

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA CIVIL

"VARIACIÓN DE LOS PARÁMETROS MODALES DEL EDIFICIO DE LA CÁMARA CHILENA DE LA CONSTRUCCIÓN A PARTIR DE REGISTROS AMBIENTALES Y SÍSMICOS"

MEMORIA PARA OPTAR AL TITULO DE INGENIERO CIVIL

PATRICIO ANDRÉS LAZCANO CORVALÁN

PROFESOR GUÍA: RUBEN BOROSCHEK KRAUSKOPF

MIEMBROS DE LA COMISIÓN: TOMAS GUENDELMAN BEDRACK RENE LAGOS CONTRERAS

> SANTIAGO DE CHILE JULIO DE 2008

TABLA DE CONTENIDOS

CAPÍTULO 1: INTRODUCCIÓN	4
1.1 OBJETIVO	5
1.2 METODOLOGÍA	5
1.3 ALCANCES	6
CAPÍTULO 2: MARCO TEÓRICO	7
Ecuación de Equilibrio Dinámico	7
Ecuación de Estado	8
Ecuación de Datos Observados	9
Modelo Espacio Estado	10
Componentes Estocásticas del Sistema	11
CAPITULO 3: CARACTERISTICAS DEL EDIFICIO	12
3.1 ESTRUCTURACIÓN	13
3.2 PLANOS	15
3.3 PROPIEDADES MODELO COMPUTACIONAL	18
3.4 INSTRUMENTACION	19
3.5 ESTUDIOS Y RESULTADOS ANTERIORES	20
CAPITULO 4: REGISTRO Y ANALISIS DE ACELEROGRAMAS Y DATOS	5
METEREOLÓGICOS	22
4.1 MEDICIONES METEREOLÓGICAS	22
4.1.1 Características Metereológicas de la Ciudad de Santiago	22
4.1.2 Descripción Estación Metereológica	22
4.1.3 Análisis y Registros Metereológicos	23
4.2 REGISTROS DE MICROVIBRACIONES	32
Procedimiento de recolección de datos	32
Registros históricos en el edificio	33
A 2 ANÁLISIS MEDIANTE MÉTODO SSI	33
4.5 ANALISIS MEDIANTE METODO SSI	33 39
Registros ETABS con Ruido Agregado	40
Registros ETABS sin Ruido Agregado	51
CAPÍTULO 5: ANÁLISIS Y CORRELACIÓN DE RESULTADOS	63
5.1 RESULTADOS DE IDENTIFICACIÓN	63
5.2 HISTOGRAMAS	05
5.3 EVENTOS OBSERVADOS	93
5.2.1 Análisis de Temperatura	93
5.2.2 Análisis de Precipitación	. 110
5.2.3 Análisis en Horarios no Laborales	. 120
CAPITULO 6: CONCLUSIONES Y COMENTARIOS	169
REFERENCIAS BIBLIOGRÁFICAS	174
ANEXO	175

CAPÍTULO 1: INTRODUCCIÓN

En este trabajo se desea evaluar la variación de parámetros dinámicos en un edificio instrumentado con sensores de vibración. La estructura del edificio de la Cámara Chilena de la Construcción sufre variaciones de sus parámetros dinámicos que no están asociadas a daño; tales como cambios de uso, modificaciones arquitectónicas, variaciones metereológicas o sismos de distinta magnitud. Lo anterior se traduce en un cambio en las propiedades modales del edificio. En este trabajo de título se desea establecer el rango de variación de estos parámetros (frecuencia y amortiguamiento modal) y su correlación con variables ambientales durante un período de tiempo prolongado (desde Mayo a Noviembre del año 2007).

En los últimos años, ha habido un aumento significativo en el número de estudios sobre estructuras monitoreadas en forma continua y en tiempo real. Una de las estructuras más estudiadas es la biblioteca R. A. Millikan, un edifício de 9 pisos de hormigón armado estructurado en base a muros, ubicada en el campus de la Universidad de Caltech en California (ref. 2). Este edifício, desde su construcción en el año 1967, ha sido monitoreado y ha experimentado un descenso en sus frecuencias naturales cercanas a un 20% (ref. 2). Los datos históricos de estos registros y de otros estudios similares muestran un apreciable descenso de las frecuencias naturales atribuible a sismos de mediana y gran intensidad (1971, San Fernando y 1994, Northridge), asociados a daño estructural. Sin embargo, también se ha observado una sensibilidad a eventos metereológicos y ambientales; por ejemplo: variaciones del 3% durante fuertes lluvias y vientos, descenso de un 2% ante altas temperaturas y un 2% de variación en un ciclo diario.

El registro continuo de vibraciones es una oportunidad para comprender de mejor manera la variación de las frecuencias naturales de una estructura, ya que permite la identificación de otras fuentes aún no reconocidas que provoquen cambios cuantificables en las frecuencias naturales, tales como lluvia, viento o temperatura. Los antecedentes anteriores son importantes para establecer un sistema automático que reporte el "estado de salud" (Health Monitoring) de la estructura en tiempo real, lo cual es crítico si estos sistemas de información son utilizados como una herramienta de evaluación de daños debido a un sismo de gran magnitud.

1.1 OBJETIVO

Evaluar experimentalmente la variación de parámetros dinámicos debido a efectos metereológicos, ambientales y sísmicos en el edificio de la Cámara Chilena de la Construcción durante un periodo de tiempo de 7 meses.

1.2 METODOLOGÍA

La metodología escogida para abordar este trabajo se compone de las siguientes actividades ordenadas cronológicamente:

• Recolección de la información correspondiente al edificio, en especial de las memorias de Alejandro Castillo (ref. 1), Perla Valdés (ref. 6) y Luis Villarroel (ref. 7); planos de la oficina de cálculo de "René Lagos y Asociados, Ingenieros Civiles".

• Establecer la condición actual del sistema de registros sísmicos y de vibraciones ambientales en el edificio para una toma continua de datos.

• Realización de mediciones continuas de microvibraciones por un período aproximado de 7 meses. Desarrollo de un plan de mediciones y recolección de datos.

• Recolección de datos metereológicos obtenidos a partir de la estación de registro continuo, obtenidos del Grupo de Meteorología perteneciente al Departamento de Geofísica de la Universidad de Chile, asumiendo que son representativos para el área Metropolitana.

• Identificación de parámetros dinámicos del edificio mediante métodos de identificación de sistemas (Método del Subespacio Estocástico).

• Analizar la variación de los parámetros dinámicos y correlacionar los resultados con eventos ambientales, tales como lluvia, temperatura, entre otros.

• Establecer resultados, conclusiones y comentarios finales.

1.3 ALCANCES

Capítulo 1: Introducción

Se resume los contenidos y alcances de este trabajo.

Capítulo 2: Marco Teórico

En este capítulo se da una breve descripción del método de identificación del Subespacio Estocástico, sus ventajas y aplicaciones.

• Capítulo 3: Características del edificio

Se reúne la información correspondiente a las propiedades del edificio (experimentales y modelo computacional) y de la red local de registro de vibraciones.

• Capítulo 4: Registro y análisis de acelerogramas y datos metereológicos

Registro y análisis de la información entregada por los acelerógrafos y la estación metereológica. Identificación de los parámetros dinámicos del edificio a partir de las mediciones de microvibraciones y parámetros estadísticos de los datos metereológicos.

• Capítulo 5: Análisis y correlación de resultados

Se realiza un análisis de los resultados y correlaciones entre los parámetros dinámicos y los eventos metereológicos en el tiempo.

Capítulo 6: Conclusiones y comentarios

Se hace una recopilación de los resultados y de las conclusiones obtenidas en los capítulos anteriores.

CAPÍTULO 2: MARCO TEÓRICO

Ecuación de Equilibrio Dinámico

El método utilizado en este trabajo corresponde a la Identificación mediante el Método del Espacio Subestocástico (SSI), el cual consiste en la identificación de las propiedades de un sistema excitado por una señal de entrada desconocida, asumiendo que esta señal corresponde a un ruido blanco y es del tipo gaussiana.

A continuación se muestra un resumen del desarrollo del método SSI (ref. 5, ref. 6), partiendo de la ecuación de equilibrio dinámico:

$$M\ddot{q}(t) + C\dot{q}(t) + Kq(t) = f(t) \qquad (2.1)$$

Donde q(t) corresponde al desplazamiento y f(t) a la fuerza de excitación, M, C y K son matrices de dimensiones $n \times n$, con n igual al número de grados de libertad.

La solución al problema de valores propios corresponde a:

$$(\lambda_i, \lambda_i^*) = -\beta_i \cdot \omega_i \pm j \cdot \sqrt{1 - \beta_i^2 \cdot \omega_i^2} \quad (2.2)$$

En donde el superíndice "*" denota el complejo conjugado. Si se asume además que el amortiguamiento es del tipo viscoelástico y transformando la ecuación diferencial a un sistema matricial de primer orden como sigue:

$$x(t) = \begin{pmatrix} q(t) \\ q(t) \end{pmatrix}$$

$$M \cdot \dot{q}(t) - M \cdot \dot{q}(t) = 0$$

Con las dos ecuaciones anteriores se puede crear el siguiente sistema:

$$\begin{pmatrix} M \cdot \dot{q}(t) + C \cdot \dot{q}(t) \\ M \cdot \dot{q}(t) \end{pmatrix} + \begin{pmatrix} K \cdot q(t) \\ -M \cdot \dot{q}(t) \end{pmatrix} = \begin{pmatrix} f(t) \\ 0 \end{pmatrix}$$
$$\begin{bmatrix} C & M \\ M & 0 \end{bmatrix} \cdot \begin{pmatrix} \dot{q}(t) \\ \ddot{q}(t) \end{pmatrix} + \begin{bmatrix} K & 0 \\ 0 & -M \end{bmatrix} \cdot \begin{pmatrix} q(t) \\ \dot{q}(t) \end{pmatrix} = \begin{pmatrix} f(t) \\ 0 \end{pmatrix} \quad (2.3)$$

Con lo anterior y las matrices que se definen a continuación, se forma una ecuación de primer orden:

$$P = \begin{bmatrix} C & M \\ M & 0 \end{bmatrix} \qquad Q = \begin{bmatrix} K & 0 \\ 0 & -M \end{bmatrix} \qquad W(t) = \begin{pmatrix} f(t) \\ 0 \end{pmatrix}$$
$$P \cdot \dot{x}(t) + Q \cdot x(t) = W(t) \qquad (2.4)$$

Ecuación de Estado

Para definir la ecuación de estado, se despeja de la ecuación anterior (2.4):

$$\dot{x}(t) = P^{-1} \cdot W(t) - P^{-1} \cdot Q \cdot x(t)$$

$$\dot{x}(t) = A_C \cdot x(t) + f_C(t) \qquad (2.5)$$

Donde: $A_C = -P^{-1} \cdot Q = \begin{bmatrix} 0 & I \\ -M^{-1} \cdot K & -M^{-1} \cdot C \end{bmatrix}$
 $f_C(t) = P^{-1} \cdot W(t) = \begin{pmatrix} 0 \\ M^{-1} \cdot f(t) \end{pmatrix}$

En donde el subíndice *c* representa tiempo continuo. La fuerza de excitación continua $f_C(t)$ es factorizada en una matriz B_C de *nxm* que describe la ubicación de los *m* imput y un vector u(t) que describe la excitación correspondiente a los *m* imput.

$$f_C(t) = B_C \cdot u(t) \qquad (2.6)$$

Reemplazando en la ecuación de estado (2.5):

$$\dot{x}(t) = A_C \cdot x(t) + B_C \cdot u(t) \qquad (2.7)$$

Ecuación de Datos Observados

Debido a que en la práctica no se mide en todos los grados de libertad de una estructura, sino en l puntos discretos, se forma la siguiente ecuación de variables observadas (aceleración, velocidad o desplazamiento):

$$y(t) = C_a \cdot \ddot{q}(t) + C_v \cdot \dot{q}(t) + C_d \cdot q(t)$$
(2.8)

Donde y(t) representan los output y C_a , C_v y C_d (matrices de $l \ x \ n$) la ubicación de los outputs para aceleración, velocidad y desplazamiento respectivamente. Estas matrices están compuestas de ceros y unos únicamente, donde los unos representan la ubicación a la que corresponden los datos.

La ecuación de variables observadas puede escribirse a través de la aceleración de la ecuación de equilibrio dinámico (2.1) como sigue:

$$y(t) = C_C \cdot x(t) + D_C \cdot u(t) \quad (2.9)$$

Donde: $C_C = \begin{bmatrix} C_d - C_a \cdot M^{-1} \cdot K & C_v - C_a \cdot M^{-1} \cdot C \end{bmatrix}$
$$D_C = C_a \cdot M^{-1} \cdot B_C$$

Modelo Espacio Estado

El modelo está compuesto por dos ecuaciones continuas en el tiempo:

$$\dot{x}(t) = A_C \cdot x(t) + B_C \cdot u(t)$$
$$y(t) = C_C \cdot x(t) + D_C \cdot u(t)$$

En general, para el muestreo de una ecuación en tiempo continuo se debe asumir un cierto comportamiento entre dos muestras consecutivas en el tiempo. Se asume un comportamiento del tipo "Zero Order Hold" (ZOH), lo cual significa que la variable temporal es constante en el período de muestreo, entre dos muestras consecutivas. Por lo tanto, para un período fijo de muestreo Δt , las ecuaciones anteriores se transforman:

$$x_{k+1} = A \cdot x_k + B \cdot u_k$$

$$y_k = C \cdot x_k + D \cdot u_k$$

$$x_k = x(k \cdot \Delta t) = \begin{pmatrix} q_k \\ \dot{q}_k \end{pmatrix}$$

$$k \in \mathbb{N}$$

(2.10)

Las matrices continuas se relacionan con sus contrapartes discretas de la siguiente forma:

$$A = e^{A_C \cdot \Delta t}; \qquad B = (A - I) \cdot A_C^{-1} \cdot B_C$$
$$C = C_C; \qquad D = D_C$$

En relación a la matriz discreta *A*, los vectores propios discretos son iguales a los continuos y los valores propios discretos μ_i se relacionan con los valores propios continuos como se muestra a continuación:

$$\mu_i = e^{\lambda_i \cdot \Delta t} \Longrightarrow \lambda_i = \frac{\ln(\mu_i)}{\Delta t} \qquad (2.11)$$

Del caso no amortiguado se sabe que:

$$\omega_i = \lambda_i$$
$$\omega_i = \frac{|\ln(\mu_i)|}{\Delta t} \quad (2.12)$$

En el caso de amortiguamiento proporcional (2.2), de la parte real del valor propio se puede determinar el amortiguamiento:

$$\operatorname{Real}(\lambda_{i}) = -\beta_{i} \cdot \omega_{i}$$
$$\Rightarrow \beta_{i} = -\frac{\operatorname{Real}(\ln(\mu_{i}))}{|\ln(\mu_{i})|} \qquad (2.13)$$

Componentes Estocásticas del Sistema

Debido que las señales de entrada no son conocidas, se incorporan como ruido del sistema.

$$x_{k+1} = A \cdot x_k + w_k$$

$$y_k = C \cdot x_k + v_k$$
(2.14)

La señal de entrada está implícita en los términos de ruido, suponiendo así que la estructura es excitada por ruido blanco. Este modelo y la identificación de las matrices características han sido implementados por P. Valdés (ref. 6) en el software MatLab. El método del Subespacio Estocástico identifica las matrices state-space, basándose en algoritmos numéricos, por ejemplo N4SID. Una vez que se identifican estas matrices, se utilizan las ecuaciones 2.11 y 2.12 para estimar las frecuencias modales, la ecuación 2.13 para los amortiguamientos y se introduce la ecuación 2.15 (Peeters, ref.5) que define las formas modales por medio de las matrices V y ψ , esta última corresponde a la matriz de vectores propios de la matriz de estado A.

$$V = C \cdot \Psi \qquad (2.15)$$

CAPÍTULO 3: CARACTERÍSTICAS DEL EDIFICIO

El edificio se encuentra ubicado en la calle Marchant Pereira N° 10, comuna de Providencia, Santiago. El uso del edificio corresponde principalmente a oficinas.

Fue calculado por la oficina Lagos – Contreras y Asociados y fue construido a finales de la década de los 80. Posee 20 pisos sobre el nivel de terreno y 4 subterráneos, la altura total del edificio es de 77.7 m desde la base hasta el cielo del piso 20, y de 66.6 desde el nivel de terreno. Considerando los fosos de ascensores la altura máxima total es 85.5 m.

Este edificio está instrumentado con un sistema de registro de vibraciones desde el año 1995, el cual es monitoreado por la Red Nacional de Acelerógrafos del Departamento de Ingeniería Civil (RENADIC), Universidad de Chile. El sistema está compuesto por 12 sensores de aceleración uniaxiales y una central de registro.

Figura 1: Fotografía Edificio de la Cámara Chilena de la Construcción

3.1 ESTRUCTURACIÓN

La estructuración del edificio corresponde a un sistema predominante de muros, con presencia de marcos de hormigón armado. Posee un núcleo de muros en la zona de ascensores y en la caja de escaleras, el resto de los elementos corresponden a vigas y columnas de hormigón armado. El porcentaje de área de muros en relación al área en planta varía desde 3% hasta un 6%.

Piso N°	Altura de piso [m]	Altura acumulada [m]	Área Planta (A) [m ²]	Área de muro (Am) [m ²]	Am/A [%]
20	3.3	77.7	851	23.8	2.8
19	3.3	74.4	918	32.8	3.6
18	3.3	71.1	918	32.8	3.6
17	3.3	67.8	877	32.5	3.7
16	3.3	64.5	957	34.6	3.6
15	3.3	61.2	957	34.6	3.6
14	3.3	57.9	957	34.6	3.6
13	3.3	54.6	957	34.6	3.6
12	3.3	51.3	957	46.0	4.8
11	3.3	48.0	957	46.0	4.8
10	3.3	44.7	957	46.0	4.8
9	3.3	41.4	957	46.0	4.8
8	3.3	38.1	957	52.0	5.4
7	3.3	34.8	957	52.0	5.4
6	3.3	31.5	957	52.0	5.4
5	3.3	28.2	957	52.0	5.4
4	3.3	24.9	957	52.0	5.4
3	3.3	21.6	957	52.0	5.4
2	3.6	18.3	1794	68.7	3.8
1	3.6	14.7	1479	67.1	4.5
Z	3.3	11.1	2090	132.7	6.3
S1	2.6	7.8	2090	132.7	6.3
S2	2.6	5.2	2090	132.7	6.3
S3	2.6	2.6	2090	132.7	6.3
	Total:		28595	1422.9	5.0

Tabla 1: Altura de piso, áreas de planta y muros

La estructura central del edificio está fundada sobre una losa de 1.5 m. de espesor y de 305 m^2 en planta. Los muros perimetrales están fundados sobre zapatas corridas de 0.4 m. de ancho y las columnas sobre zapatas cuadradas de 3.6 m. o 2.8 m. de lado. Las vigas de fundación son de dimensiones ancho/alto de 0.4 y 0.65 m. Las cargas gravitacionales con que se diseñó el edificio son las siguientes:

Estacionamientos	: 500 kgf/m ²
Oficinas	: 250 kgf/m ²
Salones	: 500 kgf/m ²
Tabiques	: 100 kgf/m ²
Techo	: 150 kgf/m ²

3.2 PLANOS

La estructura del edificio es regular tanto en planta como en altura, salvo algunos cambios de sección. La geometría en planta es bastante simétrica, por lo que no existe una dirección predominante en relación a los primeros modos. En las siguientes figuras se ilustran algunas plantas y elevaciones del edificio:

Figura 2: Planta Zócalo

Figura 3: Planta cielo piso 9 al 12

Figura 4: Planta cielo piso 19

Figura 5: Elevación

3.3 PROPIEDADES MODELO COMPUTACIONAL

El edificio fue modelado mediante elementos finitos en el programa ETABS 9. La masa total del edificio es de 3755 ton. y el peso total es 43353 tonf., información extraída a través del modelo. Las propiedades dinámicas determinadas mediante el modelo son las siguientes:

Modo	Periodo	Frecuencia	Porcentaje de masa por modo		Porcentaje de masa acumulada		cumulada	
widdo	[sec]	[Hz]	UX	UY	RZ	Sum UX	Sum UY	Sum RZ
1	0.936	1.069	0.13	51.33	0.01	0.13	51.33	0.01
2	0.905	1.104	50.78	0.12	0.19	50.91	51.45	0.21
3	0.666	1.501	0.07	0.00	39.34	50.99	51.45	39.55
4	0.247	4.051	4.44	12.80	0.04	55.42	64.25	39.59
5	0.244	4.092	11.97	4.49	0.00	67.39	68.73	39.59
6	0.233	4.293	0.00	0.03	10.27	67.39	68.77	49.87
7	0.143	7.008	1.15	0.02	5.64	68.55	68.79	55.51
8	0.119	8.378	0.73	7.63	0.04	69.28	76.42	55.55
9	0.118	8.501	7.13	0.78	0.14	76.41	77.20	55.69
10	0.095	10.547	0.40	0.00	2.14	76.81	77.20	57.83
11	0.076	13.111	0.41	6.15	0.02	77.22	83.35	57.84
12	0.075	13.348	5.33	0.45	0.21	82.55	83.80	58.05
13	0.066	15.259	0.13	0.00	1.88	82.68	83.80	59.93
14	0.056	17.734	0.18	6.59	0.00	82.86	90.40	59.93
15	0.055	18.285	4.95	0.26	0.93	87.80	90.65	60.86
16	0.050	20.171	0.40	0.00	9.26	88.20	90.65	70.12
17	0.045	22.044	0.01	3.93	0.38	88.22	94.58	70.50
18	0.044	22.522	0.35	0.03	13.37	88.57	94.62	83.86
19	0.043	23.195	4.25	0.11	2.18	92.82	94.73	86.04
20	0.037	26.868	0.01	0.02	2.97	92.83	94.75	89.00
21	0.037	27.373	0.00	1.07	0.04	92.83	95.82	89.04
22	0.036	27.910	1.46	0.02	0.02	94.29	95.83	89.06
23	0.032	31.690	0.01	0.01	2.73	94.30	95.84	91.78
24	0.030	32.792	0.00	0.62	0.00	94.30	96.46	91.79
25	0.030	33.066	0.42	0.00	0.11	94.72	96.46	91.90
26	0.028	35.634	0.33	0.00	2.18	95.05	96.46	94.07
27	0.026	38.010	0.00	0.44	0.00	95.05	96.90	94.08
28	0.026	38.515	0.20	0.00	0.02	95.25	96.90	94.09
29	0.025	40.159	0.51	0.00	0.54	95.76	96.90	94.63
30	0.023	42,979	0.00	0.33	0.00	95.76	97.23	94.64

Tabla 2: Frecuencias y masas por modo determinadas del modelo

De la tabla anterior se puede observar que los valores obtenidos para los modos 1 y 2, 4 y 5, son relativamente cercanos entre sí. De los porcentajes de participación modal en las direcciones X e Y, y la rotación en torno a Z, se aprecia que los modos 1 y 2 son traslacionales ortogonales y que el modo 3 es torsional.

3.4 INSTRUMENTACIÓN

El sistema de registro lo componen 12 sensores uniaxiales de aceleración marca "Kinemetrics" modelo "FBA-11", los cuales están conectados a una central de registro "Kinemetrics Altus K2". Los sensores se encuentran distribuidos de manera de poder estudiar el movimiento espacial de la estructura, los desplazamientos, las distorsiones de piso, torsión, rotación de muros a nivel de fundación, entre otros aspectos. Los datos recolectados por la central de registro se graban en 2 tarjetas de memoria, la información puede ser recolectada vía telefónica mediante modem (registros de corta duración) o en terreno a través de un computador portátil, retirando los datos directamente de la central de registro o de las tarjetas de memoria.

Figura 6: Ubicación acelerógrafos

3.5 ESTUDIOS Y RESULTADOS ANTERIORES

En relación a trabajos realizados anteriormente, se puede destacar algunos resultados relevantes para este estudio.

El trabajo realizado por P. Valdés (ref. 6), implementa y valida el uso del método del subespacio estocástico (SSI) para ser utilizado en registros obtenidos del estudio de este edificio. La duración de los registros analizados varía desde 1 minuto hasta 1 hora. En la siguiente tabla se resume los resultados obtenidos:

Estimación	Estimación Método Dominio Estimación Método SSI		imación Método Dominio Est		Estimaci	ón Método SSI
Frecuencia	(reg. 1997-1999)	9) Registros año 1997 Regist		tros año 2004		
Frecuencia	Amortiguamiento	Frecuencia	Amortiguamiento	Frecuencia	Amortiguamiento	
[Hz]	[%]	[Hz]	[%]	[Hz]	[%]	
1.04	1.1	1.0537	1.84	1.0212	1.02	
1.07	1.0	1.0676	0.45	1.0247	0.92	
1.63	0.6	1.6181	0.55	1.5527	0.97	
3.56-3.63	1.5	3.5822	1.17	3.4893	1.58	
3.53-3.60	1.5	3.6087	2.11	3.4958	2.49	
-	-	4.0973	1.96	3.9401	1.74	
4.80	1.2	4.8426	1.31	4.6491	0.91	

Tabla 3: Resultados obtenidos por P. Valdés (ref. 6)

Las fechas de los registros para el método en el espacio de la frecuencia corresponden a los días 2 de Oct. de 1997, 7 de May. de 1998 y 7 de abril de 1999. Para el método SSI se usaron registros de las siguientes fechas: 8 de Mar. de 1997, 30 de Jun. de 1997, 2 de Oct. de 1997, 20 de Enero de 2004.

De la tabla anterior podemos notar que el método SSI permite identificar frecuencias cercanas con amortiguamientos distintos e identificar la frecuencia N° 6, asociada al segundo modo torsional, la cual el método de dominio en frecuencia no lo logra. También existe una

apreciable variación tanto en frecuencia como en amortiguamiento determinados mediante el método SSI, desde el año 1997 al año 2004.

El trabajo hecho por A. Castillo (ref. 1) abarcó el estudio de edificios altos y la identificación de sus propiedades modales, entre ellos el edificio CCHC, utilizando el método SSI. Las mediciones en terreno se realizaron en Enero de 2005, con registros de duración de 10 a 40 minutos.

Frecuencia	EF [Hz]	FNP [Hz]	SSI [Hz]
1	1.05	1.02	1.02
2	1.07	1.03	1.03
3	1.54	1.55	1.55
4	3.86	3.40-3.45	3.46
5	3.91	3.47-3.50	3.51
6	4.44	3.92-3.96	3.94
7	-	4.60-4.63	4.63

 Tabla 4: Resultados obtenidos por A. Castillo (ref. 1)

En la anterior tabla podemos observar que los valores identificados mediante el método SSI en 2005 son muy similares a los obtenidos por el mismo método en el año 2004. También se ve que existen pequeñas diferencias desde la cuarta frecuencia en adelante entre los métodos, sin embargo, para las tres primeras frecuencias los valores son bastante semejantes.

Con los resultados anteriores, es válido ocupar el método SSI en el edificio de la Cámara Chilena de la Construcción para determinar sus propiedades modales utilizando registros de 7 meses.

CAPÍTULO 4: REGISTRO Y ANÁLISIS DE ACELEROGRAMAS Y DATOS METEREOLÓGICOS

4.1 MEDICIONES METEREOLÓGICAS

4.1.1 Características Metereológicas de la Ciudad de Santiago

En relación al clima de la Ciudad de Santiago, éste se define como templado cálido con lluvias invernales (Mayo - Agosto) y estación seca prolongada (Septiembre - Abril), lo que en general se denomina clima mediterráneo. La duración de la estación seca es de 7 u 8 meses. La cordillera de la costa, como barrera ante la influencia del mar, contribuye a exagerar los valores de las temperaturas, situación que se aprecia claramente en las oscilaciones térmicas diarias y anuales.

4.1.2 Descripción Estación Metereológica

La estación metereológica está localizada en la terraza del departamento de Geofísica de la Universidad de Chile, ubicado en Blanco Encalada N° 2002, comuna de Santiago. Su ubicación geográfica es 33.452 grados de latitud Sur, y 70.662 grados de longitud Oeste, a 533 metros sobre el nivel del mar.

La estación es del tipo automática, con un valor de muestreo de 30 segundos y un intervalo de registro de 15 minutos. Las variables observadas son:

- Temperatura del aire
- Humedad relativa
- Radiación solar
- Presión atmosférica
- Precipitación
- Magnitud y dirección del viento

El valor almacenado para cada variable es el promedio dentro del último intervalo de registro, y en el caso de precipitación, se reporta el valor acumulado en el intervalo de registro. Los datos son registrados en un archivo de texto separado por columnas.

4.1.3 Análisis y Registros Metereológicos

Los datos utilizados en este trabajo corresponden al periodo desde el mes de Mayo hasta el mes de Noviembre, coincidente con el periodo de registro de micovibraciones. Las variables estudiadas son temperatura, humedad relativa, precipitación, velocidad y dirección del viento.

A continuación, se muestran los gráficos correspondientes al periodo en estudio:

Figura 7: Temperatura Mayo - Noviembre

Figura 8: Humedad Relativa Mayo – Noviembre

Figura 9: Precipitación acumulada en intervalos de 15 min. Mayo - Noviembre

Figura 10: Velocidad promedio del viento Mayo - Noviembre

Figura 11: Dirección del viento Mayo – Noviembre

El año 2007, fue más seco y frío que otros años debido a la presencia del fenómeno de la Niña, aunque sí hubo algunos episodios importantes de precipitaciones. Los gráficos a continuación muestran algunos de estos eventos significativos en cuanto a alta variación térmica (21 al 28 de Mayo) y precipitaciones con poca variación térmica (13 al 15 de Junio).

Figura 12: Temperatura 21/05/2007 - 28/05/2007

Figura 13: Humedad Relativa 21/05/2007 - 28/05/2007

Figura 14: Precipitación (0 mm) 21/05/2007 - 28/05/2007

Figura 15: Velocidad viento 21/05/2007 - 28/05/2007

Figura 16: Dirección viento 21/05/2007 - 28/05/2007

De los gráficos anteriores del período 21 de Mayo a 28 de Mayo, destacan los ciclos diarios de temperatura claramente definidos, los cuales se aprecian debido a la nula precipitación entre aquellas fechas.

Figura 17: Temperatura 10/06/2007 - 17/06/2007

Figura 18: Humedad relativa 10/06/2007 - 17/06/2007

Figura 19: Precipitación 10/06/2007 - 17/06/2007

Figura 20: Velocidad Viento 10/06/2007 - 17/06/2007

Figura 21: Dirección Viento 10/06/2007 - 17/06/2007

En el caso del período 10 de Junio al 17 de Junio, los ciclos diarios de temperatura no son tan definidos como en el caso sin precipitaciones. Se aprecia que durante los días con precipitaciones y altos niveles de humedad relativa, la variación de temperatura durante un día no presenta una diferencia entre los valores máximos y mínimos.

4.2 **REGISTROS DE MICROVIBRACIONES**

Procedimiento de recolección de datos

Para poder realizar mediciones continuas, se evaluó la máxima capacidad de almacenamiento de la central de registro. Dado que no se cuenta con un sistema remoto efectivo para recoger los datos en forma continua, éstos debían ser descargados directamente de las tarjetas de memoria de la central de registro a un computador portátil. Luego, se procedió a instalar la máxima capacidad admisible, 2 tarjetas de 2 GB de capacidad cada una.

Dado que los programas de visualización de archivos de registro proveídos por el fabricante solamente pueden trabajar con registros de hasta 48 horas, los archivos debieron ser cortados manualmente por vía telefónica a través del modem conectado a la central de registro, en un periodo de no más de un par de días para un procesamiento eficaz.

El equipo fue configurado para registrar 100 muestras por segundo y estar en un estado constante de registro o "trigger" para los 12 sensores. Con esta configuración y con la capacidad de memoria, se debía descargar los archivos antes de 12 días aproximadamente, para no sobrepasar la capacidad de las tarjetas. Posteriormente los archivos originales eran respaldados y procesados.

Con la información del "header" de cada archivo de registro, éstos eran ordenados cronológicamente y se identificaba la fecha de inicio, la fecha de término y la duración del registro. El archivo procesado y con la información del "header" conocida, era traspasado al programa Matlab, para posteriormente ser analizado.

Registros históricos en el edificio

Durante el año 2007, se registraron 11 eventos en las siguientes fechas: 22 de Abril, 10 de Mayo, 28 de Junio, 11 de Julio, 29 de Septiembre, 30 de Septiembre, 8 de Octubre, 15 de Diciembre, 17 de Diciembre (2 eventos) y 20 de Diciembre. La aceleración máxima registrada fue de 4% g, en el evento del 22 de Abril.

Debido a que el número de eventos sísmicos de relevancia registrados durante el periodo de estudio de 7 meses fue menor a lo esperado, se privilegió el estudio de registros de vibraciones ambientales en desmedro de los registros de eventos sísmicos.

Registros ambientales de microvibraciones

La toma de datos se inició el día 19 de abril de 2007, concluyendo el día 10 de diciembre del mismo año. A continuación se muestra algunos de los gráficos de registro. Los registros observados normalmente no superan una aceleración de 5×10^{-4} g.

Figura 22: Registro CR014.EVT, 15 segundos

Figura 24: Registro CM002.EVT, sismo de pequeña magnitud.

4.3 ANÁLISIS MEDIANTE MÉTODO SSI

Para la identificación de las propiedades modales, se utilizaron todos los registros obtenidos desde el 01 de Mayo hasta el 30 de Noviembre. Debido al tiempo de procesamiento y a la cantidad de datos por analizar, se escogió como muestra representativa los 10 primeros minutos de cada hora, ya que con ésta duración de registro se puede lograr una identificación satisfactoria.

De los 12 sensores de cada registro, se eligió procesar los datos correspondientes a los sensores 5 al 12, correspondientes a los cielos del zócalo y de los pisos 11 y 18. Antes de aplicar el método SSI, a cada registro se le aplica un filtro en la banda 0.25 - 5 Hz y un resampleo para cambiar la frecuencia de muestreo de 100 a 10 muestras por segundo. Así, es posible identificar hasta frecuencias menores a Fs/2, lo que corresponde a 5 Hz, incluyendo así las 7 primeras frecuencias identificadas en el modelo de elementos finitos y por A. Castillo (ref. 1) y P. Valdés (ref. 6).

Las condiciones de estabilidad de una propiedad dinámica vienen dadas por una precisión que comúnmente se define para la frecuencia y el amortiguamiento:

$$\frac{f^{(p)} - f^{(p+1)}}{f^{(p)}} \le 1\%$$

$$\frac{\beta^{(p)} - \beta^{(p+1)}}{\beta^{(p)}} \le 5\%$$

Donde p es el orden del modelo de identificación, es decir, los grados de libertad del modelo que se están considerando.

Cumpliendo estas condiciones de estabilidad, que pueden variar de acuerdo a la precisión del modelo que se desee, se logra obtener las propiedades dinámicas del edificio.

El proceso de identificación de frecuencias y amortiguamientos se encuentra implementado por P. Valdés (ref. 6) mediante rutinas programadas en Matlab Como resultado se entrega un diagrama de estabilidad, este consiste en el resumen gráfico de la estabilidad de las diferentes propiedades dinámicas y su categorización. Se puede identificar una frecuencia predominante cuando esta se hace estable aumentando el orden del modelo (grados de libertad).

En el proceso de identificación a través del método SSI se optó por usar hasta 30 GDL, que en estudios anteriores ha dado buenos resultados, con un valor mayor aumenta considerablemente el tiempo de procesamiento. A continuación se muestran a modo de ejemplo, 4 figuras de un mismo día típico consecutivas cada 6 horas.

Figura 25: Diagrama estabilidad desde 04:00 a 04:10

Figura 26: Diagrama estabilidad desde 10:00 a 10:10

Figura 27: Diagrama estabilidad desde 16:00 a 16:10

Figura 28: Diagrama estabilidad desde 22:00 a 22:10

En los diagramas de estabilidad observados anteriormente, se puede apreciar las 7 primeras frecuencias naturales. También se observa la cercanía en las figuras entre las frecuencias 1 - 2 (entre 1.0 Hz y 1.1 Hz) y 4 - 5 (en torno a 3.45 Hz). La discontinuidad que se observa en todos los diagramas entre 0 y 0.25 Hz se debe al filtro aplicado a los registros previo a la identificación. Junto al diagrama de estabilidad se superpone el gráfico de PSD, como herramienta para una mejor identificación.

Aplicación Método SSI a Modelo Computacional

Como validación del método de identificación, se analizó un registro de aceleraciones (Time-History) entregado por el programa ETABS correspondiente al edificio modelado.

Como imput al modelo, se ingresó 10 registros diferentes de aceleraciones ficticias en la base, en cada una de las dos direcciones principales. La frecuencia de muestreo (100 muestras por sec.) y el tiempo de duración (10 minutos) son las mismas que las de los registros reales. El amortiguamiento modal originado en el modelo fue de 1% para todos los modos.

Los valores de aceleración fueron generados mediante la función wgn (White Gaussian Noise) de Matlab, representando un registro gaussiano de ruido blanco. Los valores fueron escalados por un factor de [10⁻⁵ g].

Como salida del modelo, se recogió el registro de aceleraciones en los nodos correspondientes a la ubicación de los 8 sensores superiores, los mismos sensores utilizados en la identificación de los registros reales.

Como entrada para el proceso de identificación, en un caso a los 10 registros de salida del modelo se le sumó un ruido creado a partir de *wgn*, normalizado al 10% del máximo valor del registro de aceleración para cada uno de los 8 sensores. En el otro caso, los 10 registros no se les sumó ruido alguno.

La frecuencia del modo número 7 (6.84 [Hz]) no se aprecia en los siguientes diagramas de identificación ya que en el modelo computacional tiene un valor mayor a 5 [Hz].

Registros ETABS con Ruido Agregado

N°	Frecuencia [Hz]	σ frecuencia [Hz]	β[%]	σβ[%]
1	1.0535	0.0014	1.06	0.03
2	1.1060	0.0004	0.96	0.02
3	1.4842	0.0004	0.82	0.02
4	3.9526	0.0053	0.99	0.03
5	4.0682	0.0019	1.06	0.01
6	4.2354	0.0035	1.05	0.03

Tabla 5: Identificación registro 1 modelo ETABS

Figura 29: Diagrama de Estabilidad, Registro 1 modelo Etabs

N°	Frecuencia [Hz]	σ frecuencia [Hz]	β[%]	σβ[%]
1	1.0582	0.0003	1.19	0.03
2	1.1073	0.0006	1.52	0.04
3	1.4840	0.0006	0.86	0.02
4	3.9458	0.0025	0.77	0.02
5	4.0749	0.0011	0.95	0.03
6	4.2394	0.0030	0.96	0.03

Tabla 6: Identificación registro 2 modelo ETABS

Figura 30: Diagrama de Estabilidad, Registro 2 modelo Etabs

N°	Frecuencia [Hz]	σ frecuencia [Hz]	β [%]	σβ[%]
1	1.0570	0.0006	1.20	0.03
2	1.1072	0.0002	0.79	0.01
3	1.4826	0.0004	1.08	0.04
4	3.9452	0.0005	0.96	0.01
5	4.0710	0.0008	0.91	0.02
6	4.2474	0.0006	0.96	0.02

Tabla 7: Identificación registro 3 modelo ETABS

Figura 31: Diagrama de Estabilidad, Registro 3 modelo Etabs

N°	Frecuencia [Hz]	σ frecuencia [Hz]	β [%]	σβ[%]
1	1.0579	0.0008	1.11	0.04
2	1.1051	0.0017	0.97	0.01
3	1.4790	0.0012	0.97	0.04
4	3.9409	0.0072	1.08	0.03
5	4.0674	0.0028	0.94	0.03
6	4.2267	0.0011	0.82	0.01

Tabla 8: Identificación registro 4 modelo ETABS

Figura 32: Diagrama de Estabilidad, Registro 4 modelo Etabs

N°	Frecuencia [Hz]	σ frecuencia [Hz]	β [%]	σβ[%]
1	1.0575	0.0003	0.96	0.03
2	1.1063	0.0001	1.43	0.04
3	1.4848	0.0011	1.08	0.03
4	3.9494	0.0009	0.78	0.02
5	4.0697	0.0061	0.96	0.03
6	4.2354	0.0026	0.79	0.03

Tabla 9: Identificación registro 5 modelo ETABS

Figura 33: Diagrama de Estabilidad, Registro 5 modelo Etabs

N°	Frecuencia [Hz]	σ frecuencia [Hz]	β [%]	σβ[%]
1	1.0556	0.0009	0.90	0.02
2	1.1059	0.0002	0.91	0.02
3	1.4844	0.0008	1.08	0.03
4	3.9507	0.0029	0.94	0.03
5	4.0675	0.0014	0.84	0.02
6	4.2222	0.0026	0.89	0.02

Tabla 10: Identificación registro 6 modelo ETABS

Figura 34: Diagrama de Estabilidad, Registro 6 modelo Etabs

N°	Frecuencia [Hz]	σ frecuencia [Hz]	β [%]	σβ[%]	
1	1.0519	0.0001	1.23	0.04	
2	1.1056 0.0001		1.1056 0.0001	0.64	0.02
3	1.4833	0.0008	1.14	0.03	
4	3.9531	0.0019	0.94	0.03	
5	4.0710	0.0022	0.87	0.02	
6	4.2374	0.0024	0.91	0.02	

Tabla 11: Identificación registro 7 modelo ETABS

Figura 35: Diagrama de Estabilidad, Registro 7 modelo Etabs

N°	Frecuencia [Hz]	σ frecuencia [Hz]	β [%]	σβ[%]
1	1.0564	0.0001	0.88	0.01
2	1.1023	0.0011	1.09	0.02
3	1.4808	0.0009	1.16	0.03
4	3.9419	0.0030	1.08	0.03
5	4.0753	0.0003	0.85	0.02
6	4.2226	0.0049	0.81	0.02

Tabla 12: Identificación registro 8 modelo ETABS

Figura 36: Diagrama de Estabilidad, Registro 8 modelo Etabs

N°	Frecuencia [Hz]	σ frecuencia [Hz]	β [%]	σβ[%]		
1	1.0563	0.0007	1.15	0.02		
2	1.1035 0.0001		1.1035 0.0001		0.96	0.02
3	1.4809	0.0006	1.19	0.04		
4	3.9518	0.0006	1.05	0.02		
5	4.0759	0.0022	0.93	0.02		
6	4.2488	0.0032	1.10	0.03		

Tabla 13: Identificación registro 9 modelo ETABS

Figura 37: Diagrama de Estabilidad, Registro 9 modelo Etabs

N°	Frecuencia [Hz]	σ frecuencia [Hz]	β[%]	σβ[%]
1	1.0505	0.0010	0.95	0.02
2	1.1049	0.0001	0.78	0.02
3	1.4760	0.0006	1.04	0.03
4	3.9584	0.0014	0.95	0.02
5	4.0633	0.0005	0.78	0.02
6	4.2370	0.0010	0.80	0.01

Tabla 14: Identificación registro 10 modelo ETABS

Figura 38: Diagrama de Estabilidad, Registro 10 modelo Etabs

N°	F ETABS [Hz]	F SSI [Hz]	F Min. [Hz]	F Max. [Hz]	Porcentaje de Variación [%]	β ETABS [%]	β SSI [%]	β Min. [%]	β Max. [%]	Porcentaje de Variación [%]
1	1.055	1.0555	1.0505	1.0582	0.73	1.00	1.06	0.88	1.23	33.02
2	1.1043	1.1054	1.1023	1.1073	0.45	1.00	1.01	0.64	1.52	87.13
3	1.4829	1.4820	1.4760	1.4848	0.59	1.00	1.04	0.82	1.19	35.58
4	3.9476	3.9490	3.9409	3.9584	0.44	1.00	0.95	0.77	1.08	32.63
5	4.0711	4.0704	4.0633	4.0759	0.31	1.00	0.91	0.78	1.06	30.77
6	4.2356	4.2352	4.2222	4.2488	0.63	1.00	0.91	0.79	1.10	34.07

Tabla 15: Resumen 10 registros modelo ETABS

De los resultados anteriores se aprecia que los valores identificados en frecuencia concuerdan con bastante precisión con los valores calculados por el modelo de elementos finitos, la máxima diferencia entre la frecuencia del modelo y la frecuencia media identificada corresponde al modo 2 con un error de 0.1%, también se observa el pequeño rango de variación entre los valores máximos y mínimos, la mayor variación corresponde al modo 1, con un 0.73%. El máximo error en frecuencia corresponde al modo 3 con 0.5%.

En el caso del amortiguamiento, el promedio de los 10 registros presenta un valor aceptable, con una diferencia máxima de un 9% en relación al valor impuesto en el modelo (1.0%) para el caso de los modos 5 y 6. La variación observada a través de los valores máximos y mínimos no es despreciable, llegando hasta un 87% para el caso del modo 2. El máximo error del amortiguamiento corresponde al modo 2 con 52%.

Registros ETABS sin Ruido Agregado

N°	Frecuencia [Hz]	σ frecuencia [Hz]	β [%]	σβ[%]	
1	1.0545	0.0010	1.08	0.03	
2	1.1072	0.0004	1.02	0.03	
3	1.4844	0.0003	0.86	0.02	
4	3.9500	0.0016	0.98	0.02	
5	4.0673	0.0010	1.03	0.03	
6	4.2386	0.0025	0.98	0.02	

Tabla 16: Identificación registro 1 sin ruido agregado, modelo ETABS

Figura 39: Diagrama de Estabilidad, Registro 1 sin ruido agregado, modelo Etabs

N°	Frecuencia [Hz]	σ frecuencia [Hz]	β [%]	σβ[%]
1	1.0577	0.0002	1.17	0.03
2	1.1057	0.0005	1.37	0.04
3	1.4837	0.0005	0.92	0.02
4	3.9438	0.0023	0.81	0.02
5	4.0771	0.0027	0.73	0.02
6	4.2402	0.0020	0.93	0.03

Tabla 17: Identificación registro 2 sin ruido agregado, modelo ETABS

Figura 40: Diagrama de Estabilidad, Registro 2 sin ruido agregado, modelo Etabs

N°	Frecuencia [Hz]	σ frecuencia [Hz]	β [%]	σβ[%]
1	1.0564	0.0003	1.07	0.02
2	1.1075	0.0003	0.81	0.02
3	1.4825	0.0003	1.06	0.03
4	3.9469	0.0008	0.91	0.02
5	4.0642	0.0031	0.80	0.02
6	4.2531	0.0060	0.88	0.03

Tabla 18: Identificación registro 3 sin ruido agregado, modelo ETABS

Figura 41: Diagrama de Estabilidad, Registro 3 sin ruido agregado, modelo Etabs

N°	Frecuencia [Hz]	σ frecuencia [Hz]	β [%]	σβ[%]
1	1.0582	0.0002	1.05	0.03
2	1.1049	0.0003	1.02	0.02
3	1.4787	0.0005	0.93	0.03
4	3.9430	0.0016	1.18	0.03
5	4.0739	0.0042	0.97	0.03
6	4.2243	0.0032	1.07	0.03

Tabla 19: Identificación registro 4 sin ruido agregado, modelo ETABS

Figura 42: Diagrama de Estabilidad, Registro 4 sin ruido agregado, modelo Etabs

N°	Frecuencia [Hz]	σ frecuencia [Hz]	β [%]	σβ[%]
1	1.0561	0.0001	0.85	0.02
2	1.1045	0.0003	1.46	0.04
3	1.4851	0.0006	1.09	0.03
4	3.9495	0.0005	0.79	0.02
5	4.0774	0.0035	0.99	0.03
6	4.2352	0.0012	0.75	0.02

Tabla 20: Identificación registro 5 sin ruido agregado, modelo ETABS

Figura 43: Diagrama de Estabilidad, Registro 5 sin ruido agregado, modelo Etabs

N°	Frecuencia [Hz]	σ frecuencia [Hz]	β [%]	σβ[%]
1	1.0553	0.0005	0.88	0.02
2	1.1061	0.0002	0.93	0.02
3	1.4832	0.0011	1.22	0.04
4	3.9488	0.0085	0.97	0.03
5	4.0654	0.0034	0.86	0.02
6	4.2238	0.0025	0.96	0.03

Tabla 21: Identificación registro 6 sin ruido agregado, modelo ETABS

Figura 44: Diagrama de Estabilidad, Registro 6 sin ruido agregado, modelo Etabs

N°	Frecuencia [Hz]	σ frecuencia [Hz]	β [%]	σβ[%]
1	1.0520	0.0004	1.15	0.04
2	1.1053	0.0002	0.68	0.02
3	1.4822	0.0008	1.27	0.03
4	3.9563	0.0028	0.85	0.03
5	4.0747	0.0046	0.83	0.03
6	4.2403	0.0013	0.80	0.01

Tabla 22: Identificación registro 7 sin ruido agregado, modelo ETABS

Figura 45: Diagrama de Estabilidad, Registro 7 sin ruido agregado, modelo Etabs

N°	Frecuencia [Hz]	σ frecuencia [Hz]	β [%]	σβ[%]
1	1.0564	0.0002	0.89	0.02
2	1.1016	0.0010	1.16	0.04
3	1.4814	0.0005	1.07	0.02
4	3.9464	0.0034	1.08	0.04
5	4.0789	0.0023	0.71	0.02
6	4.2269	0.0048	1.09	0.04

Tabla 23: Identificación registro 8 sin ruido agregado, modelo ETABS

Figura 46: Diagrama de Estabilidad, Registro 8 sin ruido agregado, modelo Etabs

N°	Frecuencia [Hz]	σ frecuencia [Hz]	β [%]	σβ[%]
1	1.0569	0.0007	1.14	0.02
2	1.1042	0.0004	0.98	0.02
3	1.4809	0.0006	1.14	0.03
4	3.9527	0.0010	1.08	0.02
5	4.0783	0.0024	0.99	0.03
6	4.2531	0.0012	0.97	0.02

Tabla 24: Identificación registro 9 sin ruido agregado, modelo ETABS

Figura 47: Diagrama de Estabilidad, Registro 9 sin ruido agregado, modelo Etabs

N°	Frecuencia [Hz]	σ frecuencia [Hz]	β [%]	σβ[%]
1	1.0512	0.0006	0.94	0.03
2	1.1051	0.0002	0.79	0.03
3	1.4771	0.0009	1.05	0.02
4	3.9591	0.0042	0.91	0.02
5	4.0620	0.0008	0.81	0.02
6	4.2382	0.0014	0.89	0.03

Tabla 25: Identificación registro 10 sin ruido agregado, modelo ETABS

Figura 48: Diagrama de Estabilidad, Registro 10 sin ruido agregado, modelo Etabs

N°	F ETABS [Hz]	F SSI [Hz]	F Min. [Hz]	F Max. [Hz]	Porcentaje de Variación [%]	β ETABS [%]	β SSI [%]	β Min. [%]	β Max. [%]	Porcentaje de Variación [%]
1	1.055	1.0555	1.0512	1.0582	0.66	1.00	1.02	0.85	1.17	31.31
2	1.1043	1.1052	1.1016	1.1075	0.53	1.00	1.02	0.68	1.46	76.32
3	1.4829	1.4819	1.4771	1.4851	0.54	1.00	1.06	0.86	1.27	38.64
4	3.9476	3.9496	3.9430	3.9591	0.41	1.00	0.97	0.79	1.18	40.80
5	4.0711	4.0719	4.0620	4.0789	0.42	1.00	0.87	0.71	1.03	36.70
6	4.2356	4.2374	4.2238	4.2531	0.69	1.00	0.93	0.75	1.09	36.48

Tabla 26: Resumen 10 registros Sin ruido agregado, modelo ETABS

De los resultados correspondientes al caso sin ruido agregado, se aprecia que los valores identificados en frecuencia concuerdan con bastante precisión con los valores calculados por el modelo de elementos finitos, la máxima diferencia entre la frecuencia del modelo y la frecuencia media identificada corresponde al modo 2 con un error de 0.1%, también se observa el pequeño rango de variación entre los valores máximos y mínimos, la mayor variación corresponde al modo 6, con un 0.69%. El máximo error en frecuencia corresponde al modo 6 con 0.4%.

En el caso del amortiguamiento, el promedio de los 10 registros presenta un valor aceptable, con una diferencia máxima de un 13% en relación al valor impuesto en el modelo (1.0%) para el caso del modo 5. La variación observada a través de los valores máximos y mínimos no es despreciable, llegando hasta un 76% para el caso del modo 2. El máximo error del amortiguamiento corresponde al modo 2 con 46%.

Como conclusión de la validación del método SSI aplicado al modelo computacional, las frecuencias identificas en todos los casos, con o sin ruido agregado, corresponden a los valores del modelo con un error mínimo. Sin embargo, para la razón de amortiguamiento, los valores identificados no son precisos. Para disminuir el error, se necesitan realizar un mayor número de procesos de identificación que los realizados en este estudio y calcular el valor medio como valor representativo.

Los valores máximos de la variación y del error de la frecuencia son menores en los casos sin ruido agregado. La variación sube de 0.69% a 0.73% al agregar ruido y el error sube de 0.4% a 0.5% al agregar ruido.

En relación al amortiguamiento, Los máximos valores de la variación y del error del amortiguamiento también son menores en los casos sin ruido agregado. La variación sube de 76% a 87% al agregar ruido y el error sube de 46% a 52% al agregar ruido.

La máxima diferencia entre el valor medio del amortiguamiento y el valor del modelo, correspondiente al caso del modo 5, fue menor al agregar ruido. En el caso con ruido agregado fue de 9% y en el caso sin ruido agregado fue de 13%.

CAPÍTULO 5: ANÁLISIS Y CORRELACIÓN DE RESULTADOS

5.1 RESULTADOS DE IDENTIFICACIÓN

Con los diagramas de estabilidad procesados se identifican las frecuencias y sus amortiguamientos predominantes para los triples aciertos considerados (que corresponde a los casos en que coinciden frecuencia, forma modal y amortiguamiento). En la siguiente tabla se entregan para el periodo considerado (Mayo - Noviembre) los valores medios y su desviación estándar de las primeras 7 frecuencias identificadas como modales. Los valores máximos y mínimos corresponden al 99.9% del total de la muestra.

	Frecuencia	F Min.	F Max.	σ frecuencia		β Min.	β Max.	
N°	[Hz]	[Hz]	[Hz]	[Hz]	β [%]	[%]	[%]	σβ[%]
1	1.0153	1.0044	1.0259	0.0033	0.67	0.20	1.56	0.19
2	1.0304	1.0192	1.0438	0.0038	0.73	0.25	1.70	0.21
3	1.5538	1.5323	1.5781	0.0078	0.74	0.21	2.10	0.21
4	3.4338	3.3914	3.4738	0.0132	0.98	0.30	1.95	0.27
5	3.4841	3.4371	3.5446	0.0160	0.96	0.21	2.71	0.36
6	3.8946	3.7606	4.0201	0.0586	1.05	0.32	3.09	0.32
7	4.5960	4.5131	4.6719	0.0250	1.15	0.32	2.52	0.26

Tabla 27: Promedio de Frecuencia y Amortiguamiento Mayo – Noviembre de 2007

Estos valores pudieron ser estimados de mejor manera ya que a priori se conocían con certeza el rango en que se encontraban, por lo que se podían descartar ciertas frecuencias en algunas bandas (por ejemplo 2 Hz - 3 Hz), que no correspondían a formas modales y que además el gráfico de densidad espectral de potencia (PSD) indicaba su bajo valor en el rango de la frecuencia de interés en relación a frecuencias vecinas. En los siguientes gráficos se muestra la variación de las frecuencias en el periodo de estudio. Se puede notar la cercanía entre las frecuencias 1 y 2 y las frecuencias 4 y 5. Se aprecia también algunos saltos en las mediciones, lo que corresponde a datos faltantes o que no pudieron ser procesados.

Figura 49: Frecuencias identificadas Mayo - Noviembre

Figura 50: Frecuencias identificadas entre 1.00 y 1.05 Hz

Figura 51: Frecuencia identificada entre 1.5 y 1.6 Hz

Figura 52: Frecuencias identificadas entre 3.3 y 3.6 Hz

Figura 53: Frecuencia identificada entre 3.7 y 4.1 Hz

Figura 54: Frecuencia identificada entre 4.5 y 4.7 Hz

AMORTIGUAMIENTOS MAYO - NOVIEMBRE

0.005

01/05/07

01/06/07

01/07/07

En relación al porcentaje del amortiguamiento crítico, los valores asociados a las frecuencias anteriormente identificadas son cercanos al 1% para las 7 frecuencias modales.

Figura 55: Amortiguamientos asociados a las frecuencias identificadas

01/08/07 Fecha 01/09/07

01/10/07

01/11/07

Figura 56: Amortiguamiento asociado al modo 1

Figura 57: Amortiguamiento asociado al modo 2

Figura 58: Amortiguamiento asociado al modo 3

Figura 59: Amortiguamiento asociado al modo 4

Figura 60: Amortiguamiento asociado al modo 5

Figura 61: Amortiguamiento asociado al modo 6

Figura 62: Amortiguamiento asociado al modo 7

5.2 HISTOGRAMAS

La variación de los parámetros dinámicos en el periodo total de 7 meses se puede apreciar en los siguientes histogramas. En relación a la frecuencia 6, existe una fuerte variación que no permite considerarla a priori como una sola frecuencia, sino tal vez como 2 frecuencias diferentes o una deficiente identificación en algunos registros.

Figura 63: Distribución de frecuencias identificadas durante todo el período

N°	Frecuencia	F Min.	F Max.	σ frecuencia
	[Hz]	[Hz]	[Hz]	[Hz]
1	1.0153	1.0036	1.0267	0.0033

Tabla 28: Promedio de Frecuencia Modo 1, Mayo – Noviembre de 2007

Figura 64: Distribución de frecuencias modo 1 durante todo el período
N°	Frecuencia	F Min.	F Max.	σ frecuencia
	[Hz]	[Hz]	[Hz]	[Hz]
2	1.0304	1.0183	1.0444	0.0038

Tabla 29: Promedio de Frecuencia Modo 2, Mayo – Noviembre de 2007

Figura 65: Distribución de frecuencias modo 2 durante todo el período

N°	Frecuencia	F Min.	F Max.	σ frecuencia
	[Hz]	[Hz]	[Hz]	[Hz]
3	1.5538	1.5312	1.5840	0.0078

Tabla 30: Promedio de Frecuencia Modo 3, Mayo – Noviembre de 2007

Figura 66: Distribución de frecuencias modo 3 durante todo el período

N°	Frecuencia	F Min.	F Max.	σ frecuencia
	[Hz]	[Hz]	[Hz]	[Hz]
4	3.4338	3.3830	3.4758	0.0132

Tabla 31: Promedio de Frecuencia Modo 4, Mayo – Noviembre de 2007

Figura 67: Distribución de frecuencias modo 4 durante todo el período

N°	Frecuencia	F Min.	F Max.	σ frecuencia
	[Hz]	[Hz]	[Hz]	[Hz]
5	3.4841	3.4316	3.5500	0.0160

 Tabla 32: Promedio de Frecuencia Modo 5, Mayo – Noviembre de 2007

Figura 68: Distribución de frecuencias modo 5 durante todo el período

N°	Frecuencia	F Min.	F Max.	σ frecuencia
	[Hz]	[Hz]	[Hz]	[Hz]
6	3.8946	3.7572	4.0205	0.0586

Tabla 33: Promedio de Frecuencia Modo 6, Mayo – Noviembre de 2007

Figura 69: Distribución de frecuencias modo 6 durante todo el período

N°	Frecuencia	F Min.	F Max.	σ frecuencia
	[Hz]	[Hz]	[Hz]	[Hz]
7	4.5960	4.5063	4.6813	0.0250

Tabla 34: Promedio de Frecuencia Modo 7, Mayo - Noviembre de 2007

Figura 70: Distribución de frecuencias modo 7 durante todo el período

En relación a la distribución de las frecuencias analizadas, se aprecia son asimilables a una distribución normal, excepto el modo 6 donde el comportamiento es diferente. Se observa que la dispersión en todas las frecuencias es pequeña, a través de la desviación estándar y los valores máximos y mínimos.

En los siguientes gráficos se presentan las distribuciones para el amortiguamiento.

Figura 71: Distribución de amortiguamientos identificados durante todo el período

 N°
 β [%]
 β Min.
 β Max.

 1
 0.67
 0.20
 1.56
 0.19

Tabla 35: Promedio Amortiguamiento Modo 1, Mayo – Noviembre de 2007

Figura 72: Distribución de amortiguamiento modo 1 durante todo el período

NIO	۲ / o	β Min.	β Max.	- Q [0/]
IN	p[70]	[70]	[70]	OP[70]
2	0.73	0.20	1.93	0.21

Tabla 36: Promedio de Amortiguamiento Modo 2, Mayo - Noviembre de 2007

Figura 73: Distribución de amortiguamiento modo 2 durante todo el período

	N°	ß [%]	β Min. [%]	β Max. [%]	σβ[%]
ľ	3	0.74	0.18	2.80	0.21

Tabla 37: Promedio de Amortiguamiento Modo 3, Mayo – Noviembre de 2007

Figura 74: Distribución de amortiguamiento modo 3 durante todo el período

NIO	0 [0/]	β Min.	β Max.	- 0 [0/]
N°	β[%]	[%]	[%]	σβ[%]
4	0.98	0.26	2.34	0.27

Tabla 38: Promedio de Amortiguamiento Modo 4, Mayo – Noviembre de 2007

Figura 75: Distribución de amortiguamiento modo 4 durante todo el período

\mathbf{N}°	β[%]	β Min. [%]	β Max. [%]	σβ[%]
5	0.96	0.16	2.98	0.36

Tabla 39: Promedio de Amortiguamiento Modo 5, Mayo – Noviembre de 2007

Figura 76: Distribución de amortiguamiento modo 5 durante todo el período

Tabla 40: Promedio de Amortiguamiento Modo 6, Mayo – Noviembre de 2007

		β Min.	β Max.	
N°	β [%]	[%]	[%]	σβ[%]
6	1.05	0.24	3.23	0.32

Figura 77: Distribución de amortiguamiento modo 6 durante todo el período

		β Min.	β Max.	
N°	β[%]	[%]	[%]	σβ[%]
7	1.15	0.22	4.51	0.26

Tabla 41: Promedio de Amortiguamiento Modo 7, Mayo - Noviembre de 2007

Figura 78: Distribución de amortiguamiento modo 7 durante todo el período

En el caso del amortiguamiento observado, las distribuciones no presentan una total simetría, se aprecia una mayor dispersión en los valores mayores a la media y una mayor concentración en los valores menores a la media.

La variación en el periodo Mayo – Noviembre para las variables metereológicas se muestra en los siguientes histogramas.

Figura 80: Distribución de temperatura por meses

Figura 81: Distribución de humedad relativa durante todo el período

Figura 82: Distribución de humedad relativa por meses

Figura 83: Distribución de precipitación acum. en 15 min. durante todo el período

Figura 84: Distribución de precipitación acum. en 15 min. por meses

Figura 85: Distribución de velocidad media del viento durante todo el período

Figura 86: Distribución de velocidad media del viento por meses

Figura 87: Distribución de dirección media del viento durante todo el período

Figura 88: Distribución de dirección media del viento por meses

En los histogramas anteriores, se aprecia claramente la variación de la temperatura media entre los distintos meses y la escasa precipitación en el período de estudio.

En el anexo se incluyen gráficos donde se puede observar la variación conjunta entre variables metereológicas y propiedades modales de los 7 primeros modos (frecuencia natural y amortiguamiento). Para las variables metereológicas se considera un promedio móvil de una hora, para precipitación acumulada se considera una variación en el tiempo de agua acumulada, en particular a modo de ilustración se considera 6 horas.

5.3 EVENTOS OBSERVADOS

En los siguientes gráficos se mostrarán variaciones para temperatura y precipitación, en relación a la media móvil y el tiempo de precipitación acumulada correlacionadas con frecuencia y amortiguamiento modal. Se estudia la duración y variación de la influencia de éstos parámetros metereológicos.

5.2.1 Análisis de Temperatura

De los gráficos presentados se observa con claridad que esta variable presenta un ciclo diario bien definido en los días sin precipitaciones, pero durante el periodo de precipitación la temperatura es mucho más estable. Se distingue durante los meses intermedios temperaturas medias notoriamente menores que en los meses iniciales y finales del estudio. Por lo tanto, se analizó las variables temperatura y frecuencia y amortiguamiento modal en los meses de Septiembre, Octubre y Noviembre debido a que las precipitaciones en éste periodo fueron mínimas, por lo que se puede descartar su influencia.

Figura 89: Ciclos diarios de Temperatura, desde 22 de Agosto a 01 de Septiembre

Figura 90: Precipitación acumulada en 15 min. desde 22 de Agosto a 01 de Septiembre

Figura 91: Ciclos diarios, frecuencia 1, correlacionados con Temperatura

Figura 92: Ciclos diarios, frecuencia 2, correlacionados con Temperatura

Figura 93: Ciclos diarios, frecuencia 3, correlacionados con Temperatura

Figura 94: Ciclos diarios, frecuencia 4, correlacionados con Temperatura

Figura 95: Ciclos diarios, frecuencia 5, correlacionados con Temperatura

Figura 96: Ciclos diarios, frecuencia 6, correlacionados con Temperatura

Figura 97: Ciclos diarios, frecuencia 7, correlacionados con Temperatura

Figura 98: Ciclos diarios, amortiguamiento 1, correlacionados con Temperatura

Figura 99: Ciclos diarios, amortiguamiento 2, correlacionados con Temperatura

Figura 100: Ciclos diarios, amortiguamiento 3, correlacionados con Temperatura

Figura 101: Ciclos diarios, amortiguamiento 4, correlacionados con Temperatura

Figura 102: Ciclos diarios, amortiguamiento 5, correlacionados con Temperatura

Figura 103: Ciclos diarios, amortiguamiento 6, correlacionados con Temperatura

Figura 104: Ciclos diarios, amortiguamiento 7, correlacionados con Temperatura

La máxima variación observada en un ciclo diario para todo el período de estudio, es desde un 1.5% para el primer modo hasta un 3.2% de la séptima frecuencia predominante. Excepto la frecuencia correspondiente al modo 6, que alcanzó un 7% de variación en 24 horas.

En el caso del amortiguamiento, no se aprecian ciclos diarios tan definidos como en el caso de la frecuencia. Sin embargo se observa que en algunos días los peaks de amortiguamiernto y temperatura coinciden en un rango pequeño en el tiempo.

Se observa que existe una correlación para las 7 frecuencias analizadas, con un desfase del orden de una a tres horas, dependiendo de la frecuencia. Sin embargo, para la frecuencia relacionada con el primer modo torsional, se observa que la correlación es negativa o que podría existir un mayor retraso, lo que se aprecia en el siguiente gráfico de media móvil de 24 horas, meses de Septiembre a Noviembre.

Figura 105: Medias móviles de 24 horas, frecuencia 1

Figura 106: Medias móviles de 24 horas, frecuencia 2

Figura 107: Medias móviles de 24 horas, frecuencia 3, correlación negativa.

Figura 108: Medias móviles de 24 horas, frecuencia 4

Figura 109: Medias móviles de 24 horas, frecuencia 5

Figura 110: Medias móviles de 24 horas, frecuencia 6

Figura 111: Medias móviles de 24 horas, frecuencia 7

Figura 112: Medias Móviles de 24 horas, amortiguamiento 1

Figura 113: Medias Móviles de 24 horas, amortiguamiento 2

Figura 114: Medias Móviles de 24 horas, amortiguamiento 3

Figura 115: Medias Móviles de 24 horas, amortiguamiento 4

Figura 116: Medias Móviles de 24 horas, amortiguamiento 5

Figura 117: Medias Móviles de 24 horas, amortiguamiento 6

Figura 118: Medias Móviles de 24 horas, amortiguamiento 7

Al considerar la media móvil del amortiguamiento y la temperatura en 24 horas, es posible apreciar que existen ciclos en el amortiguamiento de similar duración que los ciclos de temperatura, pero la correlación no se aprecia directamente.

Si se procesaran 6 registros de 10 minutos cada uno y se promediaran para representar los resultados de una hora, es posible que se puedan observar ciclos correlativos con temperatura.

5.2.2 Análisis de Precipitación

De los datos metereológicos analizados, se observa que las precipitaciones fueron escasas en número y la mayoría fueron eventos poco intensos y de poca duración (alrededor de un día). El evento con mayor agua caída fue registrado entre los días 13 y 15 de junio, el total de agua caída fue de 40 mm.

Se observa que existe una correlación entre las frecuencias naturales del edificio y precipitación acumulada, en particular se observa esta dependencia en el evento antes mencionado, en donde existe una diferencia en el promedio de la frecuencia antes del evento, durante y después del evento hasta alrededor de 6 días, donde nuevamente hubo precipitaciones.

Figura 119: Precipitación acumulada 15 min. y frecuencia 07 de Junio a 19 de Junio

Figura 120: Precipitación acumulada 15 min. y frecuencia 07 de Junio a 19 de Junio

Figura 121: Precipitación acumulada 15 min. y frecuencia 07 de Junio a 19 de Junio

Figura 122: Precipitación acumulada 15 min. y frecuencia 07 de Junio a 19 de Junio

Figura 123: Precipitación acumulada 15 min. y frecuencia 07 de Junio a 19 de Junio

Figura 124: Precipitación acumulada 15 min. y frecuencia 07 de Junio a 19 de Junio

Figura 125: Precipitación acumulada 15 min. y frecuencia 07 de Junio a 19 de Junio

Figura 126: Precipitación acumulada 15 min. y amortiguamiento 07 de Junio a 19 de Junio

Figura 127: Precipitación acumulada 15 min. y amortiguamiento 07 de Junio a 19 de Junio

Figura 128: Precipitación acumulada 15 min. y amortiguamiento 07 de Junio a 19 de Junio

Figura 129: Precipitación acumulada 15 min. y amortiguamiento 07 de Junio a 19 de Junio

Figura 130: Precipitación acumulada 15 min. y amortiguamiento 07 de Junio a 19 de Junio

Figura 131: Precipitación acumulada 15 min. y amortiguamiento 07 de Junio a 19 de Junio

Figura 132: Precipitación acumulada 15 min. y amortiguamiento 07 de Junio a 19 de Junio

Para la mayoría de las frecuencias analizadas se aprecia una influencia de la precipitación. En el caso de la razón de amortiguamiento, no se aprecia variación importante.

En éste evento en particular, comienza casi inmediatamente aumentando el valor de la frecuencia durante las precipitaciones y luego comienzan a disminuir paulatinamente hasta el sexto día. El porcentaje de variación en la frecuencia es pequeño, pero lo relevante es que la influencia de la precipitación se aprecia y es cuantificable (0.4 % y 0.5 % en promedio para 6 días y un día después respectivamente, 1.0% como máximo para un día después), como se aprecia en las siguientes tablas:

N°	Frecuencia [Hz]	σ frecuencia [Hz]	β [%]	σβ[%]
1	1.015	0.0033	0.67	0.19
2	1.030	0.0038	0.73	0.21
3	1.554	0.0078	0.74	0.21
4	3.434	0.0132	0.98	0.27
5	3.484	0.0160	0.96	0.36
6	3.895	0.0586	1.05	0.32
7	4.596	0.0250	1.15	0.26

Tabla 42: Media de propiedades modales Mayo - Noviembre

Tabla 43: Media de propiedades modales 6 días antes de inicio de precipitaciones

N°	Frecuencia [Hz]	Diferencia Valor Medio [%]	σ frecuencia [Hz]	β[%]	Diferencia Valor Medio [%]	σβ[%]
1	1.016	0.10	0.0021	0.67	0.00	0.17
2	1.034	0.39	0.0022	0.78	6.85	0.21
3	1.560	0.39	0.0036	0.76	2.70	0.20
4	3.437	0.09	0.0084	1.02	4.08	0.25
5	3.482	-0.06	0.0178	1.36	41.67	0.69
6	3.817	-2.00	0.0166	1.03	-1.90	0.27
7	4.580	-0.35	0.0114	1.14	-0.87	0.23

Tabla 44: Media de propiedades modales 6 días después de inicio de precipitaciones

N°	Frecuencia [Hz]	Diferencia Valor Medio [%]	σ frecuencia [Hz]	β [%]	Diferencia Valor Medio [%]	σβ[%]
1	1.019	0.39	0.0022	0.65	-2.99	0.20
2	1.036	0.58	0.0034	0.72	-1.37	0.22
3	1.567	0.84	0.0045	0.75	1.35	0.19
4	3.445	0.32	0.0095	1.00	2.04	0.28
5	3.486	0.06	0.0154	1.16	20.83	0.55
6	3.865	-0.77	0.0323	1.08	2.86	0.32
7	4.603	0.15	0.0139	1.14	-0.87	0.28

N°	Frecuencia [Hz]	Diferencia Valor Medio [%]	σ frecuencia [Hz]	β[%]	Diferencia Valor Medio [%]	σβ[%]
1	1.020	0.49	0.0026	0.68	1.49	0.16
2	1.037	0.68	0.0028	0.74	1.37	0.19
3	1.567	0.84	0.0053	0.78	5.41	0.18
4	3.448	0.41	0.0114	1.05	7.14	0.28
5	3.488	0.11	0.0209	1.37	42.71	0.59
6	3.836	-1.51	0.0200	1.12	6.67	0.31
7	4.607	0.24	0.0176	1.23	6.96	0.33

Tabla 45: Media de propiedades modales 13 de Junio al 15 de Junio, durante precipitaciones

Tabla 46: Media de propiedades modales 12 de Junio al 13 de Junio, un día antes

N°	Frecuencia [Hz]	Diferencia Valor Medio [%]	σ frecuencia [Hz]	β[%]	Diferencia Valor Medio [%]	σβ[%]
1	1.015	0.00	0.0026	0.65	-2.99	0.18
2	1.032	0.19	0.0034	0.73	0.00	0.20
3	1.556	0.13	0.0060	0.74	0.00	0.20
4	3.435	0.03	0.0097	1.00	2.04	0.26
5	3.479	-0.14	0.0150	1.10	14.58	0.53
6	3.845	-1.28	0.0352	1.04	-0.95	0.30
7	4.576	-0.44	0.0171	1.15	0.00	0.24

Tabla 47: Media de propiedades modales 15 de Junio al 16 de Junio, un día después

N°	Frecuencia [Hz]	Diferencia Valor Medio [%]	σ frecuencia [Hz]	β[%]	Diferencia Valor Medio [%]	σβ[%]
1	1.021	0.59	0.0018	0.68	1.49	0.21
2	1.037	0.68	0.0030	0.76	4.11	0.20
3	1.572	1.16	0.0042	0.84	13.51	0.15
4	3.448	0.41	0.0070	0.96	-2.04	0.24
5	3.489	0.14	0.0185	1.32	37.50	0.57
6	3.849	-1.18	0.0285	1.02	-2.86	0.23
7	4.609	0.28	0.0110	1.16	0.87	0.25

5.2.3 Análisis en Horarios no Laborales

En los casos de los días Domingos y todos los días entre las 0 horas y las 6 horas, Para las frecuencias y amortiguamientos analizados no se aprecia variación relevante con el promedio de todo el período de estudio. Se presentan a continuación gráficos de las series ordenadas cronológicamente

N°	Frecuencia [Hz]	σ frecuencia [Hz]	β [%]	σβ[%]
1	1.015	0.0033	0.67	0.19
2	1.030	0.0038	0.73	0.21
3	1.554	0.0078	0.74	0.21
4	3.434	0.0132	0.98	0.27
5	3.484	0.0160	0.96	0.36
6	3.895	0.0586	1.05	0.32
7	4.596	0.0250	1.15	0.26

Tabla 48: Media de propiedades modales Mayo - Noviembre

N°	Frecuencia [Hz]	Diferencia Valor Medio [%]	σ frecuencia [Hz]	β [%]	Diferencia Valor Medio [%]	σβ[%]
1	1.016	0.10	0.0030	0.66	-1.49	0.19
2	1.032	0.19	0.0035	0.71	-2.74	0.21
3	1.555	0.06	0.0071	0.71	-4.05	0.21
4	3.433	-0.03	0.0122	0.98	0.00	0.27
5	3.486	0.06	0.0157	0.94	-2.08	0.33
6	3.893	-0.05	0.0590	1.10	4.76	0.37
7	4.600	0.09	0.0250	1.07	-6.96	0.21

Tabla 49: Media de propiedades modales 00:00 a 06:00

Tabla 50: Media de propiedades modales días Domingos

N°	Frecuencia [Hz]	Diferencia Valor Medio [%]	σ frecuencia [Hz]	β[%]	Diferencia Valor Medio [%]	σβ[%]
1	1.015	0.00	0.0031	0.61	-8.96	0.20
2	1.031	0.10	0.0034	0.72	-1.37	0.24
3	1.554	0.00	0.0074	0.72	-2.70	0.25
4	3.433	-0.03	0.0134	0.97	-1.02	0.29
5	3.484	0.00	0.0151	0.92	-4.17	0.30
6	3.898	0.08	0.0594	1.05	0.00	0.36
7	4.595	-0.02	0.0257	1.05	-8.70	0.22

Figura 134: Frecuencia Modo 2, Horas 00:00-06:00

Figura 136: Frecuencia Modo 4, Horas 00:00-06:00

Figura 137: Frecuencia Modo 5, Horas 00:00-06:00

Figura 138: Frecuencia Modo 6, Horas 00:00-06:00

Figura 139: Frecuencia Modo 7, Horas 00:00-06:00

Figura 141: Amortiguamiento Modo 2, Horas 00:00-06:00

Figura 143: Amortiguamiento Modo 4, Horas 00:00-06:00

Figura 145: Amortiguamiento Modo 6, Horas 00:00-06:00

Figura 146: Amortiguamiento Modo 7, Horas 00:00-06:00

El comportamiento observado para el horario comprendido entre las 0 horas y las 6 horas es similar al comportamiento de todo el período de estudio para la frecuencia y el amortiguamiento.

Figura 148: Frecuencia Modo 2, Días Domingo

Figura 150: Frecuencia Modo 4, Días Domingo

Figura 152: Frecuencia Modo 6, Días Domingo

Figura 153: Frecuencia Modo 7, Días Domingo

Figura 155: Amortiguamiento Modo 2, Días Domingo

Figura 157: Amortiguamiento Modo 4, Días Domingo

Figura 159: Amortiguamiento Modo 6, Días Domingo

Figura 160: Amortiguamiento Modo 7, Días Domingo

El comportamiento observado para los días Domingo, es similar al comportamiento de todo el período de estudio para la frecuencia y el amortiguamiento.

En los gráficos siguientes se presentan las distribuciones correspondientes a los horarios no laborales para frecuencia y amortiguamiento.

Figura 161: Distribución Frecuencias, Horas 00:00-06:00

N°	Frecuencia	Diferencia Valor Medio	σ frecuencia
	[HZ]	[%0]	[HZ]
1	1.016	0.10	0.0030

Tabla 51: Frecuencia Modo 1, 00:00 a 06:00

Figura 162: Distribución Frecuencia Modo 1, Horas 00:00-06:00

N°	Frecuencia [Hz]	Diferencia Valor Medio [%]	σ frecuencia [Hz]
2	1.032	0.19	0.0035

Tabla 52: Frecuencia Modo 2, 00:00 a 06:00

Figura 163: Distribución Frecuencia Modo 2, Horas 00:00-06:00

N°	Frecuencia [Hz]	Diferencia Valor Medio [%]	σ frecuencia [Hz]
3	1.555	0.06	0.0071

Tabla 53: Frecuencia Modo 3, 00:00 a 06:00

DISTRIBUICIÓN DE FRECUENCIAS MODO 3 : 01/05/2007 - 30/11/2007 2 1.8 1.6 1.4 1.2 Porcentaje 1 0.8 0.6 0.4 0.2 0 1.11 1.56 Frecuencia (Hz) 1.55 1.54 1.58 1.59 1.57

Figura 164: Distribución Frecuencia Modo 3, Horas 00:00-06:00

N°	Frecuencia	Diferencia Valor Medio	σ frecuencia [Hz]
	լուշյ	[/0]	լու
4	3.433	-0.03	0.0122

Tabla 54: Frecuencia Modo 4, 00:00 a 06:00

Figura 165: Distribución Frecuencia Modo 4, Horas 00:00-06:00

\mathbf{N}°	Frecuencia [Hz]	Diferencia Valor Medio [%]	σ frecuencia [Hz]
5	3.486	0.06	0.0157

Tabla 55: Frecuencia Modo 5, 00:00 a 06:00

DISTRIBUICIÓN DE FRECUENCIAS MODO 5 : 01/05/2007 - 30/11/2007 1.8 1.6 1.4 1.2 Porcentaje 0.6 0.4 0.2 IШ 3.42 3.48 3.5 Frecuencia [Hz] 3.56 3.44 3.46 3.52 3.54

Figura 166: Distribución Frecuencia Modo 5, Horas 00:00-06:00

\mathbf{N}°	Frecuencia [Hz]	Diferencia Valor Medio [%]	σ frecuencia [Hz]
6	3.893	-0.05	0.0590

Tabla 56: Frecuencia Modo 6, 00:00 a 06:00

Figura 167: Distribución Frecuencia Modo 6, Horas 00:00-06:00

\mathbf{N}°	Frecuencia [Hz]	Diferencia Valor Medio [%]	σ frecuencia [Hz]
7	4.600	0.09	0.0250

Tabla 57: Frecuencia Modo 7, 00:00 a 06:00

Figura 168: Distribución Frecuencia Modo 7, Horas 00:00-06:00

Figura 169: Distribución Amortiguamientos, Horas 00:00-06:00

Tabla 58: Amortiguamiento Modo 1, 00:00 a 06:00

N°	β[%]	Diferencia Valor Medio [%]	σβ[%]
1	0.66	-1.49	0.19

Figura 170: Distribución Amortiguamiento Modo 1, Horas 00:00-06:00

Tabla 59: Amortiguamiento Modo 2, 00:00 a 06:00

N°	β[%]	Diferencia Valor Medio [%]	σβ[%]
2	0.71	-2.74	0.21

Figura 171: Distribución Amortiguamiento Modo 2, Horas 00:00-06:00

 Tabla 60:
 Amortiguamiento Modo 3, 00:00 a 06:00

N°	β[%]	Diferencia Valor Medio [%]	σβ[%]
3	0.71	-4.05	0.21

Figura 172: Distribución Amortiguamiento Modo 3, Horas 00:00-06:00

 Tabla 61: Amortiguamiento Modo 4, 00:00 a 06:00

N°	β[%]	Diferencia Valor Medio [%]	σβ[%]
4	0.98	0.00	0.27

Figura 173: Distribución Amortiguamiento Modo 4, Horas 00:00-06:00

Tabla 62: Amortiguamiento Modo 5, 00:00 a 06:00

\mathbf{N}°	β[%]	Diferencia Valor Medio [%]	σβ[%]
5	0.94	-2.08	0.33

Figura 174: Distribución Amortiguamiento Modo 5, Horas 00:00-06:00

Tabla 63: Amortiguamiento Modo 6, 00:00 a 06:00

\mathbf{N}°	β[%]	Diferencia Valor Medio [%]	σβ[%]
6	1.10	4.76	0.37

Figura 175: Distribución Amortiguamiento Modo 6, Horas 00:00-06:00

 Tabla 64:
 Amortiguamiento
 Modo 7, 00:00 a 06:00

\mathbf{N}°	β[%]	Diferencia Valor Medio [%]	σβ[%]
7	1.07	-6.96	0.21

Figura 176: Distribución Amortiguamiento Modo 7, Horas 00:00-06:00

Figura 177: Distribución Frecuencias, Días Domingo

\mathbf{N}°	Frecuencia	Diferencia Valor Medio	σ frecuencia
	[HZ]	[%]	[HZ]
1	1.015	0.00	0.0031

Tabla 65: Frecuencia Modo 1, días Domingos

Figura 178: Distribución Frecuencia Modo 1, Días Domingo

N°	Frecuencia [Hz]	Diferencia Valor Medio [%]	σ frecuencia [Hz]
2	1.031	0.10	0.0034

Tabla 66: Frecuencia Modo 2, días Domingos

Figura 179: Distribución Frecuencia Modo 2, Días Domingo

\mathbf{N}°	Frecuencia [Hz]	Diferencia Valor Medio [%]	σ frecuencia [Hz]
3	1.554	0.00	0.0074

Tabla 67: Frecuencia Modo 3, días Domingos

DISTRIBUICIÓN DE FRECUENCIAS MODO 3 : 01/05/2007 - 30/11/2007

Figura 180: Distribución Frecuencia Modo 3, Días Domingo

N°	Frecuencia [Hz]	Diferencia Valor Medio [%]	σ frecuencia [Hz]
4	3.433	-0.03	0.0134

Tabla 68: Frecuencia Modo 4, días Domingos

Figura 181: Distribución Frecuencia Modo 4, Días Domingo

N°	Frecuencia [Hz]	Diferencia Valor Medio [%]	σ frecuencia [Hz]
5	3.484	0.00	0.0151

Tabla 69: Frecuencia Modo 5, días Domingos

Figura 182: Distribución Frecuencia Modo 5, Días Domingo

N°	Frecuencia [Hz]	Diferencia Valor Medio [%]	σ frecuencia [Hz]
6	3.898	0.08	0.0594

Tabla 70: Frecuencia Modo 6, días Domingos

Figura 183: Distribución Frecuencia Modo 6, Días Domingo

N°	Frecuencia [Hz]	Diferencia Valor Medio [%]	σ frecuencia [Hz]
7	4.595	-0.02	0.0257

Tabla 71: Frecuencia Modo 7, días Domingos

Figura 184: Distribución Frecuencia Modo 7, Días Domingo

Figura 185: Distribución Amortiguamientos, Días Domingo

N°	β[%]	Diferencia Valor Medio [%]	σβ[%]
1	0.61	-8.96	0.20

Tabla 72: Amortiguamiento Modo 1, días Domingos

Figura 186: Distribución Amortiguamiento Modo 1, Días Domingo

\mathbf{N}°	β[%]	Diferencia Valor Medio [%]	σβ[%]
2	0.72	-1.37	0.24

Tabla 73: Amortiguamiento Modo 2, días Domingos

Figura 187: Distribución Amortiguamiento Modo 2, Días Domingo

N°	β[%]	Diferencia Valor Medio [%]	σβ[%]
3	0.72	-2.70	0.25

Tabla 74: Amortiguamiento Modo 3, días Domingos

Figura 188: Distribución Amortiguamiento Modo 3, Días Domingo

\mathbf{N}°	β[%]	Diferencia Valor Medio [%]	σβ[%]
4	0.97	-1.02	0.29

Tabla 75: Amortiguamiento Modo 4, días Domingos

 4
 0.97
 -1.02
 0.29

 DISTRIBUICIÓN DE AMORTIGUAMIENTO MODO 4 : 01/05/2007 - 30/11/2007

 1.6
 1

 1.4
 1

 1.4
 1

Figura 189: Distribución Amortiguamiento Modo 4, Días Domingo

\mathbf{N}°	β[%]	Diferencia Valor Medio [%]	σβ[%]
5	0.92	-4.17	0.30

 Tabla 76:
 Amortiguamiento Modo 5, días Domingos

Figura 190: Distribución Amortiguamiento Modo 5, Días Domingo

N°	β[%]	Diferencia Valor Medio [%]	σβ[%]
6	1.05	0.00	0.36

Tabla 77: Amortiguamiento Modo 6, días Domingos

Figura 191: Distribución Amortiguamiento Modo 6, Días Domingo

N°	β[%]	Diferencia Valor Medio [%]	σβ[%]
7	1.05	-8.70	0.22

Tabla 78: Amortiguamiento Modo 7, días Domingos

Figura 192: Distribución Amortiguamiento Modo 7, Días Domingo

Las distribuciones observadas en los histogramas presentan un comportamiento similar al presentado en los histogramas para los 7 meses de estudio. Los valores medios para la frecuencia presentan valores mínimos de diferencia con el valor medio de todo el período, en el caso del amortiguamiento, estas diferencias con el valor medio no son despreciables.

CAPÍTULO 6: CONCLUSIONES Y COMENTARIOS

El objetivo principal de este trabajo es la identificación de los parámetros dinámicos (frecuencia y amortiguamiento modal) del edificio de la CCHC a partir de registros de vibraciones ambientales durante un período continuo de 7 meses y el estudio de la variación con factores metereológicos, utilizando para ello el método de identificación SSI.

El método de identificación utilizado, Subespacio Estocástico, es una técnica de identificación paramétrica en el dominio del tiempo que consiste en la identificación de las propiedades de un sistema excitado por una señal de entrada desconocida, asumiendo que esta señal es del tipo gaussiana y correspondiente a un ruido blanco.

El método SSI es muy robusto y es uno de los mejores en la actualidad para la identificación de amortiguamiento en estructuras. Entre sus ventajas, destaca su facilidad de utilización y lectura de resultados, además que permite identificar frecuencias muy cercanas entre sí y sus amortiguamientos asociados. El principal inconveniente de este método, es que requiere un tiempo de procesamiento considerable y una gran cantidad de recursos computacionales.

En el caso de este trabajo, en donde solamente se usó para la identificación el 17% de los registros medidos (equivalente a un tiempo de 35 días), se requirió el uso continuo y en paralelo de 28 computadores del Departamento de Ingeniería Civil durante 9 días aproximadamente. Para el caso de un solo computador del tipo utilizado, significa que para procesar 1 hora de registro con los parámetros utilizados, se necesitan aproximadamente 7 horas de tiempo para el proceso de identificación.

Como validación del método SSI, se aplicó el proceso de identificación a 10 registros artificiales de aceleración de ruido blanco en un modelo computacional del edificio, usando el mismo procedimiento que se utiliza en el caso real (registros de 10 min. 100 muestras por seg.).

Al registro de salida del modelo computacional, se le sumó un nuevo ruido blanco, escalado al 10% del máximo valor registrado para cada canal. También se analizó el caso de los registros sin modificaciones.

A pesar del ruido agregado, se logró identificar de la respuesta en aceleraciones del modelo, todas las frecuencias menores a 5 Hz (6 frecuencias), incluyendo frecuencias muy cercanas (modos 1-2 y modos 4-5) con amortiguamientos diferentes.

Si comparamos los casos con y sin ruido agregado, los valores máximos de la variación (cuociente entre la diferencia del valor máximo y mínimo con respecto la media) y del error en la identificación de la frecuencia son menores en los casos sin ruido agregado. La variación sube de 0.69% a 0.73% al agregar ruido y el error sube de 0.4% a 0.5% al agregar ruido.

En relación al amortiguamiento, Los máximos valores de la variación y del error del amortiguamiento también son menores en los casos sin ruido agregado. La variación sube de 76% a 87% al agregar ruido y el error sube de 46% a 52% al agregar ruido.

A pesar de lo anterior, la máxima diferencia entre el valor medio del amortiguamiento y el valor del modelo, correspondiente al caso del modo 5, fue menor al agregar ruido. En el caso con ruido agregado fue de 9% y en el caso sin ruido agregado fue de 13%.

Como conclusión se obtuvo que los resultados de las frecuencias identificadas son bastante precisos, con errores menores a 0.5%; sin embargo, el amortiguamiento presenta una gran sensibilidad, llegando a diferencias de hasta un 52%. El caso sin ruido, es levemente más preciso que el caso con ruido agregado.

Para el proceso de identificación en el edificio real, se seleccionaron los primeros 10 minutos cada 60 minutos de registro, los cuales se consideraron como representativos para una hora.

Para los 7 meses de análisis, se calculó el promedio y la variación para la frecuencia y el amortiguamiento.

Se observa que todas las frecuencias presentan poca variación, no así el amortiguamiento. Los valores medios del amortiguamiento en las 7 primeras frecuencias predominantes son todos menores a 1.2%.

Se observa que los valores de las frecuencias presentan una variación moderada (2.1% hasta 6.7%), en contraste con el amortiguamiento, que sufre grandes variaciones (168% hasta 264%).

Para el modo 1, que corresponde al caso con menor variación, un 99.9% de la muestra tiene valores en frecuencia en el rango 1.004 Hz y 1.026 Hz, con media de 1.015 Hz. La variación con respecto a la media es de 2.1%. Para esta frecuencia el amortiguamiento está comprendido en el rango 0.20% y 1.56%, con media de 0.67%.

Para el modo 6, que corresponde al caso con mayor variación, un 99.9% de la muestra tiene valores en frecuencia en el rango 3.761 Hz y 4.020 Hz, con media de 3.895 Hz. La variación con respecto a la media es de 6.7%. Para esta frecuencia el amortiguamiento está comprendido en el rango 0.32% y 3.09%, con media de 1.05%.

Es necesario recalcar que las variaciones observadas en el modo 6 no corresponden necesariamente a factores ambientales, sino posiblemente a trabajos de remodelación en el edificio.

Al comparar las frecuencias entregadas por el modelo computacional y el promedio de las frecuencias identificadas en este trabajo, la diferencia es mínima. Para los 3 primeros modos la diferencia es de 4%, 7% y 5%, respectivamente. Esto demuestra que las cargas y propiedades mecánicas de los elementos del modelo computacional son representativas del edificio real.

Los datos recolectados mediante el registro continuo del edificio de la CCHC respaldan la hipótesis de que el comportamiento dinámico del edificio se ve afectado por distintos factores ambientales. En éste caso, se observó que las frecuencias predominantes de la estructuras varían de acuerdo a parámetros climáticos, específicamente, temperatura y precipitación.

En relación a las variables metereológicas durante los 7 meses de estudio, la temperatura varió entre -1° C y 34° C. La máxima precipitación acumulada durante 24 horas fue de 25 mm.

En particular, se aprecia que existe una correlación entre frecuencia y temperatura para el primer modo, especialmente en el caso de los meses de Septiembre, Octubre y Noviembre, meses en los cuales la precipitación fue mínima.

Para el período analizado, en el caso de temperatura (ciclos diarios), la frecuencia varía como máximo un 1.5% para el primer modo (menor variación) y un 7% para el modo 6 (mayor variación), con respecto a los valores mínimos y máximos identificados en un período en 24 horas.

En el caso de la frecuencia relacionada con el primer modo torsional (modo 3), se observa que la correlación con la temperatura es negativa o que podría existir un mayor retraso o desfase.

En el caso de precipitaciones, para el evento registrado entre los días 13 de Junio y 15 de Junio (aprox. 40 mm. en 48 horas), éstas tienen una influencia en las frecuencias predominantes de la estructura. En un caso se observó que las frecuencias aumentaron en 1.2%. La variación de la frecuencia comienza casi inmediatamente al iniciarse la lluvia, aumentando su valor durante las precipitaciones y luego comienzan a disminuir paulatinamente hasta el sexto día.

Para el resto de las variables metereológicas no se observó alguna correlación aparente con las frecuencias.

Para el amortiguamiento crítico, no se observó correlación con las variables ambientales analizadas para el período de 7 meses.

Para los horarios no laborales (entre 00:00 y 06:00 y todos los días Domingo), no se observan variaciones importantes en relación a los resultados del período completo de estudio.

De los resultados anteriores se concluye que las frecuencias modales analizadas varían como máximo en 4% debido a factores ambientales, excepto el caso de la frecuencia correspondiente al modo 6 que presentó un aumento a partir del mes de Septiembre. El fenómeno metereológico que más influye en la variación de la frecuencia es la temperatura.

Cabe destacar que todos los resultados obtenidos a partir de las mediciones de vibraciones ambientales se lograron sin utilizar algún modelo del edificio.

Recomendaciones

En este trabajo, se utilizaron los primeros 10 minutos de cada hora como valores representativos. Esta decisión resultó crítica tanto en el tiempo de procesamiento de los registros como en la cantidad y precisión de los resultados, especialmente en los relacionados a la razón de amortiguamiento.

Se recomienda para estudios posteriores que para disminuir el error se ejecute un mayor número de procesos de identificación que los hechos en este estudio y calcular el valor medio como valor representativo en la unidad de tiempo correspondiente; por ejemplo, considerar 6 identificaciones de 10 minutos para una hora de registro. A futuro, se recomienda analizar en los estudios correspondientes las formas modales del edificio, variación de parámetros dinámicos en registros sísmicos, un modelo que permita observar la variación de la frecuencia en función de más de un parámetro y el análisis del retraso temporal o desfase en el comportamiento de las variables correlacionadas.

REFERENCIAS BIBLIOGRÁFICAS

- 1. Castillo Montes, Alejandro. "Identificación de las propiedades modales de edificios altos utilizando el método del subespacio estocástico". (2005). Memoria para optar al título de Ingeniero Civil. Universidad de Chile. Santiago, Chile.
- 2. Clinton JF, Bradford SK, Heaton TH, Favela J. (2006). "The observed wander of the natural frequencies in a structure". Bull. Seismol. Soc. Am. 2006;96(1):237–57.
- 3. Fuente Martínez, Luis Eduardo de la. (1999). "Verificación experimental de modelos analíticos en el edificio de la Cámara Chilena de la Construcción". Memoria para optar al título de Ingeniero Civil. Universidad de Chile. Santiago, Chile.
- 4. Luco, J., M. Trifunac, and H. Wong (1987). On the apparent change in dynamic behavior of a 9-story reinforced-concrete building, *Bull. Seism. Soc. Am.* 77, no. 6, 1961–1983.
- 5. Peeters, Bart. "System identification and Damage Detection in Civil Engineering". (2000). Katholieke Universiteit Leuven, Faculteit Toegepaste Wetenschappen. Bélgica.
- 6. Valdes Calquin, Perla Teresa. "Identificación paramétrica de sistemas estructurales utilizando el método del subespacio estocástico. (2004). Memoria para optar al título de Ingeniero Civil. Universidad de Chile. Santiago, Chile.
- 7. Villarroel Henríquez, Luis Alejandro. "Instrumentación sísmica del edificio de La Cámara Chilena De La Construcción". (1998). Memoria para optar al título de Ingeniero Civil. Universidad de Chile. Santiago, Chile.

ANEXO

GRÁFICOS CONJUNTOS ENTRE VARIABLES MODALES Y METEREOLÓGICAS DEL PERIODO DE ESTUDIO

Figura 193

Figura 194

Figura 195

Figura 196

Figura 197

Figura 198

Figura 199

Figura 200

Figura 201

Figura 202

Figura 203

Figura 204

Figura 205

Figura 206

Figura 207

Figura 208

Figura 209

Figura 210

Figura 211

Figura 212

Figura 213

Figura 214

Figura 215

Figura 216

Figura 217

Figura 218

Figura 219

Figura 220

Figura 221

Figura 222

Figura 223

Figura 224

Figura 225

Figura 226

Figura 227

Figura 228

Figura 229

Figura 231

Figura 232

Figura 233

Figura 234

Figura 235

Figura 236

Figura 237

Figura 238

Figura 239

Figura 240

Figura 241

Figura 243

Figura 245

Figura 247

Figura 248

Figura 249

Figura 250

Figura 251

Figura 252

Figura 253

Figura 254

Figura 255

Figura 257

Figura 258

Figura 259

Figura 260

Figura 261

Figura 262

Figura 263

Figura 264

Figura 265

Figura 266

Figura 267

Figura 268

Figura 269

Figura 270

Figura 271

Figura 272

Figura 273

Figura 274

Figura 275

Figura 276

Figura 277

Figura 278

Figura 279

Figura 280

Figura 281

Figura 282

Figura 283

Figura 284

Figura 285

Figura 286

Figura 287

Figura 288

Figura 289

Figura 290

Figura 291

Figura 292

Figura 293

Figura 294

Figura 295

Figura 296

Figura 297

Figura 298

Figura 299

Figura 300

Figura 301

Figura 302

Figura 303

Figura 304

Figura 305

Figura 306

Figura 307

Figura 308

Figura 309

Figura 310

Figura 311

Figura 313

Figura 315

Figura 317

Figura 319

Figura 321

Figura 323

Figura 324

Figura 325

Figura 326

Figura 327

Figura 328

Figura 329

Figura 330

Figura 331

Figura 332