
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
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Desentrañando los Efectos de Decisiones de Modelación en Proyecciones
Hidroclimáticas en Chile

Resumen
La estimación de cambio hidrológico se realiza, generalmente, mediante el uso de mode-

los hidrológicos, los que son calibrados y luego forzados considerando distintas condiciones
futuras. Este proceso requiere la toma de distintas decisiones metodológicas, las cuales
repercuten en las proyecciones hidrológicas. Debido a la secuencialidad de la toma de
decisiones, la estimación de cambio hidrológico se ampara en el contexto de cascada de
incertidumbre, es decir, decisiones sucesivas que incrementan la dispersión de los resulta-
dos. Entre las decisiones relevantes se encuentran la elección de escenarios de emisiones de
gases de efecto invernadero, modelos que proyecten el clima futuro, escalamiento espacial
y corrección de sesgo de dichos modelos climáticos, elección de modelos hidrológicos y
estimación de sus parámetros, entre otros.
Este trabajo se aboca a analizar el impacto de algunas de estas decisiones en la simulación
hidrológica histórica y proyecciones hidrológicas futuras bajo un clima cambiante en 120
cuencas de Chile continental. Para las proyecciones de cambio climático, se consideran
30 Modelos de Circulación General (GCM) bajo el escenario de emisiones SSP5-8.5, si-
ete métodos de corrección de sesgo y tres estratificaciones temporales para aplicar los
métodos de corrección de sesgo. Los resultados permiten obtener series de precipitación
y temperaturas extremas diarias para todo Chile continental, desde el año 1960 al año
2100.
Por otra parte, la modelación hidrológica se realiza mediante el modelo hidrológico Vari-
able Infiltration Capacity (VIC), la cual tiene dos objetivos: (i) identificar el efecto de
distintas decisiones de calibración (e.g., elección de los parámetros a regularizar y la
función objetivo) en la simulación de variables hidrológicas (e.g., evapotranspiración) y
(ii) realizar proyecciones de cambio hidrológico.
Los resultados permiten identificar la relevancia de decisiones que, tradicionalmente, se
consideran inofensivas. Por ejemplo, la estratificación temporal a la cual se aplican los
métodos de corrección de sesgo impacta en la magnitud y signo de los cambios proyec-
tados, principalmente, de precipitación. Más aún, la estratificación temporal impacta
directamente en la estacionalidad promedio proyectada de la precipitación. Respecto a
las proyecciones de cambio climático, se esperan disminuciones de precipitación desde la
región de Valparáıso al sur, reducciones severas en la cáıda de nieve en todo el territorio
nacional y aumentos en la isoterma 0°C en d́ıas con precipitación que favorecerá los riesgos
de crecidas e inundaciones. No obstante la dispersión de las proyecciones entre GCMs,
hay un alto nivel de acuerdo (> 90%) en la distribución espacial futura del tipo de clima
según la clasificación de Köppen-Geiger.
Respecto a la modelación hidrológica, se identifican riesgos importantes en la calibración
del modelo VIC considerando solo caudal, pudiendo errar severamente el balance de masa
estacional a escala de cuenca a pesar de una buena simulación del caudal. Este tipo de
errores afecta las proyecciones hidrológicas a escalas temporales anuales, estacionales y
mensuales, aśı como la magnitud y signo de los cambios hidrológicos proyectados.
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Summary
The hydrological change due to changing climatic conditions is estimated through the

use of hydrological models, which are calibrated and then forced considering different
future conditions (for example, changes in climatic conditions and/or in vegetation land
cover). This process requires the definition of different methodological decisions that im-
pact hydrological projections. Due to the sequentially of the decision-making process, the
estimation of hydrological change follows the “cascade of uncertainty” framework, that
is, successive decisions that increase the uncertainty of the results. Among the relevant
decisions are the choice of greenhouse emissions scenarios, models projecting the future
climate, downscaling and bias correction of climate models outputs, choice of hydrological
models, and estimation of their parameters, among others.
This work focuses on analyzing the impact of the choice of global climate model, choice
of bias correction method and the temporal stratification used to apply them, and choice
of hydrological model parameters on historical hydrological simulation and future hy-
drological projections under a changing climate in 120 basins of continental Chile. For
climate change projections, 30 General Circulation Models (GCMs), seven bias correction
methods are considered and three temporal stratifications used to apply the bias correc-
tion methods. The latter decision is usually overlooked within the cascade of uncertainty
framework. The results allow us to obtain daily precipitation and extreme temperature
series for continental Chile from 1960 to 2100.
On the other hand, hydrological modeling is carried out using the hydrological model
Variable Infiltration Capacity (VIC), which has two objectives: (i) identify the effect of
different calibration decisions of the model parameters on the simulation of different hy-
drological variables (e.g., evapotranspiration) and (ii) make projections of hydrological
change.
The results allow the identification of the relevance of decisions traditionally considered
innocuous within the hydrological community. For example, the temporal stratification
to which the bias correction methods are applied impacts the magnitude and sign of the
projected changes, particularly for precipitation. Furthermore, temporal stratification
directly impacts the projected average seasonality of precipitation. Regarding climate
change projections under the SSP5-8.5 scenario, reductions in annual precipitation are
expected from the Valparáıso Region (32°S-33°S) to the south, severe reductions in snow-
fall throughout the national territory and a rise in the 0°C isotherm on days with precip-
itation that will favor the risks of floods and floods. Despite the dispersion of projections
between GCMs, there is a high level of agreement in the spatial distribution of the climate
type according to the Köppen-Geiger classification.
Regarding hydrological modeling, important pitfalls are identified in the calibration of the
VIC model considering only streamflow: the seasonal mass balance at the basin scale can
be incorrect despite a good streamflow simulation. This type of error affects hydrological
projections at annual, seasonal, and monthly time scales, both in magnitude and sign of
the projected changes.

ii



A Miguel, mis padres y mis hermanas.

iii



Acknowledgments

Quisiera partir agradeciendo a mis mentores este camino de la Hidroloǵıa: los profesores Ximena
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mento de Ingenieŕıa Civil. Agradezco profundamente al profesor Martyn Clark, quien apoyó mi
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permitió realizar una pasant́ıa de seis meses en la Universidad de Saskatchewan, Canadá, (iv) la
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Chapter 1

Introduction

Improving the predictability of the water cycle is critical for effective water resources man-
agement and planning, especially under scenarios driven by human consumption, land use
and land cover changes, and climate variability and change (X. Li et al., 2018; Rijsber-
man, 2006). Although hydrological models enable the estimation of state variables and
fluxes in areas without observations, they require (i) accounting the dominant hydrological
processes for the system(s) of interest, (ii) estimates of forcing data, (iii) in-situ and/or
remote-sensed measurements to assess their performance and (iv) reconciling process,
data, and model scales (K. J. Beven, 1990; K. Beven, 1993; Blöschl & Sivapalan, 1995;
Peel & Blöschl, 2011). Further, additional decisions (e.g., selection of future scenario,
global climate models, bias corrections methods, etc.) are needed to estimate projected
hydrologic changes through the “uncertainty cascade” paradigm (Wilby & Dessai, 2010;
Clark et al., 2016), which provides an ensemble of opportunity based on the factorial
combination of multiple modeling alternatives.

Recently, historical and future hydrological portrayals for continental Chile were pro-
duced through the National Water Balance project (DGA, 2017, 2018, 2019b, 2022). In
these studies, the CR2MET meteorological product (Boisier, 2023) and the Variable Infil-
tration Capacity model (VIC; Liang et al., 1994) were used to characterize the hydrology
of continental Chile from 1985 to 2015, and project climate change impacts for the period
2030-2060 using outputs from four General Circulation Models (GCMs) from the Fifth
phase of the Coupled Models Intercomparison Project (CMIP5; K. Taylor et al., 2012)
under the Representative Concentration Pathways 8.5 scenario (RCP 8.5; K. Taylor et
al., 2012). However, several subjective modeling decisions were made (e.g., hydrologi-
cal model, objective function, regularization approaches, downscaling techniques, choice
of GCMs). This work aims to revisit methodological choices of previous efforts (DGA,
2017, 2018, 2019b, 2022) to improve historical and future water balance estimates across
continental Chile, as well as to update the version of GCMs from CMIP5 to CMIP6.

1.1 Background

The past decade has seen tremendous advances towards more realistic representations in
hydrology and land surface models (e.g., Clark et al., 2017; Fan et al., 2019; Fisher &
Koven, 2020; Torres-Rojas et al., 2022; Hao et al., 2022), recognizing the role of uncer-
tain parameters in model fidelity (Mendoza, Clark, Barlage, et al., 2015; Cuntz et al.,
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2016; Cheng et al., 2023; Yan et al., 2023; Denager et al., 2023). Hence, understanding,
quantifying, and reducing hydrological uncertainties is a crucial task, given the large ef-
fects that modeling decisions may have on projected climate change impacts (e.g., Addor
et al., 2014; Mendoza, Clark, Barlage, et al., 2015; L. A. Melsen et al., 2018; Meresa
et al., 2021; Senatore et al., 2022; Mehboob & Kim, 2024). Accordingly, robust model
evaluation strategies that go beyond streamflow data and related hydrological signatures
are needed (K. Fowler, Coxon, et al., 2018; Cinkus et al., 2023), using additional in-situ
measurements when available (e.g., Nijzink et al., 2018; Széles et al., 2020; Pelletier &
Andréassian, 2022) and/or satellite remote sensing (SRS) products (e.g., M. Demirel et
al., 2018; Koch et al., 2018; Dembélé, Ceperley, et al., 2020; Széles et al., 2020; Pool et al.,
2024). The latter has emerged as a powerful tool, providing information on the spatial
heterogeneities of landscape properties and hydrological variables (e.g., Lettenmaier et
al., 2015; McCabe et al., 2017). Despite the above progress, the assessment of climate
change impacts is still challenged by the spread in hydrological projections, given multiple
alternatives for modeling decisions (Mendoza, Clark, Barlage, et al., 2015; Clark et al.,
2016; Hattermann et al., 2018; L. A. Melsen et al., 2019). Reducing such spread is crit-
ical for robust water resources planning and for the execution of adaptation/mitigation
responses (Clark et al., 2016; Lehner et al., 2019).

In Chile, the most recent effort to provide hydrological projections at the national
scale is the National Water Balance project (DGA, 2017). DGA (2018, 2019a, 2022) used
four GCMs, one statistical downscaling method, and one hydrological model (VIC) to es-
timate projected hydrologic changes. DGA (2018, 2019b, 2022) contributed to improving
hydrological understanding across Chile since (i) they set up a physically motivated hydro-
logical model at a 0.05° horizontal resolution for the domain, and (ii) they analyzed ∼120
of catchments with extremely different hydroclimates and physiographic characteristics
(e.g., topography, soils, vegetation).

1.2 Motivation

Despite the advances conducted by DGA (2022), other aspects could be explored to
improve model fidelity. For example, Murillo et al. (2022) illustrated the added value of
including vertical heterogeneity in each simulated unit when using the VIC model. Cortés-
Salazar et al. (2023) implemented a routing software (mizuRoute; Mizukami et al., 2016)
in more than 120 basins in continental Chile, demonstrating the importance of including
the routing process when calibrating hydrological models. Regarding the choice of GCMs
for hydrological projections, Gateño et al. (2024) evaluated the performance of 27 CMIP6
GCMs models in a historical (reference) period by proposing a new GCM performance
metric (inspired by the Kling-Gupta efficiency metric; Gupta et al., 2009; Kling et al.,
2012) that summarizes several climate features for continental Chile. This strategy can be
complemented by considering several statistical downscaling methods (e.g., Chegwidden
et al., 2019; Guo et al., 2020; Crow et al., 2024; Vásquez et al., 2024). Further, the
diversity in landscape and climates across continental Chile provides the opportunity to
explore how modeling choices affect water resources for different types of catchments.

This thesis aims to provide a robust portrayal of projected hydroclimatic changes
across Chile by exploring the effects of different methodological decisions that are usually
overlooked in hydrological modeling and climate change assessments and by including
recent advances in continental Chile (Murillo et al., 2022; Cortés-Salazar et al., 2023;
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Gateño et al., 2024; Vásquez & Mendoza, 2024) and hydrological modeling (Dembélé,
Ceperley, et al., 2020; Clark et al., 2021; Cinkus et al., 2023). To this end, the “uncertainty
cascade” paradigm - which consists of the examination of several decisions to provide
hydrological projections - results critical and inspires the following research questions:

1. How relevant is the bias correction strategy used to replicate historically observed
climatic features and explain the spread of the projected precipitation changes and
seasonality?

2. What is the level of (dis)agreement among CMIP6 climate models in projecting the
future spatial distribution of climate types, as well as precipitation, temperature,
and snowfall changes in continental Chile?

3. Within the context of distributed hydrological modeling, how does the spatial distri-
bution of specific parameters affect the streamflow performance and the catchment-
scale seasonal water balance?

4. In the context of climate change impact assessments, how does the calibration/rep-
resentation of average annual cycles of Q and ET affect the projected hydrological
changes at the annual, seasonal, and monthly time scales?

1.3 Outline

This thesis is structured into six chapters: Chapter 1 is the introduction; Chapters 2 to 5,
the main body of this thesis (conceptualized as separate but consecutive journal articles);
and Chapter 6, corresponding to concluding remarks. Chapters 2 to 5 are summarized as
follows:

• Chapter 2
To address question number one, the following decisions within the climate change
impact assessments are evaluated: (i) choice of CMIP6 GCMs, (ii) choice of bias
correction method (BCM) and (iii) how BCMs are implemented. In this chapter,
how bias correction methods are implemented is explored in detail. The results
show that the temporal stratification, i.e., the temporal scale used to apply the bias
correction method (for example, correcting each season or month), directly impacts
the magnitude and signal of projected changes. Moreover, the choice of temporal
stratification is crucial to replicate historical seasonalities —, which is essential for
further hydrological analyses —and to define the future precipitation seasonality.

• Chapter 3
Since the choice of GCMs is among the most relevant decisions explaining the dis-
persion of hydrological projections, this chapter addresses question number two,
contributing to the existing literature by analyzing projected changes in precipi-
tation, temperature, and snowfall under scenario SSP5-8.5 for 30 CMIP6-GCMs in
continental Chile. The results indicate future snowfall reductions, with consequences
in rainfall contributing areas to streamflow on rainy days due to a projected rise in
isotherm 0°C. Additionally, and despite the spread in projections among GCMs, the
spatial distribution of Köppen-Geiger climate groups is delineated, showing a high
agreement among models with respect to the projected spatial distribution of such
climate groups.
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• Chapter 4
The calibration of distributed hydrological models is usually conducted using stream-
flow (Q) information only. Moreover, a priori spatial distributions of parameters are
required to run such models. In this chapter, and to address question number three,
different VIC parameters are regularized, showing that its selection impacts not
only streamflow-based metrics but also evapotranspiration (ET), fractional snow-
covered area (fSCA), land surface temperature (LST), and soil moisture (SM). The
main finding is that flux equifinality (from a streamflow point of view) may produce
extremely different ET and SM seasonalities.

• Chapter 5
To respond to question number four, hydrological projections in 120 basins in near-
natural regimes in continental Chile are provided for two objective functions: (i)
using only streamflow-based metrics and (ii) including ET in the calibration of the
VIC model. The results suggest that similar simulated streamflow performances
could be achieved for extremely different ET seasonalities. Although LST, fSCA,
and SM are also analyzed, this chapter focuses on Q and ET since both variables
control the overall catchment-scale water balance. The results suggest that, for sim-
ilar simulated streamflow performance, differences in ET simulations largely impact
the projected changes in Q and ET. Additionally, including ET in the objective
function affects the relative importance of the fluxes contributing to total runoff
and projected changes in total runoff at the annual, seasonal, and monthly time
scales. The basins more sensitive to the inclusion of ET in the objective function
are located in central and southern Chile (i.e., humid areas), with comparatively
larger (lower) annual precipitation amounts (aridity index) and decoupled Q and
ET seasonalities.
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Chapter 2

The key role of temporal
stratification for GCM bias
correction in climate impact
assessments

Summary

Characterizing climate change impacts on water resources typically relies on Global Cli-
mate Model (GCM) outputs that are bias-corrected using observational datasets. In this
process, two pivotal decisions are (i) the Bias Correction Method (BCM) and (ii) how
to handle the historically observed time series, which can be used as a continuous whole
(i.e., without dividing it into sub-periods), or partitioned into monthly, seasonal (e.g.,
three months), or any other temporal stratification (TS). This chapter examines how the
interplay between the choice of BCM, TS, and the raw GCM seasonality may affect his-
torical portrayals and projected changes. To this end, outputs from 29 GCMs belonging
to the CMIP6 under the Shared Socioeconomic Pathway 5–8.5 scenario are considered,
as well as seven BCMs and three TSs (entire period, seasonal, and monthly). The results
show that the effectiveness of BCMs in removing biases can vary depending on the TS
and climate indices analyzed. Further, the choice of BCM and TS may yield different
projected change signals and seasonality (especially for precipitation), even for climate
models with low bias and a reasonable representation of precipitation seasonality during
a reference period. Because some BCMs may be computationally expensive, the linear
scaling method arises as a computationally cheap diagnostic tool to assess how the choice
of TS may affect the projected precipitation seasonality of a specific GCM. More gen-
erally, the results presented here unveil trade-offs in how BCMs are applied, regardless
of the climate regime, urging the hydroclimate community to carefully implement these
techniques1.

1This chapter is published in the Earth’s Future Journal. It can be found in the following link:
https://doi.org/10.1029/2023EF004242.
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2.1 Introduction

Understanding and quantifying climate change impacts is crucial for long-term water
resources planning and management. Such characterization typically involves hydrologic
model simulations forced by an ensemble of scenario-driven meteorological time series
obtained from Statistically Downscaled Bias-Corrected (SDBC) Global Climate Model
(GCM) outputs (e.g., Addor et al., 2014; Hattermann et al., 2018; Her et al., 2019; Chen
et al., 2021; Hanus et al., 2021; Vicuña et al., 2021). This approach usually requires the
choice of emission scenario (e.g., Vano et al., 2015; Chegwidden et al., 2019), the choice of
GCM (e.g., Hakala et al., 2018; Di Virgilio et al., 2022), the selection of Bias Correction
Method (BCM; e.g., Werner & Cannon, 2016; Gutiérrez et al., 2019; Hess et al., 2023),
and the choice of observational (or reference) dataset (e.g., Wootten et al., 2021; Rastogi
et al., 2022), among others (e.g., hydrologic model and its parameters).

Among the above decisions, the selection and configuration of BCMs is a critical step
given the risk of introducing artificial perturbations in GCM outputs (Hagemann et al.,
2011; Maurer & Pierce, 2014; Wootten et al., 2021), generating a mismatch between
simulated (i.e., obtained from bias-corrected GCMs) and observed (i.e., obtained from a
reference dataset) annual cycles of climate variables (e.g., precipitation; Teutschbein &
Seibert, 2010; Alder & Hostetler, 2019; Chen et al., 2021), with potential effects on pro-
jected climate change impacts and subsequent interpretations and adaptation strategies.
A somewhat overlooked step is the strategy for handling the time series when applying
BCMs, hereafter referred to as temporal stratification (TS). For example, the bias cor-
rection of simulated daily time series can be performed using all the historical period
(i.e., a single application of the BCM; e.g., Aryal & Zhu, 2017; Ghimire et al., 2019)
or sub-periods of the historical time series, such as seasons (e.g., four applications of the
BCM; e.g., Ruffault et al., 2014; Teng et al., 2015; Maity et al., 2019), months (i.e., twelve
applications of the BCM; e.g., H. Li et al., 2010; Pierce et al., 2015; Switanek et al., 2017;
Matiu & Hanzer, 2022; Wu et al., 2022; Guo et al., 2020), or any other temporal window
(e.g., Haerter et al., 2011; Reiter et al., 2018).

Despite the large body of work exploring modeling decisions at the top of the “cas-
cade of uncertainty” (Wilby & Dessai, 2010), climate impact studies have typically relied
on subjectively selected TSs. For example, Teng et al. (2015) compared four BCMs (all
of them applied with a unique seasonal TS) for hydrological projections in southeastern
Australia, concluding that the hydrological model amplifies biases in precipitation after
applying the BCMs, and that the large spread in the projected signal of changes in pre-
cipitation extremes yields different impacts on runoff. Hakala et al. (2018) applied the
quantile mapping (QM) method (using a seasonal TS) to assess whether a hydrological
model, forced by SDBC GCMs, can replicate the hydrological climatology observed during
a historical reference period, obtaining that, even after bias correction, biases in precipi-
tation and streamflow seasonality persist. To analyze the effects of different observational
datasets and BCMs on climate projections, Wootten et al. (2021) used three observational
datasets to apply two bias correction methods: (i) the ‘Delta’ approach with a 3-month
moving window, and (ii) the quantile delta mapping (QDM) method over four periods
consisting of three non-overlapping months (i.e., a seasonal TS). They concluded that
the selection of BCMs and observational datasets have different impacts on historical and
projected time series for different variables, although they did not isolate the effect of the
choice of TS.
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Other studies have focused on the ability of different BCMs to reproduce historically
observed climate indices (e.g., Gutmann et al., 2014; François et al., 2020; Xavier et al.,
2022), or the effects on climate projections (e.g., Maurer & Pierce, 2014; L. A. Melsen
et al., 2018). In this regard, different BCMs have been proposed to reduce the artifacts
induced by quantile-based methods (Maraun, 2016), to preserve the trends of raw GCM
projections (e.g., Hempel et al., 2013; Pierce et al., 2015), include non-rainy days (e.g.,
Maity et al., 2019) or the intermittent nature of precipitation (e.g., H. Li et al., 2010),
without emphasizing the role of the TS and the evaluation timescale. More recently,
Vogel et al. (2023) proposed a framework to evaluate downscaling and BCMs for climate
change studies and demonstrated it over Australia using four GCMs, three BCMs, and
two downscaling methods, considering different TS (monthly, 3-month, and multi-time
scales) for the BCMs. They suggested that the TS may influence the analysis after bias
correction and should be adequately selected after a careful bias assessment.

Although the preceding studies have covered domains with specific climate types, the
trade-offs in selecting TS, BCMs, and GCMs for estimating historical biases (after ap-
plying BCMs) and projections across contrasting climates remain unclear. This chapter
seeks to disentangle the relative contribution of the choice of GCMs, BCMs, and (particu-
larly) TSs to the spread of bias-corrected time series at the annual, seasonal, and monthly
timescales during historical and future periods rather than finding the ‘best’ configura-
tion for the assessment of climate change impacts. It could be hypothesized that the
choice of TS may have substantial impacts on historical and future climate projections.
Specifically, the following research questions are addressed:

1. To what extent does the choice of bias correction method and temporal stratification
alter historical GCM simulations across different climate regions?

2. What are the effects of bias correction methods and temporal stratification on the
projected signal and seasonality of different climate variables?

3. Are there any connections between the effects of TS (on historical biases and pro-
jections) and the capability of raw GCM output to replicate historically observed
climatology?

To seek answers, this chapter evaluates the performance of 29 SDBC GCMs from the
sixth phase of the Coupled Models Intercomparison Project (CMIP6; O’Neill et al., 2016)
over different climate groups in continental Chile. Seven methods (three univariate and
four multivariate) are used to correct biases in precipitation and maximum and minimum
temperature. All BCMs are applied considering three different TSs: (i) using the entire
period (i.e., all daily data simultaneously used for one application of the BCM), (ii)
seasonally (i.e., four applications of the BCM using four seasonally stratified time series),
and (iii) monthly (i.e., twelve applications of the BCM for twelve monthly stratified time
series).
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2.2 Study area and datasets

2.2.1 Study area

The study domain is continental Chile, which is suitable for a comprehensive assessment
of the GCM-BCM-TS interplay in very different climate types. Figure 2.1 shows the
spatial distribution of mean annual precipitation, mean annual temperature, and three
climate indices. The snowfall fraction SF = Sn/P (Figure 2.1d) is the fraction of mean
annual precipitation (P , Figure 2.1b) falling as snow (Sn). The aridity index (Figure
2.1e) is the ratio between mean annual potential evapotranspiration (PET ) and mean
annual precipitation. PET is computed using the Oudin et al. (2005) formula – available
in the R Package airGR (Coron et al., 2017) - which requires air temperature (provided
at daily time steps here) and latitude as inputs. To estimate Sn, it is considered that
snowfall occurs when the mean daily temperature is below 2°C (Jennings et al., 2018;
Han et al., 2019; Sepúlveda et al., 2022), and p-seasonality is computed with the formula
proposed by Woods (2009, Eq. 14). Finally, the precipitation seasonality (p-seasonality,
Figure 2.1f) indicates whether most precipitation falls during winter (negative values) or
summer (positive values). In this paper, the names of the seasons are used within the
context of the Southern Hemisphere (i.e., winter refers to months JJA, while summer to
DJF).

In the northern area (17°S-25°S), two main climate zones can be identified: (i) the
super-arid coastal area, with very low annual precipitation amounts (<50 mm/yr), and
(ii) the Altiplano region, with lower temperatures due to increasing altitude and larger
annual precipitation (∼200 mm/yr). The mean annual precipitation increases towards
the south, although the Andes Cordillera generates a west-east gradient, with larger pre-
cipitation amounts and lower temperatures on the western slopes of the Andes Cordillera
compared to the valleys. Moving south from ∼37°S, the altitude of Andean mountains
progressively decreases, as well as the contribution of snowmelt to runoff, whereas pre-
cipitation increases. South from 45°S, a west-to-east precipitation gradient produces high
precipitation amounts on the coast (>2,500 mm/yr), whereas a dry climate develops
in Patagonia a few kilometers to the east, with decreasing precipitation amounts. In
summary: (i) most snowfall occurs in the Andes Cordillera, though snowfall events can
also occur in the valleys of Austral Chile (<45°S); (ii) the hydroclimate is water-limited
(PET/P > 1) in approximately half of the Chilean territory, especially from ∼35°S to
the north, whereas the hydroclimate of the south is energy limited (PET/P < 1); and
(iii) most precipitation in Chile falls during the winter (red color in panel f), being the
Altiplano (northern Chile) and Patagonia (∼50-55°S) two notable exceptions. For a more
comprehensive review of the climate and weather of Chile, readers are referred to Aceituno
et al. (2021) and Vásquez et al. (2021).

2.2.2 Datasets

The gridded meteorological product CR2MET v2.5 (Boisier et al., 2018; DGA, 2022) is
considered as the observational baseline (hereafter reference dataset). CR2MET precipi-
tation estimates (pr) are obtained through a combination of (i) logistic regression models
and (ii) multiple linear regression models that use ERA5 reanalysis outputs (Hersbach
et al., 2020) and geomorphological attributes as predictors and daily precipitation from
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Figure 2.1: Main physiographic and climate attributes of continental Chile for the period
Apr/1980-Mar/2014 (34 water years): (a) elevation, (b) mean annual precipitation, (c)
mean annual temperature, (d) snowfall fraction, (e) aridity index, and (f) p-seasonality.

meteorological stations as predictands. For daily extreme temperatures (tmax and tmin),
land surface temperature from MODIS AQUA and TERRA (Wan, 2014) are also included
as predictors. All variables (pr, tmax, and tmin) are available at a daily time step for the
period January/1979-March/2020, covering continental Chile at a horizontal resolution of
0.05° x 0.05°. The mean daily temperature is computed as the average between tmax and
tmin (e.g., Demaria et al., 2013). It should be noted that CR2MET is, arguably, the most
accurate meteorological dataset for continental Chile since its development incorporated
local meteorological stations.

For climate projections, outputs from 29 GCMs from the CMIP6 are considered
(O’Neill et al., 2016), based on the data availability for pr, tmax, and tmin during the
historical and projected periods, and the SSP5-8.5 scenario for being the worst in terms
of greenhouse emissions and the ‘business as usual’ development case. The name and
horizontal resolution of each GCM are included in Table A.1.

2.3 Methodology

Figure 2.2 shows the main steps of the approach. First, climate zones across Chile
are delineated using cluster analysis (step 1) to examine possible relationships between
climate types and the GCM-BCM-TS interplay. Step 2 considers different strategies
for correcting biases in GCM outputs (i.e., seven bias-correction methods are applied
using three different temporal stratifications). In step 3, several climate indices derived
from precipitation and temperature are computed at different time scales (e.g., annual,
seasonal, and monthly mean values) for a historical and future period. Finally, an Analysis
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of Variance (ANOVA) is conducted to quantify the relative contribution of the different
decisions to the spread of historical estimates. More details can be found in the following
sections.

1. Climate clustering
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Figure 2.2: Diagram of the methodology used in this study

2.3.1 Climate clustering

A Bayesian clustering is performed to identify climate zones across Chile. To this end,
the aridity index (PET/P ), the p-seasonality, and the fraction of precipitation falling as
snow are used as explanatory variables, since they reflect observed hydrological behaviors
(W. J. Knoben et al., 2018). Prior climate groups are defined with the Autoclass-C
software (Cheeseman et al., 1988, 1996), which has been previously used in hydrologi-
cal applications (e.g., Sawicz et al., 2011). Clustering results are subsequently refined
through visual inspection, grouping small clusters based on spatial proximity and climate
similarity.
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2.3.2 Raw GCM performance

The Taylor Skill Score (TSS; K. Taylor, 2001) is used to evaluate the role of the raw GCM
performance and its interplay with BCM and TS to explain SDBC-biases and projections
at different time scales. The TSS is computed at the grid cell level (0.05° x 0.05°) for the
period 1980-2014, contrasting downscaled GCM outputs against the reference dataset, as
is commonly done for local climate impact assessments (e.g., Lafon et al., 2013). In this
study, TSS is computed for precipitation, as shown in Eq. 2.1.

TSS =
4(1 +R)(

σ̂ + 1
σ̂

)2
(1 +Ro)

(2.1)

where R is the Pearson correlation coefficient between the raw GCM and the reference
mean seasonality, and σ̂ = σGCM/σREF is the ratio between the standard deviation of
raw monthly values (σGCM) and the reference (σREF ). R, and σ̂ are computed using
simulated and observed mean monthly values of each variable (i.e., 12 values of GCMs vs.
12 reference values). Ro is the maximum achievable Pearson correlation coefficient for a
specific GCM, which is assumed to be Ro

∼= 1 to simplify the analysis. When R → Ro

and σ̂ → 1, the TSS → 1. Alternatively, TSS → 0 when R decreases or σ̂ approaches
zero or infinity. Hence, TSS ranges between 0 and 1. Further, TSS is computed for each
climate group, estimating the mean group climatology through spatial averages.

2.3.3 Bias correction of GCMs

Bias correction methods

Raw GCM outputs are spatially downscaled to the CR2MET grid using inverse distance
weighting, considering the four closest GCM grid cells. Seven bias correction methods
are used, including three univariate and four multivariate techniques, listed in Table 2.1
and briefly reviewed here. The quantile delta mapping (QDM) preserves the projected
change for each quantile while correcting the bias. Empirical cumulative density functions
are estimated for the historical reference (Fh,ref ), the raw historical GCM (Fh,GCM), and
the raw projected GCM (Fp,GCM) to relate (X) with the cumulative probability (τ).
For a specific value during the historical period Xh,GCM , the correction (for pr) is given
by X

′

h,GCM = F−1
h,ref (Fh,GCM (Xh,GCM)), while for a projected raw GCM value Xp,GCM ,

the corrected value is X
′
p,GCM = ∆ · F−1

h,GCM (Fp,GCM (Xp,GCM)), where ∆ is computed as

∆ = Xp,GCM/F−1
h,GCM (Fp,GCM (Xp,GCM)) for precipitation. In words, for each quantile, the

bias-corrected future precipitation value is the observed historical value for that quantile,
multiplied by the projected raw change from GCM data for the same quantile.
The asynchronous regression (AR) relies on a piecewise linear regression calibrated with
sorted raw GCM and reference data during a historical period (i.e., Fh,ref is a function
of Fh,GCM). Although a simple linear regression could be used, the error in the tails
of the regression can be large and, therefore, the data is split in groups (up to six) to
conduct separate linear regressions for each group, aiming to reduce errors in low and
high values. To bias-correct projected values, the calibrated piecewise linear regression is
applied. The quantile regressions neural network (QRNN) uses neural networks to bias
correct the sorted data (i.e., quantiles) from simulations and the reference. QRNN is a
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flexible model since it does not assume a specific relationship between the raw GCM and
the reference data.
The rank resampling for distributions and dependences (R2D2) corrects the covariance
among sites and/or variables through four steps: (i) the univariate bias correction of each
variable/site separately, (ii) the selection of one variable/site and the computation of the
ranking for all variables/sites, (iii) for a specific date, select the same ranking in the
reference period for the dimension selected, and (iv) the shuffling of the other variables
and sites to maintain rank structure.
The ‘multivariate bias correction’ family (MBC) includes three different methods using
the Pearson correlation coefficient (MBCp), the Spearman rank correlation coefficient
(MBCr), and an N-dimensional probability density function (MBCn) to transform the raw
correlated GCM data (i.e., the intervariable dependence structure) through consecutive
iterations. For MBCp and MBCr, the transformation relies on the Cholesky matrix
decomposition and the correction of the covariance matrix. Conversely, MBCn relies on
an orthogonal rotation, the application of QDM to these orthogonal variables, and, finally,
the application of an inverse matrix (the one used to compute the orthogonal variables) to
obtain the resulting data. The reader is referred to the studies listed in Table 2.1 for more
details on the methods. It should be stressed that the aim is to evaluate how different
decisions may impact historical biases and future projections, rather than compare the
ability of particular BCMs to remove biases.

Table 2.1: Methods considered in this study to bias-correct GCMs outputs (pr, tmax,
and tmin). Univariate methods bias-correct each variable separately, while multivariate
methods also adjust the raw GCM correlations to better replicate the observed inter-
variable correlations.

Acronym Name Type Reference
QDM Quantile Delta Mapping

Univariate

Cannon et al. (2015)

AR Asynchronous Regression
Dettinger et al. (2004);
Stoner et al. (2013)

QRNN Quantile Regression Neural Network Cannon (2011)
R2D2 Rank Resampling for Distributions and Dependences

Multivariate

Vrac and Thao (2020)
MBCp Multivariate Bias Correction method - Pearson

Cannon (2016)
MBCr Multivariate Bias Correction method - Rank
MBCn Multivariate Bias Correction method – QDM Cannon (2018)

All bias correction methods were applied using the statistical software “R” (http://www.r-
project.org/). The QDM, MBCp, MBCr, MBCn, and R2D2 methods were applied using
the library “MBC” (Cannon, 2018). QRNN was implemented using the “qrnn” library
(also available in R), while the AR method was implemented following Stoner et al. (2013).
To reduce the computational effort, 100 grid cells are randomly selected within each cli-
mate group, and all subsequent analyses are conducted at these grid cells (100 ·Nclusters).

Choice of the temporal stratification

Bias correction methods can be applied using different stratification strategies. For ex-
ample, a BCM can be applied at daily time steps using all the data in the historical
period (usually 30 years), which means that all ∼10,950 days (∼365 days · 30 years) are
simultaneously bias-corrected. For a seasonal TS, BCMs are applied four times, each one
considering ∼2730 days (∼91 days · 30 years), whereas for a monthly TS, the BCM is
applied 12 times considering ∼900 days (∼30 days · 30 years). Note that other temporal
stratifications could be considered. Here, BCMs are applied to daily time series of pr,
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tmax, and tmin (e.g., Rastogi et al., 2022) using the entire time series in the historical
period (1980-2014), and stratifying the data seasonally and monthly, since these TSs are
typically considered for climate change impact assessments. For all combinations of BCM
and TS, daily time series from 1980 to 2100 are obtained.

2.3.4 Climate indices

In this chapter, several climate indices are considered relevant to evaluate historically
observed hydrological responses (e.g., Gutmann et al., 2014), including (i) mean annual,
seasonal, and monthly total precipitation, (ii) highest 1% daily precipitation, (iii), wet-
day fraction, (iv) wet and dry-spell lengths, (v) fraction of precipitation falling as snow,
and (vi) annual, seasonal and monthly averages of mean daily temperature and diurnal
temperature ranges. To estimate the mean annual snowfall, all precipitation amounts
for days with a mean daily temperature below 2°C are added. Wet-spell and dry-spell
lengths (mean consecutive rainy and non-rainy days, respectively), as well as the wet-
day fraction (mean fraction of rainy days), are computed as in Gutmann et al. (2014),
considering 0.1 mm/d as a threshold. To examine the capability of BCMs to replicate
historically observed climate indices, the difference between SDBC-GCM outputs and the
reference dataset during the historical period 1980-2014 are computed as a percent bias.
Additionally, the effects of BCMs on climate projections are analyzed by computing the
relative change for the period 2065-2099 with respect to the historical period (1980-2014).
For consistency, the climate clustering (section 3.1) and application of BCMs (section 3.3)
consider the period 1980-2014 as the reference.

2.3.5 Analysis of Variance

To evaluate the relative contribution of the BCM and TS decisions to the spread of SDBC-
biases, an analysis of variance (ANOVA) is performed for each combination of GCM and
grid cell. In this case, the ANOVA analysis is simplified as:

TV = BCM + TS +Residual (2.2)

where TV stands for the total variance of SDBC-biases, and the residual term is the
variance not explained by the BCM nor the TS for a specific GCM-grid cell combination.
If the choice of TS has no impact on the biases in climate indices (after bias correction),
the application of the BCM should be able to reduce biases at all temporal scales (e.g.,
annual, seasonal, or monthly), regardless of the GCM considered. To summarize the
information at the grid cell level, the average of BCM/TV , TS/TV , and Residual/TV
fractions is computed across GCMs, whereas for the climate groups, the mean relative
contribution (estimated by BCM/TV , TS/TV and Residual/TV ) of TS and BCM to
the spread is computed as the average of fractions across the grid cells within that group.

13



2.4 Results

This section shows the climate clustering results, the historical biases after applying the
BCMs, and the relative contributions of different methodological choices to historical
biases of climate indices at the annual and seasonal scales. Further, TSS performance
is included to examine connections between the raw seasonality of the GCMs and the
selection of BCM and TS. For simplicity, only the results for precipitation are shown here
(see section A for more results).

2.4.1 Clustering

The Bayesian clustering and subsequent spatial aggregation through visual inspection
provided ten climate groups for continental Chile (Figure 2.3). In general, the clusters
follow two main climate patterns: (i) a latitudinal precipitation gradient, from very arid
(north) to humid (south), and (ii) a west-east gradient from the coast to the Andes
Cordillera. Although northern Chile encloses groups 1, 2, and 3, clusters 2 and 3 are
located in the Altiplano region, where larger precipitation and lower temperatures are
observed. Groups 5, 6, and 8 span the coast and valley, whereas groups 4 and 7 are
located in the Andes. Finally, groups 9 (the rainiest group) and 10 are in southern Chile,
characterized by large precipitation amounts in the Andes Cordillera and the coast, with
decreasing precipitation and temperature towards the east (Patagonia).

2.4.2 Performance metrics after bias correction

Figure 2.4 shows precipitation biases (after bias correction) in three different climate
groups. The results show that, regardless of the combination of GCM, BCM, TS, and
grid cell, biases in annual amounts are close to zero (Figure 2.4a). When the BCM is
applied using all the data in the historical period (Figure 2.4b, left), biases in monthly
precipitation amounts can be large, although the magnitude varies among climate groups.
In climate group 2 (Altiplano region), precipitation occurs mostly during the summer
(DJF); in this season, the median bias associated with January precipitation is relatively
lower - though still considerable (>20%) - compared to the remaining months. In group 6,
most precipitation occurs during the winter (JJA), and biases can be found in any month.
In group 10, precipitation falls uniformly throughout the year, with slightly larger amounts
and larger biases during the summer (DJF). Monthly precipitation biases persist when
the BCM is applied seasonally (Figure 2.4b, center). However, these biases are generally
lower compared to the case when the bias correction is applied using the entire dataset,
especially in climate group 10. As expected, biases are nearly removed at the monthly
time scale with a monthly TS (Figure 2.4b, right), regardless of the GCM, bias correction
method, grid cell, or climate group.

No considerable differences can be found in the ability of different BCMs to remove biases
in P, T, and diurnal temperature range during the historical (training) period (Figures
A.1-A.3). For P-1% (Figure A.4), the AR and QRNN methods yield larger biases for all
temporal scales and TS. For DSL (Figure A.5), the QRNN provides larger biases when the
entire period is used as TS. When BCMs are applied at seasonal and monthly TSs, larger
biases are obtained with the R2D2 method. For WSL (Figure A.6), the QRNN yields
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Figure 2.3: (a) Spatial distribution of climate clusters in continental Chile based on
snowfall fraction, aridity index, and p-seasonality. The following attributes are ordered
by the median of each group: (b) elevation, (c) precipitation, (d) temperature, (e) snowfall
fraction, (f) aridity index, and (g) p-seasonality. All climate indices were computed for
the period 1980-2014. Notice that the boxplots in panels b-g are sorted according to the
median value (horizontal line within each box), and the group’s order on the x-axis differs
among variables.

the largest biases for the entire period TS, whereas, for seasonal and monthly TSs, the
MBCn method produces the largest biases. For snowfall (Figure A.7), univariate (QDM,
AR, and QRNN) BCMs yield larger biases compared to multivariate (MBCp, MBCr,
MBCn, and R2D2) techniques, regardless of the TS. Such results are not surprising since
multivariate methods aim to include the correlation between variables. However, among
the multivariate BCMs, the MBCn and R2D2 methods show a better ability to reduce
GCM biases for all TSs (especially for seasonal and monthly stratifications). It is worthy
stressing that this analysis is only conducted for the training period and, therefore, these
relative BCM performances are not expected to be preserved in independent evaluation
periods (e.g., H. Li et al., 2010; Johnson & Sharma, 2011; Gutmann et al., 2014; Maity
et al., 2019).

Figure 2.5 displays the relative contributions of the BCM, TS, and residuals for mean

15



Entire period
Seasonally

Monthly

−100
−50

0
50

100

−100
−50

0
50

100

−100
−50

0
50

100

Temporal stratification

An
nu

al
 b

ia
s 

 1
98

0−
20

14
 (%

)

Entire period Seasonally Monthly

2

6

10

M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F

−100
−50

0
50

100

−100
−50

0
50

100

−100
−50

0
50

100

Month

M
on

th
ly

 b
ia

s 
19

80
−2

01
4 

(%
)

C
lim

atic group

a)                                                  b)

Fall      Winter    Spring  Summer

Figure 2.4: Historical biases (after bias correction) in precipitation at the (a) annual and
(b) seasonal time scales in three climate groups (rows) after applying the BCMs. The
columns in panel b) show results for the three TSs used to apply the BCMs. Each boxplot
comprises results from the 100 grid cells within a specific climate group, 29 GCMs, and
seven BCMs. The different seasons are highlighted through grey-white areas.

annual, seasonal (summer and winter), and monthly (January and July) precipitation
biases averaged across 1,000 grid cells in continental Chile. Two seasons and months are
shown to examine possible differences between the dry and wet seasons. Additionally, the
results from different GCMs are stratified according to their historical raw performance,
measured by the Taylor Skill Score. As in Figure 2.4, the ANOVA analysis for histori-
cal biases shows differences among temporal stratifications, especially when seasonal and
monthly biases are compared to annual biases (Figure 2.5a). Because the relative contri-
butions of BCM and TS to precipitation biases do not greatly differ among climate groups,
results are shown at the national scale. The choice of BCM explains most of the variance
for the mean annual precipitation bias, whereas the choice of TS explains almost all the
variance for mean seasonal and monthly precipitation biases. It is worth noting that the
biases at the annual scale are, in general, very low (Figure 2.4, <1%), and that the rela-
tive importance of the choice of TS for seasonal and monthly biases does not decrease for
GCMs with high TSS values. The latter result is counterintuitive since one might expect
GCMs with good raw precipitation seasonality to be effectively bias-corrected, regardless
of the TS selected. For variables related to quantiles (highest 1% daily precipitation, dry
and wet-spell lengths, and wet-day fraction), the relative importance of BCMs increases
for GCMs with higher TSS, being BCM the most important decision, even at seasonally
and monthly time scales (Figure A.10).

2.4.3 Projected changes

This section analyzes the interplay between the choice of TS, the raw GCM precipitation
seasonality, and its effects on projected changes in precipitation for the period 2065-
2099 (with respect to 1980-2014) at different time scales. Figure 2.6 displays projected
changes in mean annual, seasonal, and monthly precipitation for one grid cell located
in central Chile (red dot in map) and one GCM (INM-CM4-8) with a high R value.
For this GCM and grid cell, TSS = 0.76 during the period 1980-2014, with a Pearson
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Figure 2.5: Relative importance (as a fraction averaged from all grid cells and GCMs for
continental Chile) of the bias correction method and the temporal stratification to explain
the precipitation biases at the annual, seasonal (DJF and JJA), and monthly (January and
July) time scales during the historical period (1980-2014), for different levels of historical
GCM performance (x-axis). Biases are computed after applying BCMs.

correlation coefficient between mean monthly raw GCM and reference amounts of 0.98,
and a 41% underestimation of the standard deviation. The high value of R indicates a
good seasonality of raw GCM outputs. Figure 2.6 shows that different BCMs yield a high
dispersion in projected changes of mean annual precipitation (different lines), with little
influence on the selected TS (x-axis of each subplot). Additionally, all BCMs alter the raw
GCM projection. For example, if all BCMs are applied using the entire dataset, projected
changes in summer precipitation range between -8% to 5%, whereas the raw projection is
close to -30%. The application of MBCn using the entire period yields a positive projected
change in the mean summer precipitation, while a seasonal and monthly application of
the same BCM projects a decrease in summer precipitation. The results for individual
months (January and July) reveal more dispersion and interaction among BCMs and the
choice of TS. For example, applying the BCM with the entire time series results in positive
and negative projections of mean July precipitation (the rainiest month for this grid cell).
Similarly, different TSs can also provide different projected signals.

Figure 2.6 reveals that the choice of TS affects the signal of projected changes in
summer precipitation (e.g., for the MBCn method), as well as in January and July pre-
cipitation amounts. The TS can be considered relevant for a specific grid cell if it is able
to switch the projected signal of a variable for a particular GCM-BCM combination. This
is, for example, the case of mean July precipitation (Figure 2.6e), for which the signal of
projected changes is different among TSs for the MBCn, MBCr, and R2D2 methods.

Figure 2.7 shows, for all the grid cells analyzed, the fraction of “well-behaved” GCMs
(i.e., with TSS ≥ 0.7; e.g., Kwon et al., 2019) for which the selection of TS leads to
different signs in projected precipitation changes. Note that the number of GCMs that
meet the performance requirement - obtained by spatially averaging the number of GCMs
with TSS ≥ 0.7 at each latitudinal band - varies along the domain. In general, the
choice of TS does not alter the signal of projected changes in mean annual precipitation,
although a few GCMs are affected by this decision in some areas (e.g., northern Chile).
Nevertheless, the effects of TS are more evident in seasonal projections (Figure 2.7b and
2.7c). During the summer, >50% of the number of GCMs are affected by the TS in central
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Figure 2.6: Projected change in annual, seasonal (summer and winter), and monthly
(January and July) precipitation for different temporal stratifications (x-axis) and bias
correction methods (lines). All combinations of TS and BCM decisions, along with pro-
jected changes from the raw (biased) GCMs, are displayed. The results are valid only for
the grid cell shown and the GCM INM-CM4-8. The metrics (e.g., TSS) were computed
using the raw (biased) GCM data for the period 1980-2014.

Chile (dry season). During winter, the Altiplano region and part of southern Chile are
largely influenced by the choice of TS. It should be noted, however, that the summer season
in central Chile and the winter season in the Altiplano region are dry seasons. Therefore,
while the signal of projected changes may vary for different TSs, the precipitation amounts
involved are small. For mean monthly January and July precipitation, the choice of TS
is even more relevant. Indeed, nearly all GCMs are affected by the TS along the coast
of northern Chile, while ∼50% of the GCMs yield different signals in projected changes
for different TSs in central Chile. The case of July is more interesting since it is the
rainiest month in most of continental Chile. In July, ∼50% of the GCMs are affected by
the TS along the central Chilean Andes (western border), impacting the accumulation of
snow and, therefore, meltwater volume and timing estimates for the spring and summer
seasons. In southern Chile, one can find grid cells where GCMs are affected by the TS
decision, though that fraction is lower compared to the central Chilean Andes.

Figure 2.8a compares the raw GCM output (obtained from the GCM ACCESS-CM2)
and the reference precipitation seasonality over a historical period at one grid cell located
in central-southern Chile (red dot on the map). For this GCM-grid cell combination,
TSS = 0.96, R = 0.94 and σ̂ = 1.08. Note that the GCM simulates the maximum
monthly precipitation in July instead of June (when the maximum occurs according to
the reference). Figure 2.8b displays, for the same GCM-grid cell, the projected precipita-
tion seasonality for each BCM-TS combination (thin lighter lines). The results show that
applying a BCM using the entire period (green lines) provides the same seasonality as
the raw GCM; however, seasonal and monthly TSs distort the raw projected seasonality.
Further, when BCMs are applied using a monthly TS (black/gray lines), the projected
month of maximum precipitation is June, whereas for seasonal and entire periods, such a
month is July. Additionally, seasonal and monthly TSs yield higher precipitation fractions
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Figure 2.7: Fraction of GCMs with acceptable performance (i.e., with TSS ≥ 0.7) for
which the TS yields different projected precipitation signals. The number of GCMs that
meet the threshold criteria at each 5° latitudinal non-overlapping band is computed as
the average of GCMs with TSS ≥ 0.7 from all grid cells within that band.

(compared to the raw GCM) during April and May, and smaller values during Septem-
ber and October. Such differences in projected precipitation seasonality may affect any
subsequent analyses of simulated hydrological fluxes and states.

To examine the extent to which projected precipitation seasonality is affected by the
temporal stratification, the projected maximum mean monthly precipitation is analyzed.
Hence, for each GCM-grid cell combination, three curves obtained with the three temporal
stratifications (each obtained by averaging the projections among BCMs for each GCM)
are contrasted. It is considered that the TS affects the projected seasonality if the month
where the maximum mean monthly precipitation amount occurs differs. Conversely, if
such a month is the same for the three TSs, it is considered that this decision does
not impact the seasonality. Figure 8c displays the fraction of the number of GCMs with
TSS ≥ 0.7 for which the TS impacts the projected precipitation seasonality. Interestingly,
the number is relatively high (>40%) for most of continental Chile. The fraction of GCMs
affected by the TS decision is even higher in northern Chile, the central Chilean Andes,
and the southernmost part of Chile, where more than 60% of GCMs are affected.
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Figure 2.8: Influence of the temporal stratification used to apply bias correction methods
on the projected precipitation seasonality. (a) Dimensionless historical seasonality for
one grid cell (red dot on the map) and one GCM (ACCESS-CM2). Note that the sum
of monthly fractions is equal to 1. (b) Projected raw (circles) and bias-corrected (colored
lines) GCM precipitation seasonality. Lighter and thinner lines represent different BCMs,
whereas thick lines represent the average across BCMs. (c) Fraction of the total number
GCMs with TSS ≥ 0.7, for which the temporal stratification yields different projected
seasonality, measured as different months for maximum mean monthly precipitation for
the 2065-2099 period. In c), the average number of GCMs meeting the TSS criterion is
computed for latitudinal bands.

2.5 Discussion

The results presented here highlight the relevance of the temporal stratification used
when applying bias correction techniques, which affects (i) SDBC-biases in seasonal and
monthly precipitation amounts over a historical period, and (ii) the signal of projected
changes and the seasonality of projections.

2.5.1 Temporal stratification and BCMs as sources of uncer-
tainty

The results show that the choice of temporal stratification can largely affect precipitation
biases during a historical period, as well as the signal and seasonality of projected changes.
However, this methodological choice has rarely been explored in climate change impact
assessments, and the lack of guidance has motivated the use of more than one TS in
some studies (e.g., Wootten et al., 2021). Further, model errors may not necessarily be
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removed after bias correction. For example, Hakala et al. (2018) obtained that biases
in precipitation and streamflow seasonality remained after applying BCMs. The results
suggest that only a monthly application of the BCM enables replicating the reference
precipitation seasonality, even for GCMs with a good raw representation of annual cycles.
On the other hand, the results differ from Aryal and Zhu (2017), who analyzed the
remaining biases in drought frequency (after bias correction) obtained from four models
(two RCMs and two GCMs), using three BCMs and two TSs (entire period and monthly
stratification). Their results showed that the choice of TS made no difference in removing
drought frequency biases or projections.

Despite some authors have explored the use of trend-preserving BCMs (e.g., Hempel et
al., 2013; Pierce et al., 2015), maintaining the magnitude of mean projected changes after
performing bias correction is not guaranteed (Hempel et al., 2013; Maraun, 2016; Guo
et al., 2020). Such BCMs usually bias-correct the wet-day fraction (i.e., the number of
rainy days) by imposing a precipitation threshold (τ) to subsequently correct the amount
(e.g., Pierce et al., 2015) and/or the variability (e.g., Hempel et al., 2013) of precipita-
tion. Thus, the trend of precipitation projections is usually preserved for amounts above
τ . However, when adjusting the number of rainy days (to make it equal or comparable
to the observational dataset), the raw GCM precipitation below τ is discarded. To ex-
plore the effects of selecting different τ values for each grid cell and GCM, three temporal
stratifications (entire period, seasonal, and monthly) are computed. First, the observed
and raw GCM precipitation amounts are re-ordered from highest to lowest and estimate
the cumulative probability distribution using a Weibull probability density function; then
τ is selected as the raw GCM pr value for the quantile where the first observed pr value
is above 0.1 mm/d. Figure 2.9 shows projected precipitation changes before (i.e., using
all the raw GCM data) and after (i.e., discarding raw GCM precipitation) applying the
threshold τ . The projected precipitation change was also computed for the entire period,
seasonal, and monthly stratifications. Note that the temporal scales to evaluate the pro-
jected change in Figure 2.9 are the same as the TSs. Differences in magnitude arise before
applying any bias correction to precipitation amounts, showing a change in the projected
change signal. For example, projections close to zero for April precipitation diminished,
whereas the number of grid cells with positive and negative projections increases. Further,
the discarded amount of precipitation (pr below τ) can reach up to 20-30% for April in
central Chile (Figure A.9).

Since most of the BCMs used in this study bias-correct the wet-day fraction, particu-
larly for a monthly TS (Figure A.9), the effect of τ is combined with the known effects of
quantile-based BCMs. Hence, both decisions contribute to modifying the magnitude and
signal of projected precipitation changes.

2.5.2 Projected seasonality

The study reveals that one of the main effects of selecting different TSs is the possibility
of distorting the precipitation seasonality projected by raw GCM outputs. In hydrologic
impact assessments, this artifact may propagate into the timing of simulated variables
like snow accumulation and melting, energy fluxes, and streamflow (Meyer et al., 2019).
The results show that when the raw GCM seasonality has timing errors (compared to the
reference), a pronounced shift in the projected seasonality can be obtained after applying
BCMs (compared to the case without bias correction). However, when the raw GCM
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Figure 2.9: Projected precipitation change (median among models) for annual, seasonal,
and monthly time scales (a) before and (b) after applying the threshold τ . c) displays the
distribution of the projected precipitation change among the 1000 grid cells before (black)
and after (red) applying the threshold τ . No bias correction of precipitation amounts is
conducted here. Notice that the temporal scale used to compute the projected change
(columns) corresponds to the temporal stratification used to obtain τ .

replicates the historically observed precipitation seasonality reasonably well, one might
expect that different TSs yield the same projected seasonality. To test this hypothesis, the
precipitation seasonality projected is compared for three TSs by two GCMs (CanESM5
and NorESM2-MM, Figure 2.10) that replicate annual cycles (i.e., high Pearson correlation
coefficients, with GCM and reference maximum mean monthly precipitation being the
same, top panels). For GCM CanESM5 (Figure 2.10a), the choice of TS has little effect
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on the projected precipitation seasonality. Conversely, the temporal stratification affects
the seasonality projected by NorESM2 (Figure 2.10b). For example, if the BCM is applied
seasonally and monthly, the months of maximum mean monthly precipitation are May
and August, respectively. Interestingly, TSS = 0.951 for this GCM, which is higher than
the value obtained for CanESM5 (0.694), and both GCMs have similar Pearson correlation
coefficients. These results emphasize that even GCMs with a good raw representation of
historical seasonality can be affected by the temporal stratification used to apply BCMs.
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Figure 2.10: Impact of the temporal stratification used in bias correction for two GCMs.
The results presented here are spatially averaged values of the grid cells contained in cli-
mate group 6 (highlighted in red on the map). Top row: comparison of the raw GCMs and
the reference for the period 1980-2014. Bottom row: projected precipitation seasonality
in terms of fraction of mean annual precipitation (average from the seven BCMs).

2.5.3 A priori evaluation of the TS impact on projected precip-
itation seasonality

Understanding the potential effects of the TS on the projected signal and seasonality of
precipitation from a specific GCM could be helpful for a more detailed assessment of
climate change and/or hydrological changes. Here, using the linear scaling method (LSM;
Widmann et al., 2003; Maraun, 2016) is proposed - due to its low computational cost
and simplicity (Lafon et al., 2013; Chaubey & Mall, 2023) -, as a quick diagnostics tool
to inform if the TS may be an influential decision (an example of an LSM application is
provided in Appendix A.4). The LSM removes the bias from the raw GCM time series
through a multiplicative factor (fbias) for the case of precipitation and an additive term for
temperature, using an observational dataset as a reference. For example, if the reference
and raw GCM mean annual precipitation amounts are 500 mm/year and 650 mm/year,
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respectively, a factor fbias = 500/650 = 0.77 is applied to the raw GCM time series to
remove the bias. Accordingly, seasonal or monthly applications of LSM require more
scaling factors (Maraun et al., 2010). Hence, the raw GCM projected change (f∆) is
preserved (at the TS time scale), since the scaling factors are typically considered to be
time-invariant. Additionally, the influence of the temporal stratification and the reference
dataset (in case there is more than one available) can be isolated for a specific grid cell-
GCM combination.

Figure 2.11a illustrates the application of the linear scaling method (dashed lines)
to the GFDL-CM4 GCM in one grid cell (red dot in map), using the entire period and
stratifying the data seasonally and monthly. For this GCM-grid cell combination, TSS =
0.72 and R = 0.7, and different TSs yield different projected precipitation seasonalities
when applying the LSM. Figure 2.11a shows that the precipitation factors obtained with
LSM agree with the averages obtained from all (seven) bias correction methods (solid
lines).

Finally, the capability of the LSM to identify the precipitation seasonality projected
with different TSs correctly is examined. To this end, for each grid cell-GCM-TS combi-
nation, the precipitation seasonalities is obtained from (i) the average between the seven
BCMs and (ii) the application of the LSM. If the months of the projected maximum pre-
cipitation agree, then the LSM correctly identifies the seasonality, and if this occurs for
the three TSs, then LSM successfully identifies the projected bias-corrected seasonality for
that specific grid cell-GCM combination. Figure 2.11a illustrates a successful case since,
for each TS, the month of maximum precipitation is the same for the average among
seven BCMs and from the LSM. Then, for the 1,000 grid cells analyzed here, the fraction
of GCMs for which the LSM successfully identifies the projected seasonality (accuracy,
Figure 2.11b) is computed. The results show that, in almost all the grid cells, the LSM
successfully identifies the projected seasonality of ∼70% of the GCMs, whereas, for most
grid cells (> 85%), the LSM successfully projects the seasonality for more than 85% of
the GCMs.

2.5.4 Limitations and future work

In this study, the SSP5-8.5 scenario and 29 GCMs are selected, although other future
scenarios and/or a subset of GCMs could be considered to assess the effects on historical
biases (after bias correction) and/or future projections. This chapter did not focus on
performance metrics for specific BCMs because evaluating the adequacy of particular bias
correction methods is out of the scope of this work, and separate training and evaluation
periods would be required; instead, it focuses on how these techniques are traditionally
applied and how they impact model biases during the training period. Although univariate
and multivariate BCMs were selected (e.g., Guo et al., 2020), quantile-based, neural
networks, and linear regressions, different approaches could be considered, including trend-
preserving BCMs.

Additionally, hydrological modeling was not included in this chapter. Instead, the
focus is on the repercussions of some decisions on the historical biases and the projected
seasonality of climate variables required to run hydrological and land surface models.
However, previous work has shown that hydrological models tend to amplify biases in the
forcings (Teng et al., 2015). It should be emphasized that any assessment of climate change
impacts should ensure that the climatological annual cycles of hydrological simulations
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Figure 2.11: Linear scaling method used as a proxy to estimate the projected precipitation
seasonality. (a) Example of projected precipitation seasonalities for one grid cell and
one GCM, obtained by applying the LSM and the seven BCMs tested. The metrics
summarize the raw (biased) GCM performance for the historical period (1980-2014). (b)
LSM accuracy (as a fraction of the total number of GCMs) for all grid cells.

forced with (i) reference data sets and (ii) bias-corrected time series from GCMs/RCMs
are similar (Hakala et al., 2018). Hence, verifying the reference and bias-corrected GCM
forcing data during a historical period arises as a crucial step (Chen et al., 2013; Clark et
al., 2016; Mendoza et al., 2016; L. A. Melsen et al., 2019).
Further, the effects of selecting different TSs, BCMs, and GCMs on simulated feedback
mechanisms, extreme events, and spatial correlations were not evaluated.
Future work could consider the impacts of SDBC historical biases and differences in
projected seasonality on different aspects of the hydrograph (e.g., mean values, extremes,
timing, etc.) and signatures formulated from other variables than streamflow (e.g., SWE,
soil moisture; McMillan et al., 2022; Araki et al., 2022).

2.6 Conclusions

This chapter contributes to the hydroclimate community by investigating how method-
ological choices in GCM bias correction affect portrayals of historical and future climates.
To this end, seven bias correction methods, 29 CMIP6 GCMs, and three temporal stratifi-
cations were used. All the configurations were applied to daily time series of precipitation
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and maximum and minimum daily temperature derived from the CR2MET gridded ob-
servational product, available for continental Chile. The main findings are as follows:

1. A monthly application of bias correction methods is required to replicate the refer-
ence precipitation seasonality, even for GCMs with good raw seasonality.

2. The temporal stratification is the most relevant decision to explain seasonal and
monthly precipitation biases after bias correction.

3. Different temporal stratifications may yield different projected signals and season-
ality, even for GCMs with good raw seasonality.

4. Since the application of different temporal stratifications in GCM bias correction
affects the projected change signal and seasonality, the linear scaling method can be
used to estimate such impacts beforehand and, therefore, identify the climate mod-
els for which the choice of temporal stratification may be critical. This procedure
is particularly recommended if climate impact assessments involve more sophisti-
cated and computationally expensive bias correction methods, making it infeasible
to explore different TSs.

5. BCMs that bias-correct the number of rainy days using precipitation thresholds may
dismiss a relevant fraction of historical and projected precipitation from raw GCMs
in some areas and, therefore, modify the signal and magnitude of changes projected
by raw GCMs (i.e., before bias-correcting precipitation amounts).
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Chapter 3

Robust Spatial Changes in Climate
Classes: Insights from
Bias-Corrected CMIP6 Models
across Chile

Summary

The climate in continental Chile is marked by strong latitudinal and elevation hetero-
geneities, exacerbated by diverse geographical features, such as the Andes Cordillera.
Despite previous studies projecting warmer and dryer conditions for most of the territory,
there is concern about the robustness (i.e., level of agreement among models) of changes
projected for its magnitude, not only for the impact in climate indices across this do-
main but also to identify changes in the spatial distribution of climate classes. Hence,
daily CMIP6 model outputs for continental Chile are statistically downscaled and bias-
corrected using a multivariate bias correction method, to project climate changes under
the SSP5-8.5 scenario. The results reveal that Global Climate Models (GCMs) project in-
creased dryness across the study domain, especially in central Chile (-30%), with notable
sensitivities of precipitation projections to the implementation of bias correction methods
in the northern and austral macrozones. Temperature projections show less dispersion,
with higher increments in northern Chile and the Andes (4-5°C). Notable changes in the
spatial distribution of Köppen-Geiger climate classes are projected for the next decades,
with the expansion of deserts in northern Chile and the prevalence of temperate climates
with dry summers in central Chile. The Andes subdomain is expected to face the most
dramatic changes in Köppen-Geiger classes. Surprisingly, despite the large spread in GCM
projections, there is high agreement among models regarding spatial changes in climate
classes. Additionally, the results suggest drastic reductions in snowfall across the Andes,
with higher freezing level heights that may exacerbate flooding and landslide risk across
the country1.

1This chapter is currently under review in the Environmental Research Letters journal.
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3.1 Introduction

Climate change threatens the environment and increases risks for human societies due to
changes in the spatial and temporal patterns of climate seasonality and mean conditions,
interannual variability, climate extremes, and cryosphere conditions, among other impacts
on the biosphere and the hydrological cycle (IPCC, 2023). Chile, located in the south-
western part of South America, will be particularly affected due to the dependence on
snow and ice melt (Dussaillant et al., 2019; Barria et al., 2019), the projected reduction
in precipitation (Ortega et al., 2021; Salazar et al., 2023) and increase droughts frequency
and intensity (Ukkola et al., 2020). Moreover, continental Chile contains unique envi-
ronments and a myriad of climatic regimes that are highly vulnerable to global warming
(Heusser, 1974; Muñoz-Sáez et al., 2021; Eshel et al., 2021; Frêne et al., 2023; Marquet
et al., 2023).

Over the past two decades, General Circulation Models (GCMs) have provided valu-
able information and insights about future climate change in Chile. Most studies have
projected a general drying and warming for the country (CONAMA, 2006; MMA, 2016;
Araya-Osses et al., 2020; Cortina & Madeira, 2023; Salazar et al., 2023; DGA, 2022),
with considerable effects on glaciers (Carrasco et al., 2005; Vuille et al., 2015; Ayala et
al., 2020; Mardones & Garreaud, 2020), snow processes (Vicuña et al., 2013; Demaria et
al., 2013; Cordero et al., 2019; Aguayo et al., 2021), land cover (Bambach et al., 2013;
Urrutia-Jalabert et al., 2018), socio-economic activities (e.g., Madeira, 2022) and water
supply (e.g., Barŕıa et al., 2021). In this regard, the last phase of the Coupled Model
Intercomparison Project (CMIP6; O’Neill et al., 2016) offers a new scenario framework
based on shared socio-economic pathways (SSP Riahi et al., 2017) and new capabilities
to represent different climate features with respect to previous CMIP phases (Catalano et
al., 2020; Gao et al., 2021; G. P. Taylor et al., 2023). However, such improvements are still
insufficient to represent orographic effects associated with complex topography, such as
the Andes Cordillera (Bozkurt et al., 2019). Moreover, assessing climate change impacts
at the local scale requires downscaling GCM outputs to overcome horizontal resolution
mismatches.

Since GCMs are among the main contributors to the spread of projected changes
(e.g., Hagemann et al., 2011; Hattermann et al., 2018; Chegwidden et al., 2019; Vogel
et al., 2023) and the small number of Regional Climate Models (RCMs) is restrictive
to explore a wide range of future projections, several studies have relied on statistical
downscaling (SD) and bias correction (BC) of GCMs due to their lower computational
costs (H. J. Fowler et al., 2007; Wilby & Dessai, 2010; Vicuña et al., 2012; Gutmann et
al., 2014; Pierce et al., 2015; Clark et al., 2016; Gutiérrez et al., 2019; Matiu & Hanzer,
2022; Alder & Hostetler, 2019; Vrac et al., 2022). Particularly, the latter approach has
been used in continental Chile mostly for climate (e.g., Bambach et al., 2013; Boisier et
al., 2018; Araya-Osses et al., 2020; Ortega et al., 2021; Salazar et al., 2023), hydrological
(e.g., Vicuña et al., 2012; Demaria et al., 2013; Bozkurt et al., 2017; Ayala et al., 2020;
Aguayo et al., 2019, 2021; Mart́ınez-Retureta et al., 2021), land cover (e.g., Bambach et
al., 2013) and water availability (e.g., Barŕıa et al., 2021) projections.

Recently, Ortega et al. (2021) used precipitation and temperature data to evaluate the
historical performance of 33 CMIP5 models for South America, while Salazar et al. (2023)
also used precipitation (Pr) and temperature (T) data to evaluate the historical perfor-
mance of 36 CMIP6 models and their projections under scenarios SSP1-2.6, SSP2-4.5,
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SSP3-7.0 and SSP5-8.5 over continental Chile. Similarly, Gateño et al. (2024) proposed
a framework for screening models, and applied it to 27 CMIP6 GCMs to produce climate
projections for continental Chile. Furthermore, Beck et al. (2023) obtained 1-km world-
wide maps with the spatial distribution of Köppen-Geiger climate classification from 1901
to 2099 (using 30-year intervals), showing that arid and temperate climates will domi-
nate north-central (17°S-33°S) and central-southern (33°S-57°S) Chile, respectively, under
scenario SSP5-8.5, being the Patagonian Ice Fields the exception. However, all previous
studies used raw GCMs data and/or univariate bias correction methods (BCMs), which
may be inappropriate for semi-arid snow-influenced environments such as northern and
central Chile (Meyer et al., 2019; Guo et al., 2020) due to raw temperature biases, the
coarse horizontal resolution or the lack of inter-variable dependencies when bias-correcting
GCM outputs. Further, the choice of BCM can impact the signal and magnitude of pro-
jected changes (Hagemann et al., 2011; Maurer & Pierce, 2014; Wootten et al., 2021),
affecting the level of agreement among models. Hence, the following questions are ad-
dressed:

• What is the level of (dis)agreement among CMIP6 climate models in terms of future
projections before and after bias correction?

• Given the importance of snowpack for the hydroclimate of Chile, what are the
projected changes for snowfall and freezing level heights?

• What is the level of agreement among GCMs in the changes in the projected spatial
distribution of Köppen-Geiger climate classes?

3.2 Material & methods

3.2.1 Study area

The study domain is continental Chile (Figure 3.1). In the northern area (17°S-25°S),
two main climate zones can be identified: (i) the arid coastal area, with low annual pre-
cipitation (<50 mm/year), and (ii) the Altiplano region, with lower temperatures due to
increasing altitude and larger annual precipitation amounts (∼200 mm/year) mainly ex-
plained by the South American Monsoon during the austral summer (Aceituno et al., 2021;
R. Garreaud et al., 2003). As the annual precipitation increases towards the south, the
Andes Cordillera generates a west-east gradient that yields larger precipitation amounts
and lower temperatures on the western slopes of the Andes Cordillera compared to the
valleys and the coast (R. Garreaud et al., 2009; Viale et al., 2019). South from 45°S,
a west-to-east precipitation gradient produces high precipitation amounts on the coast
(>2,500 mm/year), whereas a dry climate develops in Patagonia a few kilometers to the
east, with decreasing precipitation amounts. For a more comprehensive review of the
climate and weather of Chile, readers are referred to Aceituno et al. (2021).

3.2.2 Datasets

The CR2MET (v2.5) database is considered as the observational product (Boisier et al.,
2018; DGA, 2022; Boisier, 2023). CR2MET provides daily time series of Pr, maximum
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Figure 3.1: (a) Elevation and main climatic attributes for continental Chile (period 1980-
2014): (b) precipitation, (c) temperature, (d) snowfall fraction, (e) aridity index, and (f)
p-seasonality. The drainage contributing areas beyond the country’s boundaries are also
included.

(Tmax) and minimum (Tmin) temperatures, spanning continental Chile with a horizontal
resolution of 0.05° for the period 1979-2020. Precipitation was estimated using geomor-
phologic attributes and ERA5 outputs (Hersbach et al., 2020) as predictors for logistic
regression models that yield a probability of precipitation occurrence and multiple linear
regression (MLR) models to compute precipitation amounts. Extreme daily temperatures
were also obtained through MLR, with the same predictors of Pr but adding land surface
temperature from MODIS (Wan et al., 1999) as a predictor.

For climate projections, 29 CMIP6 GCMs (Table A.1) are selected for the emission
scenario SSP5-8.5. Additionally, one RCM (∼10-km horizontal resolution) forced with the
CMIP5 model MPI-ESM-MR (CR2, 2018) is included for the emission scenario RCP8.5
(RegCM4-10k). The GCMs and the RCM are referred hereafter as models for simplicity.

3.2.3 Downscaling and bias correction

All the models were statistically downscaled to the CR2MET grid (0.05°) using the inverse
distance weighting interpolation method (e.g., Demaria et al., 2013). Then, SD-GCM
outputs were bias-corrected at each CR2MET grid cell using the Multivariate quantile-
mapping bias correction method (MBCn; Cannon, 2018), available in the “MBC” library
(Cannon, 2016, 2018), and implemented in the statistical software R (R Core Team,
2023). This method was selected because it better replicates the precipitation-temperature
correlation in arid or temperate areas with considerable snowfall fractions (Meyer et al.,
2019; Guo et al., 2020), such as northern and central Chilean Andes. The MBCn method
relies on an orthogonal rotation followed by applying the Quantile Delta Mapping method
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(Cannon et al., 2015) and, finally, applying an inverse matrix (the one used to compute
the orthogonal variables). This process is repeated until convergence. For more details
about MBCn, readers are referred to Cannon (2018). The MBCn is applied to the daily
time series of Pr, Tmax, and Tmin using a monthly temporal stratification and considering
1980-2014 as the training period (35 years). As a result, we obtain daily bias-corrected
time series of Pr, Tmax, and Tmin are obtained for the 1980-2100 period. Finally, mean
daily temperatures (Tmean) are estimated as (Tmax + Tmin)/2 (e.g.; Demaria et al., 2013).

3.2.4 Climate Indices

In this chapter the following climate indices are considered based on their capability to
inform observed hydrological responses (e.g., Gutmann et al., 2014): (i) precipitation, (ii)
wet-day fraction (WDF), (iii) wet and dry-spell lengths (WSL and DSL), (iv) fraction of
precipitation falling as snow (Sf/P), and (vi) temperature. WSL and DSL are the mean
consecutive rainy and non-rainy days, respectively, whereas WDF is the mean fraction of
rainy days above 0.1 mm/d (e.g., Musselman et al., 2017). All indices are computed at
the annual, seasonal, and monthly time scales. Annual snowfall (Sf) is calculated as the
sum of precipitation for days with Tmean ≤2°C (Jennings et al., 2018). Relative changes
are obtained by comparing the future period 2065-2099 against the historical period 1980-
2014. Biases are drastically reduced after applying the MBCn method (not shown).

3.2.5 Climate Classification

To evaluate projected changes in the spatial distribution of Köppen-Geiger climates across
Chile, the climate classification criteria described by Peel et al. (2007) and Beck et al.
(2018) is followed to produce, with each model, maps with climate classes for the historical
(1980-2014) and future (2065-2099) periods. Then, the level of agreement among models
is evaluated for the 2065-2099 period as the fraction of the number of models projecting
the same climate classification.

3.2.6 Basin Scale Analysis

Precipitation and snowfall projections are spatially aggregated over 31 relevant basins
in Chile, using the catchment delineation produced by the Chilean Water Directorate
(DGA in Spanish). In these basins, projected changes in freezing level height (FLH) are
computed during fall-winter storms covering at least 10% of the basin area with a spatial
average precipitation rate ≥ 5 mm/d (Covián & Stowhas, 2015; Mardones & Garreaud,
2020). Here, FLH is considered as the altitude of isotherm 0°C, estimated by fitting a
local linear regression between each grid cell elevation and the mean daily temperature
for each storm.
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Figure 3.2: Changes in precipitation (median among models) at annual and seasonal
(summer and winter) scales for the period 2065-2099 with respect to the period 1980-2014.
Results are displayed (a) before (raw) and (b) after (MBCn) when the bias correction
method is applied. Dotted areas represent inter-model agreement ≥75% in projected
signal changes.

3.3 Results

3.3.1 Projected changes in precipitation and temperature

At the annual scale, MBCn modifies the signal of projected changes in the super-arid re-
gions (17°S-30°S), where annual amounts are ≲40 mm/year (Figure 3.2). In the remaining
areas, the signal of projected annual changes is preserved after bias correction, with spatial
variations in magnitude, especially in central Chile (30°S-40°S). Similar spatial precipita-
tion patterns of negative projected trends are obtained for the summer season. For winter
precipitation, MBCn replicates the signal of raw projected changes for almost the entire
study domain, with differences in the level of agreement (dotted areas in Figure 3.2) in
northern Chile (20°S-27°S). Overall, a high inter-model agreement (≥ 75%) is achieved
for most of the domain before and after bias correction.

Regarding projected changes in temperature and snowfall, a north-south and east-west
gradient in temperature increase (Figure 3.3a) is present, with the Andes Cordillera and
northern Chile being the most affected areas. The general decrease in annual precipi-
tation projected for most of continental Chile (Figure 3.2), combined with temperature
increments (Figure 3.3a), yields a general decrease in snowfall amounts (Figure 3.3c).
Moreover, snowfall is projected to decrease considerably (< −50%) in low-elevation ar-
eas (see Figure 3.1), whereas smaller reductions are projected for higher altitudes of the
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western slopes of the Andes Cordillera between 25°S and 35°S, where more than half of
the Chilean population lives, and snowmelt is relevant for water supply during the spring-
summer (dry) season. Relatively smaller snowfall changes are expected for the Ice Fields
of Patagonia (south of 45°S) compared to lower latitudes, along with a future reduction
in snowfall fraction. Snowfall is projected to remain the main form of precipitation only
over the Andes between 30°S-35°S.

Figure 3.3: Projected changes for (a) mean annual temperature, (c) annual snowfall,
and (e) snowfall fraction for the period 2065-2099 (relative to 1980-2014) after applying
MBCn. The historical annual snowfall amount (b) and the historical snowfall fraction (d)
are included for completeness. Values correspond to the median projected change among
models.

3.3.2 Projected spatial distribution of climate classes

This section contrasts the spatial distribution of Köppen-Geiger climate classes during the
historical reference period (Figure 3.4a) against the distribution of the future projection
(Figure 3.4b). The climate for the 2065-2099 period in northern and central Chile would
be dominated by classes BWh (Dry - Arid desert - Hot summer) and Csa (Temperate - Dry
and hot summer), in agreement with reductions in annual precipitation and temperature
increments projected for those regions (Figures 3.2 and 3.3). Despite the dispersion in the
magnitude of P projections, Figure 3.4c reveals a high inter-model agreement in terms
of projected climate classes. However, disagreement is present in the transition between
climate zones and between 30°S and 35°S. Figure 3.4d shows that a change in the main
climate classes (i.e., Tropical, Dry, Temperate, Cold, and Polar) is projected for the
Altiplano region (north of 20°S), the western slopes of the Andes Cordillera between 25°S
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and 40°S, and the islands and valleys of Patagonia (south of 42°S). The climate in the
valleys between 30°S and 34°S is expected to evolve from a temperate to an arid climate,
with the lowest inter-model agreement of future climate classes.

Figure 3.4: Climate classification (mode among models) during historical (a; 1980-2014)
and future (b; 2065-2099) periods. c) Agreement (as a fraction) among the 30 models in
terms of climate classes projected for the period 2065-2099. d) Projected changes in the
main Köppen-Geiger climate classes. The color scale for climate classification is the same
as in Beck et al. (2018).

3.3.3 Basin scale analysis

At the basin scale (Figure 3.5), there is a north-to-south gradient in projected precipitation
changes, with a larger dispersion in the signal of changes in northern basins (Lluta-
Huasco). The results show a high level of inter-model agreement (> 75%) in the signal
of precipitation changes between the Elqui (30°S) and the Baker River basins (47°S).
Regarding snowfall, more drastic reductions are projected for basins with low snowfall
values, with small or near zero future amounts, such as Lluta-Loa and the Altiplano
region. In contrast, smaller reductions are projected in central (Elqui-Maule River basins)
and austral Chile (Palena-Pascua River basins). Despite the reductions in Sf, snow would
continue playing a key (although diminished) role in relevant basins. For example, from
Copiapó to Limaŕı (northern Chile), Aconcagua to Mataquito (central Chile), and Aysén
to Pascua River Basins, Sf/P (annual scale) is expected to be larger than 10%, which
would be crucial for water resources management during the spring-summer (dry) season.

To explore possible reasons behind the drastic reductions in Sf (Figure 3.5c), the FLHs
during fall and winter (April-September) are analyzed. Figure 3.6a and 3.6b display pro-
jected changes in FLHs and the change in rainfall contributing area (i.e., the catchments’
area below the FLH), respectively. A projected rise of at least ∼500 m is projected for
all basins, with northern Chile being the most affected area, with a rise of FLH close
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Figure 3.5: Basin-scale changes in P, Sf and Sf/P for the period 2065-2099 (with respect to
1980-2014) projected with MBCn bias-corrected models. Each boxplot comprises results
from the 30 models; the boxes correspond to the interquartile range (IQR; i.e., 25th and
75th percentiles), the horizontal line in each box is the median, whiskers extend to the
±1.5IQR of the ensemble, and the red dots represent the historical reference (period 1980-
2014).

to 1,000 m (Lluta-Elqui River basins). Figure 3.6b reveals that the rainfall contributing
areas could increase by ≥1,000 km2 in northern (Loa-Choapa), central (Aconcagua-Bio-
Bio), and austral (Palena-Pascua) basins, likely impacting the hydrological regime of these
basins while increasing flood risk. Such increases in rainfall-contributing areas can rep-
resent more than 20% of the total basin area in some cases (e.g., Copiapó, Huasco, and
Elqui in Figure 3.6c).

3.4 Discussion

3.4.1 Projected changes in precipitation and temperature

The results for the Altiplano differ from CONAMA (2006), since they projected an incre-
ment of summer and spring precipitation for scenario A2, whereas this study projects a
decline for the same seasons before and after applying bias correction, which aligns better
with the dynamical downscaling conducted by CR2 (2018) for the scenario RCP8.5. Fur-
ther CONAMA (2006) projected a general annual precipitation reduction around ∼ 40%
for central Chile, while the results of this study project a decrease between 20-30% after
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Figure 3.6: Projected changes in freezing level heights and rainfall contributing area
during rainy days for the period 2065-2099 (with respect to 1980-2014), using MBCn
bias-corrected models. Each boxplot comprises results from the 30 models; the boxes
correspond to the interquartile range (IQR; i.e., 25th and 75th percentiles), the horizontal
line in each box is the median, whiskers extend to the ±1.5IQR of the ensemble. Notice
that the x-axis in panels b) and c) are on a logarithm scale.

applying bias correction. Such differences may be explained by the use of different GCMs
or types of downscaling methods: here, a statistical downscaling is used, while CONAMA
(2006) performed a dynamical downscaling of only one GCM and two CMIP3 scenarios
(A2 and B2).

Salazar et al. (2023) projected, using raw GCM outputs under the SSP5-8.5 scenario,
a general drying for the country, with precipitation declines up to 40% (contrasting the
periods 2080-2099 and 1986-2014) in central Chile (30°S-40°S), and slight projected in-
crements in the northern Andes (24°S-29°S) and Patagonia (south of 50°S). For the same
scenario and future period, they projected a ∼5°C temperature increment in northern
Chile (18°S-28°S) - especially in the Altiplano region -, temperature increments up to ∼2-
3°C for Patagonia, and higher temperature increments in the Andes Cordillera compared
to the coast and valleys. Such spatial patterns align with this work since a similar number
of CMIP6 models (33 vs. 29) is used.

3.4.2 Spatial distribution of climate classes

Despite the large dispersion in future projections of Pr and Tmean (Figure 3.5), a high
(≥0.7) inter-model agreement is found in the projected spatial distribution of Köppen-
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Geiger climate classes. The historical and projected spatial distribution of these classes
(computed as the mode among models) aligns well with Beck et al. (2018), though there
are some differences in northern and central Chile during the historical period and in
projected climate classes for Patagonia. This could be explained by differences in the
periods used to obtain the spatial distribution of climate zones (1980-2016 vs. 1980-2014 as
historical periods; 2065-2099 vs. 2070-2100 for projections), the choice of climate models,
and the choice of observational datasets. In this regard, Beck et al. (2018) applied the
projected changes in Pr and Tmean from models and applied them to their observational
dataset. More recently, Bambach et al. (2022) obtained results similar to the results
obtained in this work in northern Chile for the historical period using CESM model
simulations. For projections, the results of this work align well for most of the domain,
except for the projected climate of southern Chile (40°S-45°S).

3.4.3 Annual snowfall and freezing level heights

The results for projected snowfall changes align well with projections reported by Bambach
et al. (2022) for continental Chile: most of the future snowfall would be concentrated in
the Andes of central Chile (27°S-36°S) and the Patagonia Ice Fields (47°S-52°S). However,
snowfall projections vary considerably among models since they are intrinsically related
to changes in Pr and Tmean and, therefore, to the main large-scale patterns simulated
by climate models (Cordero et al., 2019). At the catchment scale, the results of this
work project a decline in annual precipitation for the Limaŕı River basin, ranging from
4-28%, compared to the 15-35% precipitation reduction and 3-4°C temperature increment
projected by Vicuña et al. (2011) under scenarios B2 and A2. Vicuña et al. (2011) also
projected a transition from a snowmelt-driven to a rainfall-driven hydrological regime due
to declines in snowfall, while the results of this work project a ∆Sf ranging 51-70% in the
same basin. Demaria et al. (2013) projected a precipitation change ranging between -19
and -21% (under higher emission scenarios A2 and RCP8.5) and an FLH rise of 700 m
for the Mataquito River basin, whereas this study obtained, for the same catchment, a
∆FLH range (from the median values from each model) of 280-968 m, with an Interquartile
Range (IQR) of 433-668 m. Mardones and Garreaud (2020) evaluated the tropospheric
FLH change during rainy and non-rainy days between 30°S and 38°S (Huasco to Itata
River basins). For this latitudinal range, they obtained an increment of ∼400 m under
scenario RCP8.5, which is in the lower range of the projection estimates of this work.
However, care should be taken when comparing both results since this work considered a
topographic gradient, while Mardones and Garreaud (2020) considered a free tropospheric
gradient.

The increasing FLHs during storms, along with projected reductions in precipitation,
are expected to yield drastic reductions in snow accumulation over the study domain,
likely affecting (i) hydrological regimes and water availability during the dry season (spring
and summer) in snowmelt-driven catchments; and (ii) rainfall contributing area to runoff
during rainy days, increasing flood risk (Mardones & Garreaud, 2020). For example, the
results of this work project an increase of ∼1000-2000 km2 in the contributing area of the
Maipo River basin (Figure 3.6) - equivalent to ∼20-40% of the basin area contributing to
the city of Santiago (∼7-million population)-. Despite these changes, snow is expected to
continue playing a relevant role in the hydrological cycle in several basins in continental
Chile.
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3.4.4 Limitations

In this study, only one ensemble member (r1i1p1f1) per model is considered, assuming
that, at the end of the 21st century, the spread arising from each model’s internal vari-
ability will be smaller than the spread provided by inter-model variability (Hagemann
et al., 2011; Hawkins & Sutton, 2012; Boisier et al., 2018; Hawkins et al., 2020; Jain et
al., 2023). This study considers the worst emission scenario to align with the recommen-
dations of Chilean authorities for climate change impact assessments in environmental
studies (SEIA, 2023a, 2023b). Analyzing the sensitivity of the results to different emis-
sion levels is beyond the scope of this study and, therefore, proposed for future work.
Moreover, this work applied statistical downscaling and bias correction, which do not
necessarily maintain the physical consistency among variables in domains with complex
topography and, therefore, may be missing physical processes that could impact future
climate projections in the Andes. One way to address this issue would be through dy-
namical downscaling, which is beyond the scope of this work. Additionally, only one
bias correction method was considered since bias-correcting the models using MBCn is
computationally expensive, although other techniques could be explored (e.g., Kim et
al., 2021; Vrac et al., 2022; Kusumastuti et al., 2022), and only one dataset (CR2MET)
was considered as a reference. Since CR2MET estimates rely on meteorological gauges,
higher uncertainties are expected in regions with a low gauge density, such as northern
(17°S-25°S) and austral (40°S-50°S) Chile.

3.5 Conclusions

This work characterized the inter-model agreement in CMIP6 climate projections across
continental Chile, with a focus on Pr, Tmean, and Sf, and assessed the robustness of the
spatial distribution of Köppen-Geiger climate classes and the change in FLH projected
for the end of the XXI century under a high-emission scenario. To this end, 30 models (29
CMIP6 GCMs and one RCM forced with a CMIP5 GCM) are used to produce climate
projections considering the scenario SSP5-8.5. All the models were statistically down-
scaled to a 0.05° x 0.05° horizontal resolution grid and bias-corrected using the MBCn
bias correction method.

Drier conditions (up to 40%) are expected for most of continental Chile, except Patag-
onia (south of 50°S). However, there is a high dispersion among models regarding the
magnitude of the annual precipitation changes (Figure 3.5). SDBC models project dras-
tic reductions in snowfall over most of the extratropical Andes (up to 80%), which can
be explained by a reduction in annual precipitation and increasing freezing levels during
rainy days (reducing snow accumulation). The basins most affected by snow accumulation
reductions are in northern Chile (Salado-Limaŕı River basins). Further, larger rainfall-
contributing areas could increase flood risk. Nevertheless, snowfall would still be relevant
in central Chile and Patagonia (Sf/P ≥ 10%).

Regarding the projected spatial distribution of climate classes, most of northern Chile
would classify as BWh (Dry - Arid desert - Hot summer) and central Chile as Csa (Tem-
perate - dry and hot summer). The first Köppen-Geiger climate classes of coastal areas
located on the coast between 18°S and 45°S are not expected to change. In Patagonia,
the areas classified as Tundra would be constrained to the Ice Fields. The spatial dis-
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tribution of Köppen-Geiger classes will change considerably over the Andes, particularly
in the Altiplano (17°S-20°S), north and central Chile (27°S-37°S), and Patagonia (south
of 43°S). Despite the large spread in precipitation and temperature projections, there is
high agreement among CMIP6 models in the projected spatial distribution of climate
Köppen-Geiger classes.

Open Research Section

Bias-corrected models using the MBCn method can be found at https://doi.org/10

.7910/DVN/O3YBOT. To the best of the author’s knowledge, this is the first publicly
available dataset with SDBC CMIP6 model outputs with daily time series of Pr, Tmax

and Tmin for continental Chile, which can be used for climate change impacts assessments
and water resources planning.
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Chapter 4

Pitfalls in Streamflow-only
Calibration of Distributed
Hydrological Models

Summary

Distributed hydrological models enable the characterization of spatial heterogeneities in
states and fluxes, including streamflow at inner points of a basin. Despite the increasing
availability of remotely sensed observations that could improve the estimation of model
parameters, calibrating model parameters and their spatial distribution solely based on
streamflow data collected at the catchment’s outlet continues to be a common practice.
This chapter examines how spatially distributing (i.e., regularizing) different parame-
ters, each calibrated by optimizing different metrics, affects the average seasonality and
spatial patterns of simulated evapotranspiration (ET), soil moisture (SM), land surface
temperature (LST), and fractional snow-covered area (fSCA). To this end, calibration ex-
periments with the Variable Infiltration Capacity (VIC) model are conducted in six basins
located in continental Chile, using (i) different streamflow-based objective functions, and
(ii) regularizing different parameters associated with different physical processes. For the
latter step, a regularization strategy is tested based on principal component analysis of
climatic and physiographic attributes of the modeling spatial units contained within each
basin. The results suggest that these decisions may have large effects on the spatial rep-
resentation of ET, SM, LST, and fSCA, without degrading the performance of streamflow
simulations. Further, the average streamflow seasonality can be simulated reasonably
well, with large biases in ET, fSCA, SM, and LST (in that order). In particular, different
calibration configurations can yield the same annual streamflow cycle through very differ-
ent ET seasonalities, affecting the catchment-scale seasonal water balance. Overall, the
results presented here reinforce the benefits of including spatial patterns of hydrological
variables in the calibration of distributed hydrological models and highlight the need to
verify the seasonality of other simulated variables than streamflow.
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4.1 Introduction

Distributed hydrological models are valuable tools to simulate the spatial heterogeneity of
variables involved in the terrestrial water cycle (Reed et al., 2004), offering the potential
to make runoff predictions in ungauged inner sub-catchments. Further, the increasing
number of remotely sensed observational datasets (K. Wang & Dickinson, 2012; S.U. et
al., 2014; Kinar & Pomeroy, 2015; McCabe et al., 2017) has facilitated the assessment of
model fidelity through variables other than streamflow (Q), including evapotranspiration
(ET; e.g., M. C. Demirel et al., 2018; Dembélé, Hrachowitz, et al., 2020), soil moisture
(SM; e.g., Tong et al., 2021; Bajracharya et al., 2023), land surface temperature (LST;
e.g., Zink et al., 2018), water storage variation (WS; e.g., Werth & Güntner, 2010),
groundwater levels (GWL; e.g., Refsgaard & Knudsen, 1996), fractional snow-covered
area (fSCA; Parajka & Blöschl, 2008; Duethmann et al., 2014; Bennett et al., 2019; Tong
et al., 2021; Tang et al., 2023), and snow water equivalent (SWE; e.g., Avanzi et al.,
2020). These variables can be used to evaluate the hydrological consistency of models
calibrated using only streamflow data (e.g., Cuartas et al., 2012; Zhang et al., 2020;
Wen et al., 2020; Odusanya et al., 2021; Shah et al., 2021), or be directly incorporated
within the calibration process (e.g., Rakovec et al., 2016; Széles et al., 2020). In either
case, summary performance metrics - similar to the case of streamflow - are typically
formulated and evaluated (e.g., Koch et al., 2017; M. C. Demirel et al., 2018; Koch et al.,
2018; Tong et al., 2021).

Despite the development of satellite remote sensing products and the progress in mul-
tivariate parameter estimation techniques (Lettenmaier et al., 2015; McCabe et al., 2017;
Sheffield et al., 2018), the calibration of distributed hydrological models still relies strongly
on streamflow data (e.g., Shafii & Tolson, 2015; L. Melsen et al., 2016; Mizukami et al.,
2017, 2019; Beck et al., 2020; Clark et al., 2021; Aguayo et al., 2021; S. Wang et al., 2022;
Cinkus et al., 2023). This is not only because accurate streamflow simulations are required
for a myriad of water resources applications, but also for the adequate partition of annual
precipitation into storage, evapotranspiration, and runoff (Kirchner, 2006; Troch et al.,
2013; Mendoza et al., 2016; Akbar et al., 2020). In this regard, several multi-objective
streamflow-based calibration approaches have been proposed and tested with distributed
hydrological models for simultaneously matching different parts of the hydrograph, by
incorporating, for example, hydrological signatures o streamflow transformations in the
objective function (e.g., Pokhrel & Gupta, 2010; Westerberg et al., 2011; Garcia et al.,
2017; McInerney et al., 2017; K. Fowler, Coxon, et al., 2018; K. Fowler, Peel, et al., 2018;
Koppa et al., 2019; Todorović et al., 2022; Rakovec et al., 2019; Casper et al., 2023).

Another challenge in distributed hydrological modeling is the large number of model’s
spatial element such as grid cells and, therefore, the number of parameter values that need
to be specified. This issue is typically addressed through spatial parameter regularization
techniques (Pokhrel & Gupta, 2010; Samaniego et al., 2010; de Lavenne et al., 2019),
which usually involve super-parameters or transfer functions applied under the assumption
that the spatial distribution of climate and/or geomorphological attributes informs the
spatial distribution of the model parameters (e.g., Mizukami et al., 2019; Beck et al.,
2020). However, identifying the level of relationship between these parameters and the
attributes is challenging, especially for “free” (i.e., non-physical) parameters. Moreover,
tackling parameter equifinality (K. Beven & Binley, 1992; K. Beven, 2006; Khatami et
al., 2019) is still an ongoing effort, which can be partially evaluated through multivariate
model evaluation (e.g., M. C. Demirel et al., 2018; Dembélé, Ceperley, et al., 2020; Shah
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et al., 2021; Alfieri et al., 2022; Yáñez-Morroni et al., 2023) and parameter uncertainty
estimates (K. Beven, 2001; Koppa et al., 2019).

The intricate relationship between hydrologic modeling decisions and the capability
to correctly simulate seasonal water balance introduces additional complexities. In this
regard, the choice of soil parameter regularization technique plays a crucial role in shaping
the simulated spatial distribution and overall model performance (Refsgaard & Knudsen,
1996; Reed et al., 2004; Samaniego et al., 2010; Rakovec et al., 2016; Dembélé, Ceperley, et
al., 2020; M. C. Demirel et al., 2018). On the other hand, the choice of calibration metric
is important since it influences the simulated hydrograph and the final selected model
parameters (Kollat et al., 2012; Garcia et al., 2017; Pool et al., 2018; K. Fowler, Peel,
et al., 2018; Cinkus et al., 2023). Further, the effects of these methodological decisions
are typically evaluated using summary metrics (Clark et al., 2021), and limited attention
has been paid to the assessment of annual cycles in water balance components (i.e.,
precipitation, evapotranspiration, and streamflow) during hydrologic model calibration
(Khatami et al., 2019; Kirchner & Allen, 2020). Therefore, the research questions are as
follows:

1. To what extent does the spatial regularization of different soil parameters and the
choice of streamflow-based objective functions affect the model performance in terms
of Q simulations and the spatial patterns of LST, ET, fSCA, and SM?

2. What are the tradeoffs between replicating Q annual cycles and the aim to ad-
equately simulate LST, ET, fSCA, and SM seasonalities, and how can these be
overcome?

Here, it is hypothesized that distributing soil parameters through a regularization
strategy that is spatially coherent with grid cell attributes can improve the model’s capa-
bility to replicate spatial patterns and seasonality of other variables besides streamflow.
To test this, the Variable Infiltration Capacity model (VIC; Liang et al., 1994) is cal-
ibrated in six basins with different hydrological regimes in central Chile. This chapter
uses (i) Principal Component Analysis (PCA) to derive the a priori spatial distribution
of model parameters and (ii) different streamflow-based objective functions to obtain the
model parameters. The effects of such decisions on simulated Q are evaluated, as well as
ET, LST, SM, and fSCA, obtained from remote sensing products. To quantify the capa-
bility to replicate observed spatial patterns, this work uses biased and unbiased1 metrics
to summarize the overall model performance. However, instead of highlighting changes in
overall metrics, the focus is on the average seasonalities of Q and ET to identify potential
risks and challenges since they directly affect the water balance (Clark et al., 2021).

4.2 Study domain

This chapter considers six basins located in continental Chile that span three different hy-
drological regimes: snowmelt-driven, mixed, and rainfall-driven (Figure 4.1). The basins’
boundaries and the streamflow gauge identification number (ID) are obtained from the

1Bias and unbiased metrics are performance indices that contrast observed and simulated variables
with and without dimensions, respectively. Regarding the latter, unbiased metrics are useful when the
reference data has biases.
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CAMELS-CL dataset (Alvarez-Garreton et al., 2018). The basins, from north to south,
are Cochiguaz River at El Peñón (675 km2, Figure 4.1a, ID 4313001), Choapa River
at Cuncumén (1132 km2, Figure 4.1b, ID 4703002), Claro River at El Valle (349 km2,
Figure 4.1c, ID 6127001), Colorado River at the confluence with Palos River (878 km2,
Figure 4.1d, ID 7112001), Caut́ın River at Rari-Ruca (1306 km2, Figure 4.1e, ID 9123001)
and Futa River at Tres Chiflones (517 km2, Figure 4.1f, ID 10142003). Figure 4.1 also
shows the average seasonality for precipitation (P), temperature (T), and streamflow. The
Cochiguaz and Choapa River basins have a snowmelt-driven regime, receiving precipita-
tion mostly during the fall and winter seasons when water is mainly stored as snow and
released during the spring and summer seasons. The Claro and Colorado River basins
have a mixed regime, with higher streamflow values during the winter and spring/sum-
mer seasons, respectively. The two southernmost basins, Caut́ın and Futa, have maximum
streamflow values during winter (rainfall-driven), though a slight influence of snowmelt is
detected in the Caut́ın River during the spring season.
Five out of the six basins are located on the western slopes of the Andes Cordillera, with
the Futa River basin being the exception. The Cochiguaz and Choapa basins have the
highest altitudes, which explains the runoff dependence on snowmelt. The Claro and Col-
orado basins span a wide range of elevations from the Andes to the valleys, which explains
their mixed hydrological regimes since, between -28°S and -42°S, snow only accumulates
in the Andes Cordillera above ∼2,000 m a.s.l. The Caut́ın and Futa River basins have
lower altitudes and low to no-snow influence. Finally, all the case study basins have a
low degree of human intervention and were selected based on the following criteria: (a) a
near-natural flow regime defined as a maximum threshold value of 5% for the relationship
between annual volume of water assigned for permanent consumptive use and the mean
annual flow, (b) absence of large reservoirs within each catchment, and (c) small (<2%)
glacierized area (Alvarez-Garreton et al., 2018).

4.3 Datasets

4.3.1 Meteorological and streamflow data

Daily precipitation (P), and maximum (Tmax) and minimum (Tmin) air temperature are
obtained from the CR2MET v2.0 dataset (Boisier et al., 2018; DGA, 2022; Boisier, 2023),
which covers continental Chile with a horizontal resolution of 0.05° x 0.05° for the period
1979-2020. CR2MET P estimates are obtained through a two-step approach consisting of
(i) computing the probability of precipitation at each grid cell through logistic regression
models, and (ii) calculating daily precipitation amounts using multiple linear regression
models. All the models use ERA5 reanalysis outputs (Hersbach et al., 2020) and geomor-
phological attributes as predictors, and daily precipitation from meteorological stations
as predictands (note that, in the case of precipitation occurrence, the vector with pre-
dictands only contains zeroes and ones). For Tmax and Tmin, LST from MODIS is also
included as a predictor.
To obtain sub-daily meteorological time series, CR2MET daily precipitation, and temper-
ature are disaggregated into hourly time steps using the sub-daily distribution provided
by ERA5-Land (Muñoz Sabater, 2019), which is bias corrected to match the CR2MET
daily values. Relative humidity (RH), wind speed (W), atmospheric pressure (AP), and
incoming shortwave radiation (Kin) are derived for the same horizontal resolution grid by
spatially interpolating ERA5-Land outputs. ERA5-Land wind speed is bias-corrected us-
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Figure 4.1: Location of the six case study basins considered in this study (center panel),
along with the seasonal cycles of P, Q, and T (in red) for the climatological period 1980-
2018. Overlines represent mean annual values. Notice that the winter season corresponds
to JJA, while the summer season to DJF.

ing wind simulations from WRF at a 1-km horizontal resolution (Geophysics Department
& Ministerio de Enerǵıa, 2018). Incoming longwave radiation (Lin) was computed with
the parameterization proposed by Iziomon et al. (2003) using the bias-corrected hourly
temperature. To conduct hydrological model simulations, all the meteorological variables
are grouped to obtain 3-hourly time steps.
Finally, daily streamflow data is obtained from stations maintained by the Chilean Wa-
ter Directorate (DGA, in Spanish), also available in the CAMELS-CL dataset (Alvarez-
Garreton et al., 2018).

4.3.2 Remote sensing products

This work uses remotely sensed fractional snow-covered area, actual evapotranspiration,
land surface temperature, and soil moisture for hydrologic model evaluation (Figure 4.2).
The fractional snow-covered area is derived from MODIS products (MOD10/MYD10;
Hall & Riggs, 2016). To obtain a unique time series, daily MOD10 and MYD10 estimates
are averaged at each MODIS grid cell. If only one product is available for a specific day
and grid cell, that value is used to estimate fSCA. All gaps (i.e., days and grid cells where
MOD10 and MYD10 are not available) are filled at the original horizontal resolution (500
m) using the methodology proposed by Cornwell et al. (2016). Actual evapotranspiration
is obtained from the MOD16 product (Mu et al., 2011) using 8-day estimates with a
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1-km horizontal resolution. Land surface temperature for each day and each grid cell
is obtained as the average between the MOD11 and MYD11 products (Wan, 2014) at
a 1-km horizontal resolution. If one of the two LST estimates is unavailable, the day
is considered without information. For soil moisture (0.25° horizontal resolution), the
ESA-CCI product is used (Dorigo et al., 2017).

To resolve the mismatch between the horizontal grid of remote sensing products and
the grid discretization of CR2MET (which is the same as in the hydrological model), ET,
LST, and fSCA are upscaled using spatial averages, and (SM is downscaled to the closest
CR2MET grid cell that is closest; e.g., dos Santos Araujo et al., 2024). Empty values
were not filled out for ET, LST, and SM, as opposed to fSCA.

4.3.3 Ancillary data

Since this study considers a distributed hydrological model that requires a priori param-
eter fields, these are derived using information from different grid cell attributes. The
SoilGrids dataset (Poggio et al., 2021) is used to derive mean clay and sand content and
mean bulk density for the first 2 m soil depth at a 250-m horizontal resolution. The
elevation is estimated from the Shuttle Radar Topography Mission (SRTM; Farr et al.,
2007). All datasets are upscaled to match the CR2MET grid using spatial averages.

4.4 Approach

This work evaluates the impact of two methodological decisions - namely, the choice
of the objective function (OF) and the choice of parameter regularized - on streamflow
performance, the simulated spatial patterns of ET, SM, LST, and fSCA, and the simulated
annual cycles of these variables. Figure 4.2 illustrates the main steps required to conduct
the simulations. First, hydrometeorological datasets are obtained and processed to force
and evaluate the VIC model (step 1 in Figure 4.2, sections 4.3 and 4.4.1); secondly,
the parameter regularization strategy is designed and implemented (step 2 in Figure 4.2,
section 4.4.2). Finally, a suite of model calibration experiments are conducted to assess the
impact of the choice of calibration metric and parameter regularized on simulated spatial
patterns and annual cycles of different hydrological variables (step 3, section 4.4.3).

4.4.1 Hydrological Modeling

The VIC model (Liang et al., 1994) is used to simulate state variables and fluxes at a
0.05°x 0.05° horizontal resolution. VIC is a semi-distributed physically based hydrological
model that solves energy and mass balance equations. Precipitation can be partitioned
into snowfall and rainfall that serve as inputs for canopy storage. The maximum amount of
water that the canopy intercepts is estimated using the Leaf Area Index (LAI; Dickinson,
1984). The snowpack is represented by two layers, where the top layer is used for energy
balance computations Andreadis and Lettenmaier (2006). The soil column is vertically
discretized into three layers, with the top and bottom layers controlling the infiltration
and baseflow generation, respectively. To calculate infiltration, VIC uses the Xinanjiang
formulation (Zhao et al., 1980), assuming that infiltration capacity varies within an area
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Figure 4.2: Schematics of the methodology used in this study. Panel 1) shows the sources
of the different datasets considered to run the VIC model as well as the main model
configuration features. 2) Approach used to obtain a priori soil parameter fields for each
case study basin. 3) Evaluation of streamflow (Q) simulations and spatial patterns of
other variables (X) by contrasting: (i) a simulated and reference map for the variable X
(e.g., ET, SM, LST or fSCA) for each time step t, and (ii) simulated and reference time
series at each grid cell.

(Wood et al., 1992). Excess runoff is generated in those areas where precipitation exceeds
the available soil moisture storage of the first soil layer. VIC assumes that gravity drives
drainage, using the formulation proposed by Brooks and Corey (1964). In this regard,
water enters the cell only from the atmosphere, i.e., VIC does not consider lateral fluxes
among grid cells. Baseflow is computed using a formulation proposed by Franchini and
Pacciani (1991). The reader is referred to Liang et al. (1994) for more details about the
VIC model.

Sub-grid horizontal heterogeneity in VIC can be considered by incorporating different
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land cover types. Here, the International Geosphere-Biosphere Program (IGBP) classifica-
tion for the year 2010 is used from the MCD12Q1 v006 land cover product (Sulla-Menashe
& Friedl, 2018), in order to represent all land cover types spanning at least 2% of each
grid cell area. Mean monthly LAI values for these land cover types are derived from
the MOD15A2 product. Soil Bulk density is estimated as the vertical average of values
retrieved from the SoilGrids product (Poggio et al., 2021) across the top 2 m soil depth.
The vertical heterogeneity is considered by distributing precipitation and air temperature
along 200-m elevation bands, following the recommendations by Murillo et al. (2022).

The vector-based mizuRoute model (Mizukami et al., 2016) is used to estimate the
streamflow at the outlet of each basin. mizuRoute first performs a hillslope routing
using a gamma-distribution-based unit-hydrograph to delay VIC runoff, and then routes
the delayed runoff for each river reach defined by the river network topology. For river
routing, the diffusive wave scheme is used, following the setup recommended by Cortés-
Salazar et al. (2023). Manning’s roughness coefficients and channel widths are spatially
distributed within each basin through regression equations that use river reach attributes
as predictors (Niño, 2002; Mendoza et al., 2012). Note that routing parameters were not
included in subsequent calibration experiments (described in section 4.3).

4.4.2 Parameter regularization

The parameter regularization technique used here is based on a PCA over a suite of grid
cell attributes within each basin, including bulk density, clay and sand content, elevation,
and slope (e.g., Samaniego et al., 2010; Mizukami et al., 2017; Beck et al., 2020). The
underlying motivation is to extract the main patterns explaining the spatial distribution
of physiographic attributes and use the dominant signal to obtain VIC parameter fields.
To this end, grid cell attributes within a matrix are sorted (step 2 in Figure 4.2), with grid
cells as rows and attributes as columns, and perform PCA, obtaining a matrix with the
same dimensions, where the first principal component (PC1; or first column of the new
matrix) explains most of the variance among the attributes (See Figure B.1). Then, the
PC1 map is used as a predictor to obtain a priori spatially distributed VIC parameters
(θV IC) using three-super parameter (Pokhrel et al., 2008), highlighted in red in Figure
4.2. The super-parameters considered in this study are (i) an additive term (θγ), (ii) a
factor (θα), and (iii) an exponent controlling the linearity of the relationship (θβ).
It is important to note that none of the routing parameters are calibrated in any experi-
ment since their spatial distribution is defined through regression equations that use river
reach attributes as predictors (Niño, 2002; Mendoza et al., 2012).

4.4.3 Model calibration experiments

The VIC parameters considered for the calibration process were identified as the most
sensitive by Sepúlveda et al. (2022), including (i) binfilt, which controls the infiltration
process, (ii) Ds and Ws, which control the linearity of the curve used to calculate the
water leaving the third (deepest) soil layer, (iii) Dsmax as the maximum baseflow rate,
(iv) hydraulic conductivity (Ksat), related to how water percolates between the soil lay-
ers, (iv) the soil layers’ depths, (v) the threshold temperature to separate precipitation
into rainfall and snowfall, (vi) maximum snow albedo and (vii) snow albedo temporal de-
cay rate. The benchmark calibration considers spatially constant VIC parameters (e.g.,
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L. Melsen et al., 2016), whereas additional calibration experiments consider the spatial
regularization of individual soil parameters (binfilt, Ds, Dsmax, Ksat and soil layers’ depth),
maintaining the remaining parameters spatially constant. With this, this chapter seeks to
understand the added value of distributing in space the values of a parameter associated
with specific processes. A final calibration experiment considers the vertical distribution
of the hydraulic conductivity, for which the same equation of Figure 4.2 is applied (step
2; Pokhrel et al., 2008); however, instead of using the PC1, the vertical distribution of
the bulk density obtained from the SOILGRIDS database is used to define an a priori
vertical distribution. Hence, for this exercise, Ksat is horizontally constant within each
soil layer, adopting different values in each layer.

Streamflow-based performance metrics

All the calibration experiments conducted here seek to maximize streamflow-based ob-
jective functions by running the Dynamically Dimensioned Search (DDS; Tolson & Shoe-
maker, 2007) algorithm, implemented within the OSTRICH software (Matott, 2017) with
a maximum number of 2000 iterations. All the metrics consider daily time series of simu-
lated and observed streamflow. First, the Kling-Gupta efficiency is used (KGE; Gupta et
al., 2009; Kling et al., 2012), which seeks to minimize the Euclidean distance between per-
formance metrics related to volume (β), variability (γ), and timing (r) and their optimal
values (which is 1):

OF1 = KGE = 1− ED = 1−
√

(1− β)2 + (1− γ)2 + (1− r)2 (4.1)

Where β = µs/µo is the ratio between simulated (s) and observed (o) average values
(µ), γ = (σs/µs)/(σo/µo) where σ represents the standard deviation and r is the temporal
correlation between observed and simulated daily values. The second objective function
(Eq. 4.2) is the Nash-Sutcliffe efficiency (NSE; Nash & Sutcliffe, 1970).

OF2 = NSE = 1−
∑T

t=1 (Q
t
s −Qt

o)
2∑T

t=1(Q
t
o −Qo)

2
(4.2)

Where Qs and Qo are simulated and observed daily streamflow, t indicates the time
step, and Q is the mean daily streamflow. Since both KGE and NSE are influenced by
high flows (Clark et al., 2021), the composite metric (Eq. 4.3) proposed by Garcia et al.
(2017) that incorporates the KGE computed with 1/Q is used to give more weight to low
flows:

OF3 =
KGE(Q) +KGE(1/Q)

2
(4.3)

The third calibration metric is the Nash-Sutcliffe efficiency computed from simulated
and observed daily flow duration curves (FDCs) (e.g., Nijzink et al., 2016). Finally, the
last OF (Eq. 4.4) is based on a Euclidean distance approach (e.g., Schoups et al., 2005)
that combines the daily KGE with five hydrological signatures (HSs) proposed by Yilmaz
et al. (2008), which focus on different aspects of the flow duration curve: (i) high flows,
(ii) mean flows, and (iii) low flows (e.g., Westerberg et al., 2011; Shafii & Tolson, 2015).
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OF = 1−

√√√√(1−KGE(Q))2 +
N∑
i=1

(HSopt
i −HSi)2 (4.4)

Where HSopt
i is the optimal value for the ith hydrological signature. The hydrological

signatures in Eq. 4.4 are the bias in the runoff ratio (Eq. 4.5), bias for high flows (Eq.
4.6), bias in low flows (Eq. 4.7), bias in mid flows (Eq. 4.8) and median flows (Eq. 4.9).

HSbiasRR =

∑T
t=1 (Q

t
s −Qt

o)∑T
t=1 Q

t
o

(4.5)

HSbiasFHV =

∑H
h=1

(
Qh

s −Qh
o

)∑H
h=1Q

h
o

(4.6)

Where T is the number of time steps, and h = 1, 2, ..., H is the high flow indices for
flows with exceedance probabilities lower than 0.02.

HSbiasFLV = −1 ·
∑L

l=1

[
log(Ql

s)− log(QL
s )
]
−
∑L

l=1

[
log(Ql

o)− log(QL
o )
]∑L

l=1 [log(Q
l
o)− log(QL

o )]
(4.7)

Where l = 1, 2, ..., L is the index of flows with exceedance probabilities between 0.7
and 1, being L the index of the minimum flow.

HSbiasFMS =
[log(Qm1

s )− log(Qm2
s )]− [log(Qm1

o )− log(Qm2
o )]

[log(Qm1
o )− log(Qm2

o )]
(4.8)

Where m1 and m2 represent the lowest and highest exceedance probabilities (0.2 and
0.7, respectively) within the midsegment of the flow duration curve.

HSbiasFMM =
log(Qmed

s )− log(Qmed
o )

log(Qmed
o )

(4.9)

Where med corresponds to the median value.

Spatial pattern performance metrics

The spatial efficiency metrics (Eq. 4.10) proposed by Dembélé, Ceperley, et al. (2020) is
used to evaluate ET, SM, LST, and fSCA.

ESP = 1−
√
(1− rs)2 + (1− γ)2 + (1− α)2 (4.10)

Where rs is the Spearman correlation coefficient between simulated and reference
values, γ is the ratio of the coefficients of variation (as in KGE; Eq. 4.1), α = 1 −

49



RMSE(ZXs , ZXo), being Z the time series with standardized values for the variable X
(note that here it is used the same notation as in Dembélé, Hrachowitz, et al., 2020) and
RMSE the Root Mean Square Error. The standardization aims to avoid a direct contrast
between the model and reference values since remotely sensed products have biases that
could affect the metric. However, bias-accounting metrics are used, such as KGE and
RMSE, to assess the model’s ability to reproduce the raw remotely sensed estimates.

Following Dembélé, Ceperley, et al. (2020), two approaches are used to contrast spa-
tially distributed simulations against observations (options 1 and 2 in step 3, Figure 4.2).
Option 1 considers the contrast between simulated and reference maps of a variable X
at each time step, resulting in a time series of performance measures (OFX(t)) that can
be used to compute a summary metric OF time

X by temporally averaging all values. Al-
ternatively, option 2 involves the comparison between simulated and reference time series
at each grid cell to obtain a map of performance metrics (OFX(i)) that can be used to
calculate a summary performance measure OF space

X by spatially averaging all values.

For soil moisture, the correlation coefficient (Eq. 4.11) between simulated (θs) and
reference soil moisture (θref ) is used as in Tong et al. (2021).

OSM =

∑T
t=1

[
(θts − θs)(θ

t
ref − θref )

]√∑T
t=1

[
(θts − θs)2(θtref − θref )2

] (4.11)

Where t represents the time step and overlines average values. For comparisons, only
the simulated soil moisture from the first soil layer is included since the ESA-CCI soil
moisture product considers the first 0.5–2 cm. To overcome mismatches and system-
atic biases between the reference and SM1 due to different soil depths and properties,
mean–standard deviation matching (Draper et al., 2009; López López et al., 2017) was
used (Eq. 4.12).

θ∗s =
σθref

σθsim

·
(
θs − θs

)
+ θref (4.12)

Where σθref and σθs are the standard deviation of the reference and simulated soil
moisture. Finally, the quality of fSCA simulations is assessed by using the root mean
squared error (RMSE) and the metric OSC proposed by Tong et al. (2021):

OSC = 1− (SO + SU) (4.13)

where SO and SU represent the fraction of the total number of simulation days with over-
estimation and underestimation of simulated fSCA, respectively. To avoid noise values,
a threshold of 1% is applied; hence, simulated and reference grid cell fSCA values below
0.01 are considered no snow cover.

Finally, additional experiments are conducted to verify if the VIC model can simulate
the Q and ET and SM seasonalities simultaneously using spatially constant parameters.
To this end, the VIC model parameters are calibrated using an Euclidean-based objective
function:

OF =
√

(1−KGE(Q)2 + (1− ESP (X))2 (4.14)
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Where X refers to ET or SM1.

Only for graphical purposes, ET and SM annual values are normalized as X ′ = (X −
Xmin)/(Xmax −Xmin) to avoid mismatches and biases in the reference product and focus
on the simulated annual cycle. The notation SM1, SM2, and SM3 is used to refer to the
moisture content in soil layers 1, 2, and 3 of the VIC model, respectively.

4.5 Results

First, the impact of different calibration objective functions and regularized parameters
on the performance of streamflow simulations is examined across basins (Figure 4.3). In
general, for a given combination of calibration metric and basin the objective function
values achieved are similar, regardless of the parameter regularized, suggesting a high
degree of compensation among parameters. In the Choapa and Caut́ın River basins,
lower OF values are achieved for Ksat parameter (similar to Depth2 at the Futa River
basin) when the OF is 0.5 ·KGE(Q) + 0.5 ·KGE(1/Q). Interestingly, the components
of the objective functions can vary considerably, especially KGE(1/Q), which gives more
weight to the low flows. In particular, the values of this metric are generally negative
or close to zero at the Claro (mixed regime) and Futa (rainfall-driven) River basins. On
the other hand, the KGE(1/Q) values are stable for all configurations in the snowmelt-
driven basins (Cochiguaz and Choapa), regardless of the inclusion of KGE(1/Q) in the
calibration process.

Figure 4.4 illustrates the impacts of calibration OF and choice of regularized parameter
on simulated ET at the Colorado River basin with respect to the benchmark calibration.
Here, parameters controlling infiltration (binfilt), soil depth (Depth2), vertical moisture
distribution (Vertical Ksat), and baseflow (Dsmax) are examined. Overall, the results show
that some combinations of OF and parameter regularization strategy may enhance the
performance of ET simulations compared to the benchmark calibration. In some grid
cells, the changes in ET performance can be larger than 1 ESP , with positive (e.g., for
KGE(Q) and Dsmax) or negative (e.g., KGE(Q) & KGE(1/Q) and binfilt) effects. Addi-
tionally, the degree of improvement can vary depending on the choice of OF and parameter
regularized. For example, when using KGE(Q) and KGE(Q) & NSE(FDC(Q)) as OFs,
regularizing Ksat and Dsmax (binfilt and Depth2) yields improved (declined) performance
in ET simulations. For NSE(Q), regularizing any parameter yields a slight increase in
ESP (ET), whereas the opposite occurs with KGE(Q) & KGE(1/Q). For the OF combin-
ing KGE(Q) and hydrological signatures, mixed results are obtained: ∆ESP > 0 (blue)
for lower grid cells, and ∆ESP < 0 (red) for high altitude grid cells. Similar ET perfor-
mance results are obtained for the remaining basins, although a general improvement in
ET performance is achieved when regularizing parameters for the Claro and Futa River
basins. Notably, parameter fields that yield dissimilar performance in ET provide similar
streamflow performance metrics (Fig. 4.3).

Now, the focus is on how different combinations of calibration metrics and parameter
regularization strategies affect simulated seasonal water balances. Figure 4.5 shows the
average seasonality of streamflow, normalized catchment-scale ET and SM1, land sur-
face temperature, and fractional snow-covered area considering the parameter sets that
maximize OF = f(KGE(Q), KGE(1/Q)) at the Choapa (snowmelt-driven), Colorado
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Figure 4.3: Best objective function value (top row) and streamflow performance metrics
(remaining rows) associated with the best parameter set obtained with spatially constant
parameters (i.e., benchmark calibration, θV IC = θγ in Fig. 4.2) and different regularization
strategies. The columns show results for three different calibration objective functions.
In each panel, the results for individual basins are displayed with different colors.

(mixed regime), and Caut́ın (rainfall-driven) River basins. It can be noted that, although
streamflow is underestimated during some spring and summer months in the Choapa
River basin, all the calibration experiments yield a reasonable representation of the Q
seasonality, with little differences among configurations. Similar results are obtained for
LST, with an overall underestimation at the Choapa River basin.

The most striking result in Figure 4.5 is that ET seasonalities can change drastically
depending on the model configuration, as opposed to Q, SM1, LST, and fSCA. In the
Choapa River basin, regularizing different parameters yields different biases, with the
largest underestimations for the spatially constant and Depth2 cases during spring. In
the Colorado River basin, none of the model configurations provided a reasonable rep-
resentation of ET seasonality, whereas mixed results are obtained at the Caut́ın River
basin, with both good (e.g., binfilt, Ksat and Dsmax) and poor (e.g., spatially constant and
Depth2) representations. In summary, regularizing different parameters may shift the
seasonality and, consequently, reduce biases, without impacting the Q performance.
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Figure 4.4: Change in ET performance (with respect to the benchmark calibration) for
the Colorado River basin during the calibration period (2005-2018). Blue (red) colors
represent an improvement (decline) in the performance of simulations. Note that the
benchmark changes across objective functions.

Figure 4.6 illustrates how the choice of streamflow-based OF affects the seasonality of
simulated Q, ET, SM1, LST, and fSCA at the Caut́ın River basin. In general, different
OFs yield similar streamflow responses, except when (i) the model parameters are spatially
constant and calibrated using KGE(Q) (black line), which yields an overestimation in Q,
and (ii) Depth2 is regularized and the OF is KGE(Q) and NSE(FDC(Q)), which yields
underestimation of Q.
The results for LST show little disagreement among OFs and model configurations, with
a reasonable representation of seasonality. For SM1, the results reveal a slight dispersion
among configurations, with larger biases with respect to the reference (white dots) when
Ksat is regularized. The timing of seasonality of fSCA is well simulated with all the
combinations of OF and regularization strategy, though the latter decision introduces large
discrepancies in biases. For example, when binfilt is regularized and the calibration metric
is KGE(Q)(KGE(Q) & NSE(FDC(Q))), fSCA is underestimated(overestimated).
Notably, the effects of the regularization strategy on simulated ET annual cycles can
be very different depending on the calibration metric. For example, when KGE(Q) or
KGE(Q) &KGE(1/Q) are used as OFs, shifted ET seasonalities are obtained if binfilt and
Depth2 are regularized, or if model parameters are spatially constant. Conversely, when
KGE(Q) & NSE(FDC(Q)) is maximized in the calibration process, all ET seasonalities
collapse into the reference values, regardless of the regularization strategy. A similar
behavior is obtained for the rest of the basins.

Does the improvement in streamflow-based OFs relate to improvements in other Q
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Figure 4.5: Catchment-scale annual cycles (calibration period 2005-2018) of stream-
flow (Q), normalized evapotranspiration (ET’), normalized soil moisture (SM

′
1), land

surface temperature (LST), and fractional snow-covered area (fSCA) in the Choapa
(snowmelt-driven), Colorado (mixed regime) and Caut́ın (rainfall-driven) River basins.
Mean monthly values are computed only if at least 50 days with information are avail-
able, and the calculation considers only days with information. Note that there is not
enough data to compute monthly SM1 averages at the Choapa River basin during win-
ter. All the results are associated with the parameter sets that maximize KGE(Q) &
KGE(1/Q). Notice that winter and summer correspond to JJA and DJF, respectively.
Streamflow observations and remotely sensed variables are referred to as “references” and
are represented with white dots. Notice that ET and SM1 annual values are normalized
as X ′ = (X −Xmin)/(Xmax −Xmin).

metrics and simulated variables? To seek answers, the Spearman’s rank correlation co-
efficient is computed between the OF values obtained in N = 2,000 iterations of the
optimization process, and other performance metrics for Q, ET, SM1, LST, and fSCA.
Figure 4.7 displays results for calibrations conducted at the Choapa, Colorado, and Caut́ın
River basins using OF = KGE(Q) & KGE(1/Q) as OF. As expected, high correlations
are obtained between streamflow-based metrics and OFs. However, negative correlations
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Figure 4.6: Impacts of the spatial regularization strategy on simulated annual cycles
for a given calibration metric (columns). The variables analyzed are streamflow (Q),
normalized evapotranspiration (ET’), normalized soil moisture (SM

′
1), land surface tem-

perature (LST), and fractional snow-covered area (fSCA) for the Caut́ın River basin
(highlighted by a square on the map) during the calibration period (2005-2018). The ref-
erence datasets are shown as white dots. The normalization of ET and SM1 is computed
as X ′ = (X −Xmin)/(Xmax −Xmin).

are obtained for ET, especially at the Choapa and Colorado River basins. For the case of
SM1, a larger number of parameter configurations yield positive correlations with OF val-
ues. For LST and fSCA, poor correlations are obtained with OF, which can be explained
by the relatively good performance obtained for these variables, regardless of the value of
OF.
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Figure 4.7: Spearman’s rank correlation coefficient between the values of calibration met-
ric (OF = KGE(Q) & KGE(1/Q)) and performance measures of Q and other simulated
variables during the calibration process (N = 2,000 parameter sets). Black(red) numbers
represent correlations with pvalue < 0.05 (pvalue > 0.05). Note that lower values are better
for RSME(fSCA), while the Q-based metrics are positively oriented (higher, better).

4.6 Discussion

4.6.1 Effects on spatial patterns

The effects of the choice of OF on spatial patterns reported here are somewhat expected,
since the impacts on behavioral parameters and, therefore, the simulation of different
parts of the hydrograph, have been vastly discussed in the literature (e.g., Gupta et al.,
1998; Merz et al., 2011; Garcia et al., 2017; Westerberg et al., 2011; K. Fowler, Peel, et al.,
2018; Khatami et al., 2019). Additionally, different well-behaved parameter sets in terms
of streamflow may impact other hydrological variables. However, the impacts of different
parameter regularization techniques or the choice of parameters regularized on simulated
spatial patterns are less documented in the literature. The results of this work show that
regularizing different parameters impact simulated spatial patterns differently, regardless
of the calibration metric used and without compromising streamflow performance, which
aligns well with previous work (Samaniego et al., 2010; M. Demirel et al., 2018). Moreover,
the simulation of spatial patterns can be improved without losing streamflow performance,
in agreement with (M. C. Demirel et al., 2024). Nevertheless, this work did not find a
unique combination of OF and parameter regularization strategy that improves simulated
spatial patterns for all variables and basins compared to the benchmark calibration case.
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In this regard, it would be useful to characterize parameter sensitivities in replicating
observed spatial patterns (M. Demirel et al., 2018; Saavedra et al., 2022).

4.6.2 Biases in simulated annual cycles

In addition to the evident effects of different parameter configurations on simulated spa-
tial patterns of ET, SM1, LST, and fSCA, large biases in modeled annual cycles may be
obtained for these variables, even if realistic streamflow seasonalities are achieved. In this
regard, since ET affects the water balance, this work also considered GLEAM ET simu-
lations (horizontal resolution of 0.25°; Martens et al., 2017) without finding discrepancies
with ET MOD16 estimates. Smaller biases in the average seasonality of LST and SM1 are
obtained compared to fSCA and ET. For fSCA, similar annual cycles are obtained with
all the spatial regularizations tested, with large discrepancies with respect to the refer-
ence. On the other hand, despite a reasonable representation of streamflow seasonality
and improvements in spatial pattern efficiency metrics, different parameter configurations
can shift simulated annual cycles of ET, affecting the seasonal water balance. The results
of this chapter differ from (Rakovec et al., 2016), who calibrated the mHM model for Eu-
rope using only streamflow data, finding that ET was better simulated than total water
storage and SM.

To explore possible reasons that could explain different ET seasonalities, simulated
annual cycles in catchment-scale normalized soil moisture are examined. Figure 4.8 shows
normalized SM seasonalities for the second (SM

′
2) and third (SM

′
3) soil layers, along with

the combinations SM
′
2+3 and SM

′
1+2+3 (i.e., total water content in the soil column). As

obtained for ET annual cycles, SM seasonality can also be shifted depending on the
parameter regularized. Interestingly, little differences in SM seasonality arise from the
model configurations in the Colorado River basin, which produce the same annual cycles
for ET (Figure 4.5). For Choapa and Caut́ın, simulated ET annual cycles for binfilt and
Dsmax depart from the remaining configurations (Figure 4.5), which can be explained
by differences in simulated SM in layers 2 and 3 (Figure 4.8). Further, discrepancies
in simulated annual cycles in ET with spatially constant parameters and Depth2 at the
Caut́ın basin are also explained by the simulated behavior in layers 2 and 3. Such behavior
can be explained by the VIC model configuration, which enables vegetation roots to
access different soil layers’ moisture content; hence, a compensation among simulated
fluxes yielding similar Q response but with discrepancies in ET could be explained by
an extreme case of flux equifinality (Khatami et al., 2019). Since ET directly affects the
water balance, it is recommended an assessment of simulated annual cycles of ET when
streamflow-only calibrations are conducted.

4.6.3 Overall model performance

The results presented here reveal trade-offs between the performance of streamflow simula-
tions through the parameter estimation process and the performance of other hydrological
variables. Specifically, this work obtains that different parameter configurations and ob-
jective functions may yield similar streamflow performance, but for very different reasons
in terms of simulated spatial patterns, which aligns well with previous work incorporat-
ing spatial pattern efficiency metrics in the calibration of distributed hydrological models
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Figure 4.8: Catchment-scale annual cycles of normalized soil moisture (SM’) at the
Choapa (snow-driven), Colorado (mixed regime), and Caut́ın (rainfall-driven) River basins
over the calibration period (April/2005-March/2018). The results are associated with
the best parameter set for objective function KGE(Q) & KGE(1/Q). Notice that winter
corresponds to JJA, while summer to DJF. The normalization of SM is computed as
X ′ = (X −Xmin)/(Xmax −Xmin).

(e.g., López López et al., 2017; M. C. Demirel et al., 2018; Zink et al., 2018; Dembélé,
Hrachowitz, et al., 2020; Tong et al., 2021; M. C. Demirel et al., 2024). However, the
results of this work also show that, despite possible improvements in spatial efficiencies,
large biases may remain in basin-scale annual cycles. In this regard, the examination
of simulated seasonalities was crucial to detect deficiencies, especially for ET and fSCA
(Rakovec et al., 2016).

The results for the Colorado River basin highlight the need to verify (or calibrate)
additional variables since different parameter configurations affect the spatial patterns’
performance, and none of them was able to replicate the annual cycle of ET. Figure
4.9 displays the average seasonalities obtained after calibrating model parameters with
objective functions that consider (i) only streamflow, (ii) Q and ET, and (iii) Q and SM1.
The results show that streamflow performance decreases considerably in all basins when
ET is added to the OF (Jiménez-Navarro et al., 2024), whereas the annual cycle of ET
improves drastically. It is worth noting that identifying this issue (ET seasonality poorly
simulated while Q seasonality is well represented) was only possible when ET seasonality
was visualized, although calibrating with Q + SM1 improves the seasonality of ET at
Choapa and to a lesser degree at the Cautin River basin.
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Figure 4.9: Catchment-scale annual cycles of streamflow (Q), normalized evapotranspi-
ration (ET’), normalized soil moisture (SM

′
1), land surface temperature (LST), and frac-

tional snow-covered area (fSCA) obtained from a multivariate calibration where parame-
ters are spatially constant. Mean monthly values are computed only if there are at least
50 days with information and consider the same days during the calibration period (2005-
2018). Results correspond to the best parameter set for each objective function (colors).
Notice that winter corresponds to JJA, while summer to DJF. Streamflow observations
and remotely sensed variables are referred to as “reference” and symbolized with white
dots. The normalization of ET and SM is computed as X ′ = (X−Xmin)/(Xmax−Xmin).

4.6.4 Limitations

In this study, a single satellite remote sensing dataset is used for SM1, LST, and fSCA
(i.e., uncertainties arising from the choice of an observational reference product were not
analyzed). Further, the proposed methodology regularized one parameter at a time, while
maintaining the rest spatially constant. However, two or more parameters could be simul-
taneously regularized (e.g., Mendoza et al., 2012, 2016), although that would increase the
number of (super)parameters to be calibrated (see equation in Figure 4.2; Pokhrel et al.,
2008). In this regard, a sensitivity analysis of VIC model parameters focused on spatial
patterns would be useful to reduce the number of (super)parameters to calibrate, though
such analysis is beyond the scope of this work.
This study examined the effects of streamflow-only calibration of the VIC model on the
spatial patterns and annual cycle of other variables than Q. Although this work conducted
additional calibration experiments adding more variables to the OF, no systematic assess-
ment that includes all variables across basins was conducted since the associated benefits
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have been widely discussed in the literature (e.g., López López et al., 2017; M. C. Demirel
et al., 2018; Koppa et al., 2019; Dembélé, Ceperley, et al., 2020; Tong et al., 2021; Shah
et al., 2021; Pool et al., 2024).
Although a single model structure is used, the analyses presented here could be extended
to other lumped or semi-distributed models with varying degrees of complexity, taking
advantage of recently developed modular modeling platforms (e.g., Clark et al., 2015;
Coxon et al., 2019; W. J. M. Knoben et al., 2019; Craig et al., 2020), to address well-
known streamflow equifinality issues arising from the compensation of parameters, state
variables, and fluxes (Khatami et al., 2019).
The assessment of models in which the water available for vegetation transpiration comes
from different soil layers may benefit from including satellite products that provide esti-
mates of total water storage, such as GRACE (Güntner, 2008; Werth et al., 2009; Soltani
et al., 2021) to complement other sources of information regarding water storages. How-
ever, the incorporation of such observational products in the study domain considered in
this work remains challenging due to their relatively coarser horizontal resolution. Future
work could explore the potential of statistically downscaled datasets (e.g., Rakovec et
al., 2016; Yin et al., 2018; Vishwakarma et al., 2021; Fatolazadeh et al., 2022; Khorrami
et al., 2023; Mei et al., 2023) for the calibration/evaluation of hydrological models across
mountainous catchments.

4.7 Conclusions

Despite the tremendous advances in the development of satellite remote sensing products
that provide information of hydrological variables in space and time, streamflow-only cal-
ibration of distributed hydrological models remains a popular practice. To identify draw-
backs for simulating spatial patterns and annual cycles of other variables than streamflow,
this work performed several streamflow-only calibration experiments with the VIC model
in six basins located in continental Chile, testing the impacts of regularizing different soil
parameters and the choice of calibration objective function. The main conclusions are as
follows:

• For a given streamflow-based OF, most of the spatial regularization strategies tested
in this study provide similar OF values, with varying (either positive or negative)
effects on the realism of simulated spatial patterns of other variables. None of the
spatial model configurations tested here was able to provide simultaneous improve-
ments in the spatial patterns and annual cycles of the variables evaluated across all
catchments.

• The improvements in spatial patterns via spatial regularization techniques do not
guarantee a correct simulation of ET and fSCA annual cycles.

• For the VIC model, ET, SM1, LST, and fSCA simulations do not necessarily improve
when Q performance improves.

• For water balance characterizations, evaluating simulated annual cycles of ET (be-
sides Q) is required to detect model or data deficiencies and, therefore, decide on
the need to incorporate these variables within the calibration process.

• In model structures where several soil layers contribute to transpiration, differences
in simulated annual cycles of soil moisture - obtained from different parameter con-
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figurations - may explain discrepancies in ET annual cycles, which, in turn, may
provide very similar streamflow seasonalities (an extreme case of flux equifinality).
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Chapter 5

When Streamflow isn’t Enough:
Misrepresenting Evapotranspiration
Simulations alters Hydrological
Projections

Summary

Hydrological model calibration and evaluation are crucial steps to understand and test
model robustness under different hydroclimatic conditions and to produce robust hydro-
logical projections. Despite the increasing number of datasets for different hydrological
variables, the current modeling practice heavily relies on streamflow data for model cali-
bration, assuming that accurate streamflow (Q) performance ensures reliable simulations
of ET and/or other variables. This study explores the impact of including evapotranspi-
ration (ET) in the calibration of a distributed hydrological model on (i) seasonal water
balances, and (ii) hydrological projections under the SSP5-8.5 climate scenario in conti-
nental Chile. The Variable Infiltration Capacity (VIC) model is calibrated in 120 basins
with near-natural regimes in Chile, using a Q-only objective function and a calibration
metric that combines Q and ET. Hydrological projections are obtained using statistically
downscaled and bias-corrected outputs from six Global Climate Models (GCMs) span-
ning from 1970 to 2100. Other key findings are: (i) the inclusion of ET in calibration
considerably influences hydrological projections; (ii) different parameter sets achieving
similar streamflow responses can provide very different ET estimates, affecting historical
and projected seasonal water balances; and (iii) the basins sensitive to the inclusion of ET
are primarily located in humid regions, with high annual precipitation amounts and low
aridity indices. This study highlights the need to integrate both Q and ET in hydrologic
model evaluation to better capture water balance seasonality and improve the reliability
of climate change impact assessments.
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5.1 Introduction

Hydrological models are commonly used to generate projections under land use/cover and
climate change scenarios. In this context, estimating hydrological change estimates re-
quires several decisions, such as projected conditions (e.g., greenhouse emissions scenarios,
global climate models, land cover, among others), selecting (one or several) hydrological
models and, usually, calibrating the model parameters by using an optimization algo-
rithm and an objective function (Wilby & Dessai, 2010; Clark et al., 2016; Duethmann
et al., 2020; Zaitchik et al., 2023). In this regard, the objective function summarizes
the model performance of key hydrological variables, and its choice is critical for hydro-
logical projections. Moreover, the evaluation of simulated hydrological processes, such
as evapotranspiration or snow, can provide insights on the suitability of hydrological
model structure and parameters for changing hydroclimatic conditions (e.g., Merz et al.,
2011; K. Fowler, Coxon, et al., 2018; K. Fowler, Peel, et al., 2018; Duethmann et al.,
2020), although identifying the effects of choosing different hydrological models and its
parameters on hydrological projections remains challenging (K. Beven & Binley, 1992;
K. Beven, 2012; Her & Chaubey, 2015; Khatami et al., 2019; K. J. Beven & Chappell,
2021; Muñoz-Castro et al., 2023). Streamflow-based calibration relies on the assump-
tion that a reasonable streamflow (Q) performance implies a reasonable performance in
other variables. Nevertheless, the evaluation process is essential if the aim is to ensure
model fidelity (Refsgaard, 1997; Kirchner, 2006; M. C. Demirel et al., 2018; Dembélé,
Ceperley, et al., 2020; Jiménez-Navarro et al., 2024). Calibration and/or evaluation of
simulated evapotranspiration (ET; e.g., M. C. Demirel et al., 2018; Dembélé, Hrachowitz,
et al., 2020), soil moisture (SM; e.g., Tong et al., 2021; Bajracharya et al., 2023), to-
tal water storage (TWS; e.g., Werth & Güntner, 2010), snow cover (Parajka & Blöschl,
2008; Duethmann et al., 2014; Bennett et al., 2019; Tong et al., 2021; Tang et al., 2023),
snow water equivalent (SWE; e.g., Avanzi et al., 2020), land surface temperature (LST;
e.g., Zink et al., 2018), and groundwater levels (GWL; e.g., Refsgaard & Knudsen, 1996;
Yáñez-Morroni et al., 2023), among other variables, have become more frequent given the
increasing number of available datasets (e.g., remotely-sensed images and products; Mc-
Cabe et al., 2017). Further, several metrics have been proposed to assess the simulation
of these variables (M. C. Demirel et al., 2018; Tong et al., 2021; Dembélé, Ceperley, et
al., 2020; Dembélé, Hrachowitz, et al., 2020). However, overconfidence in different met-
ric (including streamflow-based metrics) values could be misleading and hide pitfalls in
hydrological simulations (Clark et al., 2021; Cinkus et al., 2023).

The evaluation of hydrological models is a critical step for understanding the pre-
dictive capabilities of the model (KlemeŠ, 1986; K. Beven & Binley, 1992; Refsgaard &
Knudsen, 1996; Refsgaard, 1997; Cinkus et al., 2023; Keller et al., 2023), advocating for
“good” simulations compared to reference datasets and the conceptual model for the right
reasons (Kirchner, 2006). Further, the dependence of model performance on the calibra-
tion/evaluation periods (e.g., Merz et al., 2011; Duethmann et al., 2020) may preclude the
reliability of hydrological projections under climate change scenarios, since future climate
may largely differ from the period used for estimating the model parameter (e.g., Saave-
dra et al., 2022). The evaluation process usually involves the contrast against different
parts of the hydrograph (Yilmaz et al., 2008; Gupta et al., 2009; Cinkus et al., 2023)
and/or the model’s capability to “successfully” simulate hydrological conditions under
different climate conditions (K. Fowler, Coxon, et al., 2018; Duethmann et al., 2020).
Such analyses are, in general, focused on streamflow only (Moriasi et al., 2007; Gupta
et al., 2009; Westerberg et al., 2011; Garcia et al., 2017; K. Fowler, Coxon, et al., 2018;
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K. Fowler, Peel, et al., 2018; Schwemmle et al., 2020), under the assumption that verifying
streamflow-only suffices the evaluation of (at least) the simulated water balance.

Despite recent progress in the assessment of the models’ capacity to simultaneously
replicate several hydrological variables (model fidelity), the calibration of hydrological
models to estimate climate change impacts on water resources strongly relies on only
streamflow-based calibration and evaluation (e.g., Shafii & Tolson, 2015; L. Melsen et
al., 2016; Mizukami et al., 2017, 2019; Beck et al., 2020; Clark et al., 2021; Aguayo et
al., 2021; S. Wang et al., 2022), with unfavorable consequences on streamflow projections
(e.g., McInerney et al., 2024). Moreover, determining the possible effects of not verifying
relevant hydrological processes on hydrological projections under climate change remains
challenging (Mendoza, Clark, Mizukami, et al., 2015; Mendoza et al., 2016). Hence, the
the potential effects that streamflow-only calibration may have on projected changes in
hydrological states and fluxes remain unknown.
Although several variables are simulated by hydrological models, this work focuses most
of the analysis on simulated ET and Q since both control the overall water balance at the
climatological temporal scale. Therefore, the following questions are addressed:

1. How does the calibration/representation of average annual cycles of Q and ET affect
the projections of these variables under climate change scenarios?

2. What types of catchments are more sensitive (i.e., projections with greater variabil-
ity) to the inclusion of ET in the calibration process?

To address the above questions, the Variable Infiltration Capacity model (VIC; Liang
et al., 1994) is calibrated using (i) a Q-only objective function and (ii) a combination
of Q and ET. Although the focus is on the role of ET in model fidelity, the quality of
simulated LST, fractional snow-covered area (fSCA), and SM for the upper soil layer are
also assessed. The analyses are conducted in basins with near-natural regimes located
along continental Chile. To the best of the author’s knowledge, hydrological projections
over this domain have relied on streamflow-based calibrations using a variety of hydro-
logical models in specific basins (Vicuña et al., 2011; Demaria et al., 2013; Vicuña et
al., 2013; Bozkurt et al., 2017; DGA, 2017; Aguayo et al., 2019, 2021; DGA, 2022).
For hydrological projections, six Global Climate Models are statistically downscaled and
bias-corrected, leading to hydrological projections from 1970 to 2100. In this chapter the
relative importance of selecting between two objective functions (Q-only and Q+ET) is
assessed. Moreover, the choice of GCMs is also incorporated since previous work suggests
that GCMs are among the main drivers explaining the spread in hydrological projections.
This study complements previous work aimed to examine modeling decisions to improve
process representations (Sepúlveda et al., 2022; Murillo et al., 2022; Cortés-Salazar et
al., 2023) and climate change projections (Gateño et al., 2024; Vásquez et al., 2024) in
continental Chile.

5.2 Study Area

The study domain encompasses 120 basins located in continental Chile (Figure 5.1), which
meet the following requirements: (i) a low human intervention degree index (i.e. < 5%),
which is defined as the ratio between the annual flow of surface water rights (consumptive
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permanent continuous), and the mean annual runoff measured at the catchment outlet
(Alvarez-Garreton et al., 2018), (ii) absence of lakes or reservoirs, and non-consumptive
water withdrawals, unless their restitution is located upstream of the streamflow gauge
and (iii) glacier coverage smaller or equal than 2% of the total basin area. Almost all
the basins drain from the Andes Cordillera (east) to the Pacific Ocean (west). The basin
areas range from 20.6 km2 to 5,152 km2, and most of them are located in central (25-35°S)
and southern (35-42°S) Chile, where the majority of the population lives.

Overall, the selected basins span a wide range of hydroclimates with snow-dominated,
mixed, and rainfall-driven hydrological regimes. Catchment-scale mean annual precipi-
tation (P) ranges between 117-3,246 mm/year, with northern Chile being the most arid
region, while central and southern Chile are the wettest areas. Snowfall plays a key role
in the hydrology of the study domain, particularly between 30°S and 40°S due to the
elevation of the Andes Cordillera, and in southern Chile (<40°S) due to the cold winter
months. The snowfall fraction, estimated as the ratio between mean annual snowfall (Sf)
and P, reaches its highest value between 30°S and 40°S. In basins located on the coastal
mountain ranges, the relevance of snowfall is negligible. The precipitation seasonality
index (δ∗p; Woods, 2009) indicates the season that concentrates most of the annual pre-
cipitation, with δ∗p ≈ −1 (δ∗p ≈ 1) when precipitation amounts are concentrated in winter
(summer). In the study domain, winter and summer correspond to JJA and DJF months,
respectively. Figure 5.1d displays the basin-scale δ∗p, showing a clear north-to-south gra-
dient. In the Altiplano Region (20°S), the rainy season occurs during the austral summer,
whereas the wet season occurs during the austral winter south of 28°S. Precipitation be-
comes progressively more uniform throughout the year as one moves southward (<45°S),
with δ∗p reaching values close to zero south of 50°S. Figure 5.1e shows the aridity index,
which quantifies the ratio between the atmospheric energy demand (estimated through
the potential evapotranspiration; PET) and the annual precipitation (i.e., PET/P). AI
values close to 1 in continental Chile are located around 35°S (excepting some basins
south of 50°S), separating the arid northern Chile, where AI can be ≥4, from the (more
humid) southern half of the country, where AI can be as low as ≈0.2).

5.3 Datasets

5.3.1 Historical Hydrometeorological datase

Reference daily precipitation and maximum (Tmax) and minimum (Tmin) air temperature
are obtained from the CR2MET v2.5 dataset (Boisier et al., 2018; DGA, 2022; Boisier,
2023), which covers continental Chile with a horizontal resolution of 0.05° x 0.05° for the
period 1979-2020. CR2MET P estimates are obtained through a two-step approach con-
sisting of (i) computing the probability of precipitation at each grid cell through logistic
regression models, and (ii) calculating daily precipitation amounts using multiple linear
regression equations. All the models use ERA5 reanalysis outputs (Hersbach et al., 2020)
and geomorphological attributes as predictors, and daily precipitation from meteorolog-
ical stations as predictands. For Tmax and Tmin, land surface temperature from MODIS
is also included as a predictor.
To obtain sub-daily meteorological time series, CR2MET daily precipitation, and temper-
ature are disaggregated into hourly time steps using the sub-daily distribution provided
by ERA5-Land (Muñoz Sabater, 2019), which is bias corrected to match the CR2MET
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Figure 5.1: a) Location of the catchments in near-natural regime considered in this study.
b) Mean annual precipitation, c) snowfall fraction, d) p-seasonality index, and e) aridity
index. The values are computed for the period April/1985-March/2015 (30 WYs). Note
that the x-axis is in logarithmic scale for the aridity index (panel e).

daily values. Relative humidity (RH), wind speed (W), atmospheric pressure (AP), and
incoming shortwave radiation (Kin) are derived for the same horizontal resolution grid by
spatially interpolating ERA5-Land outputs. ERA5-Land wind speed is bias-corrected us-
ing wind simulations from WRF at a 1-km horizontal resolution (Geophysics Department
& Ministerio de Enerǵıa, 2018). Incoming longwave radiation (Lin) is computed with
the parameterization proposed by Iziomon et al. (2003) using the bias-corrected hourly
temperature. To conduct hydrological model simulations, all the meteorological variables
are grouped to obtain 3-hourly time series.
Daily streamflow data is obtained from stations maintained by the Chilean Water Direc-
torate (DGA, in Spanish), also available in the CAMELS-CL dataset (Alvarez-Garreton
et al., 2018).

5.3.2 GCM data

For climate projections, six CMIP6 GCMs are considered (Table 5.1) under the emis-
sion scenario SSP5-8.5. The GCMs were selected based on the results of Gateño et al.
(2024), who evaluated the models’ capability to replicate climate indices derived from pre-
cipitation and temperature for the period April/1985-Mar/2014, 30 water years (WY),
including: (i) mean annual bias, (ii) mean annual cycle (iii) interannual variability, (iv)
spatial correlation of mean annual values, (v) distribution of monthly values and (vi)
model genealogy. The historical performance for each model, variable and macrozone was
summarized using the Past Performance Index (PPI; see Gateño et al., 2024 for details).
In this chapter, only GCMs holding the top 60% PPI values in at least four of the five
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macrozones are selected.

Table 5.1: CMIP6 GCMs considered in this study. ∆lon and ∆lat correspond to the
GCM’s horizontal resolution.

GCM ∆lat ∆lon Institution
CanESM5 2.77 2.81 Canadian Centre for Climate Modelling and Analysis, Canada.
CMCC-ESM2 0.94 1.25 Euro-Mediterranean Centre on Climate Change Coupled Climate Model, Italy.
EC-Earth3-CC 0.70 0.70

EC-Earth Consortium, Europe.
EC-Earth3-Veg-LR 1.12 1.13
GFDL-ESM4 1.00 1.25 Geophysical Fluid Dynamics Laboratory, USA.
KIOST-ESM 1.88 1.88 Korea Institute of Ocean Science and Technology Earth System Model and Its Simulation Characteristics, South Korea.

5.3.3 Remote sensing products

In this chapter, remotely sensed fractional snow-covered area, actual evapotranspiration,
land surface temperature, and soil moisture are used for hydrologic model evaluation. The
fractional snow-covered area is derived from MODIS products (MOD10/MYD10; Hall &
Riggs, 2016). To obtain a unique time series, daily MOD10 and MYD10 estimates are
averaged at each MODIS grid cell. If only one product is available for a specific day and
grid cell, that value is used to estimate fSCA. All the gaps (i.e., days and grid cells where
MOD10 and MYD10 are not available) are filled at the original horizontal resolution (500
m) using the methodology proposed by Cornwell et al. (2016). Actual evapotranspiration
is obtained from the MOD16 product (Mu et al., 2011) using 8-day estimates with a
1-km horizontal resolution. Land surface temperature for each day and each grid cell is
obtained as the average between the MOD11 and MYD11 products (Wan, 2014) at a
1-km horizontal resolution. If one of the two LST estimates is unavailable, the day is
considered missing. For soil moisture (0.25° horizontal resolution), the ESA-CCI product
is used (Dorigo et al., 2017).

To resolve the mismatch between the horizontal grid of remote sensing products and
the grid discretization of CR2MET (which is the same as in the hydrological model),
ET, LST, and fSCA are upscaled using spatial averages, and (SM is downscaled to the
CR2MET grid cell that is closest; e.g., dos Santos Araujo et al., 2024). Grid cells without
data are not filled out for ET, LST, and SM, as opposed to fSCA.

5.3.4 Ancillary data

Since this study considers a distributed hydrological model that requires a priori parame-
ter fields, the SoilGrids dataset (Poggio et al., 2021) is used to derive mean clay and sand
content, and mean bulk density for the first 2 m soil depth at a 250-m horizontal reso-
lution. The elevation is estimated from the Shuttle Radar Topography Mission (SRTM;
Farr et al., 2007), while the aspect is derived from the SRTM elevation raster at the
original horizontal resolution (30 m). All datasets are upscaled to match the CR2MET
grid using spatial averages.
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5.4 Modeling approach

5.4.1 Hydrological model

In this chapter, the physically-based and semi-distributed VIC model (Liang et al., 1994) is
used to simulate state variables and fluxes at a 0.05°x 0.05° horizontal resolution. In VIC,
precipitation is partitioned into snowfall or rainfall, and both can be stored in the canopy.
The maximum amount of water that the canopy intercepts is estimated using the Leaf
Area Index (LAI; Dickinson, 1984). The snowpack is represented by two layers, where the
top and bottom layers are used for atmosphere and ground energy balance computations,
respectively (Andreadis et al., 2009). The soil column has three layers, with the first one
controlling infiltration, and the third layer simulating baseflow processes. To compute
infiltration, VIC uses the Xinanjiang formulation (Zhao et al., 1980), assuming that the
infiltration capacity varies within the simulation unit area (Wood et al., 1992). Excess
runoff (R) is generated in those areas where precipitation exceeds the moisture storage
of the first soil layer. VIC assumes that gravity drives drainage, using the formulation
proposed by Brooks and Corey (1964). In this regard, water enters the cell only from
the atmosphere, i.e., VIC does not consider lateral fluxes among grid cells. Baseflow (B)
is generated in the third (deepest) soil layer using a formulation proposed by Franchini
and Pacciani (1991). It is assumed that Q = R + B. The reader is referred to Liang et
al. (1994) for more details. Horizontal heterogeneity in each grid cell can be considered
by incorporating different land cover types. Here, the International Geosphere-Biosphere
Program (IGBP) classification for the year 2010 from the MCD12Q1 v006 land cover
product (Sulla-Menashe & Friedl, 2018) is used to represent all land cover types spanning
at least 2% of each grid cell area. Mean monthly LAI values for these land cover types
are derived from the MOD15A2 product. Soil Bulk density is estimated as the vertical
average from the first 2 m soil depth, obtained from the SoilGrids product (Poggio et al.,
2021). VIC is coupled with the mizuRoute model (Mizukami et al., 2016) to estimate
the streamflow at the outlet of each basin. mizuRoute first performs a hillslope routing
using a gamma-distribution-based unit-hydrograph to delay VIC runoff, and then routes
the delayed runoff for each river reach defined by the river network topology. For river
routing, the diffusive wave scheme is used, following the setup recommended by Cortés-
Salazar et al. (2023). Manning’s roughness coefficient and riverbed width are derived
for all basins using relationships derived from Mendoza et al. (2012) and Niño (2002).
Each grid cell considered elevation bands delineated with a 200 m vertical discretization
(Murillo et al., 2022).

5.4.2 Calibrated parameters

In this chapter, the VIC parameters calibrated are the ones identified as the most sensitive
by Sepúlveda et al. (2022), including: (i) binfilt, which controls the infiltration process, (ii)
Ds and Ws, which control the linearity of the curve used to calculate the water leaving
the third (deepest) soil layer, (iii) Dsmax as the maximum baseflow rate, (iv) hydraulic
conductivity (Ksat), related to how water percolates between the soil layers, (iv) the soil
layers’ depths, (v) the threshold temperature to separate precipitation into rainfall and
snowfall, (vi) maximum snow albedo and (vii) its temporal decay rate.
The parameters regularized are binfilt and the soil layers’ depths. To define a priori spatial
distribution of these parameters, a Principal Component Analysis (PCA) is conducted
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considering a suite of grid cell attributes within each basin, including bulk density, clay
and sand content, elevation, and slope (e.g., Samaniego et al., 2010; Mizukami et al.,
2017; Beck et al., 2020). The a priori map is based on the first component (PC1) of the
PCA analysis as well as super-parameters (as in step 2 in Figure 4.2; Pokhrel et al., 2008)

5.4.3 Performance metrics

Streamflow-based performance metrics

The Kling-Gupta efficiency (KGE; Gupta et al., 2009; Kling et al., 2012) is used to
inform the performance of streamflow simulations. KGE seeks to minimize the Euclidean
distance between performance metrics related to volume (β), variability (γ) and their
optimal values (i.e., 1):

KGE = 1− ED = 1−
√

(1− β)2 + (1− γ)2 + (1− r)2 (5.1)

where β = µs/µo is the ratio between simulated (s) and observed (o) average values
(µ); γ = (σs/µs)/(σo/µo) with σ being the standard deviation and r is the temporal
correlation between observed and simulated daily values. KGE ranges from −∞ to 1,
where 1 represents a ”perfect“ model simulation (i.e., ED = 0).

Spatial pattern performance metrics

This chapter uses the spatial efficiency metric (Eq. 5.2) proposed by Dembélé, Ceperley,
et al. (2020) to evaluate simulated ET, SM, LST, and fSCA.

ESP = 1−
√

(1− rs)2 + (1− γ)2 + (1− α)2 (5.2)

Where rs is the Spearman correlation coefficient between simulated and reference val-
ues, γ is the ratio between the coefficients of variation (as in KGE; Eq. 5.1), α =
1 − RMSE(ZXs , ZXo), being Z the time series with standardized values for the vari-
able X (notice that this chapter follows the same notation as in Dembélé, Hrachowitz, et
al. (2020)) and RMSE the Root Mean Square Error. The standardization aims to avoid
a direct contrast between the model and reference values since remotely sensed products
have biases that could affect the metric. However, bias-accounting metrics, such as KGE
and RMSE, are also considered to assess the model’s ability to reproduce the raw remotely
sensed estimates.

Following Dembélé, Ceperley, et al. (2020), this chapter uses two approaches to con-
trast spatially distributed simulations against observations. Option 1 considers the con-
trast between simulated and reference maps of a variable X at each time step, resulting in
a time series of performance measures (OFX(t)) that can be used to compute a summary
metric OF time

X by temporally averaging OFX(t) values. Option 2 involves the comparison
between simulated and reference time series at each grid cell to obtain a map of perfor-
mance metrics (OFX(i)) that can be used to calculate a summary performance measure
OF space

X by spatially averaging OFX(i) values.

For soil moisture, the correlation coefficient (Eq. 5.3) between simulated (θs) and
reference soil moisture (θref ) is included as in Tong et al. (2021).
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OSM =

∑T
t=1

[
(θts − θs)(θ

t
ref − θref )

]√∑T
t=1

[
(θts − θs)2(θtref − θref )2

] (5.3)

Where t represents the time step and the overbars represent average values. This
chapter only considers the simulated soil moisture from the first soil layer since the ESA-
CCI soil moisture product considers the top 0.5–2 cm soil depth. To overcome mismatches
and systematic biases between the reference and SM1 due to different soil depths and
properties, mean–standard deviation matching (Draper et al., 2009; López López et al.,
2017) was used (Eq. 5.4).

θ∗s =
σθref

σθsim

·
(
θs − θs

)
+ θref (5.4)

Where σθref and σθs are the standard deviation of the reference and simulated soil
moisture. Finally, the quality of fSCA simulations are assessed by using the root mean
squared error (RMSE) and the metric OSC proposed by Tong et al. (2021):

OSC = 1− (SO + SU) (5.5)

where SO and SU represent the fraction of the total number of simulated days with over-
estimation and underestimation of simulated fSCA, respectively. To avoid noisy values,
a threshold of 1% is applied; hence, a grid cell with simulated and reference fSCA values
below 0.01 is considered snow-free.

Only for graphical analyses, ET and SM annual values are normalized as X∗ = (X −
Xmin)/(Xmax −Xmin) to avoid mismatches and biases in the reference product and focus
on the simulated annual cycle. This chapter uses the notation SMj, to refer to the moisture
content in the j-th soil layerof the VIC model.

Additionally, the model’s capability to replicate the average seasonality of Q, LST,
fSCA, SM1, and ET during the calibration period is evaluated. To this end, for each basin
and variable, the Pearson correlation coefficient between simulated and reference average
monthly values (12 vs. 12 values) is computed.

Objective functions to obtain VIC parameters

Because previous analyses show that incorporating ET in the calibration could be crucial
to adequately simulate the average water balance seasonality (e.g, Jiménez-Navarro et al.,
2024), this chapter considers an objective function (OF), combining Q and ET, as shown
in Eq. 5.6:

OF = 1−
√
sQ · [1− E(Q)]2 + sET · [1− ESP (ET )]2 (5.6)

where sQ and sET allow weighing differently the model performance for Q and ET, respec-
tively. Further, to give more weight to low flows, this chapter considers the streamflow
performance metric, E(Q), proposed by Garcia et al. (2017) and shown in Eq. 5.7:

E(Q) =
KGE(Q) +KGE(1/Q)

2
(5.7)
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The VIC model parameters are obtained by optimizing two OFs: (i) a traditional calibra-
tion approach considering only streamflow (i.e., sET = 0 in Eq. 5.6) and (ii) by including
Q and ET simultaneously. This chapter refers to both OFs as OFQ and OFQ&ET when
only Q and Q and ET are calibrated, respectively. Hence, two “best parameter” sets are
obtained (one for each OF) to verify the impacts of including ET in the calibration.

The individual basin calibrations were conducted by maximizing the OFs using the
Dynamically Dimensioned Search (DDS; Tolson & Shoemaker, 2007) algorithm, imple-
mented within the OSTRICH software (Matott, 2017). For each OF, DDS is initialized
from six different and randomly selected parameter sets, with a maximum search number
of 500 iterations. Hence, the model is run with 3,000 different parameter sets, selecting the
one that yields the best OF value. All the performance metrics considered are computed
at a daily time step. The calibration period is Apr/2005-Mar/2018, while the evaluation
period is Apr/1995-Mar/2005. The calibration period was selected based on the diversity
of normal, wet and, in particular, dry WYs, including seven WYs of the central Chile
mega-drought (R. D. Garreaud et al., 2017; Boisier et al., 2018; R. D. Garreaud et al.,
2020).

5.4.4 Downscaling and bias correction of climate models

To obtain hydrological projections under climate change scenarios, all the models were
statistically downscaled to the CR2MET horizontal resolution using an inverse distance
weighting interpolation method (e.g., Demaria et al., 2013). Then, SD GCM outputs were
bias-corrected at each CR2MET grid cell using a multivariate BCM to better replicate
the precipitation-temperature correlation in arid or temperature areas with considerable
snowfall fractions (Meyer et al., 2019; Guo et al., 2020), such as northern and central
Chile. The Multivariate quantile-mapping bias correction method (MBCn, Cannon, 2018)
is used, and can be found in the “MBC” library (Cannon, 2016, 2018), implemented in
the statistical software R (R Core Team, 2023). The MBCn method relies on three steps
that are repeated until convergence: (i) an orthogonal rotation, (ii) the application of
the Quantile Delta Mapping method (Cannon et al., 2015) and (iii) the application of an
inverse matrix (the one used to compute the orthogonal variables). The MBCn method is
applied to daily time series of P, Tmax, and Tmin using a monthly temporal stratification
and considering 1980-2014 as the training period (35 years). As a result, daily bias-
corrected time series of P, Tmax, and Tmin are obtained for the 1980-2100 period.
The remaining variables required to run the VIC model (AP, w, RH, Kin and Lin) are
obtained by searching, for each day t, the most similar day in terms of P, Tmax and Tmin.
Such day is found by using a Euclidean distance approach between the day to fill (from
SDBC GCM; t) and the CR2MET dataset (tclosest). This process is conducted for each
day t at each grid cell and GCM. When the “closest” day is identified, the remaining
variables are completed by copying the values from day tclosest to t.

In order to compare how the choice of OF can affect annual and seasonal projected
changes in Q and ET for a specific GCM, the “best” two GCMs according to the criteria
detailed in section 5.3.1, are selected. The number of GCMs selected is referential and
selected just for graphical purposes.
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5.4.5 Analysis framework

Hydrological projections are obtained by forcing the VIC model with the downscaled and
bias-corrected GCM outputs at each grid cell, considering the two parameter sets ob-
tained from the optimization of OFQ and OFQ&ET. Hence, for each basin, 12 hydrological
projections are obtained (two parameter sets and six GCMs).

In this study, the total dispersion (TD) in hydrological projections is derived from two
methodological decisions: (i) the number of GCMs, and (ii) the choice of the objective
function. To evaluate the relative importance of each decision in the spread of hydrological
projections, an Analysis of Variance (ANOVA) is performed;

TD = OF +GCMs+Residuals (5.8)

The ANOVA analysis is applied to changes in Q and ET at the annual and seasonal time
scales. Since VIC provides spatially distributed hydrological projections, this chapter
evaluates, for each basin and GCM, if the spatial distribution of projected changes in Q
and ET are statistically different between the OFs by applying a Kolmogorov-Smirnov
test. Additionally, temporal changes are statistically verified by using the Wilcoxon-
Mann-Whitney test.

5.5 Results

First, this section presents results for historical simulations, focusing on average season-
alities. Then, the analysis continues with projected hydrological changes under a future
climate scenario.

5.5.1 Historical simulations

Figures 5.2a and 5.2b display the KGE(Q) and KGE(1/Q) values for the calibration period
(Apr/2005-Mar/2018), obtained with parameters sets that maximize OFQ and OFQ&ET.
KGE(Q) values are more stable between OF and periods, while KGE(1/Q) yields larger
differences between periods. For KGE(Q), most differences arise between the calibration
and evaluation periods, although for higher KGE(Q) values, a calibration based on Q
only leads to slightly better results compared to OFQ&ET simulations. In this regard, 70%
of the basins have KGE(Q) ≥ 0.3 during the calibration period. For KGE(1/Q), despite
larger differences between calibration and evaluation periods, differences arising from the
choice of objective function are smaller. The results show that higher (better) metrics
are obtained, mostly in central and southern Chile (30°S-45°S; Figures 5.2a and 5.2b),
where the climate is humid (P>1,000 mm/year and AI ≲ 0.5; see Figure 5.1), and most
of the annual precipitation occurs in fall and winter (δ∗P ≲ 0.5). Figure 5.2c shows the
empirical cumulative distribution of KGE(Q) and KGE(1/Q) values for the calibration
and evaluation periods, and the best parameter sets from both objective functions.

Figure 5.3 displays the correlation for each variable and objective function. The best
results are obtained for LST, followed by fSCA and Q, which is expected since the latter
variable is included in both OFs. SM1 and ET are the two more poorly simulated variables
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Figure 5.2: Spatial distribution of (a)KGE(Q) and (b) KGE(1/Q) for the best parameter
set obtained by optimizing OFQ (or Q) and OFQ&ET (Q & ET). Panel c) displays the
empirical cumulative distribution function (ECDF, y-axis) of the metrics obtained for the
120 calibrated basins.

(particularly ET), which can be explained by the dependence between SM1 and ET from
the parameters related to soil processes (calibrated to match streamflow observations).

Since the annual cycles of SM1 and ET are poorly simulated, the subsequent analyses
focus on these variables and Q. Figure 5.4 shows the simulated and reference average
seasonalities during the calibration period for five basins where the annual cycle of Q is
reasonably well simulated using parameter sets obtained from OFQ and OFQ&ET, though
simulated performance differs for SM1 and ET. The selected basins are, from north to
south, (i) Codpa River at Cala-Cala, (ii) Colorado River at Palos, (iii) Mulchén River
at Mulchén, (iv) Allipén River at Los Laureles and (v) Prat River at Desembocadura.
For simplicity, these basins are referred to using the number identifiers (i)-(v) in Figure
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Figure 5.3: Pearson correlation coefficients between the simulated and reference average
seasonality for the period Apr/2005-Mar/2018. Each boxplot comprises results for 120
basins and five variables (Q, LST, fSCA, SM, and ET), using parameter sets obtained by
maximizing Q and ET+Q.

5.4. Basin (i) has a rainfall-driven regime, with higher streamflow values in the summer
and fall seasons (JFM). In this basin, the VIC model overestimated Q in January and
underestimated it in March. Moreover, no considerable differences arise from the choice
of OF, and SM1 and ET seasonalities are reasonably well simulated. In basin (ii), with a
mixed-hydrological regime and a higher snow-driven influence, the two OFs provide similar
annual cycles of streamflow, though OFQ&ET yields a Q underestimation in December. In
this basin, no relevant differences between OFs are obtained in simulated SM1, although
both overestimate the reference values during the Spring season (SON). Nevertheless,
there are important differences in ET, with OFQ producing higher values during winter
and early spring (JJAS), though reference data suggest that seasonalities from both OFs
are wrong, and the model can not capture the higher ET values observed in summer
(DJFM). In basin (iii), with a rainfall-driven hydrological regime, reasonable simulations
for Q, SM1 and ET are obtained, regardless of the OF. The VIC model is able to replicate
the Q annual cycle in basin (iv) - with a mixed hydrological regime and predominancy of
rainfall-driven events - though winter and spring (JJASO) streamflow is underestimated
for OFQ. The parameter sets obtained with OFQ&ET (OFQ) overestimate (underestimate)
SM1 during the spring season (SON). However, OFQ&ET yields reasonable simulations of
ET, and inadequate ET performance for OFQ. Finally, reasonable (poor) simulated annual
cycles for Q and ET (SM1) are obtained in basin (v), with a mixed hydrological regime.

5.5.2 Hydrological projections

This section explores the extent to which the choice of OF (i.e., OFQ or OFQ&ET) may
affect - for each combination of GCM and basin - the projections of Q and ET at the
annual and seasonal scales, as well as the contribution of baseflow to Q. Then, the number
of basins where the spatial distribution of projected Q and ET are statistically different
due to the choice of OF is evaluated.

Figure 5.5 displays projected changes in catchment-scale annual P, Q, and ET. The
location of these basins is shown in Figure 5.5a. In northern Chile (17°S-23°S), the choice
of GCM introduces a large spread in projected precipitation changes, without a clear pro-
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Figure 5.4: Average seasonality of Q, SM1
* and ET* during the calibration period

(Apr/2005-Mar/2018). White dots represent the reference (observational) datasets. The
selected basins (location shown in the map) are (i) Codpa River at Cala-Cala (ID 1410004),
(ii) Colorado River at Palos (ID 7112001), (iii) Mulchén River at Mulchén (ID 8330001),
(iv) Allipén River at Los Laureles (ID 9404001), and (v) Prat River at Desembocadura
(ID 12291001). Monthly values are computed for the exact days with both, simulated and
reference data and only if more than 50 days with reference information are available.

jected change signal. In central and southern Chile (33°S-46°S), catchment-scale projected
P changes suggest a decrease in annual amounts, whereas projected changes are relatively
smaller (with respect to the historical period) in austral Chile (south of 50°S). The median
of projected changes in Q (Figure 5.5d) follows a similar latitudinal pattern compared to
∆P (Figure 5.5b), although the projected changes are more pronounced than ∆P and
the spread among GCMs is larger. For example, the median ∆P ≈ −30% between 35°S
and 45°S, while ∆Q ≈ −45%. From 20°S to 30°S, the results suggest an increase in Q by
the end of the century (2070-2100 w.r.t. 1985-2015). From 20°S to 35°S, a general annual
decrease in the median among GCMs is projected. Between 35°S and 43°S, an increase
in annual ET is projected. South from 50°S, median projected changes in ET are mostly
positive, though the choice of GCM introduces some spread that can switch the negative
or positive signal of projections in some catchments. Nevertheless, the spread in the ET
projected change signal suggests that the increase or decrease in annual ET values at the
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Figure 5.5: (a) Location of case study basins and catchment-scale projected annual
changes for (b) P, (c) Q, and (d) ET (2070-2100 vs. 1985-2015). The dots represent
the median among GCMs, while whiskers indicate the minimum and maximum among
GCMs.

end of the 21th century varies between GCMs.

Figure 5.6 compares catchment-scale projected changes in annual/seasonal Q and ET
from OFQ against the results obtained with OFQ&ET for the “best” two GCMs. Figure 5.6
shows that projected changes in annual ET (first row) and Q (second row) align, mostly,
with the 1:1 line (dashed line), although there are differences between OFs, particularly
for ∆Q. Interestingly, selecting different OFs in some basins (dots) may yield different
projected change signals (see the dots in the top-left or bottom-right quadrants of each
panel). At the seasonal scale, projected changes also align with the 1:1 line, although
higher dispersion (lower R2 values) can be observed, particularly for winter Q and summer
ET.

Figure 5.7 shows projected changes in averaged monthly ET and Q for the same basins
and GCMs displayed in Figure 5.4, respectively. For simplicity, the basins are referred
to by the (i)-(v) identifiers, similar to Figure 5.4. Overall, the basins where differences
between observed simulated historical ET seasonalities were obtained (basins ii and iv)
yield the largest differences in projected monthly Q and ET changes, whereas the basins
where consistent Q and ET observed-historical seasonalities were obtained yield more

76



Annual Winter (JJA) Summer (DJF)

∆ET
∆Q

−60 −30 0 30 60 −60 −30 0 30 60 −60 −30 0 30 60

−60

−30

0

30

60

−60

−30

0

30

60

∆ obtained from OFQ [%]

∆
 o

bt
ai

ne
d 

fro
m

 O
F Q

 &
 E

T 
[%

]

GCM CanESM5 EC−Earth3−Veg−LR

𝑅! = 0.79
𝑅! = 0.77

𝑅! = 0.49
𝑅! = 0.66

𝑅! = 0.62
𝑅! = 0.38

𝑅! = 0.82
𝑅! = 0.90

𝑅! = 0.61
𝑅! = 0.73

𝑅! = 0.71
𝑅! = 0.21

Figure 5.6: Projected percent changes in catchment scale annual and seasonal (Winter
and Summer) Q and ET. The results are obtained for the future period 2070-2100 with
respect to the reference period 1985-2015. The colors represent the best two GCMs based
on the PPI index. (notice that the horizontal and vertical dashed lines represent a 0%
change). R2 represents the coefficient of determination.

robust (i.e., little differences from the choice of OFs) projected changes for particular
GCMs. In basin (i), where differences in the observed-historical seasonalities are minimal,
no relevant differences in projected changes in Q seasonality are obtained between OF and
GCMs, except the dry period (MJJASON) where streamflow values are very low (average
monthly values <0.1 m3/s). In basin (ii), observed-historical differences between OFs can
be seen in December for Q, and for the annual cycle of ET (Figure 5.4), producing different
projections in Q and ET. Projected changes in Q based on OFQ&ET yield more drastic
reductions for both GCMs in the fall, winter, and summer seasons compared to OFQ. Such
changes may even be different in the projected change signal (see the JJA months for both
GCMs). Similarly, projected monthly ET changes are drastic (i.e., larger magnitude) for
OFQ compared to OFQ&ET (behavior opposed to ∆Q) for both GCMs, with differences in
signal in the Fall and Winter months (MJJA months) for the GCM CanESM5. In basin
(iii), which has no differences in seasonality in the observed-historical period (Figure 5.4),
the choice of OF only introduces slight differences in monthly projected changes, and
such differences occur mainly during the Summer-Fall seasons (months JFM). In basin
(iv), where the observed-historical Q seasonality is well simulated but with very different
annual cycles of ET from the OFs, the projected changes in Q and ET are drastically
different in magnitude for both GCMs. For example, when the parameter is selected from
OFQ, more uniform Q changes are obtained along the year for both GCMs, whereas when
using the parameter selected from OFQ&ET, less drastic changes are projected for winter
compared to the rest of the seasons. In basin (iv), different monthly projected changes in
ET are obtained with different OFs. Basin (v) has low-to-none differences between OFs
for Q and ET monthly projections.
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Figure 5.7: Projected monthly changes in Q (panel a) and ET (panel b) for the same
selected basins as in Figure 5.4. Hydrologic changes are computed for the period 2070-
2100 with respect to 1985-2015. The columns show results for the best two GCMs based
on the PPI index. The highlighted basins in red on the map are the same as in Figure
5.4.

An ANOVA analysis is conducted to identify what decision (choice of OF or GCM)
is more relevant in each basin to explain the spread in projected changes of Q and ET
(Figure 5.8). Figure 5.8b shows that, in most catchments, GCM is the most relevant
decision explaining the spread of ∆Q at the annual scale. However, the number of basins
where the choice of OF is more relevant increases when moving to the seasonal scale.
Similar results are obtained for ∆ET (Figure 5.8a), although the number of basins being
more sensitive to the choice of OF is smaller compared to the results for ∆Q. Interestingly,
most of the basins where the choice of OF is more relevant to explain projected Q changes
are located in central-southern Chile (36°S-42°S), a humid area, with low AI values (Figure
5.1) and where the best calibration metrics are obtained (Figure 5.2).

The Caut́ın at Cajón River basin (ID 9129002 (see location in Figure 5.9) is selected
to illustrate how the choice of OF may affect the simulated mean annual runoff ratio
(Q/P; Figure 5.9a) and the contribution of baseflow to total runoff (B/Q; Figure 5.9b).
In this basin, calibration metrics are KGE(Q)=0.88 and KGE(1/Q)=0.91, with negligible
differences between OFs in Q and ET seasonalities (not shown). It can be noted that
Q/P values are not affected by the choice of OF in the future and historical periods
(Figure 5.9a). However, the contribution of baseflow to total runoff changes between
OFQ (B/Q≈0.41) and OFQ&ET (B/Q≈0.7) for the historical period. Interestingly, for
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Figure 5.8: Most relevant decision (based on ANOVA analysis) to explain the projected
changes in Q (panel a) and ET (panel b) at the annual and seasonal scales. Projected
changes were computed comparing the periods 2070-2100 and 1985-2015. The most rele-
vant decision is displayed only for p-values lower than 0.05.

the future period (2070-2100), B/Q increases for OFQ, but remains nearly the same
for OFQ&ET, suggesting that the choice of OF may affect the historical values and the
projected changes of B/Q. For the Caut́ın River basin, results are similar regardless of
the GCMs (different lines in Figures 5.9a and 5.9b). Figures 5.9c and 5.9d display the
most relevant decision (using ANOVA analysis) explaining the spread of future average
B/Q and ∆(B/Q), respectively. The choice of OF arises as the most relevant decision for
projected B/Q in most of the basins (n=91), whereas the choice of OF and GCM arises
as the most relevant decision For ∆(B/Q) in 55 and 50 basins, respectively.

Figure 5.10 displays the number of basins where the spatial distribution of ∆ET (Fig-
ure 5.10a) and ∆Q (Figure 5.10b) obtained with OFQ and OFQ&ET within each basin
is significantly different (p-value≤0.05). Results are displayed for each GCM (y-axis)
at the annual and seasonal time scales (x-axis). For ∆Q, the number of basins where
the choice of OF yields different spatial patterns of ∆Q is ∼70 basins. The number of
basins where the spatial distribution of ∆ET within each basin is different between OFQ

and OFQ&ET decreases compared to Figure 5.10b, particularly for the Summer season,
although it affects more than half of the number of basins.
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Figure 5.9: (a)Precipitation and (b) runoff partitioning in the historical (1985-2015) and
future (2070-2100) periods for the basin Caut́ın River at Cajón (ID 9129002). Each line
represents a GCM. Panels (c) and (d) show the most relevant decisions explaining the
spread of the baseflow contribution to total runoff and its projected change, respectively.

5.6 Discussion

5.6.1 Flux equifinality in model calibration

The results presented here show that despite the two objective functions yielding sim-
ilar streamflow performance metrics in many catchments, the quality of the simulation
of other hydrological variables differs considerably (Cinkus et al., 2023). For example,
a similar Q performance for the calibration period (KGEQ(Q)=0.7, KGEQ(1/Q)=0.87,
KGEQ&ET(Q)=0.72, KGEQ(1/Q)=0.85) is obtained at the Colorado River at Palos —basin
(ii) in Figures 5.4 and 5.7 —, but the average seasonality differs (see Figure 5.4), being
both incorrect according to the reference dataset. In Allipén in Los Laureles —basin (iv)
in Figures 5.4 and 5.7 —, despite the two OFs yield a similar streamflow performance
during the calibration period (KGEQ(Q)=0.8, KGEQ(1/Q)=0.88, KGEQ&ET(Q)=0.73,
KGEQ(1/Q)=0.9), opposite annual cycles are obtained for ET (maximum ET values in
winter and spring vs. maximum ET values in summer for OFQ and OFQ&ET, respectively).
In the rest of the basins shown in Figures 5.4 —basins (i), (iii), and (v) —, similar Q and
ET seasonalities are achieved.

It could be hypothesized that this is the result of model internal flux equifinality
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Q and (b) ET are significantly different (based on Kolmogorov-Smirnov tests) between
OFQ and OFQ & ET.

(K. Beven & Binley, 1992; Khatami et al., 2019). In VIC, bare soil evaporation and
vegetation transpiration depend on the water stored in the different soil layers, and R
and B fluxes contribute to Q. Then, different “R/B” ratios (in the case of VIC) can yield
similar Q time series (as illustrated for the Caut́ın at Cajón river basin in Figure 5.9a and
b), due to flux equifinality, as shown by Khatami et al. (2019). More generally, hydrologic
models hide an interplay between infiltration, percolation, and water release from different
soil layers that will affect soil storage and, therefore water supply for ET. The results of
this study illustrate an extreme case of flux equifinality that should be properly diagnosed
in order to identify potential errors in forcing data and/or model structure.

5.6.2 On the need to verify annual cycles

Despite the myriad of existing calibration and evaluation approaches that aim to increase
model fidelity and/or maintain model performance under changing conditions, no spe-
cific requirements (e.g., a minimum performance metric threshold or the evaluation of
particular hydrological variables beyond streamflow) have been - to the best of the au-
thor’s knowledge - proposed to accept a model as “good”. However, the extreme cases of
flux equifinality that affect ET simulations in some basins show that replicating annual
cycles of Q does not warrant realistic catchment-scale water balance portrayals. In this
regard, the results of this chapter show that the use of an ET reference dataset for model
evaluation is critical to identify model parameter sets that (could) provide inconsistent
behaviors. Furthermore, complementing the verification of model simulations using visual
inspection or ad-hoc metrics may be necessary since relying on overall performance metric
(and their optimization) could be misleading and not necessarily improve model fidelity
(Clark et al., 2021; Cinkus et al., 2023; Jiménez-Navarro et al., 2024).
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5.6.3 Effects on hydrological projections

In this study, two parameter sets with similar streamflow responses are selected, each
obtained from maximizing different objective functions. These parameter sets project
different Q and ET annual cycles for the same GCM (Figure 5.7), affecting any subsequent
analysis. Despite the use of six GCMs that provide different climate projections, the mean
monthly Q and ET change patterns (Figure 5.7) are mostly controlled by the inclusion
of ET in the OF for all GCMs. Further, including ET in the OF could also affect the
relative importance of different fluxes contributing to streamflow (Figures 5.9a and b),
though this could also occur for streamflow-based calibration due to flux equifinality
(Khatami et al., 2019; Jiménez-Navarro et al., 2024). Finally, the choice of OF arises
as the most relevant decision when analyzing projected changes in B contributions to Q
for 50 basins, mostly located in the humid area between 35°S and 43°S. In this regard,
most of the basins have maximum Q-values in winter (the rainiest season in this part of
the domain). However, in this area, ET maximum values occur in summer (according to
the MOD16 ET product; section C). Hence, the partition of precipitation should suffice
maximum Q values in winter and maximum ET values in summer. Thus, when only Q is
included in the objective function to derive the model parameters, the Q-ET decoupled
average seasonalities impose time-delay requirements to the model not included in the
calibration. Consequently, verifying the ET average cycle in basins with decoupled Q-ET
seasonalities could be relevant for hydrological modeling and climate change assessment
(Figure C.2).
It is worth noting that parameter equifinality arises regardless of the variable included in
the calibration process. However, this study suggests that verifying the catchment-scale
water balance seasonality may be as relevant as the choice of GCM, which is usually one of
the main sources of dispersion in hydrological projections (e.g., Hattermann et al., 2018;
Chegwidden et al., 2019).

5.6.4 The particular case of continental Chile

Many previous studies have produced hydrological projections for different basins in conti-
nental Chile, considering different greenhouse gas emission scenarios, GCMs, hydrological
model structures, and parameter estimation methods. Therefore, any comparison with
the results presented here should be made cautiously. Vicuña et al. (2011) calibrated the
Water Evaluation and Planning System (WEAP; Yates et al., 2005) model to estimate
hydrological changes in the Limaŕı River basin (31°S), obtaining a decrease in mean an-
nual streamflow ranging between -16.6% and -23.5% for scenario B2 and -21% and -41.5%
for scenario A2. In this chapter are obtained, for the same latitude, positive and nega-
tive projected changes in total runoff, following the mixed projected changes in annual
precipitation, although the lowest values of the results presented in this study project a
30% decrease in total annual runoff for the same area. However, for winter and summer
streamflow, the results of this work align with Vicuña et al. (2011), projecting a shift in
hydrological regime from snowmelt-driven to mixed regime, with an increase in rainfall
contributions to runoff. (Demaria et al., 2013) calibrated the VIC model to estimate
projected changes in extreme runoff under CMIP3 and CMIP5 models for the Mataquito
River basin (35.5°S). They projected precipitation changes of -7% and -20% (depending
on the CMIP considered) by the end of the century, whereas the results of this study
project (under scenario SSP5-8.5) a decrease in mean annual precipitation between -40%
and -20%, although one GCM (KIOST-ESM) projects an increase up to 20%. Bozkurt
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et al. (2018) used the VIC model to produce hydrological projections for basins between
34°S and 37°S under scenarios RCP2.6 and RCP8.5. Under the latter scenario —the most
similar to SSP5-8.5, used in this study —the results shown in this chapter align well with
Bozkurt et al. (2018), projecting a median decrease of -40% in annual total runoff for the
area, although the projected changes in monthly Q and (particularly) ET differ. Aguayo
et al. (2019) calibrated the WEAP model (using streamflow-only metrics) in basins lo-
cated between 41°S and 42°S (Puelo River Basin). They projected an increase in winter
total runoff (JJA) and a decrease in summer total runoff under the RCP8.5 scenario,
whereas the results of this chapter suggest that streamflow will decrease in all seasons
and that winter ET is projected to increase in basins around 42°S.

5.6.5 Limitations

In this study, only one hydrological model structure and two parameter sets are used,
one parameter for each OF. Further, only the SSP5-8.5 scenario is considered for hydro-
climatic projectionsthough more scenarios could be included to complement the analyses
presented here. Because previous studies have shown that GCMs are among the main
contributors to the spread of hydroclimatic projections (Addor et al., 2014; Hattermann
et al., 2018; Chegwidden et al., 2019), the analyses presented in this chapter evaluate the
relative importance of the choice of OF compared to the choice of GCM. though more de-
cisions could be included in the ANOVA analysis, such as alternative greenhouse emission
scenarios, hydrological models, OFs, downscaling, and bias correction methods.

5.7 Conclusions

This study evaluates the repercussions on simulated monthly Q and ET averages when
including ET in the calibration, since both control the overall water balance seasonal-
ity. This chapter contributes to the existing literature by demonstrating the added value
of incorporating ET in the evaluation of hydrologic models in order to ensure consis-
tent catchment-scale seasonal water balances. To this end, the VIC hydrologic model is
calibrated with two objective functions (OFQ and OFQ&ET) in 120 basins located in con-
tinental Chile. The parameter sets obtained were used to evaluate the simulated seasonal
water balances and hydrological projections under scenario SSP5-8.5. The main findings
are as follows:

1. Parameter sets that produce similar streamflow responses can differ in their simu-
lated annual cycles of ET. Therefore, accurately simulating runoff seasonality does
not guarantee a reliable seasonal water balance at the catchment scale. In this
context, evaluating ET is crucial for reducing equifinality in the model’s internal
fluxes and state variables, particularly in basins with decoupled Q and ET average
seasonalities. Failing ET simulations (under similar Q model performance) could
lead to different projections of both Q and ET under climate change assessment.
Thus, assessing ET helps detect potential misrepresentations in the seasonal water
balance.

2. Parameter sets with Q simulations but with different ET simulations will lead to
different projected changes in annual, seasonal, and monthly Q and ET. This result

83



is consistent among the GCMs analyzed in this study.

3. Including ET in the OF may become the most relevant decision (compared to the
choice of GCM) when analyzing projected changes in Q and ET at the seasonal and
monthly time scales. Moreover, nearly half of the basins analyzed show differences
in the spatial distribution of projected Q and ET between parameters obtained by
OFQ and OFQ&ET.

4. Although the basins that are sensitive to the inclusion of ET in the OF formulation
are distributed along the study domain, they are highly concentrated in humid
areas, with high annual precipitation amounts and low aridity indices, and decoupled
streamflow and evapotranspiration seasonalities.
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Chapter 6

Concluding remarks

This thesis estimates how key methodological decisions affect historical simulations and
future hydroclimate projections under climate change conditions. First, the role of the
temporal stratification used to apply bias correction methods is explored. Secondly, a
characterization of climate change impacts on precipitation, temperature, snowfall, con-
tributing areas on rainy days, and the projected spatial distribution of Köppen-Geiger
climate classes is provided for continental Chile. Thirdly, this work examined how the
choice of streamflow-based calibration metric and parameter regularized affect the annual
cycles of simulated variables, including evapotranspiration, soil moisture, land surface
temperature, and fractional snow covered area. Finally, it is analyzed to what extent the
exclusion of ET from the calibration process may affect hydrological projections under
climate change scenarios. .

If bias correction is required for climate change impact assessments, two decisions
become relevant: (i) the choice of bias correction method, and (ii) the temporal stratifi-
cation used to apply the bias correction method. The first decision has been identified as
critical because it affects the magnitude and signal of projected changes. Interestingly,
the results and conclusions presented in this thesis stress the need for caution when se-
lecting the temporal stratification, not only because it affects the magnitude and signal of
projected changes, but also because it is critical to replicate historically observed and pro-
jected seasonalities of precipitation and temperature. The assessment of climate change
impacts on water resources usually requires forcing hydrological models with downscaled
and bias-corrected GCM outputs. Hence, the choice of temporal stratification could not
only affect the capability of process-based models to replicate the hydrological regime of
observed records, but also how the hydrological regime could change in the future under
changing forcing conditions. Moreover, such artificial alterations could produce forcing
data that differ from the raw GCM projected changes and seasonalities.

The assessment of climate change for continental Chile considered an ensemble of
30 models, projections under the SSP5-8.5 scenario and a multivariate bias correction
method applied with a monthly temporal stratification. Such configuration was preferred
to replicate the historical seasonality of precipitation and temperature. Furthermore, the
choice of GCM is among the main contributors to the dispersion of hydrological change
projections; hence, a particular assessment of an ensemble of models was conducted to
identify regions of the study domain where high inter-model agreement arises among
model projections. The ensemble of GCMs allowed the examination of the inter-model
agreement on the projections of precipitation, temperature, and snowfall (magnitude and
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signal of projected changes) along continental Chile. The results indicate increments
in projected median changes of 0° C isotherm during rainy days, increasing flood risk.
Despite the dispersion in precipitation and temperature changes obtained with different
GCMs, there is a high inter-model agreement (> 90%) in the projected spatial distribution
of Köppen-Geiger climate classes.

The assessment of hydrological change due to changing climatic conditions is typically
conducted through hydrologic modeling, which, in most cases, requires the calibration of
model parameters. This thesis has shown that a streamflow-based calibration strategy
can miss critical aspects of other hydrological variables than streamflow, affecting model
fidelity and, more critically, the catchment scale water balance. This work also illus-
trates how regularizing different parameters could affect and/or improve the simulated
spatial patterns of different hydrological variables, although such improvements could be
insufficient to adequately represent seasonal water balances. Hydrological models should
be able to adequately simulate fluxes and state variables simultaneously. However, such
an aim is challenged by the scarcity of information, forcing uncertainty, model structure,
and/or parameter errors. In this regard, it could be argued that replicating the basin scale
water balance at the annual and seasonal scales is a minimum requirement for hydrologic
models, particularly when good streamflow simulations do not necessarily translate into
good evapotranspiration simulations due to flux equifinality.

Hydrological projections are provided for 120 basins in near-natural regimes across
continental Chile. To this end, the VIC model was calibrated with two objective func-
tions: (i) using a traditional streamflow-based calibration metric and (ii) using a metric
that incorporates streamflow and evapotranspiration. The projected change in annual
streamflow follows, in general, the latitudinal pattern obtained for annual precipitation
changes. Further, the most drastic reductions (under scenario SSP5-8.5) are expected
in central and southern Chile (33°S-45°S), although a higher spread in the magnitude of
projected changes is obtained for hydrological projections compared to changes in an-
nual precipitation. Interestingly, the annual evapotranspiration is expected to increase
in regions south of 37°S. The choice of the objective function and, more critically, the
ability of the model to replicate the seasonal water balance play a key role in hydrological
projections, even for equifinal parameter sets (from a streamflow point of view) at the
annual, seasonal, and monthly temporal scales. Moreover, it can also affect the spatial
distribution of projected runoff and evapotranspiration changes.

This thesis aligns with previous work emphasizing the role of process-based hydrologic
model evaluation (e.g., M. C. Demirel et al., 2018; Dembélé, Ceperley, et al., 2020; Clark
et al., 2016, 2021; Cinkus et al., 2023; Jiménez-Navarro et al., 2024; Pool et al., 2024;
M. C. Demirel et al., 2024), identifying severe pitfalls in hydrological simulations and
the application of bias correction methods, affecting hydrological change assessments.
Finally, this work expands previous knowledge focused on improving model fidelity and
the impacts of methodological decisions on the simulated hydrology of catchments in
continental Chile.

In summary, this thesis emphasizes two key aspects: (i) the importance of temporal
stratification in applying bias correction methods, which aids in replicating reference pre-
cipitation seasonality but may distort projected seasonal patterns, and (ii) the necessity of
verifying the seasonality of the simulated water balance. Both factors significantly influ-
ence the historical and future projected changes in both signal and magnitude, ultimately
impacting the outcomes of climate change assessments.
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Veloso-Aguila, D. (2020, 1). The Central Chile Mega Drought (2010–2018): A
climate dynamics perspective. International Journal of Climatology , 40 (1), 421–
439. doi: 10.1002/joc.6219

Gateño, F., Mendoza, P. A., Vásquez, N., Lagos-Zúñiga, M., Jiménez, H., Jerez, C.,
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Annex A

The key role of temporal
stratification for GCM bias
correction in climate impact
assessments

A.1 Selected GCMs

Table A.1 shows the GCMs included in this study.

A.2 Remaining biases after bias correction

Figures A.1 to A.8 display the remaining bias of each climate index disaggregated by
BCM. When not shown, the unit of the bias corresponds to the difference between the
bias-corrected GCM and the reference (XGCM −Xref ).
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Table A.1: GCMs considered in this study

GCM ∆lat ∆lon Institution
ACCESS-CM2 1.25 1.88

Australian Research Council Centre of Excellence for Climate Science, Australia.
ACCESS-ESM1-5 1.25 1.88
BCC-CSM2-MR 1.11 1.13 Beijing Climate Center, China.
CanESM5 2.77 2.81 Canadian Centre for Climate Modelling and Analysis, Canada.
CMCC-ESM2 0.94 1.25 Euro-Mediterranean Centre on Climate Change Coupled Climate Model, Italy.
CNRM-CM6-1-HR 0.50 0.50

Centre National de Recherches Météorologiques (CNRM), France.CNRM-CM6-1 1.40 1.40
CNRM-ESM2-1 1.40 1.41
E3SM-1-0 1.00 1.00 Lawrence Livermore National Laboratory, USA.
EC-Earth3-CC 0.70 0.70

EC-Earth Consortium, Europe.
EC-Earth3-Veg-LR 1.12 1.13
EC-Earth3-Veg 0.70 0.70
EC-Earth3 0.70 0.70
FGOALS-g3 2.18 2.00 Chinese Academy of Sciences Flexible Global Ocean-Atmosphere-Land System Model, China.
GFDL-CM4 1.00 1.25

Geophysical Fluid Dynamics Laboratory, USA.
GFDL-ESM4 1.00 1.25
INM-CM4-8 1.50 2.00

Institute for Numerical Mathematics, Russia.
INM-CM5-0 1.50 2.00
IPSL-CM6A-LR 1.27 2.50 Institute Pierre Simon Laplace (IPSL), France.
KACE-1-0-G 1.25 1.88 National Institute of Meteorological Sciences (NIMS) and Korea Meteorological Administration (KMA), South Korea.
KIOST-ESM 1.88 1.88 Korea Institute of Ocean Science and Technology Earth System Model and Its Simulation Characteristics, South Korea.
MIROC-ES2L 2.79 2.81

Japan Agency for Marina-Earth Science and Technology (JAMSTEC), Japan.
MIROC6 1.39 1.41
MPI-ESM1-2-HR 0.93 0.94

Max Planck Institute for Meteorology (MPI-M), Germany.
MPI-ESM1-2-LR 1.87 1.88
MRI-ESM2-0 1.11 1.13 Meteorological Research Institute, Japan.
NESM3 1.85 1.88 Nanjing University of Information Science and Technology Earth System Model, China.
NorESM2-MM 0.94 1.25 NorESM Climate modeling Consortium, Oslo, Norway.
TaiESM1 0.94 1.25 Research Center for Environmental Changes, Academia Sinica, Nankang, Taipei, Taiwan.

Temporal stratification

Tem
poral scale

Figure A.1: Remaining biases after bias correction for precipitation at different time scales.
Different columns represent different temporal stratifications. Values are disaggregated
by bias correction method. The dispersion within each boxplot derives from 29 GCMs
and 1000 grid cells.
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Figure A.2: Same as in Fig. A.1, but for temperature.

Temporal stratification

Tem
poral scale

Figure A.3: Same as in Fig. A.1, but for diurnal temperature range.
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Figure A.4: Same as in Fig. A.1, but for highest 1% daily precipitation.

Temporal stratification

Tem
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Figure A.5: Same as in Fig. A.1, but for dry-spell length.
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Figure A.6: Same as in Fig. A.1, but for wet-spell length.
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Wet-day fraction

Figure A.7: Same as in Fig. A.1, but for wet-day fraction.
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Temporal stratification

Tem
poral scale

Figure A.8: Same as in Fig. A.1, but for snowfall.

A.3 Precipitation dismissed by bias-correcting the

wet-day fraction

Figure A.9 shows the fraction of raw GCM precipitation dismissed (pr< τ ; median among
models) when the wet-day fraction is bias-correct firstly.

A.4 Relative importance of the choice of Bias Cor-

rection Method and Temporal Stratification

Figure A.10 shows the relative importance of the bias correction method (BCM) and the
temporal stratification to explain the variance of errors in bias-corrected climate indices
during the historical period for Continental Chile, based on ANOVA analysis. The Total
Variance (TV) is formulated as TV = BCM+TS+Residuals. Results from the ANOVA
analysis (BCM/TV , TS/TV , and Residuals/TV ) are computed for each grid cell and
GCM and subsequently averaged for continental Chile.

A.5 Scaling factor example

We illustrate the effects of the temporal stratification by applying the linear scaling
method (LSM) (Maraun et al., 2010) for one grid cell-GCM combination. Figure A.11a
shows monthly precipitation averages from raw GCM outputs, whereas Figure A.11b-d
shows the bias-corrected GCM values for three different temporal stratifications. Monthly
values were obtained from the daily corrected time series.
Note that when the entire period is used to bias-correct the GCM, only one factor is ap-
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Figure A.9: Amount of precipitation dismissed to adjust the number of rainy days. Annual
corresponds to the entire period temporal stratification, DJF, MAM, JJA and SON to
a seasonal temporal stratification, while each month corresponds to a monthly temporal
stratification.

plied. In the grid cell analyzed, the reference annual precipitation is 4,371 mm/yr, which
is below the historical raw GCM amount for the same period (5,020 mm/yr). Hence, the
raw GCM precipitation time series is multiplied by the factor f = 4731/5020 = 0.87,
which removes the annual SDBC bias; nevertheless, monthly SDBC-biases persist (see
differences between black and blue lines in Figure A.11b). When the LSM is applied
seasonally, four factors are used to multiply the raw GCM time series. For example, daily
values from March, April, and May are bias-corrected by the seasonal factor obtained
from the reference (1134 mm/season) and the raw GCM (1498 mm/season) precipitation
amounts. In this case, the factor used to bias-correct daily precipitation from March,
April, and May is fMAM = 1134/1498 = 0.76. Similarly, if the LSM is applied monthly,
daily precipitation amounts from March are bias-corrected using the reference (374 mm/-
month) and raw GCM (498 mm/month), which yields a factor f = 374/498 = 0.75. For
the monthly TS, the black and blue lines are the same. Note that the projected max-
imum monthly precipitation is October for the three TS, which is the same as the raw
GCM projection. However, the projected minimum monthly precipitation is September,
March, and March for the entire period, season, and monthly application of the LSM,
respectively.
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Figure A.10: Relative importance (averaged across all grid cells and GCMs) of the bias
correction method and the temporal stratification to explain the dispersion of biases with
respect to the reference dataset at the annual, seasonal (DJF and JJA), and monthly
(January and July) time scales during the historical period (1980-2014). Results are
stratified according to the historical raw GCM performance (measured by the TSS; x-axis).
Biases are computed after applying the BCMs, and results are displayed for temperature
(T), diurnal temperature range (DTR), precipitation (P), coefficient of variation of inter-
annual precipitation (c.o.v. P), highest 1% daily precipitation amount (P-1%), dry spell
length (DSL), wet spell length (WSL) and snowfall fraction (SF).
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Figure A.11: Illustration of the linear scaling method, applied to one grid cell-GCM
combination, and its effects on the SDBC-biases and projections. (a) Reference (obser-
vational) and raw GCM seasonality during the period 1980-2014 (black and blue lines).
The projected raw seasonality is also shown in red (2065-2099). (b), (c) and (d) show
the bias-corrected precipitation amounts using the entire period, seasons, and months,
respectively, for temporal stratification. The reference value is shown in all panels for
completeness, and the shaded areas represent the temporal stratification.
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Annex B

Principal component analysis to
spatially distribute model
parameters

To derive a priori parameters, we conduct a Principal Component Analysis between (i)
elevation, (ii) slope, (iii) clay and sand contents, and (iv) bulk density. Figure B.1a
illustrates the fraction of the total variance explained by each component, while Figure
B.1b contrasts the PC1 against the attributes.
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Figure B.1: Principal component analysis to derive a priori parameters. a) Fraction
of total variance explained by each component. b) Relationship between PC1 and the
attributes. Each dot represents a grid cell (0.05° horizontal resolution).
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Annex C

Q-ET seasonality index

This section explores why the choice of the objective function — whether to include Q
or Q+ET – is, in general, the most critical decision in the wettest part of the domain
explaining the dispersion of simulated hydrological changes. Since “good” Q simulation
does not translate into “good” ET simulations, the seasonality of the water balance at
the catchment scale could be poorly simulated, impacting hydrological projections under
different conditions. In this regard, reasonably simulating Q and ET average seasonalities
is, arguably, a minimum requirement for hydrological simulations.
In the wettest part of the domain, most of the basins considered in this study are rainfall-
dominated, i.e., most of the runoff occurs during winter, while the maximum ET values
are in summer. This requires the model to partition the precipitation into P and ET for
two different periods. To test if this is the case for the basins of this work (i.e., Q and
ET maximum values in different seasons or months), the precipitation seasonality index
(δ∗P Woods, 2009) is applied to Q and ET seasonality (δ∗Q−ET ). Figure C.1 illustrates
the Q-ET seasonality index for two cases. Similar to δ∗P , positive values indicate Q and
ET seasonalities coupled (Figure C.1a), while negative values indicate decoupled and ET
seasonalities (Figure C.1b).

Day of the year (1-365)

m
m
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th
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𝛿!"#$∗ ≈ 1 𝛿!"#$∗ ≈ −1

Q and ET seasonalities
are “coupled”

Q and ET seasonalities
are “decoupled”

Q
ET

Q
ET

Figure C.1: Scheme with the Q-ET seasonality index for two basins with different stream-
flow average seasonalities.

To verify if the inclusion of Q or Q+ET in the objective function is more relevant in
basins with negative δ∗Q−ET values, Figure C.2 displays the most relevant decision (choice
of GCM or inclusion of Q or Q+ET in the OF) explaining the dispersion of projected
hydrological changes. Overall, most of the basins where including Q or Q+ET in the
OF is the most relevant decision (compared to the choice of GCM) have negative Q-ET
seasonality index values (i.e., decoupled Q and ET seasonalities).
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Figure C.2: Most relevant decision (color) explaining the dispersion of projected changes
in ET (panel b) and ET (panel c) at the annual and seasonal time scales. The Q-ET
seasonality index (x-axis) is computed as in Woods (2009) for observed runoff and MOD16
ET annual cycles. To reduce the effect of biases in MOD16 ET values, both Q and ET are
normalized as X’=(X-Xmin)/(Xmax - Xmin) before computing the Q-ET seasonality index.
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