
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
ESCUELA DE POSTGRADO Y EDUCACIÓN CONTINUA

EXTENDING REINFORCEMENT LEARNING TECHNIQUES FOR
DIFFUSION MODELS

TESIS PARA OPTAR AL GRADO DE MAGÍSTER EN CIENCIA DE DATOS

CRISTÓBAL PATRICIO ALCÁZAR CARRASCO

PROFESOR GUÍA:
FELIPE TOBAR HENRÍQUEZ

MIEMBROS DE LA COMISIÓN:
JAVIER RUIZ DEL SOLAR

JOAQUÍN FONTBONA TORRES

Este trabajo ha sido parcialmente financiado por:
GOOGLE & FONDECYT REGULAR 1210606

SANTIAGO DE CHILE
2024

RESUMEN DE LA TESIS PARA OPTAR
AL TÍTULO DE MAGÍSTER EN CIENCIAS
DE DATOS
POR: CRISTÓBAL PATRICIO ALCÁZAR CARRASCO
FECHA: 2024
PROF. GUÍA: FELIPE TOBAR HENRÍQUEZ

EXTENSIÓN DE TÉCNICAS DE APRENDIZAJE POR REFUERZO PARA
MODELOS DE DIFUSIÓN

El Aprendizaje por Refuerzo (RL) se ha convertido en una herramienta crucial para ali-
near modelos generativos complejos, superando las limitaciones de los métodos de aprendizaje
supervisado tradicionales. Su capacidad para optimizar recompensas arbitrarias, incluyendo
funciones escalares no diferenciables o retroalimentación humana, es especialmente útil para
modelos a gran escala como los Modelos de Lenguaje Grandes (LLMs) y los modelos de difu-
sión. Esta tesis investiga la aplicación de técnicas de RL a modelos de difusión preentrenados,
utilizando métodos de gradiente de políticas para adaptar estos modelos a nuevas tareas. Ex-
plora cómo los modelos de difusión pueden considerarse agentes que generan muestras para
maximizar atributos específicos, como la calidad estética o la compresibilidad, y realiza un
análisis empírico de las señales de recompensa a lo largo de las trayectorias de muestra. El
trabajo incluye la implementación de algoritmos de optimización de políticas de vanguardia
(DDPO) e integra la retroalimentación humana para proporcionar herramientas y perspecti-
vas prácticas. Esta investigación ofrece una ruta para comprender el uso de RL en el ajuste de
modelos de difusión preentrenados y proporciona ideas para posibles adaptaciones futuras.

i

THESIS SUMMARY TO QUALIFY FOR
THE DEGREE OF MASTER OF SCIENCE
IN DATA SCIENCE
BY: CRISTÓBAL PATRICIO ALCÁZAR CARRASCO
DATE: 2024
ADVISOR: FELIPE TOBAR HENRÍQUEZ

EXTENDING REINFORCEMENT LEARNING TECHNIQUES FOR
DIFFUSION MODELS

Reinforcement Learning (RL) has become a pivotal tool for aligning complex generative
models, addressing the limitations of traditional supervised learning methods. Its capability to
optimize arbitrary rewards, including non-differentiable scalar functions or human feedback,
is particularly useful for large-scale models such as Large Language Models (LLMs) and
diffusion models. This thesis investigates the application of RL techniques to pretrained
diffusion models, employing policy gradient methods to adapt these models for new tasks.
It explores how diffusion models can be viewed as agents generating samples to maximize
specific attributes—–such as aesthetic quality or compressibility—–and conducts an empirical
analysis of reward signals over sample trajectories. The work includes the implementation
of state-of-the-art policy optimization algorithms (DDPO) and integrates human feedback
to provide practical tools and insights. This research offers a pathway for understanding the
use of RL in finetuning pretrained diffusion models and provides insights for potential future
adaptations.

ii

A mi familia

iii

Table of Content

1. Introduction 1
1.1. Related Work . 3
1.2. Contributions and Outline . 3

2. Diffusion Models 5
2.1. Denoising Diffusion Probabilistic Models . 5
2.2. Recursive Reparameterization Trick . 7
2.3. Optimization . 9

2.3.1. Variational Lower Bound . 10
2.3.2. Denoising Matching Term . 11

2.4. Score-based generative models . 13
2.5. Sampling . 14
2.6. Conditioning the model . 15

2.6.1. Classifier Guidance (CG) . 15
2.6.2. Classifier Free Guidance (CFG) . 17

2.7. Denoising Diffusion Implicit Models . 18
2.8. Summary . 21

3. Reinforcement Learning 22
3.1. The Framework for Learning to Act . 22
3.2. Policy Optimization . 24

3.2.1. Learning the Policy . 25
3.2.2. Gradient Estimation via Score Function 25

3.3. Vanilla Policy Gradient, aka REINFORCE 27
3.4. Actor-Critic Methods . 31
3.5. Improving Sample Efficiency: Behavior and Target Policies 32
3.6. Trust Region and Proximal Policy Optimization 33
3.7. Reinforcement Learning From Human Feedback 33
3.8. Summary . 35

4. Extending Reinforcement Learning in Diffusion Models 37
4.1. Diffusion Model as Sequential Decision-making Process 37
4.2. Empirical Analysis on Reward Trajectory Dynamics 41
4.3. Experiments . 44

5. Results on Reward Finetuning using DDPO 46
5.1. Reward Finetuning on Face Generation . 47

5.1.1. JPEG Compressibility . 48

iv

5.1.2. JPEG Incompressibility . 49
5.1.3. Aesthetic Quality . 51
5.1.4. OVER50 . 54

5.2. Beyond Face Generation . 56
5.3. Discussion & Limitations . 60
5.4. Future Work . 62

6. Conclusion 63

Bibliography 65

Annex 70
A. Implementation details . 70
B. Additional Samples: Celebrity faces by DDPO 73
C. Additional Transitions: from DDPM to DDPO 77
D. Additional Samples: Church images by DDPO 85

v

List of Tables

5.1. Mean and standard error for each downstream task across two pre-
trained models. All samples were generated using the same initial noise to
ensure a fair comparison. Baseline refers to the generative capabilities of the
pretrained model, as represented by S0 (see Section 4.2). DDPO displays re-
sults from the finetuned models using DDPO with importance sampling (see
Section 4.1). 47

A.1. Experiment details with corresponding model checkpoints on Hugging Face
and experiment dashboards on Weight & Biases, including logging information.
Multiple runs indicate that the experiment continued training from the previous
run, using the last saved checkpoint. 70

A.2. Hyperparameters for finetuning google/ddpm-celebahq-256 on JPEG Com-
pressibility, Incompressibility, and Aesthetic Quality tasks using DDPO. 72

vi

https://huggingface.co/google/ddpm-celebahq-256

List of Figures

1.1. Iterative Process of Finetuning a Diffusion Model Using Reinforce-
ment Learning. The process begins with (i) collecting a dataset of generated
samples using a pretrained diffusion model, represented by the “Generate Sam-
ples” block. Next, (ii) these samples are evaluated by a reward model to obtain
a reward signal, as shown in the “Reward Model” block. This reward informa-
tion is then used to (iii) fit the model by optimizing the expected return of the
samples, using methods like Monte Carlo gradient estimation, depicted in the
“Fit a Model” block. Finally, (iv) the optimization improves the policy, aligning
the diffusion model’s output with higher expected rewards, as indicated in the
“Improve the Policy” block. This cycle iterates, refining the model based on
feedback. When the reward model is based on human preferences, this approach
is known as Reinforcement Learning from Human Feedback (RLHF). 2

2.1. Example of a forward transition. The image of Grogu (Baby Yoda) on the
left is gradually degraded by Gaussian noise throughout the diffusion process
(middle), ultimately resulting in isotropic Gaussian noise at the final stage
(right). 5

2.2. Noise scheduler used in DDPM [15]. Left: The variance scheduler increase
linearly from β1 = 10−4 to βT = 0.02, over the forward pass of T = 1000
timesteps, progressively corrupting the data x0. Middle: The noiseless part of
xt is scale by a function of the variance,

√
1− βt. Right: In DDPM, αt = 1−βt

is defined. Given the addition of independent Gaussian noise, the data structure
factor ᾱt = ∏t

s=1 αs to allows us to scale x0 and obtain xt in just one evaluation
(see Section 2.2). 6

2.3. The reparameterization trick enabling backpropagation. Left: A sto-
chastic node associated with z sampled from q(z | ϕ, x), where direct back-
propagation is not possible. Right: By reparamterizing z as a linear function
g(ϕ, x, ϵ), the stochasticity is removed, allowing effective backpropagation of the
loss function f with respect to ϕ and x. Source: Variational Auto-Encoders and
Extension, NeurIPS Workshop, by Kingma Diederik (2015). 8

2.4. Denoising matching term in action. Left: xT is a pure Gaussian noise.
Middle: Transition from a noisy intermediate state to a less noisy one; the
denoising matching term forces pθ(xt−1 | xt) to be similar to the posterior forward
kernel q(xt−1 | xt), making comparable and provide feedback to update the
parameters µθ and Σθ. Right: x0 the input image during training. 12

2.5. CLIP overview. Text-to-image joint embedding space. Source: Learning Trans-
ferable Visual Models From Natural Language Supervision, by Alec Radford et
al. (2021) [42]. 16

vii

https://web.archive.org/web/20160418040123/http://dpkingma.com/wordpress/wp-content/uploads/2015/12/talk_nips_workshop_2015.pdf
https://web.archive.org/web/20160418040123/http://dpkingma.com/wordpress/wp-content/uploads/2015/12/talk_nips_workshop_2015.pdf

2.6. CLIP classifier guidance for image generation controlled via promp-
ting. The first row shows four samples generated by the pretrained model
google/ddpm-celebahq-256. The second row shows the same initial noise used
to generate the previous images but guided by the CLIP classifier with a guidan-
ce scale of γ = 20, using the prompt “old, senior, oldster, elderly, golden-ager”
to transform the subjects into older individuals. Notable changes include the ap-
pearance of wrinkler and thinner hair, but artefacts also emerge, such as in the
first image of the second row where glasses distort the facial structure. The third
row illustrates a failure mode, where a much higher guidance scale (γ = 2000)
results in heavily distorted images. 17

2.7. DDIM non-Markovian forward process. Left: Ilustration of accelerated
generation skipping the uneven intermediate steps, the denoiser network ϵ

(t)
θ

predicts the amount of noise added to xt from step t− 2, instead t. Right: the
non-Markovian graphical model. 18

2.8. DDIM inversion example using 50 inference steps. A Pedro Pascal pho-
to to estimate the initial noise x̃T using DDIM with the pretrained model
google/ddpm-celebahq-256 on the celebrity faces dataset CelebaHQ. Then, the
input is reconstructed using the estimated noise as starter point. Below images
are different results skpping the first n inference steps of the denoising process. 20

3.1. Left: A loop representation of a Markov Decision Process (MDP). Right: An
unrolled MDP depecting an episodic case with a finite horizon T and a parame-
terized policy πθ. 23

3.2. Illustration of a taxonomy of model-free RL algorithms. Source: Optimizing
Expectations: From Deep Reinforcement Learning to Stochastic Computation
Graphs by John, Schulman (2016) [48]. 24

3.3. Illustration of three simulated trajectories, denoted as {τ (i)} where i =
(1, 2, 3), traversing the parametric space θ ∈ R2 under the policy πθ. Each tra-
jectory is marked with a colored symbol (cross, check) representing its goodness
based on the reward function R(τ (i)). Source: Policy Gradients Lecture, Deep
Reinforcement Learning Course by Sergey Levine. 29

3.4. Left: A standard RL settings. Right: A RLHF setting considering reward mo-
deling. Source: A Survey of Reinforcement Learning from Human Feedback
(Kaufmann et al., 2024) [23]. Notice how the reward model is decoupled from
the environment and the relation highlighted between the reward model and an
oracle (i.e. labeler) who provides a label to a given query. 34

4.1. Equivalence of the backward process of a diffusion model as a sequen-
tial decision-making process. The initial state distribution of this MDP co-
rresponds to an isotropic Gaussian, ρ0(s0) ∼ N (0, I), where we assign the noise
instance to the initial state s0 := xT . The agent follows a sequence of decisions
at determined by the policy πθ(at | st) := pθ(xT −t−1 | xT −t), moving from a noisy
state xT −t to a less noisy one xT −t−1 until it reaches to the sample x0, illustated
as the terminal state sT in the diagram. This process together with the sample
x0 generates the whole denoising trajectory τ = {xT , xT −1, xT −2, . . . , x0}, which
is associated with a reward. In the case of DDPO, the reward is considered only
for the final sample r(x0). 38

viii

https://huggingface.co/google/ddpm-celebahq-256
https://huggingface.co/google/ddpm-celebahq-256
https://rail.eecs.berkeley.edu/deeprlcourse/
https://rail.eecs.berkeley.edu/deeprlcourse/
https://rail.eecs.berkeley.edu/deeprlcourse/
https://rail.eecs.berkeley.edu/deeprlcourse/
https://rail.eecs.berkeley.edu/deeprlcourse/
https://arxiv.org/abs/2312.14925
https://arxiv.org/abs/2312.14925

4.2. Reward finetuning diagram using DDPO. The finetuning process occurs
in two stages: (i) collecting a dataset Dπθ of samples by using the diffusion model
as policy rollouts, and (ii) using Dπθ to estimate the gradient of the parameters
∇θJ , with objectives such as DDPOSF, and applying a first-order optimization
algorithm (e.g., gradient ascent) to update the model. Given that the dataset
originates from a non-stationary distribution (changing policy), if we want to
reuse the samples Dπθold to adjust the parameters more than once, we need to
use the DDPOIS objective. 41

4.3. Visualizing reward signal during sample trajectories. Left: Evolution of
the aesthetic score as reward signal over the six states xt̃, summarizing each of
the 1000 trajectories (↑ better). Right: Image size in kbs after JPEG compres-
sion, providing another form of reward signal for the same set of trajectories (↓
better). Top: Rewards computed over the noisy intermediate states xt̃. Bottom:
Rewards computed over the denoised states x̃t̃. 43

4.4. Denoised sample trajectories. Each row, from top-to-bottom, represents
the best (6.22) and worst (3.86) aesthetic scores, and the highest (34.38) and
lowest (4.07) filesizes in kilobytes after JPEG compression for the final samples x0
in So. Each column, from left-to-right, summarizes the states for each denoised
sample’s trajectory using Equation 4.5. The rows correspond to the trajectories
highlighted in the green and red lines of Figure 4.3. 44

5.1. Qualitative comparison of the effects of DDPO finetuning versus the
pretrained model. The top-left panel shows samples from the DDPM pre-
trained model google/ddpm-celebahq-256. The other panels display samples
generated from the same initial noise, but using models finetuned with DDPO
for different reward functions: aesthetic quality (top right), JPEG compressibi-
lity (bottom left), and incompressibility (bottom right). Additional samples are
provided in Appendix B. 48

5.2. Emergent effects in face generation using JPEG compressibility as a
reward. Each panel compares a pretrained model sample (left) with its fine-
tuned version (right). Notable changes include melanotropism, realistic facial
expressions, and altered gender presentation due to hair detail loss and shading
effects. 49

5.3. Learning curves from DDPO finetuning on face generation tasks. The
evolution of the mean reward (black line) and the reward distribution (hex-
bin) are shown for each downstream task. The reward estimates were computed
in each step using 100 samples from the model. The top-left panel shows the
learning curve for the LAION aesthetic quality reward (aesthetic score), the
top-right panel for the OVER50 reward (sum of logits for relevant classes), the
bottom-left panel for JPEG compressibility (negative file size in kB), and the
bottom-right for JPEG incompressibility (file size in kbB). 50

5.4. Sample transformation when optimizing the pretrained google/ddpm-
celebahq-256 model using JPEG compressibility as the reward fun-
ction. The top-left image shows a sample generated by the pretrained model.
Moving from left to right and top to bottom, the sample is regenerated from the
same initial noise after each update of the model’s parameters. The final result
of the finetuning process is shown in the bottom-right image. 51

ix

https://huggingface.co/google/ddpm-celebahq-256
https://huggingface.co/google/ddpm-celebahq-256
https://huggingface.co/google/ddpm-celebahq-256

5.5. Emergent effects in face generation using JPEG incompressibility as
a reward. Each panel compares a pretrained model sample (left) with its fi-
netuned version (right). Notable changes include increased hair volume, hair
definition, skin tone lightening, and overall increased illumination with reduced
shadows. 52

5.6. Sample transformation when optimizing the pretrained google/ddpm-
celebahq-256 model using JPEG incompressibility as the reward fun-
ction. The top-left image shows a sample generated by the pretrained model.
Moving from left to right and top to bottom, the sample is regenerated from the
same initial noise after each update of the model’s parameters. The final result
of the finetuning process is shown in the bottom-right image. 53

5.7. Aesthetic quality training dynamics. Left: The learning rate scheduler with
a linear warm-up reaching a peak learning rate of 3.64×10−5 at the first quarter
of training, followed by a half-cosine decay for the remaining three-quarters.
Right: Mean aesthetic score on the evaluation set during training. The yellow
line corresponds to training with the learning rate schedule described on the left,
while the other lines represent training with fixed lower learning rates of 7×10−8

and 9 × 10−8. Aesthetic quality requires a more complex training dynamic to
achieve higher rewards. 54

5.8. Emergent effects in face generation using LAION aesthetic predictor
as a reward. Each panel compares a pretrained model sample (left) with its
finetuned version (right). Notable changes are increased prevalence of female
faces, a younger appearance, warmer tones, and more intense gazes, reflecting
aesthetic preferences learned by the LAION predictor. 55

5.9. Sample transformation when optimizing the pretrained google/ddpm-
celebahq-256 model using LAION aesthetic score as the reward fun-
ction. The top-left image shows a sample generated by the pretrained model.
Moving from left to right and top to bottom, the sample is regenerated from the
same initial noise after each update of the model’s parameters. The final result
of the finetuning process is shown in the bottom-right image. 56

5.10. Face age distribution using the ViT age classifier [25] prediction classes
on DDPM samples (left) and DDPO finetuned model samples (right).
Finetuning with DDPO using the OVER50 reward function, which maximizes
the logits sum for age classes 50−59, 60−69, and ≥ 70, increases the proportion
of faces over 50 years old from 6.1 % in the baseline to 78.7 % in the finetuned
samples. 57

5.11. Sample transformation when optimizing the pretrained google/ddpm-
celebahq-256 model using OVER50 as the reward function. The top-left
image shows a sample generated by the pretrained model. Moving from left to
right and top to bottom, the sample is regenerated from the same initial noise
after each update of the model’s parameters. The final result of the finetuning
process is shown in the bottom-right image. 58

x

https://huggingface.co/google/ddpm-celebahq-256
https://huggingface.co/google/ddpm-celebahq-256
https://huggingface.co/google/ddpm-celebahq-256
https://huggingface.co/google/ddpm-celebahq-256
https://huggingface.co/google/ddpm-celebahq-256
https://huggingface.co/google/ddpm-celebahq-256

5.12. Qualitative comparison of the effects of DDPO finetuning versus the
pretrained model. The top-left panel shows samples from the DDPM pre-
trained model google/ddpm-church-256. The other panels display samples ge-
nerated from the same initial noise, but using models finetuned with DDPO
for different reward functions: aesthetic quality (top right), JPEG compressibi-
lity (bottom left), and incompressibility (bottom right). Additional samples are
provided in Appendix D . 59

5.13. Sample transformation when optimizing the pretrained google/ddpm-
church-256 model using the reward functions: JPEG compressibility (top)
and incompressibility (middle), and LAION aesthetic score (bottom). First
column shows the sample generated by the pretrained model. Moving from left
to right the sample is regenerated from the same initial noise after each update
of the model’s parameters. Final result of the finetuning process is shown in the
last column. 60

5.14. A CLIP feature embedding space coexisting DDPM and DDPO Sam-
ples. Both sets of samples were generated from the same initial noise. Notably,
samples optimized for aesthetic quality cluster near the highest aesthetic score
sample in the DDPM set (Figure 4.4), illustrating a clear mode collapse effect. 61

A.1. Table for Monitoring Development Set Progress. This table compares
images generated by the pretrained model with those refined using DDPO. It
displays rewards for each image, their differences, and a graph illustrating reward
curves throughout the diffusion model’s generation process. 71

B.1. 256x×256 celebrity face samples generated by the pretrained model google/ddpm-
celebahq-256. 73

B.2. 256×256 celebrity face samples generated by the DDPO finetuned model alkzar90/ddpo-
compressibility-celebahq-256, optimized for JPEG compressibility. 74

B.3. 256×256 celebrity face samples generated by the DDPO finetuned model alkzar90/ddpo-
incompressibility-celebahq-256, optimized for JPEG incompressibility. 75

B.4. 256×256 celebrity face samples generated by the DDPO finetuned model alkzar90/ddpo-
aesthetic-celebahq-256, optimized for aesthetic quality. 76

C.1. Example 1 of JPEG compressibility transformation during model up-
dates, starting with a pretrained DDPM model and optimized with DDPO to
maximize image file size reduction after JPEG compression. 77

C.2. Example 2 of JPEG compressibility transformation during model up-
dates, starting with a pretrained DDPM model and optimized with DDPO to
maximize image file size reduction after JPEG compression. 78

C.3. Example 1 of JPEG incompressibility transformation during model
updates, starting with a pretrained DDPM model and optimized with DDPO
to maximize image file size after JPEG compression. 79

C.4. Example 2 of JPEG incompressibility transformation during model
updates, starting with a pretrained DDPM model and optimized with DDPO
to maximize image file size after JPEG compression. 80

C.5. Example 1 of aesthetic quality transformation during model updates,
starting with a pretrained DDPM model and optimized with DDPO to maximize
aesthetic quality. 81

xi

https://huggingface.co/google/ddpm-church-256
https://huggingface.co/google/ddpm-church-256
https://huggingface.co/google/ddpm-church-256
https://huggingface.co/google/ddpm-celebahq-256
https://huggingface.co/google/ddpm-celebahq-256
https://huggingface.co/alkzar90/ddpo-compressibility-celebahq-256
https://huggingface.co/alkzar90/ddpo-compressibility-celebahq-256
https://huggingface.co/alkzar90/ddpo-incompressibility-celebahq-256
https://huggingface.co/alkzar90/ddpo-incompressibility-celebahq-256
https://huggingface.co/alkzar90/ddpo-aesthetic-celebahq-256
https://huggingface.co/alkzar90/ddpo-aesthetic-celebahq-256

C.6. Example 2 of aesthetic quality transformation during model updates,
starting with a pretrained DDPM model and optimized with DDPO to maximize
aesthetic quality. 82

C.7. Example 1 of OVER50 transformation during model updates, starting
with a pretrained DDPM model and optimized with DDPO to maximize the
sum of logits for classes ≥ 50 years old using the ViT Age classifier. 83

C.8. Example 2 of OVER50 transformation during model updates, starting
with a pretrained DDPM model and optimized with DDPO to maximize the
sum of logits for classes ≥ 50 years old using the ViT Age classifier. 84

D.1. 256 × 256 church samples generated by the pretrained model google/ddpm-
church-256. 85

D.2. 256×256 church samples generated by the DDPO finetuned model alkzar90/ddpo-
compressibility-church-256, optimized by JPEG compressibility. 86

D.3. 256×256 church samples generated by the DDPO finetuned model alkzar90/ddpo-
incompressibility-church-256, optimized for JPEG incompressibility. 87

D.4. 256×256 church samples generated by the DDPO finetuned model alkzar90/ddpo-
aesthetic-church-256, optimized for aesthetic quality. 88

xii

https://huggingface.co/google/ddpm-church-256
https://huggingface.co/google/ddpm-church-256
https://huggingface.co/alkzar90/ddpo-compressibility-church-256
https://huggingface.co/alkzar90/ddpo-compressibility-church-256
https://huggingface.co/alkzar90/ddpo-incompressibility-church-256
https://huggingface.co/alkzar90/ddpo-incompressibility-church-256
https://huggingface.co/alkzar90/ddpo-aesthetic-church-256
https://huggingface.co/alkzar90/ddpo-aesthetic-church-256

1

Introduction

“You take the red pill, you stay in Wonderland, and I show you how deep the
rabbit hole goes. Remember, all I’m offering is the truth. Nothing more.”

– Morpheus, The Matrix

Reinforcement learning (RL) has shown the capacity to orchestrate or align highly com-
plex generative models, which often proves impossible using supervised learning objectives
such as matching distributions or incorporating specific goals into loss functions [1–5]. Be-
yond merely circumventing these challenges, RL should be regarded as a transformative
user-model interface endeavor, offering advanced mechanisms for users to explore and mani-
pulate tasks within generative models from a human-computer interaction (HCI) perspective
[6–8]. Despite the computational demands and implementation complexities associated with
RL, it provides unparalleled flexibility by optimizing arbitrary expected rewards, where the
reward can be a non-differentiable scalar function or a model trained using human feedback.
This becomes particularly relevant in the context of large models like LLMs [9] and diffusion
models [10–14], which have driven significant research towards improving sample efficiency
and prioritizing inference. These advancements make the exploration of RL agents atop these
generative models especially compelling.

An agent in the context of RL is a decision-making entity that interacts with an environment,
learning to take actions that maximize cumulative reward. Conversely, a diffusion model ex-
cels at learning highly complex distributions, enabling it to generate samples from the learned
distribution. This allows us to interpret the diffusion model as an agent that interacts with
the environment to generate samples, with the goal of maximizing a desired attribute, such as
compressibility or aesthetic quality, as measured by a reward function. Figure 1.1 illustrates
this process: it begins with generating a set of samples using a pretrained diffusion model,
followed by obtaining rewards that measure the alignment of each generation with the task
goal. The next step involves fitting a model by estimating the gradients of the expected re-
ward of the samples with respect to the diffusion model parameters. Finally, these estimates
are used to update the model parameters, directing the diffusion model to generate samples
with higher expected returns. When executed correctly, this iterative process results in a
generative model that is aligned with the goal encoded in the reward signal.

In this thesis, we explore the application of reinforcement learning techniques to adapt pre-
trained diffusion models for new tasks. We provide the necessary background to understand
the intersection of diffusion models and policy gradient methods from the field of reinforce-

1

ment learning, aiming to serve as a comprehensive guide for those looking to contribute to
this area. We then implement the iterative process depicted in Figure 1.1, based on the work
Training Diffusion Models with Reinforcement Learning (Black, 2023 [1]), which introduces
policy optimization algorithms in the realm of diffusion models (DDPO).

Using the pretrained models google/ddpm-celebahq-256 and google/ddpm-church-256 , both
trained with a foundational diffusion model approach (DDPM) [15], simplifies the unders-
tanding of the core components in the finetuning process with reinforcement learning. These
models are significantly smaller, with an 8x reduction in parameters compared to the sta-
ble diffusion v1.4 model used in the DDPO experimentation paper [1]. The reduction in
model size not only lowers the VRAM requirements, making the models easier to run, but
also streamlines the experimental setup. Unlike stable diffusion, which operates with text-to-
image capabilities and requires a variational autoencoder (VAE) for latent space processing,
these DDPM models operate directly in pixel space. By eliminating the need for latent space
decoding, the task of exploring intermediate states becomes more straightforward, allowing
researchers to focus on refining the model across the entire generation process rather than
solely on the final output. This capability facilitates a more comprehensive approach to exten-
ding rewards throughout the generation. The code, model checkpoints, and training dynamics
are provided with this work (see Appendix A).

Generate Samples

Fit a Model

Improve the Policy

Pretrained
Diffusion Model

Reward Model

Figure 1.1: Iterative Process of Finetuning a Diffusion Model Using Reinforcement Lear-
ning. The process begins with (i) collecting a dataset of generated samples using a pretrained dif-
fusion model, represented by the “Generate Samples” block. Next, (ii) these samples are evaluated
by a reward model to obtain a reward signal, as shown in the “Reward Model” block. This reward
information is then used to (iii) fit the model by optimizing the expected return of the samples,
using methods like Monte Carlo gradient estimation, depicted in the “Fit a Model” block. Finally,
(iv) the optimization improves the policy, aligning the diffusion model’s output with higher expec-
ted rewards, as indicated in the “Improve the Policy” block. This cycle iterates, refining the model
based on feedback. When the reward model is based on human preferences, this approach is known
as Reinforcement Learning from Human Feedback (RLHF).

2

https://huggingface.co/google/ddpm-celebahq-256
https://huggingface.co/google/ddpm-church-256

1.1. Related Work
Diffusion Models. Diffusion models and score-based models represent a significant ad-
vancement in the field of generative models. These models learn a distribution p(x) from a
dataset D, enabling evaluation and sampling of complex data types such as images or au-
dio. They begin with a simple prior distribution (e.g., isotropic-Gaussian) and iteratively
transform it into the target distribution through a denoising process. Recent advancements
have focused on making the sampling process more efficient [12, 16, 17]. The progress in
diffusion models has led to impressive results in tasks like text-conditional image generation
[18, 19], super-resolution, in-painting, style transfer, and combining different data modalities.

Controlling Diffusion Models. Controlling diffusion models for new tasks is a challen-
ging and evolving area of research. Given the large cost and resources required to train
generative models from scratch, adapting pretrained diffusion models is commonplace. This
adaptation allows the models to learn new concepts, such as specific objects or scenes, with
a reasonable amount of data. Techniques like using a small set of images to teach a model
new concepts without losing its diversity [20], and textual inversion to embed new concepts
[21], have shown promising results. Additionally, ControlNet provides advanced control over
the generation process, enabling inputs like Canny edges [22]. However, many downstream
tasks cannot be easily expressed through text prompts or loss functions due to their context-
dependent or subjective nature.

Reinforcement Learning from Human Feedback (RLHF). Recently, attention to using
human feedback in reinforcement learning has increased [23]. The core idea is to capture hu-
man feedback into a reward model that can be used to train the policy that dictates the
agent’s behavior. This approach allows different types of feedback, such as binary, conti-
nuous, or even more complex signals. Instead of designing the reward function—–or using
feature engineering—–we can give the agent access to the reward model to obtain the neces-
sary feedback for trajectories and optimize its behavior to learn the task.

1.2. Contributions and Outline
This thesis investigates the hypothesis that reinforcement learning, particularly through

policy optimization algorithms, can effectively finetune pretrained diffusion models for new
tasks by optimizing reward signals. The primary focus is on guiding the sampling process
within these models to better align with task-specific goals, thereby enhancing performance
through optimized rewards.

The general objective is to explore and validate the use of RL for finetuning pretrained
diffusion models, aiming to improve task performance by optimizing specific reward signals
and integrating human feedback into the learning process. The specific objectives are:

1. Provide foundational background on the intersection of diffusion models and reinforce-
ment learning, emphasizing key concepts such as policy gradient methods and associated
challenges.

3

2. Understand the intersection between diffusion models and reinforcement learning, par-
ticularly in framing the diffusion model as a problem to be solved by an RL agent
using policy gradient methods, as discussed in the work Training Diffusion Models with
Reinforcement Learning [1].

3. Conduct empirical analyses of reward signals, evaluating their impact on the intermedia-
te steps of the diffusion process and deriving insights for optimizing generative outcomes.

4. Implement and adapt the Denoising Diffusion Policy Optimization (DDPO [1]) algo-
rithm for smaller pretrained DDPM models. Validate the effectiveness of RL-based re-
ward finetuning using base models such as google/ddpm-celebahq-256 and google/ddpm-
church-256 , which generate RGB images of human faces and church scenes at a resolu-
tion of 256× 256 pixels, respectively.

5. Assess the adaptability of RL techniques across different diffusion models and tasks,
focusing on various generative objectives. These include JPEG compressibility, aimed
at generating images with smaller file sizes; incompressibility, which targets larger file
sizes; and improvements in aesthetic quality using the LAION aesthetic predictor [24].
Additionally, evaluate a custom-designed OVER50 reward function based on a face age
classifier [25], which aims to increase the likelihood of generating images of individuals
over 50 years old.

These specific objectives guide the structure of the thesis. Chapter 2 introduces the fun-
damentals of diffusion models, including their formulation, training objectives, and methods
for guiding and speeding up sample generation. Chapter 3 provides an overview of the
reinforcement learning field, focusing on Markov Decision Processes (MDP) and Policy Op-
timization algorithms, which are essential for understanding how agents can learn optimal
actions within an environment.

Building on this foundation, Chapter 4 explores the intersection of diffusion models and
reinforcement learning, presenting the formulation of the RL objective Denoising Diffusion
Policy Optimization (DDPO) [1]. Next, with a clear focus on maximizing the reward using
DDPO, we condunct an empirical study of the reward signal throughout the diffusion process
to generate samples. This chapter also illustrates the diffusion process as an MDP, where we
aim to maximize the agent’s performance in generating samples with a particular attribute.

Equipped with this knowledge, Chapter 5 focuses on the implementation of DDPO, applying
the algorithm to smaller generative models and reproducing some of the experiments from the
work that introduced DDPO. This chapter also explores the design and implementation of a
new reward function, addressing challenges and opportunities in applying RL to generative
tasks. Finally, Chapter 6 presents the conclusions drawn from this work.

4

https://huggingface.co/google/ddpm-celebahq-256
https://huggingface.co/google/ddpm-church-256
https://huggingface.co/google/ddpm-church-256

2

Diffusion Models

In this chapter, we introduce the Diffusion Model, a family of generative models that have
proven to be a valuable framework for novel image generation, text-to-image, text-to-video,
and practical applications such as molecular graph modeling and medical image reconstruc-
tion [15, 16, 26–30]. Proving to be a useful tool and keep this kind of model to be an active
research line in the last few years [31].

We will review the formulation proposed in the work titled Denoising Diffusion Probabilistic
Models [15], or DDPM for short. The primary motivation to build on this foundational paper
is to understand how the pretrained model in this work was trained. In addition, DDPM
serves as a framework to understand subsequent improvements and enhancements without
significant modifications to the primary ingredients of the recipe. Furthermore, DDPM has
a deep connection with theoretical work of score-based generative models [32–34] and Varia-
tional Autoencoders [35].

2.1. Denoising Diffusion Probabilistic Models
The key idea in Denoising Diffusion Probabilistic Models (DDPM) is to learn a mapping

from a complex data distribution to a simple prior distribution, such as a Gaussian. This
is achieved by successively corrupting the data with noise, transforming observations of the
complex distribution into observations of the simple one. Concurrently, a model is trained to
denoise the sequence of noisy observations and recover the original data.

Figure 2.1: Example of a forward transition. The image of Grogu (Baby Yoda) on the left
is gradually degraded by Gaussian noise throughout the diffusion process (middle), ultimately
resulting in isotropic Gaussian noise at the final stage (right).

Concretely, a forward process which starts from the raw image x0 creates a sequence of inter-
mediate steps between x1 and xT −1, also known as latent states, which are noise perturbations
in some degree of the original image’s structure as shown in Figure 2.1. At the end of the
sequence T—if the sequence is infinitely large—the image is ultimately converted into an

5

isotropic Gaussian noise p(xT) ∼ N (0, I)1.

The DDPM authors model this forward process q(x1 . . . xT | x0) as a Markov chain, and it
follows a transition Gaussian kernel without learnable parameters,

q(x1:T | x0) =
T∏

t=1
q(xt | xt−1) (2.1)

q(xt | xt−1) = N
(

xt;
√

1− βt xt−1, βtI
)

. (2.2)

The process of corrupting data with noise during the progression of the chain is managed by
a time-dependent function that determines the variance σ(t) = βt at each timestep t. This
function is known as the noise (or variance) scheduler, and it is a key component in diffusion
models. On the left side of Figure 2.2, the noise scheduler used in DDPM is shown, where
the variance increases linearly from β1 = 10−4 to βT = 0.02, over the course of T = 1000
timesteps during the forward pass, progressively corrupting the input x0 until it fully turns
into noise, represented by xT .

Figure 2.2: Noise scheduler used in DDPM [15]. Left: The variance scheduler increase linearly
from β1 = 10−4 to βT = 0.02, over the forward pass of T = 1000 timesteps, progressively corrupting
the data x0. Middle: The noiseless part of xt is scale by a function of the variance,

√
1− βt. Right:

In DDPM, αt = 1 − βt is defined. Given the addition of independent Gaussian noise, the data
structure factor ᾱt =

∏t
s=1 αs to allows us to scale x0 and obtain xt in just one evaluation (see

Section 2.2).

The intermediate states xt in the forward process are a blend of the data structure from the
previous timestep xt−1 and the additive Gaussian noise ϵt−1. This relationship is illustrated
in the middle of Figure 2.2, where the noiseless component also relies on the noise scheduler.
The kernel q(xt | xt−1) ∼ N (xt;

√
1− βtxt−1, βtI) and the noise scheduler together create a

location-scale familiy2, allowing us to sample xt as a linear combination of the previous state
and Gaussian noise, with the variance βt set by the scheduler,

xt =
√

1− βt xt−1 +
√

βt ϵt−1. (2.3)

1 Isotropic is a fancy word for “equal shape”, and in this context means that the direction of the covariance
matrix is all equal.

2 A quick recap about Gaussians distributions: if Z is a standard normal random variable and X = µ + σZ,
then X, is a Gaussian variable with mean µ and variance σ2, i.e., X ∼ N (µ, σ2).

6

https://en.wikipedia.org/wiki/Location%E2%80%93scale_family

At the same time, there is a backward process—another Markov chain, but in this case, it
moves in the reverse timestep direction and has a learnable transition kernel modelled by
pθ(xT :0). This kernel allows us to learn the data distribution q(x0) by learning the recons-
truction process from our prior distribution p(xT), which we know how to sample from and
evaluate. Specifically, the backward process takes the following form:

pθ(xT :0) = p(xT)
T∏

t=1
pθ(xt−1 | xt) (2.4)

pθ(xt−1 | xt) = N (xt−1; µθ(xt, t), Σθ(xt, t)). (2.5)

We know that p(xT) is a standard normal distribution when βT ≈ 1 in Equation (2.3). Ad-
ditionally, as we will see in the following sections, there are design options for learning the
parameters of the kernel mentioned above, namely µθ and Σθ. In most cases where the data
distribution is complex, such as with images or audio, the backward kernel is parameterized
by deep neural networks.

2.2. Recursive Reparameterization Trick
The reparameterization trick, originally introduced in the work on Variational Autoenco-

ders (VAEs) [36], is also utilized in the diffusion framework with some modifications. The
main goal in the VAE context is to remove the stochasticity associated with a node in the di-
rected acyclic graph that represents the dependencies between the loss function, parameters,
and operations within the model. Figure 2.3 illustrated this: on the left, a stochastic node
is associated with the variable z, which is obtained by sampling the distribution q(z | ϕ, x).
The variable z depends on both ϕ and x. However, if we want to propagate and compute the
partial derivatives of f with respect to ϕ and x, the operation used to obtain z is incompatible
with the automatic differentiation techniques of frameworks like PyTorch or JAX [37].

For the VAE, since the distribution of z is Gaussian, it is possible to reparameterize z as a
linear function g(ϕ, x, ϵ). This reparameterization removes the stochasticity from the node
z and allows dependencies on parameters like ϕ and the input x to be handled. As simple
as it may seem, this trick enables the construction of a computational graph that supports
proper backpropagation using automatic differentiation, as shown on the right of Figure 2.3.
In the diffusion context, we will see that a recursive application of the reparameterization
trick achieves more than just enabling backpropagation.

Let αt = 1 − βt and ᾱt = ∏t
i=1 αi. Now we proceed to unwind the t index until t = 0 in

Equation (2.3), we end up with a reparameterization of q(xt | xt−1) in terms of x0, and it is
possible to sample from it by scaling the normal standard distribution ∼ N (0, σ2) accordingly

7

f

z

f

z

x x

: Random node : Deterministic node

Original form Reparameterised form

Backprop

Figure 2.3: The reparameterization trick enabling backpropagation. Left: A stochastic node
associated with z sampled from q(z | ϕ, x), where direct backpropagation is not possible. Right:
By reparamterizing z as a linear function g(ϕ, x, ϵ), the stochasticity is removed, allowing effective
backpropagation of the loss function f with respect to ϕ and x. Source: Variational Auto-Encoders
and Extension, NeurIPS Workshop, by Kingma Diederik (2015).

its parameters:

xt = √αt xt−1 +
√

1− αt ϵt−1

= √αt (√αt−1 xt−2 +
√

1− αt−1 ϵt−2) +
√

1− αt ϵt−1

= √αt αt−1 xt−2 +
√

αt − αt αt−1 ϵt−2 +
√

1− αt ϵt−1

= √αt αt−1 xt−2 +
√

1− αt αt−1 ϵ̄t−2, ϵ̄t−2 ∼ N (0, (1− αt + αt − αtαt−1)I)
= . . .

= √αt αt−1 . . . α0 x0 +
√

1− αt αt−1 . . . α0 ϵ̄0

=

√√√√ t∏
i=1

αi x0 +

√√√√1−
t∏

i=1
αi ϵ̄0

=
√

ᾱt x0 +
√

1− ᾱt ϵ̄0.

(2.6)

Technically, in the derivation above, the use of a Gaussian transition kernel q(xt | xt−1)
allows us to combine pairs of independent Gaussians into a single Gaussian distribution by
simple adding their means and variances. This is exemplified in Equation (2.6), where the
variables ϵt−1 and ϵt−2 are grouped into ϵ̄t−2. When scaled by the square root of the sum
of the variance of ϵt−1 and ϵt−2, we can see that it represents noise belonging to the new
Gaussian distribution. By repeteadly applying this property, we eventually marginalize the
joint distribution in Equation (2.1) to obtain an analytical form of q(xt | x0) for all timesteps
t ∈ {0, 1, . . . , T} [26],

q(xt | x0) = N (xt;
√

ᾱt x0, (1− ᾱt)I). (2.7)

The remarkable outcome of having a closed form solution to compute x0 is the ability to

8

https://web.archive.org/web/20160418040123/http://dpkingma.com/wordpress/wp-content/uploads/2015/12/talk_nips_workshop_2015.pdf
https://web.archive.org/web/20160418040123/http://dpkingma.com/wordpress/wp-content/uploads/2015/12/talk_nips_workshop_2015.pdf

sample from x0 → xt without explicitly passing through the intermediate steps x1, . . . , xt−1.
This means we can transition from x0 to any arbitrary t in just one evaluation—since ᾱt

is predetermined by the noise scheduler (see the function on the right in Figure 2.2 used in
DDPM)—making the whole diffusion framework computationally feasible.

2.3. Optimization
We can sample a batch of inputs from the data distribution x0 ∼ q(x0), such as images,

and corrupt them with noise ϵ ∼ N (0, I) according to a scale factor ᾱt. This results in
intermediate states at timesteps t ∼ U [1, T], which are obtained using Equation (2.6). For
training DDPM, the authors focus on learning the mean of the backward kernel and use a
time-dependent constant σ2

t for the kernel variance3.

Rather than directly modeling the mean of the backward kernel, the approach involves pre-
dicting the noise perturbation ϵ

(t)
θ at timestep t. This predicted noise serves as an indirect

method for learning the mean. The key idea is that with an accurate noise prediction, we
can determine how much to blend the noise with the structure at timestep t, based on the
noise scheduler (see Figure 2.2). This blending process allows us to recover the mean. Conse-
quently, the model is parameterized by θ to learn this predicted noise. The training objective
in DDPM is then to minimize the difference between the actual noise ϵ and the predicted
noise ϵ

(t)
θ , scaled by a time-dependent factor λ(t). This objective is expressed as:

Et∼U [1,T],x0∼q(x0),ϵ∼N (0,I)
[
λ(t) ∥ϵ− ϵ

(t)
θ (xt)∥2

]
. (2.8)

Where λ(t) = β2
t /2σ2

t αt(1−ᾱt). Based on empirical results, the DDPM author shows that it is
possible to discard λ(t) without affecting sample quality, resulting in the following simplified
objective:

Et∼U [1,T],x0∼q(x0),ϵ∼N (0,I)
[
∥ϵ− ϵ

(t)
θ (
√

ᾱt x0 +
√

1− ᾱt ϵ)||2
]
. (2.9)

The simplified loss is just a mean squared error, and a description of the training procedure
is shown in Algorithm 1.

Algorithm 1 DDPM Training
repeat

x0 ∼ q(x0)
t ∼ U(1, T)
ϵ ∼ N (0, I)
Take gradient descent step on
∇θ∥ϵ− ϵ

(t)
θ (
√

ᾱtx0 +
√

1− ᾱtϵ)∥2

until converged

Algorithm 2 DDPM Sampling
xT ∼ N (0, I)
for t = T, . . . , 1 do

z ∼ N (0, I)

xt−1 = 1√
αt

(
xt − 1−αt√

1−ᾱt
ϵ

(t)
θ (xt)

)
+ σtz

end for
return x0

In the next sections we will justify the use of the above loss function and the training algorithm
in the context of the Variational Lower Bound (VLB).

3 The authors add a diagonal learnable variance Σθ(xt) but they obtained unstable training and poor sample
quality.

9

2.3.1. Variational Lower Bound

DDPM are trained by optimizing the Variational Lower Bound (aka ELBO) [15, 35] on
the negative likelihood of the target distribution using the backward transition kernel pθ,

− log pθ(x0) = − log
∫

pθ(x0:T)dx1:T

= − log
∫ pθ(x0:T)q(x1:T | x0)

q(x1:T | x0)
dx1:T

= − logEq(x1:T |x0)

[
pθ(x0:T)

q(x1:T | x0)

]

≤ Eq(x1:T |x0)

[
− log pθ(x0:T)

q(x1:T | x0)

]

≤ Eq(x1:T |x0)

[
− log p(xT)−

T∑
t≥1

log pθ(xt−1 | xt)
q(xt | xt−1)

]

L := Eq(x1:T |x0)

[
− log p(xT)−

T∑
t>1

log pθ(xt−1 | xt)
q(xt | xt−1)

− log pθ(x0 | x1)
q(x1 | x0)

]
.

(2.10)

The first step in Equation (2.10) is to apply the definition of the negative log-likelihood and
integrate out x1:T from the joint distribution pθ(x0:T). Then, we multiply by 1, introducing
q(x1:T | x0)/q(x1:T | x0), and use the expectation operator. We use the Jensen’s inequality to
bound the negative log-likelihood by the expectation of the negative log-likelihood.

In the final steps, we break down the expectation into the sum of the negative log-likelihoods
of both the forward and backward processes, leveraging the Markov property for each. Note
that the final term xT decouples from pθ(x0:T), as with a sufficiently long diffusion chain,
xT ∼ N (0, I) holds. Similarly, we can isolate the transition involving the initial state x0—–
which represents the reward data or images—–from the rest of the process.

The training objective is derived from the VLB, following the methods outlined in the relevant
literature [15, 26, 35]. Due to space constraints, we refer to Eq(x1:T |x0) as Eq,

10

LVLB = Eq

[
− log p(xT)−

T∑
t>1

log pθ(xt−1 | xt)
q(xt | xt−1)

− log pθ(x0 | x1)
q(x1 | x0)

]

= Eq

[
− log p(xT)−

T∑
t>1

log pθ(xt−1 | xt)
q(xt−1 | xt, x0)

q(xt−1 | x0)
q(xt | x0)

− log pθ(x0 | x1)
q(x1 | x0)

]

= Eq

[
− log p(xT)−

T∑
t>1

log pθ(xt−1 | xt)
q(xt−1 | xt, x0)

−
T∑

t>1
log q(xt−1 | x0)

q(xt | x0)
− log pθ(x0 | x1)

q(x1 | x0)

]

= Eq

[
− log p(xT)−

T∑
t>1

log pθ(xt−1 | xt)
q(xt−1 | xt, x0)

− log q(x1 | x0)
q(xT | x0)

− log pθ(x0 | x1)
q(x1 | x0)

]

= Eq

[
− log p(xT)−

T∑
t>1

log pθ(xt−1 | xt)
q(xt−1 | xt, x0)

− log q(x1 | x0) + log q(xT | x0)− log pθ(x0 | x1)
q(x1 | x0)

]

= Eq

[
−
(

log p(xT)− log q(xT | x0)
)
−

T∑
t>1

log pθ(xt−1 | xt)
q(xt−1 | xt, x0)

−
(

log q(x1 | x0) + log pθ(x0 | x1)
q(x1 | x0)

)]

= Eq

[
− log p(xT)

q(xT | x0)
−

T∑
t>1

log pθ(xt−1 | xt)
q(xt−1 | xt, x0)

− log pθ(x0 | x1)
]

= Eq

[
DKL (q(xT | x0) || p(xT))︸ ︷︷ ︸

LT

+
T∑

t>1
DKL (q(xt−1 | xt, x0) || pθ(xt−1 | xt))︸ ︷︷ ︸

Lt−1

− log pθ(x0 | x1)︸ ︷︷ ︸
L0

]

(2.11)

The key points from the above derivation are as follows:

1. Isolating log q(xt | x0) with log p(xT) because both are invariant by the learning process.

2. Reversing q(xt | xt−1) by q(xt−1 | xt, x0) (Bayes theorem) in step 2.

3. The first two terms at the end of Equation (2.11) appear due to the definition of the
Kullback-Leibler divergence.

In summary, the variational lower bound loss is a sum of terms that result from the reverse
diffusion process LVLB = LT + LT −1 + · · ·+ L0. The final term LT can be discarded because
it is constant, given that q has not learnable parameters and xT follows a standard normal
distribution. The remaining terms are the denoising matching terms, which are crucial in the
loss function because their number depends on the length of diffusion chain T (e.g. T = 1000
in DDPM).

2.3.2. Denoising Matching Term

The model’s goal is to minimize the discrepancy, measured by the Kullback-Leibler diver-
gence, between the posterior of the encoder—which tells us how to remove the real noise—and
the decoder, which predicts how to “reverse” the processes and has learnable parameters θ.
Therefore, the loss consists of a sum of denoising matching terms across the diffusion sequen-
ce, as shown in Figure 2.4.

11

Figure 2.4: Denoising matching term in action. Left: xT is a pure Gaussian noise. Middle:
Transition from a noisy intermediate state to a less noisy one; the denoising matching term forces
pθ(xt−1 | xt) to be similar to the posterior forward kernel q(xt−1 | xt), making comparable and
provide feedback to update the parameters µθ and Σθ. Right: x0 the input image during training.

Reversing the forward kernel to q(xt−1 | xt) is intractable as it requires access to the entire
dataset for computation [38]. To address this, we can make the proceess tractable by condi-
tioning on x0, effectively anchoring the transition to the data or ground truth signal. This
leads to the following expression4:

q(xt−1 | xt, x0) = N (xt−1; µ̃t(xt), β̃tI) (2.12)

µ̃t(xt) = 1
√

αt

(
xt −

1− αt√
1− ᾱt

ϵt

)
(2.13)

β̃t = 1− ᾱt−1

1− ᾱt

βt. (2.14)

The parameterization in the backward process will be to match µ̃t,

µθ(xt, t) = 1
√

αt

(
xt −

1− αt√
1− ᾱt

ϵ
(t)
θ (xt)

)
(2.15)

xt−1 = N
(
xt−1;

1
√

αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)
)
, Σθ(xt, t)

)
. (2.16)

4 (See [38] for a detailed derivation)

12

DDPM demonstrates acceptable performance by learning only the mean, with a time-dependent
variance given by Σθ(xt, t) = σ2

t I. The authors also attempted to learn the variance, but this
led to poor results and unstable training. Subsequent studies have shown methods to stabilize
and learn the variance as well [17]. However, we will focus solely on parameterizing the mean
in the backward kernel, as defined earlier in Equation (2.4),

pθ(xt−1 | xt) = N (xt−1; µθ(xt, t), σ2
t I). (2.17)

Thus, by working out the KL divergence between the described in Equation (2.12) and Equa-
tion (2.17), we derive the objective function presented in Equation (2.8) at the beginning of
this section.

Finally, Figure 2.4 highlights the denoising matching term, which resembles the VAE loss
term. However, there are key differences between VAEs and DDPMs: (i) VAEs operate in the
latent space, whereas DDPMs optimize directly in the data space (e.g., CelebaHQ256×256);
(ii) VAEs use a forward kernel with learnable parameters, while DDPMs employ a fixed ker-
nel; and (iii) VAEs perform a single sampling step, whereas DDPMs execute multiple steps,
making them more comparable to hierarchical VAEs [35].

2.4. Score-based generative models
In this section, we aim to establish a connection between DDPM and score-based genera-

tive models [32–34]. The purpose is more conceptual than practical concerning the work of
this thesis, as the literature on how to condition diffusion models is built on this theoretical
perspective, and it is a way to increase the degree of control over diffusion models.

It turns out that the objective of Equation (2.8), derived from the variational lower bound
(Section 2.3.1) and the reparameterization of predicting ϵ

(t)
θ versus directly the latent states,

is equivalent to the objective function of Noise Conditional Score Network (NCSN) [33]. This
is a generative model that seeks to learn the data distribution through the score function.
We will briefly contextualize this family of models below.

The score function s(x0) of the data distribution q(x0) is defined as the gradient of the log-
likelihood w.r.t x0, i.e. ∇x0 log q(x0), and it is invariant to scale changes in the distribution.

First, let’s start by model the data distribution q(x0) with pθ(x0):

pθ(x0) = e−fθ(x0)

Zθ

. (2.18)

fθ is the unnormalized probabilistic model and Zθ is the normalizing constant to ensure
that the distribution integrates to 1. The problem is that computing Zθ is intractable for
high-dimensional data, but we can avoid this by inducing the score function sθ(x0) in Equa-
tion (2.18):

13

log pθ(x0) = −fθ(x0)− log Zθ

∇x0 log pθ(x0) = −∇x0fθ(x0)−������∇x0 log Zθ

sθ(x0) = −∇x0fθ(x0)
(2.19)

Ep(x)

[
∥∇x log p(x)− sθ(x)∥2

2

]
L∑

i=1
λ(i)Epσi (x)[∇x log pσi

(x)− sθ(x, i)]. (2.20)

By generalizing the number of noise scales to infinity, we further proved that score-based
generative models and diffusion probabilistic models can both be viewed as discretizations to
stochastic differential equations determined by score functions. This work bridges both score-
based generative modeling and diffusion probabilistic modeling into a unified framework.

In DDPM work [15], the authors establish that the denoiser function ϵ
(t)
θ is equivalent to

the score function sθ(xt) in the score-based generative models. The following equation shows
the relationship between the score function and the denoiser function, where is derive by
combining Tweedie’s formula and the reparameterization trick [35]:

∇xt log pθ(xt) = − 1√
1− ᾱt

ϵ
(t)
θ (xt)

ϵ
(t)
θ (xt) = −

√
1− ᾱt∇xt log pθ(xt).

(2.21)

2.5. Sampling
In diffusion models, sampling is a critical process involving the generation of new samples

from a learned distribution. After training a model, sampling starts by drawing a sample
from a prior distribution, often a standard Gaussian distribution, pθ(xT) ∼ N (0, I). Ances-
tral sampling is then applied by iteratively using the denoiser network through a reverse
Markovian process. This process involves applying the denoiser at each step to progressively
refine the sample until the final output, x0, is achieved. The detailed steps of this procedure
are outlined in Algorithm 2, which demonstrates how each iteration in the reverse process
refines the sample.

Diffusion Probabilistic Models (DDPM) require a significant number of steps, T , to closely
approximate a Gaussian distribution in the reverse process. For example, a typical setting
might use T = 1000 steps. This large number of steps is crucial for achieving high-quality
samples but also makes the sampling process computationally expensive. Each step t in the
reverse process depends on the previous state, and thus, the ancestral sampling requires se-
quential computation from T down to 0, making the process time-consuming. This is reflected
in Algorithm 2, where each step in the reverse process involves computing an update based
on the previous state and the model’s prediction of noise, ϵ

(t)
θ , to iteratively refine the sample.

In the following sections we will discuss a method to reduce the number of steps required for
sampling, as well as a technique to condition the model on additional information.

14

2.6. Conditioning the model
So far, we know how to indirectly learning the unconditional probability distribution p(x)

via the score function ∇x log p(x) (Section 2.4), but how can we condition x given a signal y,
such as a text prompt, another image, or an audio?

By Bayes’ theorem, log operations, and taking the gradient with respect to x we obtain:

p(x | y) = p(y | x) · p(x)
p(y)

=⇒ log p(x | y) = log p(y | x) + log p(x)− log p(y)
=⇒ ∇x log p(x | y) = ∇x log p(y | x) +∇x log p(x).

(2.22)

To obtain ∇x log p(x | y), which is the score-based equivalent of training a DDPM model
conditioned on y, it is necessary to solve the discriminative component ∇x log p(y | x) (dis-
criminative model). We will explore how to achieve this in the following sections.

2.6.1. Classifier Guidance (CG)

Classifier Guidance (CG) is a technique to condition the model by using a classifier to
guide the sampling process once the diffusion model is trained. By attaching a cost function
to an external classifier over xt [26, 34, 39, 40] we will be able to compute the gradient of the
classifier with respect to the image xt in Equation (2.22):

∇xt log pγ(xt | yt) = ∇xt log p(xt) + γ∇xt log pϕ(yt | xt). (2.23)

This guidance involves using a discriminative classifier pϕ(y | x) (Murphy, section 9.4 [41]),
parameterized by ϕ. Any differentiable classifier that processes images x, or image-to-feature
mappings ω(x), can be connected to predict a label y. This classifier is needed to compu-
tes the term ∇xt log pϕ(y | x), which is required to adjust the score in the direction of y,
as described in Equation (2.23). The classifier’s gradient is scaled by a constant γ, called
the guidance scale, which modulates the conditional signal y effect on the sample x. When
γ > 1, is amplify the conditioning, and in the extreme focus in the classifier’ modes, i.e. the
distribution temperature5 is lowered [39, 40].

Classifier Guidance with CLIP Embeddings. Figure 2.6 illustrates an experiment using
classifier guidance to control image generation. Specifically, the OpenAI CLIP model [42] gui-
des a pretrained diffusion model (google/ddpm-celebahq-256) to generate images of elderly
people. The CLIP model includes an image encoder and a text encoder trained to match
images with text descriptions (Figure 2.5).

First, we compute the text embedding Ty for the prompt y =“old, senior, oldster, elderly,

5 A temperature is a hyperparameter that controls the outcome distribution in models. Higher temperatures
amplify lower probability outputs, making the distribution more uniform at the extremes. Conversely,
lower temperatures create a more peaked distribution, increasing confidence in the most likely outputs,
ultimately collapsing to a delta function at zero. For more details, see this interactive article.

15

https://huggingface.co/google/ddpm-celebahq-256
https://lukesalamone.github.io/posts/what-is-temperature/

Figure 2.5: CLIP overview. Text-to-image joint embedding space. Source: Learning Transferable
Visual Models From Natural Language Supervision, by Alec Radford et al. (2021) [42].

golden-ager”, representing the desired image attribute. During sampling, we pass a denoised
version of the steps x̂t→0 (see Section 2.7) to the CLIP image encoder to obtain an image
embedding It. A loss function ℓ(It, Ty) measures the distance between these embeddings at
each timestep. Notice that Ty is fixed during the whole sampling process, providing the gold
standard for signal y. We then backpropagate to obtain the gradient of the loss with respect
to xt, ∇x log pϕ(y | x).

Using this conditional gradient, we guide the sampling proocess towards regions where the
conditional log-likelihood is higher. By repeating this process throughout the Markovian
steps, we can generate samples that match the prompt description.

Limitations of Classifier Guidance. While classifier guidance is powerful, it has limita-
tions:

1. The signal must come from a differentiable classifier, which is not always the case (e.g.
decision trees or random forests are not compatible).

2. The gradient must be computed at every denoising step, making it impractical for large
models due to computational cost.

3. Classifiers that are robust to noise are uncommon, as most struggle to capture meaning-
ful signals in noisy environments. As a result, during the early stages of diffusion, when
the sample is predominantly noise, the classifier provides little effective guidance. This
limitation can be mitigated by utilizing denoised versions of the intermediate steps [43]
.

16

Figure 2.6: CLIP classifier guidance for image generation controlled via prompting. The
first row shows four samples generated by the pretrained model google/ddpm-celebahq-256. The
second row shows the same initial noise used to generate the previous images but guided by the
CLIP classifier with a guidance scale of γ = 20, using the prompt “old, senior, oldster, elderly,
golden-ager” to transform the subjects into older individuals. Notable changes include the appea-
rance of wrinkler and thinner hair, but artefacts also emerge, such as in the first image of the second
row where glasses distort the facial structure. The third row illustrates a failure mode, where a
much higher guidance scale (γ = 2000) results in heavily distorted images.

Overall, while classifier guidance offers precise control over diffusion models, these limitations
must be considered.

2.6.2. Classifier Free Guidance (CFG)
Classifier-free Guidance (CFG) is a technique for guiding diffusion models without using

a separate classifier model [44]. The key is to jointly train the unconditional and conditio-
nal model, introducing a null label ∅ that represents the unconditional model, without any
signal effect. This means that conditioning information is dropout during training at some
percentage. When this happens, the conditional signal y is randomly discarded and replaced
by ∅ with probability puncond to trained the unconditional model.

During sampling, the output of the model is extrapolated in the diretion of ϵ
(t)
θ (xt | y) and

away from ϵθ(xt | ∅) as follows:

17

https://huggingface.co/google/ddpm-celebahq-256

Accelerated
generation

non-Markovian
forward process

Figure 2.7: DDIM non-Markovian forward process. Left: Ilustration of accelerated generation
skipping the uneven intermediate steps, the denoiser network ϵ

(t)
θ predicts the amount of noise added

to xt from step t− 2, instead t. Right: the non-Markovian graphical model.

ϵ̂
(t)
θ (xt | y) = ϵ

(t)
θ (xt | ∅) + γ · (ϵ(t)

θ (xt | y)− ϵ
(t)
θ (xt | ∅)). (2.24)

2.7. Denoising Diffusion Implicit Models
The work on Denoising Diffusion Implicit Models (DDIM) demonstrates that the forward

process in DDPM can be reformulated as a family of non-Markovian generative processes. The
resulting variational training objectives share a common surrogate objective, which aligns clo-
sely with the one used to train DDPM. This reformulation enables the use of non-Markovian
diffusion processes during inference with the pretrained DDPM model, allowing for signifi-
cantly shorter generative Markov chains that can be sampled in just a few steps. While this
improves sampling efficiency, it introduces a trade-off in sample quality.

Prediction of noise-free observations. We can obtain a denoised observation x̃t→0 from
any arbitrary intermediate state xt by simple isolating x0 in Equation (2.6) (Section 2.2)6.
The caveat is that instead of sampling ϵ ∼ N (0, I), we use the noise prediction given by the
pretrained denoiser network ϵ

(t)
θ at level t,

f
(t)
θ (xt) = xt −

√
1− αtϵ

(t)
θ (xt)√

αt

= x̃t→0. (2.25)

Using Bayes rule we obtain the following expression for the non-Markovian forward process,
illustrated in Figure 2.7:

qσ(xt−1 | xt, x0) = N (√αt−1x0 +
√

1− αt−1 − σ2
t ·

xt −
√

αtx0√
1− αt

, σ2
t I). (2.26)

Then, by replacing Equation (2.25) in Equation (2.26) we can compute qσ(xt−1 | xt, f
(t)
θ (xt))

and sample xt−1 by:

6 In DDIM paper they use αt = αt/αt−1 to avoid using βt, αt, and ᾱt (See Appendix C.2 in [16])

18

xt−1 = √αt−1x0 +
√

1− αt−1 − σ2
t ·

xt −
√

αtx0√
1− αt

+ σtϵt

xt−1 = √αt−1

(
xt −

√
1− αtϵ

(t)
θ (xt)√

αt

)
+
√

1− αt−1 − σ2
t

· ��
xt −���

√
αt ((��xt −�����√

1− αt ϵ
(t)
θ (xt))/���

√
αt)

�����√
1− αt

+ σtϵt

xt−1 = √αt−1

(
xt −

√
1− αtϵ

(t)
θ (xt)√

αt

)
︸ ︷︷ ︸

“predicted x0”

+
√

1− αt−1 − σ2
t · ϵ

(t)
θ (xt)︸ ︷︷ ︸

“direction pointing to xt”

+ σtϵt︸︷︷︸
random noise

.

(2.27)

Multiple generative processes are contained in Equation (2.27) depending of σ election.
Again, the main takeaway is that all share the same surrogate objective with DDPM, it is
possible to use the same denoiser model ϵ

(t)
θ without any additional training for different in-

ference processes. The stochasticity comes from ϵt ∼ N (0, , I), a Gaussian noise independent
of xt−1, and modulate by the noise scheduler.

1. The generative process, obtained by reversing Markovian forward process in DDPM,
can be derived from Equation (2.27) by using σt =

√
(1− αt−1)/(1− αt)

√
1− αt/αt−1

for all t.

2. A deterministic forward process arise when σt = 0, for all t, except for the initial noise.
The authors names this specific generative process as denoising diffusion implicit models
(DDIM).

Accelerated inference. With the possiblity to design non-Markovian forward processes
using the same pretrained model, the DDIM authors propose to accelerate the inference pro-
cess by skipping intermediate steps. Subset of latent variables {xτ1 , . . . , xτs} where τ is an
increasing subset sequence of [1, . . . , T] , of length S. We define a forward process over the
subset such that q(xτi

| x0) = N (√ατi
x0, (1−ατi

)I) matches the marginals, see left part of the
Figure 2.7. Therefore, we can accelerate the inference increasing the number of steps between
the sequence subset, and introducing a trade-off between sample quality and computational
cost in doing so.

Introducing the hyperparameter η ∈ R+ for control the sampling stochasticity from DDIM
(η = 0) to DDPM (η = 1) in Equation (2.27), and use subsequence τ of different length for
control the sample acceleration,

στi
(η) = η

√
(1− ατi−1)/(1− ατi

)
√

1− ατi
/ατi−1 . (2.28)

It is possible to produce samples with a similar quality of DDPM 1000 steps using 20− 100
DDIM steps by measuring the quality with the Fréchet inception distance (FID). This means
a speed ups of 10× to 100× over DDPM generation process [16]. In practice, DDIM is com-
monly used as a sampler and an efficient way to accelerate the sampling process, as utilized
in this thesis.

19

Sample consistency with DDIM. As a consequence of the deterministic forward process,
we have sample consistency. Given any arbitrary length τ , the image generated from the
initial sample step xT are fairly similar, in the DDIM authors words “it would appear that xT

alone would be an informative latent encoding of the image”. Hence, they suggest that high
level features of the images x0 are determined by the initial sample step xT .

The sample consistency property can be useful for inverse problems. For instance, in Figu-
re 2.8, given an input image (Pedro Pascal face) we can estimate the initial noise x̃t, and run
the generative process to recover the input. However, the input is not perfectly recovered,
the reason could be:

Figure 2.8: DDIM inversion example using 50 inference steps. A Pedro Pascal photo to
estimate the initial noise x̃T using DDIM with the pretrained model google/ddpm-celebahq-256 on
the celebrity faces dataset CelebaHQ. Then, the input is reconstructed using the estimated noise as
starter point. Below images are different results skpping the first n inference steps of the denoising
process.

• It is interesting that high level features are encoded by xT and doesn’t vary as long as
increase the number of steps to generate the final sample. However, the quality is better
as long as the length of the trajectory increase. Therefore, a trick to obtain a recovered
input with higher fidelity is to skip the first steps and start the denoising process from
there, avoiding higher feature modification.

• The estimation error is illustrate as a trade-off between denoising from the first step
that conserve face semantic but change higher features and skipping a set of denoiser
steps conserving semantic but with lower quality.

• External input not generated by the model are not guarantee to be recover given the
generative capacities of ϵθ. In the illustration, the input is external but is the generative
process is perform by a DDPM trained model on a dataset of celebrities faces.

20

https://huggingface.co/google/ddpm-celebahq-256

2.8. Summary
In summary, a typical diffusion model framework can be implemented as follows:

A forward process that consists of a Markovian chain of states {x}0:T that takes the origi-
nal image x0 and iteratively adds noise until getting isotropic Gaussian noise xT .

In the reverse, or backward process, a model learns how to gradually remove the noise to
recover the data structure. In most implementations model this denoising endeavour using
some U-net neural network architecture with attention modules.

The sequence of intermediate states provides a detailed roadmap when destroying the obser-
vation such as images and leaves a trail to the denoiser network to recover the input structure.
Therefore, the forward process acts in a self-supervised manner generating the labels for
the data itself.

It is possible to use a model to predict the noisy image directly, or indirectly via predicting
the noise, and then substracting from the state. Nevertheless, the core idea of the trai-
ning objective is to reduce the error between the noise prediction and the true
noise used to destroy the sample at a given step.

The noise used to destroy the structure in data is carefully handled by a deterministic fun-
ction called noise scheduler. It determines the variance schedule, β1, . . . , βT , or the specific
amount of noise injected in each timestamp t during the Markovian chain.

Finally, we have a model that can generate novel samples from the data distribution
by sampling from a standard normal distribution and then successively remove
noise.

21

3

Reinforcement Learning

Reinforcement learning (RL) [45] is all about the interaction between an agent and its
environment, where learning occurs through trial-and-error. The agent observes the current
state of the environment, takes actions based on these observations, and influences new pos-
sible state configurations while receiving rewards based on its actions. The primary objective
is to maximize cumulative rewards, which drives the agent’s sequence of decisions towards
achieving specific goals, such as escaping from a maze, winning an Atari Game [46], or de-
feating the world champion of Go [47]. But how does the agent learn to act effectively to
achieve its goal? RL algorithms are designed to maximize the total rewards obtained by the
agent, thereby guiding its actions towards these objectives.

In this chapter, we will introduce the essential concepts of RL required to implement these
agents. We will specifically focus on model-free RL, where the agent learns to act without
constructing a model of its environment, as opposed to model-based RL, which involves such
modeling. The goal is to design agents that learn to perform well solely by consuming expe-
riences from their environment. By understanding the fundamentals of designing such agents,
we will explore policy optimization methods, such as REINFORCE and PPO, which are used
to refine the agent’s behavior. Additionally, we will briefly discuss the use of reward models
and reinforcement learning from human feedback (RLHF).

With the knowledge gained from this chapter, we will be equipped to explore the connection
between RL and diffusion models in the next chapter. This will allow us to build agents based
on diffusion models that can generate enhanced samples aligned with the objectives specified
by reward models.

3.1. The Framework for Learning to Act
The starting point for designing agents that learn to act is the Markov Decision Pro-

cess (MDP) framework [45]. An MDP is a mathematical object that describes the interac-
tion between the agent and the environment. This interaction is characterized by a tuple
⟨S,A, P, R, ρ0, γ⟩, where:

1. S, state space, set of possible states in the environment.

2. A, action space, set of possible actions available to the agent.

22

https://arxiv.org/abs/1312.5602
https://deepmind.google/technologies/alphago/
https://deepmind.google/technologies/alphago/

3. P : S ×A → ∆(S), transition probability distribution, which gives the probability
of the environment for transitioning to a new state st+1 with a reward rt given the
current state st and action at.

4. R : S × A → R, reward function, which provides a scalar feedback signal rt (aka
reward) to the agent after taking an action at and reaching the subsequent state st+1.

5. ρ0, initial state distribution, which determines the probability of the agent starting
in a particular state.

6. γ ∈ [0, 1] is the discount factor, which determines the importance of future rewards.

z
Agent

Environment

reward actionstate

Figure 3.1: Left: A loop representation of a Markov Decision Process (MDP). Right: An unrolled
MDP depecting an episodic case with a finite horizon T and a parameterized policy πθ.

Markov Decision Processes generate sequences of state-action pairs, or trajectories τ , starting
from an initial state s0 ∼ ρ0. The agent’s behavior is determined by a policy π : S → ∆(A),
which maps states to a probability distribution over actions. An action a0 ∼ π(s0) is cho-
sen, leading to the next state s1 according to the transition distribution P , and a reward
r0 = R(a0, s0) is received. This cycle repeats iteratively, with the agent selecting actions,
transitioning through states, and receiving rewards, as shown on the left side of Figure 3.1.
Thus, the trajectory τ encapsulates the dynamic sequence of state-action pairs resulting from
the agent’s interaction with its environment.

The process can continue indefinitely, known as an infinite horizon, or be confined to episodes
that end in the terminal state sT , referred to as episodic tasks, such as winning or losing a
game, as illustrated on the right side of Figure 3.1. It is important to note that the transition
to the next state depends only on the current state and action, not on the sequence of prior
events. This characteristic is known as the Markov property, which states that the future
and the past are conditionally independent, given the present (memoryless). In this work,
we focus on the episodic setting, where the trajectory begins at s0 and concludes at sT , with
a finite horizon T . Therefore, the trajectory τ is defined as τ = (s0, a0, . . . , sT −1, aT −1, sT),
summarizing the agent’s behavior throughout the episodic task.

In reinforcement learning, the primary goal is for the agent to develop a behavior that ma-
ximizes the expected return from its actions results within the environment. This concept of

23

maximization is formalized through the objective function JRL(θ), which aims to maximi-
ze the expected return over a collection of trajectories {τ (i)}1:N generated by the policy π,
commonly referred to as “policy rollouts”7. The objective function is defined as follows:

JRL = maximize
π

Eτ∼π [R(τ)] .

The return over a trajectory τ is defined as the accumulated discounted rewards of the
trajectory, R(τ) = ∑T −1

t=0 γtrt. The reward signals rt are the inmmediate effect of taking the
actions, and the return is the cumulative rewards obtained during the trajectory, considering
a discount factor γ, which gives more importance to the rewards of nearer actions than to
future rewards.

3.2. Policy Optimization
In reinforcement learning there are different approaches to solve the MDP formulated in

the previous section, which are summarized in Figure 3.2. The most common are value-based
methods and policy-based methods. In value-based methods, the agent learns which state is
more valuable and take action that leads to it. In policy-based methods, the agent learns a
policy that directly maps states to actions. In this work we will focus on the latter methods,
specifically in policy gradients.

Policy Optimization Dynamic Programming

DFO / Evolution Policy Gradients

Actor-Critic
Methods

Policy Iteration Value iteration

Q-Learning

modified
policy iteration

Figure 3.2: Illustration of a taxonomy of model-free RL algorithms. Source: Optimizing Expecta-
tions: From Deep Reinforcement Learning to Stochastic Computation Graphs by John, Schulman
(2016) [48].

Other approaches for finding a policy is by non solving the MDP, but by directly optimizing
the policy. This is the case of derivative free optimization (DFO), or evolutionary algorithms,
in which the policy is parameterized by a vector θ, and the agent explores the space of
parameters by searching. Nothing of the temporal structure and actions of the MDPs are
considered in this kind of solution.

Policy gradient methods provide a way to reduce reinforcement learning to stochastic gra-
dient descent, by providing a connection between how function approximation is solved in
supervised learning settings.
7 The term “rollout” is used to describe the process of simulating the agent’s behavior in the environment

by executing the policy π and observing the resulting trajectory τ .

24

https://rail.eecs.berkeley.edu/deeprlcourse/
https://rail.eecs.berkeley.edu/deeprlcourse/

3.2.1. Learning the Policy

The starting point is to think of trajectories as units of learning instead of individual
observations (i.e., actions). What dynamics generate a trajectory? Given a policy πθ, repre-
sented as a function with parameter θ ∈ Rd, whose input is a representation of the state and
whose output is action selection probabilities, we can deploy the agent into its environment
at an initial state s0 and observe its actions in inference mode or evaluation phase [49]. The
agent continuously promotes actions based on the current state st until the episode ends in
a terminal state, when t = T . At this point, we can determine if the goal was accomplished,
such as winning the ATARI Pong game, or generating aesthetically pleasing samples from a
diffusion model. The returns are the scalar value that assets perfomance whether we have
achieved the ultimate goal, effectively acting as a “proxy” of a label for the overall trajectory.
Thus, the trajectory serves as our unit of learning, and the remaining task is to establish the
feedback mechanism for the learning phase.

Intuitivelly, we want to collect the trajectories and make the good trajectories and actions
more probable, and push the actions towards betters actions.

Mathematically, we aim to perform stochastic optimization to learn the agent’s parameters.
This involves obtaining gradient information from sample trajectories, with performance as-
sessed by a scalar-value function (i.e. reward). The optimization is stochastic because both
the agent and the environment contain elements of randomness, meaning we can only compu-
te estimates of the gradient. Crucially, we are estimating the gradient of the expected return
with respect to the policy parameters. To address this, we employ Monte Carlo Gradient
Estimation [50], specifically using the score function method. From a machine learning pers-
pective, this involves dealing with the stochasticity of the gradient estimates, ĝ, and using
gradient ascent algorithms to update the policy parameters based on these estimates, along
with a learning rate α to control the step size of the optimization process,

θ ← θ + αĝN . (3.1)

3.2.2. Gradient Estimation via Score Function

The gradient estimation can be obtained using the score function gradient estimator. Let’s
introduce the following probability objective F , defined in the ambient space X ∈ Rn and
with parameters θ ∈ Rn,

F(θ) =
∫

X
p(x; θ)f(x) dx = Ep(x;θ)

[
f(x)

]
. (3.2)

Here, f is a scalar-valued function, similar to how the reward is represented in the reinforce-
ment learning setting. The score function is the derivative of the log probability distribution
∇θ log p(x; θ) with respect to its parameters θ. We can use the following identity to establish
a connection between the score function and the probability distribution p(x; θ),

∇θ log p(x; θ) = ∇θp(x; θ)
p(x; θ)

p(x; θ)∇θ log p(x; θ) = ∇θp(x; θ).
(3.3)

25

https://en.wikipedia.org/wiki/Ambient_space_(mathematics)

Therefore, taking the gradient of the objective F(θ) with respect to the the parameter θ, we
have

g = ∇θEp(x;θ)[f(x)] = ∇θ

∫
X

p(x; θ)f(x)dx

=
∫

X
∇θ p(x; θ)f(x)dx

=
∫

X
p(x; θ)∇θ log p(x; θ)f(x)dx

= Ep(x;θ)
[
f(x)∇θ log p(x; θ)

]
.

(3.4)

The use of the log-derivative rule of Equation (3.3) to introduce the score function in Equa-
tion 3.4 is also known as the log-derivative trick. Now, we can compute an estimate of the
gradient, ĝ, using Monte Carlo estimation with samples from the distribution p(x; θ) as fo-
llows:

ĝN = 1
N

N∑
i=1

f
(
x̂(i)

)
∇θ log p

(
x̂(i); θ

)
. (3.5)

We draw N samples x̂ ∼ p(x; θ), compute the gradient of the log-probability for each sample,
and multiply by the scalar-valued function f evaluated at the sample. The average of these
terms is an unbiased estimate of the gradient of the objective g, which we can use for gradient
ascent using Equation (3.1).

There are two important points to mention about Equation (3.5).

1. The function f can be any arbitrary function we can evaluate on x. Even if f is non-
differentiable with respect to θ, it can still be used to compute the gradient estimation
ĝ.

2. The expectation of the score function is zero, meaning that the gradient estimator is
unbiased

Ep(x;θ)
[
∇θ log p(x; θ)

]
=
∫

X
p(x; θ)∇θ log p(x; θ)dx

=
∫

X
p(x; θ)∇θp(x; θ)

p(x; θ) dx

=
∫

X
∇θp(x; θ)dx

= ∇θ

∫
X

p(x; θ)dx = ∇θ1 = 0.

(3.6)

The last point is particularly useful because we can replace f with a shifted version given a
constant β, and still obtain an unbiased estimate of the gradient, which can be beneficial for
the optimization task:

ĝN = Ep(xθ)
[
(f(x)− β)∇θ log p(x; θ)

]
. (3.7)

Using a baseline function to determine β, that does not depend on the parameter θ, can
reduce the variance of the estimator [50]. The baseline function, which satisfies the property

26

https://blog.shakirm.com/2015/11/machine-learning-trick-of-the-day-5-log-derivative-trick/

in Equation (3.6), can be any function independent of θ. When a baseline is chosen to be
close to the scalar-valued function f , it effectively reduces the variance of the estimator. This
reduction in variance helps stabilize the updates by minimizing fluctuations in the gradients
estimates, leading to more reliable and efficient learning.

3.3. Vanilla Policy Gradient, aka REINFORCE
The REINFORCE algorithm [51] translates the previous derivation of gradient estimation

via the score function into reinforcement learning terminology. This is the earliest member of
the Policy Gradient family (Figure 3.2), where the objective is to maximize the expected re-
turn of the trajectory τ under a policy π parameterized by θ (e.g., a neural network). At each
state st, the agent takes an action at according to the policy π, which generates a probabi-
lity distribution over actions π(at | st; θ). Here, we will use the notation πθ(·) instead of π(·; θ).

As we mentioned in previous section, a trajectory τ represents the sequence of state-action
pairs resulting from the agent’s interaction with its environment. From the initial state
s0 to the terminal state sT , the trajectory τ is a sequence of states and actions, τ =
(s0, a0, . . . , sT −1, aT −1, sT), which describes how the agent acts during the episodic task. Let
pθ(τ) be the probability of obtaining the trajectory under the policy πθ.

We thus have a distribution of trajectories. Remember that the trajectory τ is the learning
unit for our policy πθ, as it tells us if the consequences of each action led to a favorable
final outcome on the terminal state sT (e.g. win/lose). The goal is to maximize the exptected
return of the trajectories on average, and the return R(τ) could be the cumulative rewards
obtained during the episode or the discounted rewards. The expected return is given by the
following expression:

J (θ)RL = Eτ∼pθ(τ) [R(τ)] . (3.8)

This is the objective we want to maximize, which is a particular case of Equation (3.2)
with the scalar-valued function f(x) = R(τ), representing the return of the trajectory. Let’s
use the techniques from the previous section to compute the gradient of the objective in
Equation (3.8) with respect to the policy parameter θ. The gradient estimation is given by:

∇θEτ∼pθ(τ)[R(τ)] = Eτ∼pθ(τ) [R(τ)∇θ log pθ(τ)] . (3.9)

What is pθ(τ) exactly? Given that the trajectory is a sequence of states and actions, and
assuming the Markov property imposed by the MDP, the probability of the trajectory is
defined as follows:

pθ(τ) = pθ(s0, a0, s1, a1, . . . , sT −1, aT −1, sT)

= ρ(s0)
T −1∏
t=0

πθ(at | st) P (st+1, rt |at, st).
(3.10)

In the above expression, ρ(s0) denotes the distribution of initial states, while P (st+1, rt | at, st)
represents the transition model, which updates the environment context based on the action
at taken in the current state st. A crucial step in estimating the gradient is computing the

27

logarithm of the trajectory probability. Following this, we calculate the gradient with respect
to the policy parameter θ,

log pθ(τ) = log ρ(s0) +
T −1∑
t=0

log πθ(at | st) + log P (st+1, rt | at, st)

∇θ log pθ(τ) = log �����∇θρ(s0) +
T −1∑
t=0
∇θ log πθ(at | st) + log

(((((((((((
∇θP (st+1, rt | at, st)

∇θ log pθ(τ) =
T −1∑
t=0
∇θ log πθ(at | st).

(3.11)

The distribution of initial states and the transition probabilities are disregarded because
they are independent of θ, thereby simplifying significantly the computations needed for gra-
dient estimation. By substituting the final expression from Equation (3.11) into the gradient
estimation of the objective in Equation (3.9), we derive the REINFORCE gradient estimator

g = ∇θEτ∼pθ(τ)[R(τ)]

= Eτ∼pθ(τ)

[
T −1∑
t=0
∇θ log πθ(at | st)R(τ)

]

ĝ = 1
| Dπθ |

∑
τ∈Dπθ

[
T −1∑
t=0
∇θ log πθ(at | st)R(τ)

]
.

(3.12)

The core concept is to collect a set of trajectories Dπθ under the policy πθ and update the
policy parameters θ to increase the likelihood of high-reward trajectories while decreasing
the likelihood of low-reward ones, as illustrated in Figure 3.3. This trial-and-error learning
approach, described in Algorithm 3, repeats this process over multiple iterations, reinforcing
successful trajectories and discouraging unsuccessful ones, thus encoding the agent’s behavior
in its parameters.

Reducing the variance of the estimator. Using two techniques, reward-to-go and base-
line, we can improve the quality of the gradient estimator in Equation (3.12).

Algorithm 3 Vanilla Policy Gradient, aka REINFORCE
Initialize policy πθ, set learning rate α
for iteration = 0, 1, 2, . . . , N do

Collect a set of trajectories Dπθ = {τ (i)} by sampling from the current policy πθ

Calculate the returns R(τ) for each trajectory τ ∈ Dπθ

Update the policy: θ ← θ + α

(
1

|Dπθ |
∑

τ∈Dπθ

[∑T −1
t=0 ∇θ log πθ(at | st)R(τ)

])
end for

The reward-to-go technique is a simple trick that can reduce the variance of the gradient
estimator by taking advantage of the temporal structure of the problem. The idea is to
weight the gradient of the log-probability of an action at by the sum of rewards from the
current timestep t to the end of the trajectory T − 1. This way, the gradient of the log-

28

https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html#don-t-let-the-past-distract-you

Figure 3.3: Illustration of three simulated trajectories, denoted as {τ (i)} where i = (1, 2, 3),
traversing the parametric space θ ∈ R2 under the policy πθ. Each trajectory is marked with a colored
symbol (cross, check) representing its goodness based on the reward function R(τ (i)). Source: Policy
Gradients Lecture, Deep Reinforcement Learning Course by Sergey Levine.

probability of an action is only weighted by the consequence of that action on the future
rewards, removing terms that do not depend on at. Let’s introduce this technique by using
the gradient estimation in Equation (3.12) and replacing R(τ) naively using the sum of total
trajectory reward8

ĝ = 1
| Dπθ |

∑
τ∈Dπθ

[
T −1∑
t=0
∇θ log πθ(at | st)

T −1∑
t=0

rt

]

= 1
| Dπθ |

∑
τ∈Dπθ

 T −1∑
t=0
∇θ log πθ(at | st)

(
�
�
��

t−1∑
t=0

rt +
T −1∑
t′=t

rt′

)
= 1
| Dπθ |

∑
τ∈Dπθ

[
T −1∑
t=0
∇θ log πθ(at | st)

T −1∑
t′=t

rt′

]
.

(3.13)

As we saw at the end of Section 3.2.2, it is possible to reduce the variance of the gradient
estimator by using a baseline function, b(st), without biasing the estimator. However, is the
expectation of the score still unbiased in this setting?

∇θEτ∼pθ(τ) = Eτ∼pθ(τ)

[
T −1∑
t=0
∇θ log πθ(at|st)

(
T −1∑
t′=t

rt′ − b(st′)
)]

. (3.14)

The proof follows a similar argument as shown in Equation (3.6), with the key difference being
that the expectation is taken with respect pθ(τ), which is a sequence of random variables.
By leveraging the linearity of the expectation property, we can focus on a single term at step
t of Equation (3.14) to demonstrate that the baseline does not affect the expectation of the
score function. We split the trajectory sequence τ at step t into: τ0:t and τt+1:T −1, and then

8 The same applies for discounted returns or other kind of returns R(τ).

29

https://rail.eecs.berkeley.edu/deeprlcourse/
https://rail.eecs.berkeley.edu/deeprlcourse/

expand it into state-action pairs9

Eτ∼pθ(τ)
[
∇θ log πθ(at|st)b(st)

]
= Eτ(0:t)

[
Eτ(t+1:T −1) [∇θ log πθ(at|st)b(st)]

]
= Es0:t,a0:t−1

[
Est+1:T ,at:T −1 [∇θ log πθ(at|st)b(st)]

]
= Es0:t,a0:t−1

[
b(st)Est+1:T ,at:T −1 [∇θ log πθ(at|st)]

]
= Es0:t,a0:t−1

[
b(st)Eat [∇θ log πθ(at|st)]

]
= Es0:t,a0:t−1

[
b(st)∇θEat [log πθ(at|st)]

]
= Es0:t,a0:t−1

[
b(st)∇θ1

]
= 0.

(3.15)

We can remove irrelevant variables from the expectation over the portion of the trajectory
τ(t+1):(T −1) because we are focusing on the term at step t. The only relevant variable is at,
and the expectation Eat log πθ(at | st) is 1. Given that the gradient with respect to θ of a
constant is zero, and b(st) is multiplying it, the effect of the baseline on the expectation is
nullified. This argument can be applied to any other term in the sequence due to the linearity
of the expectation. Therefore, we have proven that using a baseline also keeps the gradient
estimator unbiased in the policy gradient setting.

Choosing an appropriate baseline is a critical decision in reinforcement learning [52], as
different methods can offer unique strengths and limitations. Common baselines include fixed
values, moving averages, and learned value functions.

1. Constant baseline: b = E [R(τ)] ≈ 1
m

∑m
i=1 R(τ (i)).

2. Optimal constant baseline: b =
∑

i
(∇θ log Pθ(τ (i)))2R(τ (i))∑

i
(∇θ log Pθ(τ (i)))2 .

3. Time-dependent baseline: bt = 1
m

∑m
i=1

∑T −1
k=t R(s(i)

k , a
(i)
k).

4. State-dependent expected return: b(st) = E [rt + rt+1 + rt+2 + · · ·+ rT −1] = V π(st).

The control variates method can significantly reduce estimator variance, enhancing the sta-
bility and performance of RL algorithms [53]. Despite the nuances and differences among
baseline methods, the primary concept is the advantage, shown in Equation (3.16), which
refers to increase log probabilities of action at proportionally to how much its returns, rt, are
better than the expected return under the current policy, which is determined by the value
function V π(st)

Eτ∼pθ(τ)

[
T −1∑
t=0
∇θ log πθ(at|st)

(
T −1∑
t′=t

R(at′ , st′)− V π(st)︸ ︷︷ ︸
advantage

)]
. (3.16)

What remains is how do we get estimates for V π in practice.
9 A criterion used when splitting the trajectory is that state-action pairs are formed given that st is a

consequence of action at−1, and taking action at results in state st+1. Notice both expectations from step
1 and 2 in Equation (3.15).

30

3.4. Actor-Critic Methods
Actor-Critic referred to learn concurrently models for the policy and the value function.

This methods are more data efficient because they amortize the samples collected Dπθ used
for Monte Carlo estimations while reducing the variance of the gradient estimator. The actor
controls how the agent behaves—by updating the policy parameters θ as we see in previous
sections—whereas the critic measures how good the taken action is, and could be a state-
value (V) or action-value (Q)10 function. Notice that we are combining in some way both
approaches for solving MDPs as is depicted in Figure 3.2.

We are introducing a new function approximator for the value function, Vϕ(st), where ϕ are
the parameters of the value function

Eτ∼pθ(τ)

[
T −1∑
t=0
∇θ log πθ(at|st)

(
T −1∑
t′=t

R(at′ , st′)− V π
ϕ (st)

)]
. (3.17)

The objective is to minimize the mean squared error (MSE) between the estimated value and
the empirical return, i.e. we are regress the value against empirical return in a supervised
learning fashion

ϕ← arg min
ϕ

1
| Dπθ |

∑
τ∈Dπθ

T −1∑
t=0

((T −1∑
t′=t

R(at′ , st′)
)
− Vϕ(st)

)2 . (3.18)

Algorithm 4 describes the steps for a REINFORCE variant with advantage , which combines
the actor-critic approach with the traditioinoal REINFORCE algorithm. More components
were introduced and can influence in the performance when the algorithm is implemented.
For instance, the policy and value networks can share parameters or not. A useful study
that make abalations and suggestions to pay attention when these algorithms are implemen-
ted is What Matters In On-Policy Reinforcement Learning? A Large-Scale Empirical Study
(Andrychowicz, 2020 [54]).

Algorithm 4 REINFORCE with advantage
Initialize policy πθ

Initialize value Vϕ

Set learning rates αa and αc

for iteration = 0, 1, 2, . . . , N do
Collect a set of trajectories Dπθ = {τ (i)} by sampling from the current policy πθ

Calculate the returns R(τ) for each trajectory τ ∈ Dπθ

Update the policy:
θ ← θ + αa

(
1

|Dπθ |
∑

τ∈Dπθ

[∑T −1
t=0 ∇θ log πθ(at | st)

(∑T −1
t′=t R(at′ , st′)− V πθ

ϕ (st)
)])

Update the value:
ϕ← ϕ + αc

(
1

|Dπθ |
∑

τ∈Dπθ

[∑T −1
t=0

(∑T −1
t′=t R(at′ , st′)− V πθ

ϕ (st)
)
∇ϕV πθ

ϕ (st)
])

end for

10 Action-value function (Q) refers to the value of take action a on state s under a policy π.

31

3.5. Improving Sample Efficiency: Behavior and Tar-
get Policies

The main drawback of the REINFORCE algorithm is its sample complexity. Once we roll
out the policy and collect the data, we cannot reuse it after the policy has been updated.
We must collect new data following the target policy πθ that we want to update. In RL li-
terature, this is referred to as on-policy learning. Reusing the data D ∼ πθold to update the
current policy πθ would significantly improve sample efficiency11. However, once we update
the policy, the previously collected data is no longer valid because the policy has changed.
The distribution from which the data was sampled is now πθold .

Using behavior data learned from another policy, known as a behavior policy, to update the
current policy is referred to as off-policy learning in RL literature. Let’s introduce a behavior
policy in the RL objective defined in Equation (3.8) using importance sampling (See Mckay
book, Section 29.2 [55]):

∇θJ (θ) = Eτ∼pθ(τ)

[
∇θ log pθ(τ)R(τ)

]

= Eτ∼pθ(τ)

[
∇θpθ(τ)

pθ(τ) R(τ)
]

=
∫

X
pθ(τ)∇θpθ(τ)

pθ(τ) R(τ)dτ

=
∫

X

pθold(τ)
pθold(τ)�

��pθ(τ)∇θpθ(τ)
��pθ (τ) R(τ)dτ

=
∫

X
pθold(τ)∇θpθ(τ)

pθold(τ) R(τ)dτ

= Eτ∼pθold (τ)

[
∇θpθ(τ)
pθold(τ) R(τ)

]
.

(3.19)

We derive a new objective that is more general and reconciles both on-policy and off-policy
learning in the importance weight, or importance correction (pθ(τ)/pθold(τ))

JIS(θ) = Eτ∼pθold (τ)

[
pθ(τ)

pθold(τ)R(τ)
]
. (3.20)

We can assume that the data collected from the behavior policy is not so different from the
target policy, and use first order approximation to update the policy

∇θJ (θ)|θ=θold = Eτ∼pθold (τ)

[
∇θpθ(τ)|θ=θold

pθold(τ) R(τ)
]

= Eτ∼pθold (τ)
[
∇θ log pθ(τ)|θ=θoldR(τ)

]
.

(3.21)

The problem with first order approximation. The gradient estimation it is good only

11 This issue also arises when attempting to transfer behavior from one task to another using existing data.

32

https://timvieira.github.io/blog/post/2014/12/21/importance-sampling/

in the inmediate vecinity, because is a local approximation of the function. Hence, the step
size is crucial to avoid a policy degradation, a situation where the policy is updated with a
bad gradient, it is difficult to recover from this situation. Given that the data is collected by
the policy, the feedback loop can be dangerous for the training stability.

3.6. Trust Region and Proximal Policy Optimization
Trust Region Policy Optimization (TRPO) [56] allows us to avoid the policy degradation

given bad updates. The idea is to define a trust region in which update the policy parameter
is safer and balancing the policy improvement with stability

Surrogate loss: max
πθ

L(π) = Eπθold

[
πθ(a | s)

πθold(a | s)Aπθold (s, a)
]

(3.22)

Constraint: Eπold [DKL(πθ||πθold)] ≤ ϵ.

Increase data efficiency while avoiding step size problems in updating parameters, compared
to traditional policy gradients (PG). The main idea is to improve a surrogate objective signi-
ficantly while making minimal changes to the policy. These minimal changes are quantified
using the KL divergence between action distributions. The trust region is the area where the
new policy remains close to the old one, guarantee training stability.

Proximal Policy Optimization (PPO) [57] is about simplify TRPO in order to (i) be easier
to implement avoiding solve the second order optimization in Equation (3.22), (ii) taking
advantage of first order optimizer such as ADAM [58], and (iii) be more compatible with
neural networks operations such as dropout that are incompatible with TRPO setting.

Let’s rename the importance weights as the probability ratio r:

rt(θ) = πθ(at | st)
πθold(at | st)

. (3.23)

The strategy is to keep this ratio closer to 1. We can create a trust region via clipping the
ratio to force within a range [1− ϵ, 1 + ϵ],

LCLIP(θ) = Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
. (3.24)

For a walkthrough implementation that cover important details avoid in the paper and that
impact significatnly in the performance, review the work “The 37 implementation details of
proximal policy optimization” (Huang, 2023 [59]).

3.7. Reinforcement Learning From Human Feedback
Reinforcement learning from human feedback (RLHF) is introducing the human within

the reinforcement loop, providing the agent the necessary feedback to learn the intended
behavior. The idea is learning a reward model that capture the behavior from humans, and
use the model to provide the feedback in asynchrounous way, which means that during agent

33

Algorithm 5 Proximal Policy Optimization (PPO), Actor-Critic Style
Initialize policy parameter θ, set learning rate α
Initialize value Vϕ

for iteration = 0, 1, 2, . . . N do
for actor = 0, 1, 2, . . . M do

Run policy πθold in environment for T timesteps
Compute advantage estimates Â0, . . . , ÂT −1

end for
Optimize surrogate LCLIP wrt θ (Equation 3.24), with K epochs and minibatch size
M ≤ NT

end for

training it is not require to wait the human for a respond with the reward12; making fully
compatible and scalable in the model-free and online learning setting studied in this chapter.

A reward function elicit changes in the system behavior, that is the whole point of reinforce-
ment learning. By trial-and-error, figuring out what is the best behavior that maximize the
reward, and by that means, the intended goal. However, the reward function is a key com-
ponent in the RL setting and is not always easy to design it. Outside video games with clear
rules and scenarios, real world is highly complex, erratic, and dificult to simulate. Therefo-
re, more than sometimes align the intended behavior with the reward function is a difficult
task. Beyond the realm of RL, use human feedback in this setting provide a useful way to
align matching distribution learning systems with the human preferences. Perhaps, the most
significant example is in large language models, in which RLHF can mute the behavior of an
inherent autocompletion system into a more instructional and conversationl behavior [2].

Agent Environment

Objective

Dynamics

Action

State

Reward

Agent

Policy

Reward Model

Action Reward

Labeler

Environment

Dynamics

Label

Query

Action

State

(a) The standard RL setting (b) RLHF with reward modeling

Figure 3.4: Left: A standard RL settings. Right: A RLHF setting considering reward modeling.
Source: A Survey of Reinforcement Learning from Human Feedback (Kaufmann et al., 2024)
[23]. Notice how the reward model is decoupled from the environment and the relation highlighted
between the reward model and an oracle (i.e. labeler) who provides a label to a given query.

Training the reward model. Translate the human feedback from a collection of trajectory
samples into a reward signal. However, the human feedback can be noisy, inconsistent, and

12 A static reward model is equivalent to extract information in a off-policy fashion. But, the reward model
can update dynamically with the agent, taking new information from the on-policy trajectoriesa.

34

https://arxiv.org/abs/2312.14925
https://arxiv.org/abs/2312.14925

sparse. So, instead of using the human feedback directly, it is used a reward model that learns
via an utility function that design to consume different types of feedbacks. For instance, a
common setting is a binary comparison between trajectories where a utilify function is learned
from the human preference between both using the Bradley-Terry model [60]

P (τ1 ≻ τ2) = 1
1 + exp(R(τ2)−R(τ1))

.

given a collection of trajectories D where ≻ means “preferred to” and R(τ) correponds to the
utility (i.e. return in the context of RL) and it could be between an intermediate feature maps
that allows to the human gives feedback in a useful way but provide a scalar signal easily to
digest by the agent. The reward model can be trained using supervised learning, imitation
learning, or inverse reinforcement learning. The reward model can be used in different ways,
such as reward shaping, reward augmentation, or reward correction

max
ϕ

N∏
i=1

1
1 + exp (1 + exp(RΦ)) . (3.25)

Several human feedback types can distill into rewards models such as critique, comparisons,
inter-temporal feedback, proxy rewards, social behavior, improvements, and natural language
[23]. Specifically, for visual perception tasks, some interesting research lines are leveraging
general human knowledge from large pretrained visual language models to provide feedback
to the agent if it achieve success (i.e. success detectors) on the task in which is reinforced
[61]. The main point is that once we have a reward model we can move from a standard
RL setting to a RLHF setting, as shown in Figure 3.4. The reward model requires a labeler
to encode the human preferences into the model weights, but once it is trained, the human
preferences can be use asynchrounous and continuosly to provide feedback.

3.8. Summary
In this chapter, we have explored the foundational concepts and methodologies in reinfor-

cement learning (RL). The core of RL is the interaction between an agent and its environment,
where learning occurs through trial-and-error. The agent’s goal is to maximize cumulative
rewards by taking actions based on its observations, influencing the state of the environment,
and receiving rewards.

We began by introducing the Markov Decision Process (MDP), a mathematical framework
that describes the interaction between the agent and the environment. An MDP is characte-
rized by a state space, action space, transition probabilities, and reward functions. The agent
aims to learn a policy that maximizes the expected return, which is the sum of discounted
rewards over time.

We then delved into policy optimization methods, focusing on policy gradients, a popular
approach in model-free RL. Policy gradient methods reduce RL to a problem of stochastic
gradient descent, leveraging trajectories of state-action pairs to update the policy parame-
ters. We discussed techniques such as the reward-to-go and baselines to reduce the variance
of gradient estimators, thus improving learning efficiency.

35

In conclusion, reinforcement learning offers a powerful framework for designing intelligent
agents capable of learning optimal behaviors through interaction with their environment. By
understanding and implementing the principles and techniques covered in this chapter, one
can develop sophisticated RL agents for a wide range of applications

36

4

Extending Reinforcement Learning in
Diffusion Models

Once a diffusion model has been trained, it can generate samples starting solely from
noise. The careful process of learning a diffusion chain that removes noise while preserving
the structure of the training observations is crucial for producing high-quality samples. The
model must be trained using a significant amount of observations at various noise levels
managed by the noise scheduler. Ultimately, this results in a multi-step inference process
that relies on noise to generate novel samples. As we explored in Chapter 2, this generation
process can be modified to exert control over it and even accelerated by skipping steps in the
diffusion chain, though this may come at the cost of sample quality.

How does this entire inference process relate to the reinforcement learning concepts of agent
and environment discussed in Chapter 3? What would be the purpose of an agent learning
a policy in the context of the generation process? How should we understand the objectives
and rewards necessary for learning such a policy? These questions will be addressed in this
chapter, beginning with an exploration of the intersection between reinforcement learning
and pretrained diffusion models. To this end, we will base our approach on the formulation
of the diffusion model as a sequential decision-making process, as established in the work
Training Diffusion Models with Reinforcement Learning (Black et al. [1]).

Next, we will specifically examine two reward functions to contextualize them within the
sample generation process of a diffusion model. In particular, we will investigate how noise
state trajectories lead to a final sample and how the reward responds at these intermediate
states. To do this, we will conduct an empirical analysis of reward signals, evaluating their
impact on the intermediate steps of the diffusion process and deriving insights for optimizing
generative outcomes.

4.1. Diffusion Model as Sequential Decision-making
Process

Let’s consider as a starting point a pretrained diffusion model using the DDPM metho-
dology [15] (Section 2.1), from which we can sample via the backward process to generate
samples from noise. Recall that the initial state of this Markov process is obtained by sam-

37

Figure 4.1: Equivalence of the backward process of a diffusion model as a sequential
decision-making process. The initial state distribution of this MDP corresponds to an isotropic
Gaussian, ρ0(s0) ∼ N (0, I), where we assign the noise instance to the initial state s0 := xT . The
agent follows a sequence of decisions at determined by the policy πθ(at | st) := pθ(xT −t−1 | xT −t),
moving from a noisy state xT −t to a less noisy one xT −t−1 until it reaches to the sample x0, illustated
as the terminal state sT in the diagram. This process together with the sample x0 generates the
whole denoising trajectory τ = {xT , xT −1, xT −2, . . . , x0}, which is associated with a reward. In the
case of DDPO, the reward is considered only for the final sample r(x0).

pling from an isotropic Gaussian distribution xT ∼ N (0, I), corresponding to the initial noise
in the backward process, as illustrated at the beginning of Figure 4.1, where the sample ge-
neration starts. A neural network pθ is then responsible for the denoising process, estimating
either xt−1 directly or indirectly by estimating the noise ϵ̂t used at each step t to corrupt
the structure. In either case, once the process is completed, it produces a trajectory of states
from the initial noise to the final sample τ = {xT , xT −1, . . . , x1, x0}.

Figure 4.1 also illustrates the equivalence of the backward process to a sequential decision-
making process, where we establish a correspondence with reinforcement learning concepts to
define the MDP described in Section 3.1. The initial state distribution ρ0 is the simple prior
distribution s0 ∼ N (0, I), from which we learned a process or sampler to transform it into
our target distribution q(x0), a process modeled and learned through DDPM (Section 2.1).
Recall that we assume a pre-trained diffusion model as our starting point. Therefore, in this
MDP, the initial state is the Gaussian noise s0 := xT , and the diffusion process acts as the
policy controlling the agent’s actions, πθ(at, st) := pθ(xT −t−1 | xT −t). In this context, the
policy describes how an agent—through its denoising actions at—moves from a noisy state
to a less noisy one (i.e at : xT −t → xT −t−1) until reaching the final sample x0, or the terminal
state sT .

Next, we formalize the MDP: δt represents a Dirac delta where the entire probability mass
is concentrated at time t, and c refers to a signal that conditions the diffusion model, such
as a label or prompt. This formulation is general, and it’s possible to set c = ∅ to specify an

38

unconditional model, as shown in Figure 4.1.

st = (c, T − t, xT −t) π(at | st) = pθ(xT −t−1 | xT −t, c) P (st+1 | st, at) = (δc, δT −t−1, δxT −t−1)

at = xT −t−1 ρ0(s0) = (p(c), δT ,N (0, I)) R(st, at) =

r(xT −t, c) if t = T

0 otherwise

The purpose of establishing the MDP is to align the pretrained diffusion model with downs-
tream tasks represented by a reward model. In this RL framework, we can directly optimize
the diffusion model parameters θ via policy gradient estimation to maximize any arbitrary
scalar reward signal over the sample x0. This approach is known as Denoising Diffusion Policy
Optimization (DDPO) [1]. In other words, the agent learns how to denoise trajectories to
maximize the expected reward using the following denoising diffusion RL objective (DDRL),

JDDRL(θ) = Ec∼p(c),x0∼pθ(x0|c)[r(x0, c)]. (4.1)

A relevant aspect of this formulation is that the reward R(st, at) only provides information
about the final sample x0, giving zero reward to each non-terminal state, or xt where t ̸= 0
as it is depicted in Figure 4.1. Additionally, DDPO-based methods propose two ways to
compute the gradients: (i) via a score function method, denoted as DDPOSF, also known as
the REINFORCE method derived in Section 3.3,

(DDPOSF) ∇θJ = ExT :0∼pθ

[
T∑

t=0
∇θ log pθ(xt−1|xt)r(x0)

]
. (4.2)

and (ii) using importance sampling to optimize a surrogate objective [56, 57]. This second
approach, denoted DDPOIS in Equation (4.3), is more data efficient because is allowing to
update a policy multiple times with the same set of trajectories collected. Given this reasons,
in this work any time we use or refer to DDPO without specifying, it is DDPO with impor-
tance sampling13.

(DDPOIS) ∇θJ = ExT :0∼pθold

[
T∑

t=0

pθ(xt−1|xt)
pθold(xt−1|xt)

∇θ log pθ(xt−1|xt)r(x0)
]
. (4.3)

There are some points to consider when implement Equation (4.3):

1. For training compatibility with automatic differentiation softwares such as PyTorch or
JAX, we transform the RL objective into a loss function LIS to minimize the negative
of the objective,

LIS(θ) = ExT :0∼pθold

[
−
(

T∑
t=0

pθ(xt−1|xt)
pθold(xt−1|xt)

log pθ(xt−1 | xt)
)

r(x0)
]

.

13 Also known as PPO algorithm [57], see Section 3.6.

39

2. For numerical stability, the probability ratio rt is computed as follows:

rt(θ) = pθ(xt−1|xt)
pθold(xt−1|xt)

rt(θ) = exp(log pθ(xt−1|xt)− log pθold(xt−1|xt)).

3. For training stability, proximal policy optimization (PPO) implements the above objecti-
ve by clipping the ratios to avoid large changes in the policy parameters (see Section 3.6),

LCLIP
IS (θ) =

T∑
t=0

Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
. (4.4)

4. Note that in the previous point, the raw rewards r(x0) are not used directly. Instead, Â,
a standardized version of the rewards within the batch, is applied. This standardization
helps prevent the gradient estimation from being skewed by the arbitrary magnitude of
the reward function.

5. Finally, ∑T
t=0 log pθ is straightforward to compute, given that pθ is a conditional Gaus-

sian distribution with its mean parameterized by θ. Using an automatic differentiation
framework, we can efficiently compute and accumulate ∑T

t=0∇θ log pθ(xt−1 | xt.).

Reward Finetuning using DDPO. Figure 4.2 illustrates the “post-training” process14 for
the diffusion model based on a reward signal, defined by a reward model R, referred to as re-
ward finetuning. All previous components are integrated so that the diffusion model becomes
an agent that learns to denoise trajectories in order to maximize the expected reward. In the
diagram, we use only the forward indexing of the MDP from t = 0, . . . T , to avoid confusion
with the reverse indexing of the diffusion backward process steps.

Since this problem is approached through model-free reinforcement learning—where we do
not aim to learn a model of the environment—–the goal is to maximize the policy (the
generation process) based solely on the experience of generating samples. This will allow us
to obtain samples that, on average, have a higher reward and are aligned with our objectives.
Therefore, the process is divided into two main stages:

1. Dataset Collection: Collect a dataset Dπθ of samples using the diffusion model as policy
rollouts. This involves recording the trajectories of states and obtaining the rewards
associated with the final sample x0 using a reward model R.

2. Reward Finetuning: use the dataset Dπθ to estimate gradients based on the collected
samples and use them to update the model parameters.

The diagram also shows the case where we decide to reuse the collected samples multiple
times instead of using them just once for a policy update (see diamond shape). It’s important
to consider that the dataset is inherently non-stationary since it comes from a policy whose
parameters are being continuously updated. When reusing samples, the dataset comes from
an older policy πθold , which can lead to policy degradation if the gradient estimate is not valid

14 In this work, “post-training” and “adjustment” process are used synonymously to refer to the model’s
parameter update process during finetuning.

40

Figure 4.2: Reward finetuning diagram using DDPO. The finetuning process occurs in two
stages: (i) collecting a dataset Dπθ of samples by using the diffusion model as policy rollouts, and
(ii) using Dπθ to estimate the gradient of the parameters ∇θJ , with objectives such as DDPOSF,
and applying a first-order optimization algorithm (e.g., gradient ascent) to update the model. Given
that the dataset originates from a non-stationary distribution (changing policy), if we want to reuse
the samples Dπθold to adjust the parameters more than once, we need to use the DDPOIS objective.

for an on-policy setup. For this reason, it’s crucial to use DDPOIS in these cases to avoid the
issues discussed in Section 3.5.

Lastly, the reward model has so far been considered as a given, available for evaluating the
samples x0 and obtaining the rewards necessary to align the model’s sample generation with
a specific downstream task. The acquisition and role of the reward model follow the principles
outlined in Section 3.7 on RLHF, but also apply to any function. In the next section, we will
further explore the behavior of the reward and its mechanics within the sample generation
process. To study these mechanics, it is essential to instantiate a pretrained diffusion model
and a concrete reward model, allowing us to illustratively examine the key components driving
the reward finetuning process explained in this section.

4.2. Empirical Analysis on Reward Trajectory Dyna-
mics

Is the reward behavior informative during sample trajectories? In the previous
section, we observed that DDPO relies solely on the reward from the final sample. In this sec-
tion, we explore the potential of the reward signal from intermediate diffusion states, which
could provide valuable insights for extending the DDPO framework to utilize the reward
signal throughout the entire sample trajectory. This is crucial when applying the reward
function in the context of diffusion models, as it should effectively guide the agent to ma-
ximize the reward. We present an empirical analysis of the reward signal dynamics during
the sample generation process. To do so, we use the unconditional pretrained diffusion model

41

google/ddpm-celebahq-256 [15], trained on the CelebA-HQ dataset [62], to compile a set
of trajectory samples, denoted as So.

The 1000 observations in S0 comprises a summary of six intermediate states extracted from
each trajectory. We sampled from the model using a 40−step subsequence τ of the diffusion
chain using the DDIMScheduler [16], speeding up the sampling process over the original
diffusion chain of T = 1000 steps, as we explained in Section 2.7. To reduce the computatio-
nal cost, only six intermediate state of the subsequence τ are saved, and the equivalence of
this summary states xt̃ with the original DDPM steps are given in the following tuples: (t̃ =
0, t = 1000), (t̃ = 1, t = 975), (t̃ = 2, t = 725), (t̃ = 3, t = 475), (t̃ = 4, t = 225), (t̃ = 5, t = 0).
Therefore, the trajectories are describe starting from the Gaussian noise, then jumping to
the step 975, 725, until the final sample xt=0, or xt̃=5.

The analysis include two different reward functions. The first one is the LAION aesthetic
predictor [24], a multilayer perceptron (MLP) that assigns a scalar value from 1 to 10 to in-
dicate the aesthetic quality of an image, and it was trained based on human preferences. The
second reward function is the image size after JPEG compression algorithm, which is used
to define two downstream tasks: compressibility and incompressibility. For compressibility,
we want to maximize the negative size of the image after compression, which is equivalent
to minimizing the size of the image after compression. The opposite is to maximize the size
of the image after compression, which we refer to as incompressibility. The election of these
reward functions were based to match the experimental pipeline use in the work that intro-
duces DDPO [1].

Computing the reward over each trajectory on S0 allows us to inspect the reward behavior
over the sample trajectories, as shown in the top row of Figure 4.3. For the aesthetic quality
(left), it is possible to observe that from the step t = 725 ahead, the reward signal starts
to increase in average (orange line) and a higher variance in the reward signal is observe
as the trajectory approach to the final sample x0. During approximately the first 25 % of
the denoising process, the signal is concentrate with minor variation between a 3.5 aesthetic
score. That is close to the aesthetic score that we obtain when we apply the LAION aesthetic
predictor to a purely Gaussian noise. At the end, we achieve a 5.11 average (orange line)
aesthetic score, a 6.22 and 3.86 corresponding to the best (green line) and worst (red line)
aesthetic score.

For the image size after JPEG compression (right), the reward signal is more stable over the
trajectory, and the variance is lower than the aesthetic quality reward signal. The average
image size of the final samples after JPEG compression is 17.26 kilobytes (orange line), and
the best (green line) and worst (red line) filesizes are 34.38 and 4.07 kilobytes, respectively.
The results show that the reward signal start to be some informative on intermediate states
from the step t = 475 ahead, but with a lower variance than the aesthetic quality reward
signal. The reason is that the noise is difficult to compress, and the JPEG compression can
start to have effects on the image size reduction when the semantic of the image start to
appear and the entropy is reduce.

The top row of Figure 4.3 shows the rewards computed directly over the intermediate states,
i.e. structure plus noise. However, there is an issue in doing this, and could be the reason

42

https://huggingface.co/google/ddpm-celebahq-256

Figure 4.3: Visualizing reward signal during sample trajectories. Left: Evolution of the
aesthetic score as reward signal over the six states xt̃, summarizing each of the 1000 trajectories (↑
better). Right: Image size in kbs after JPEG compression, providing another form of reward signal
for the same set of trajectories (↓ better). Top: Rewards computed over the noisy intermediate
states xt̃. Bottom: Rewards computed over the denoised states x̃t̃.

of why is a good idea to only compute the reward on the final samples x0, as is illustated
in the markov decision process formulation for a diffusion a model in Figure 4.1. The re-
ward function to control the model is designed to maximize the reward in the final sample,
which is a state that can be directly guide by the human preferences. Of course that we can
provide human preferences between noisy states, but nothing guarantees that the denoising
trajectories will be consistent in the following states. Similar with the JPEG compression,
the goal is to generate images of lower size, and this endeavour has nothing to do with the
noise involved in the sample generation process. Therefore, we have a communicational gap
between the intermediate states and the reward signal, a similar problem that occur using
classifier guidance with a model that is not robust to the noise to guide the generative process
[43].

Denoised sample trajectories. We will use the denoised observations x̃t→0 for the initial
noise and each intermediate step t of the sample trajectories, as referred in the DDIM Sec-
tion 2.7:

x̃t→0 = f
(t)
θ = xt −

√
1− αtϵ

(t)
θ (xt)√

αt

. (4.5)

As it can be seen in Figure 4.4, the denoised samples x̃t→0 are fairly similar to the final sample.

43

Figure 4.4: Denoised sample trajectories. Each row, from top-to-bottom, represents the best
(6.22) and worst (3.86) aesthetic scores, and the highest (34.38) and lowest (4.07) filesizes in kilobytes
after JPEG compression for the final samples x0 in So. Each column, from left-to-right, summarizes
the states for each denoised sample’s trajectory using Equation 4.5. The rows correspond to the
trajectories highlighted in the green and red lines of Figure 4.3.

The denoised intermediate state x̃725→0 almost captures the essence of the final sample x0,
and x̃1000→0 is a highly informative latent encode of the high level features such image pose,
gender, hair style and colors of the final image. Notice that in the same point in Figure 4.3
(bottom-left), we have an increasing dispersion in the aesthetic score trajectory distribution
from the start. This is a clear indication that the reward signal is more informative in the
denoised samples than in the noisy samples. The same behavior is observed for the image
size after JPEG compression (bottom-right), where the variance is higher in the denoised
samples than in the noisy samples. That is because the JPEG compression knows in advance
which trajectories contain features that can be compressed or not.

4.3. Experiments
We aim to reproduce the implementation outlined in Training Diffusion Models with Re-

inforcement Learning [1] within a more streamlined setting to facilitate experimentation,
while still capturing the complexity of text-to-image models for experimenting with reward
functions. Our baseline will be the generative capabilities of the pretrained google/ddpm-

44

https://huggingface.co/google/ddpm-celebahq-256

celebahq-256 and google/ddpm-church-256 models, both trained using the DDPM metho-
dology described in Section [15]. These are unconditional models that generates 256 × 256
pixel RGB images of human faces and churches, respectively. Both models operates in the
pixel space, unlike latent diffusion models such as Stable Diffusion [28], in which the denoi-
sing process occurs in the latent space modelled by a variational autoencoder instead.

Evaluation Dataset. We use the final samples of each trajectory in S0—described in Sec-
tion 4.2—as a baseline for assessing the generative performance of the pretrained model on
downstream tasks. In the following chapter, we evaluate the experiments using the same seeds
to generate samples with finetuned checkpoints, and report the mean and standard error of
the rewards across the evaluation samples. These metrics serve as the quantitative evaluation
criteria in this work, enabling us to compare the performance of the finetuned models against
the pretrained one.

In our experiments, we employed three downstream tasks as outlined in (Black, 2023 [1]):
JPEG compressibility and incompressibility, and aesthetic quality. The first two tasks are
defined by the size of images after applying a JPEG compression algorithm, serving as the
reward function. For compressibility, we want to maximize the negative size of the image
after compression. This is equivalent to minimizing the size of the image after compression.
The opposite is to maximize the size of the image after compression, which we refer to as
incompressibility. For aesthetic quality, we utilized the LAION-Aesthetic Predictor V2 model
[24], a multilayer perceptron that assigns a scalar value from 1 to 10 to indicate the aesthetic
quality of an image.

These tasks effectively demonstrate the flexibility of using reinforcement learning to learn
new downstream objectives. Supervised learning finetuning often struggles to encode tasks
like compressibility and incompressibility into a loss function, whereas RL can optimize these
tasks directly through a reward function as shown in Figure 4.2. Additionally, the LAION
aesthetic model, trained on human preferences, exemplifies how human feedback can be in-
corporated to align sample generation with desired outcomes. This is a key advantage of
using RL with generative models [2].

45

https://huggingface.co/google/ddpm-celebahq-256
https://huggingface.co/google/ddpm-celebahq-256
https://huggingface.co/google/ddpm-church-256

5

Results on Reward Finetuning using
DDPO

This chapter employs the previously explained DDPO method to finetune pretrained mo-
dels based on reward functions (Figure 4.2). We present results obtained from three image
generation tasks, utilizing two different pretrained models: google/ddpm-celebahq-256 , which
specializes in generating celebrity-like faces and is used as an example throughout this work,
and google/ddpm-church-256 , which specializes in church generation.

The reward functions used are JPEG compressibility and incompressibility, as well as aesthe-
tic quality using the LAION-Aesthetic Predictor V2 model [24] as a reward function. These
three reward functions are presented in the work of Black et al. [1] and serve as a reference
for comparing the results obtained in this study.

Additionally, we design and implement a novel reward function called OVER50 for the ca-
se of face generation. This function aims to increase the proportion of faces of people over
50 years old in a model that initially has a very low frequency of generating images with
these characteristics. To achieve this objective, we use the logits from the predictions of an
age classifier for human faces [25]. This approach demonstrates the flexibility of reinforce-
ment learning for finetuning models while also pushing its limits in tasks where supervised
finetuning might be more effective. However, the RL approach offers the advantage of using
synthetic data generated by the model itself, rather than incurring the cost of collecting facial
images of people with these characteristics.

Table 5.1 provides a comprehensive summary of the performance of models finetuned with
DDPO in image generation tasks, comparing them to the initial performance of pretrained
models. The results demonstrate that DDPO finetuned models consistently outperform their
initial counterparts across all tasks—–an expected outcome considering the reinforcement
learning maximization process—–in terms of average reward over evaluation samples. These
improvements hold true even when accounting for estimator variability, which is presented
alongside the average for each task.

46

https://huggingface.co/google/ddpm-celebahq-256
https://huggingface.co/google/ddpm-church-256

Downstream Task Baseline DDPO

google/ddpm-celebahq-256
Aesthetic Score (higher is better) 5.11 ± 0.01 5.58 ± 0.01
Compressibility (lower is better) 17.26 ± 0.15 6.01 ± 0.13
Incompressibility (higher is better) 17.26 ± 0.15 21.6 ± 0.12
Over 50 years old (higher is better) -7.72 ± 0.17 7.39 ± 0.16

google/ddpm-church-256
Aesthetic Score (higher is better) 4.77 ± 0.01 5.13 ± 0.01
Compressibility (lower is better) 29.57 ± 0.29 10.62 ± 0.18
Incompressibility (higher is better) 29.57 ± 0.29 50.21 ± 0.34

Table 5.1: Mean and standard error for each downstream task across two pretrained
models. All samples were generated using the same initial noise to ensure a fair comparison.
Baseline refers to the generative capabilities of the pretrained model, as represented by S0 (see
Section 4.2). DDPO displays results from the finetuned models using DDPO with importance
sampling (see Section 4.1).

The code developed for finetuning the models and obtaining the presented results is available
in the accompanying code repository. Detailed logging information for each experiment can
be found in Table A.1 of the appendix. Additionally, model checkpoints have been uploaded
to Hugging Face to facilitate reproducibility and allow for further exploration of the expe-
rimental results. Let’s begin by analyzing in detail the results of the face generation model
adapted to each of the tasks.

5.1. Reward Finetuning on Face Generation
A set of images generated under the same initial noise by the pretrained model and the

finetuned models are provided in Figure 5.1 for an overview and quality comparison. In most
cases, the general semantics of the faces are preserved, still identifying the same subject
depicted in the original sample. However, DDPO induces modifications in some high—and
low—level features to achieve the reward objective.

For instance, in the second sample of the first row (from left to right), the pretrained model
generates an image of a woman with blue eyes, while the compressibility panel shows a man
wearing blue headwear. In terms of high-level features, both images maintain a neutral fa-
cial expression, but the apparent gender shifts from female to male. Additionally, low-level
features, such as pixel colors, are darker in the compressibility version, which also induces
high-level changes like a transition to darker skin tones.

In the aesthetic quality panel, we observe that the samples are less diverse compared to those
in other panels. Additional comparative samples like these are available in Appendix B. Next,
we will explore in detail each of the experiments that involved adapting the model to the
downstream tasks shown in the panels of Figure 5.1.

47

https://github.com/alcazar90/ddpo-celebahq
https://huggingface.co/alkzar90

Figure 5.1: Qualitative comparison of the effects of DDPO finetuning versus the pretrai-
ned model. The top-left panel shows samples from the DDPM pretrained model google/ddpm-
celebahq-256. The other panels display samples generated from the same initial noise, but using
models finetuned with DDPO for different reward functions: aesthetic quality (top right), JPEG
compressibility (bottom left), and incompressibility (bottom right). Additional samples are provided
in Appendix B.

5.1.1. JPEG Compressibility
Emergent effects in face generation using JPEG compressibility as reward.

Certain effects emerge as the entropy of the images is reduced, allowing for greater com-
pression and reduced file size. Some of the recurring effects during the adjustment process
include the elimination of details such as hair definition, reduction in lighting, simplification
of image backgrounds, appearance and intensification of shadows, increased intensity around
the contours of the eyes, and enhanced facial depth, among others.

In Figure 5.2, four panels display images generated by the pretrained model on left, compa-
red to those generated by the finetuned model with DDPO to maximize compressibility on
the right. The effect of melanotropism is observed, with an increased frequency of faces with
darker skin tones, as shown in the top panels. In some cases, more serious facial expressions,
along with other described effects, give a more realistic appearance, as seen in the bottom
panels. Instances of transmasculinity are also common in the images. The hypothesis for
this phenomenon suggests that a combination of hair detail loss and shading produces short
hairstyles, either through cropped hair or an emphasis on short hair, steering the generation
process towards regions more likely to produce masculine features, as llustrated in the top-left
and bottom-right panels of Figure 5.2.

Table 5.1 reports the file sizes of images generated by the pretrained model and those gene-
rated by the model finetuned with DDPO. The pretrained model generates images with an

48

https://huggingface.co/google/ddpm-celebahq-256
https://huggingface.co/google/ddpm-celebahq-256

Figure 5.2: Emergent effects in face generation using JPEG compressibility as a reward.
Each panel compares a pretrained model sample (left) with its finetuned version (right). Notable
changes include melanotropism, realistic facial expressions, and altered gender presentation due to
hair detail loss and shading effects.

average size of 17.26 kilobytes, while the model finetuned with DDPO to maximize compressi-
bility reduces the file size to an average of 6.01 kilobytes, representing almost a 3× reduction.
Additionally, the reward curve for the samples generated during the post-training process is
presented, showing how the model specializes in generating smaller images on average (Fi-
gure 5.3, blue), and how the dispersion of rewards in the samples collected at each epoch
decreases as the model adapts to the task of maximizing compressibility. Finally, Figure 5.4
shows the evolution of an image during the finetuning process, where smooth transitions
occur between each image due to the low learning rate used (see Appendix A), despite the
occurrence of the transmasculinity phenomenon.

5.1.2. JPEG Incompressibility

Emergent effects in face generation using JPEG incompressibility as reward.
The effects produced by maximizing the image size using DDPO are, in some ways, the
opposite of those observed when maximizing compressibility. In this case, generating ima-
ges with larger file sizes is achieved through the addition of details and overall increase in
brightness. Some recurring effects during the finetuning process include adding details such
as hair volumization & definition, lightening of hair tones, increasing the complexity of ima-
ge backgrounds, exploiting certain artifacts in the image, removing shadows, appearance or
intensifying of makeup.

The results of maximizing image size after JPEG compression—essentially making the gene-
rated images harder to compress—are presented in Table 5.1. The pretrained model generates

49

Figure 5.3: Learning curves from DDPO finetuning on face generation tasks. The evolution
of the mean reward (black line) and the reward distribution (hexbin) are shown for each downstream
task. The reward estimates were computed in each step using 100 samples from the model. The top-
left panel shows the learning curve for the LAION aesthetic quality reward (aesthetic score), the
top-right panel for the OVER50 reward (sum of logits for relevant classes), the bottom-left panel for
JPEG compressibility (negative file size in kB), and the bottom-right for JPEG incompressibility
(file size in kbB).

images with an average size of 17.26 kilobytes, while the DDPO model, finetuned to maximize
incompressibility, increases the file size to an average of 21.6 kilobytes, a 1.25× increase. Ad-
ditionally, the reward curve for the samples generated during the finetuning process is shown,
indicating how the model specializes in generating larger images on average (Figure 5.3, red).
However, while the dispersion of rewards in the samples collected at each adjustment step
decreases, incompressibility is less effective than compressibility. Figure 5.6 shows the evolu-
tion of an image during the finetuning process, highlighting effects such as increased lighting,
reduced shadows, greater hair definition, make-up intensity in the lipstick, and the preserva-
tion of image details. Notably, elements like earrings and background artifacts, which emerge
during the post-training process, become more exploitable as the model learn to emphasize
features that are difficult to compress.

It is interesting to compare the learning dynamics of both rewards using the JPEG compres-
sion algorithm. While they represent two sides of the same coin, achieving similar magnitudes

50

Figure 5.4: Sample transformation when optimizing the pretrained google/ddpm-celebahq-
256 model using JPEG compressibility as the reward function. The top-left image shows a
sample generated by the pretrained model. Moving from left to right and top to bottom, the sample
is regenerated from the same initial noise after each update of the model’s parameters. The final
result of the finetuning process is shown in the bottom-right image.

for both is not equally straightforward. Once achieves a 3× reduction, while the other only a
1.25× increase. The learning dynamics for the incompressibility reward are inherently more
challenging than for compressibility. This is reflected in the reward curves and sample histo-
grams during post-training, as mentioned earlier (Figure 5.3, bottom row).

Upon further reflection, this makes sense given the model’s capabilities and the nature of
the task. Adding more information demands greater “generative capacity” to incorporate
visual semantics and other features into the image that remain intact during the compres-
sion process. The limitation of our generative model is that it is constrained to generating
human faces rather than more complex objects or scenes. In contrast, reducing the file size
can always be achieved by degrading the model’s generative capacity—removing information
is easier than adding or creating it.

5.1.3. Aesthetic Quality

Improving aesthetic quality using RLHF. Enhancing the aesthetic quality of an
image is an objective that can be achieved using reinforcement learning. However, aesthe-
tic quality is highly subjective, depending on personal preferences and cultural or tempo-

51

https://huggingface.co/google/ddpm-celebahq-256
https://huggingface.co/google/ddpm-celebahq-256

Figure 5.5: Emergent effects in face generation using JPEG incompressibility as a reward.
Each panel compares a pretrained model sample (left) with its finetuned version (right). Notable
changes include increased hair volume, hair definition, skin tone lightening, and overall increased
illumination with reduced shadows.

ral influences. In situations where a clear reward function is not easily formulated, human
preferences can guide the training of a generative model. Section 3.7 explains how human
preferences can be captured in a reward model and used as an oracle to generate the reward
signal for images, thus guiding the generation process to maximize the desired attribute.

The pretrained google/ddpm-celebahq-256 was finetuned using the LAION- Aesthetic Pre-
dictor V2 model [24] to enhance the aesthetic quality of generated images, reproducing the
downstream task from the reference study with DDPO [1]. This predictor, trained on human
preferences with scores ranging from 1 to 10, where 10 represents the highest aesthetic qua-
lity15. Post-training began with generating a set of images to evaluate their aesthetic scores.
Subsequently, the model was finetuned with DDPO to maximize aesthetic quality. The re-
sults, presented in Table 5.1, show that the pretrained model had an aesthetic score of 5.11,
while the DDPO-finetuned model achieved a score of 5.58 on the evaluation set. Training
dynamics are illustrated by the average reward trajectory of the samples used for finetuning,
demonstrating the model’s increasing specialization toward its goal (Figure 5.3, purple). Each
iteration produced a new set of images that, on average, displayed higher aesthetic scores
and lower reward dispersion compared to previous ones, providing strong evidence that the
reinforcement learning objective of maximizing the reward was successfully achieved.

A significant difference compared to parameter tuning in previous tasks is the requirement for
a more complex training dynamic to achieve higher rewards. In previous tasks, a learning rate

15 On this website, you can find reference images was used to assess the model’s initial capability

52

https://huggingface.co/google/ddpm-celebahq-256
http://captions.christoph-schuhmann.de/aesthetic_viz_laion_sac+logos+ava1-l14-linearMSE-en-2.37B.html

Figure 5.6: Sample transformation when optimizing the pretrained google/ddpm-celebahq-
256 model using JPEG incompressibility as the reward function. The top-left image shows
a sample generated by the pretrained model. Moving from left to right and top to bottom, the
sample is regenerated from the same initial noise after each update of the model’s parameters. The
final result of the finetuning process is shown in the bottom-right image.

of 9× 10−8 was used, but maximizing aesthetic quality did not show an increase in rewards
with the same computational budget and a learning rate of 7 × 10−8. On the other hand,
increasing the learning rate too high (e.g., 1× 10−5) resulted in degraded generated images.
Therefore, we implemented a linear warm-up for the learning rate, followed by a half-cosine
scheduler to control and adjust the learning rate during training. This started with a learning
rate of 9× 10−8, linearly increasing to a peak of 3.74× 10−5 within the first 25 % of the trai-
ning steps. During the remaining 75 % of the training, the half-cycle cosine scheduler reduced
the learning rate to 9 × 10−9 (see Figure 5.7). This training dynamic allowed the use of a
higher learning rate without destroying the model’s generative capabilities. Consequently,
the modifications resulted in more substantial semantic variations in the images to maximize
the aesthetic score without compromising generative capacity, as seen in the transition from
a pretrained model sample to the final checkpoint in Figure 5.9. This was achieved in fewer
epochs than those used in previous tasks (about half), as you can see in the learning curves
of Figure 5.3.

Emergent effects in face generation using the LAION aesthetic predictor as a
reward. The effects observed in images generated by the DDPO-finetuned model to ma-
ximize the “aesthetic quality” of generated faces reflect much of the human preferences on
which the LAION predictor was trained. The generated images tend to be predominantly

53

https://huggingface.co/google/ddpm-celebahq-256
https://huggingface.co/google/ddpm-celebahq-256
https://wandb.ai/alcazar90/ddpo-aesthetic-ddpm-celebahq256/runs/omta8esy
https://wandb.ai/alcazar90/ddpo-aesthetic-ddpm-celebahq256/runs/3lb094dk

Figure 5.7: Aesthetic quality training dynamics. Left: The learning rate scheduler with a linear
warm-up reaching a peak learning rate of 3.64× 10−5 at the first quarter of training, followed by a
half-cosine decay for the remaining three-quarters. Right: Mean aesthetic score on the evaluation
set during training. The yellow line corresponds to training with the learning rate schedule described
on the left, while the other lines represent training with fixed lower learning rates of 7× 10−8 and
9× 10−8. Aesthetic quality requires a more complex training dynamic to achieve higher rewards.

female and appear younger. Figure 5.8 showcases these emergent effects at the right side of
each of the four panels, contrasting them with versions produced by the pretrained model
on the left. The second row panels displays two instances of the rejuvenation effect, with the
bottom-right panel also undergoing a gender change. Warmer colors are also predominant, a
phenomenon expected when compared to example images from the study introducing DDPO
[1]. The hypothesis behind this warmth and sketched appearance effect is due to the pre-
ference for portraits or illustrations, which tend to be better evaluated and achieve higher
aesthetic scores, thus inducing these attributes during the finetuning process. Another emer-
gent effect is the intensity of the gaze, achieved not only through intensified eye makeup but
also the camera position that captures the face, resembling a magazine cover image. Figu-
re 5.9 provides evidence of the transition from a sample of the pretrained model to the final
checkpoint, where many of the described effects emerge, such as blondification, profiling, and
rejuvenation.

5.1.4. OVER50

Generating faces of older people. A new task is incorporated to demonstrate the
flexibility of reinforcement learning in defining objectives. The idea is to generate faces of
people over 50 years old using images generated by a pretrained model as a starting point.
The frequency of faces of people in this age group is 6.1 %, as shown in the distribution on
the left in Figure 5.10.

It is important to note that this task is better suited to be solved through traditional fi-
netuning, using the same cost function employed by the pretrained model we discussed in
Section 2.3, applied to a set of collected images of older people’s faces. However, the aim here
is to demonstrate that RL can achieve this goal using only synthetic images generated by
the same model. Although this is not the most optimal approach, it serves as an interesting
exercise to explore how even a model with a low probability of generating synthetic data
with the desired attribute, such as faces of people aged 50 or older, can still produce results
using the same methodological framework used in previously discussed tasks.

54

Figure 5.8: Emergent effects in face generation using LAION aesthetic predictor as a
reward. Each panel compares a pretrained model sample (left) with its finetuned version (right).
Notable changes are increased prevalence of female faces, a younger appearance, warmer tones, and
more intense gazes, reflecting aesthetic preferences learned by the LAION predictor.

Using a classifier to design a reward function. A classifier is used to detect age from
facial images, trained on the FairFace dataset [25, 63]. The model gives the probability that
the face belong to age classes 0−2, 3−9, 10−19, 20−29, 30−39, 40−49, 50−50, 60−69,
and more than 70. The reward design involves simply summing the logits of the age classes of
50 years or older, and by using logits, this goal is achieved while also being more numerically
stable than using the final probabilities of each class. This approach rewards the diffusion
model for generating faces of older people and disincentivizes the generation of samples with
a low sum of logits in the classes of interest. We are implicitly conditioning the model to
generate faces of older people by not providing direct age information as a label16.

The results are presented in Table 5.1, where the pretrained model reports a logit sum of
−7.72—–the sum of the logits of the relevant classes is considered—–and the model finetuned
with DDPO achieves a logit sum of 7.39. It is observed that the sample trajectories increase
the average reward while their dispersion decreases, indicating that the model is specializing
in its objective (Figure 5.3, green). The age distribution of the finetuned model is shown on
the right in Figure 5.10. An increase in the proportion of faces of people aged 50 or older is
noted, from 6.1 % in the baseline to 78.7 % in the finetuned samples. Finally, the transition
of a sample from the pretrained model to the final checkpoint is provided as evidence in
Figure 5.11.

16 An interesting experiment would be to adapt classifier-free guidance training [44] to make the conditioning
explicit while still using RL.

55

Figure 5.9: Sample transformation when optimizing the pretrained google/ddpm-celebahq-
256 model using LAION aesthetic score as the reward function. The top-left image shows
a sample generated by the pretrained model. Moving from left to right and top to bottom, the
sample is regenerated from the same initial noise after each update of the model’s parameters. The
final result of the finetuning process is shown in the bottom-right image.

5.2. Beyond Face Generation
In the previous sections, we demonstrated the effectiveness of the DDPO method on a

smaller pretrained model—–114 million parameters versus the 860 million parameters used
in the reference work (Stable Diffusion 1.4 [1])—–to generate images of faces, optimizing for
four different downstream tasks. To verify the robustness of the method, experiments were
conducted using another pretrained model with a completely different visual semantics, focu-
sing not on face generation but on images of buildings, specifically trained on churches from a
subset of the Large-scale Scene UNderstanding challenge dataset, also known as LSUN [64].
The base model, google/ddpm-church-256, trained using the same DDPM methodology
[15] outlined in Algorithm 1, was finetuned for the first three downstream tasks, excluding
OVER50 for obvious reasons.

Figure 5.12 offers a visual comparison between four samples from the pretrained model and
their versions generated by the finetuned models across the respective tasks. The images
are generated from the same initial noise to facilitate comparison and highlight the effects
induced by the reward functions. It is noteworthy that the definition of the churches is not
always of high quality; in the first image of the pretrained panel, a building is visible that
might be a church, but it is not immediately obvious. One hypothesis for why this model

56

https://huggingface.co/google/ddpm-celebahq-256
https://huggingface.co/google/ddpm-celebahq-256
https://huggingface.co/google/ddpm-church-256

Figure 5.10: Face age distribution using the ViT age classifier [25] prediction classes
on DDPM samples (left) and DDPO finetuned model samples (right). Finetuning with
DDPO using the OVER50 reward function, which maximizes the logits sum for age classes 50−59,
60− 69, and ≥ 70, increases the proportion of faces over 50 years old from 6.1 % in the baseline to
78.7 % in the finetuned samples.

generates lower-fidelity images is the complexity of details and variations in scene images,
such as those of churches, compared to other concepts like the elements needed to generate
faces. This likely results in the model not capturing details as effectively, thereby reducing its
generative capacity. The remaining three images from the pretrained model samples exhibit
higher levels of definition, clearly showing churches of different styles.

The results for the compressibility and incompressibility reward tasks are shown in Table 5.1,
where the average size of images generated by the pretrained model after JPEG compression
is reported to be 29.57 kB. These images are generally larger than those generated by the
pretrained model for celebrity faces, due to the greater number of elements and details in
scene images like those of churches, making compression more challenging. In the case of the
compressibility reward, the average image size generated by the model finetuned with DDPO
is 10.62 kB, while for the incompressibility task, the average size is 50.21 kB. This represents
a 64 % reduction in image size when optimizing for compressibility and a 70 % increase in
image size when optimizing for incompressibility, relative to the model’s initial generative
capabilities.

Analyzing the effects of the reward functions as seen in the samples in Figure 5.12, the pri-
mary emerging effect when maximizing compressibility is the prevalence of night skies and
overall darker images. Notably, even as the images darken, light sources such as the moon or
artificial illumination emerges, as seen in the first row of images. The effects of optimizing the
incompressibility task include an overall increase in image illumination and the generation
of elements like trees, grass, or bushes with numerous leaves. In this regard, the two samples
in the first column of the incompressibility examples show signs of over-optimization, as the
effect degrades the visual semantics of the reference churches. Transitions from pretrained to
finetuned models are presented in Figure 5.13; the first row provides another example of how
the darkening effect in the skies emerges, but also of how artificial illumination emanates
from the building itself. Conversely, the second row shows the addition of strong green tones

57

Figure 5.11: Sample transformation when optimizing the pretrained google/ddpm-
celebahq-256 model using OVER50 as the reward function. The top-left image shows a
sample generated by the pretrained model. Moving from left to right and top to bottom, the sample
is regenerated from the same initial noise after each update of the model’s parameters. The final
result of the finetuning process is shown in the bottom-right image.

resembling grass and the transformation of distant mountains into something more akin to
trees. The cloudy sky begins to detail more but eventually results in an excess that diminishes
the sense of density and realism. A similar degradation occurs in the building, which becomes
less realistic in the final two images.

Regarding aesthetic quality in Figure 5.12, there is a generalized saturation of details, with
trees appearing in 3 out of the 4 images. For example, in the second image of the first row,
we can see several trees and bushes surrounding the church. Another detail visible in this
image, as well as in the others in the group, are the lines on the building’s walls, which give
the impression that the material is stone. This could be because images of buildings with
such details tend to be rated higher in aesthetic quality by the LAION aesthetic predictor.
The fourth image is more grandiose compared to its original version, with more detailed and
numerous clouds, the church dome replaced by a tower, and the building protruding from the
left side of the original image replaced by a tree with branches. Additionally, the interplay of
light and shadow gives the impression that the image was taken at sunset. In terms of quan-

58

https://huggingface.co/google/ddpm-celebahq-256
https://huggingface.co/google/ddpm-celebahq-256

titative results, Table 5.1 reports an average aesthetic score of 4.77 for the pretrained LSUN
model, which increases to 5.13 after optimizing for aesthetic quality. Finally, a transition
image between the pretrained model and checkpoints during parameter tuning is presented
in the third row of Figure 5.13. This transition suggests converting the church in the figure
into an image where the background contains houses and other buildings. The hypothesis for
this effect is that many images containing churches also include a view of the city, as seen
in the first pretrained model sample in Figure 5.12, which may explain why the transition
results in an image saturated with elements that blur the distinction of individual buildings
but collectively resemble a city or cluster of buildings.

Figure 5.12: Qualitative comparison of the effects of DDPO finetuning versus the pretrai-
ned model. The top-left panel shows samples from the DDPM pretrained model google/ddpm-
church-256. The other panels display samples generated from the same initial noise, but using
models finetuned with DDPO for different reward functions: aesthetic quality (top right), JPEG
compressibility (bottom left), and incompressibility (bottom right). Additional samples are provided
in Appendix D

59

https://huggingface.co/google/ddpm-church-256
https://huggingface.co/google/ddpm-church-256

Figure 5.13: Sample transformation when optimizing the pretrained google/ddpm-church-
256 model using the reward functions: JPEG compressibility (top) and incompressibility
(middle), and LAION aesthetic score (bottom). First column shows the sample generated by the
pretrained model. Moving from left to right the sample is regenerated from the same initial noise
after each update of the model’s parameters. Final result of the finetuning process is shown in the
last column.

5.3. Discussion & Limitations
Overoptimization and diversity samples. Despite the benefits of optimizing diffusion
models using reinforcement learning, reward overoptimization remains a significant challenge.
This issue arises when the model excessively exploits the reward function [65], leading to a
lack of diversity in the generated samples. In severe cases, this can degrade image semantics,
resulting in a model that fails to achieve practical utility.

To understand and visualize reward overoptimization in the context of this work, we extract
CLIP [42] features from two sets of images that share the same initial seed and noise. One set
is generated by the google/ddpm-celebahq-256 (as mentioned in Section 4.2), and the other
set is generated using a DDPO checkpoint alkzar90/aesthetic-celebahq-256 optimized for
aesthetic quality. We then project these image features into a 2 dimensional embedding space
using t-SNE [66] to visualize the samples.

As shown in Figure 5.14, we observe that the samples optimized for aesthetic quality cluster
near the sample with the highest aesthetic score from the DDPM set (illustrated in Fi-
gure 4.4). This occurs because the model reinforces samples with higher aesthetic quality,
generating more of these samples until the model concentrates on a very specific high-reward
region, ultimately collapsing into a single mode.

Broader impact. Research into finetuned diffusion models with reinforcement learning of-
fers significant advantages in gaining precise control over image generation, unlocking various
practical applications. These models can be tailored to produce highly specific outputs, allo-

60

https://huggingface.co/google/ddpm-church-256
https://huggingface.co/google/ddpm-church-256
https://huggingface.co/google/ddpm-celebahq-256
https://huggingface.co/alkzar90/ddpo-aesthetic-celebahq-256

Figure 5.14: A CLIP feature embedding space coexisting DDPM and DDPO Samples.
Both sets of samples were generated from the same initial noise. Notably, samples optimized for
aesthetic quality cluster near the highest aesthetic score sample in the DDPM set (Figure 4.4),
illustrating a clear mode collapse effect.

wing for the generation of images that meet exact requirements in fields such as entertain-
ment, virtual reality, medical imaging, and design. For instance, in the healthcare industry,
these models could aid in creating accurate simulations for surgical planning or training,
providing a safe and controlled environment for practice. In the creative industries, they can
enhance the ability to generate unique and high-quality visual content, facilitating the deve-
lopment of realistic video games or films. The capacity to finetune these models with RL also
means they can adapt to new styles or features as needed, offering businesses and researchers
flexible tools that evolve with their requirements.

However, alongside these advantages, there are critical ethical concerns related to the use
of diffusion models, particularly regarding bias and fairness. When trained on datasets con-
taining biases, such as those related to gender, geography, or ethnicity, these models risk
perpetuating and amplifying these biases in their outputs. It doesn’t require much attention
to notice that the mode collapse effect, previously demonstrated, is a clear example of pre-

61

ference bias affecting the reward model. Samples with higher rewards are concentrated in
profiles of women with white skin and blond hair (see more samples in Figure B.4). While
reinforcement learning with human feedback (RLHF) techniques can be used to align the mo-
del with operator preferences and mitigate this issue, they can also exacerbate the problem
or lead to unexpected consequences by aligning with subjective objectives or preferences that
may not be representative.

5.4. Future Work
Avoid mode collapse. One consequence of the overoptimization problem discussed pre-
viously is the mode collapse effect, which leads to a lack of diversity in the samples. Mode
collapse is a common issue in generative models. Can we develop a method to avoid this effect
in the context of diffusion models? An interesting research direction is to gain control over
the diffusion chain process to influence and block certain features during reward finetuning.
Identifying and managing local features in images to unlock alternative high-reward areas
can help prevent mode collapse or at least reduce its impact without compromising sample
diversity, effectively controlling the trade-off between overoptimization and diverse samples.

Measure diversity. Exploring the use of Vendi Score [67, 68], a metric inspired by statistical
ecology to evaluate the diversity of samples, could provide insights into how to algorithmi-
cally improve sample generation [69] and mitigate the mode collapse problem.

A benchmark dataset for evaluation. Evaluation is difficult and not straightforward for
assessing the effectiveness of a method. Does the method generalize to other models trained
on different datasets? How can we evaluate the performance of the model in a more robust
way? How many downstream tasks provide robustness in the generalization of a method?
These questions must be addressed with equal effort as in the application of RLHF for large
language models. An immediate effort is to define a set of downstream tasks that cover a
wide range of objectives and preferences, on both smaller and larger models. This includes
providing access not only to the checkpoints used to report results but also to the samples
and reward evaluations.

Exploit the intermediate states rewards. Empirical analysis of the reward signal during
the sample generation process shows that the reward signal is more informative in denoised
samples than in noisy ones (Section 4.2). Can we take advantage of intermediate states to
explore the space more efficiently? Introducing an agent that can build intermediate denoised
modifications worth exploring could increase the data generated in a useful way for DDPO
or alternative preference algorithms.

62

6

Conclusion

The primary goal of this work was to build the foundational knowledge necessary to un-
derstand how to use reinforcement learning (RL) to control the generation of samples from a
diffusion model by maximizing a reward function. We began by establishing the background
needed to comprehend what diffusion models are and how they operate, starting with a re-
view of one of the seminal papers in this field, DDPM [15]. Following this, we conducted
an experiment using an alternative approach to RL for controlling sample generation in a
pretrained model, involving guidance from an external classifier based on CLIP embeddings
(Section 2.6.1).

We briefly explored how to improve sampling efficiency in diffusion models by employing an
implicit model, (DDIM [16]). With DDIM, once the initial noise for the image to be genera-
ted is fixed, the generation trajectory becomes deterministic. This approach offers two key
benefits: (i) it allows us to estimate the denoised version of any intermediate state in the ima-
ge generation process (Figure 4.4), and (ii) it leverages sample consistency, which is nearly
reversible, enabling controlled image editing. This concept was tested and demonstrated in
Figure 2.8.

In the realm of reinforcement learning, we approached the problem by solving the Markov
Decision Process (MDP) through direct policy optimization. We introduced the necessary
mathematical tools to achieve this, specifically gradient estimation via score function. The
classical formulation of this in RL is the REINFORCE algorithm, where the objective is to
maximize the expected return of the trajectory-generating process (Section 3.3). By emplo-
ying an arbitrary scalar reward function, we can estimate the policy gradient and use it to
update the parameters, reinforcing behaviors aligned with the desired outcomes encoded in
the reward function. This culminated in the use of the PPO algorithm, which is more data-
efficient than REINFORCE, supports batch policy updates, and is a first-order optimization
algorithm (Section 3.6). This was the crucial piece needed to control sample generation in a
diffusion model.

Once the foundational background was established, we delved into the intersection of RL and
diffusion models, where sample generation becomes a sequential decision-making process, and
each action corresponds to selecting the next state in the diffusion chain (Section 4.1). This
perspective allowed us to formulate the MDP and, given any reward function we wish to
maximize, apply RL tools to find the policy that maximizes the expected reward—–where an

63

agent moves from a noisy state to a cleaner one, generating samples that enhance the desired
attribute specified by the reward. We found that the implementation of policy gradients in
the context of diffusion models enables us to implement an algorithm to solve this MDP,
known as Denoised Diffusion Policy Optimization (DDPO), introduced in the reference work
Training Diffusion Models with Reinforcement Learning [1].

Next, we conducted an empirical study of the reward signal during the generation process, ob-
serving that the reward signal is highly noisy for intermediate states. However, when applying
the reward signal to denoised versions of these states, the signal became more stable and less
noisy. This observation suggests a potential improvement for the DDPO algorithm by explo-
ring the possibility of using the reward signal on denoised intermediate states (Section 4.2).

Armed with this knowledge, we implemented DDPO and presented the results of experiments
conducted using pretrained models based on the DDPM methodology. In the results chapter,
we detail these experiments, which utilized pretrained diffusion models such as google/ddpm-
celebaahq-256 and google/ddpm-church-256. DDPO was implemented and optimized ba-
sed on reward functions used in the reference work, such as JPEG compressibility (5.1.1),
incompressibility (5.1.2), and the LAION Aesthetic Score (5.1.3), yielding promising results
(Table 5.1). The latter reward function exemplifies the potential of incorporating human
feedback into the generation loop to control generative models through RL using human
feedback (Section 3.7).

Additionally, we designed a novel reward function based on a human face age classifier [25]
and conducted an experiment aimed at altering the proportion of famous faces generateed,
specifically to predominantly produce images of individuals over 50 years old. This reward
function, named OVER50 (5.1.4), was used to showcase the flexibility of RL in controlling
sample generation in a diffusion model and its capacity to design reward functions that cap-
ture diverse objectives.

Despite these advancements, challenges remain in the application of these methodologies. Is-
sues such as over-optimization and the resulting loss of diversity in the samples (Figure 5.14),
as well as the need to strengthen evaluation benchmarks for more effective comparison with
other methods, persist. These challenges present opportunities for further exploration in a
rapidly evolving field that intersects diffusion models, reinforcement learning, and human-
computer interaction.

64

https://huggingface.co/google/ddpm-celebahq-256
https://huggingface.co/google/ddpm-celebahq-256
https://huggingface.co/google/ddpm-church-256

Bibliography

[1] Black, K., Janner, M., Du, Y., Kostrikov, I., y Levine, S., “Training diffusion models
with reinforcement learning,” arXiv preprint arXiv:2305.13301, 2023.

[2] Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P., Zhang, C.,
Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens,
M., Askell, A., Welinder, P., Christiano, P., Leike, J., y Lowe, R., “Training language
models to follow instructions with human feedback,” 2022.

[3] Lee, K., Liu, H., Ryu, M., Watkins, O., Du, Y., Boutilier, C., Abbeel, P., Ghavamzadeh,
M., y Gu, S. S., “Aligning text-to-image models using human feedback,” 2023.

[4] Fan, Y., Watkins, O., Du, Y., Liu, H., Ryu, M., Boutilier, C., Abbeel, P., Ghavamzadeh,
M., Lee, K., y Lee, K., “Dpok: Reinforcement learning for fine-tuning text-to-image
diffusion models,” 2023, https://arxiv.org/abs/2305.16381.

[5] Deng, F., Wang, Q., Wei, W., Grundmann, M., y Hou, T., “Prdp: Proximal reward
difference prediction for large-scale reward finetuning of diffusion models,” 2024, https:
//arxiv.org/abs/2402.08714.

[6] Du, Y. Q., Human-Centric Reward Design. PhD thesis, UC Berkeley, 2023.
[7] Pommeranz, A., Broekens, J., Wiggers, P., Brinkman, W.-P., y Jonker, C. M., “Designing

interfaces for explicit preference elicitation: a user-centered investigation of preference
representation and elicitation process,” User Modeling and User-Adapted Interaction,
vol. 22, no. 4, pp. 357–397, 2012.

[8] Arzate Cruz, C. y Igarashi, T., “A survey on interactive reinforcement learning: Design
principles and open challenges,” en Proceedings of the 2020 ACM Designing Interactive
Systems Conference, DIS ’20, (New York, NY, USA), p. 1195–1209, Association for
Computing Machinery, 2020, doi:10.1145/3357236.3395525.

[9] Wan, Z., Wang, X., Liu, C., Alam, S., Zheng, Y., Liu, J., Qu, Z., Yan, S., Zhu, Y.,
Zhang, Q., Chowdhury, M., y Zhang, M., “Efficient large language models: A survey,”
2024, https://arxiv.org/abs/2312.03863.

[10] Karras, T., Aittala, M., Aila, T., y Laine, S., “Elucidating the design space of diffusion-
based generative models,” 2022, https://arxiv.org/abs/2206.00364.

[11] Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., y Poole, B., “Score-
based generative modeling through stochastic differential equations,” 2021, https://arxi
v.org/abs/2011.13456.

[12] Salimans, T. y Ho, J., “Progressive distillation for fast sampling of diffusion models,”
ArXiv, vol. abs/2202.00512, 2022.

[13] Watson, D., Ho, J., Norouzi, M., y Chan, W., “Learning to efficiently sample from

65

https://arxiv.org/abs/2305.16381
https://arxiv.org/abs/2402.08714
https://arxiv.org/abs/2402.08714
https://dx.doi.org/10.1145/3357236.3395525
https://arxiv.org/abs/2312.03863
https://arxiv.org/abs/2206.00364
https://arxiv.org/abs/2011.13456
https://arxiv.org/abs/2011.13456

diffusion probabilistic models,” 2021, https://arxiv.org/abs/2106.03802.
[14] Watson, D., Chan, W., Ho, J., y Norouzi, M., “Learning fast samplers for diffusion models

by differentiating through sample quality,” 2022, https://arxiv.org/abs/2202.05830.
[15] Ho, J., Jain, A., y Abbeel, P., “Denoising diffusion probabilistic models,” 2020.
[16] Song, J., Meng, C., y Ermon, S., “Denoising diffusion implicit models,” arXiv preprint

arXiv:2010.02502, 2020.
[17] Nichol, A. y Dhariwal, P., “Improved denoising diffusion probabilistic models,” 2021.
[18] Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., y Chen, M., “Hierarchical text-conditional

image generation with clip latents,” arXiv preprint arXiv:2204.06125, 2022.
[19] Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E. L., Ghasemipour, K.,

Gontijo Lopes, R., Karagol Ayan, B., Salimans, T., et al., “Photorealistic text-to-image
diffusion models with deep language understanding,” Advances in Neural Information
Processing Systems, vol. 35, pp. 36479–36494, 2022.

[20] Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., y Aberman, K., “Dreambooth:
Fine tuning text-to-image diffusion models for subject-driven generation,” 2023.

[21] Gal, R., Alaluf, Y., Atzmon, Y., Patashnik, O., Bermano, A. H., Chechik, G., y Cohen-
Or, D., “An image is worth one word: Personalizing text-to-image generation using tex-
tual inversion,” 2022.

[22] Zhang, L. y Agrawala, M., “Adding conditional control to text-to-image diffusion mo-
dels,” 2023.

[23] Kaufmann, T., Weng, P., Bengs, V., y Hüllermeier, E., “A survey of reinforcement lear-
ning from human feedback,” arXiv preprint arXiv:2312.14925, 2023.

[24] Schuhmann, C., “Laion-aesthetics v2,” 2022, https://laion.ai/blog/laion-aesthetics/.
[25] Raw, N., “Age classification from facial photos using visual transformers trained on the

fairface dataset,” 2021, https://huggingface.co/nateraw/vit-age-classifier.
[26] Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N., y Ganguli, S., “Deep unsupervi-

sed learning using nonequilibrium thermodynamics,” 2015.
[27] Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M., y Sutskever,

I., “Zero-shot text-to-image generation,” 2021.
[28] Rombach, R., Blattmann, A., Lorenz, D., Esser, P., y Ommer, B., “High-resolution image

synthesis with latent diffusion models,” 2022.
[29] Singer, U., Polyak, A., Hayes, T., Yin, X., An, J., Zhang, S., Hu, Q., Yang, H., Ashual, O.,

Gafni, O., Parikh, D., Gupta, S., y Taigman, Y., “Make-a-video: Text-to-video generation
without text-video data,” 2022.

[30] Jing, B., Corso, G., Chang, J., Barzilay, R., y Jaakkola, T., “Torsional diffusion for
molecular conformer generation,” 2023.

[31] Yang, L., Zhang, Z., Song, Y., Hong, S., Xu, R., Zhao, Y., Zhang, W., Cui, B., y Yang,
M.-H., “Diffusion models: A comprehensive survey of methods and applications,” 2024.

[32] Song, Y. y Ermon, S., “Generative modeling by estimating gradients of the data distri-
bution,” 2020.

66

https://arxiv.org/abs/2106.03802
https://arxiv.org/abs/2202.05830
https://laion.ai/blog/laion-aesthetics/
https://huggingface.co/nateraw/vit-age-classifier

[33] Song, Y. y Ermon, S., “Improved techniques for training score-based generative models,”
2020.

[34] Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., y Poole, B., “Score-
based generative modeling through stochastic differential equations,” en International
Conference on Learning Representations, 2021, https://openreview.net/forum?id=Px
TIG12RRHS.

[35] Luo, C., “Understanding diffusion models: A unified perspective,” 2022.
[36] Kingma, D. P. y Welling, M., “Auto-encoding variational bayes,” arXiv preprint ar-

Xiv:1312.6114, 2013.
[37] Baydin, A. G., Pearlmutter, B. A., Radul, A. A., y Siskind, J. M., “Automatic differen-

tiation in machine learning: a survey,” 2018, https://arxiv.org/abs/1502.05767.
[38] Weng, L., “What are diffusion models?,” lilianweng.github.io, 2021, https://lilianweng

.github.io/posts/2021-07-11-diffusion-models/.
[39] Dhariwal, P. y Nichol, A., “Diffusion models beat gans on image synthesis,” ArXiv,

vol. abs/2105.05233, 2021.
[40] Dieleman, S., “Guidance: a cheat code for diffusion models,” 2022, https://benanne.gi

thub.io/2022/05/26/guidance.html.
[41] Murphy, K., Probabilistic Machine Learning: An Introduction. Adaptive Computation

and Machine Learning series, MIT Press, 2022, https://books.google.cl/books?id=HLl
yzgEACAAJ.

[42] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., Krueger, G., y Sutskever, I., “Learning transferable
visual models from natural language supervision,” 2021.

[43] Bansal, A., Chu, H.-M., Schwarzschild, A., Sengupta, S., Goldblum, M., Geiping, J.,
y Goldstein, T., “Universal guidance for diffusion models,” en Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 843–852, 2023.

[44] Ho, J., “Classifier-free diffusion guidance,” ArXiv, vol. abs/2207.12598, 2022.
[45] Sutton, R. S. y Barto, A. G., Reinforcement Learning: An Introduction. The MIT Press,

second ed., 2018, http://incompleteideas.net/book/the-book-2nd.html.
[46] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., y Ried-

miller, M., “Playing atari with deep reinforcement learning,” 2013.
[47] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,

Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al., “Mastering
the game of go with deep neural networks and tree search,” nature, vol. 529, no. 7587,
pp. 484–489, 2016.

[48] Schulman, J., “Optimizing expectations: From deep reinforcement learning to stochastic
computation graphs,” 2016.

[49] Sutton, R. S., McAllester, D., Singh, S., y Mansour, Y., “Policy gradient methods for
reinforcement learning with function approximation,” Advances in neural information
processing systems, vol. 12, 1999.

[50] Mohamed, S., Rosca, M., Figurnov, M., y Mnih, A., “Monte carlo gradient estimation

67

https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://arxiv.org/abs/1502.05767
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://benanne.github.io/2022/05/26/guidance.html
https://benanne.github.io/2022/05/26/guidance.html
https://books.google.cl/books?id=HLlyzgEACAAJ
https://books.google.cl/books?id=HLlyzgEACAAJ
http://incompleteideas.net/book/the-book-2nd.html

in machine learning,” 2020.
[51] Williams, R. J., “Simple statistical gradient-following algorithms for connectionist rein-

forcement learning,” Machine learning, vol. 8, pp. 229–256, 1992.
[52] Abbeel, P., “L3 policy gradients and advantage estimation.”, https://youtu.be/AKbX1

Zvo7r8?t=1501.
[53] Greensmith, E., Bartlett, P., y Baxter, J., “Variance reduction techniques for gradient

estimates in reinforcement learning,” en Advances in Neural Information Processing
Systems (Dietterich, T., Becker, S., y Ghahramani, Z., eds.), vol. 14, MIT Press, 2001,
https://proceedings.neurips.cc/paper_files/paper/2001/file/584b98aac2dddf59ee2cf19c
a4ccb75e-Paper.pdf.

[54] Andrychowicz, M., Raichuk, A., Stańczyk, P., Orsini, M., Girgin, S., Marinier, R., Hus-
senot, L., Geist, M., Pietquin, O., Michalski, M., Gelly, S., y Bachem, O., “What mat-
ters in on-policy reinforcement learning? a large-scale empirical study,” 2020, https:
//arxiv.org/abs/2006.05990.

[55] MacKay, D. J. C., Information Theory, Inference & Learning Algorithms. USA: Cam-
bridge University Press, 2002.

[56] Schulman, J., Levine, S., Abbeel, P., Jordan, M., y Moritz, P., “Trust region policy
optimization,” en International conference on machine learning, pp. 1889–1897, PMLR,
2015.

[57] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., y Klimov, O., “Proximal policy
optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[58] Kingma, D. P. y Ba, J., “Adam: A method for stochastic optimization,” 2017, https:
//arxiv.org/abs/1412.6980.

[59] Huang, S., Dossa, R. F. J., Raffin, A., Kanervisto, A., y Wang, W., “The 37 implemen-
tation details of proximal policy optimization,” en The ICLR Blog Track 2023, 2022,
https://elib.dlr.de/191986/.

[60] Bradley, R. A. y Terry, M. E., “Rank analysis of incomplete block designs: I. the method
of paired comparisons,” Biometrika, vol. 39, no. 3/4, pp. 324–345, 1952, http://www.js
tor.org/stable/2334029 (visitado el 2024-07-07).

[61] Du, Y., Konyushkova, K., Denil, M., Raju, A., Landon, J., Hill, F., de Freitas, N., y
Cabi, S., “Vision-language models as success detectors,” 2023, https://arxiv.org/abs/23
03.07280.

[62] Karras, T., Aila, T., Laine, S., y Lehtinen, J., “Progressive growing of gans for improved
quality, stability, and variation,” arXiv preprint arXiv:1710.10196, 2017.

[63] Kärkkäinen, K. y Joo, J., “Fairface: Face attribute dataset for balanced race, gender,
and age,” 2019, https://arxiv.org/abs/1908.04913.

[64] Wang, L., Guo, S., Huang, W., Xiong, Y., y Qiao, Y., “Knowledge guided disambiguation
for large-scale scene classification with multi-resolution cnns,” IEEE Transactions on
Image Processing, vol. 26, no. 4, p. 2055–2068, 2017, doi:10.1109/tip.2017.2675339.

[65] Gao, L., Schulman, J., y Hilton, J., “Scaling laws for reward model overoptimization,”
en International Conference on Machine Learning, pp. 10835–10866, PMLR, 2023.

[66] Van der Maaten, L. y Hinton, G., “Visualizing data using t-sne.,” Journal of machine

68

https://youtu.be/AKbX1Zvo7r8?t=1501
https://youtu.be/AKbX1Zvo7r8?t=1501
https://proceedings.neurips.cc/paper_files/paper/2001/file/584b98aac2dddf59ee2cf19ca4ccb75e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2001/file/584b98aac2dddf59ee2cf19ca4ccb75e-Paper.pdf
https://arxiv.org/abs/2006.05990
https://arxiv.org/abs/2006.05990
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://elib.dlr.de/191986/
http://www.jstor.org/stable/2334029
http://www.jstor.org/stable/2334029
https://arxiv.org/abs/2303.07280
https://arxiv.org/abs/2303.07280
https://arxiv.org/abs/1908.04913
https://dx.doi.org/10.1109/tip.2017.2675339

learning research, vol. 9, no. 11, 2008.
[67] Friedman, D. y Dieng, A. B., “The vendi score: A diversity evaluation metric for machine

learning,” 2023, https://arxiv.org/abs/2210.02410.
[68] Pasarkar, A. P. y Dieng, A. B., “Cousins of the vendi score: A family of similarity-based

diversity metrics for science and machine learning,” 2024, https://arxiv.org/abs/2310.1
2952.

[69] Hemmat, R. A., Hall, M., Sun, A., Ross, C., Drozdzal, M., y Romero-Soriano, A., “Im-
proving geo-diversity of generated images with contextualized vendi score guidance,”
2024, https://arxiv.org/abs/2406.04551.

69

https://arxiv.org/abs/2210.02410
https://arxiv.org/abs/2310.12952
https://arxiv.org/abs/2310.12952
https://arxiv.org/abs/2406.04551

Annex

A. Implementation details
Each experiment conducted in this work is meticulously documented and accessible th-

rough their respective experiment dashboards on Weights & Biases (W&B), ensuring com-
prehensive logging of all relevant metrics and parameters. Additionally, the corresponding
model checkpoints are stored and can be retrieved from Hugging Face model repositories,
providing seamless integration for further analysis and reproducibility. The details of these
experiments, including the model checkpoints and experiment dashboards, are summarized in
Table A.1. The code repository used for training and evaluation is available at the following
link: https://github.com/alcazar90/ddpo-celebahq.

Experiment Model (Hugging Face) W&B

google/ddpm-celebahq-256
Aesthetic Quality aesthetic-celebahq-256 run1/run2
Compressibility compressibility-celebahq-256 run1/run2
Incompressibility incompressibility-celebahq-256 run1/run2
OVER50 over50-celebahq-256 run1/run2/run3/run4/run5/run6
google/ddpm-church-256
Aesthetic Quality aesthetic-church-256 run1/run2
Compressibility compressibility-church-256 run1/run2/run3
Incompressibility incompressibility-church-256 run1/run2/run3

Table A.1: Experiment details with corresponding model checkpoints on Hugging Face and expe-
riment dashboards on Weight & Biases, including logging information. Multiple runs indicate that
the experiment continued training from the previous run, using the last saved checkpoint.

Tracking a Development Set. To monitor the model’s performance during training, a
development set is used to evaluate performance on a held-out set of images. This develop-
ment set consists of 64 images from the pretrained model, which are not used to update the
parameters and are regenerated during each evaluation phase. The development set is evalua-
ted in each iteration, providing a comparison between the original image, the current image,
both rewards, and a plot showing the reward curves during sample generation. The table in
Figure A.1 illustrates the tracking of the development set during training, with results logged
to the experiment dashboard on W&B.

70

https://github.com/alcazar90/ddpo-celebahq
https://huggingface.co/google/ddpm-celebahq-256
https://huggingface.co/alkzar90/ddpo-aesthetic-celebahq-256
https://wandb.ai/alcazar90/ddpo-aesthetic-ddpm-celebahq256/runs/d5jb3r8a
https://wandb.ai/alcazar90/ddpo-aesthetic-ddpm-celebahq256/runs/cfltp5ln
https://huggingface.co/alkzar90/ddpo-compressibility-celebahq-256
https://wandb.ai/alcazar90/ddpo-compressibility-ddpm-celebahq256/runs/eu71d08t
https://wandb.ai/alcazar90/ddpo-compressibility-ddpm-celebahq256/runs/r2mxiasx
https://huggingface.co/alkzar90/ddpo-incompressibility-celebahq-256
https://wandb.ai/alcazar90/ddpo-incompressibility-ddpm-celebahq256/runs/3gz13ov7
https://wandb.ai/alcazar90/ddpo-incompressibility-ddpm-celebahq256/runs/b1srfre3
https://huggingface.co/alkzar90/ddpo-over50-celebahq-256
https://wandb.ai/alcazar90/ddpo-over50-ddpm-celebahq256/runs/3x6sr17l
https://wandb.ai/alcazar90/ddpo-over50-ddpm-celebahq256/runs/xfwb9vok
https://wandb.ai/alcazar90/ddpo-over50-ddpm-celebahq256/runs/4422n639
https://wandb.ai/alcazar90/ddpo-over50-ddpm-celebahq256/runs/dbmjb1s6
https://wandb.ai/alcazar90/ddpo-over50-ddpm-celebahq256/runs/qfjzj6rd
https://wandb.ai/alcazar90/ddpo-over50-ddpm-celebahq256/runs/b7wu16pl
https://huggingface.co/google/ddpm-church-256
https://huggingface.co/alkzar90/ddpo-aesthetic-church-256
https://wandb.ai/alcazar90/ddpo-aesthetic-ddpm-church256/runs/5f69185v
https://wandb.ai/alcazar90/ddpo-aesthetic-ddpm-church256/runs/4uqt5dwa
https://huggingface.co/alkzar90/ddpo-compressibility-church-256
https://wandb.ai/alcazar90/ddpo-compressibility-ddpm-church256/runs/urd2hwd9
https://wandb.ai/alcazar90/ddpo-compressibility-ddpm-church256/runs/7205y5cb
https://wandb.ai/alcazar90/ddpo-compressibility-ddpm-church256/runs/82snqejo
https://huggingface.co/alkzar90/ddpo-incompressibility-church-256
https://wandb.ai/alcazar90/ddpo-incompressibility-ddpm-church256/runs/jmbu5cgn
https://wandb.ai/alcazar90/ddpo-incompressibility-ddpm-church256/runs/320xik9f
https://wandb.ai/alcazar90/ddpo-incompressibility-ddpm-church256/runs/l0zqgs80

Figure A.1: Table for Monitoring Development Set Progress. This table compares images
generated by the pretrained model with those refined using DDPO. It displays rewards for each
image, their differences, and a graph illustrating reward curves throughout the diffusion model’s
generation process.

Hyperparameters. In Table A.2 there is a summary of the hyperparameters used for fi-
netuning the DDPM models on the JPEG Compressibility, Incompressibility, and Aesthetic
Quality tasks using DDPO.

71

Compressibility Incompressibility Aesthetic
Diffusion
Denoising steps (T) 40 40 40
DDIMScheduler True True True
Optimization
Number of epochs 72 72 35
Half-cycle cosine scheduler False False True
Initial learning rate 9e-8 9e-8 9e-8
Peak learning rate 9e-8 9e-8 3.75e-6
Warmup steps - - 25 %
Optimizer AdamW AdamW AdamW
Weight decay 1e-4 1e-4 1e-4
β1 0.9 0.9 0.9
β2 0.999 0.999 0.999
ϵ 1e-8 1e-8 1e-8
Gradient clip norm 1.0 1.0 1.0
DDPO
Batch size 10 10 10
Samples per iteration 100 100 100
Number of inner iterations 1 1 1
Gradient updates per iteration 10 10 10
Clip range probability ratio 1e-4 1e-4 1e-4
Clip advantages 4.5 4.5 10

Table A.2: Hyperparameters for finetuning google/ddpm-celebahq-256 on JPEG Compressibility,
Incompressibility, and Aesthetic Quality tasks using DDPO.

72

https://huggingface.co/google/ddpm-celebahq-256

B. Additional Samples: Celebrity faces by DDPO

Figure B.1: 256x × 256 celebrity face samples generated by the pretrained model google/ddpm-
celebahq-256.

73

https://huggingface.co/google/ddpm-celebahq-256
https://huggingface.co/google/ddpm-celebahq-256

Figure B.2: 256 × 256 celebrity face samples generated by the DDPO finetuned model
alkzar90/ddpo-compressibility-celebahq-256, optimized for JPEG compressibility.

74

https://huggingface.co/alkzar90/ddpo-compressibility-celebahq-256

Figure B.3: 256 × 256 celebrity face samples generated by the DDPO finetuned model
alkzar90/ddpo-incompressibility-celebahq-256, optimized for JPEG incompressibility.

75

https://huggingface.co/alkzar90/ddpo-incompressibility-celebahq-256

Figure B.4: 256 × 256 celebrity face samples generated by the DDPO finetuned model
alkzar90/ddpo-aesthetic-celebahq-256, optimized for aesthetic quality.

76

https://huggingface.co/alkzar90/ddpo-aesthetic-celebahq-256

C. Additional Transitions: from DDPM to DDPO

Figure C.1: Example 1 of JPEG compressibility transformation during model updates,
starting with a pretrained DDPM model and optimized with DDPO to maximize image file size
reduction after JPEG compression.

77

Figure C.2: Example 2 of JPEG compressibility transformation during model updates,
starting with a pretrained DDPM model and optimized with DDPO to maximize image file size
reduction after JPEG compression.

78

Figure C.3: Example 1 of JPEG incompressibility transformation during model updates,
starting with a pretrained DDPM model and optimized with DDPO to maximize image file size
after JPEG compression.

79

Figure C.4: Example 2 of JPEG incompressibility transformation during model updates,
starting with a pretrained DDPM model and optimized with DDPO to maximize image file size
after JPEG compression.

80

Figure C.5: Example 1 of aesthetic quality transformation during model updates, starting
with a pretrained DDPM model and optimized with DDPO to maximize aesthetic quality.

81

Figure C.6: Example 2 of aesthetic quality transformation during model updates, starting
with a pretrained DDPM model and optimized with DDPO to maximize aesthetic quality.

82

Figure C.7: Example 1 of OVER50 transformation during model updates, starting with a
pretrained DDPM model and optimized with DDPO to maximize the sum of logits for classes ≥ 50
years old using the ViT Age classifier.

83

Figure C.8: Example 2 of OVER50 transformation during model updates, starting with a
pretrained DDPM model and optimized with DDPO to maximize the sum of logits for classes ≥ 50
years old using the ViT Age classifier.

84

D. Additional Samples: Church images by DDPO

Figure D.1: 256×256 church samples generated by the pretrained model google/ddpm-church-256.

85

https://huggingface.co/google/ddpm-church-256

Figure D.2: 256 × 256 church samples generated by the DDPO finetuned model alkzar90/ddpo-
compressibility-church-256, optimized by JPEG compressibility.

86

https://huggingface.co/alkzar90/ddpo-compressibility-church-256
https://huggingface.co/alkzar90/ddpo-compressibility-church-256

Figure D.3: 256 × 256 church samples generated by the DDPO finetuned model alkzar90/ddpo-
incompressibility-church-256, optimized for JPEG incompressibility.

87

https://huggingface.co/alkzar90/ddpo-incompressibility-church-256
https://huggingface.co/alkzar90/ddpo-incompressibility-church-256

Figure D.4: 256 × 256 church samples generated by the DDPO finetuned model alkzar90/ddpo-
aesthetic-church-256, optimized for aesthetic quality.

88

https://huggingface.co/alkzar90/ddpo-aesthetic-church-256
https://huggingface.co/alkzar90/ddpo-aesthetic-church-256

	Abstract
	Abstract
	Table of Content
	List of Tables
	List of Figures

	1 Introduction
	1.1 Related Work
	1.2 Contributions and Outline

	2 Diffusion Models
	2.1 Denoising Diffusion Probabilistic Models
	2.2 Recursive Reparameterization Trick
	2.3 Optimization
	2.3.1 Variational Lower Bound
	2.3.2 Denoising Matching Term

	2.4 Score-based generative models
	2.5 Sampling
	2.6 Conditioning the model
	2.6.1 Classifier Guidance (CG)
	2.6.2 Classifier Free Guidance (CFG)

	2.7 Denoising Diffusion Implicit Models
	2.8 Summary

	3 Reinforcement Learning
	3.1 The Framework for Learning to Act
	3.2 Policy Optimization
	3.2.1 Learning the Policy
	3.2.2 Gradient Estimation via Score Function

	3.3 Vanilla Policy Gradient, aka REINFORCE
	3.4 Actor-Critic Methods
	3.5 Improving Sample Efficiency: Behavior and Target Policies
	3.6 Trust Region and Proximal Policy Optimization
	3.7 Reinforcement Learning From Human Feedback
	3.8 Summary

	4 Extending Reinforcement Learning in Diffusion Models
	4.1 Diffusion Model as Sequential Decision-making Process
	4.2 Empirical Analysis on Reward Trajectory Dynamics
	4.3 Experiments

	5 Results on Reward Finetuning using DDPO
	5.1 Reward Finetuning on Face Generation
	5.1.1 JPEG Compressibility
	5.1.2 JPEG Incompressibility
	5.1.3 Aesthetic Quality
	5.1.4 OVER50

	5.2 Beyond Face Generation
	5.3 Discussion & Limitations
	5.4 Future Work

	6 Conclusion
	Bibliography
	Annex
	A Implementation details
	B Additional Samples: Celebrity faces by DDPO
	C Additional Transitions: from DDPM to DDPO
	D Additional Samples: Church images by DDPO

