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Resumen

Las Qúımicas Algebraicas son una modelo abstracto para la bioqúımica. Una Qúımica Al-
gebráica se compone de una red de reacciones moleculares, prescindiendo de una dinámica
que permita estudiar su evolucion, pues el modelo se enfoca en como las moleculas pueden ser
producidas o consumidas por las reacciones. Se ha probado que un tipo especial de subredes,
llamadas organisaciones, son las unicas subredes que pueden tener estabilidad dinamica, una
vez que es incorporada una dinamica en el modelo. Este hecho permite simplificar la com-
prension de la dinamica de los sistemas bioqúımicos, dado que permite explicar la dinamica
del sistema como movimientos entre organisaciones en el espacio de fase. De aqúı que el
computo del conjunto de organizaciones de una Qúımica Algebráica es una tarea central en
la teoŕıa.
Al momento no han hay suficientemente buenos algoŕıtmos para computar organisaciones, ni
hay una comprensión de la estructura que subyace en la definición de organizacion (tal vez es
esto es la razon de lo anterior). Esta tesis es un intento por formalizar el trabajo algoŕıtmico
en Qúımicas Algebráicas. Dicha formalizacion busca una fertilizacion cruzada entre modelos
de Ciencias de la computacón y Qúımicas Alegebráicas.
Es posible enmarcar las Qúımicas Algebráicas en algunos conocidos formalismos de la Ciencia
de la computación como Sistemas de Adición de Vectores y Redes de Petri. Se investiga la
equivalencia entre los formalismos mencionados y las Qúımicas Algebráicas. Luego algunos
conocidos problemas de los Sistemas de Adición de Vectores y Redes de Petri tales como
reachability, liveness, etc., son estudiados desde la perspectiva de las Qúımicas Algebŕıcas,
enfocando el análisis a la relacion de dichos problemas con el problema de computar organi-
zaciones. De las ideas que surgen del anterior analisis, se hace posible el desarrollo de varios
resultados sobre el computo de organizaciones, asi como sobre la estructura del conjunto total
de organizaciones de una Qúımica Algebŕıca. Un teorema de descomponer una organizacion,
en subsistemas mas simples, y sus implicaciones son derivados (Teorema 14, Corolario 25,
Corollary 26) como los resultados mas importantes de esta tesis. Los resultados de este tra-
bajo hacen posible el desarrollo de nuevos y mas eficientes algoritmos para el cómputo de
organizaciones y permite separar diferentes clases de Qúımicas Algebráicas en terminos de la
dificultad de computar su conjunto de organizaciones (ver Figura 9.1).
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Summary

Algebraic Chemistry (AC) is an abstract bio-chemical model. An AC consists of a reaction
network, but neglects the dynamical evolution, by only focusing on how the reactions pro-
duce and consume molecules. It has been proved that some special subnetworks, the so-called
organisations, are the only possible subnetworks which can be dynamically stable, once dy-
namical evolution is considered. This fact provides a simplification in the understanding of
the dynamics of bio-chemical systems, because it is possible to explain the evolution of a bio-
chemical system as movement between organisations in the phase space. Then computing
the set of organisations is a central task in AC.
There are not good enough algorithms to compute organisations, perhaps because there is
not good enough understanding of the underlying structure of organisations. This thesis is
an attempt to formalize the algorithmic work in Algebraic chemistry. This formalization
pursues the cross-fertilization between computer science models and Algebraic chemistry.
It is possible to frame the AC in well-known concurrent processing formalisms such as Vec-
tor Addition Systems and Petri Nets. We state the equivalence between these formalisms
and AC. We explore some well-known problems of Vector Addition Systems and Petri Nets,
such as reachability, liveness, etc., from the perspective of AC, by explaining the relation
between these properties and organisations. From the insights which have arose from those
exploration, we developed several results about the computation of organisations, as well
as about the structure of the set of organisations of an AC. A decomposition theorem for
organizations and its implications (Theorem 14, Corollary 25, Corollary 26) are the most
important results of this work. The results of this work makes possible the development of
new and more efficient algorithms to compute the organisations of an AC and also makes
possible to separate different classes of AC in terms of how complicated is compute their set
of organisations (see Figure 9.1).
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Chapter 1

Introduction

One of the main driving forces of science is the quest for understanding the origin and nature
of life.
Artificial Life is developing models to simulate and predict the behaviour of living systems,
such as organisms, systems of organisms (colonies) and societies (systems of colonies) from
an abstract point of view. Abstract models that could explain the origin of evolutionary
systems would allow to investigate the theoretical conditions of the origin and evolution of
life. One of those abstract models is called Reaction Network System (RNS), developed to
deal with chemical reaction systems. A RNS consists of objects, and interaction rules among
objects that lead to the appearance or disappearance of other objects.
RNS are not used only to model chemical phenomena. Their applications range from ecology,
proto-biology, systems biology, bioinformatics to computer science and have reached even the
study of language and social systems (see [14]). All these refers to the same concept: objects,
that through the reaction laws generate other objects.
There is an interesting approach to RNS called Algebraic Chemistry (AC), developed by
Peter Dittrich and Speroni di Fenizio [14]. An AC consists of a chemical reaction network.
Quite differently to classical approaches to RNS, AC does not include explicitely the chemical
dynamics, i.e deterministic or probabilistic evolution rules following a discrete or continuous
schema. Instead, AC focuses on the possible ways to produce and consume the molecules
in the network. Hence the study of AC pursues the understanding of properties that sub-
networks, i.e subsets of molecules and the subset of rules in which the considered subset of
molecules participate, can have.
Dittrich et al. in their seminal paper [14] define an organization as a special kind of subnet-
work which is able to maintain completely its structure in the reaction network. They also
shows how to decompose the AC in a hierarchy of organizations. Furthermore, they show
that if a chemical dynamics is incorporated to the system (to perform simulations), the hier-
archy of organizations represents all feasible system states including all steady states of the
network. Then, the relevancy of AC is that it represents the required input data structure,
from where to derive the long-term behaviour of the RNS.
AC gives an interesting insight, from the computational point of view, to the search of stable
molecules of bio-chemical systems, such as immunity systems or metabolism of the first pro-
caryotes cells (beginning of life), because provides a tool which would avoid the combinatorial
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explosion of possible stable molecules in a RNS [10].

Experiments are performed in AC by computer simulation, but still there are not enough
advances in this field. In fact, Diettrich and Di Fenizio [14] write: Identifying the com-
putational complexity of algorithms able to find all organizations would be highly desirable.
Especially it would be interesting to know, which kind of networks can be analyzed with con-
temporary computers. Developing efficient algorithms for computing or approximating the
set of organizations and estimating the computational complexity of these algorithms is a
separate research topic for the future.

This work lays its foundation based on this idea. It is interesting to note that properties
defined in AC can be reformulated in several other formalisms, for example Vector Addition
Systems and Petri Nets. Vector Addition System and Petri Nets (in short VAS and PN
respectively) are models to study parallel and concurrent processing. It is proved that VAS
are equivalent to Petri Nets and to other formalisms to study concurrent computation [13].
Algorithmic work and complexity results in concurrent computation have been widely stud-
ied since the later sixties [24, 37, 21, 27, 19, 1, 16, 15].
Considering these developments, this thesis arises from the natural idea of making a cross-
fertilization between AC’s, VAS and PN: First, by framing the AC’s in a well known computer
science formalism, and second, giving new insights to VAS and PN from the questions which
arise from AC’s. This work leads to a better understanding of the AC’s from the com-
putational point of view, and would provide a new conceptual framework for studying the
complexity of some important problems of theoretical computing which are postulated in VAS
and PN framework such as reachability, boundedness, liveness, etc. The usage of Petri Nets
in bio-chemical formalisms has been proposed in the past [3, 4, 43, 44], but the AC formalism
has never been approached from the point of view of concurrent computation. Thus we focus
in what is more distinctive on AC theory with respect to the other bio-chemical approaches,
this is, the study of organisations. This work deals with algorithmic and structural results
about the process of compute the organisations of a reaction netowrk. This work is orga-
nized in two parts: In the first part it is presented the preliminaries of Algebraic chemistry
are presented as well as an explanation of the most interesting properties with illustrative
examples, to provide the linkage of AC properties with respect to the dynamics of the sys-
tem. Finally in the first part is reviewed the current work in organisation computation. The
second part deals with a discretization of AC. From this discretization, the AC formalism
is framed in VAS and Petri Nets. Then, a detailed analysis on the relation between Petri
Nets properties and organisations in AC is done. The insights of these analysis are used to
develop several new algorithmic and structural results of organisations: It is introduced the
notion of role of a molecule inside the reaction network, from this notion it is possible to
decompose an organization into several subnetworks where some molecules act as borders of
those subnetworks. Then the verification of the organization property can be decomposed
into several smaller verifications (see Theorem 14 and Corollary 26).
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Part I

Algebraic chemistries formalism
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Introduction

Algebraic Chemistry (AC) arise from the necessity to develop a formal framework of or-
ganizations of living systems and chemical reactions. Its motivation is encountered in the
understanding of the evolution of organisms, from the metabolic process they are (and they
are not) able to accomplish. From the thermodynamics it is well-known that the long-term
behaviour of a system1 is explained as a movement between steady states triggered by ex-
ternal perturbations in the phase space. From the point of view of computation, contrary
to dynamical approaches such as the evolution of the system in the time leaded by a set
of rules (discrete, probabilistic or continuous), Algebraic chemistry pursue to capture the
essence of the dynamics understanding which states would compose the steady states, and
how should be the perturbations to move from one steady state to the other. We are going
to prove later that the set of molecules corresponding to any fixed point of the dynamics
of a system has to fulfill some special properties: First, closure, which means that no novel
species will be produced by the set, and self-maintainability, which means that the set is
capable to self-maintain its structure by firing the reactions. We call such sets organisations,
they are the only candidates to be fixed point in the dynamics. So, instead of simulating
blindly the dynamics of the system, it is possible to evolve only the organisations to under-
stand which organisations correspond to fixed points and which perturbations make evolve
one organisation to the other. Chemical organsations theory has been applied succesfully in
several biochemical networks [11, 34, 35].

Algebraic chemistry have been applied to several other areas. For example, Dittrich et al.
have shown in [32, 33] how the chemical organization theory can help in designing and under-
standing chemical computing systems. The result of a computation appears as an emergent
global behavior based on local reaction rules. After providing a recipe for mapping logic
circuits to chemical reaction rules, they discussed reaction networks implementing various
logic circuits (an XOR, a flip-flop, and a controllable oscillator). In the field of P-systems
it has been found by Stephan Peter, Peter Dittrich and the author that organisations and
membranes act as complementary principles to explain the gainance or breakdown of stability
in chemical systems [42].

In this part of the thesis we introduce the Algebraic Chemistry formalism. In Chapter 2,
following [14], we present the basic definitions of AC. In Chapter 3 we present the current
state of algorithms for study the AC. Several examples are presented to illustrate the concepts
and help the understanding of the reader.

1A dissipative system.
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Chapter 2

Algebraic Chemistry: Preliminaries

2.1 Basic definitions

Let M be a finite set of molecules and R ⊆ PM(M)× PM(M) a set of reactions occurring
among the molecular species inM (we also call it the rules set1), where PM(X) is the set of
all multisets formed by elements of the set X. We will denote the reaction R = (A,B) in R
as R = A→ B.

Definition 1 (Algebraic Chemistry) An Algebraic Chemistry is a pair 〈M,R〉.

A multiset H ∈ PM(M) will be denoted by H = h1m1 + · · · + hnm|M|, where hj denotes
the multiplicity of each molecular specie mj, j = 1, ..., |M|. We say that the multiplicity
(or amount) of a given molecule mi ∈ M in the multiset H (which corresponds to hi) is
denoted by A(H,mi). We say a molecule mi ∈M is present in the multiset H if and only if
its multiplicity A(H,mi) > 0. Given a reaction R = A → B we say that molecules m ∈ M
which are present in A are the reactants and molecules m ∈ M which are present in B are
the products of the reaction R.
We say that a reaction R = (A → B) ∈ R can be fired by a set X ⊆ M iff the molecules
present in A are in X. A molecule m ∈ M is produced within a set X ⊆ M, if there exists
a reaction (A → B) ∈ R which can be fired by X and A(A,m) < A(B,m). Conversely, a
molecule m ∈ M is consumed within a set X ⊆ M, if there exists a reaction (A→ B) ∈ R
which can be fired by X and A(A,m) > A(B,m). From now on, let R = {R1, ..., Rk},
where Ri = Ai → Bi, i = 1, ..., k and M = {m1, . . .,mn}. We define the stoichiometric
matrix S = (sij) as the n × k matrix associated to the algebraic chemistry 〈M,R〉, where
sij = A(Bj,mi) −A(Aj,mi). sij represents the amount of molecular species of the type mi

produced by reaction Rj (sij is negative if molecule mi is consumed by reaction Rj) within
the set M.
We now need to define how the reactions take place in the AC.
We define the flux vector v = (v1, ..., vk) ∈ Rk

+, where R+ denotes the set of non negative real

1They are called reactions in a chemical context and rules in computational context.
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numbers. The flux vector v represents the rate of the reaction Ri in the network. Then, the
application of the stoichiometric matrix S over the flux vector v, represent a reaction process
in the network such that the rate of the reaction Ri is vi for i = 1, ..., k.
Finally, we define the production rate fi =

∑k
j=1 sijvj of every molecule mi, i = 1, . . ., n,

which represents the increase (fi > 0), decrease (fi < 0) or conservation (fi = 0) of the
total amount of the molecular species mi in the reaction process specified by v and S. The
production rate vector is defined by f = (f1, . . ., fn).

Summary of definitions:

1. M = {m1, ...,mn} set of molecules.

2. R = {A1 → B1, ..., Ak → Bk} set of reactions.

3. A(H,mj) the amount of molecular species mj in the multiset H.

4. Present: mi ∈M is present in the multiset H iff A(H,m) > 0.

5. Reactant and Product: The reactants (respectively products) of a reaction A→ B are
the molecules present in A (respectively B).

6. Fireable: A reaction R = A→ B can be fired by a set X iff every molecule present in
A is in X.

7. Produced and Consumed: A molecule mi is produced (respectively consumed) by a
set X ⊆ M iff there exist a reaction A → B ∈ R which can be fired by X and
A(A,mi) < A(B,mi) (respectively A(A,mi) > A(B,mi)).

8. Stoichiometric matrix: S = (sij) = A(Bj,mi)−A(Aj,mi), i = 1, ...n, j = 1, ..., k.

9. Flux vector: The flux vector v ∈ Rk
+ represents the rate of the reaction Ri in the

network.

10. Production rate vector: f = Sv.

We are going to show the concepts defined in this section in an example

Example 1. Let M = {s1, s2, s3}, R = {Ri s.t Ri = Ai → Bi, 1 ≤ i ≤ 4} where

R1 = 2s1 → s2, R2 = 2s2 → s2 + s3, R3 = s3 → ∅, R4 = s2 + 2s3 → 4s1.

From the algebraic chemistry stated above, the following statements are given to illustrate
the concepts defined in this section.

• A(A1, s1) = 2, A(A1, s2) = 0, A(A1, s3) = 0.
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Figure 2.1: The algebraic chemistry of Example 1

• The only molecule present in A1 is s1. Molecules s2 and s3 are present in B2.

• The reactants of R4 are s2 and s3, the only reactant of R2 is s2. The products of R2

are s2 and s3 and reaction R3 has no products.

• Reaction R4 can be fired neither by set {s1, s2} nor by {s1, s3}, but R4 can be fired by
{s2, s3}.

• s2 is produced by R1, consumed by R4 and is not consumed nor produced by R3.

• The stoichiometric matrix associated of 〈M,R〉 is

S =

 −2 0 0 4
1 −1 0 −1
0 1 −1 −2


• Applying the flux vector v1 = (2, 1, 1, 1) and v2 = (1, 2, 1, 1)to the stoichiometric

matrix of 〈M,R〉 we obtain the production rate Sv1 = f1 = (0, 0,−2) and Sv2 = f2 =
(2,−2,−1) respectively.

2.2 Properties of subsets of M

Given the AC 〈M,R〉, there are some interesting properties which the subsets of M can
hold. We are going to define those properties in this section.

Definition 2 (Firable reaction set) Let 〈M,R〉 be an AC and Y ⊆ M. Let RY be
composed by the reactions Ri = Ai → Bi ∈ R such that, if a molecule m ∈ M is present in
Ai, then m ∈ Y. We call RY the possible (or firable) reactions set of Y.

Remark: The application of a flux vector v = (v1, ..., vk) such that vi > 0 only if the reaction
Ri ∈ RY , otherwise vi = 0, to the stoichiometric matrix S, lead to a production rate vector
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f = Sv constrained to the algebraic chemistry 〈Y ,RY〉. This is equivalent to apply a reduced
flux vector v̄ ∈ Rl where l = |Y| to a reduced stoichiometric matrix SY implied only by the
firable reaction set of Y . In order to avoid introducing extra notation we define:

Definition 3 (Flux vector constrained to a set) Let Y ⊆ M. v = (v1, ..., vk) is con-
strained to Y if and only if Ri ∈ RY implies vi > 0 and Ri /∈ RY implies vi = 0.

We now introduce the notions of production and consumption of molecules in the reaction
process specified by a flux vector in a given stoichiometric matrix.

Definition 4 (Produced-consumed set) Let Y ⊆M and v = (v1, ..., vk) constrained to
Y. Let

P v
Y = {mi ∈M such that fi > 0},

Cv
Y = {mi ∈ Y such that fi < 0}.

P v
Y is called the produced set of v, Cv

Y is called the consumed set of v. Furthermore we define
the hold set as Hv

Y = Y − (Cv
Y ∪ P v

Y ).

Remark: In the reactions process new molecules can be added, existing molecules can be
eliminated and the rest of the existing molecules are hold in the network. Therefore, the
reaction process specified by a flux vector v potentially lead to a new set of molecules.
Remark: Note that molecules can be reactant and product simultaneously in the reactions,
for example the reaction a + b → 2a the molecule a is reactant and product, but a ∈ P (1)

{a,b}
because the total production of a is positive. Then for every flux vector we have Cv

Y∩P v
Y = ∅.

Definition 5 (Steady state set) Let 〈M,R〉 be an AC, Y ⊆ M and v be a flux vector
constraied to Y. We define the steady state set of Y induced from v by Yv = (Y −Cv

Y)∪P v
Y .

The steady state set is composed by the molecular species which are conserved or produced
in reaction process of the network specified by the flux vector v. We now introduce the most
important properties in AC, these notions refers to the stability that a set of molecules can
have in the reaction process.

Definition 6 (Closed set) Let 〈M,R〉 be an AC and Y ⊆M. We say Y is closed if and
only if for every Ri = (Ai → Bi) ∈ RY , all the products of Ri belong to Y.

Definition 7 (Semi-self-maintaining set) Let 〈M,R〉 be an AC and Y ⊆ M. We say
Y is semi-self-maintaining if and only if every molecule m ∈ Y which is consumed within Y
is also produced within Y.

Definition 8 (Self-maintainaning set) Let 〈M,R〉 be an AC and Y ⊆ M. Let S =
(si,j) be the (n × k) stoichiometric matrix implied by the set of reaction rules R. A set of
molecules Y ⊆M is self-maintaining, if and only if there exists a flux vector v = (v1, ..., vk) ∈
Rk

+ constrained to Y such that

f = Sv ≥ 0, or equivalently Y ⊆ Yv (or Cv
Y = ∅).
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Definition 9 ((Semi-)organisation) A set of molecules Y ⊆M is a (semi-)organization
if and only if is closed and (semi-)self-maintaining.

Example 2. Let 〈M,R〉 be an algebraic chemistry where M = {a, b, c, d} and R = {a→
b, 2b+ c→ a, ∅ → c, d→ abcd}. The stoichiometric matrix S in this case is

S =


−1 1 0 1

1 −2 0 1
0 −1 1 1
0 0 0 0

 .

Figure 2.2: The algebraic chemistry of Example 2

• The set {a} is not closed, nor (semi-)self-maintaining.

• The set {d} is self-maintaining, but not closed. The sets {b}, {c} are organization.

• The set {a, b} is closed, but is not (semi-)self-maintaining.

• The set {a, b, c} is a semi-organization, but is not self-maintaining2.

• The set {a, b, c, d} is an organization. The self-mantainance of {a, b, c, d} is verified by
the flux vector v = (1, 1, 1, 1), which gives the production rate f = (1, 0, 1, 0).

2.3 Dynamic analysis

Sections 2.1 and 2.2 deals with molecules M and their reaction rules R, but not with the
evolution of the system in time. We are going to define the dynamics of an AC: In general

2To verify this, it is necessary to construct the system of inequations Sv ≥ 0, with v = (v1, v2, v3, v4),
where vi > 0, i = 1, 2, 3 and v4 = 0. This leads to an unsolvable system of inequations.
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terms, the dynamics is given by a state space X and a formal definition (mathematical or
algorithmic) that describes all possible movements in X only. Given an initial state x0 ∈ X,
the formal definition describes how the state changes over time. We assume a deterministic
dynamical process, which can be formalized by a phase flow (X, (Tt)t∈R) where (Tt)t∈R is a
one-parametric group of transformations from X. Tt(x0) denotes the state at time t of a
system that has been in state x0 at t = 0.

Definition 10 (Reaction vessel) The state x0 of the AC at some time t is called t−reaction
vessel, or simply the reaction vessel.

From now on, we will use the term reaction vessel when we refer to the state of the network
without concerning the time. This will simplify the explanations. In Sections 2.1 and 2.2 we
considered just the presence or absence of molecular species (by choosing a subset Y ⊆ M)
in the reaction vessel, but we did not considered another possible (and highly desirable to
consider for a dynamic analysis) properties of the molecules in the reaction vessel, such as
their concentrations, spatial distributions, velocities, and so on.
We assume in this section the same algebraic chemistry 〈M,R〉 that in previous sections,
the state space X = Rn, x = (x1, ..., xn) is a concentration vector, where xi is a non-negative
function of time and xi(t) denotes the concentration of molecular species mi, i = 1, ..., n, in
the reaction vessel (at time t). The dynamics is given by a system of ordinary differential
equations of the form ẋ = Sv(x) where S is the stoichiometric matrix implied by 〈M,R〉
and v(x) = (v1(x), . . .,vk(x)) ∈ Rk is a vector of non-negative functions3. For j = 1, . . ., k,
the j-th component vj(x) of v(x) describes (as in Section 2.1) the rate of reaction of the
reaction Rj ∈ R, but in this section the flux vector depends on the current concentration x.
For the function vj we require that vj(x) is positive if and only if for every molecule mi ∈M
is hold that if mi is a reactant of the reaction Rj, then mi has a concentration xi > 0 in the
state x. Otherwise vj(x) = 0. We call v(x) the flux vector function.

Example 3. A common way to study the dynamics of real systems is using the law of mass
action kinetics [18, 25]. Suppose we are going to study a real system in which M = {a, b}
and R = {a → b, a + b → 2a}. In mass action kinetics the coordinates of the flux vector
are composed by the product of the concentration of all the reactants of the reaction, each
concentration to the power of the amount of times which is required in the reaction. In this
case, let xa and xb the concentrations of molecule a and b respectively. The dynamics is ruled
by

x′a(t) = −k1xa(t) + k2xa(t)xb(t), x
′
b(t) = k1xa(t)− k2xa(t)xb(t),

where k1 and k2 are constant reaction rates determined experimentally.

In order to link the dynamic analysis of this section with the non-dynamic (static) analysis
introduced in Section 2.1, given the state x of the reaction vessel, we need a function that
maps uniquely this state to the set of molecules mi ∈ M such that xi > 0. Analogously,
given a set of molecules Y ⊆ M, we need to know which states from X correspond to this
set of molecules. For this reason we introduce the concepts of abstraction and instance.

3In Sections 2.1 and 2.2 we were not considering the dynamics, therefore the rate of reaction vj(x)
was represented by some non-negative amount of reactions vj in the network. Then, the flux vector was
represented by a non-negative integer vector v instead of a vector of non-negative functions v(x).
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Figure 2.3: Evolution in time of the algebraic chemistry of Example 3 with initial conditions
xa = xb = 1. In the plot a) the constant reaction rates are k1 = 0.7, k2 = 0.3. In the plot
b) the constant reaction rates are k1 = 0.7, k2 = 0.9. Note that in plot a) the asymptotic
behaviour of the system tends to xa ≡ 0 and xb ≡ x̄ > 0, this means that in stationary
regime the only molecular specie present in the reaction vessel is b. In plot b) both molecules
are present in the reaction vessel in asymptotic regime.

Definition 11 (Abstraction) Let ẋ = f(x) be a dynamical system and x be a state in X.
An abstraction φ is defined by:

φ : X 7→ P(M), Θ > 0, φ(x) = {mi|xi > Θ, i ∈M}, (2.1)

where xi is the concentration of molecular species mi in the state x, and Θ is a threshold
chosen such that it is smaller than any positive coordinate of any fixed point of ẋ = f(x).

Definition 12 (Instance) Given an abstraction φ : X 7→ P(M) we say that a state x ∈ X
is an instance of Y ⊆M if and only if φ(x) = Y.

Remark: The value of Θ is not important in this anlysis, it is related with the measurability
of molecules in reaction vessels.

The importance of algebraic chemistry theory is based on the following theorem, the proof
is in [14]:

Theorem 1 (Fixed point is instance of an organisation) Consider a
general reaction system whose reaction network is given by the algebraic chemistry 〈M,R〉
and whose dynamics is given by ẋ = Sv(x) = f(x). Let x′ ∈ X be a fixed point, that is,
f(x′) = 0, and let φ : X 7→ P(M) be an abstraction. Then φ(x′) is an organization.

Remark: Usually the set of organisations is smaller than the power set of M (much more
smaller in several cases). Thus the set of all organisations is of interest in the understanding
of the long-term behaviour of the systems dynamics.
Remark: The other possible stationary regimes of the reaction vessel, such as oscillations
or higher dimension limit sets, in several networks is formed by organisations only. But this
matter is not well understood yet. See [41] for a preliminary analysis of this topic.
Remark: Theorem 1 states that every fixed point is an instance of an organisation, the
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inverse property is not true. In fact, let the algebraic chemistry 〈{s}, {s → 2s}〉, it is easy
to see that the only organisations are the empty set {∅}, which represents no molecules in
the reaction vessel, and the set {s}, which represent exponential growth, but none of them
can be fixed points with concentration xs > 0. This work does not concern in the relation of
organisations and stablility of solutions of the dynamical system derived from the algebraic
chemistry. For works regarding this matter see [49, 41, 42].

Theorem 1 lead to an important conclusion: We do not need to simulate the whole
dynamics4 of an AC, because it is known that it evolves as movements between steady states
through unstable transients, triggered by external perturbations. Then, it is sufficient to find
first the organizations and then calculate the possible evolutions of the system studying how
are the organisations connected.
Remark: In this work we are going to focus on the problem of obtain the organisational-
structure. The problem of study the evolution of the network in time will not be explored in
this work.

2.4 Organisational structure - Hasse diagram

In this section we are going to define concepts which will be useful to obtain the set of
organisations, which in turn by Theorem 1 corresponds to a set of candidate to be fixed
points in the dynamics of the system.

Definition 13 (x-structure) Given an AC 〈M,R〉, we define the set of all sets which has
the property x in 〈M,R〉, where

x = Closed, (Semi-)self-maintaining, (Semi-)organisation,

as the x-structure of 〈M,R〉.

From now on, we will call the organisational structure to the organisation-structure. We
now are going to introduce some notions from Order theory [52]. We are going to define the
notion of partially ordered set

Definition 14 (Partially ordered set) A partial order is a binary relation ≤ over a
set P which is reflexive, antisymmetric, and transitive, i.e., for all a, b, and c in P , we have
that:

• a ≤ a (reflexivity);

• if a ≤ b and b ≤ a then a = b (antisymmetry);

• if a ≤ b and b ≤ c then a ≤ c (transitivity). A partially ordered set (poset) is a pair
(P,≤)

4Obtain differential equations of system, give initial and boundary conditions and run the molecular
dynamics.
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Remark: It is easy to see that for every X ⊆ P(M), we have the pair (X,⊆) is a poset.

Lemma 1 Let X be an x-structure of the AC 〈M,R〉. Then (X,⊆) is a poset.

Definition 15 (Comparability of sets) For a, b distinct elements of a partially ordered
set P , if a ≤ b or b ≤ a, then a and b are comparable. Otherwise they are incomparable.

Definition 16 (Chain and antichain) If any two elements of a poset are comparable, the
poset is called a chain and an antichain if any two elements are incomparable.

Now we are going to define the notion of lattice, which is a special type of poset.

Definition 17 (Lattice) Let the poset (L,≤) satisfying the following axioms:

Ax1. Existence of binary joins: For any two elements a and b of L, the set {a, b} has a join
(also known as the least upper bound or supremum).

Ax2. Existence of binary meets: For any two elements a and b of L, the set {a, b} has a
meet (also known as the greatest lower bound or infimum).

The join and the meet will be denoted by a t b and a u b respectively. We say (L,≤,t,u) is
a lattice if the poset (L,≤) satisfies the axioms Ax1 and Ax2.

It will be shown later that we can classify different kinds of AC in terms of the properies
which its x−structures has. We are going to introduce the notion of Hasse diagrams, which
are a useful tool to diagram posets.
The Hasse diagram is forming a drawing of the transitive reduction of the partial order.
Concretely, for a partially ordered set (S,≤) one represents each x element of S as a vertex
on the page and draws a line segment or curve that goes upward from x to y if x < y, and
there is no z such that x < z < y (here, < is obtained from the relation ≤ by removing
elements (x, x) for all x). See an example of a Hasse diagram in Figure 2.4. The Hasse
diagram allow us to draw all x-structures that an AC can have. The Hasse diagram suggest
a contructive way to develop an algorithm to find “x and y”-structures where x and y are
properties, by checking upwards in the Hasse diagram if each set holds the property x (or y).
Then, once obtained the x-structure (the y-structure), to obtain the “xy”-structure, we just
need to check in the elements of the Hasse diagram of the obtained x-structure (y-structure)
if the property y (or x) is hold. And thus we would obtain the “x and y”-structure.

2.5 Structural properties of AC

In this section we are going to show some ideas and results about the x-structure found in
literature. We are going to review first the structural properties related to closed sets. Next,
following [14], we will gradually build the definition of a consistent system, by presenting
some useful intermediate concepts.
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Figure 2.4: The Hasse diagram of Example 2.
Nodes are labelled by the set they represent and colored by the property the hold. If the
color is black the set has not hold any property. Yellow means closed, orange for semi-self
maintaining (no one in Example 2), red for self-maintaining, blue for semi-organisations and
green for organisations.

Definition 18 (Generated closure) Let 〈M,R〉 be an AC. Given S ⊆ M, GCL(S) is
the smallest closed set containing S. We say S generates the closed set Y = GCL(S). Fur-
thermore, we define the generated closure of union and intersection of sets of molecules
S1, S2 ⊆M:
S1 tCL S2 = GCL(S1 ∪ S2),
S1 uCL S2 = GCL(S1 ∩ S2).

Lemma 2 Let 〈M,R〉 be an AC and X, Y ⊆ M. Then GCL(GCL(X)) = GCL(X) and
X ⊆ Y implies GCL(X) ⊆ GCL(Y ).

Lemma 3 Given the AC 〈M,R〉, let O = {Y1, ...,Y|O|} the set of all closed sets in the
network (the closed-structure). We have (O,tCL,uCL) is a lattice, where tCL and uCL are
defined in Definition 18.

Definition 19 (Semi-consistent AC) An algebraic chemistry 〈M,R〉 is semi-consistent
iff given any pair of sets X and Y in M both (semi-)self-maintaining, their union is still
(semi-)self-maintaining.

For semi-consistent algebraic chemistries, is clear that for any couple X ,Y of (semi-)self-
maintaining sets, we can obtain a (semi-)self-maintaining set C = X ∪Y . We now define the
(unique in semi-consistent systems) generated (semi-)self-maintaining set:

Definition 20 (Generated semi-self-maintaining set) Given a semi-consistent algebraic
chemistry 〈M,R〉, and given a set of molecules C ⊆ M, we define GSSM(C) as the biggest
semi-self-maintaining set S contained in C. We say that C generates the semi-self-maintaining
set S = GSSM(C). Furthermore, we define the generated semi-self-maintaining set of union
and intersection of sets molecules:
X tSSM Y = GSSM(X ∪ Y),
X uSSM Y = GSSM(X ∩ Y).
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Definition 21 (Genreated self-maintaining set) Let 〈M,R〉 be a semi-consistent al-
gebraic chemistry. Given a set of molecules C ⊆ M, we define GSM(C) as the biggest
self-maintaining set S contained in C. We say that C generates the self-maintaining set
S = GSM(C). Furthermore, we define the generated self-maintaining set of union and inter-
section of sets molecules:
X tSM Y = GSM(X ∪ Y),
X uSM Y = GSM(X ∩ Y).

Remark: In semi-consistent AC, for every C ⊆ M there always exist a unique biggest semi-
self-maintaining set Cssm and a unique a unique biggest self-maintaining set Csm. Note that
Cssm and Csm are not necesarilly the same set.
Remark: In a semi-consistent algebraic chemistry, for any set of semi-self-maintaining sets
O = {C1, ..., C|O|} ⊆ P(M) with the above defined operators, we have (O,tSSM,uSSM) is
a lattice. Analogously, if C1, ..., C|O| are self-maintaining, then (O,tSM,uSM) is a lattice.

Lemma 4 The following lemma is extracted from [14]. In semi-consistent systems the fol-
lowing statements are equivalent:
The closure of a (semi-)self-maintaining set is (semi-)self-maintaining.
The (semi-)self-maintaining set generated by a closed set is closed.

Proof Let us suppose that the first statement is true, we shall prove the second: Let C be a
closed set. Let S = GSM(C) be the self-maintaining set generated by C. Let D be the closure
of S. Then D ⊆ C, because the closure of S cannot produce any molecule not contained
in the closed set C. So S ⊆ D ⊆ C. But D is self-maintaining (because the closure of a
self-maintaining set is closed). Yet S by construction is the biggest self-maintaining set in C.
Thus S = D. So S is closed. Let us now suppose that the second statement is true, we shall
prove the first: Let S be a self-maintaining set. Let C = GCL(S) be the closure of S. Let
D be the self-maintaining set generated by C. Then S ⊆ D, because D is the biggest self-
maintaining set, and if not we could take the union between S and D, which would still be a
self-maintaining set, bigger than D. Since the self-maintaining set gener ated by a closed set
is closed, then D is closed. So D is closed and self-maintaining. But since C is the closure of
S, then C has to be the smallest closed set containing S. Thus C ⊆ D. So C = D. Thus C
is closed and then the closure of S must return the smallest closed set that contains S. So
C must be self-maintaining.

Lemma 4 states that in semi-consistent algebraic chemistries it will be generated the same
(semi-)organisation by applying the closure generator and then the (semi-)self-maintaining
generator to a set, than by applying the (semi-)self-maintaining generator and then the
closure generator. From that useful property we can derive the notion of consistent algebraic
chemistry.

Definition 22 (Consistent AC) A semi-consistent AC is called consistent if the closure
of a (semi-)self-maintaining set is (semi-)self-maintaining.
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Definition 23 (Generated (semi-)organisation) Let 〈M,R〉 be a semi-consistent AC.
Given C ⊆ M, we define GSO(C) and GO(C) as GSSM(GCL(C)) and GSM(GCL(C)) re-
spectively. We define the generated (semi-)organisation of union and intersection of sets
molecules:
X tSO Y = GSO(X ∪ Y),
X uSM Y = GSO(X ∩ Y).
X tO Y = GO(X ∪ Y),
X uO Y = GO(X ∩ Y).

Now we summarize the virtues of consistent reaction systems in the following theorem ex-
tracted from [14].

Theorem 2 (Organisations in consistent networks form a lattice) Let 〈M,R〉 be a
consistent AC, given a set C ⊆ M of molecules, we can always uniquely generate a closure
GCL(C), a semi-self-maintaining set GSSM(C), a semi-organisation GSO(C) = GSSM(GCL(C))
, a self-maintaining set GSM(C) and an organisation GO(C) = GSM(GCL(C)).
Furthermore, the set of all organsations O contained in 〈M,R〉, forms a lattice (O,tO,uO)
where tO and uO are defined in Definition 23.

Theorem 2 state that in consistent reaction systems the organisational structure is a
lattice w.r.t tO and uO. Then, in consistent systems, the task of compute the organisational
structure is simplified because it is not necessary to verify the organisation property to sets
that are the join (or meet) of two or more organisations. One of the aims of this work is find
other kind of structural properties which could simplify the computation of the organisational
structure.
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Chapter 3

A first algorithmic and complexity
view to AC

The computational interest of Algebraic Chemistries is derived from Theorem 1. This the-
orem implies that in order to simulate the dynamics1 of an AC, it is sufficient to find first
the organisations, and then calculate the possible evolutions of the system by studying how
are the organisations connected in the phase space. This is based on the fact that the sys-
tem evolution can be understood as movements between steady states in the concentration
space, through unstable transients, triggered by external perturbations. Then, to find good
algorithms to obtain the set of all organisations (the organisational structure) is a central
problem in Algebraic chemistries research.
Furthermore, Theorem 2 shows that in consistent reaction systems, the task of obtaining
the organisational structure can be simplified by the use of some special union (join) and
intersection (meet) operators. Then, the algorithms to verify and build organisations can be
improved,for certain classes of networks, by structural results such as Theorem 2. In this
chapter we will present the current known results on algorithms and computability of the
properties of sets of molecules of a given AC defined in Chapter 2. Most of the algorithmic
work in AC presented in this chapter is done in [10].

Let 〈M,R〉 be an AC and X ⊆ M be a set of molecules. We split the chapter in three
main sections:

1. Verification: Verifying if X holds closure or (semi-)self-maintainance.

2. Generation: Deals with the generation of a closed set from X, the generation of semi-
organisations above X when X is a semi-organisations, and generation of elementary
organisations (see Section 3.3.2).

3. Organisational structure: Based in 1) and 2) we present the known methods to compute
the organisational structure.

1Give the initial and boundary conditions to the the system of differential equations and run the molecular
dynamics.
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For this section let |M| = n, |R| = k. We also assume that the comparison of two integers
has unitary cost.
Remark: The problem of studying the time-evolution of the network, i.e study the movement
of organisations and transients in the phase space, will not be explored in this work. For a
detailed analysis of these matters see [49].

3.1 Verification

Recalling Chapter 2 we have that a set X ⊆ M is a (semi-)organisation iff X is closed and
(semi-)self-maintainang. Thus, verify both closure and (semi-)self-maintainance in X is the
current known procedure to verify if X is an organisation. In this section we are going to
study how to verify those properties.

3.1.1 Closure

The central question of this section is:

Problem 1 Given a set X ⊆M, is X a closed set in 〈M,R〉?.

To verify if X is closed we have to check that none of the reactions inRX produces a molecule
m /∈ X. This means that for all reactions R = A→ B ∈ RX it holds that m is present in B
implies m ∈ X.

Lemma 5 Let 〈M,R〉 be an AC and X ⊆ M. To verify if X is closed set can be done in
|RX ||X| steps.

Proof It is enough to check that m is present in B implies m ∈ X for every reaction
R = A→ B ∈ RX .

�

3.1.2 Semi-self-maintainance

Problem 2 Given a set X ⊆M, is X a semi-self-maintaining set in 〈M,R〉?.

To verify if X is semi-self-maintaining we have to check if every consumed molecule in RX

is produced in RX .

Lemma 6 Let 〈M,R〉 be an AC and X ⊆M. To verify if X is semi-self-maintainaing can
be done in 2|RX ||X| steps.
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Proof We first check every reaction of RX to build the set of consumed molecules in X; let
us call such a set C. Set C is built in |RX ||X| steps. Then we check every reaction again to
eliminate from C the produced molecules in X. This elimination also can be done in |RX ||X|
time. At the end of this process, C is empty iff X is semi-self-maintaining.

�

3.1.3 Self-maintainance

Problem 3 Given a set X ⊆M, is X a self-maintaining set in 〈M,R〉?.

We are going to prove that self-maintainance verification corresponds to a Linear program-
ming problem. We suppose that the reader is familiar with Linear programming definition.
Definition and algorithms to solve Linear programming problems can be found in [53].

Lemma 7 Let 〈M,R〉 be an AC and X ⊆M, verifying if X is self-maintaining is a Linear
programming problem of |RX | variables and |RX |+ |X| equations.

Proof Let SX be the stoichiometric matrix of the AC 〈X,RX〉. We haveX is self-maintainaing
iff there exists a flux vector v constrained to X (this means that vi > 0 if i is s.t Ri ∈ RX

and else vi = 0) which holds:
Sv ≥ 0. (3.1)

This is the first part (feasibility) of a Linear programming problem (no optimization of the
solution is required). Furthermore, there are |RX | variables and |RX |+ |X| equations.

�

Corollary 1 To verify if a set X ⊆M is an organisation is a Linear Programming problem
of |RX | variables and |RX |+ |X| equations.

Remark: From the known LP bounds [53] we have that the complexity of the LP problem
Ax ≥ 0 is n3.5L where n is the number of variables in x and L is the size of the representation
of A in bits. Let l the binary representation of the largest mentioned number in R. Then,
for a given set X, the representation of SXv ≥ 0 under the condition v > 0 is bounded by
|RX | · (|RX |+ |X|)l. Thus the complexity of verify the self-maintaining property for a set X
is bounded by l|RX |4.5 ·max (|X|, |RX |).

3.1.4 Generated closure

Lemma 8 Let 〈M,R〉 be an AC and X ⊆ M. The minimal cardinality set Z s.t X ⊆ Z
which is closed is unique.
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Proof Follows strightforward from Lemma 2.

�

In [10] it is explained how to build up a closed set Z starting from a set X ⊆ Z. It is
based on add produced molecules until no new molecules can be produced.

Algorithm 1 Generated closure

Require: The initial set of molecules is X and RX is its firable reaction set;
Ensure: GCL(X)

1: Let Z = ∅, RZ = ∅
2: while Z 6= X do
3: Y = { produced molecules by X} and Z = X ∪ Y
4: X = Z
5: end while
6: return (Z,RZ)

Definition 24 (recursion loop) We are going to refer the execution of steps 2 , 3 , 4 in
Algorithm 1 as a recursion loop.

Remark: Note that in step 2 of Algorithm 1, in order to obtain Y , it is necessary to check
only the reactions which were not checked in previous recursion loops.

Definition 25 (Amount of recursion loops) Let nXCL the amount of recursion loops re-
quired in Algorithm 1 to terminate with input (X,RX).

Remark: Note that nXCL ≤ |M| − |X|, because in each recursion step is required to add at
least one molecule to the set Z. Furthermore, we have in step 3 of Algorithm 1 that X ⊂ Z
(Y 6= ∅), otherwise, the algorithm terminates.

Definition 26 (Symbols to bound the recursion loop) At the end of step 3 of the i-th
recursion loop of Algorithm 1 with input (X,RX) we define

niX = |Y |, niR = |RZ | − |RX |.

Furthermore we define

nX = max
1≤i≤nXCL

(niX), nR = max
1≤i≤nXCL

(niR),

the maximum amount of molecules and reactions incorporated to Z and to RZ respectively in
any recursion loop, where nXCL is defined in Definition 25.

By Lemma 6 we have that obtaining the produced set of molecules requires linear time
w.r.t |RZ ||Z|. Then, in order to estimate the time required by Algorithm 1 to terminate is
necessary to consider the way in which X is is growing until reach its closure.
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Theorem 3 (Time to compute generated closure) Let i = 1, ..., nXCL identifying the
recursion loop of Algorithm 1. Let niX and niR defined in Definition 26. Then Algorithm 1

can be done in 2|X||RX |+ 2
∑nXCL

i=1 |niX ||niR| steps.

Proof In the first recursion loop of the procedure, this means for i = 1, by Lemma 6 we
have that obtain the produced set of molecules in X requires |RX ||X| steps. For i > 1, by
Lemma 6 we have that obtain the produced set of molecules in X requires |niR||niX | steps.

�

Corollary 2 Algorithm 1 can be done in 2(|X||RX |+ nXCLnXnR) steps.

3.2 Generating semi-organisations

The only result which is known for AC on generating semi-self-maintaing sets is that, in
semi-consistent systems, for every closed set X there exist a set X ′ ⊆ X which is semi-
self-maintaining. In general systems we have no such result. In [10] it is presented an
algorithm to generate, given a set X, all the semi-organisations which are directly above2 a
semiorganisation X. We are going to show that this algorithm has two defects:

1. It can be very expensive even returning an empty set.

2. It can return semi-organisations which are not directly above X.

We are going to explain the algorithm and then present the defects.

Algorithm 2 Generating semi-organisations above a set

Require: An AC 〈M,R〉and the semiorganisation X.
Ensure: The set AX of semi-organisations directly above X.

1: AX = ∅
2: for all s ∈M−X do
3: Let AX = AX ∪ SosDirAb(X, {s}, 〈M,R〉)
4: end for

If a set X is closed, but not semi-self-maintaining, then there is a set of molecules X ′ ⊆ X
which are consumed but not produced. The idea of the algorithm is based in that we can
look at the AC trying to find all the sets of molecules Y1, ..., YnX′ which generates X ′ and then
for each set Yi, i = 1, ..., nX′ , we generate a new set Xi = Yi ∪X and check if the generated
closure of Yi is a semi-organisation. If GCL(Xi) is a semi-organisation, then Xi is added to

2In the Hasse diagram.
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Algorithm 3 SosDirAb

Require: An AC 〈M,R〉, a set of molecules X and a set of species species s.t s ∈ species
implies s /∈ X.

Ensure: The set result formed by all the semi-organisations directly above X that contain
the set species in it.

1: result = ∅, closure = GCL(X ∪ species)
2: if closure is semi-self-maintaining then
3: result = result ∪ closure
4: else
5: Let SptoProd = {s ∈ closure s.t s is consumed but not produced}
6: Let Pset = {Y ⊆M s.t Y produces SptoProd}
7: for all Y ∈ Pset do
8: result = result ∪ SosDirAb(X, species ∪ Y, 〈M,R〉)
9: end for

10: end if

the set of semi-organisations directly above X, if it is not, then there is a set of molecules
X ′i ⊆ GCL(Xi) which are consumed but not produced, and the process has to be repeated.

Now we are going to show that Algorithm 2 with input 〈M,R〉 and X ⊂ M can take
exponential time w.r.t |〈M,R〉|, and returns an empty set. Let the generic class of AC
Q(n, k) =〈M,R〉 defined by

M = {d, a11, ...a1n, a21, ...a2n, ...ak1, ...akn},
R = {a1i → d, for i = 1, ..., n} ∪ {aik → ajl , for i > j and k, l = 1, ..., n}.

(3.2)

Let X = {d}. Algorithm 2 has to check all the subsets ofM which contains GCL(X) = {d}.
Let X̄ = X − {d}. This means Algorithm 2 has to check all the subsets which are in X̄.
The amount of such subsets is exponential w.r.t |X̄| = |X| − 1. The amount of reactions in
〈M,R〉 is bounded by the square of |M| because for every pair of molecules in X̄ we have
one reaction in the network and d is produced only by a1k, k = 1, ..., n. Then Algorithm 2
takes exponential time w.r.t |〈M,R〉|, but there is no semi-organisation directly above {d}.

Figure 3.1: Network Q(n, k) defined in equation (3.2) when n = k = 2. Algorithm 2 takes
exponential time w.r.t the size of Q(n, k) because it has to check each set which contains
{d}, all those sets are closed, but none of them is semi-self-maintaining, thus there is no
semi-organisation above {d}.
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Furthermore considering the AC 〈{a, b}, {a → a + b}〉 and X = {∅}, we obtain that
Algorithm 2 returns {a}, {a, b}, because in step 2 it has to compute the closure of {b}, which
is {b}, and the closure of {a} which is {a, b}. As both sets are semi-self-maintaining and
closed, Algorithm 2 returns both sets as semi-organisations directly above {∅}. But {a, b} is
not directly above to the empty set in the Hasse diagram.

Figure 3.2: Algorithm 2, with the network 〈{a, b}, {a→ a + b}〉 and the empty set as input
returns the grey sets in the figure. The set {a, b} is part of the output. But {a, b} is not
directly above to the empty set in the Hasse diagram.

3.3 Structural properties

In this section we are going to review some properties which allow us to understand better
how the organisations are formed. This information is useful in the developing of algorithms
to compute the organisational structure. We are going to introduce the fundamental concepts
and by using them we are going to present the underlying algorithms of both approaches.
Finally we are going to explain how to proceed with those algorithms in each case to build
a procedure which computes the organisational structure.

3.3.1 Connectivity and reactivity

Definition 27 (Directly connected) Let 〈M,R〉 be an AC. Two species so and sp in
O ⊆ M are directly connected in 〈O,RO〉 iff there exist a reaction R = A → B ∈ RO such
that {so, sp} ⊆ A ∪B.

Definition 28 (Connected molecules) Let 〈M,R〉 be an AC. Two molecular species si
and sj in O ⊆M are connected in 〈O,RO〉 if there exist a sequence of species s0, ..., sp ∈ O
such that si = s0, sk and sk+1 are directly connected in 〈O,RO〉 for all k = 0, ..., p − 1 and
sp = sj.

Definition 29 (Connected set) Let 〈M,R〉 be an AC. A set O ⊆ M is connected if
every pair of molecules is connected in O.

Definition 30 (Reactive set) Let 〈M,R〉 be an AC. A set C ⊆M is reactive iff for all
s ∈ C there exists at least one reaction R = A→ B ∈ RC such that s ∈ A ∪B.

35



Note that the set GCL(C)− C has only reactive molecules which are connected to C.

Lemma 9 The generated closure of a connected set is connected, and the generated closure
of a reactive set is reactive.

Remark: Note that every connected set is a reactive set, but the inverse is not true, because
a reactive set may contain several connected subnetworks that are disjoint.

Figure 3.3: The organisation {a, b, a′, b′} is reactive but not connected, because is splitted in
two connected organisations {a, b} and {a′, b′}, which are not connected among themselves.

Now we are going to show that from the set of connected organisations it is possible to
obtain the organisational structure. The proof is extracted from [10].

Theorem 4 (Connected organisations and organisational structure) The organisa-
tional structure of a network 〈M,R〉 can be obtained from the connected organisational struc-
ture, i.e from the set of all connected organisations contained in M.

Proof We are going to prove that the following four steps precedure is sufficient to create
all organisations.

1. Compute the set of connected organisations Oinit contained in M.

2. Let R′ ⊆ R be the set of all inflow reactions. Compute the set of connected organisa-
tions for the modified network Owithoutinput.

3. Let the set of basis organisations Obasis = Oinit ∪Owithoutinput.

4. Make set unions of all possible combinations of organisations from Obasis such that
exactly one organisation from Oinit is contained in every combination. (If a combination
of organisations from Oinit is already an organisation, it is already an element of Oinit).
Test the species set of each combination for the closure and self-maintenance property.
With |Oinit| = m and |Owithoutinput| = n, there are

m
n∑
i=0

(
n
i

)
= m · 2n (3.3)

species sets to be tested.
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We are going to prove that each organisation is a combination of the basis organisations
defined in step 3. For this purpose, networks with and without input species will be discussed
separately:
Networks without input: If the network has no input species, the basis organisations are
exactly the connected organisations. Taking an organisation O, we find that it is either
connected or not. In the former case, it is a basis organisation. In the later case, it consists of
two or more parts that are connected, but not connected to each other part. When inspecting
each isolated part separately, we find that each part is closed and self-maintaining. In other
words, each part is an organisation. Even more, each part is a connected organisation and
hence a basis organisation. Therefore, the unconnected organisation O is equal to the set
union of these basis organisations.
Networks with input: Again, taking any organisation O of the network, we find that it is
either connected or not. If it is connected, it is already a basis organisation. If it is not
connected, we again inspect the isolated parts of the organisation. Like in the case without
input species, all parts are closed, self-maintaining, and connected. Some parts contain input
species and some others not. Recall that in the presence of input species, all input species are
present in all organisations. Hence, the union of all isolated parts that contain at least one
input species will be an organisation (and contained in Oinit). Parts without input species
are only organisations in the absence of input species, and hence contained in Owithoutinput.
We find that all isolated parts of organisation O can be associated to basis organisations in
Oinit and Owithoutinput. Consequently, O is equal the set union of these basis organisations.
We conclude that all organisations are created using the described procedure.

�

Corollary 3 Let 〈M,R〉 be an AC. Obtaining the connected organisational structure of
〈M,R〉 is output sensitive. Furthermore, the Algorithm is fixed parameter tractable with
respect to the amount of organisations in the modified network 〈M,R′〉 where R′ ⊆ R is the
result from the substraction of the inflow reactions to R.

Proof Follows directly from equation (3.3).

�

Corollary 3 state that the time to computate the connected organisational structure de-
pends on the amount of organisations that will be obtained as output. The fixed parameter
tractability means that taking the class of networks in which the amount of connected organi-
sations of the modified AC 〈M,R′〉 is a constant number (n in equation (3.3)), the connected
organisational structure of this class of networks can be obtained in polynomial time w.r.t
to the amount of connected organisations (m in equation (3.3)).
Remark: It must be noted that the basis organisations Obasis do not form a basis for all
organisations that are minimal. Consider the reaction network consisting of two species
and one reaction 〈{a, b}, {a + b → 2a + 2b}〉. The organisational structure in this case is
{{∅}, {a}, {b}, {a, b}}. All four organisations are connected and therefore basis organisations.
However, {a, b} = {a} ∪ {b} and hence would not be required in a minimal basis.
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3.3.2 Elementary organisations/flux modes

When viewing organisations as sets of reactions, the elementary organisations are those which
cannot be represented as the union of other organisations (sets of reactions).

Definition 31 (Elementary organisation) Given a set of organisations O, an organi-
sation O ∈ O with its corresponding set of reactions RO = {A→ B ∈ R s.t A,B ∈ PM(O)}
is an elementary organisation, if there exists no subset of organisations T ⊆ O − {O} such
that RO =

⋃
P∈T
RP .

We now are going to present a well known concept in the biochemical network literature.

Definition 32 (Elementary mode) Let 〈M,R〉 be an AC and S the stoichiometric ma-
trix of this reaction network. Let v ≥ 0 such that Sv = 0. We say that v is a mode of
〈M,R〉. We say that v is an elementary mode if it is a mode and it is not possible to
decompose it as the sum of two non empty modes.

Definition 33 (Extreme rays) Let 〈M,R〉 and Q′ = 〈M,R ∪ {m1 → ∅, ...,mn → ∅}〉
be two AC. We say the set of elementary modes of Q′ is the set of extreme rays of 〈M,R〉.

The set of extreme rays is composed by all the flux vectors which fulfills the self-maintainance
condition and cannot be decomposed into other extreme rays. Note that in Definition 33 if
we take the projection of the first k = |R| coordinates of the elementary modes of Q′, we will
obtain all the elementary modes of 〈M,R〉, but also a basis of the flux vectors which fulfills
Sv > 0, where S is the stoichiomteric matrix associated to 〈M,R〉.

Remark: In [20] it is proved that the maximal amount of elementary modes grows exponen-
tially with the size of the network. Research in computation of elementary modes is out of
the scope of this work. For a more detailed treatment on computation of elementary modes
see [17, 47, 2].

We now are going to present an algorithm for obtaining all the elementary organisations
from the set of extreme rays (Algorithm 4). First, the closure of the reaction set vset, respec-
tively M(vset), is computed. This is done by taking the species set M(vset) and iteratively
adding all species to the set that can be created by reactions of the network from the species
set. The reaction set vsetcl contains all reactions that can take place in the generated closed set
of species. If this reaction set is identical to vset, the species set M(vset) is an organisation.
The reaction set vsetcl contains more reactions than vset if either species were added, or M(vset)
is closed but vset does not contain all reactions that are possible in this set. One of such reac-
tions is taken and all the reaction sets vsetB ∈ V set

B that contain this reaction are consecutively
combined with the original reaction set vset and the function is called again recursively. As
the initial reaction set vset and the extreme ray reaction sets vsetB correspond to flux vectors
fulfilling the self-maintenance condition, also a flux vector vu fulfilling the self-maintenance
property exists for the union vsetu = vset ∪ vsetB . Hence, all reaction sets that are considered in
the recursive function calls are associated with self-maintaining flux vectors.
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Algorithm 4 OrgsAb

Require: Reaction network 〈M,R〉, the set of reaction sets V set
B , each set in V set

B corresponds
to the reactions with positive coefficients in each extreme ray of 〈M,R〉and a set vset ⊆
V set
B .

Ensure: Set result of elementary organisations s.t O ∈ result implies vset ⊆ RO.
1: Let result = ∅,
M(vset) = {m ∈M s.t m is consumed or produced by some R ∈ vset},
vsetcl = {R ∈ R s.t R is firable by GCL(M(vset))}

2: if vsetcl = vset then
3: result = result ∪M(vset)
4: else
5: Select a reaction r ∈ vsetcl − vset
6: for all vsetB ∈ V set

B s.t r ∈ vsetB do
7: result = result ∪OrgsAb(vset ∪ vsetB ).
8: end for
9: end if

3.4 Some useful examples

In this section there will be presented five examples showing some exemplar (semi-)organisational
structures. Each example reflect different features that the (semi-)organisational structure
can exhibit, as well as different relations among the semi-organisational structure and the
organisational structure.

Example 4. Consider the AC 〈M = {a1, ..., an}, {∅}〉. In this case, the (semi-)organisational
structure is PM(M). This means the amount of organisations can be exponential w.r.t the
amount of molecules in the network. But all of them are non-reactive.

Example 5. Consider the AC 〈M = {a1, ..., an}, {R1, ..., Rn−1}〉 where Ri = 2ai → ai,
for i = 1, ..., n. We have that the semi-organisational structure is equal to PM(M), but the
organisational structure is only the empty set. Note that no molecule is connected to each
other. But all molecules are reactive.

Example 6. Consider the AC 〈M = {a1, ..., an}, {Rij, i = 1, ..., n and j ≥ i}〉 where
Rij = ai+aj → 2ai+2aj. The semi-organisational structure and the organisational structure
are both PM(M). But in this case every organisation is connected.

Example 7. Consider the AC 〈M = {a, b}, {a+b→ {∅}}〉. The organisational structure is
{{∅}, {a}, {b}}. Every organisation is elementary, but no union of elementary organisations
generates an organisation.

Example 8. Consider the AC 〈M,R〉where
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M = {a, b, c, d},
R = {a+ b→ 2a+ 2b, d→ c, c→ d, a+ b+ c→ ∅}.

In this example the semi-organisational structure is

S = {{∅}, {a}, {b}, {a, b}, {c, d}, {a, c, d}, {b, c, d}, {a, b, c, d}},

the organisational structure is O = S − {a, b, c, d} and the elementary organisations are
{{∅}, {a}, {b}, {c, d}}. This means that in this case the generated closure of union of elemen-
tary organisations is an organisation, but the generated closure of union of an organisations
in general does not generate an organisation.

Remark: The examples above show that the properties defined in previous sections do not
give much information in general about the total size or shape of the (semi-)organisational
structure, but as we are going to see in the next section, those concepts will be useful to
develop algorithms to calculate the organisational strucure.

3.5 Building the organisational structure

Using definitions of previous sections we are going to explain the known algorithms to com-
pute the organisational structure. In this section there are presented two algorithms to
compute the organisational structure for a given reaction network: The constructive and the
flux-based approach. Both algorithms compute the organisational structure in an exhaus-
tive manner, this means they compute the whole organisational structure. However, due to
the exponential nature of the problem, i.e the existence of networks in which any species
subset is an organisation, these algorithms do not always finish in reasonable time [10]. In
such cases, an heuristic approach can be used to compute at least a significant subset of the
organisational structure (see the remark at the end of the chapter). While the constructive
approach compute the organisations in a bottom-up manner starting from the smallest or-
ganisation, the flux-based approach combines flux vectors which verifies the self-maintenance
until organisations are found. Testing both algorithms on several network models shows that
neither of them is superior in all cases [10].

3.5.1 Constructive approach

The constructive approach builds first the semi-organisational structure from bottom to top
in the Hasse diagram (this means starting from the empty set) and once having the semi-
organisational structure the algorithm verifies whose of those semi-organisations are self-
maintaining and thus organisations. In order to build the semi-organisational structure Algo-
rithm 2 is used. Recalling Theorem 4 it is enough to build the connected semi-organisational
structure. Thus we are going to change line 2 of Algorithm 2, now it looks:
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Modification of Algorithm 2

...
2: For all s ∈M−X connected to X do
...

With these slight variation Algorithm 2 obtain only the connected semi-organisational struc-
ture. As we saw in Section 3.1.3, verification of self-maintainance is a Linear Programming
problem, then for every set of the semi-organisational structure it has to be solved a Linear
Programming problem to verify its self-maintainance. The set of self-maintaining semi-
organisations verified in step 3 of Procedure 1 is the organisational structure.

Procedure 1 (Constructive approach)

1. Beginning: 〈M,R〉 and O the organisational structure are intialized empty.

2. Let O the connected semi-organisational structure. This is obtained by using Algo-
rithm 2.

3. Let O′ the set of all self-maintainaing sets contained in O. This set is obtained by
solving the associated Linear programming problem (see Lemma 7).

4. Using O′ obtain the organisational structure by the method stated in Theorem 4.

As Procedure 1 is based in Algorithm 2, then it has the same defects than Algorithm 2. This
means the organisational structure can take exponential time w.r.t |〈M,R〉| even returning
an empty organisational structure.

3.5.2 Flux based approach

The flux based approach takes a somehow opposite strategy as the constructive approach
of Section 3.5.1 by combining self-maintaining flux vectors until closed sets are discovered.
This algorithm is useful for small networks, because it is proved that in general the amount
of self-maintaining flux vectors grows exponentially with the size of the network [20]. While
the first approach operates on species, the flux-based approach operates on reactions. First,
the flux based approach computes elementary organisations (step 1), which are combined in
step 2 to obtain reactive organisations, that is, organisations where each species participates
at least in one reaction within the organisation. Organisations containing species that do
not react are determined in step 3. Starting with the condition of self-maintenance, methods
from convex analysis can be employed. Given a reaction network 〈M,R〉 and its n × k
stoichiometric matrix S, a flux vector v ∈ Rk

+ fulfilling the self-maintenance condition must
be found to show that a species set is self-maintaining. All such flux vectors lie in a convex
polyhedral cone P in the k-dimensional flux space Rk

+, originated in the point of origin.
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The cone is defined by the k + n inequalities v ≥ 0 and Sv ≥ 0. These constraints can be
transformed into a matrix A representing the set of spanning vectors VB or extreme rays
of P [17]. These extreme rays are the elementary modes defined in Definition 32. Each
point within P can be written as a linear combination of these elementary modes. Thus,
we can compute organisations by searching for combinations of elementary modes whose
corresponding set of species fulfills the closure condition.

Procedure 2 (Flux based approach)

1. Beginning: The AC 〈M,R〉, and the set of extreme rays V set
B correspondig to 〈M,R〉.

2. Obtain the elementary organisations: This is done by calling Algorithm 4 for each
reaction set vsetB ∈ V set

B (see Algorithm 4).

3. Computing reactive organisations: Elementary organisations are combined to deter-
mine all reactive organisations. This is done by taking all possible combinations of two
elementary organisations and calling Algorithm 4 for the union of their reaction sets.
Every newly discovered organisation, has to be combined again with each of the elemen-
tary organisations, i.e Algorithm 4 must be called again for the reaction set unions,
until this process computes all the reactive organisations.

4. Computing all organisations: The organisations we have obtained so far all possess a
different set of reactions. Consequently, the final step consists in searching the organi-
sations which have the same set of reactions as already discovered ones, but containing
different species sets. Hence, we need to determine for all discovered organisations all
species sets, that can be added to the organisation without changing its set of reactions.
This can be done by simply inspecting the reaction list.

Remark: There is also an heuristic algorithm which is able to calculate a subset of the
organisational structure. We are not going to study that algorithm because the size of the
set of organisations which this algorithm calculates, compared with the whole organisational
structure is not well understood. This implies there is no notion of how good is this algorithm.
Furthermore in biochemistry it is not too useful to obtain a subset of the organisational
structure because it is not known a priori which organisations are more important in the
dynamics, so we have to have all the candidates to be fixed point (organisations) to study
the dynamics properly.
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Part II

Study of AC from a discrete point of
view
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Introduction

To better present this second part, let us summarize the problems found in the first part of
this thesis:

• Obtain the organisational structure is the central task: The organisational
structure is the most important set to be obtained for a reaction network. Its calculation
cannot be done by a brute force algorithm, because it should be verified the self-
maintainance for every subset of species, and the power set grows exponentially with
the amount of molecules.

• Known algorithms to compute organisations are based in structural prop-
erties: The constructive approach (see Section 3.5.1) is based essentially in the con-
nectivity and reactivity of molecules in the network. The flux-based approach (see
Section 3.5.2) is based essentially in the set of elementary organisations and in the
extreme rays. All these properties intend to simplify the understanding of how the
organisations are formed or how the organisations can be combined.

• There are hard cases for all known approaches: There are simple cases in which
the organisational structure is extremely hard to compute for every algorithm. For some
networks the constructive approach is better than the flux based approach and for some
other networks is the opposite [10]. But there is not a good enough understanding about
when one approach is better than the other.

The three points above reflect the inmature state in which the computational aspects of
algebraic chemistries are. There seems to be a strong potential in Theorem 1, which links
fixed points of a chemical system and the organisations in its underlying reaction network, but
the current work does not give a deeper enough understanding of the underlying process of
organisation formation. The topological properties of the networks are almost not considered
in the analysis (only connection and reactivity), and the treatment of other properties such
as elementary organisations have not been sistematically studied. For example, there is no
definition of topological properties which could a priori suggest which approach to compute
the organisational structure would be faster. AC theory was developed to deal with huge
biological networks in which is hard to study the dynamics with the classic dynamical systems
tools. Then the computational properties which can be defined to understand better the
underlying structure of an organisation will be very useful to study the time evolution of the
dynamical system.
The second part of this thesis develops the following topics:
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• Frame the study of reaction networks in others well known computer science formalisms.

• Study the organisations in detail to reveal their underlying structure.

• Provide a framework to develop algorithms which takes in consideration as much as
possible the structure of the network.

In Chapter 4, a discrete version of Algebraic chemistries is defined, and we discuss the relevant
aspects of this approach. In Chapter 5 we present two discrete event formalisms (Petri Nets
and Vector Addition Systems), and an equivalence between AC and those formalisms is
stated. In Chapter 6 we overview the relation of some important properties defined in Petri
Nets and Vector Addition Systems with respect to the organisations in Algebraic chemistries.
In Chapter 7 we develop an algorithm to identify organisations and estimate its complexity.
Based on the insights arosed from the discrete analysis, in Chapter 8 we present a new
mathematical framework to understand the process of organisation formation, which permits
to identify the difficulties when it is verified if a set of molecules is (or is not) an organisation.
Finally, in Chapter 9 we present some structural results about the organisational structure,
i.e, develop a separation of classes of networks in terms of the computational properties that
the organisations of each class of network possesses.
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Chapter 4

Discretizing AC

1 Sets versus Multisets in AC

The purpose of AC is to predict properties of (bio-)chemical compounds, given the reaction
rules between molecules. In AC formalism, we study properties of sets (instead of multisets)
of molecules. Hence these properties do not depend on the amount of molecules of each type
in the reaction vessel, but on the presence of the molecular species in the reaction vessel and
on the possible firing rates between the reactions. This is because in a chemical system it
is implicit the fact that the amount of each type of molecules occurs in a higher order of
magnitude (Avogadro number) than the amount of molecules required in the reactions. In
practical terms, if some molecular specie m is present in the reaction vessel, then we have as
much molecules of type m as we need to fire reactions.

We are going to explore the AC 〈M,R〉 of Section 2.1, with M = {m1, ...,mn} and
R = {R1, ..., Rk}, from a discrete point of view, that is, considering a discrete amount of
molecules in the reaction vessel. The goal is to capture the algorithmic essence of the AC
formalism in a discrete schema. We need some definitions.
The reaction vessel, which is determined by a set Y ⊆M of molecules in the AC, in the
discrete schema will be described by a multiset y ∈ PM(Y), where A(y,mi) will denote the
amount of molecules of specie mi in the multiset y.

Definition 34 (Discrete algebraic chemistry) Let 〈M,R〉 be an AC. Given a multiset
y ∈ PM(M), the triple 〈M,R, y〉 is a Discrete Algebraic Chemistry (in short DAC). We say
y is the discrete reaction vessel.

In AC, the reaction process is determined by the application of the flux vector v on the
stoichiometric matrix S, leading to a production rate vector f . Note that if we want to
consider the reaction Ri in the reaction process of 〈M,R〉, we require that if reactants of Ri

are present in the reaction vessel, then Ri can be fulfilled, formally:

Definition 35 (Causal reaction w.r.t a flux vector) Let 〈M,R〉 be an AC, Y ⊆M
and v = (v1, ..., vm) a flux vector, let i ∈ {1, ...,m}. The reaction Ri = ki1m1 + ...+ kinmn →
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ji1m1 + ...+ jinmn is causal w.r.t v and Y in 〈M,R〉, if and only if vi > 0 and kil > 0 implies
ml ∈ Y for all l = 1, . . . , n. Furthermore v is causal w.r.t Y and 〈M,R〉 if and only if for
i = 1, ...,m we haveRi is causal w.r.t v and Y in 〈M,R〉.

Note also that in the reaction process of the AC it is not considered the order in which
reactions are specified by v. This is because in chemical systems the reaction process is
considered per se a parallel process, that is, every reaction consumes its own reactants and
the reactions occur simultaneously. From a discrete point of view, the reactions occur in a
serial process, that is, the reactions are fulfilled one by one in some order and the products of
every reaction are incorporated as possible reactants to the next reactions. Then, we cannot
(a priori) capture the reaction process by a flux vector as in AC, because in spite of all the
reactants of Ri that could be present in YM , it is possible that, for some molecular specie,
there are not enough reactants as required to fire Ri. Then, the order of reactions plays an
important role in the discrete reaction process. We are going to define the reactions as a
serial process, but we are going to show that for some multisets of molecules the order in
which reactions take place does not change the resulting multiset of molecules.
The flux vector of the AC formalism, is considered as a sequence of reactions in DAC, such
that the reactions are applied to y one by one:

Definition 36 (Sequence of reactions) Let 〈M,R,y〉 be a DAC, LR = (R1 + ...+Rk)
∗

a regular language contructed with the elements of R, v = (v1, ..., vk) a flux vector and
Rv = Rv1

1 · · ·R
vk
k ∈ LR. P is a sequence of reactions of v if and only if P is a permutation

of Rv.

Definition 37 (Apply a reaction) Let Q∗ = 〈M,R,y〉 be a DAC and Ri = ki1m1 + ...+
kinmn → ji1m1 + ...+ jinmn ∈ R, i = 1, ...,m. Ri is applied to Q∗ if there are enough reactants
in y to consume the molecules in Ri. We say Ri is fulfilled leading a new reaction vessel yRi

if A(yRi ,mt) = A(y,mt)− kit + jit for t = 1, ..., n. We denote the application of Ri over y as

y
Ri−→ yRi.

Definition 38 (Apply a sequence of reactions) Let P = Rα1 · · ·Rαs a sequence of re-
actions of a flux vector v. P is applied to the DAC 〈M,R,y〉 as follows: If Rα1 can be
fulfilled, then Rα1 is fulfilled, leading to a new discrete reaction vessel yRα1 . To the reaction

Rαl we have yRα1 ···Rαl−1
Rαl−−→ yRα1 ···Rαl only if yRα1 ···Rαl−1 has enough reactants to consume

Rαl, for l = 2, ..., s.

Definition 39 (Terminal reaction vessel) Let Q∗ = 〈M,R,y〉 be a DAC and P =
Rα1 · · ·Rαs a sequence of reactions of a flux vector v. The application of P over a 〈M,R,y〉
leads to a terminal discrete reaction vessel yP such that y

Rα1−−→ · · · Rαs−−→ yP , which is the
discrete reaction vessel once all reactions specified in P are fulfilled.

Example 9. M = {a, b, c}, R = {4a + 3b→ c, 2c→ 10a + 2b, a→ 2b}. This leads to the

stoichiometric matrix S =

 −4 10 −1
−3 2 2
1 −2 0

 . We are going to focus in the self-maintaining
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property of the AC, but similar analysis can be done for other properties.
Note that the self-maintaining sets are {∅}, {b} and {a, b, c}. But the only set in which the
reactions can take place is {a, b, c}. It is easy to verify (by inspection) that the minimal
flux vector which satisfies the condition of self-maintainance is v∗ = (2, 1, 2). In fact Sv∗ =
(0, 0, 0), hence there is no destruction or creation of molecules in the reaction process specified
by v∗.
From a discrete point of view, to fulfill the sequence of reactions specified by v∗ without
taking care of the order in which reactions specified in v∗ take place, it is easy to show that
we require an initial multiset y such that A(y∗,mi) ≤ A(y,mi) where y∗ = 10a+ 6b+ 2c.

On the other hand, consider the discrete reaction vessel ȳ = 4a + 3b + c. Note that
for all i = 1, ..., n we have A(ȳ, mi) < A(y∗,mi). But applying the sequence of reactions
P ∗ = R1R2R3R3R1 of v∗ to ȳ we have

ȳ
R1−→ 2c

R2−→ 10a+ 2b
R3−→ 9a+ 4b

R3−→ 8a+ 6b
R1−→ ȳ.

Then, we can re-obtain the multiset ȳ with the sequence of reactions P ∗. But we cannot re-
obtain ȳ from any sequence of reactions of v∗ as did for y∗. In fact, the sequence of reactions
P ∗ cannot begin with R2 because ȳ has not enough reactants to fulfill it, and if P ∗ would
begin with R3, ȳ

R3 would not be able to fulfill R2.

Theorem 5 (Equivalence between AC and DAC) Let 〈M,R〉 be an AC, Y ⊆ M a
self-maintaining set of 〈M,R〉 and v a flux vector which verifies the self-maintenance of
Y. Then, there exist a DAC 〈M,R, y〉 where y ∈ PM(Y), such that for every sequence of
reactions P obtained from v we have that A(y,mi) ≤ A(yP ,mi) for i = 1, ..., n.

Proof Let R = {R1 = A1 → B1, ..., Rk = Ak → Bk}, v = (v1, ..., vk). As the stoichiometric
matrix involves only integer coefficients we can consider without loss of generality that vi ∈ N
for i = 1, ..., k. Let ω =

∑k
i=1 vi. If y is such that A(y,mi) =

∑k
j=1A(Aj,mi) we are going to

have enough reactants for every reaction Rαi in the application of the sequence of reactions
P = Rα1 · · ·Rαω obtained from v, no matter the order in which reactions are applied. In
fact, note that for every u ≤ ω we have

A(yα1···αu ,mi) = A(y,mi) +
u∑
l=1

(−A(Aαl ,mi) +A(Bαl ,mi)) ≥ 0.

Then we reach the terminal discrete reaction vessel yP . Furthermore note that: A(yP ,mi) =
A(y,mi) +

∑ω
l=1(−k

αl
i + jαli ) = A(y,mi) + fi, with fi the production rate of molecule mi.

Then A(yP ,mi) ≥ A(y,mi) if and only if fi ≥ 0, for all i = 1, ..., n.

�

Definition 40 (Discrete-self-maintaining) Let 〈M,R〉 be an AC, Y ⊆ M and RY =
{Rα1 , ..., Rαl}. The DAC 〈Y ,R,y〉, where y ∈ PM(Y), is discrete-self-maintaining if and only
if there exists a sequence of reactions P such that s = Rα1 · · ·Rαl is a subsequence of P and
A(yP ,mi) ≥ A(y,mi) for all i = 1, ..., n.
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Corollary 4 Let 〈M,R〉 be an AC and Y ⊆ M. Y is self-maintaining iff for some
y ∈ PM(Y) the DAC 〈Y ,RY , y〉 is discrete-self-maintaining.

Proof Follows from Theorem 5 and Definition 40.

�
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Chapter 5

Discrete formalisms and DAC

We are going to introduce two equivalent formalisms to frame an algorithmic study of AC.

5.1 Petri Nets

Petri nets are one of the most popular formal models for the representation and analysis of
parallel processes. It is due to C.A. Petri, who introduced it in his doctoral dissertation in
1962.

Definition 41 (A Net) A net N is a triple (S, T, F ), where S and T are two disjoint,
finite sets, and F is a relation on S ∪ T such that F ⊆ (S × T ) ∪ (T × S).

The elements of S and T are called places and transitions, respectively, and the elements of
F are called arcs. A marking of a net N = (S, T, F ) is a mapping M : S → N. A marking M
enables a transition t if it marks all its input places. If t is enabled at M , then it can occur,
and its occurrence leads to the successor marking M ′ , which is defined for every place s as
follows: a token is removed from each input place of t and a token is added to each output
place of t (if a place is both input and output place of a transition, then its number of tokens

does not change). This is denoted by M
t−→M ′.

Definition 42 (Petri net) A Petri net is a pair (N,M0), where N is a net and M0 a
marking of N , called initial marking.

A sequence M0
t1−→ M1

t2−→ ...
tn−→ Mn is a finite occurrence sequence leading from M0 to Mn

and we write M0
t1···tn−−−→ Mn. A sequence M0

t1−→ M1
t2−→ ... is an infinite occurrence sequence.

An occurrence sequence is maximal if it is infinite, or it leads to a marking which does not
enable any transition. A marking M of N is reachable if M0

σ−→M for some sequence σ.
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Definition 43 (Language of a Petri net) The language of (N,M0) with respect to M f

is
L(N,M0,M

f ) = {σ|M0
σ−→M f},

and the trace set of (N,M0) is

T (N,M0) = {σ|M0
σ−→M for some marking M}.

5.2 Vector Addition Systems

VAS arose from the necessity to develop a formal framework of parallel programming [29].
A vector in this context is usually an element of Zn or Nn for a fixed n. a[i] denotes the i-th
coordinate of the vector a. For a, b ∈ Zn, a+ b is defined as usual and a ≥ b⇔ a[i] ≥ b[i] for
i = 1, . . ., n. 0 is the zero vector. For a finite set V of vectors, V ∗ denotes the set of all finite
strings in V , including the empty string λ. If w = v1v2. . .vk (v1, . . ., vk ∈ V ), then a+w will
denote the vector a+ v1 + . . .+ vk. For example a+ xy = a+ x+ y. Also a+ λ = a. If w is
obtained by the concatenation of two strings x and y from V ∗, i.e w = xy, x is said to be a
prefix of w. So the empty string λ and w itself are prefixes of w.

Definition 44 (Vector Addition system) A Vector Addition System (in short VAS) is
an ordered pair A = (V, a0) where V ⊂ Zn is a finite set of vectors and a0 ∈ Nn.

Definition 45 (Legal string) Given a VAS A = (V, a0) a string w ∈ V ∗ is said to be legal
in A if and only if for every prefix x of w, a0 + x ∈ Nn. The set of all legal strings of A is
the language of A and will be denoted by L(A).

5.3 Equivalence between VAS and PN

There are several previous works in which VAS and PN are considered as equivalent for-
malisms to study algorithmic and complexity issues in the field of concurrent computation,
see for example [36, 38, 16, 21]. There are also works in which Petri Nets are used to model
chemical reaction networks [23, 30, 46, 27], but there is no work linking these formalisms
to the computational aspects of organisation computation in AC. We are going to show the
equivalence of PN and VAS by an example.

Example 10. Let N = ({s1, s2, s3}, {t0, t1, t2, t3}, {f1, ..., f10}), with

f1 = (s1, t3), f2 = (t3, s2), f3 = (s2, t2), f4 = (t3, s1),

f4 = (t2, s3), f5 = (s3, t2), f6 = (s3, t0),

f7 = (s1, t1), f8 = (t1, s3), f9 = (s1, t0).

Let M be the initial marking s.t M(s1) = 1, M(s2) = 0, M(s3) = 0.
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Figure 5.1: The Petri Net (N,M) showed as a bipartite graph. The round nodes represents
the places, the rectangular nodes are the transitions, the black circles represent the available
tokens in the places of M .

Note that transitions represent how the tokens in the places are consumed, produced or
exchanged. In this case the transition t0 its a token consumer and the rest of transitions are
exchange transitions. There is no production transition in this example.

Now consider the VAS A = (V = {v0,v1,v2,v3}, a0 = (1, 1, 0)) with

v0 = (−1, 0,−1),

v1 = (−1, 0, 1),

v2 = (0,−1, 0),

v3 = (0, 1, 0).

(5.1)

The amount of tokens of M in the place si is represented by the i-th coordinate of a0. Note
that v0 represents the consumption transition t0, in the same way v1 represents t1. Vectors
v2,v3 represents the transitions t2, t3. But there is a subtle detail: note that t2 consumes
one token from s2 and one token from s3 to generate a token in s3. But this consumtion-
production of token s3 is not seen in v3 because it has only zero in the coordinate which
represents s3. From here we deduce that the set of reachable markings of a given PN (N,M)
is equal to the legal states of its corresponding VAS (V, a0) if and only if every place has
at least enough tokens to fire all the transitions in which the amount of consumed tokens is
equal to the produced tokens (and thus a0 will be the vectorial representation of the amount
of tokens of M).

Remark: The equivalence stated above between PN and VAS is useful enough to study the
structural properties of these systems. Results about structural properties of PN and VAS
are the source of insights and ideas of this work.
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5.4 VAS induced by a DAC

The language of a given VAS is composed by multisets1 instead of sets. We are going to
show an equivalence (w.r.t the discrete-self-maintaining property) between DAC and VAS,
and due to equivalence of VAS and PN [36], the properties of AC can also be studied in
PN. To show the relation between DAC and VAS, we need first the notion of vector addition
system with states, which is a VAS with a state transition control. Formally:

Definition 46 (Vector Addition system with States) Let V ⊂ Zn be a finite set of
vectors, T a finite set of states and Q ⊆ T × V × T a transition relation. We say that the
four-tuple AT = (V, T, α, p0, Q) with α ∈ Nn

0 , p0 ∈ T is a Vector addition system with states,
in short VASS.

A VASS represents a VAS in which each state has its own set of vectors, and the application
of any vector leads to a new state. Thus any single state VASS is exactly a VAS. The
application of a vector and the corresponding state change will be called transition. The
transition (p, q, v) ∈ Q which will be noted by p→ (q, v), can be applied at point x at state
p and yields the point x+ v in state q. We say the transition is legal iff x+ v ≥ 0. We denote
the concatenation (or word) of the transitions t1, ..., tk as w = t1 · · · tk. We define that w is
reachable from a point x0 and a state p0 if and only if every prefix w̄ = t1 · · · tl, 1 ≤ l ≤ k of
w is legal. We denote the application of a reachable word of transitions w from a point x0
and a state p0, leading to a state xf and a state pf as (x0, p0)

w−→ (xf , pf ).
We are going to introduce a way to generate a VASS from a DAC (which is derived from
an AC as well) in which the words of the VASS simulate sequences of reactions applied to
the DAC (which in turn simulate flux vectors applied over the stoichiometric matrix derived
from the AC). It is inspired in the similarity between the reaction process in DAC, and the
transitions defined in the VASS formalism.

Theorem 6 (Relating DAC, PN and VAS from organisations) Let
〈M,R,y〉 with y ∈ PM(M) be a DAC. Then there exists a VASS A = (T, VR, α, p0, Q), such
that for every sequence of reactions P which can be fulfilled in 〈M,R,y〉, there exists a reach-
able word wP in A. Furthermore if P verifies the discrete-self-maintainance of 〈M,R,y〉,
then the reachable word wP in A is such that (α, p0)

wP−−→ (ᾱ, p̄) with ᾱ ≥ α.

Proof We are going to define A: α is the vectorial representation of y (we assume a given
order in M), the initial state p0 belong to some state control T which we will derive later
and VR is derived from R as follows:
Each Ri = Ai → Bi is represented in VR by a reactant vector vr

i and production vector vp
i

defined by

vr
i = (−A(Ai,m1), ...,−A(Ai,mn)), vp

i = (A(Bi,m1), ...,A(Ai,mn)).

The state control T and the transitions are constructed to keep causality of the reactions.
T has to have one state ri for every reaction Ri ∈ R, which represents the beginning of the

1Where muiltiset are represented as vectors in Nn.
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reaction Ri (where the reactants are consumed), and one state p which represents the end
of the reaction (where the products are created and the system is ready for a new reaction).
Then T = {r1, ..., rm, p}. Finally, we need to define the relation transition Q: For each ri we
have transitions p→ (ri,v

r
i ) and ri → (p,vp

i ), and p0 = p.
We can simulate the application of the reaction Rγ with the word wγ = vr

γv
p
γ . If y has

enough reactants to fulfill Rγ then the transition p→ (vr
γ, rγ) is legal, then wγ is reachable.

In fact, (α, p)
wγ−→ (αγ, p) where αγ is the vectorial representation of yRγ . Furthermore,

if P = Rγ1 · · ·Rγf is a sequence of reactions which reaches the terminal discrete reaction

vessel yP , then the word wP = vr
γ1

vr
γ1
· · ·vr

γf
vp
γf

hold (α, p0)
wP−−→ (ᾱ, p̄), where ᾱ is the

vectorial representation of yP and p̄ = p. Finally if P verifies the discrete-self-maintainance
of 〈M,R,y〉, it means we have A(y,mi) ≤ A(yP ,mi) for i = 1, ..., n, hence we have ᾱ ≥ α.

�

Definition 47 (Induced VASS from a DAC) The VASS A described in the proof of
Theorem 6 is called the induced VASS from the DAC 〈M,R,y〉.

Corollary 5 The induced VASS A from 〈M,R,YM〉 is unique and can be constructed in
|〈M,R〉| TIME.

Lemma 10 [24] Is posible to simulate a VASS of dimension n generating an equivalent VAS
of dimension n + 3 with an O(n) time procedure. Then, VASS and VAS have the same
expressive power.

Remark: It is important to note that the VASS generated in Theorem 6 must have two
states because it has to consider the causality of the discrete approach of reactions (see
Example 9). If the initial reaction vessel has unlimited2 molecules, then it is not necessary
to consider two states. This means it is required to consider one single state (and thus we
have a VAS instead of a VASS) and define the reactions as the columns of the stoichiometric
matrix instead of consider separately the consumed (left hand side of the reaction specified
in AC) and produced (right hand side of reactions specified in AC) parts of the reaction.

2This will be defined precisely in Chapter 7.

54



Chapter 6

Discrete properties and AC

In this chapter we are going to interpret in DAC language some of the well known properties
in Petri nets and Vector addition systems in order to show the strong relation between the
properties defined for Algebraic chemistries and its discrete counterpart. We will let fix
for this chapter an AC Q = 〈M,R〉, a DAC Q∗ =〈M,R,M〉, where |M| = n, |R| =
k and A(M,mi) > 0 for i = 1, ..., n. There are several structural properties defined for
PN [15, 36, 40] as well as for VAS [29, 22, 38]. The application of PN to biochemical
modelling has been considered in previous works [23, 30, 46], but this approach has never been
considered for organisation computation. We are going to review some relevant properties
which are strongly related to the concept of organisation, in particular with respect to the
self-maintainance property. As DAC, PN and VAS are equivalent (see Chapter 5), we are
going to define the properties using the PN or DAC notation. We will also discuss briefly
the relation that each of these properties has w.r.t biochemical reaction networks and we
will show examples (in Petri Net bipartite graph notation) which exhibits the mentioned
properties (all the examples are extracted from [36]).

6.1 Deadlock-freedom

Definition 48 (Deadlock-free Petri Net) A Petri net is deadlock-free if every reachable
marking enables some transition.

In DAC terminology, deadlock-freedom means that every firable sequence of reactions P
applied to the initial reaction vessel M will lead to a resulting reaction vessel MP which is
able to fire some reaction. We will explore the consecuences of this fact.

Lemma 11 Let Q∗ =〈M,R,M〉 be a deadlock-free DAC. Then there exists an infinite firable
sequence of reactions.

Proof Follows strightforward by using inductively the Definition 48.
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�

Now we can sate a result which will be useful in the rest of the chapter.

Lemma 12 Let Q∗ =〈M,R,M〉 be a DAC. If there exist an infinite sequence P of reactions
in R which can be fired from M , then there exist a set Y ⊆M which is self-maintaining.

Proof Let P = Rp1Rp2 · · · . Hypotesis implies that there exist a set of reactions R∗ ⊆ R
which is fired infinitely often in P . If R∗ has inflow reactions, then the products of the inflow
reactions in R∗ forms a self-maintaining set.

If R∗ have not any inflow reaction, let M0 = M and Mi = M
Rp1 ···Rpi
0 . Mi represents the

reaction vessel once the first i reactions of the sequence P have been applied to M . As the
sequence {Mi}∞i=0 is infinite, we can extract an infinite subsucession {M1

i }∞i=0 in which the first
coordinate of each term is non decreasing with respect to i. Now we can extract from {M1

i }∞i=0

an infinite subsequence {M2
i }∞i=0 in which the second coordinate is no decreasing with respect

to i. Following this process, {Mn
i }∞i=0 is an infinite subsequence of reaction vessels in which

each coordinate is non decreasing with respect to i. Let Y the set of molecules in which

Mn
0 has positive values and S such that Mn

0
S−→ Mn

1 . As A(Mn
0 ,mi) ≤ A(Mn

1 ,mi) for all
i = 1, ..., n, we have the DAC 〈Y ,RY , y〉where y = Mn

0 is discrete-self-maintaining (verified
by the sequence of reactions S). Then by Corollary 4 we have Y is self-maintaining.

�

Corollary 6 Let Q∗ =〈M,R,M〉 be a DAC. If there exists an infinite sequence P of
reactions in R which can be fired from M and each reaction R of R is infinitely often in P ,
then M is self-maintaining.

Figure 6.1: A deadlock-free Petri Net.
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6.2 Boundedness

Definition 49 (Bounded Petri net) A Petri net is bounded if its set of reachable mark-
ings is finite.

In DAC terminology boundedness means that the possible set of reaction vessels reachable
from the initial reaction vessel is finite. Thus, if some sequence S of reactions verifies the
discrete-self-maintainance of a bounded DAC Q = 〈M,R,M〉, then the terminal reaction
vessel MS has to fulfill MS = M . Because if MS ≥ M but for some coordinate i we have
MS[i] > M [i], then the successive application of S to M would lead to infinite different
possible reachable states from M . This means a bounded and self-maintaining AC cannot
overproduce molecules. The overproduction in biology is important; there exist molecules
called growth factors which are responsible for the growth of organisms [48, 51]. We are
going to study in detail the overproduction in AC in Chapter 8.

Figure 6.2: A bounded Petri Net.

6.3 Reachability

The reachability problem for Petri nets consists of deciding, given a Petri net (N,M0) and a
marking M of N , if M can be reached from M0.

Definition 50 (Reachable marking) Let Q∗ =〈M,R,M〉 be a DAC and M∗ ∈ PM(M)
a discrete reaction vessel. M∗ is reachable from M in Q∗ iff there exists a sequence of reactions
P built with the reactions in R s.t M∗ = MP .
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Remark: If there exist M∗ s.t for some sequence of reactions P we have A(M∗,mi) ≤
A(MP ,mi) for all i = 1, ..., n, then Q∗ is discrete-self maintaining, and thus Q is self-
maintaining (by Corollary 4). This modified reachability problem is called the Coverability
problem, we are going to explore this problem in detail in the next chapter.

6.4 Liveness

Liveness in Petri nets deals with the firability of transitions in a sequence of reactions, i.e
how firable is a transition w.r.t the possible sequences of reactions.

Definition 51 (Live reaction) Let Q∗ =〈M,R,M〉 be a DAC and R ∈ R a reaction. R
is

• 0-Live iff no sequence of reactions built from R and firable from M contains R in it.

• 1-Live iff there exists a sequence of reactions built from R and firable from M which
contains at least once R in it.

• 2-Live iff for any k > 0 there exists a sequence of reactions built from R and firable
from M which contains at least k times R in it.

• 3-Live iff R appears infinitely often in some sequence of reactions built from R firable
from M .

• 4-Live iff R is 1-Live for any reachable reaction vessel from M .

Remark: Note that if a given PN (N,M0) is j-live, then (N,M0) is i-live for any 1 ≤
i ≤ j ≤ 4.

Lemma 13 Let Q =〈M,R〉 be an AC:

1. If for all M ∈ PM(M) s.t A(M,mi) > 0 for all i = 1, ..., n, we have that the DAC
Q∗ = 〈M,R,M〉 has a 0-live transition, then M is not self-maintaining.

2. If for some M ∈ PM(M) we have the DAC Q∗ =〈M,R,M〉 every transition is 2-live,
then there is some set Y ⊆M which is self-maintaining.

Proof 1 ) Hypothesis implies that we cannot build a sequence of reactions s.t all the reactions
are fired at least once. This means that every flux vector which has all its coordinates greater
that zero, would lead to a negative production rate for some molecule, and thus no flux vector
would verify the condition of self-maintainance.
2 ) Hypothesis implies that for each k ∈ N we can build a sequence of reactions Sk which
verifies 2-liveness of R. Then by using Lemma 12 we complete the proof.
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Figure 6.3: Transition t1, t2, t3 are 1-live, 2-live and 3-live respectively.

�

There have been much effort in understanding liveness in PN under certain constrains on the
sequences reactions; those constrains were called fairness, justice, impartiality, etc. These
constrains are defined, in most cases, in terms of the relative amount of times which each
reaction is fired in a live sequence of reactions. See [26, 9] for a detailed algorithmic work on
those constrains. Liveness concept under fairness-like constrains has a deep link with biology.
In biochemical systems the reactions can have different time-scales, this means that the
chemical structure of the system constrains the relative amount of times that each reaction
happens in the reaction vessel with respect to the rest of the reactions, these constraints
come from the size of the molecular species involved in the reactions, their relative velocities,
charges, and so on. We are not going to explore this aspect in this work.

6.5 Persistence

Definition 52 (Disabling reactions) Let Q∗ =〈M,R,M〉 be a DAC and let R1, R2 ∈ R.
We say R1 disable R2 in Q∗ if any sequence P of reactions containing R2 is not firable from
the DAC 〈M,R,MR1〉.

Definition 53 (Persistent DAC) A DAC Q∗ =〈M,R,M〉 is persistent if for any two
different reactions R1, R2 of R and any reachable reaction vessel M∗, if R1 and R2 are
enabled at M∗, then the occurrence of one cannot disable the other.

Lemma 14 Let Q∗ =〈M,R,M〉 s.t every reaction in R is firable from M . If Q∗ is persistent,
then M is self-maintaining.

Proof LetR = {R1, ..., Rk}. By hypothesis R1 is firable from M , and Q∗ is persistent. Hence
there exist a sequence of reactions S12 such that R2 is firable from MS12 . As R2 is firable
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from MS12 , and Q∗ is persistent, there exist a sequence of reactions S23 such that R3 is firable
from MS12S23 . Continuing this process, we will obtain a sequence S1 = S12S23 · · ·Sk−1kSk1 in
which all the reactions are fired at least once and every reaction in R is firable from MS1 .
Starting from MS1 , we can repeat the process of build a sequence S2 in which each reaction
is fired at least once and every reaction is firable from MS1S2 . Then we can build an infinite
sequence of reactions S1S2 · · · in which every reaction is infinitely often in it. By Corollary 6
M is self-maintaining.

�

Corollary 7 Let Q∗ =〈M,R,M〉 s.t every reaction in R is firable from M . If Q∗ is
persistent, then M is an organisation.

Proof It follows from the the fact that GCL(M) =M.

�

Figure 6.4: A Persistent Petri Net.

Remark: Persistence is strictly stronger property than self-maintainance. Let for example

Q∗ = 〈{a}, {R1 = a→ ∅, R2 = a→ 2a}, a〉.

Clearly Q∗ is discrete-self-maintainaing (and thus Q = 〈{a}, {R1, R2}〉 is self-maintaining).
Note that R1 and R2 are reachable, but firing R1 we disable R2. Persistence is a very
important property in the study of concurrence [12, 31, 5]. It also has arised as a new source
of research in biochemical networks in recent years, principally by works of Angeli et.al. It
has been observed that persistent networks are stable, this meaning that all molecules has
concentration greater than zero in asymptotic regime (for a detailed work on this matters
see [3, 4]).
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6.6 Home states

Definition 54 (Home state of a DAC) Let Q∗ =〈M,R,M〉 be a DAC. A discrete re-
action vessel M∗ ∈ PM(M) is a home state if it is reachable from every reachable state from
M .

Definition 55 (Reversible DAC) A DAC Q∗ =〈M,R,M〉 is reversible iff M is reach-
able from any reachable marking.

Lemma 15 Let Q∗ =〈M,R,M〉 be a DAC. If M∗ ∈ PM(M) is a home state of Q∗, then
the DAC 〈M,R,M∗〉 is reversible.

Corollary 8 Let Q∗ =〈M,R,M〉 be a DAC. If M∗ ∈ PM(M) is a home space of Q∗, then
the set M∗

set = {m ∈M s.t A(M∗,m) > 0}, is self-maintaining.

Proof Let RM∗set
= {R1, ..., Rl} and s = R1 · · ·Rl. As M∗ is a home state then there exists

a sequence s′ s.t (M∗)ss
′

= M∗. Then 〈M∗
set,RM∗set

,M∗〉 is discrete-self-maintaining. Thus
by Corollary 4 M∗

set is self-maintaining.

�

The home state definition is used as an extension of the reversibility concept in concurrent
systems as it is stated in Lemma 15, see [36] for more details about reversibility and home
states. The concept of home states has been used to understand the reversible process inside
biochemical networks principally by Reddy et.al in [43, 44].

Figure 6.5: The marking in the left picture is not a home state, but the marking in the right
picture is a home state Petri Net.
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Chapter 7

Computing organisations from
discrete point of view

This chapter analizes the problem of verifying the self maintaining property of a given set
of molecules. This problem will be studied using concepts, algorithms and methods derived
from PN, VAS and Integer Linear Programming (ILP) (see section 7.4). This means we are
going to study the problem from a discrete point of view.

We will present the Karp and Miller tree [29] (see definition 57). Based on some modi-
fications of the Karp and Miller tree we will develop an algorithm to build a tree useful to
verify self maintainance. Finally we will to bound the size of this new tree using results from
Linear Algebra and ILP.

In this chapter will fix a DAC and use the following notation:
Q = 〈M = {m1, ...,mn},R = {R1, ..., Rk}〉 be an AC, and Q∗ = 〈M,R,M0 = mp1

1 · · ·mpn
n 〉

be a DAC. Let µ (µ∗ respectively) be the number of bits required to represent the largest
value mentioned in Q (Q∗ respectively).

7.1 The Karp & Miller Tree

The Karp & Miller tree was developed to decide the boundedness1 problem in VAS, which
is equivalent to the non-termination problem in PN. It was shown that it is also useful to
decide the covering problem2 of VAS and PN (via a PTIME reduction) [38].

Definition 56 (Coverability Problem) Given a discrete reaction vessel Mf , the cover-
ability problem in DAC consists in deciding if there exists a sequence of reactions s in Q∗

such that M0
s−→M (M is the terminal reaction vessel3 of the sequence of reactions s starting

1See Section 6.2.
2See section 6.3.
3See definition 39.
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from M0) and for all m ∈ M it holds A(M,m) ≥ A(Mf ,m). We say Q∗ eventually covers
Mf or simply Q∗ covers Mf .

In this chapter we consider Q∗ as a Vector addition system or a Discrete algebraic chem-
istry indifferently (the equivalence between both formalisms is explained in detail in Chap-
ter 5). We will also use vectorial notation for multisets. This means that the multiset
mp1

1 · · ·mpn
n will be represented by the vector (p1, ..., pn).

In order to explain the algorithm to construct the Karp & Miller tree, we introduce the
following terminology:

1. The relation ≤ between n-dimensional vectors is defined as follows: y ≤ z if and only
if yi ≤ zi, for all i = 1, 2, ..., n.

2. 0 denotes the zero vector or the integer 0 depending on the context.

3. ω is a symbol such that, if n is an integer, then n < ω and n + ω = ω − n = ω. Most
of results in this chapter considers the extended natural numbers set N ∪ {ω} which
includes ω. The element ω was first introduced in [29] to deal with infinite growing
sequences of vectors in VAS, we are going to use ω in the same aim.

4. A rooted tree is a directed graph such that one vertex (the root δ) has no edges directed
into it, each other vertex has exactly one edge directed into it, and each vertex is
reachable from the root.

5. If ξ and ν are distinct vertices of a rooted tree, and there is a path from ξ to ν, then
we write ξ ≺ ν.

6. If there is an edge from ξ to ν we say ν is a successor of ξ. We equivalently say ξ is an
ancestor of ν.

7. A vertex without successors is called a leaf or end.

8. l : V → (N ∪ {ω})n is a labelling function of the set V of vertices.

9. Following definition 37, l(ξ)R represents the multiset (in vectorial notation) once the
reaction R is applied to the multiset l(ξ).

We shall give an algorithm for constructing a labelled rooted tree to verify coverability. Every
node of the tree will be labelled by a discrete reaction vessel (in vectorial notation). The root
of the tree is labelled by M0, and each node ξ has one son for each reaction that it can fire,
labelled by the multiset resulting of applying the reaction to the label of ξ. To ensure that
the tree is always finite, it is necessary to introduce the element ω to identify the infinite
growing paths in the tree.

Definition 57 (Karp & Miller tree) For any DAC Q∗, the rooted labelled tree T (Q∗)
constructed by Algorithm 5 is called the Karp and Miller tree, or K&M tree.
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Algorithm 5 The Karp and Miller Tree

Require: Q∗ = 〈M,R,M0 = mp1
1 · · ·mpn

n 〉
Ensure: A labelled rooted tree T (Q∗) = (V,E, l : V → N ∪ {ω}).

1: The root is labelled M0, Let ν be a vertex
2: if For some vertex ξ, ξ ≺ ν and l(ξ) = l(ν) then
3: ν is an end
4: else
5: The successors of ν are in one-to-one correspondence with the elements R = A→ B ∈

R such that 0 ≤ l(ν)R.
6: Let the successor of ν corresponding to R be denoted by νR
7: for each i = 1, ..., n do
8: The i-th coordinate of the label l(νR) denoted by l(νR)[i] is determined as follows:
9: if There exists ξ s.t ξ ≤ ν, l(ξ) ≤ l(ν)R and A(l(ξ),mi) < A(l(ν)R,mi) then

10: l(νR)[i] = ω.
11: else
12: l(νR)[i] = A(l(ν),mi) +A(B,mi)−A(A,mi).
13: end if
14: end for
15: end if

Lemma 16 For every DAC Q∗ the K&M tree T (Q∗) is finite.

Proof The DAC Q∗ has an equivalent VAS V , the proof follows from [29].

�

Lemma 17 The complexity of the coverablity problem with input Q∗ is in (µ∗ + log(2))2cn-
SPACE, where c is some constant independent from Q∗.

Proof The DAC Q∗ has an equivalent VAS V , the proof follows from [45].

�

Remark: Algorithm 5 does not find the sequence of reactions which covers the initial reaction
vessel (the root of the tree). Algorithm 5 only verifies the existence of such sequence, because
the ω element induces a lost of information in how the covering sequences are.

For example, let

Q∗ = 〈{a, b}, {R1 = a→ b2, R2 = b→ a,R3 = b→ ∅}, a〉.

The K&M algorithm returns the tree:

In the next section we will give a sligthly modified version of the Karp & Miller tree
construction to decide self maintainance in AC.
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Figure 7.1: The node labelled by (ω, ω) corresponds to the sequence of reactions R1R2R2

applied to (1, 0) in the tree. But (1, 0)R1R2R2 = (2, 0), which only covers (1, 0) in the first
coordinate. This is because (1, 0)R1R2 = (1, 1) which covers (1, 0) in the second coordinate,
thus the second coordinate is labelled by ω in the tree. (1, ω)R2 = (2, ω) which covers (1, ω) in
the first coordinate, and then (ω, ω) reflects that both coordinates can be increased infinitely.
The element ω induces a lost of information about how the coordinates were covered, in order
to simplify the verification of coverability.

7.2 Generalizing the algorithm by avoiding the initial

marking

The K&M algorithm depends on the initial reaction vessel M0 of Q∗. To verify self main-
tainance of Q is equivalent to verify the existence of some DAC Q∗ (meaning some initial
reaction vessel M0) such that, Mf = MR1···Rk

0 is covered by Q∗ (to see a formal proof check
Theorem 5). Thus, to verify the self maintainance of Q, first we should guess an initial
reaction vessel M0 with enough molecules to derive the minimal sequence of reactions which
would cover M0 starting from Mf = MR1···Rk

0 . Such M0 should be then the root of the K&M
tree.

To simplify the explanations we are going to assume the existence of an element α which
represents the unlimited (see remark of lemma 10) amount of molecules requiered in the
initial reaction vessel to verify self maintainance. This means, the minimal sequence of
reactions s which verifies self maintainance of Q∗ can be applied to the initial reaction vessel
M0 = (α, ..., α) (leading to a terminal reaction vessel M s

0 ≥ M0). At the end of the chapter
we will prove that for every network this α is a fixed natural number which is determined
by the size of the minimal (in L1 norm) flux vector which verifies the self maintainane of
M and by the maximal element mentioned in Q represented by 2µ (see Corollary 12 and
Corollary 14). We introduce here this element α only to simplify the presentation.

Definition 58 (Unlimited element) Given an AC 〈M,R〉, let α be a natural number
such that any sequence of some flux vector which verifies the self maintainance of M is
firable by (α, ..., α).
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In the rest of the chapter we will maintain the notations of Section 7.1.

7.2.1 A generalized tree

We are going to modify the Algorithm 5 to build the K&M tree for verifying self maintainance
of Q.

1. We will change the input of the Algorithm 5 to prescind from the initial marking, now
it will be

Require Q.

2. As the sequence of reactions which verifies the discrete self maintainance of Q∗ (and
thus the self maintainance of Q) has to fire at least one time each reaction, we will
change the labelling of the root of the tree

1: The root ν0 is labelled by l(ν0) = M s
0 , where M0 = (α, ..., α) and s = R1 · · ·Rk.

3. As α represents an unlimited amount of molecules, we are able to fire all the reactions
from each node (because there will be always enough molecules). Then every node
would have |R| sons. We will change the condition in line 5 because it is not necessary
to ask for a firability condition. Now it will be

5: The successors of ν are in one-to-one correspondence with the elements
R = A→ B ∈ R.

Definition 59 (Intermediate K&M tree) The output of Algorithm 5 including the three
modifications stated above is called the intermediate K&M tree.

Theorem 7 (Intermediate K&M tree to verifiy self-maintainance) Let Q =〈M,R〉be
an AC, M0 = (α, ..., α) and s = R1 · · ·Rk. Let T2(Q) be the intermediate K & M tree. Q is
self maintaining if and only if some node ν of T2(Q) satisfies l(ν) = M sP

0 ≥ M0 for some
sequence of reactions P .

Proof ⇒: Let v = (v1, ..., vk) the flux vector which satisfies the self maintainance of Q. This
means vi > 0 for all i = 1, ..., k and

Sv ≥ 0 , where S is the stoichiometric matrix implied by Q. (7.1)

We can assume without loss of generality that v has only natural coeffcients because S has
only integer coefficients, (7.1) is an homogeneous equation and vi > 0 for all i = 1, ..., k.
This means vi ∈ N for all i = 1, ..., k. Let t some sequence of reactions built from v. Let
v′i = vi − 1 for all i = 1, ..., k. Let v′ = (v′1, ..., v

′
k) and P be a sequence of reactions built

from v′. By definition of self maintainance we have

M sP
0 = (M v1R1···vkRk

0 ) = (MR1···Rk
0 )v

′
1R1···v′kRk = M0 + f ,
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where f = (f1, ..., fn) and fi ≥ 0 for all i = 1, ..., n. Then for some node ν of T2(Q) we have
M sP

0 = l(ν) ≥M0.

⇐: Let P be the sequence of reactions s.t (M s
0 )P ≥ M0. This means (M s

0 )P = M0 + f ,
where f = (f1, ..., fn) and fi ≥ 0 for all i = 1, ..., n. Let v′i = j if the reaction Ri is repeated j
times in the sequence of reactions P . Then the flux vector v = (v1 = v′1 + 1, ..., vk = v′k + 1)
is a solution of (7.1) s.t vi > 0 for all i = 1, ..., k.

�

Corollary 9 Let Q = 〈M,R〉 an AC, Y ⊆ M, |Y| = p and |RY | = kY . Y is self-
maintaining if and only if there exists a kY-dimensional nonnegative integer flux vector v
such that SYv ≥ −SY1, where SY is the p × kY stoichiometric matrix associated to the AC
〈Y ,RY〉 and 1 is the kY-dimensional vector with all its entries equal to 1.

The intermediate K&M tree is an algorithm to verify self maintainance in AC. But as
the initial reaction vessel is unlimited, when the AC is not self maintainaing the tree would
be infinite. For example if Q = 〈{a, b}, {R = a→ b}〉, then the intermediate K&M tree will
begin with the initial reaction vessel MR

0 = (α− 1, α + 1), and it will not terminate.

To solve the problem of possible infiniteness of the depth of the tree, we are going to
assume that there exist a bound in the maximum amount of reactions required to cover the
intial reaction vessel. This implies that the depth of the intermediate K&M tree is bounded.
As we are going to see later, there are results from ILP which allows us to ensure that.

We are going to introduce a depth tree cut dmax ≥ 1. We will note with d the depth
of the tree during its construction. We will also assume that if for some node ν we have
l(ν) ≥ (α, ..., α) then the algorithm terminates (see Theorem 7).

With those slight modifications we change line 1 and we add a step to the algorithm
which builds the intermediate K&M tree.
1: The root is labelled M0, d = 0. Let ν be a vertex.
13: if l(ν)R ≥ (α, ..., α) or d > dmax then
terminate the Algorithm.

Definition 60 (Generalized K&M tree) The tree built by the intermediate K&M algo-
rithm with the modifications stated in this section will be called the generalized K&M tree.

Corollary 10 The generalized K&M tree algorithm always terminates. Furthermore, the
size of the generalized K&M tree to verify the self maintainance of Y ⊆ M is bounded by
kdmax+1
Y −1
kY−1

where kY = |RY |.

Proof The termination of the algorithm follows from the finitness of the depth cut dmax.
As the branching of the tree is kY we have the amount Xd of nodes at depth d in the tree
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follows the recurrence Xd+1 = kYXd. As X0 = 1 (the root node), we have the size S(d) of
the tree at depth d is

S(d) =
d∑
i=0

Xi =
d∑
i=0

kiY =
kd+1
Y

kY − 1
.

Evaluating last expression for d = dmax the proof is complete.

�

Remark: The key in the complexity study of this algorithm will be given by the possible
bounds that we can find for dmax. But there are another interesting improvements that we
can do, by prunning some branches.

7.2.2 Reducing the size of the tree

In this section we are going to introduce some prunning rules into the generalized K&M tree
to obtain a smaller tree.

Improvement 1: Eliminate decreasing pathways

Definition 61 (Decreasing node/sequence of reactions) Let ν be one of the nodes of
the generalized K&M tree, ξ an ancestor of ν such that l(ν) ≤ l(ξ) and for some coordinate
i = 1, ..., |l(ν)| is verified that A(l(ν),mi) < A(l(ξ),mi). We say ν is a decreasing node, and
the sequence of reactions t in the tree that fulfills l(ξ)t = l(ν) is called decreasing sequence of
reactions.

Remark: Any decreasing node ν verifies l(ν) ≤ M0 and for some i = 1, ..., n is hold
A(l(ν),mi) < α. In other case some ancestor ξ would cover M0 (thus the algorithm to
build the generalized K&M tree would have been finished already).

Lemma 18 Let ν̄ be a decreasing node of the generalized K&M tree such that for some se-
quence t of reactions we have l(ν̄)t ≥ M0, and let q be a sequence of reactions such that
l(ν0)

q = l(ν̄), where ν0 is the initial node of the tree. Then there exist a subsequence q′ of q
such that l(ν0)

q′t ≥M0.

Proof As ν̄ is a decreasing node, there exists an ancestor ξ such that l(ν) ≤ l(ξ) and
A(l(ξ),mi) > A(l(ν),mi) for some i = 1, ..., n. We have two cases:

1. ξ = ν0 (the root of the tree): By hypotesis we have

A(l(ν0)
q,mi)−A(l(ν0),mi) ≤ 0, then A(M q

0 ,mi)−A(M0,mi) ≤ 0
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for all i = 1, ..., n, and for some i = i0 the inequality is strict. We also have that
A(l(ν0)

qt,mi)−A(M0,mi) ≥ 0 for all i = 1, ..., n. Then we have

A(l(ν0)
t,mi)−A(M0,mi) ≥ A(l(ν0)

qt,mi)−A(M0,mi) ≥ 0,

for all i = 1, ..., n. This means in this case q′ = ∅.

2. ξ 6= ν0: Let q′ the sequence such that l(ν0)
q′ = l(ξ). Note that q′ is a non-empty

subsequence of q. Then applying the same argument as in the previous case, but from
the node ξ instead of ν0 we have that

A(l(ν0)
q′t,mi)−A(M0,mi) ≥ A(l(ν0)

qt,mi)−A(M0,mi) ≥ 0,

for all i = 1, ..., n.

�

Remark: Lemma 18 indicates that decreasing pathways are not useful to verify the self
maintainance.

Now the line 2 of the generalized K&M tree algorithm will be:
2: if, for some vertex ξ, ξ ≺ ν and l(ξ) ≤ l(ν) then
ν is an end.

This improvement allows to avoid decreasing pathways. Thus we reduce the amount of
candidates to verify the discrete self maintainance of Q∗ in the tree.

Improvement 2: Avoid permutations of the pathways

Let ν be a node of the generalized K&M tree. Note that given a sequence of reactions s we
have l(ν)s = l(ν)p(s), where p(s) is any permutation of the sequence s. This means that both
sequences applied to l(ν) lead to the same terminal reaction vessel. This is because we have
an unlimited initial reaction vessel in the input, then we do not need to care about the order
in which the reactions are fired (see Example 9 in Chapter 4). We are going to modify the
construction of the generalized K&M tree in such a way that ensures that every sequence of
reactions modulo permutations is present only once in the tree. This would lead to a smaller
tree.

Definition 62 (Succesor control function) For every node ν 6= ν0 of the generalized
K&M tree we define b(ν) = i if ν is the succesor of ν̄ and l(ν̄)Ri = l(ν), and b(ν0) = 1 for
i = 1, ..., k.
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Figure 7.2: A picture of how will look the tree for k = 4. Note that b(ν0) = 1, b(ν1) =
1, b(ν2) = 2, b(ν3) = 3, b(ν4) = 4. All the possible sequences RiRj (modulo permutation) are
resent once in the tree, and no sequence of reactions modulo permutations is present twice
in the tree.

The function b applies to the nodes and it is used to control which reactions have to be fired
below the nodes. Introducing this idea, line 5 of the generalized K&M tree looks:
5: The successors of ν are in one-to-one correspondence with the elements Rj = Aj → Bj ∈ R
such that j ≥ b(ν).
With this improvements introduced, the generalized K&M tree algorithm look as follows:

Algorithm 6 The generalized K&M tree with prunning rules

Require: Q =〈M,R〉and dmax.
Ensure: verify the self maintainance of M.

1: The root is labelled M s
0 and d = 0, where M0 = (α, ..., α) and s = R1 · · ·Rm. Let ν be a

vertex
2: if For some vertex ξ, ξ ≺ ν and l(ξ) ≤ l(ν) then
3: ν is an end.
4: else
5: The successors of ν are in one-to-one correspondence with the elements Rj = Aj →

Bj ∈ R such that j ≥ b(ν).
6: Let the successor of ν corresponding to R be denoted by νR
7: for each i = 1, ..., n do
8: The i-th coordinate of the label l(νR) denoted by l(νR)[i] is determined as follows:
9: if There exists ξ ≤ ν, l(ξ) ≤ l(ν)R and A(l(ξ),mi) < A(l(ν)R,mi) then

10: l(νR)[i] = ω.
11: else
12: l(νR)[i] = A(l(ν),mi) +A(B,mi)−A(A,mi).
13: end if
14: if l(νR) ≥ (α, ..., α) or d ≥ dmax then
15: terminate the Algorithm
16: else
17: d = d+ 1
18: end if.
19: end for
20: end if
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Corollary 11 Let 〈M,R〉 an AC, Y ⊆ M and |RY | = kY . Algorithm 6 verifies self-
maintainance of Y iff there exist an kY-dimensional nonnegative integer flux vector v such

that SYv ≥ −SY1 and |v|1 =
kY∑
i=1

|vi| ≤ dmax, where 1 is the kY-dimensional vector with all

its entries are equal to 1.

Proof Follows from Theorem 7 and Corollary 9.

�

7.3 The size of the generalized K&M tree

In this section we are going to bound the size of the tree constructed by Algorithm 6.

Theorem 8 (Sizing the generalized K&M tree) Let 〈M,R〉 be an AC, Y ⊆M, |RY | =
kY and |Y| = nY . The size of the tree built by Algorithm 6 with input (〈Y ,RY〉, dmax) is

bounded by

(
dmax + kY − 1

kY − 1

)
, where

(
·
·

)
is the biniomial coefficient.

Proof By step 5 of Algorithm 6 every node ν such that b(ν) = j has kY − j + 1 sons. We
are going to call such a node of the type Xj and we denote by Xj(d) the number of nodes of
type Xj at depth d in the tree.
Note that

Xj(d+ 1) =

j∑
i=1

Xi(d) , X1(1) = 1 and Xj(1) = 0 for j > 1. (7.2)

Let Gi(z) =
∞∑
i=0

Xi(n)zn be the generating function of Xi(n) for i = 1, ..., k.

As X1(n) = 1 for all n ∈ N, we have that G1(z) = 1
1−z .

Now we are going to prove by induction that for i > 1 Gi(z) = z
(1−z)2 ( 1

1−z )i−2.

From (7.2) we have that for i > 1

Gj(z) = z

j∑
i=1

Gi(z), (7.3)

then for i = 2 we have
G2(z) =

z

(1− z)2
. (7.4)

Now for the inductive case, supose that Gj(z) = z
(1−z)2 ( 1

1−z )j−2 for j ≤ k. For j = k + 1 we
have

Gk+1(z) = z
k+1∑
i=1

Gi(z), (7.5)
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then

Gk+1(z) =
z

(1− z)

k∑
i=1

Gi(z) =
z

(1− z)2
+

z2

(1− z)3

k−2∑
i=0

(
1

1− z

)i
=

z

(1− z)2

(
1 +

z

1− z

((
1

1−z

)k−1 − 1
1

1−z − 1

))
=

z

(1− z)2

(
1

1− z

)k−1
.

(7.6)

Now, we have that the size of the tree constructed by Algorithm 6 is given by the dmax-th

Taylor coefficient of
k∑
i=1

Gi(z). We have that

k∑
i=1

Gi(z) =
1

1− z
+

z

(1− z)2

k−2∑
i=0

(
1

1− z

)i
=

1

1− z
+

z

(1− z)2

((
1

1−z

)k−1 − 1(
1

1−z

)
− 1

)
=

(
1

1− z

)k
.

(7.7)

Then, the Taylor d-th coefficient of (7.7) is given by

(
d+ k − 1
k − 1

)
. Now, as the algo-

rithm has to reach a depth of dmax, the size of the tree built by Algorithm 6 is bounded by(
dmax + k − 1

k − 1

)
.

�

Corollary 12 If α is replaced by the value 2µdmax, then Algorithm 6 does not change its
self maintainance verification property.

7.4 dmax is bounded by Integer Linear Programming

Integer Linear Programming corresponds to solve the following problem:

Maximize cTx,

Subject to Ax ≤ b.
(7.8)

Where all the coordinates of x are integers. Thus, ILP consist in two problems, first verify the
existence of a solution x, and then find the x which maximizes cTx in the space of solutions.
If the coefficients of A and b are integers we say that Ax ≤ b is a Diophantine inequality.
Borosh and Trevig [7, 8] developed criterias to bound the absolute value of the coefficients of
the solutions of a Diophantine system of equations from the determinants of the submatrices
(minors) of A. Rackoff in [38] used the results of Borosh and Trevig to bound the complexity
of the coverability and boundedness problem in VAS (see Section 5.2). Later Rosier and
Chen in [45] developed a multiparameter analysis to give tight bounds to the boundedness
problem. Based on those ideas we are going to bound dmax.
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We are going to show that dmax is bounded by the minors of the stoichiometric matrix
S and the minors of the augmented matrix (S,−S1), where S is the stoichiometric matrix
assosiated to the AC Q and 1 is the k−dimensional vector with all the coordinates equal
to one (see Corollary 9). Finally by using the results of Johnson and Newmann [28] we are
going to bound the value of those minors in order to obtain a bound for the depth dmax of
the tree builded by Algorithm 6.

From [8] we have the following theorem.

Theorem 9 (Bounding solution of Linear system of equations) Let
Ax = b a system of n×m diophantine equations. Assume the rows of A are linearly inde-
pendent and denote by X (respectively Y ) the maximum of the absolute values of the n × n
minors of the matrix S (respectively the augmented matrix (A,b)). If the system has a solu-
tion in nonnegative integers, then the system has a solution x = (xi) in nonnegative integers
with xi ≤ X for m− n variables and xi ≤ (n−m+ 1)Y for n variables.

Then we have the following corollary:

Corollary 13 Let Ax ≥ b, a system of n×m diophantine inequations. Assume the rows
of A are linearly independent and denote by X (respectively Y ) the maximum of the absolute
values of the n×n minors of the matrix A (the augmented matrix (A,b)). If the system has
a solution in nonnegative integers, then the system has a solution x = (xi) in nonnegative
integers with xi ≤ max((m + 1)Ȳ , X̄) where X̄ is the maximum between the n − i minors
of the matrix A (Ȳ is the maximum of the n − i minors of the augmented matrix (A,b))
i = 1, ..., n− 1, and one.

Proof Note that
Ax ≥ b⇔ A′t = 0,

where A′ is the resulting matrix by catenate A with the n×n diagonal matrix B defined by

Bij =

{
− bi
|bi|
, if i = j

0, else

.

Now we can apply Theorem 9 to the system A′t = 0. We have that the rank of A′ is n,
then we have ti ≤ X ′ for m+ n− n = m variables and ti ≤ (m+ 1)Y ′ for n variables, where
X ′ and Y ′ are the maximum of the determinants of the n×n minor associated to A′. In this
case X ′ = Y ′ because the system A′t = 0 is homogeneous.

By the Laplace rule to calculate determinants the maximum of the n × n minors X ′ ≤
X̄ (Y ′ ≤ Ȳ respectively), with X̄ = max(X,X1, ..., Xn−1, 1) (Ȳ = max(Y, Y1, ..., Yn−1, 1)
respectively), where Xi (Yi respectively) is the maximum of the n− i×n− i minors of A (the
augmented matrix (A,b) respectively). This follows from the fact that catenate b to A can
lead the case that the maximum absolute value of some n− i minor Xi (Yi respectively) of A
((A,b) respectively) has a bigger absolute value than X (Y respectively) for some 1 ≤ i ≤ n,
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and thus the maximum of the values of the n×n minors of the catenate matrix would be Xi

(Yi respectively).

Then, as we do not know in principle which values of t are associated to the variables xi
or yi, but we know that X ≤ X̄ and Y ≤ Ȳ we have that ti ≤ max((m+ 1)Ȳ , X̄).

�

Now we are going to recall a theorem to bound the value of the determinant of a matrix, the
result is from [28].

Theorem 10 (Bound on the determinant of a matrix) Let A = [aij] be a n × n ma-
trix. For each 1 ≤ i ≤ n set

R+
i (A) =

∑
1≤j≤n,aij>0

aij, R−i (A) = −
∑

1≤j≤n,aij≤0

aij

Then, |det(A)| ≤
n∏
i=1

max(R+
i (A), R−i (A))−

n∏
i=1

min(R+
i (A), R−i (A)).

Now, combining results from Corollary 13 and Theorem 10 we have

Theorem 11 (Depth of the generalized Karp and Miller tree) Let
〈M,R〉 be an AC, Y ⊆M, |Y| = r and |RY | = q. For Ri = A→ B ∈ RY , with i = 1, ..., q.
Let

max

(
n∑
i=1

A(A,mi),
n∑
i=1

A(B,mi)

)
= pi,

and si the decreasing ordered sequence of those pi. Then the depth dmax of the tree defined

by Algorithm 6 to verify the self-maintainance of Y is bounded by q2
r∏
i=1

si.

Proof By Corollary 11 it is sufficient prove that dmax ≥ |v|1 for some v = (v1, ..., vq) such
that SYv ≥ −SY1.
By Corollary 13 we have that vi ≤ max(X̄, qȲ ) for i = 1, ..., q, where X̄ (Ȳ respectively) is
the maximum of the absolute values of the determinant of the r× r minors of the matrix SY
(the augmented matrix (SY ,SY1) respectively).

On the other hand, from Theorem 10 we have that X̄ and Ȳ are both bounded by
r∏
i=1

si.

Finally we have |vi| ≤ q
r∏
i=1

si. Thus |v|1 ≤ dmax = q2
r∏
i=1

si.

�

Corollary 14 The element α defined in definition 58 is finite for every network.
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Chapter 8

Studying structural properties of
organisations

The main goal of the static analysis of Algebraic Chemisitry is to obtain the organisational
structure, i.e the reduced set of candidates to be the fixed points of the dynamics (see
Theorem 1). In this chapter we are going to study in detail some underlying properties of
organisations. We are going to reveal the diverse roles of molecules inside the organisation.
This would lead to a better understanding of the process of computing the organisational
structure.

We are going to revisit concepts defined in Chapter 2 and Chapter 3. We are going to
define some special types of sets and we are going to prove that any organisation can be
uniquely decomposed as an almost non-overlapping union of this special types of sets.

8.1 Reactivity revisited

Extending the ideas of F.Centler et.al [10] detailed in Chapter, 3, we are going to study the
reactivity of molecules. We are going to generalize this notions in order to understand how
the organisations emerges in an AC.

Looking at the definition of reactive sets of Chapter 3, we see the definition is self-
supported in the sense that in order to verify the reactivity of a set it is only necessary to
look at the set and its firable reaction set. It is purposed a generalization, the molecules are
or are not reactive with respect to a set.

Definition 63 (Reactivity and enzymes w.r.t a set) Let 〈M,R〉 be an AC, X ⊆ M
and m ∈M. Let Rm

X = RX∪{m}.

• m is non-reactive w.r.t X iff for all reactions R = A→ B ∈ Rm
X , m is present neither

in A nor in B.
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• m is an enzyme w.r.t X iff for some reaction R′ = A′ → B′ ∈ Rm
X , m is present in A

and for all reaction R = A→ B ∈ Rm
X , A(A,m) = A(B,m).

• m is reactive w.r.t X iff for some reaction R′ = A′ → B′ ∈ Rm
X , m is present either in

A′ or in B′ and for some reaction R = A→ B ∈ Rm
X , A(A,m) 6= A(B,m).

We say that Y is a non-reactive, enzymatic or reactive set w.r.t X, if for all m ∈ Y , m is
non-reactive, enzyme or reactive w.r.t X respectively.

The following lemma states that for every set of molecules X, every molecule m is related to
X in one and only one of the senses defined above.

Lemma 19 Let 〈M,R〉 be an AC. Let X ⊆ M and m ∈ M. Then m has one and only
one of the following properties:

1. m is non-reactive w.r.t X.

2. m is an enzyme w.r.t X.

3. m is reactive w.r.t X.

Proof Note that definition 63 include all the possible cases. The only case which is not
explicitely considered in the definition is when for some reaction R = A → B, m is present
in B and A(A,m) = A(B,m), but this means that A(A,m) > 0, and thus m is present in
A, then m is an enzyme.

�

Definition 64 (Enzyme, reactive and non-reactive set) Let 〈M,R〉 be an AC and
Y ⊆ X ⊆ M. If Y is the maximal cardinality non-reactive, enzymatic or reactive set
w.r.t X we say Y is the non-reactive, enzymatic or reactive set of X respectively.

Remark: The inflow and outflow of a reaction network is always reactive. Note also that for
a given set of molecules X, if we add to X molecules which are non-reactive molecules w.r.t
X, we do not change the firable reaction set RX , and thus the closure property of X, or the
(semi-)self-maintainance of X would not to be changed. Enzymatic and reactive molecules
can change the firable reaction set of X.

The last definitions of this section recall some classic definitions in Petri nets, the set of
input transitions of a place, and the set of input places of a transition. The size of the input
transitions of a set of places, and the size of the set of input places of a set of transitions are
fundamental topological parameters in the study of Petri nets. [36].
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Type Closure Semi-self-maint. Self-maint.
Non-reactive maintained maintained maintained

Enzyme potentially lost maintained potentially lost
Reactive potentially lost potentially lost potentially lost

Figure 8.1: The table represents the maintainance or the posible losing of a property of a set
of molecules once an external molecule of the types specified in the table is added to the set.

Definition 65 (Activable reactions of a molecule in a reaction set) Let 〈M,R〉 be
an AC and m ∈M. We define

Act(m,R) = {R : R = A→ B ∈ R s.t m ∈ A}.

We say Act(m,R) is the activable set of reactions of m in R.

Definition 66 (Required set of molecules by a set of reactions) Let 〈M,R〉be an AC
and R = A→ B ∈ R. We define

Req(R) = {m : m is present in A}.

We say Req(R) is the required set of molecules of R. Furthermore, for a sequence of reactions
S = R1 · · ·Rk we define Req(S) =

⋃k
i=1 Req(Ri).

The set of input places in PN corresponds to the set Req(·), and the set of input transitions
corresponds to Act(·,R). We extend the notion of input transitions, by letting as parameter
the set of transitions from where the input transitions are extracted.

8.2 Closure and Support of molecules

In this section we are going to study more in depth the generated closure (Definition 18),
and we are going to introduce the notion of support of a set, which is the inverse relation
of the closure. We are going to prove that the generated closure induces an equivalent
relation into the supports of a set. Furthermore, by defining a union operator between sets
in this equivalent class of supports we will prove that it leads to an operationally equivalent
mathematical structure with respect to the set of all closed sets (the closed structure) together
with the operation tCL (see Definition 18), and thus a semi-lattice.

We are going to redefine in a set-function like manner some properties of Chapter 2. For
a detailed analysis in the set function-like analysis of reaction networks see [6].

Definition 67 (Producible and consumible set of a flux vector) Let 〈M,R〉be an AC,

let X ⊆ M and |RX | = t. We define P ∗(X) =
t⋃
i=1

P ei
X , where ei is the i-th canonical vector

of Rt and P v
X is defined in definition 4. Analogously we define C∗(X) =

t⋃
i=1

Cei
X . We say

P ∗(X) is the producible set of molecules by X, and C∗(X) is the consumible set of molecules
by X.
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The following Lemma is deduced from the definition of closure and semi self maintaining set,
combined with Definition 67.

Corollary 15 P ∗(X) ⊆ X iff X is a closed set.
C∗(X) ⊆ P ∗(X) iff X is a semi-self maintaining set.

We now are going to define operators in order to study the generated closure.

Definition 68 (Produced and accumulated support) Let 〈M,R〉 be an AC and Y ⊆
M a set of molecules. We define the following relations:

Psupp(Y,X)⇔ X ⊆M and Y ⊆ GCL(P ∗(X)),

Asupp(Y,X)⇔ X ⊆M and Y ⊆ GCL(X).

We say X is a Produced-Support or an Accumulated-Support of Y respectively.

Lemma 20 Psupp(Y,X) implies Asupp(Y,X).

Proof Psupp(Y,X) implies Y ⊆ GCL(P ∗(X)). As P ∗(X) ⊆ GCL(X), by Lemma 2 we
have GCL(P ∗(X)) ⊆ GCL(GCL(X)) = GCL(X). Then Y ⊆ GCL(X), this is equivalent to
Asupp(Y,X).

�

Remark: It is interesting to note that Psupp(Y,X) implies Asupp(Y,X) but the back-
ward implication is not necesarily true. For example let Y = {a}, X = {b} and the only
reaction b→ a. We have Asupp(Y,X) but Psupp(Y,X) is not true. The following is a simple
monotonicity result for operators defined above.

Lemma 21 (Monotonicity 1) Let 〈M,R〉be an AC. Let X, Y ⊆ M. Then Asupp(Y,X)
implies Asupp(GCL(Y ), X).

Proof Follows straigth from lemma 2.

�

As an example of the usefulness of these properties we restate some ideas about semi-
organisations in the next lemma.

Lemma 22 The following statements are true:

1. If Psupp(Y,X) for some X ⊆ Y , then GCL(Y ) is a semi-organisation.

2. GCL(Y ) is a semi-organisation iff for some X ⊆ GCL(Y ) we have Psupp(Y,X).
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Proof 1 ). Hypotesis implies by Lemma 2 that GCL(X) = GCL(Y ). Hypotesis also im-
plies that Psupp(X,X), this means X is semi-selfmaintaining and thus GCL(X) is a semi-
organisation. 2 ). ←: Follows from 1). →: Let X = C∗(GCL(Y )), it is trivial that
Psupp(Y,X) and X ⊆ GCL(Y ).

�

Now we are going to study the equivalence of sets under closure.

Definition 69 (Equivalence relation induced by closure) Let 〈M,R〉
be an AC and X, Y ⊆M. Let ∼=CL the relation

X ∼=CL Y ⇔ GCL(X) = GCL(Y ). (8.1)

We say ∼=CL is the closure equivalence induced by GCL on 〈M,R〉.

Lemma 23 For every AC 〈M,R〉, the closure equivalence induced by GCL on 〈M,R〉 is an
equivalence relation.

Proof The reflexivity and symmetry are trivial, the transitivity follows from lemma 21.

�

Corollary 16 Let 〈M,R〉 be an AC. Let X1, X2 ⊆ Y ⊆ M. We have Asupp(Y,X1) ∧
Asupp(Y,X2) iff X1

∼=CL X2.

Proof Follows from Definition 68 and Definition 69.

�

The previous corollary shows that there is a conceptual equivalence between the closure
equivalence relation ∼=CL and Asupp(·, ·) relation. The following definition, theorem and
corollary states this conceptual equivalence in more detail.

Definition 70 (Quotient space induced by closure) LetM/ ∼=CL be the quotient space
of M under the equivalence relation ∼=CL defined in definition 69. For all X, Y ∈ M/ ∼=CL

we define X ∪ Y as the class of GCL(X ∪ Y ).

Theorem 12 (Structural equivalence induced by the closure) Let
〈M,R〉be an AC. Let M/ ∼=CL be the quotient space of M under the equivalence relation
∼=CL defined in Definition 69 and C the set of all closed sets in 〈M,R〉 (the closed-structure).
Then there exist a bijection ψ betweenM/ ∼=CL and C which holds ψ(X∪Y ) = ψ(X)tCLψ(Y )
for every X, Y ∈ M/ ∼=CL, where ∪ is the set union defined in Definition 70 and tCL is
defined in Definition 18.
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Proof We define

ψ :(PM(M),∪) 7→ (C,tCL)

X 7→ GCL(X).

As C ⊆ M we have ψ is an epiyective function. Note that ψ(X) = ψ(Y ) iff GCL(X) =
GCL(Y ). This means Ker(ψ) is equivalent to ∼=CL. By classical isomorphism theorem we
have M/ ∼=CL≡ C.

�

Corollary 17 Let 〈M,R〉 be an AC. (M/ ∼=CL,∪) is a semi-lattice.

Proof Let C be the closed-structure. By Lemma 3 we have that (C,tCL) is a semi-lattice.
The result follow from Theorem 12.

�

Remark: Theorem 12 cannot be stated for intersection, because in general

GCL(X ∩ Y ) 6= GCL(GCL(X) ∩GCL(Y )).

For example consider the reaction network 〈{a, b, c}, {a→ b, c→ b}〉, X = {a} and Y = {c}.

8.3 Types of organisations

In this section we are going to define some fundamental types of organisations. We are going
also to prove that every organisation can be seen as a non-overlapping union of these types
of organisations.

8.3.1 Non-reactive

As we saw in Section 8.1, given a set X, we have a maximal set Y of molecules which are
non-reactive w.r.t X. Now we are going to study the sets which are non-reactive w.r.t to
themselves. We are going to prove that non-reactive structure is a meet semi-lattice w.r.t
to intersection, this means that biggest non-reactive set represents the whole non-reactive
structue. The lemmata of these section are trivially proved, but will be useful for further
analysis.

Lemma 24 Let Y be a closed set. Verifying if X is non-reactive w.r.t Y takes linear time
w.r.t |RX∪Y |+ |X|.
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Proof We only need to verify if for some m ∈ X Act(m,RX∪Y ) 6= ∅.

�

Remark: Every set which contains inflow or outflow molecules cannot be non-reactive.

The following lemma states that sets which are non-reactive w.r.t to themselves are or-
ganisations.

Lemma 25 Let X be a non-reactive set w.r.t to X. Then X is an organisation.

Proof If X is non-reactive w.r.t X then RX = {∅}, and thus X is an organisation.

�

Remark: Suppose we have two sets X1 and X2 both non-reactive w.r.t to themselves, then
the intersection X1∩X2 is non-reactive w.r.t to X1∩X2. But we cannot ensure the same for
the union of sets, i.e X1 ∪X2 could or could not be non-reactive w.r.t X1 ∪X2, For example
consider the network 〈{a, b}, {a + b → ∅}〉, {a} and {b} are non-reactive, but they together
form a reactive set w.r.t to itself. This leads the following result:

Corollary 18 Let 〈M,R〉 be an AC and

N = {N : N ⊆M s.t N is non-reactive w.r.t itself}.

Then (N ,∩) is a semi-lattice.

Non-reactive organisations are the simplest possible organisations, because they do not react
at all. From an enviromental-methaphorical point of view the non-reactive organisations
are stones on the grass. Note that non-reactive molecules are potentially reactive for new
chemical components which could came to the enviroment.

8.3.2 Overproduced sets

The overproduced sets are composed by molecules which are able to be produced in a strictly
higher quantity than they are consumed, without affecting the production of other molecules.

Definition 71 (Overproduced molecule) Let 〈M,R〉 an AC, and t ∈ {1, ..., n} such
that there exist a flux vector v = (v1, ..., vk) with vj ≥ 0 for j = 1, ..., k such that (Sv)i = fi ≥
0 for i = 1, ..., n, but ft > 0, where S is the stoichiometric matrix associated to 〈M,R〉. We
say mt is a potentially overproduced molecule in 〈M,R〉. If the flux vector v which verifies
the potential overproduction of mt holds vj > 0 for j = 1, ..., k, we say mt is overproduced in
〈M,R〉. Furthermore, a set of only potentially overproduced molecules is called a potentially
overproduced set and a set of only overproduced molecules is called an overproduced set.
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Remark: To verify that a molecule is potentially overproduced in a network, it is not required
to fire all reactions of the network because Definition 71 requires a flux vector v ≥ 0. But
to verify that it is overproduced requires fire at least one time every reaction, i.e v > 0.

Lemma 26 Let 〈M,R〉 be an AC and F ⊆ M. Verify if F is a potential overproduced set
in 〈M,R〉 is a Linear Programming problem.

Proof To verify the potential overproduction of F the system there has to be found a non-
negative flux vector v such that for all molecule mi ∈ F we have (Sv)i = fi > 0. This is the
first (fesibility) part of a LP problem.

�

Lemma 27 Let 〈M,R〉 be an AC and O ⊆ M. Let m ∈ O a potentially overproduced
molecule in 〈O,RO〉. If O is self maintaining, then m is overproduced in 〈O,RO〉.

Proof Let v the flux vector which verifies the potential overproduction of m, and v∗ the
flux vector which verifies the self maintainance of O. Then v +v∗ verifies the overproduction
of m in 〈O,RO〉.

�

Definition 72 (Maximal overproduced set) Let 〈M,R〉 be an AC and O ⊆ M an
organisation. We say F ⊆ O is a maximal overproduced set of O if F is an overproduced set
of O and for all F ′ 6= F overproduced set of O we have |F | > |F ′|. If for all m ∈ O, m is
overproduced in 〈O,RO〉, we say O is a totally overproduced organisation.

Now we are going to prove that the maximal overproduced set is unique.

Lemma 28 Let 〈M,R〉 be an AC and O ⊆M an organisation. Then there exists a maximal
overproduced set F in 〈O,RO〉 and is unique.

Proof If there are no overproduced molecules in O then the maximal overproduced set is
the empty set. In other case the union of all overproduced molecules in 〈O,RO〉 leads to a
maximal overproduced set. Now we are going to prove that the maximal overyproduced set
is unique. Suppose that there are two maximal overproduced sets F1, F2 ∈ O where F1 6= F2,
and let v1,v2 the flux vectors required to verify the overproduced property of F1 and F2 w.r.t
〈O,RO〉 respectively. Trivially, v1 + v2 verifies the overproduced property of F1 ∪ F2 w.r.t
〈O,RO〉, and Fi ⊂ F1 ∪ F2 for i = 1, 2. As the inclusion is strict we have a contradiction.

�

Remark The overproduced molecules are able to increase its amount infinitely in 〈M,R〉
via sequences of reactions (flux vector), without decreasing the amount of the other molecules
in the network. In Algorithm 6, the overproduced molecules are identified by the ω element
in the labelling of the nodes.
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Lemma 29 (monotonicity 2) Let 〈M,R〉 be an AC, X ⊆ M and m ∈ P ∗(X). If X is
potentially overproduced, then X ∪ {m} is potentially overproduced.

Proof Let m ∈ P ∗(X). If m ∈ X then m is potentially overproduced. If m /∈ X, then
m ∈ P ∗(X) − X, then there exist a reaction Rj firable by X which produces the molecule
m, i.e there exist Rj = A → B ∈ RX such that A(A,m) < A(B,m). Now, let vX a flux
vector which verifies the potential overproducibility of X such that (S1vX)i = fi ≥ 1 for all
i = 1, ..., |X|, where S1 is the stoichiometric matrix associated to 〈X,RX〉. As Rj is firable by
X and there exists r = max

m′∈X
(A(A,m′)), then rvX+v∗ verifies the potential overproducibility

of X ∪ {m}, where v∗ = (v∗1, ..., v
∗
k) with

v∗i =

{
0 if i 6= j,
1 if i = j.

Then X ∪ {m} is a potentially overproduced set.

�

Lemma 30 The closure of the inflow in a reaction network is a totally overproduced organi-
sation.

The following corollaries state that potentially overproduced sets can be considered as
inflow in the network.

Corollary 19 Let 〈M,R〉 be an AC and X ⊆ M. If X is potentially overproduced in
〈M,R〉, then the closure GCL(X) is potentially overproduced in 〈GCL(X),RGCL(X)〉.

Corollary 20 Let 〈M,R〉 be an AC and Y ⊆ M. If X ⊆ Y is potentially overproduced
in 〈Y,RY 〉, then X is potentially overproduced in 〈M,R〉.

The following corollary states an interesting property: potential overproduced support con-
tained in a set implies that the closure of the set is totally overproduced.

Corollary 21 Let 〈M,R〉 be an AC and X ⊆ Y ⊆ M. If Asupp(Y,X) and X is a
potential overproduced set of 〈Y,RY 〉, then GCL(Y ) is a totally overproduced organisation.

Proof The proof follows from Lemma 2 and Corollary 19.

�

The results presented above lead to a very important conclusion: The task of obtaining the
organisational strucutre can be simplified by including the overproduced sets in the analysis,
because once a overproduced set F ⊆ M is identified, every set G s.t F ⊆ G will contain
F as a potential overproduced set in it (see Lemma 20), and thus the verification of the
self-maintainance of G does not requires to be concerned on the production of molecules in
F . This means it has to be solved a LP problem with |RG|+ |G| − |F | equations instead of
a LP problem of |RG|+ |G| equations (as it is shown in Corollary 1).
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Corollary 22 Let 〈M,R〉 be an AC and X ⊆ Y ⊆M. If X is overproduced in 〈Y,RY 〉,
then to verify if Y is an organisation is an LP problem of |RY | variables and |RY |+ |Y |−|X|
equations.

Remark: Note that the amount of equations in Corollary 22 is |RY |+ |Y | − |X|, but |RY |
equations are trivial because those equations defines the flux vector as a non-negative one.

Figure 8.2: The figure shows the above results in a Hasse diagram picture. The set {a1, ..., an}
is overproduced, and thus is potentially overproduced w.r.t {a1, ..., an, ..., ak}, thus to verify
its self-maintainance it is not required to be concerned on the production of {a1, ..., an}.

8.3.3 Cycles

Definition 73 (Cyclic set) Let 〈M,R〉 be an AC, O ⊆ M an organisation and F the
maximal overproduced set of O. We define the cyclic set of O as the maximal cardinality set
without non-reactive molecules in O − F .

Remark: Note that the cycle of an organisation is unique because the non-reactive set is
trivially unique and the maximal overproduced set is also unique (see Lemma 28).
Remark: Given a flux vector which verifies the self-maintainance of O. The cyclic set has
production rate equal to zero. But the cycle should not be confused with the set of molecules
with production rate equal to zero, because the non-reactive molecules also has production
rate equal to zero, but those molecules does not belong to the cycle set of O. In this analysis
we distiguish between the cyclic molecules and non-reactive molecules.

The following lemma states that the molecules in the cyclic set have to be either enzyme
molecules or consumed and produced by some reactions. This means that no molecule can be
only produced or only consumed in a cyclic set.

Lemma 31 Let 〈M,R〉 be an AC and O ⊆M an organisation, let C be the cyclic set of O.
Then for every m ∈ C we have either:

1. m is an enzyme w.r.t O, or

2. m is consumed by some reaction R ∈ RO and produced by other reaction R′ ∈ RO.

84



Proof Let m ∈ C, then m cannot be non-reactive. By Lemma 19 we have m is an enzyme
or a reactive molecule w.r.t C. If m is an enzyme w.r.t to O we are in case 1). If m is
reactive w.r.t O, there exist a reaction R = A → B ∈ R s.t A(A,m) 6= A(B,m). If
A(A,m) > A(B,m), as O is an organisation, there has to exist some reaction R′ = A′ → B′

s.t A(A′,m) < A(B′,m), we are in case 2). If A(A,m) < A(B,m), as m is not overproduced
(because belongs to the cyclic set), there has to exist some reaction R′ = A′ → B′ s.t
A(A′,m) > A(B′,m), we are in case 2).

�

Definition 74 (Active cycle) Let 〈M,R〉 be an AC, O ⊆M an organisation and m ∈ O
a molecule in the cycle set of O. If m is not an enzyme w.r.t O we say m is a cycle active
molecule w.r.t O. A set of cycle active molecules w.r.t O is called a set cycle active w.r.t O.

Lemma 32 Let 〈M,R〉 be an AC, let O be an organisation in 〈M,R〉. Then there exist a
unique decomposition of the cycle C = E ∪D w.r.t O, where E is a set of enzyme molecules
of O and D is a set cycle active. Furthermore E ∩D = ∅.

Proof The proof follows straight from Lemma 31.

�

Definition 75 (Potential active cycle) Let 〈M,R〉 be an AC, X ⊆M. Let N,E be the
non-reactive and enzymatic set w.r.t X. Let F a potentially overproduced set w.r.t X. We
say that X − (F ∪ E ∪N) is the potential active cycle of X w.r.t F , or PAC of X w.r.t F .

8.3.4 PAC and dependent connectivity

In this section we are going to study the PACs. We are going to define a special notion of
connectivity which would allow us to separate the PAC of a set in partially non-overlapping
sub-PACs, such that the self maintainance of the PAC of a set can be studied from the self
maintainance of the sub-PACs.

Definition 76 (Dependent connected molecules) Let Q =〈M,R〉 be an AC, X ⊆M,
F be a potential overproduced set w.r.t X and E the enzymatic set w.r.t X. Two species si
and sj in X are dependent connected in 〈X,RX〉 w.r.t E and F iff there exists a sequence
of species s0, ..., sp ∈ X − (E ∪ F ) such that si = s0, sk and sk+1 are directly connected (see
Definition 27) in 〈X,RX〉 for all k = 0, ..., p− 1 and sp = sj.

The notion of dependent connection is a restriction to the notion of connection stated in
Definition 28. This restriction is oriented to capture the minimal part of the network which
is responsible for the self maintainance of a set.
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Figure 8.3: Note that in both figures all the molecules are connected following Definition 28.
Note that in figure a) the self maintainance of C1 = {x, y, e} and C2 = {z, w, e} are inde-
pendent because the molecule which connects C1 with C2 is an enzyme w.r.t C1 ∪ C2. The
same situation occurs in figure b) for sets C ′1 = {x, y, o} and C ′2 = {z, w, o} because they
are connected by a potentially overproduced molecule w.r.t C ′1 ∪C ′2. That is why there is no
dependent connected molecules neither in C1 with molecules in C2 nor in C ′1 with molecules
in C ′2.

Lemma 33 Let 〈M,R〉 be an AC, X ⊆M, E be the enzymatic set w.r.t X, F an overpro-
duced set w.r.t X and m, m̄ ∈ M. m is dependent connected in 〈X,RX〉 w.r.t E and F to
m̄ iff m̄ is dependent connected in 〈X,RX〉 w.r.t E and F to m.

Proof Follows from the definition of dependent connected molecules.

�

Definition 77 (Causal set of a molecule w.r.t sets of reactions) Let 〈M,R〉 be an
AC, X ⊆M, E be the enzymatic set w.r.t X, F a potentially overproduced set w.r.t X and
m ∈ X− (E ∪F ). We define Causal∗(m,RX) as the set of dependent connected molecules in
〈X,RX〉 w.r.t E and F to m. We define Causal(m,RX) = Req(Act(Causal∗(m,RX))).We
say E∗ = E ∩ Causal(m,RX) and F ∗ = F ∩ Causal(m,RX) are the set of non-enzyme and
the overproduced molecules w.r.t Causal∗(m,RX) respectively.

The following corollaries are derived from Lemma 33 and Definition 77.

Corollary 23 Let 〈M,R〉 be an AC, X ⊆ M, E be the enzymatic set w.r.t X, F an
overproduced set w.r.t X and m, m̄ ∈ M. m̄ ∈ Causal∗(m,RX) iff Causal∗(m,RX) =
Causal∗(m̄,RX).

Corollary 24 Let R ∈ RX , m, m̄ ∈ X − (E ∪ F ) s.t m /∈ Causal(m̄,RX). If R ∈
Act(Causal(m,RX) ∩ Causal(m̄,RX),RX) then R ∈ RE∪F .

Causal∗(·, ·) provides a way to split a set X of molecules in dependent connected subsets. It is
necessary first to determine the enzymatic set E and an overlyproduced set F w.r.t X in order
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to generate such separation. Note that the enzymatic set is unique for every X, but we can
choose different potentially overproduced sets to split X by using Causal∗(·, ·). Depending
on how F was chosen, the separation of X would be different. As much elements are in
F , more separable would be X. We are going to study at which point the results derived
from the notions introduced in this section simplify the understanding of what constitutes
an organisation.

Lemma 34 Let 〈M,R〉 be an AC, X ⊆M, E be the enzymatic set of X, F an overproduced
set w.r.t X and D the active cycle of X w.r.t F . Then

D =
⋃
m∈D

Causal∗(m,RX)

Proof Note that D ⊆
⋃
m∈D

Causal∗(m,RX). Let m ∈
⋃

m′∈D
Causal∗(m′,RX), then for some

molecule m′ ∈ D we have m is dependent connected to m′, then m′ is also dependent
connected to m. This means m is a reactive, non over produced, and non-enzymatic molecule.
Then m ∈ D.

�

Definition 78 (Base and minimal base of Active cycles) Let 〈M,R〉
be an AC, X ⊆ M, E be the enzymatic set w.r.t X, F an overproduced set w.r.t X and D
the active cycle of X w.r.t F . Any set D′ ⊆ D s.t D =

⋃
m∈D′

Causal∗(m,RX) is called a base

of D. Any minimal cardinality base of D is called a minimal base of D.

Lemma 35 Let 〈M,R〉 be an AC, X ⊆M, E be the enzymatic set w.r.t X, F an overpro-
duced set w.r.t X and D the active cycle of X w.r.t F . Let D′, D′′ be minimal bases of D.
Then every molecule in D′ is dependent connected to one and only one molecule of D′′.

Proof Let m ∈ D′ and suppose that there is no molecule in D′′ dependent connected to m.
By Corollary 23 we have Causal∗(m,RX) is not contained in

⋃
m′∈D′′

Causal∗(m,RX). Then it

has to be at least one molecule dependent connected to m in D′′. Now suppose there is more
than one molecule dependent connected to m in D′′. Let m1,m2 ∈ D′′ such molecules. As
m1 and m2 are dependent connected to m, then m1 and m2 are dependent connected. By
Corollary 23 we have Causal∗(m1,RX) = Causal∗(m2,RX). Then D′′ is not a minimal base
of D.

�

A minimal base of D is a set of the representative non dependent sub-PACs of the cycle.
We are going to prove that the self maintainance of the cycle can be obtained from the self
maintainance of this non dependet sub-PACs.
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Lemma 36 Let 〈M,R〉 be an AC, X ⊆M, E be the enzymatic set of X, F an overproduced
set w.r.t X, D the active cycle of X w.r.t F and D′ a minimal base of D. Then

Act(D,RX) =
⋃
m∈D′

Act(Causal∗(m,RX),RX)

Proof Is clear that Act(D,RX) ⊇
⋃

m∈D′
Act(Causal∗(m,RX),RX). Let R ∈ Act(D,RX)

then for some m ∈ D we have R ∈ (m,RX). From Definition 78 we know that there exist
m′ ∈ D′ s.t m ∈ Causal∗(m′,RX). Then by Corollary 23 we have

R ∈ Act(Causal∗(m′,RX),RX) ⊆
⋃
m∈D′

Act(Causal∗(m,RX),RX).

�

Theorem 13 (Redefining self-maintainance from role of molecules) Let 〈M,R〉 be
an AC, X ⊆ M, E be the enzymatic set w.r.t X, F an overproduced set w.r.t X, D the
active cycle of X w.r.t F and D′ = {m̄1, ..., m̄d} a minimal base of D. For i = 1, ..., d let

Di = Causal(m̄i,RX),

F ∗i = Causal(m̄i,RX) ∩ F and

E∗i = Causal(m̄i,RX) ∩ E.

Let {∅ → Y } = {∅ → y for each y ∈ Y }. X is self maintaining iff for all i = 1, ..., d we have
that Di is is self maintaining in the subnetwork 〈Di,RDi ∪ {∅ → F ∗i }〉.

Proof ⇒: As F is potentially overproduced then X is self maintaining in 〈X,RX〉 iff
〈X,RX∪{∅ → F}〉 is self maintaining. Let v∗ a vector which verifies the self maintainance of
X in 〈X,RX〉. Let Act(Di,RX) = {Rα1 , ..., Rαil

}, then v̄ lead to a non-negative production
on all the molecules of Causal∗(mi,RX) where

v̄i =

{
v∗i if i = αj for some j,
0 else

As the rest of molecules belongs to F ∗, to reach its non-negative production we use the
reactions in {∅ → F ∗i }.

⇐: Let v1, ...,vd the flux vectors which verifies the self maintainance of 〈Di,RDi ∪ ∅ →
F ∗i 〉, i = 1, ..., d and vF the flux vector which verifies the potential overproduction of F w.r.t

X. Then there exist a non-negative β s.t βvF +
d∑
i=1

v̄i verifies the self maintainance of X,

where v̄i is the vector vi restricted to the coordinates corresponfing to RX .

�

88



8.4 A Decomposition Theorem in AC

In this section we state the decomposition of organisations into non-reacitve, overproduced,
enzymatic and cycle active sets, and the computational consecuences of this decomposition.

Theorem 14 (Decomposition Theorem in AC) Let 〈M,R〉be an AC, X ⊆M, N the
non-reactive set of X, E be the enzymatic set w.r.t X, F an overproduced set w.r.t X, D the
active cycle of X w.r.t F and D′ a minimal base of D. Then

X = N ∪ E ∪ F
⋃
m∈D′

Causal(m,RX).

Corollary 25 Let 〈M,R〉 be an AC, let O be an organisation in 〈M,R〉. Then the
decomposition of O stated in Theorem 14 is unique.

Proof The maximal overproduced set, the non-reactive set and the enzyme set of O are
unique. By Lemma 35 we have the decomposition of the cycle is also unique.

�

Theorem 25 permit understand the nature of the computation of organisations. The following
corollary is the most important result of this thesis:

Corollary 26 (The most important result in this work) Let 〈M,R〉
be an AC, X ⊆ M, N the non-reactive set of X, E be the enzymatic set w.r.t X, F an
overproduced set w.r.t X, D the active cycle of X w.r.t F and D′ a minimal base of D. Verify
if X is an organisation consist in solve |D| Linear Programming problems, each problem
i = 1, ..., |D| of |RDi | variables and |RDi|+ |Di| equations.

Remark: Corollary 26 it is proposed as the staring point to the development of new tech-
niques to deal with Algebraic Chemistry as well as new algorithms to compute the organisa-
tional structure of reaction networks.

89



Figure 8.4: The picture shows the interest of the results of this Chapter. The problem
of compute if a set X is an organisation (an LP problem) can be splitted in the a simple
verification (the enzymatic and non-reactive sets) plus several smaller (w.r.t to the size of X)
LP problems (a potential overproduced set and the self-maintainance of the PACs induced
by the overproduced set and the enzymatic set).
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Chapter 9

Structural properties revisited

In this chapter we are going to apply the results obtained in Chapter 8 to study some subsets
of the organisational structure of a given network, and different types of networks in which
its organisational structure holds some extra properties. We are going to prove that the
totally-overproduced organisational structure is a lattice under some especial join and meet
operators. We also will prove the differences and similiarities between consistent networks
and non-active cycle networks.

9.1 Lattice of totally overproduced organisations

Following the definition of the generated (semi-)organisation done by Dittrich et. al. in [14],
we are going to define the generated overproduced set of a set of molecules, the overproduced
union and the overproduced intersection, in order to state structural properties for the totally
overproduced organisation structure.

Definition 79 (Generated overproduced set) Let 〈M,R〉 be an AC, X ⊆ M and
GOP (X) be the largest overproduced set contained in GCL(X). We say X generates the
overproduced set Y = GOP (X). Furthermore, we define the overproduced union and inter-
section of overproduced sets of molecules Y1,Y2 ⊆M by:
Y1 tOP Y2 = GOP (Y1 ∪ Y2),
Y1 uOP Y2 = GOP (Y1 ∩ Y2).

Remark: Note that the union and intersection operators above are only defined for over-
produced sets.

Lemma 37 Let 〈M,R〉 be an AC, and X, Y ⊆ M be two totally overproduced sets. Then
X tOP Y = X tCL Y .
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Proof Note that as X and Y are totally overproduced sets, then by Lemma 21 we have
GCL(X ∪ Y ) = X tCL Y is a totally overproduced organisation.

�

The following theorem states the good properties of the strictly-growing organisation struc-
ture.

Theorem 15 (Totally overproduced structure is a lattice) The totally overproduced
structure is a lattice with respect to the operators tOP and uOP .

Proof Let O be the totally overproduced structure, and X, Y ∈ O. We are going to prove

1. X tOP Y ∈ O is the least upper bound for X and Y .

2. X uOP Y ∈ O is the greatest lower bound of X and Y .

1): Follows trivially from the fact that closure-structure is a lattice with respect to tCL and
Lemma 37.
2): By Definition 79 we have that X uOP Y is the greatest overproduced set contained in
GCL(X ∩ Y ), we need to prove that X uOP Y ∈ O, this means that X uOP Y is closed. We
are going to prove that GCL(X uOP Y ) = X uOP Y . As Asupp(GCL(X uOP Y ), X uOP Y ), we
have from Theorem 21 that GCL(X uOP Y ) is overproduced. As X uOP Y ⊆ GCL(X uOP Y ),
and GCL(X uOP Y ) ⊆ X, Y , then is GCL(X uOP Y ) the greatest overproduced set contained
in GCL(X ∩ Y ), we have that GCL(X uOP Y ) = X uOP Y .

�

In the next section we are going to explore the set of organisations which have no cyclic
set.

9.2 Non-active cycle organisations and Consistent Net-

works

Definition 80 (Non-active cycle organisation) Let 〈M,R〉 be an AC and O ⊆ M be
an organisation. We say O is a non-active cycle organisation if the active cycle set of
O is empty. We also say that a network is a non-active cyclic network if and only if its
organisational structure is equal to its non-active cycle organisatinal structure.
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The non-active cycle organisations are composed by a totally-overproduced set F , an enzyme
set E w.r.t to F and a non-reactive set N w.r.t F ∪ E.

As an example of the usefulness of the non-active cycle concept, we are going to prove
the following:

• A restricted class of consistent networks called reactive flow with persistent molecules [14]
is also a restricted class of non-active cycle networks.

• There exist an AC 〈M,R〉 which is a non-active cycle network but is not consistent,
and there exist a network which is consistent but is not a non-active cycle network.

At this point we can state that non-active cycle networks and consistent networks are dif-
ferent, but its intersection is not empty. This suggests to study more in detail the definitions
of consistent networks and non-active cycle networks in order to reveal in which way they
differ.

Definition 81 (Reactive flow with persistent molecules) A reactive
flow with persistent molecules is an AC 〈M,R〉 such that M = P ∪ P ′ with P ∩ P ′ = ∅
where:

• For m ∈ P ′ there exist a reaction R = m→ ∅ ∈ R.

• For m ∈ P there does not exist a reaction R = A→ B such that A(A,m) > A(B,m).

We say P is the persistent molecules set and P ′ the non-persistent molecule set.

Lemma 38 [14] A reactive flow with persistent molecules is consistent.

Now we are going to prove the following:

Lemma 39 In a reaction flow with persistent molecules 〈M,R〉, the cycle set of a self-
maintaining set is empty.

Proof Let X be a self maintaining set. We are going to prove that every molecule is overpro-
ducible or non-reactive. Let m ∈ X, if m is a persistent molecule, then as m is not consumed
by any reaction, it can be either overproduced or non-reactive. If m is non-persistent, let
R∗ = m→ ∅ . There must exist a flux vector in RX −{R∗} which overproduces m, and thus
by Corollary 20, m is overproduced.

�

Corollary 27 Every reaction flow with persistent molecules is a non-active cycle network.
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Remark: Note that as the cycle set is empty the organisations in a Reaction flow with
persistent molecules is composed only by overproduced and non-reactive molecules. Now we
are going to show an AC consistence and non-active cycle networks are different:

Example 11. Let Q = 〈{a, b}, {a → b, b → a}〉 be an AC. The organisational structure
is {{∅}, {a, b}}, thus Q is consistent. Note that the organisation {a, b} is reactive but not
overproduced, thus Q is not non-active cycle.

Example 12. Let Q = 〈{a, b, c}, {a+b→ ∅, b+c→ ∅, b→ 2b, c→ 2c}〉. The organisational
structure is {{∅}, {a}, {b}, {c}, {b, c}}, thus Q is a non-active cycle netwotk, but the network
is not semi-consistent, because the unionX∪Y of (semi-)self-maintaining sets, whereX = {a}
and Y = {b} is not (semi-)self-maintaining, thus Q is not consistent. Furthermore, note
that Q is not a reactive flow with persistent molecules either, because the molecules are no
persistent nor persistent either.

Corollary 28 Let X be the class of consistent AC, Y the class of non-active cycle AC and
Z the class of reactive flow with persistent molecules networks, then X 6= Y but Z ⊂ X ∩Y .

Remark: Note the containment of Corollary 28 is strict.
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Figure 9.1: Containment of structures and properties. C is the closed-structure, SO is
the semi-organisational-structure, O is the organisational structure, NR is the non-reactive-
organisational structure, OP is the overproduced organisational structure, NAC is the non-
active cycle organisational strucutre, Cyclic is the cycle organisational strucuture, RFPM are
the reactive flows with persistent molecules and Cons are the class of consistent networks in
this picture. Organisations in a consistent network can be of any type. Note that no cyclic
organisation can be in NAC, also OP and NR are totally contained in NAC. Note that Cons
and NAC has a non-empty intersection but no one of them is totally contained in the other
and RFPM is stricly contained in the intersection of Cons and NAC. Furthermore C, OP
and Cons posseses a lattice structure w.r.t their corresponding meet and union operators.

95



Chapter 10

Conclusion

10.1 Basic Conclusions

This thesis is an attempt to formalize the computational analysis of a bio-chemical model.
This formalization on the one hand intends to capture the essence of the algorithmic as-
pects involved in the model, and on the other hand pursues strenghting the relation between
the research in algorithmic and mathematical aspects of the disciplines related to Algebraic
chemistries.
In the first part of this thesis it is presented the Algebraic chemistry formalism and it is
summarized the current knowledge on computational aspects of the theory, complemented
with several examples to simplify its understanding. In the second part it is discretized
the Algebraic chemistry to capture the algorithmic escence of organisation computation (see
Definition 34 and Corollary 4). It was reformulated, in concurrent processing formalisms
(Petri Nets and Vector Addition Systems), this discrete version of Algebraic chemistry (see
Theorem 6). We study the relation of some well known properties of Petri Nets with respect
to the Algebraic chemistries formalism (see Chapter 5). Furthermore, this discrete framing
was helpful to develop a structural analysis of organisations, central part of Algebraic chem-
istry theory, by using concepts and techniques established for those concurrent formalisms:
It was developed and analised, in a discrete schema, an algorithm to verify self-maintainance
and thus the property of been an organisation (see Algorithm 6 and Theorem 8). Hence
the insights arosed from the development of the mentioned algorithm made possible a more
depth analysis of the algebraic chemistries in which it is revealed the underlying roles of
molecules when a set of molecules is considered as a subnetwork of the whole Algebraic
chemistry (see Theorem 14). The role which play the molecules in a subnetwork defines the
computational time required to verify if the subnetwork forms an organisation (see Lemma 24
and Lemma 26), and those results combined with Theorem 14 permit a better understanding
of the organisation-verification problem and thus a simplification of the computation of the
organisational structure (see Theorem 26). Furthermore, the result of this thesis makes pos-
sible the establishment of a quite tight separation of different classes of Algebraic chemistries,
in terms of the types (roles) of molecules their organisational structure has, and thus (by
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Theorem 26) in terms of how difficult is compute the organisations (see Chapter 9) in each
class. All these results complement previous work in computation of organisations research
and provides the starting point (and hopefully the motivation) for the development and im-
plementation of new and more depurated algorithms to deal with Algebraic chemistries.
The future work is left as a different section due to the large amount of aspects which can
be extended.

10.2 Future Work

During the developing of this thesis, several topics for future research were found. They all
suggest advances in the current knowledge of organisation theory:

• Complement the result of Chapter 8: Several analysis can extend the results of
this thesis. I suggest for example the following:

Definition 82 (Directly-causally connected) Let 〈M,R〉 be an AC. Let m,m′ ∈
M. We say m is directly-causally connected in R w.r.t. m′ iff there exist a reaction
R = A→ B ∈ R s.t. m is present in A and m′ is present in B.

Definition 83 (Causally fired sequence of reactions) Let 〈M,R〉
be an AC. Let S = R1 · · ·Rt be a finite sequence of reactions, where Ri ∈ R for
all i = 1, ..., t. We say S is a causally-fired sequence of reactions if for each pair
(Ri = Ai → Bi, Ri+1 = Ai+1 → Bi+1) we have ∃mi ∈ Ai which is directly-causally
connected to some m′ ∈ Ai+1.

The following is a simple but very important fact about networks.

Lemma 40 Let 〈M,R〉 be an AC. Let m,m′ ∈ M. Then one and only one of the
following sentences is true:

1. m and m′ are not causally connected.

2. m is causally connected to m′ by a finite number of sequences of reactions.

3. m is causally connected to m′ and m′ is causally connected to m.

Causal connection and causally-fired sequences of reactions are interesting concepts in
Reaction networks. Both concepts tends to make clear the computational understand-
ing of the consumption-production of molecules during the reaction process.

Another interesting idea is trying to bridge the gap from the semi-self-maintaining
property to the self-maintaining property. I conjecture that a semi-self-maintaining
set such that each connected part has a unique maximal overproduced set, is self-
maintaining.
Several other ideas of formalizing the production-consumption process involving graph-
theoretical concepts can be done to improve the algorithmic results of this work.
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• Extend results to infinite Algebraic chemistries using results from Order
theory: As we saw in this work, there are several mathematical structures which can
hold an x-structure (from poset to lattice). The field of Order theory deals with these
strcutures. It would be interesting to explore the Order theory from the restricted set
universe of AC (Finite sets of elements related by reaction-rules). For example the
topological parameters maximal chain and antichain are useful to bound the size of
the organisational structure by using Dilworth’s theorem (a well known result in Order
theory). I have commented this idea to the head of the research group in computational
systems biology, Marie-France Sagot, in my research visit to University Claude Bernard
I (Lyon, France). She coincided with me in the interesting potential of this idea, and
she showed enthusiasm in hear more about these kind of results in case I do research
more on it.

• Ecological study of networks: When we combine sets of molecules, properties such
as closure or self-maintainance can be lost, or gained. For example if one of the sets is
an organisation, but after been joined to another set (eventually an organisation too)
we lost the property of been an organisation, we can understand this process from the
point of view of stability that both organisations compete for living. In fact there are
organisations which are non-compatible. For example, let

M = {s1, s2} and R = {a+ b→ ∅}.

Clearly, {a} and {b} are organisations, but they together do not form an organisation.
With Stephan Peter and Peter Dittrich, we explored this ideas in [42] by using the
P-systems [39] as the reaction network paradigm. We found that the non-compatibility
is an extensive phenomena in reaction networks. We also suggested that all the ecolog-
ical interactions (depredation, cooperation, parasitism, etc) arise naturally when it is
pursued the understanding of the co-existence of organisations in a reaction network.

The concept of ecological interactions [54] provides another interesting point of view,
which is the ecological interactions of reactions. The idea is to imagine the re-
actions as entities which for existing need to consume molecules, and as result they
produce molecules (reactions eat molecules and produces molecules which in most cases
are non-eatable). The coexistence of such entites (reactions) lead immediatly to the
definition of what is an organisation from an ecological (even economical) point of
view, because the resources are the molecules, and each entity (reaction understood as
ecological specie) needs to consume and produce cooperatively their resources for the
survival of the eco-system.

I propose that these ideas (or methaphores) can be extensively studied as a source of
insights in Algebraic chemistry theory.

• Extend to infinite: A natural extension of this work would be the algorithmic analisys
of infinite ACs. The work of infinite networks can be captured in a finite schema by
using rule based systems which consist basically in thinking molecules as words and
reactions as language rules, thus any possible molecule (word) can be built from the
basic molecules of the system (alphabet) by using the reaction rules (language rules). It
has to be understood first how to extend the formalism (definition of self-maintainance,
closure, etc) to deal with this perspective, and try to establish a linking with the
dynamics of the system.
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• Include space: The dynamical system which describes the evolution of an AC does
not consider in this model the positions of the molecules. There are preliminary works
done by the Jena Bio-systems group in which it is studied the spatial scaling required
to see an organisation. They have simulations of simple systems constrained to evolve
in a closed space (square) and they look at the average concentration of molecules at
different scales by partitioning the space in squares, changing the size of the partitioning
square, they change the resolution of what is being saw. It is shown that as bigger
is the scale (square) bigger will be the organisations that are seen (see [50]). Another
interesting approach is the paradigm of Membrane computing [39] (P-systems) in which
the molecules are separated by compartments. In [42] we use the approach of P-systems
to study how the interaction between different compartments lead to the reinforcement
or destruction of organisations.
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