows: Chapter 2 provides a comprehensive
literature review. Chapter 3 details the 3D-INSEG algorithm. Chapter 4 focuses on the
integration of 3D-INSEG with SEOT. Chapter 5 explores the integration of 3D-INSEG with
MEQOT. Chapter 6 presents the experimental results, analyses and discussion. Chapter 7
summarizes the findings and conclusions drawn from this research.



Chapter 2

Literature Review

2.1 Extended Object Tracking

Extended Object Tracking algorithms not only estimate the kinematic state of an object,
but they also estimate its shape and orientation. In [7], SEOT algorithms and their MEOT
extensions are surveyed. The initial theoretical foundations for a multiple extended object
tracker was established based on the Probability Hypothesis Density (PHD) filter, incorpo-
rating the PPP model [20]. Subsequently, this filter was implemented utilizing the random
matrix model, with an inverse Wishart distribution employed for estimating the shape ma-
trix [21]. To enhance the approach, an estimate of the Poisson rate, governing the expected
number of generated measurements for each target, was introduced using a gamma distri-
bution [22]. The integration of these components led to the development of the GGIW
model [23]. The PMBM filter [12] has been adapted for extended object tracking with a
GGIW formulation [24]. For extended objects, the state of an object xy, is defined as

o = [y ] (2.1)

where parameter vector 7, describes the shape, orientation, and size of the object at discrete
time k£ and my describes the kinematic state at time k.

2.1.1 Random Matrix Approaches

An elliptical object extent approach is presented in [25], based on a 2D shape matrix:
cosap —sinag| [(11)? 0 cosay, — sin qy i
Xk - . 2\2 . 5 (22)
sinqy  COSay 0  (I)?||sinag  cosag

where q, is the (counter-clockwise) orientation and I} and /7 denote the semi-axis lengths
of the ellipse at discrete time k. This matrix implicitly encodes the shape parameters of ~;
in (2.1). In this approach, it is assumed that measurements are scattered across the entire
ellipse surface following a spatial Gaussian distribution. The distribution is modeled as

p(zk|mk,X;€) :N(Zk;Hmk7Xk), (23)
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where H = [I, 03], the measurement source zj, is modeled as Gaussian distributed with mean
Hm,; and covariance matrix X;, With this, the likelihood to measure the set Z; given both
kinematic state and extension as well as the number of measurements, yields

P(Zklng, i, Xi) = [ [N (205 Han, Xa). (2.4)

Introducing the mean measurement and the measurement spread

k ng
_ 1 - NS T
%= Zzi, Ty = Z(zi — 22— &), (2.5)
J=1 7j=1
the equation 2.4 can be written as
p(Zk|7’Lk,[Ek,Xk) o N(?k; Hl‘k,Xk/’ka) X W(Zk, ng — 1,Xk), (26)
where .
x| 1
W(X;v,V) = %etr (——XVI) : (2.7)
22 Lg(3)[V]2 2

with m > d denotes the Wishart density [26] of a d-dimensional SPD random matrix X with
expected SPD matrix vV; etr(.) is an abbreviation for exp(tr(.)) and I'4(.)is the multivariate
gamma function. In [25], the concept of conjugate priors is applied to this equation to obtain
update equations this is complemented with an evaluation of the Chapman-Kolmogorov
theorem obtaining a recursive Bayesian estimation cycle. Only the results are discussed, for
more details see [25], the resulting estimator is based on specific products form of prior and
posterior densities. The posterior is factored as

p(r, X 2x) = p(r| Xk, Zx)p(Xk| Zk), (2.8)
within this product, the matrix-variate density is given by
P(Xk| Zk) = DV(X; Onjes Xagi), (2.9)

where the inverse Wishart density [26] is given by

IWa(Xp;0, V) = JL X7 etr (—1 (lek)> : (2.10)
2%Tq (3) 2

where d denotes the dimension of the random matrix X, v represents the degrees of freedom

parameter, V signifies the scale matrix parameter of size d x d, I'y() stands for the multi-

variate gamma function, and |-| indicates the determinant. The mean of the inverse Wishart

density is given by

1
—V 2.11
v—d—1" (2.11)
for v > d 4+ 1. The vector-variate density reads
Pkl Xe, 2) = N (@k; Taje, P © X), (2.12)

herein ® denotes the Kronecker product [27]. The prediction equations given in [25] are

Xplk—1 = FXp_1jp—1, (2.13)
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f’k\kq = Ff)kfukfl];{r +Q, (2.14)

- Ugle—1 —d —1 '\
Xyt = X 2.15
s = () K (2.15)

T
Vk|lk—1 = €XP (—;) Vk—1|k—1- (216)
Based on the given forms of prior and posterior densities, the update equations are given by
Skk—1 = Skr—1Xx, (2.17)
- - s 1
Skik—1 = HPp H' + —, (2.18)
N
K1 = Kppo1 ® Iy, (2.19)
K1 = ﬁk\k,lﬂTS,;'}H. (2.20)
For the kinematic parameters:
Xkl = Xgjk—1 + (Kkugq ® Ig)((yx) — Hxpp—1), (2.21)
Pip = Prj1 — Kk|k—1sk|k—1f{£|k_1- (2.22)
For the extension parameters:
Vilk = Vik—1 T Tk, (2.23)
Xk“c = Xklk—l + g;ﬁg_lNkU@—l + Yy, (2.24)
with
Nk\kfl = <2k — HfL‘]dk,l)(ZAk - Hflfk‘kfl)—r. (225)

In [18], the spatial distribution for a single measurement z, is modeled as a Gaussian dis-
tribution with additive Gaussian sensor noise with covariance R, being normally distributed
with variance 5X; + R and thus

Nk
P(Z|n, v, Xi,) = [ [N (2] Hay, BXi + R), (2.26)

Jj=1

where (3 is a scaling factor. Typically, 3 is set to 1/4 to match a uniform spatial measurement
source distribution. In this approach, the shape matrix Xy, is estimated as an Inverse Wishart
density given in eq. 2.10. In [18] the update is performed by ignoring the uncertainty coming
with the predicted estimate, according to

Tk = Trjo—1 + Kpjp—1(Zk — Hogp-1), (2.27)
Py = Pyj—1 — Kk\k—15k|kKl;r|k717 (2.28)
with 7
Skjk—1 = HPyp H' + %, (2.29)
k
being an approximation of the true innovation covariance.
Kyjg—1 = Pk|k—1HTSk_|]i_1, (2.30)
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denoting the corresponding gain and
Zyjp—1 = Xy + R, (2.31)

indicating the predicted variance of a single measurement. The updated extension estimate
is given by

1 R N
X = H(&mk—lXW—l + Nijp—1 + Yejr—1), (2.32)
K|k
Al = Ollk—1 + Nk, (2.33)
with
S /2 o—1/2 —-1/2 1/2
lellf*1 = Xk(kflskm/leHk*l(Sk|k/fl)T(Xk|/k71)T’ (2'34)
; 1/2  5=1/2 5 ;p—1/2 1/2
Zk|k—1 = Xk‘/k_lzk‘k/_lzk(zk“g/_l)T(Xk(k_l)T7 (235>

The GGIW [18], [28] filter is a Bayesian tracking technique designed for scenarios involving
Poisson random matrix models. The gamma distribution is the conjugate prior for the
unknown Poisson rate. It employs a conjugate prior distribution that combines a gamma
distribution with a Gaussian distribution and an inverse Wishart distribution. The filter’s
posterior density fx(§) is defined as:

T (&) = G(vi: s Bropie)N (25 Moo, Prpre) X TWa( X s Vi) (2.37)

where: G(Vi; ik, Brix) is @ gamma distribution with shape ag, and rate Sy, N (2k; mgp, Prjr)
represents a Gaussian distribution with mean my), and covariance Py, IWq(Xp; vk, Vige)
denotes an inverse Wishart distribution with degrees of freedom vy, and scale matrix V.

2.2 Random Finite Set Modelling

This section provides an overview of the application of various types of RFSs in multiple
extended object tracking. Specifically, three key types of RFSs are highlighted: the PPP,
the Bernoulli process, and the multi-Bernoulli process. While only brief explanations are
provided here, for further details, please refer to, e.g. [29,30].

2.2.1 Poisson Point Process

A PPP is a type of RFS characterized by a Poisson-distributed cardinality, where each object
within the set is independent and identically distributed (i.i.d.). The PPP is defined by a
single parameter known as the intensity function, denoted as D(z). This intensity function

can be decomposed into two components: the Poisson rate p and the spatial distribution
f(x), such that D(x) = puf(x).

The Poisson rate p represents the average number of objects per unit area, while the
spatial distribution f(x) describes the spatial arrangement of the objects within the region



of interest. Higher intensity values imply a greater likelihood of finding objects in a specific
area, while lower intensities indicate a lower probability of object presence.

In the context of multiple extended object tracking, PPPs find widespread application in
modeling various scenarios, including;:

1. False alarm detections: PPPs are commonly employed to model spurious detections or
false alarms generated by the sensor.

2. Extended object detections: These are used to represent detections caused by actual
extended objects within the scene.

3. Object birth: PPPs can also model the process by which new objects enter the sensor’s
field of view.

Furthermore, in the PMBM model, undetected objects are explicitly modeled as PPPs [12,
24,31]. This modeling approach allows for a comprehensive representation of both detected
and undetected objects within the tracking framework.

2.2.2 Bernoulli Process

A Bernoulli RFS X is characterized by the property that it is either empty with probability
1 — r or, with probability r, contains a single element x with distribution f(z). In simpler
terms, the cardinality of the set follows a Bernoulli distribution with parameter r. The
Bernoulli distribution is fully determined by the probability of existence r and the state

density f(z).

In the context of multiple object tracking, Bernoulli RFSs play a crucial role in modeling
detected objects. They effectively capture the inherent uncertainties associated with object
tracking tasks. The uncertainty arises from the ambiguity in determining whether an estimate
corresponds to a genuine object. This ambiguity is quantified by the probability of existence
T.

When an object does exist, its state x remains unknown, and the uncertainty regarding
the object’s state is encapsulated by the state density f(z). This means that even when an
object is detected, there can be uncertainty regarding its exact properties or characteristics,
such as its position, velocity, or other attributes.

By utilizing Bernoulli RFSs, multiple object tracking algorithms can effectively represent
and manage the uncertainties inherent in object detection and tracking processes.

2.2.3 Multi-Bernoulli Process

In the context of multiple object tracking, it is often assumed that objects are independent
entities. A multi-Bernoulli (MB) RFS X represents this assumption by being the composite
of independent Bernoulli RFSs X, denoted as X = U;c;.X;, where [ is the index set for the



Bernoulli components of the MB. Each component X; corresponds to a single object, and
the parameters describing the ith Bernoulli RFS are r; and f;.

The MB distribution is fully characterized by the parameters {r;, f;}icr, where r; rep-
resents the probability of existence and f; represents the state density for the ith object.
Notably, |I] defines the maximum number of objects that the MB RFS can effectively repre-
sent.

In the domain of multiple object tracking, the MB RFS serves as a suitable model for
scenarios involving multiple detected objects. It efficiently captures the independence among
objects and allows for the representation of uncertainty associated with the existence and
state of each individual object.

2.2.4 Multi-Bernoulli Mixture

A Multi-Bernoulli mixture (MBM) is a RFS whose multi-object density is a normalized
weighted sum of MB densities, forming a mixture of MB densities. The MBM density is fully
characterized by the set of parameters {(Wj, {r;, fji}icr,)}jes, where J denotes the index
set for the MBs in the MBM, also referred to as components of the MBM. Each component
J has a weight W}, representing the probability of the jth MB, and an index set I; for the
Bernoulli components within the jth MB. Additionally, the parameters of the ith Bernoulli
within the jth MB are denoted as r;; and f;;.

In the context of multiple object tracking, each MB j € J corresponds to a unique global
multi-object hypothesis. A global multi-object hypothesis encompasses a specific sequence
of data associations for an entire sequence of measurement sets, involving one association for
each time step from the initial time step to the current time step. The weight W; corresponds
to the probability of the associated sequence of associations.

2.2.5 Standard Extended Object Measurement Model

In the standard extended object measurement model, the set of measurements obtained at
time step k is the union of object-generated measurements and false alarm measurements,
given by Z = |J, W, U &, where & represents the set of false alarm measurements, and
W; represents the set of measurements from the ith object. The standard Multiple Target
Tracking (MTT) assumptions assert that the sets are all independent, and the measurement
origin is unknown. In other words, for the measurement set 7, it is not known which
measurements are false alarms, nor is it known which measurements originated from which
object.

The standard choice in multiple object tracking is to model the set of false alarm mea-
surements € as a Poisson Point Process (PPP) with rate A and spatial distribution ¢(z), with
the false alarm PPP intensity given by k(z) = Ac(z). A model for the detections W; caused
by an object with state x; must account for both the number of measurements per object
and the distribution of each measurement. A discussion of alternative single extended object
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measurement models is presented in [14]; the non-homogeneous Poisson Point Process (PPP)
model [32] is the standard choice, largely due to its versatility and relative simplicity. In this
model, individual measurements are spatially distributed around the object. Specifically, an
extended object with state z; is detected with a state-dependent probability of detection
pp(z;), and if detected, the object measurement set W; is modeled as a PPP with a state-
dependent Poisson rate v(x;) and spatial distribution ¢(-|x;). Thus, conditioned on the state
z;, the PPP intensity is v(x;)¢(:|z;).

For a non-empty set of measurements (|WW;| > 0), the conditional extended object mea-
surement set likelihood is denoted as

L(W;lz;) = pp(w:)e ) H V(zi)p(z]z:).

zeW;

Note that this likelihood is the product of the probability of detection and the PPP density.
The effective probability of detection for an extended object with state x; is pp(x;)(1 —
6_7(””)), where 1 — e~ 7(#) is the Poisson probability of generating at least one detection.
Accordingly, the effective probability of missed detection, i.e., the probability that the object
is not detected, is gp(z;) = 1 — pp(z;) + pp(z;)e 7).

In summary, the standard extended object measurement model assumes that both the set
of false alarm detections and the set of measurements from an object follow Poisson Point
Process distributions.

2.2.6 The Poisson Multi-Bernoulli Mixture filter

The PMBM (Poisson Multi-Bernoulli Mixture) conjugate prior is a modeling approach for
the multiple object tracking problem, initially developed for extended objects in [24,31], and
for point objects in [12]. In this model, the set of objects X is partitioned into two disjoint
subsets, X = X;U X,. The first subset, X, consists of objects detected by the sensor in at
least one scan. The second subset, X,,, comprises undetected objects, i.e., objects that could
be within the sensor’s field of view but have not been detected.

In the PMBM model, the set of undetected objects is modeled as PPP (Poisson Point
Process) distributed, while the set of detected objects is modeled as MBM (Multi-Bernoulli
Mixture) distributed. Hence, this model is referred to as PMBM. The PMBM extended
object filter [24], [31] estimates the PMBM multi-object density, which is defined entirely by
the parameters Dy, {Wj, {r;, fji}ier, }jes, where D,(-) is the PPP intensity for the set of
undetected objects X, and {(W;, {7}, fji}ier,)}jes are the MBM parameters for the set of
detected objects Xj.

If the measurement model is of the standard form, and the predicted multi-object density
is a PMBM density, then the posterior multi-object density is also a PMBM density [31, Th.
1]. For further details, please refer to [24], [31].

Typically, multiple object tracking algorithms only model the set of detected objects
and do not explicitly model the set of undetected objects. However, modeling the set of
undetected objects is useful, especially when dealing with occlusions, where an object may

11



not be detected despite being within the sensor’s field of view. In multiple extended object
tracking, occlusions are often modeled via a non-homogeneous probability of detection pp(-)
[33], [21], [34], [35]. Integrating a non-homogeneous probability of detection into the PMBM
filter leads to the undetected object intensity D,(-) being higher in occluded parts of the
sensor’s field of view and lower in parts that are not occluded. This reflects the fact that an
undetected object is more likely to be located in an occluded area than in a visible area [9].

2.3 The Challenge of Data Association in MEOT and
its complexity

The case of multiple extended targets introduces a departure from the single target-single
measurement assumption, allowing for measurements to be part of the same object. In the
context outlined in [7], the number of possible associations, considering a set of previously
detected objects Z with |Z| elements and a set of measurements Z with |Z| elements, is
determined by the number of set partitions of ZUZ. The number of cell-to-object assignments
is given by:

IZ]

Na(l2] 1z = {'5'} Ti <>(|I|> . (2.38)

Cc=1

Here, {‘(}Z ‘} denotes the Stirling number of the second kind!. It represents the number of

different possibilities to partition a set Z with |Z| elements into C' cells. (g) is the binomial

coefficient, given by (g) = %, which represents the number of subsets with cardinality

T that can be formed with C' objects. Equation 2.38 demonstrates that for even small values
of |Z| and |Z]|, Na(|Z],|Z|) becomes extremely large, rendering many MEOT algorithms
intractable.

Consider the example in fig. 2.1 with |Z| = 15 measurements and |Z| = 2 object predic-
tions. In this case there would be 72’384’727°657 possible data associations: With the 3D

&

Figure 2.1: Example for data association with |Z| = 15 measurements in green and |Z| = 2
predictions in red.

Segmentation Algorithm it would be possible to drastically reduce the amount of possible

{\ZI} C'ZJ o= 10~ (j)j|2\
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cell-to-object assignments by grouping points in the same detection with segmentation and
thus model the same scenario with less parameters.

2.3.1 Extended PMBM filter

For a predicted PMBM, indexed by J the total number of possible associations is given by

JjeJ

In [36] it is shown that, for the PMBM filter, for multiple extended target filtering considering
the j-th predicted MB with Bernoulli components indexed by Z;, and a set of measurements
Z, the complexity of the update operation is between exponential (O(2/Z1+1%1)) and factorial
(O((|1Z] + |1Z;])1)). A simple example demonstrates this high complexity. Let the PMBM
filter be initialized at time k = 0 with Jy = {41}, VVJQ1 =1, and IJQl = (), i.e., an empty MBM.
This corresponds to zero previously detected targets at initialization. Given a measurement
set Z; at time k = 1, the number of MB components in the updated PMBM density is given
by the number of associations,

|21

l=aizo =3 (5 = 5oz (2.40)

C=1

where B denotes the Bell number. The number of MBM components, given measurement
sets up to and including time step k£ and an empty initial MBM, is given by the Bell number
whose order n is the sum of the measurement set cardinality:

k

ALV ARLES: (Z \Zt!> —B(j2]"). (2.41)

t=1

The sequence of Bell numbers B(n) is log-convex, and B(n) grows very rapidly. For
illustration the following table show the first values of the sequence:

Table 2.1: Values of the first ten Bell numbers.

Bl1 | B2 |B3|B4|B5|B6 | BT | B8 B9 B10
1 12 |5 |15 |52 |203 | 877 | 4140 | 21147 | 115975

In articles such as [13] and [36], gating, clustering and ranking of the association events
are used to reduce the number of data associations. After the PMBM update, techniques
including pruning, merging, and recycling are used to reduce the number of components.
However when a significant quantity of data is processed, filtering becomes slow due to
the complexity of these techniques. For example, for the Density-Based Spatial Clustering
of Applications with Noise (DB-SCAN) clustering algorithm, [11] is used and its overall
complexity is O(|Z]?) in the worst case. In this article, this is avoided by providing clustered
data preprocessed by the 3D-INSEG algorithm [19].
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2.4 Instance Segmentation

Instance segmentation is a computer vision task that aims to identify and differentiate in-
dividual object instances within an image. The primary goal of instance segmentation is
to produce a pixel-wise segmentation map of the image, where each pixel is assigned to a
specific object instance. Al approaches, as discussed in [37], have demonstrated good results.
While these techniques allow us to locate objects in a 2D image space, in this work we per-
form instance segmentation in 3D using stereo vision. Therefore in this work, we address
this challenge by using Mask R-CNN [1], a powerful architecture that excels in precisely
delineating object boundaries at the pixel level.

RolAlign

Figure 2.2: The MaskR-CNN framework for instance segmentation. Extracted from [1]

2.5 Stereo Matching

Stereo matching, or disparity estimation, is a fundamental technology in computer vision used
to reconstruct 3D structures from 2D images of the real world. It finds extensive application
in areas like autonomous driving, augmented reality, and robotics navigation. In stereo
matching, given a pair of rectified stereo images, the objective is to calculate the disparity
for every pixel in the reference image. Disparity refers to the horizontal displacement between
corresponding pixels in the left and right images. In this work we use the Multilevel Recurrent
Field Transforms for Stereo Matching (RAFT-Stereo) [2] algorithm that combines a feature
encoder and a context encoder to extract features from input images. These features are
used to create a correlation pyramid, generating a 3D correlation volume through efficient
dot product computations. This technology enables us to derive disparity maps from pairs of
images, which can then be processed to obtain depth information. While the RAFT-Stereo
algorithm alone does not provide objects detections, it offers depth information, valuable in
tracking applications.
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Figure 2.3: The RAFT-Stero framework for stereo matching extracted from [2]
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Chapter 3

The 3D Instance Segmentation
Algorithm

3.1 Introduction

The 3D-INSEG Algorithm is designed to address the challenges of object detection and
tracking in environments with dense and extensive laser data. By integrating stereo vision
and NNs for 3D depth estimation and segmentation, this algorithm aims to achieve robust
3D instance segmentation within both SEOT and MEOT contexts.

The algorithm consists of several key components, as shown in Fig. 3.1. First, it includes
image undistortion to correct lens distortions and ensure accurate geometry and measure-
ments. Next, depth estimation is performed using the RAFT-Stereo algorithm to obtain the
disparity map from stereo image pairs. Following depth estimation, instance segmentation
identifies and labels individual objects within the images, providing binary masks for each
detected object, these masks are eroded to avoid depth discontinuities in detected objects’
border.

Finally, the 3D Projection component transforms 2D inferences into 3D Cartesian space,
aligning segmented instances with real-world coordinates based on depth information. The
result is a set of clustered 3D detections (D), where each cluster (C) represents a distinct
object or entity.

The use of clusterized data as measurements in tracking simplifies the data association
process, improves tracking accuracy, and reduces computational complexity. This chapter
will delve into each component of the 3D-INSEG Algorithm, highlighting its contributions
and benefits in object detection and tracking tasks.
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Image | Undistortion g
RAFT- _'_Dlspanty_'_ Depth
Stereo map 3D
detections
Left Image Inverse
> : : > » 7~ b wth Real
Image Undistortion projection
Space
coordinates

Mask R- 2D

CNN [ |Segmentations| | Erosion

Figure 3.1: The 3D-INSEG algorithm diagram.
3.2 Image Undistortion

Undistorting images is essential for this task as we aim to project objects into 3D real space
coordinates. It corrects lens distortions, ensuring accurate geometry and reliable measure-
ments.

The distortion model uses the camera Matrix K. The camera matrix represents the
intrinsic properties of the camera and is determined during calibration. It includes parameters
such as the focal length, and principal point. The camera matrix is defined as in (3.1).

Jo 0 ¢
K=10 f, ¢, (3.1)
0 0 1

where f, and f, are the focal lengths along the x and y axes with the camera coordinate
system, respectively, and c, and ¢, are the coordinates of principal points, representing the
optical center of the image. The third row is fixed as 0,0, 1 to maintain homogeneity in the
matrix. The parameters are given in Appendix A.

The distortion correction process involves the following steps:

1. Capture an image using the camera. Denote the distorted image as Igistorted-

2. Use the camera matrix (K) to compute the undistorted and rectified image coordinates
for each pixel in the original distorted image. This is carried out using the following
equations:

Xd_cz

X’LL Y
o

(3.2)
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Yd —Cy

fy
where: (Xg4,Y;) are the distorted image coordinates. (X,,Y,) are the undistorted and
rectified image coordinates.

Y, = (3.3)

3. Interpolate the pixel values from the original distorted image (Igistortea) to the undis-
torted and rectified image coordinates ((X,, Y,)). This step ensures that no information
is lost during the correction. The result is a pair of rectified images ([iectified-lef and
Liectified-right) that accurately represent the scene geometry.

The rectified images (Lrectified-left a0 Lrectified-right) are ready for use in Depth Estimation and
Instance Segmentation.

3.3 Depth Estimation Using the RAFT-Stereo algo-
rithm

We employ the RAFT-Stereo [2] architecture to obtain the disparity map of two images. The

depth z from the disparity map is
Bf
z=—, 3.4
: (3.4)
where B is the baseline distance between the two cameras, f is the focal length of the cameras
and d is the disparity value for a corresponding point in the disparity map.

3.4 Instance Segmentation

Instance segmentation identifies and labels individual objects or instances within the images,
distinguishing them from the background. A mask is obtained for each detected object from
the left image. Modelled as a binary matrix M that indicates if a pixel is part of an object:

o 1, if pixel (z,7) is part of the object
M) = { ) (35

0, otherwise.

Here, the binary matrix is obtained during instance segmentation, where each entry indicates
whether the corresponding pixel belongs to the detected object. To obtain a set of object
points from M:

Mobject = {(Z7j) ‘ M(Z,]) = 1} (36)

Mpject, consists of pixel coordinates that belong to the detected object.

Mobject = {p17p27 cee 7pn}- (37>
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3.5 Erosion

The erosion of a binary image A by a structuring element B, denoted as A © B, is mathe-
matically defined as:
AeB={z|(B). € A}, (3.8)

where(B), represents the translation of the structuring element B by the vector z. B C A
indicates that all points of B lie within A. A © B denotes the set of all points z such that
(B), is entirely contained within A. In practical terms, this operation involves sliding the
structuring element B over the binary image A, and for each position, checking if B fits en-
tirely within A. This process helps in smoothing object boundaries and refining object masks
for efficient processing and analysis of images. By applying erosion before depth estimation,
we create smoother transitions in depth values at object borders, reducing discontinuities
between objects and the background.

3.6 3D Projection: Transforming 2D Inferences to 3D
Cartesian Space

Depth estimation determines the depth information for each pixel, providing a 3D represen-
tation of the scene. Inverse projection maps the segmented instances and their associated
depth information back into the 3D space, aligning them with the real-world coordinates.
By having the depth of each pixel and a set of masks, each mask is projected into 3D space.
Given the pixel coordinates (u,v) of a 2D inference and its corresponding depth value (z),
the transformation from camera to world coordinates is:

T Te

u
Z = ZC = depth x inv(K) x |v (3.9)
1 1C L

where:

o [z y z]T represents the 3D Cartesian coordinates of the projected point,
o [z. y. z]' represents the 3D homogeneous coordinates in camera coordinates,

e inv(K') denotes the inverse of the camera matrix K.

For each pair of images in a sequence of stereo images, a set of detections, denoted
as D = {Cy,Cy,...,C,}, is generated. Here, each set C represents a cluster of 3D points
corresponding to the detected object. Algorithm 1 summarizes the 3D-INSEG algorithm
where b is the baseline and f is the focal length of the stereo cameras.

In the following chapters the set of detections will be used as measurements in tracking,
simplifying the data association process by having clusterized data. The purpose of gen-
erating these detections is to simplify the data association process in subsequent tracking
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Algorithm 1 3D-INSEG
Input: I, (Left Image), Ir (Right Image)
Output: D ={C,Cs,...,C,}

1. 2d_masks +— MaskRCNN(/})
2. disp_-map < RAFT Stereo(/, Ir)
3. For each 2d_mask in 2d_masks
e Initialize cluster: C = {}
e For each pixel = (u,v) in 2d_mask:
— d = disp_map(u, v)
— depth = %
— (z,y,2) = 3dProjection(K,depth,u,v)
- C:=CU{(x,y,2)}
e D:=DUC

Return D

tasks. By clustering the detected points into sets C, we organize the data such that each
cluster represents a distinct object or entity within the environment. This clustering helps
in reducing the complexity of data association, as measurements (D) are already grouped
based on their spatial proximity and similarity in characteristics. The use of clusterized data
as measurements in tracking facilitates the following benefits:

e Simplification of Data Association: Clustering aggregates 3D points into coherent ob-
ject representations, making it easier to associate these clusters with corresponding
objects across frames.

e Improved Tracking Accuracy: By working with pre-clustered detections, the tracking
algorithm can focus on matching entire object clusters rather than individual points,
leading to more robust and accurate tracking results.

e Reduction of Computational Complexity: Grouping detections into clusters reduces the
number of individual data points that need to be considered during data association,
thereby improving computational efficiency.
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Chapter 4

3D Instance Segmentation for Single
Extended Object Tracking

In this chapter the SEOT algorithm presented in [18] is implemented to demonstrate the
usefulness of the 3D-INSEG algorithm in SEOT. For extended objects, the state of an object
xr can be defined as

o =[] (4.1)

where parameter vector 7, describes the shape, orientation, and size of the object at discrete
time k and m,, describes the kinematic state at time k.

An elliptical object extent approach is presented in [18], based on a shape matrix:

o o e T
X, [cos a —sin ak} {(lk) 0 ] [COS o —sin ak:| ’ (4.2)

sinqay  Ccosay 0 (12)%||sinagy cosay

where «y, is the (counter-clockwise) orientation and [}, and [? denote the semi-axis lengths
of the ellipse at discrete time k. This matrix implicitly encodes the shape parameters of ~;
in (4.1). In this approach, it is assumed that measurements are scattered across the entire
surface of the ellipse following a spatial Gaussian distribution. The distribution is modeled as
p(yk|mi, Xi) = N(yg; Hmy, Xy ), where H = [I5, 09], the measurement source y; is modeled
as a Gaussian distributed with mean Hmj and covariance matrix Xy, where 3 is a scaling
factor. Typically, /3 is set to 1/4 to match a uniform spatial measurement source distribution.

Additionally the spatial distribution for a single measurement zj, ¢(z|m,X), is mod-

eled as a Gaussian distribution with additive Gaussian sensor noise with covariance R, i.e.
¢(z|mp, Xi) = N(z1; Hmy, Xy, + R).

In this approach, the shape matrix Xj is modelled as an Inverse Wishart density [26]
IW4(Xy;v, V), where v is the degree of freedom and V is a symmetric positive definite
matrix in R?*2. The update equations are shown in Algorithm 2, where m_ is the mean
of the kinematic state and P_ its covariance matrix, V_ is the extent estimate and v_ its
degree of freedom, m  is the is the posterior mean of the kinematic state and P its covariance
matrix, V is the posterior extent estimate and v, its degree of freedom, 7 denotes some
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time constant related to the agility with which the object may change its extension over time
and T the prediction time interval.

Algorithm 2 Update

Input: Prior density specified by m_, P_ and v_, V_, set of detections W, n = |W|,
measurement noise covariance R.
Output: Posterior density parameterized by m,, Py, vy, V.

e=z—Hm_
Z=3iwz =20 —2)T7

X =V_(v_—3)"

N

Y =:X+R
S=HP_H' +¥
K=P H'S™?

N = X1/2§-1/2..Tg-T/2X T/2

7, — X/2y-1/27y-T/2XT/2

o =v_—3

ar =2+exp(—T/7)(a- —2)+n
my =m_ + Ke

P, =P_—-KSK'

vy =g + 3

Vi=2(aV_+N+2)

4.1 Implementation

Algorithm 1 summarizes the 3D segmentation algorithm.

The algorithmic form of the single object tracking update is given in Algorithm 2 and
the algorithm for the random matrix approach using the 3D-INSEG algorithm for SEOT is
explained in Algorithm 3.
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Algorithm 3 SEOT
Input: Set of labeled 3D Point Measurements D, Initial State Estimate (StateEstimate)
Output: Updated State Estimate (UpdatedStateEstimate)

1. Extract the person measurements W = D(person)
2. UpdatedStateEstimate = StateEstimate.
3. For each time step:

(a) Predict(StateEstimate)
(b) Update(PredictedStateEstimate, W)
(c) Store UpdatedStateEstimate

Return UpdatedStateEstimate.

4.1.1 Demonstration of the 3D-INSEG algorithm

Two input images are shown in Figs. 4.1a and 4.1b, serving as the foundation for deriving the
disparity map shown in Fig. 4.2 (warm colors represent objects closer to the camera, while
cold colors represent objects farther away). Subsequent segmentation in Fig. 4.3 results in
the detection of three persons and two chairs, with each pixel belonging to the same object
assigned the same color. These combined outcomes are then projected into 3D coordinates,
resulting in 3D segmentation. This 3D segmentation is illustrated in Fig. 4.4 alongside the
LIDAR Pointcloud, where blue dots represent LIDAR points, and colored regions represent
3D segmentation instances of different objects in the scene (in this case, two chairs in purple
and yellow, and three persons in green, blue, and red).

(a) Demonstration of the 3D-INSEG algo- (b) Demonstration of the 3D-INSEG algo-
rithm : Left Image. rithm: Right Image.

Figure 4.1: Demonstration of the 3D-INSEG algorithm: Stereo pair of images.
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Figure 4.2: Demonstration of the 3D-INSEG algorithm Disparity Map.

Person 1
Person 2
Person 3

Figure 4.4: Demonstration of the 3D-INSEG algorithm: 3D Segmentation with LiDAR Point-
cloud data.
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4.2 Benchmark Clustering Approach

To assess the performance of the visual 3D-INSEG algorithm for human detection, we com-
pare it with a leading clustering algorithm based on 3D LIDAR data [38]. This approach
evaluates candidate points at similar bearing angles across different elevations to gauge their
consistency with a human subject based on range values. Subsequently, the DBSCAN algo-
rithm generates a cluster of points presumed to belong to a human subject.

The algorithm 4 begins by partitioning the input 3D point cloud into clusters based on
height, where each cluster represents points within a specific height range. These height-
based clusters are then consolidated into general clusters (C), which are considered potential
instances of human subjects within the environment. This clustering-based detection method
provides a benchmark against which the performance of the 3D-INSEG algorithm can be
evaluated, particularly in scenarios where traditional LIDAR-based clustering approaches
are employed for human detection.

The comparison between the visual 3D-INSEG algorithm and this benchmark clustering
approach offers insights into the effectiveness and advantages of leveraging stereo vision and
neural networks for human detection in complex environments. Through this comparative
analysis, we aim to identify the strengths and limitations of each approach, contributing
to the advancement of state-of-the-art techniques in 3D instance segmentation and object
detection.

Algorithm 4 3D human detector using clustering
Input: 3D Point Cloud
Output: Clusters C =C4,...,C,

1. Initialize an empty list height_Clusters

2. For each height in Point Cloud
height_Clusters.Add(Cluster(points,threshold))

3. C =General _cluster(height_Cluster)

Return Clusters C.
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Chapter 5

3D Instance Segmentation for
Multiple Extended Object Tracking

5.1 Introduction

The PMBM filter for MEOT is detailed in [13]. While the algorithm demonstrates satisfactory
performance in simulations and when applied to 2D laser data characterized by relatively low
clutter, its effectiveness diminishes in real-world scenarios with a high density of objects. In
such situations, the filter’s performance deteriorates, leading to inaccurate estimates due to
the proximity of objects and the abundance of laser points within the surveillance area. This
is where the 3D-INSEG proves valuable thanks to its capability to detect different objects and
provide clusters. In this chapter the PMBM extended filter implementation with the GGIW
defined in 2.1.1 for MEOT is implemented to demonstrate the usefulness of the 3D-INSEG
algorithm in MEOT.

5.2 GGIW implementation for a single target

The state representation for a single extended target at time step k, denoted by &, comprises
three components: a scalar v, a vector zj, and a matrix X,. The vector x € R™* represents
the kinematic state, encapsulating parameters related to the target’s position and motion,
such as velocity, acceleration, and turn-rate. The random matrix X; € S; characterizes
the extent state, delineating the size and shape of the target, where d denotes the dimension
of the extent (typically d = 2 or 3) and S; * denotes the set of symmetric positive definite
matrices. The representation of an extended target’s state at time step k, denoted by &,
involves several random variables. The scalar variable v, > 0 serves as the Poisson rate in
the measurement model. The likelihood of a single measurement z given the target state &
is described by the Gaussian distribution:

O(2|€k) = N (2i; Hyaoy, Xy, (5.1)
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where Hy, represents the known measurement model. The single-target conjugate prior for the
Poisson random matrix model is the gamma-Gaussian-inverse Wishart (GGIW) distribution:

Tk (&) = GGIW (&; Crre), (5.2)

where Cyr = (ks Brjis Ml Priks Vkjis Vi) represents the set of GGIW density parameters
and « represents the shape parameter of the gamma distribution, 5 the rate parameter of the
gamma distribution, m the mean and P the covariance for the Gaussian distribution, v the
number of degrees of freedom for the inverse Wishart distribution and V the shape matrix
for the inverse Wishart distribution. The updated parameters (i; and the corresponding
predicted likelihood for a GGIW distribution with prior parameters (;_1x—; that are updated
with a set of measurements Z under the linear Gaussian model, are detailed in Algorithm 5.
These parameters and their updates play a critical role in the measurement update within
the random matrix extended target model see, e.g., [25], [18]. The motion models for the
kinematic state, extent, and measurement rate are characterized as follows:

1. Kinematic State: The evolution of the kinematic state x; from time step k£ to k + 1
follows the model:

Tpy1 = f(zp) + wy, (5.3)

where w;, represents Gaussian process noise with zero mean and covariance Q, and f is the
state transition function.

2. Extent: The evolution of the extent state matrix X; from time step k to k + 1 is
governed by the transformation:

X1 = M(2) X M(zp) ", (5.4)
where M(xy) denotes a transformation matrix.

3. The measurement rate 7y, represents the expected number of measurements per
target. It is assumed to remain constant and is equal to 7.

The predicted parameters (i1, for a GGIW distribution with prior parameters Cy,
under these models, are detailed in Algorithm 6. For more extensive discussions regarding
prediction within the random matrix extended target model see [25], [18].

5.3 GGIW-PMBM filter for MEOT

The GGIW-PMBM filter [24] operates through a recursive process, encompassing an update
and a prediction phase. The update step involves integrating the GGIW-PMBM density
parameters, comprising three main procedures: PPP update, MBM update, and the creation
of new MB components from the PPP. The PPP update manages missed detections and
incorporates new measurements associated with undetected targets, while the MBM update
processes detected targets using extended target likelihood and data association probabil-
ities. New MB components are created by converting PPP components associated with
measurements into Bernoulli components. In the prediction phase, the filter anticipates fu-
ture target behavior based on the current state and past observations. The PPP prediction
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Algorithm 5 GGIW Update
Input: GGIW parameter (, set of measurements Z, measurement model H.
Output: Updated GGIW parameter ¢ and predicted likelihood I:

(

a=a+|Z|,
B=ps+1,

_ Jm=my +Ke,
‘= P =P, - KHP,
v=1; +|Z],

V=V, +N+Z7
where

z= é ZziGZ iy

Z=3 cz(zi = 2)(zi = 2)7,

X =V, (v —2d—2)"",

e=z—Hmg,

S=HP'H' +X,

K =P+HT(S),

N = X1/2§-1/2..Tg-T/2XT/2,

Predicted likelihood, where I'(+) is the Gamma function, and T'y(+) is the multivariate

Gamma function,
vy —d—1 .
[ = (r22))~s 2 T D (X T (@) (81)

V12 ()] D) (5)

Algorithm 6 GGIW Prediction

Input: (g
Output: Predicted GGIW parameters Cyy1)x

.
A1k = Ok|kTk,

Brriik = Brek;
Miyik = f (M),
Ck+1|k = Pk+1|k‘ = Fk|kPk|kng\k + Q’

_ —T's /7 Vk|k—2d—2
V41| = 2d+2+e Opp—2d—2"

1
_ Uk+1|k72d72 T

Vigik = | 555 ] X My VM,
L |

’Uk\k72d72

where Fk\k = vxf<x)|x:mk|k
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processes target birth and undetected target propagation, while the MBM predictor pre-
dicts detected target trajectories. Key variables include the PPP intensity D"(z), MBM
parameters {W;, {r;, fji}icr, }jes, and data association probabilities W;(A). Algorithm 7
describes the GGIW-PMBM prediction, for the update and the other components of the
GGIW-PMBM filter. See [36] for more details. Demonstrations and the code of the imple-
mentation are available at https://github.com/nfierroflo/3D-INSEG-for-MEQT.

Algorithm 7 GGIW PMBM prediction
Input: D", {W;,{rji, fji}ier, }ier-
OUtPUt: Du+’ {(W]—i_v {(r;:iv f;_i)}iéfj)}jEJ

Ny

D (x) = Z Wy, GGIW (23 Gy )

n=1

Ny

n=1

= ps(@0r fi(x) = GGIW (25 CF)

and W = W;, where (', and (J; are computed as in algorithm 6.
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Chapter 6

Results

6.1 SEOT scenarios.

6.1.1 Human Detection

Figs. 6.1a-6.3b show human detection using both the clustering approach explained in section
4.2 in subfigures (a) and 3D-INSEG explained in section 4.1 in subfigures (b) for a sequence
of a human walking from the door to the front of the camera in an indoor dense scenario
at different time stamps (ty = Os , t; = 0.6s , t; = 1.31s), the experiment is shown in 2D
(plan view) for clarity. The laser data is represented in blue, the clustering approach and
3D-INSEG are represented in green. Table 6.1 summarizes the dectections over time for both
approaches.

Table 6.1: Comparison of human detection over time using the Clustering approach and

3D-INSEG data.

Method Time stamp | No. of detections | Human detected
Clustering | 0 s 17 No
3D-INSEG | 0's 1 Yes
Clustering | 0.60s 13 No
3D-INSEG | 0.60s 1 Yes
Clustering | 1.31s 15 Yes
3D-INSEG | 1.31s 1 Yes
Clustering | 2.62s 17 Yes
3D-INSEG | 2.62s 1 Yes
Clustering | 3.33s 17 Yes
3D-INSEG | 3.33s 1 Yes
Clustering | 3.93s 19 Yes
3D-INSEG | 3.93s 1 Yes
Clustering | 4.64s 16 Yes
3D-INSEG | 4.64s 1 Yes
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Figure 6.1: Human detection comparison at time ¢y = 0s.

31



-~ Laser data
9+ O Ground truth detections i
+| © Laser data clustering detections

-

E
N
4 5
X(m)
(a) Clustering at time ¢; = 0.60s.
10 - =
+  Laser data
91| © Ground truth detections| :
o :u- Q 3D-INSEG dgtectlons +m
4 5

X(m)

(b) 3D-INSEG at time t; = 0.60s.

Figure 6.2: Human detection comparison at time g = 0.60s.
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Detection accuracy varies significantly between the two methods. At tg = Os and t; =
0.6s, the clustering approach fails to detect the human, indicating initial difficulties in distin-
guishing the target from background noise. In contrast, the 3D-INSEG method consistently
detects the human at all timestamps. This stable performance across different time points
demonstrates the robustness of the 3D-INSEG algorithm in accurately identifying the human
subject from the beginning.

Comparatively, the detection rate of 3D-INSEG is consistently at 100% for all times-
tamps, while the clustering approach shows a lower and more variable detection rate. The
clustering approach also exhibits a higher number of false positives, with detections that
do not correspond to the human (e.g., 17 detections at ¢, = 0s with no human detected),
indicating a higher false positive rate compared to 3D-INSEG.

Qualitative analysis of the visual representations in Figs. 6.1a-6.3b reveals that 3D-
INSEG provides clearer and more accurate delineation of the human subject compared to
the clustering approach. The measurements generated by 3D-INSEG are more tightly fitted
to the actual human.

Quantitatively, Table 6.1 offers a clear numerical comparison, highlighting the superiority
of 3D-INSEG in both detection accuracy and consistency. For instance, at t, = 0s, 3D-
INSEG correctly detects the human while clustering fails to do so, with similar patterns
observed at subsequent timestamps. This analysis underscores the effectiveness of the 3D-
INSEG algorithm over the clustering approach in various aspects of human detection and
tracking, particularly in scenarios with potential occlusions and background noise.

6.1.2 Simulations on SEOT

In [18] the physical extension of an extended object is represented by a symmetric positive
definite (SPD) random matrix X} thus considering some ellipsoidal shape. Our implementa-
tion of [18] is simulated to show its potential in SEOT scenarios. Figure 6.4 shows a curved
trajectory for an ellipse where the red ellipses represents the ground-truth, the blue ellipses
represent the estimates using the algorithm, and green points are used for the measurements.
Figure 6.5 shows the evolution of the Root Mean Square (RMS) Target Extension Error.
Calculated as:

M
1
RMSEx = | < >[I Xk = Xl [l (6.1)
pn=1

where M is the number of runs, Xy, the prediction of the extension matrix, X, true extension
matrix, and ||.||r denotes the Frobenius norm. in this case M = 100.

Figure 6.6 shows the evolution of the RMS Target Location Error, calculated as:

1 M

77 2wk = zell3], (6.2)

p=1

RMSE, =
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Figure 6.4: Simulation of the SEOT algorithm.
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Figure 6.5: RMS target extension error versus time k.
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Figure 6.6: RMS target location error versus time k.

6.1.3 SEOT using 3D-INSEG data

The complete sequence of a human walking from the door towards the front of the camera
explained in section 6.1.1 is used to show the usefulness of our 3D Segmentation Algorithm
withim the SEOT algorithm from [18]. Figure 6.7 shows the measurements in green, the
ground-truth shape and its center in blue together with the estimation and its center in red.
For better comprehension the timestamp period of sampling is chosen as tsqmpiing = 0.65.

Figure 6.8 shows the evolution of the Target Extension Error calculated according to (6.3).

E?"TOT’X: HXk\k_XkHF (63)
Figure 6.9 shows the evolution of the Target Location Error Calculated according to (6.4).

Errory = ||z, — vi| (6.4)
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Figure 6.7: Human Tracking with the 3D-INSEG and SEOT algorithms.
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Figure 6.8: RMS target extension error versus time k£ in human tracking scenario.
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Figure 6.9: RMS target location error versus time £ in human tracking scenario.

6.1.4 Discussion

The experiment detailed in Section 6.1.1 demonstrates the superior performance of human
detection with the 3D-INSEG algorithm over the clustering algorithm at each timestamp.
The 3D-INSEG algorithm accurately identifies the intended target and significantly reduces
the number of false positives. A summary of this comparison is presented in Figs. 6.1a-6.3b,
for three timestamps and in table 6.1 more timestamps are included.

The precision of the 3D-INSEG algorithm in detecting a specific object in 3D space is
evident. It consistently identifies the human target across timestamps without any false
positives. This contrasts with the alternative algorithm, which initially fails to detect the
human and generates numerous false positive detections. This can be seen in Figs. 6.1a, 6.2a
and 6.3a where multiple false detections (shown as green circles are present) arise from the
use of the clustering algorithm. This is in contrast with the proposed 3D-INSEG algorithm
(figs.6.1b, 6.2b and 6.3b) which detect the correct target without false positive detections. As
highlighted in Section 2.3, reducing missdetections and clutter is advantageous for simplifying
the data association process.

The simulations on SEOT implemented based on [18] showcase the efficacy of our ap-
proach in estimating the state of an ellipsoidal object following a curved trajectory. The
root-mean-square error (RMSE) values discussed in Section 6.1.2 illustrate how the algo-
rithm converges in terms of extension and location, it is shown in Fig. 6.5 for the extension
and in Fig. 6.6 for location. However, a limitation of the algorithm is its relatively slow
response to changes in orientation. Additionally, due to the representation of the extension
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using a matrix, the angle and axis length are not fully decoupled. For instance, during rota-
tions, not only does the angle change as expected, but the axis length is also affected. This
is observed in Fig. 6.4.

Finally, the experiment detailed in Section 6.1.3 highlights the practicality of using the
3D-INSEG algorithm with the SEOT algorithm. The human target is accurately tracked,
the error value for the estimated extension gradually decreases over time (Fig. 6.8), and the
error value for the estimated location is smaller than 0.25 [m] (Fig. 6.9).

6.2 MEOT scenarios

6.2.1 GOSPA

To evaluate the performance of extended object estimates with ellipsoidal extents, [39] showed
that the Gaussian Wasserstein Distance (GWD) is the optimal choice. The GWD is defined

as:
1/2
)

dow (z,&) = | HE — HE|2 +Tr <X+X—2\/X\/§> (6.5)

where H corresponds to Hy in Eq. 5.1. It selects the position from the state vector and serves
as the single target metric integrated into the Generalized Optimal Sub-Pattern Assignment
(GOSPA) multi-object metric [40]. The GOSPA metric, formulated as:

dp

(c,a)

(X,X)= min Y diV (xi,d5)
be0(IXLIXD) (ep
J (6.6)

cP . 1/p
+< (1x1 - o1+ 1X1 = 101)

incorporates d%’v(mi, ;) = min(c, dgw (2, Z;)), where ©(| X[, | X|) is the set of all possible 2D
assignments, ¢ denotes the base distance cut-off and p determines the severity of penalizing
outliers in the localization component. In our experiments, c =1, p = 2 and o = 2. The
GOSPA metric was introduced in [40] as an extension of the OSPA metric [41], and allows
for the decomposition of multi-object error into three components: 1) state estimation error,
2) missed targets, and 3) false targets.

6.2.2 MEOT Simulation Results

The GGIW-PMBM filter is used under simulated scenarios. In this first simulation three
tracks are estimated. These tracks are from 3 objects which have linear and angular velocity
components.

39



z position (m)

300

Target trajectory
Target extent
250
200
w[*
180 |
1
100 |
80
100
0 1 1 1 1 1 ]
0 50 100 150 200 250 300
X position (m)
Figure 6.10: GGIW-PMBM simulation 1: Ground truth.
4
5 2
o @
53 c15
© S
@
g 2 E 1
o) &
i 205
=
w
0 0
0 50 100 0 50 100
Time step Time step
15 1
5 o
5 2 o5
«— 10 o
(18] p—
=] )
8 5 O
ox 8
o 5 o
@ 2-0.5
E L
0 -1
0 50 100 0 50 100

Time step Time step

Figure 6.11: GGIW-PMBM simulation 1: GOSPA.
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In simulation 2, 5 tracks are estimated.
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Figure 6.13: GGIW-PMBM simulation 2: Ground truth.
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In simulation 3 , 8 tracks are estimated.
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6.2.3 MEOT Experimental Results

Four experiments in different scenarios with different target densities are used to test and
compare the estimates from the velodyne and 3D-INSEG data. Table 6.2 summarizes the
results. To illustrate this, data produced by the 3D-INSEG algorithm is shown in Appendix
B.

Table 6.2: MEOT results summary.

Velodyne 3D-inseg
Experiment Mean GOSPA | runtime | Mean GOSPA | runtime
Experiment 1 | 1.22 81.65 0.2 8.41
Experiment 2 | 0.95 4.87 0.61 3.1
Experiment 3 | 1.17 10.56 0.79 2.12
Experiment 4 | 1.13 25.1 0.98 6.95

Estimation is performed using both raw laser data and data that has been preprocessed
with the 3D-INSEG algorithm. We compare the results using the standard extended target
PMBM filter with its GGIW implementation. The 3D-INSEG clusters and the laser data are
projected into 2D, so that the GGIW-PMBM tracking filter runs in 2D.

To process the laser data, we employed a two-step clustering and assignment approach
aimed at updating each previous global hypothesis with relevant information [14]. Initially, we
applied DB-SCAN [11] using five different distance values, evenly distributed between 0.1 and
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0.5(m), to generate multiple measurement partitions. Subsequently, for each measurement
partition and global hypothesis a, we utilized Murty’s algorithm [15] to identify the (wg‘ ol
best cluster-to-Bernoulli assignments, where wj, denotes the weight of global hypothesis a.
Additional parameters included a maximum of 20 global hypotheses (N, = 20), thresholds
for MBM pruning (1072), PPP weight pruning (I, = 107?), and Bernoulli density pruning
(Fb = 10_3).

In the GGIW implementation, the target state z = (v, &, X) was defined, where ~y repre-
sented the expected number of measurements per target, & = [p,, v, py, vy|” encapsulated the
target’s current position and velocity, and X was a 2 X 2 positive definite matrix describing
the target’s ellipsoidal shape. The kinematic state motion model is assumed to evolve under
a constant velocity. Therefore the extent transformation function M is an identity matrix
M(zy) = I,. The survival probability was set to pg = 0.99. For the birth process, we adopted
a Poisson Point Process (PPP) with a GGIW intensity featuring a weight of wf = 0.1 for
all time steps. Its GGIW density comprised a gamma distribution with a mean of 5 and
a shape of 100, a Gaussian distribution with a mean vector zf = [0m,0m/s,0m,0m/s|’,
and a covariance matrix P = diag([50% (m?), 1 (m?/s?), 50% (m?), 1 (m?/s?)]), along with an
inverse-Wishart distribution with a mean of diag([2,2]) (m?) and 100 degrees of freedom.

The ground truth for each experiment was manually marked, resulting in some variability.
Ideally, the actual curves should be smoother.

6.2.4 Experiment 1

In the first experiment we explore a densely populated scenario involving extended targets.
The experiment showcases the goal of estimating the state of two humans in an indoor
environment for 11 seconds (160 frames) as they navigate their surroundings and eventually
intersect paths. Fig. 6.19 shows different frames for a better understanding of the scenario.

The ground truth trajectories were manually marked and are visualized in Fig. 6.20,
where the green and red tracks correspond to separate target trajectories. For clarity, only
the shapes (ellipses) corresponding to certain times ¢ in seconds are shown.

Figures 6.21a, 6.22a and 6.23a show estimates at different times using laser data. Figures
6.21b, 6.22b and 6.23b show estimates at different times based on 3D-INSEG generated data.
The laser data is represented in blue, the 3D-INSEG generated data in yellow, the estimated
shapes and centers in red, and the ground truth shapes and centers in green.

Fig. 6.24 illustrates the GOSPA metric and its components over time, while Fig. 6.25
displays the estimated number of targets. Blue is used for MEOT with laser data as mea-
surements, and yellow is used when it is performed using 3D-INSEG generated data.

The computational times in seconds to run the extended PMBM filter on a 12th Gen
Intel(R) Core(TM) i7-12650H 2.30 GHz are 161.80 (laser data), and 0.75 (3D-INSEG data).

lwhere [] corresponds to rounding up to the nearest integer.
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(a) Left camera at time ¢ = 1.11s.

‘ _:'-i ===

(c) Left camera at time t = 8.8s. (d) Left camera at time ¢t = 10.58s.

Figure 6.19: Experiment 1: Reference images from the sequence of the left camera images.
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Figure 6.20: Experiment 1: Ground truth.
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(a) Estimates at time ¢ = 1.11s using laser data.
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(b) Estimates at time ¢t = 1.11s using 3D-INSEG data.

Figure 6.21: Experiment 1: Comparison of estimates at time ¢ = 1.11s.
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(a) Estimates at time ¢ = 6.65s using laser data.
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(b) Estimates at time ¢t = 6.65s using 3D-INSEG data.

Figure 6.22: Experiment 1: Comparison of estimates at time ¢ = 6.65s.
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(a) Estimates at time ¢ = 10.58s using laser data.
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(b) Estimates at time ¢t = 10.58s using 3D-INSEG data.

Figure 6.23: Experiment 1: Comparison of estimates at time ¢t = 10.58s.
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Figure 6.24: Experiment 1: GOSPA errors and their decomposition against time for the
extended target scenario using the extended PMBM with laser data and the 3D-INSEG
data.
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Figure 6.25: Experiment 1: Target cardinality estimated by the extended PMBM filter using
the laser data and the 3D-INSEG data.
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6.2.5 Experiment 2

For the second experiment we explore an outdoor scenario with low density in the surveillance
area involving extended targets. The experiment showcases the goal of estimating the state
of four humans in an outdoor environment for 7.39 (112 frames) seconds with three persons
remaining in the same position and a fourth one approaching to them. Fig. 6.26 shows
different frames for a better understanding of the scenario.

(a) Left camera at time ¢ = 0.7s. (b) Left camera at time t = 6.58s.

Figure 6.26: Experiment 2: Reference images from the sequence of the left camera images.

The ground truth trajectories were manually marked and are visualized in Fig. 6.27,
where the blue tracks correspond to separate target trajectories. For clarity, only the shapes
(ellipses in blue) for the birth are shown.
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Figure 6.27: Experiment 2: Ground truth.

Figures 6.28a, 6.29a and 6.30a show estimates at different times using laser data. Figures
6.28b, 6.29b and 6.30b show estimates at different times based on 3D-INSEG generated data.
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The laser data is represented in blue, the 3D-INSEG generated data in yellow, the estimated
shapes and centers in red.

Fig. 6.31 illustrates the GOSPA metric and its components over time, while Fig. 6.32
displays the estimated number of targets. Blue is used for MEOT with laser data as mea-
surements, and yellow is used when it is performed using 3D-INSEG generated data.

6.2.6 Experiment 3

For experiment 3 we explore an outdoor scenario with higher density compared to exper-
iment 2 but still lower than the experiment 1 in the surveillance area involving extended
targets. The experiment showcases the goal of estimating the state of three humans in an
outdoor environment for 19.92 (300 frames) seconds with two persons remaining in the same
position and a third one approaching to them. Fig. 6.33 shows different frames for a better
understanding of the scenario.

The ground truth trajectories were manually marked and are visualized in Fig. 6.34,
where the blue tracks correspond to separate target trajectories. For clarity, only the shapes
(ellipses in blue) for the birth are shown.

Figures 6.35a, 6.36a and 6.37a show estimates at different times using laser data. Figures
6.35b, 6.36b and 6.37b show estimates at different times based on 3D-INSEG generated data.
The laser data is represented in blue, the 3D-INSEG generated data in yellow, the estimated
shapes and centers in red.

Fig. 6.38 illustrates the GOSPA metric and its components over time, while Fig. 6.39
displays the estimated number of targets. Blue is used for MEOT with laser data as mea-
surements, and yellow is used when it is performed using 3D-INSEG generated data.

6.2.7 Experiment 4

For experiment 4 we explore an outdoor scenario with low density in the surveillance area
involving extended targets. The experiment showcases the goal of estimating the state of five
humans in an outdoor environment for 21.94 (330 frames) seconds with four persons remaining
in the same position and a fifth one approaching to them. Fig. 6.40 shows different frames
for a better understanding of the scenario.

The ground truth trajectories were manually marked and are visualized in Fig. 6.41,
where the blue tracks correspond to separate target trajectories. For clarity, only the shapes
(ellipses in blue) for the birth are shown.

Figures 6.42a, 6.43a and 6.44a show estimates at different times using laser data. Figures
6.42b, 6.43b and 6.44b show estimates at different times based on 3D-INSEG generated data.
The laser data is represented in blue, the 3D-INSEG generated data in yellow, the estimated
shapes and centers in red. Fig. 6.45 illustrates the GOSPA metric and its components
over time, while Fig. 6.46 displays the estimated number of targets. Blue is used for MEOT
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(b) Estimates using 3D-INSEG data.

Figure 6.28: Experiment 2: Comparison of estimates at time t=0s.
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(b) Estimates using 3D-INSEG data.

Figure 6.29: Experiment 2: Comparison of estimates at time t=3.26s.
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(b) Estimates using 3D-INSEG data.

Figure 6.30: Experiment 2: Comparison of estimates at time t=6.58s.
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Figure 6.31: Experiment 2: GOSPA errors and their decomposition against time for the
extended target scenario using the extended PMBM with laser data and the 3D-INSEG
data.
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Figure 6.32: Experiment 2: Target cardinality estimated by the extended PMBM filter using
the laser data and the 3D-INSEG data.

(a) Left camera at time ¢ = 8.59s. (b) Left camera at time ¢t = 17.31s.

Figure 6.33: Experiment 3: Reference images from the sequence of the left camera images.
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Figure 6.34: Experiment 3: Ground truth.
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Figure 6.35: Experiment 3: Comparison of estimates at time t=0s.
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(b) Estimates using 3D-INSEG data.

Figure 6.36: Experiment 3: Comparison of estimates at time t=5.92s.
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(b) Estimates using 3D-INSEG data.

Figure 6.37: Experiment 3: Comparison of estimates at time t=11.72s.
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Figure 6.38: Experiment 3: GOSPA errors and their decomposition against time for the
extended target scenario using the extended PMBM with laser data and the 3D-INSEG
data.
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Figure 6.39: Experiment 3: Target cardinality estimated by the extended PMBM filter using
the laser data and the 3D-INSEG data.
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(a) Left camera at time ¢ = 0s. (b) Left camera at time t = 7.26s.

Figure 6.40: Experiment 4: Reference images from the sequence of the left camera images.
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Figure 6.41: Experiment 4: Ground truth.
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(b) Estimates using 3D-INSEG data.

Figure 6.42: Experiment 4: Comparison of estimates at time t=0s.
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(b) Estimates using 3D-INSEG data.

Figure 6.43: Experiment 4: Comparison of estimates at time t=7.26s.
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(b) Estimates using 3D-INSEG data.

Figure 6.44: Experiment 4: Comparison of estimates at time t=14.53s.
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with laser data as measurements, and yellow is used when it is performed using 3D-INSEG
generated data.
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Figure 6.45: Experiment 4: GOSPA errors and their decomposition against time for the
extended target scenario using the the extended PMBM with laser data and the 3D-INSEG
data.

6.2.8 Discussion

From the MEOT simulation results presented in section 6.2.2, it is evident that the GGIW-
PMBM filter effectively estimates tracks while maintaining good performance in terms of
the GOSPA error. In Simulation 1, which involves three targets with angular and linear
velocity, the estimates from the filter exhibit a low GOSPA error, albeit slightly higher at
the beginning due to birth parameters. Moreover, the cardinality estimate from the filter
remains accurate after the initial time steps.

In Simulation 2, where tracks are augmented, the MEOT task becomes more challenging,
resulting in higher GOSPA error and less accurate estimated cardinality. The introduction
of augmented tracks complicates the tracking process, reflected in the observed metrics.

Simulation 3 presents even more frequent peaks in errors, particularly in estimated car-
dinality, which aligns with expectations given the higher number of tracks being handled.

These simulation findings provide valuable insights into the performance of the GGIW-
PMBM filter under varying conditions, highlighting its strengths and areas for improvement
in handling complex multi-object tracking scenarios.

From the experimental results presented in Section 6.2.3, it is evident that the multi-
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Figure 6.46: Experiment 4: Target cardinality estimated by the extended PMBM filter using
the laser data and the 3D-INSEG data.

object extended object tracking (MEOT) task becomes significantly challenging in denser
scenarios with closer laser points, such as indoor environments where a substantial amount
of data is generated. In Experiment 1, despite reducing the surveillance area, the filter fails
to track two persons effectively. Conversely, leveraging the 3D-INSEG algorithm enables
accurate detection of persons and uses the detected points as measurements, leading to more
correct estimates. This improvement is reflected in the metrics, with the GOSPA error being
lower when utilizing 3D-INSEG data.

When employing the 3D-INSEG algorithm-generated data, the GGIW-PMBM filter ex-
hibits fewer false positives and produces estimates with lower errors compared to estimates
derived from laser data using the same filter. Additionally, across all experiments, the filter
operates more efficiently due to the avoidance of DB-SCAN clustering.

These experimental findings underscore the effectiveness of integrating the 3D-INSEG
algorithm into the MEOT framework, particularly in dense environments where traditional
laser-based approaches encounter limitations. The ability of 3D-INSEG to provide accu-
rate object detection and segmentation significantly enhances tracking performance and effi-
ciency.
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Chapter 7

Conclusion

This study has demonstrated the effectiveness of employing the 3D-INSEG algorithm in
densely populated environments, emphasizing the critical role of object detection and seg-
mentation in robust tracking. The integration of stereo vision with neural networks (NNs) for
3D depth estimation and segmentation, as showcased by the 3D-INSEG algorithm, has led to
significant advancements in both single extended object tracking (SEOT) and multi-object
extended object tracking (MEOT).

The experimental findings presented in Section 6.2.3 highlight the benefits of leveraging
3D-INSEG in high-density scenarios where traditional laser-based methods encounter limi-
tations due to data volume. The 3D-INSEG algorithm not only enables accurate object de-
tection and segmentation but also enhances the performance of the extended GGIW-PMBM
filter, resulting in fewer false positives and reduced estimation errors compared to laser-based
techniques. This integrated approach presents a promising solution for robust and depend-
able object tracking across diverse conditions.

Moreover, the successful implementation of the SEOT algorithm, complemented by the
3D-INSEG algorithm, underscores the potential of these methodologies to provide precise
and reliable estimates in simulation and real-world tracking scenarios. The detailed object
identity information offered by 3D-INSEG improves extended object tracking, serving as a
solid foundation for state estimation in complex environments.

In conclusion, our hypothesis regarding the integration of stereo vision and NN-based
segmentation has been validated through experimental validation. This approach not only
enhances tracking accuracy and reduces computational complexity but also opens new pos-
sibilities for advanced tracking applications in environments with complex object shapes and
high clutter conditions.

7.1 Future Work

An interesting avenue for future research involves exploring alternative algorithms for ex-
tended object tracking that offer distinct approaches to modeling object extensions beyond
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traditional methods, as discussed in [42], [43], and [44]. Conducting comparative studies
to evaluate these methodologies using the proposed 3D-INSEG algorithm data would pro-
vide valuable insights into the strengths and limitations of different target shape and motion
modeling concepts. This analysis could inform the development of more robust and versatile
tracking frameworks capable of addressing diverse object tracking challenges.

Furthermore, there is potential for investigating a hybrid approach that integrates lidar
measurements with 3D-INSEG detections, considering the density of targets in the environ-
ment. By combining the long-range capabilities of lidar with the precise object detection
capabilities of the 3D-INSEG algorithm, researchers can aim to achieve superior tracking
performance across varying environmental conditions. This hybridization strategy offers an
opportunity to optimize object detection and segmentation, enhancing the overall effective-
ness and reliability of extended object tracking systems.

Additionally, exploring advancements in machine learning techniques for object recog-
nition and motion prediction could further enhance the capabilities of integrated tracking
systems. By leveraging cutting-edge methodologies in neural networks and deep learning,
researchers can push the boundaries of object tracking accuracy and efficiency, ultimately
advancing the state-of-the-art in extended object tracking.

In summary, future research endeavors should focus on exploring alternative tracking
algorithms, integrating sensor data fusion strategies, and leveraging advanced machine learn-
ing techniques to enhance the performance, robustness, and adaptability of extended object
tracking systems in complex and dynamic environments.
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Annex A

Camera Intrinsic Parameters and
Camera Matrix

The camera intrinsic parameters include the focal lengths (f,, f,) and the principal points
(¢, ¢y), which are used to define the camera matrix (K). For the zed camera at 640x360
resolution these values in pixels are:

fo=342, f, =342 ¢, =308, ¢, =183

The camera matrix K is defined as:

fe 0 ¢
K=10 f, ¢
0 0 1

This matrix represents the intrinsic properties of the camera, including the focal lengths and
principal points, which are essential for tasks such as image rectification, stereo vision, and
3D reconstruction. The baseline distance is 120mm.
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Annex B

3D-INSEG detections animation

Figure B.1: Experiment 1: 3D-INSEG detections animation.
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Figure B.2: Experiment 2: 3D-INSEG detections animation.

Figure B.3: Experiment 3: 3D-INSEG detections animation.
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Figure B.4: Experiment 4: 3D-INSEG detections animation.
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