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UN PROBLEMA EXTREMAL DE VALORES PROPIOS PARA UN
CONDUCTOR DE DOS FASES EN UNA BOLA.

El tema que trata esta memoria de titulo es minimizar el primer valor propio de un conductor
compuesto por dos materiales homogéneos, que son distribuidos en proporciones fijas dentro
de un dominio.

Los trabajos pioneros de F. Murat y L. Tartar [26] muestran que esta clase de problemas
del calculo de variaciones podrian tener existencia de minimizadores s6lo en una clase mas
grande, llamada clase de materiales homogenizados o con micro-estructura, excluyendo a
priori distribuciones clasicas de material como soluciones optimales. Para dominios en una
dimensién, M. G. Krein [22] probé la existencia de una solucion clasica. En dimensiones més
altas, cuando el problema se restringe a una bola, A. Alvino, P. L. Trombetti y P. L. Lions
[4] probaron que se pueden obtener soluciones cldsicas radialmente simétricas. Sin embargo,
estos resultados han sido vistos como excepcionales, atribuidos a la completa simetria del
dominio. Cox y Lipton [11], sélo estudiaron condiciones para un disefio éptimo del problema
asumiendo soluciones homogenizadas. Aun es desconocido si en dominios con simetria parcial
es posible o no obtener una solucion clasica que respete la simetria del dominio.

Esperamos revivir el interés a esta pregunta dando una nueva prueba del resultado en
una bola. Creemos ademas que, en este caso, distribuir el material de mayor conductividad
en el centro es una solucién 6ptima.

En los primeros capitulos se introduce el problema y se hace un resumen critico del
estado del arte en lo que se refiere a la existencia de un minimizador, incluyendo algunas
referencias clasicas que plantean la no existencia de solucién para problemas similares. Luego
se describen las principales herramientas utilizadas en el desarrollo de esta tesis. Se da un
énfasis particular a los re-arreglos de funciones. En el capitulo cuarto se describe el problema
general y en el quinto un analisis exhaustivo del problema en una dimension. En el capitulo
sexto se desarrolla el caso de una bola N dimensional, otorgando una nueva prueba de la
existencia de una solucién cléasica radialmente simétrica. En el capitulo séptimo se desarrolla
el calculo de la derivada con respecto al dominio del primer valor propio, y en el octavo se
muestran experiencias numéricas asociadas al problema, en el caso de un disco en R?. En
el capitulo noveno se genera un analisis del signo de la derivada para el caso de una bola N
dimensional, otorgando resultados, con los cuales se espera concluir, en un futuro préximo,
que la solucién del problema para este tipo de dominios, se encuentra disponiendo el material
de mas alta conductividad en el centro.
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Chapter 1
Introduction

Let €2 be a bounded domain in R which is to be called the design region. Let m be a positive
number, 0 < m < [Q|, where |Q] is the total volume (Lebesgue measure) of the region €.
Two materials with conductivities @ and 5 (0 < a < ) are distributed in arbitrary disjoint
measurable subsets A and B, respectively, of Q so that AU B = Q and |B| = m. For any

such distribution the first eigenvalue in the spectral problem

—div((axa + Bxs)Vu) = Au in Q 0.1)
u = 0 on 90 '
is obtained by minimizing the Rayleigh quotient (2.47) as below
Vul*d
A(B) = min Jol0XatOxs) [Vl dr 0.2)

u€HG(Q) o |l dz
Let A:={B: B C ), B measurable, | B| = m} be the class of admissible domains for the

material with conductivity 3. We are interested in the following eigenvalue minimization

problem

inf {\(B): B € A}. (GP)

In this thesis we mainly study problem (GP) when the domain is a ball in RY. Since the
geometry involved has radial symmetry, the adopted strategy consists in using rearrangement
techniques. In fact, in this work we give a new simpler proof of an existence result of a radially
symmetric admissible domain for the problem (GP) in a ball which is originally due to Alvino,
Trombetti and Lions [4]. We expect that these results could be generalized to domains with

less symmetries, such as squares or stars.



CHAPTER 1. INTRODUCTION
One of the problems of interest is to characterize the solution. We conjecture that the

optimal solution consists in placing the material of conductivity 3 in the center of the ball.
A way to prove this conjecture is using the shape derivative of the eigenvalue functional
which is explicitly calculated. We later analyze this for certain configurations to substantiate
our conjecture. We give further evidence to this conjecture through some numerical results
obtained in a disc.

The numerical experiments that we carry out here are mainly in the disc and square in

R? for greater simplicity.



Introduccion

Sea Q un dominio acotado de RY y m un nimero positivo, 0 < m < |9, donde € es
el volumen total (medida de Lebesgue) de la regién €. Dos materiales de conductividad
ay (0 < a < f) son distribuidos en subconjuntos arbitrarios de Q disjuntos A y B
respectivamente, de tal manera que AUB = Qy |B| = m. Para cada una de estas formas de

distribuir los materiales « y (3, analicemos el primer valor propio del problema espectral

—div((axa + Bxs)Vu) = Au en () 0.3)
u = 0 sobre  9Q ' .
que se expresa mediante el cuociente de Rayleigh, por
Vul*d
M(B) = min JlXat Oxe) [Vul d (0.4)

u€H (Q) Jo ul? da

Sea A := {B: B C Q, B medible, |B| = m} la clase de dominios admisibles asociado a
esta configuracién. Nos interesa el problema de minimizar el primer valor propio de (0.3),

esto es,
inf {\(B) : B € A}. (GP)

En esta memoria, nos interesa principalmente estudiar el problema (GP) cuando el do-
minio es una bola en RY. En virtud de la geometria radial del problema, utilizaremos las
técnicas de rearreglos como estrategia para resolverlo. En efecto, en este trabajo se desarrolla
una demostracién mas simple de un resultado de existencia debido a Alvino, Trombetti y Li-
ons [4], el cual dice que, cuando el dominio es una bola, existe una solucién radial para (GP)
en el conjunto de dominios admisibles A. Esperamos que estos resultados sean generalizables
a dominios con menos simetrias, como es el caso de cuadrados o estrellas.

Uno de los problemas que nos interesa es el de caracterizar la solucién. Se conjetura que
la soluciéon 6ptima consiste en distribuir todo el material de conductividad 3 en el centro de

la bola. Se espera poder potenciar esta conjetura en base a un estudio numérico riguroso que
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incluye el calculo de derivada de A\; con respecto a la geometria, en conjunto con el anélisis
del signo de esta derivada, para algunos casos interesantes en R .

Por simplicidad, los experimentos numéricos fueron realizados en discos y cuadrados
planos, y se buscé confirmar la conjetura antes mencionada, asi como describir el compor-

tamiento del primer valor propio en algunos dominios con menos simetrias.

10



Chapter 2

Background

In this section we show the background research that is currently in the literature con-
cerning the problem (GP) or (GP).

The pioneering work of F. Murat and L. Tartar [26] go a long way showing, in general,
some problems of optimal design may not admit solutions if microstructural designs are
excluded from consideration. Therefore, assuming, tacitly, that the problem of minimizing
the first eigenvalue of a two-phase conducting material with the conducting phases to be
distributed in a fixed proportion in a given domain, has no true solution in general domains,
S. Cox and R. Lipton only study conditions for an optimal microstructural design [11].
Although, the problem in one dimension has a classical solution (cf. Krein [22]) and, in
higher dimensions, the problem set in a ball can be deduced to have a radially symmetric
solution (cf. Alvino et. al. [4]), these existence results have been regarded so far as being

exceptional owing to complete symmetry.

2.1 A classical example of non existence

Let us consider the following minimization problem: We want to minimize the functional

J(x) = /0 (1+2?)(1+ (2% — 1))dt. (1.1)

for © = x(t) smooth; x(0) = (1) = 0. Examining the J functional, we observe that z = 0
gives the value 2 to the J objective function (x = 0 minimizes properly the factor (1 + z?),
but it does not adapt well to the factor with & ). If we consider broken functions such as

the function in the figure (2.1) we see it is possible to improve initial guess for the minimum

11
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A

AN

value of J. In fact, in this broken line we have that & takes the values 1 and —1 alternately,
over sequent subintervals which divide the domain (0,1) in a pair number of subintervals
with the same length. If we consider the function x that takes values between 0 and e we
have

J(z) <1+¢€.

On the other hand, for all admissible curves z(-), it is clear that J(z) > 1 and J(x) =1
if and only if z = 0 and £ = £1. Then, the infimum is 1, and is not reached by any
admissible function and the minimizing sequence can be considered as oscillating functions

in subintervals that tend to zero.

2.2 Murat Tartar

The minimizing sequences related to the problem of optimal distribution of two conducting
materials with fixed proportions, in general, can develop micro-structures, that is, the value
that accomplish the infimum is an homogenized value. We show some examples where it
is natural to find a homogenized limit for the minimizing sequence, but finding a classical

solution (without homogenization) is not really natural.

2.2.1 First example

Let
K={ael*(Q) | 0<a<a(zx)<Paexec}. (2.2)

where ) is an open bounded set in RY. For each a € K, we set A = al with I the identity

matrix in RY x RY. Consider the unique solution of

(2.3)

—div(a(z)Vu) = f in
u = g on 99

12
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where f € L*(Q), g € HY?(00) are given functions. We are interested in find the best

a € K, in the sense a functional of the form

I = [ Ju=nfdo

is minimum, where 7 € L? () is also a given function.
The problem
inf J(a). (2.4)

acK
is solve, theoretically, in a simple manner. In fact, let a° € K be a minimizing sequence,
namely, such that
J(a®) — o = inf J(a)

aeK

Denote u¢ the solution of (2.3) with a = a°. Tt is clear that u¢ is bounded in H'(2) and then,

excepting a subsequence,
ut — v’ in H'(Q) weak, L? (Q) strong

and then

/\ue—n\zdx:g](aﬁ)%/‘uo—nfdx.
Q Q

The question that naturally appears is if u° is solution of a problem of the form (2.3),
namely, if there is a coefficient a(z) € L (Q) (or a matrix A € L (Q)"V, with A = a(z)I
) such that

. (2.5)

—div(a(x)Vu®) = f in  Q
u = g on 90

Usually, we don’t have a reliable answer to this question.
The theory of homogenization [26] shows that u° is the solution of a more general problem

of the form

! (2.6)

—div(A°(z)Vu®) = f in Q
u = g on O

but where A°(z) is a matrix which lives in a different set than K. Due to Spagnolo theorem
(3.5.3), A® lives in [a; 3],, so there is no indication that A° is necessarily a scalar matrix.
Furthermore, there are examples [[where we don’t have the existence of a° € K, such that
J(a") = inf,cx J(a), but as can be shown with the H-convergence theory

J(A%) = inf J(a).

aeK

13



CHAPTER 2. BACKGROUND 2.3. COX LIPTON

This problem is of those of calculus of variations which don’t have an optimum and need to

be relaxed in order to have a solution. In this case, a possible relaxation is

inf J(A)

AeK

where K is the adherence of K in [a; 3], with respect to the H-convergence. Unfortunately,

it is not easy to find a simple characterization of K.

2.2.2 Second example

Let Q C RY be an open bounded set with regular boundary. We search for a set £; C Q

such that
« in Ql
a(r) =
15} in O\

and if u is a solution of the problem

{—div(a(x)VU) = f i 6 (2.7)

f =20 on 00
then v minimizes

J(a) :/QF(:);,U(:B))dz.

Without smooth properties of €2y, it could be impossible to find a solution.
Let a® be a minimizing sequence. Then a¢ € [o; §], and we can redo the analysis given in
the first example, showing that in this case

a° H-converges to A°

where in general A° neither takes only the values o and 3 nor is a scalar matrix.

2.3 Cox Lipton

Roughly speaking, if ¢ denotes the conductivity of some material, x the specific heat, and

p its density, in Extremal eigenvalue problems for a two phase conductors Steven Cox and

14
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Robert Lipton [11] were interested in the study some extremal problems like

inf  A(c,0) (3.8)

c,0=KpEad
Where A\ = \(c, o) is the k' eigenvalue of the problem

—div(cVv) = Aov in Q
v = 0 on 0N

and ad,, is an admissible set of conductivities and capacities.

In great detail, they define the admissible set

ad, = {X € L>®(Q) | x(x)€{0,1} a.e., /Qxdzc = 7}
and if y,, denotes the indicator function of the subset w C €2, they define the capacity
0+ (Xw) = 02 + xw(01 — 02)
and the conductivity of the material by

C-l—(Xw) =C2 + XW(CI - 02)

In the section 2 of their article [11], they established the existence of solutions of the
relax formulation of (3.8) associated to the parameters ¢, (x) and o4 (x). They relaxed the
problem in the sense that they considered a bigger admissible set which is defined by the

weak-* limits in ad., regarding to L*> (2),
0 € ad; = {19€L°°(Q) | 0<¥(z) <1ae., /ﬁdxzv}
Q

and they allow ¢ to range over the class of matrix valued functions M, given in [26, Proposition

10]. This Mj set is defined in the following way. For a matrix A* € [«; 3], we consider for

s

every z € RY the eigenvalues (i (), ..., un(x)) of the matrix A*(x) and we define the values
pe(0) = Oa+ (} —0)p (3.9)
p-(0) = ’

0/a+(1-0)/3

15
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Then A* € My is equivalent to (i1, ..., uy) € Ky, where Ky is defined by

p-(0) < p; < pe(0) j=1...,N
N 1 N -1
1 < +
Lis S B -a m@-a (3.10)
N 1 N -1
! < +
(e S u® o)

The new relaxed admissible set is then
G={(0.c) | B cad, ce M}

Cox and Lipton showed, using the H convergence defined in (3.5.2) [26], that actually there

exists a relaxed solution, namely

Xierglw Ak(er(x)s 0+(x)) = (éfi;?g Ai(c; 04(0))

2.4 Krein

The one-dimensional version of the problem GP admits a classical solution as shown by

Krein [22]. He exploits the equivalence of the original problem and a similar problem for

Vul*d
AB) = min —dalVuldr
ueH§ (@) [, (axa + Bxa) |ul

a vibrating membrane involving the objective functional
In chapter (5) we show in detail this development, giving a complete characterization of the
solution.

It is important to remark that the equivalence with the vibrating membrane problem is
not hold in higher dimensions. The work of Cox and McLaughlin [12, 13] show that the

vibrating problem, in any dimension, has a true solution.

2.5 Alvino Trombetti Lions

A. Alvino, G. Trombetti and P.L.Lions in the paper On Optimization Problems With Pre-
scribed Rearrangements review some results concerning functions with prescribed distribu-

tions and related optimization problems, giving also new applications of these tools.

16



CHAPTER 2. BACKGROUND 2.5. ALVINO TROMBETTI LIONS

Concerning to us, they study a minimization problem of eigenvalues which is very related
to our problem. In fact, in (6.1) we reformulate the general problem (GP) in terms of the
notation given in [4] and with a straightforward application of [4, Corollary 3.2] we get a
classical spherical solution for the case when  is a ball in RY. Let us enunciate the results
of our interest.

Let A>0and 1 <p<oo. Let 1 <q < Np/(N—p). Let ¢ € L* (0, A) such that ¢ = ¢*
( namely, ¢ is a decreasing rearrangement) such that ¢ > « a.e. Let 2 be an open set in RY
with [Q] = A and v € LY () defined by v* = ¢.

Alvino et. al. consider in [4, Corollary 3.2] the functional F : W, ”\ {0} — R such that

fQ v|Vul’
Flu) = ————
(Jo lul?)”"

and they were interested in the quantity:

A, Q) = inf F(u) (5.11)

In the following propositions B is going to be the N-dimensional centered at the origin ball

with measure |B| = A. The following corollaries concern our work.

Corollary 2.5.1. Let Q be an open set in RN with Lebesque measure |Q] = A and let
v € LY (). Then, there exists v € L°(Q) spherical symmetrical such that 0* = v* y
A(D,B) < \(v,Q).

Corollary 2.5.2. There exists v € LS (B) spherical symmetrical such that v* = ¢ and
A©,B) <X (v,Q) forallv e LY (), with |Q = A and v* = .

In order to prove those corollaries Alvino et. al. needed to prove the following theorem
which we have tried to generalize unsuccessfully to other type of domains B with partial

symmetries like the case of Steiner symmetries.

Theorem 2.5.3. Let f > 0 in LP(QY), Alvino et. al. use that there exists a non-negative

mazimal solution u € W'P(Q) if
|Du| < f aeinQ, ueW,PQ)

Then they choose q € {1, Np/(N — p)} where p < N, they consider the following mazi-

mization problem:

1Q) = sup { ull ooy /1 € C(9) }

17



CHAPTER 2. BACKGROUND 2.6. ALVINO TROMBETTI

Then, they prove that there exist functions u and f defined in B spherically symmetrical
such that f* = ¢, I(B) = |[ul| ;s (q), w is of the form

ullz]) = /Rf(S)dS

||

and
|\Du|=f aeinB, ueW"(B) u>0inB

2.6 Alvino Trombetti

In the paper [3] A lower bound for the first eigenvalue of an elliptic operator Alvino and
Trombetti proved the following inequality which permits a better understanding of our prob-
lem and to give a more meaningful proof of the main result (6.4.5). We remark in (6.5.1) we

have given another proof of the same inequality.

Lemma 2.6.1 (Lemma 1.2 [3]). If u € H'(v), we have
2 _ N 2
/1/(:)3)|Vu| d{tZ/ v(wy |z )}Vuﬁ‘ dzx. (6.12)
Q o

where H'(v) denote the closure of CS°(Q) under the norm

2
lull vy = ( / v(a) |w2) iz,

uf is the Schwarz rearrangement of u, wy is the volume of the unitary ball in RN and ¥ is a

radially symmetric function defined through the relation,

/ %dl«: / ﬁdm VceR. (6.13)

{u>c)F {u>c}

2.7 Continuity of eigenvalues

Our problem (GP) or (GP) relates to continuity properties of the first eigenvalue depending
of a specific parameter, in this case, where the [ material is placed. In the following section
we give a large background of problems concerning continuity properties of different classes

of eigenvalues and parameters. This summary was made by Henrot in his book Eztremum

18
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problems for Eigenvalues Of Elliptic Operators [16]. We just rewrite some of the propositions

written there.

In order to prove existence of minimizers or maximizers for eigenvalues or functions of
eigenvalues, we obviously need continuity of eigenvalues with respect to the variable. We

give some references of eigenvalues depending:
e cither on the domain
e or on the coefficients of the operator.

The latter is simpler and classical. The former is less classical and it is related with the

so-called y—convergence. Let us start with a classical result of eigenvalues of operators.

Theorem 2.7.1. Let T7 and Ty be two self-adjoint, compact and positive operators on a

separable Hilbert space H. Let p(T) and pux(1T3) be their k-th respective eigenvalues. Then

(7 = T5) (NIl

7l (7.14)

(e (T1) = p(T2)| < |17 — Ta| := sup
fed

An immediate consequence of Theorem (2.7.1) is that strong convergence of operators
implies convergence of eigenvalues. We are now going to see that, in our particular context,
thanks to compactness properties of embeddings H'(Q) — L*(Q) and L*(Q) — H(Q),
actually simple convergence of resolvant operators implies convergence of eigenvalues.

We are concerned with Dirichlet boundary conditions. If L is any elliptic operator given
by (7.16) but considering constant coefficients, we denote by Ay (or A? when we want to
emphasize dependence on the domain () its resolvant operator, namely the operator from
L?(Q) into L?(Q2) such that Ap(f) is the solution of the Dirichlet problem u € H} (),
Lu = f. When we consider a sequence of domains (2, included in a fixed domain D, we
decide to extend the operators A to L?(D) by setting

AR L2(Q) — L*(Q)

f — U ’

(7.15)

where u € H} () is the solution of Lu = f and « is its extension by zero outside 2. For

sake of simplicity, we go on denoting by u the extension (instead of ).

Theorem 2.7.2. Let A,, A be a sequence of resolvant operators from L*(D) to L*(D),
corresponding to a sequence of uniformly elliptic operators with Dirichlet boundary conditions.
We assume that, for every f € L*(D), A,(f) converges to A(f) in L*(D). Then A, converges

19



CHAPTER 2. BACKGROUND 2.7. CONTINUITY OF EIGENVALUES

to A strongly (i.e for the operator norm). In particular, the eigenvalues of A, converge to

the corresponding eigenvalues of A.

Continuity with variable coefficients

We can now state the continuity result for eigenvalues when the coefficients on the elliptic

operator vary. We consider a sequence of elliptic operators L,, defined by:

N
J (., ou "
Lyu:=—Y_ 7, <ai7j(x)a—%) + al(x)u. (7.16)

ij=1

where the bounded functions a}; are assumed to satisfy an uniformly ellipticity condition,

namely, the positive ellipticity constant can be chosen independently of n.

Theorem 2.7.3. Let L, be a sequence of uniformly elliptic operators defined on an open set
D by (7.16). We assume that for fized i, j, the sequence aj; is bounded in L> and converge
almost everywhere to a function a; j; we also assume that the sequence ag is bounded in L™
and converges weakly-+ in L to a function ag. Let L be the (elliptic) operator defined on
D as in (7.16) by the functions a;; and ag. Then each eigenvalue of L, converges to the

corresponding eigenvalue of L.

In one dimension, we can prove the same continuity result with weaker assumptions on
the convergence of the a;; = a;; = o(x). Actually weak-+ convergence of the inverse is

enough in this case:

Theorem 2.7.4. Let Q = (0,L), 0 < o < 3, and o,(x) be a sequence of functions satisfying
a < o,(x) < B. We denote by M\i(0) the eigenvalues of the operator —<- (o(x)L). Then, if
1/, converges weak-x in L>(QQ) to 1/, each eigenvalue A\i(0,) converges to \p(c) and the

corresponding eigenfunctions converge weakly in H*(Q) and strongly in L.

Remark 2.7.5. From the min Rayleigh formulae, we see that ¢ —— Ag(o) is upper-semi
continuous for the weak-* convergence (as infimum of continuous functions), but the previous
theorem shows that it is not continuous in general.

Continuity with variable domains (Dirichlet case)

Definition 2.7.6 (y-convergence). Let D be a fixed ball, 2, C D a sequence or open set.
We say Q, y-converges to  (and we write Q,, —— Q) if, for every f € L*(Q), the solution
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“{zn of the Dirichlet problem for the Laplacian

Lu = f in €,
u = 0 on 0%,

conver ges (strongly) in L*(D) to u{z, the solution on € (as usual, every function in H] ()

is extended by zero outside €2,,).

In other words, using the notation (7.15) , Q, — Q, if V f € L*(Q), AR(Q,)(f) —
AR(Q)(f) in L*(2). We gather in the following theorem different characterization of the

v-convergence. See the references in [16].
Theorem 2.7.7. The following properties are equivalent.

(i) €, y-converges to Q.

(ii) Sverak: AR(Q,)(1) — AR(Q)(1) (i.e the convergence takes place for f =1).
(iii) Mosco Convergence. H}(Q,) converges in the sense of Mosco to H} (Q) i.e

(M1) For every v € H} (), there exists a sequence v, € H}(S,) such that v, — v
(strong convergence in H}(D)).
(M2) For every sub-sequence v, of functions in HJ(,,) which converges weakly to a
function v € H}(D), then v € H} (2).
(iv) Distance to Hy: ¥ ¢ € H}(D), d(p, Hy () = ninioo d(p, HY(Q,)) (where d(p, X)
denotes, as usual, the distance of ¢ to the conver set X ).

(v) Projection on Hy: V ¢ € H}(D), projHé(Q)(go) = nlirgwprojHé(Qn)¢ (where projx ()

denotes the projection of ¢ on the conver set X ).

(vi) T'-Convergence: Jg, I'-converges to Jo where, for any open set w C D, J, is defined

by

. Hl
szlf |Vv(:r)|2dx—/ fo(x)dx + 0 v e Hyw)
2Jp D +00 else

and the I'-convergence means:

(G1) ¥ v, — v Jg(v) < liminf Jo, (v,).
(G2) v, — v Jg(v) > limsup Jo, (v,).
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(vii) (Strong) Convergence resolvant operators: ||AR(Q,) — AR|| (?) — 0.
Applying Theorem (2.7.2), we have:

Corollary 2.7.8. If any of the above items (i)-(vii) is true, then A(€),) — A(Q2).
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Chapter 3

Tools

In this chapter we show the main mathematical tools we use in this work. We give some
references and definitions for classical theorems, some of them with their proof. Also, we
explain in a more detailed fashion the results that are not really known.

In the section (3.1) we give detailed information about symmetrization through rearrange-
ments, giving the according definition in different dimensions. We also give the proof of basic
theorems such as equimeasurability (3.1.21) and Hardy-Littlewood Inequality (3.1.44) and
some other rearrangements results. Due to the complexity of the proof, for the important
Pélya and Szego theorem (3.1.45) we just give the definition.

In the sections (3.2), (3.3), (3.4), we mainly show classic results of PDE, measure, and
convex analysis theory. We wrote this propositions in order to make a self contained book.
In (3.5) we give the definition of H-convergence and we declare the Spagnolo theorem. In
(3.6) we give some theorems written by Simon in [31] but without a very strict description

of their hypothesis.

3.1 Rearrangements

Symmetrization is a tool that can be useful in some minimization problems, in which it is
expected that the possible minimizer, if exists, has some kind of symmetry.

Roughly speaking, a rearrangement operation maps a measurable function into a new one
that is distributed in a similar way enjoying some additional symmetry properties. This kind
of property is also called symmetrization [19].

The common feature of all rearrangements is that if a given function f is transformed

into a new function f*, we want f* has some desired symmetry property. This is done by a
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rearrangement of the level sets of f. Therefore the rearrangement of a function f is closely

tied to the rearrangement of the level-set of the function f.
Notation 3.1.1. Given a Lebesgue measurable set D we write its rearrangement as D*.

The symbol D* will slightly vary its definition according to the required type of sym-
metrization. We remark the space where it is defined is not mentioned, so nothing prevents
the rearrangement set lies in a different vector space. Nevertheless, D* has common proper-

ties regardless the type of the definition of rearrangement:
R 1) If D = ¢, then D* = ¢.

R 2) If D # ¢, then D* is a Lebesgue measurable set having the same Lebesgue measure
than D.

R 3) If Dl Q DQ, then
D C D;. (1.1)

Definition 3.1.2. Let € be a bounded domain in RY and ¢ a real number. Consider a
function f: Q@ — R. We define the level set 2y of f as

Qe ={f>ct={zeQ | flz)>c}. (1.2)

The next step is defining the rearrangement of functions. From this moment on the
supreme of a function will always be understood as the essential supreme with the Lebesgue

measure.

Definition 3.1.3. Given the function f : Q@ — R, we define its rearrangement as the

function f*: Q" — R given by:

fr@)=suwp{c | €.} (1.3)

There are several types of rearrangements in the literature [19] depending of the wanted
symmetries and the number of variables of the rearrangement. In this document we want to
focus in the main properties of the two most well-known, the unidimensional and the Schwarz

symmetrization rearrangement.

Remark 3.1.4. In the literature [9, 19, 27| related to this research the level sets sometimes

are defined slightly different, with different type of inequalities. In [9] we define the level set
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with the non strict inequality,
Qre={reQ | f(z)=c}.

Thus, the rearrangement f* defined in (1.3) could give different values. This two definitions

with the strict and non-strict sign coincide as we see in the proposition (3.1.41).
Now we define the specific kind of rearrangement we are going to use herein.

Definition 3.1.5 (Schwarz symmetrization of sets). We define the Schwarz symmetriza-
tion OF C RY of the set Q@ C RY as the ball centered at the origin which has the same

Lebesgue measure of €.

Definition 3.1.6 (Decreasing symmetrization of sets). We define the decreasing rear-
rangement Q* C R of the set Q@ C RY as the interval [0,|Q2]), where || denotes the

Lebesgue measure of the set €).

Definition 3.1.7 (Schwarz symmetrization). Let f : @ — R be a measurable function.

The Schwarz rearrangement of f is the function f*: Qf — R defined as:

f¥(z) = sup {c | x € Qﬁﬁ} . (1.4)

Definition 3.1.8 (Decreasing symmetrization). Let f :  — R be a measurable function.
The (unidimensional) decreasing rearrangement of f is the function f* : Q* — R
defined as:

fr@)=sup{c | z€Q;.}. (1.5)
Notation 3.1.9. From now on if A4 is a set in some RY, | A| will denote its Lebesgue measure.

It will be important to know some characterizations and relations between the earlier

definitions. In this perspective we present the following propositions.
Proposition 3.1.10. Let Q C RY be bounded and let f : Q0 — R be a measurable function.

Then the (unidimensional) decreasing rearrangement of f, is given by

sup f () if s=0
[i(s) = €2 (1.6)
sup{t | {f >t} >s} ifs>0
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Proof. The point 0 always is in any set rearrangement. So the result follows when s = 0. If

s > 0 we have:

fr(s) = sup{c | s €}
= sup{c | s € (0,[{f > c}])}
= sup{c | {f>c} >s,s>0}

= sup{c | |{f >c}| > s}
O
From now on wy will denote the Lebesgue measure of the unitary ball in RY. By simple
computations it can be seen that the Lebesgue measure of the ball with R radio is given by

|B(0,R)| = RNwy.

We give a direct relation between the decreasing and the Schwarz symmetrization.

Proposition 3.1.11. Let f: Q2 — R, then:

F(a) = f*(wn o] V). (1.7)

Proof.

fi(x) = sup{c | v e}
= sup{c | € B(0,R.)}
= sup{c | |z| < R., wnR. = ||}
N N
= sup{c | wy |27 <wyR, :|Qc|}

= [ (wy |2|")

0

We are going to define a function that is very related to the rearrangement of a function.

This function can be understood like the inverse of the rearrangement.

Definition 3.1.12. Given the function f : Q@ — R, we define its distribution function

pp(t) = {f >t} fort >0 (1.8)

where {f >t} = {x € Q: f(z) >t} and |-| is the Lebesgue measure.
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Remark 3.1.13. It is easy to see the function py is decreasing and pf(t) = 0 for ¢ > sup(f)
and pp(t) = Q] for ¢ > inf f. Hence, the range of the distribution function s () is the
interval [0, |€2]].

3.1.1 Properties of the decreasing rearrangement

In the following pages we are going to see several properties of the decreasing rearrangement
we suggest to see more carefully. There are several classical results, some of them are ex-
plained in detail and some others are simply mentioned, as the Polya-Szego theorem (3.1.45).
Some of the proofs were taken from the Kesavan book [21]. Furthermore, we give some results
ad-hoc to our problem we have proved -or we just have rewritten- studying the proofs given
in [21].

Proposition 3.1.14. Let f : Q@ — R be a function in L>® (). Then f* is a decreasing

function.

Proof. Let s1 < s3. We have
{f>s}{f>s}.

Then, if there exists some ¢ > 0 such that [{f > so}| > ¢, we will have |{f > s;1}| > t. Hence
{t:{f >s2}} C{t:|{f > s1}|}. Taking the supreme we get

[ (s2) < f(s1)-

Proposition 3.1.15. Let f : Q@ — R be a function in L (2). Then
fre L= ([0, [2]) (1.9)
Proof. We have:
o f10)=suwpft | [{f>1}]>0} =supf,

o fr(|Q) =sup{t [ [{f>1t}[>[Qf} =inff.
Since f € L*> (2) and f* is decreasing it follows that f* € L> (2%),i.e. f* € L*([0,|Q2])). O

Proposition 3.1.16. Let f : Q@ — R be a function in L (). Then f* is a right continuous

function.
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Proof. Let s € [0,] and let € > 0. Because f* is a decreasing function, we must show there
exists h > 0 such that

Vsels,s+h] f(5)—f(5+h)<e

By definition of f*, there exists ¢ > 0 such that ¢t + e > f*(5), f*(5) > t and ps(t) =

[{f >t} >s.
Choosing h > 0 such that | {f >t} | > s+h, we have [{f > t}| >s V s €[5 5+ h| then
it follows f*(s) >t V s € [, 5+ h], therefore

FG) = f(s)<(t+e)—t=ce
0

Proposition 3.1.17. T': f — f* is a increasing map, i.e. if f < g, where f and g are real
valued functions on ), then f* < g* [21].

Proof. Let f < g be two real valued functions. Because {f >t} C {g > t}, thenif | {f > ¢} | >
s it follows |{g >t} | > s. Therefor {t | |{f >t}|>s} C {t | |[{g >t} >s}. Taking

supreme over t we obtain f*(s) < g*(s). O

Proposition 3.1.18. Let f: Q — R be a function in L™ (). Let s = |{f* > t}|. Then
ff(s) <t and f*(s+e€) <t Ve>N0. (1.10)

Proof. Let s = |{f* > t}|. Since f* is a decreasing function and f*(0) = sup f, it follows
that {f* > ¢} is an interval in the form [0,a) or [0,a]. Hence a = s and V € > 0 we have

ffs—e)>t y f(s+e <t

Using right continuity it follows f*(s) < t.

Suppose f*(s+¢€) <t Ve > 0 was not true. Thus, there would exist € > 0 such that
f*(s+¢€) =t and since f*(s) <t and f* is decreasing, we would have f*(s+x)=t Vuz €
[0,¢]. Then |{f*>t}|>|{[0,s+ €]} | > s which is a contradiction. O

The following property shows the inverse relation between the distribution function and

the rearrangement of a function.
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Proposition 3.1.19. Let f : Q — R be a function in L (). Let s = |{f* > t}| Then

fr(s) =t (1.11)

Proof. We know from the previous proposition (3.1.18) that

[(s) <s.

Let suppose by contradiction that f*(s) < t.

By definition of f*, we would have | {f > ¢} | < s. The inequality satisfies strictly because
if it holds |{f > t}| = s, by definition of f* we could take a sequence ¢, / t such that
|{f >t} | > s, which would lead to f*(s) > ¢, V n. But the former implies f*(s) > ¢,
which is a contradiction. Therefor, supposing f*(s) < t (our main contradiction hypothesis),
we have | {f >t} | < s.

Now let take € > 0 such that |{f >t}| < s —e. It follows that f*(s —¢) < t. If we
suppose that f*(s—e) > ¢, we could take a sequence t,, /" t such that | {f > ¢,}| > s—e and
since {f > t,} \, {f > t}, by measure continuity (and the finite Lebesgue measure of 2) the
former would lead to | {f >t} | > s. Therefor, supposing f*(s) < ¢ (our main contradiction
hypothesis), we have f*(s—e¢) < ¢. But this is a contradiction because f*(s—9) >t ¥V > 0.

Thus, our main contradiction hypothesis is wrong, so we concluded that f*(s) = t. O

Definition 3.1.20 (Equimeasurable). Two real valued functions (with possibly different
domains of definition) are said to be equimeasurable if they have the same distribution

function. Equimeasurable functions are said to be rearrangements of each other (see [21]).

Theorem 3.1.21 (Equimeasurability). The functions f : Q@ — R and f* : Q* — R are

equimeasurable, ie. for all t,

>t =[{f" >t} (1.12)

Proof. Let s = [{f* > t}|. We know from the proposition (3.1.19) that f*(s) = ¢. It is
easy to see that |{f >t}| > s. In fact, taking a sequence e \ 0, by definition of f* it
follows [{f >t—€}| > s. Since {f >t—¢€} \ {f >t} , by measure continuity (and the
finite measure of Q) we have |{f >t} | > s.

Because f*(s+¢€) <t Ve wehave |[{f >t}| <s+e Ve Therefore,

{f >t =s=1{/" >},
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Corollary 3.1.22. Let f: Q) — R. We have

{r>0] = Hfr >t
{r=t] = [{f =t}
{F<tp] = Hfr <t
{r <] = Hf <t

(1.13)

Proof. The first relation has already been proved. The rest follow easily by complementation

and suitable limiting arguments. O

Remark 3.1.23. From the proposition (3.1.19) and the equimeasurability we have f*(u(t)) =
t Vit

We can extend the equimeasurability (3.1.21) property to the L? sense. The following

propositions leads in this direction.

Corollary 3.1.24. Let f € LP(Q) with 1 <p < oo. If f >0 then f* € LP([0,|Q]]) and

||f||p,Q = ||f*||p,(o,|ﬂ|) (1.14)

Proof. If p = oo, then by definition [|f*||, o = sup {|f*(s)[} = f7(0) = sup {us(t) > 0} =
’ >0

s€l0,/]
1/l

Let 1 < p < c0. By equimeasurability, both f and f* have the same distribution function

and as both functions are positive, we can use the cake slide theorem (3.3.1) to obtain:

/ 7(z)da

Q
= ||f*||p,(o,\m) :

1£117.0

O

This result is also true without the non-negativity condition. In fact, as a consequence of

the equimeasurability (3.1.21), we have the following general powerful result.

Theorem 3.1.25. Let f : 2 — R be measurable. Let F : R — R be a positive Borel

measurable function. Then

/ F(f(x))de = / F(f*(s))ds (1.15)

2
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Proof. Let E = [t,00) and set F'(§) = xg(§) where xg is the characteristic function of E.

Then
2]

| Ptandn =1{F > 8 = 11 > 0] = [ P((s)ds

Q 0
Similarly, the result holds for F' = E where E is any interval and hence if £ in any Borel
set, by standard arguments. If I’ is any non-negative Borel function, it can be expressed as
the limit of an increasing sequence {F),} of non-negative simple functions F'. Thus, for each

n we have

We can pass to the limit as n — oo to get (1.15) using the monotone convergence theorem.
O

Corollary 3.1.26. Let ' : R — R be a Borel function and let f : Q@ — R be such that
F(f)y=Fo fe L' (Q). Then F(f*) € L*((0,]9])) and (1.15) is still valid.

Proof. We write F' = F* — F~ and both F'* and F~ are non-negative Borel functions and
so (1.15) holds for each of then in place. If F(f) € L'(Q), then both [, F*(f(z))dx and
Jo F~(f(2))dz are finite and we can subtract the relation for F'~ form that of F* to get
(1.15). O

Corollary 3.1.27. Let f € LP () for 1 < p < co. Then f* € L?((0,|S?])) and the corre-

sponding LP norms are equal.

Proof. 1f p # oo take F(t) = |t|” in the preceding theorem. If p = oo use corollary (3.1.24)
for the function |f|. O

Remark 3.1.28. Since the proofs of Theorem (3.1.25) and its consequences depended only
on the equimeasurability, these results also hold for other types of rearrangements which have

the equimeasurable property.

Now we prove another important property of the decreasing rearrangement which is a

consequence of Theorem 3.1.21.
Lemma 3.1.29. Let 1 > 0 and f : [0,l]] — R be a decreasing function. Then f = f* a.e.

Proof. Let s € [0,1]. Since f is a decreasing function we have

L > fs)} = s
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Hence, by definition of f*
f(s) = f(s).

Let now s € [0,{] and ¢ such that | {f >t} | > s. By equimeasurability (3.1.21), this holds

for t = f*(s). Since f is decreasing we have

f(x) > f(s) Vxels),

particularly for x = s — h, with h small enough. Since f is monotone, there are at most a

numerable set of discontinuity points, so they have null Lebesgue measure , therefore

f(s) = f*(s) as.
U

Corollary 3.1.30. Let f : Q@ — R and g : Q — R be equimeasurable functions with
QCRY, QC RM and |Q| = |Q|. Then

ff=9 (1.16)

Proof. From equimeasurability we have f* and g* are decreasing real equimeasurable valued
functions. Since f* = (f*)" the result follows from the previous lemma (3.1.29) applied to

the rearrangements f* and g*. O

Proposition 3.1.31. Let v, w : [0,l]] — R be two equimeasurable decreasing functions.

Then v =w a.s.

Proof. By the preceding lemma (3.1.29) v = v* y w = w* a.s. Since they are equimeasurable
[{v" >t} | = [{w" > 1} ].

From the corollary (3.1.30) we obtain v* = w*. O

The following lemma is very useful. It says an increasing function goes through the

rearrangement.

Lemma 3.1.32. Let 1 : R — R be an increasing function. Consider f : ) — R where
Q C R" is a bounded set. Then

W) = W) as. (1.17)



CHAPTER 3. TOOLS 3.1. REARRANGEMENTS

Proof. Due to the previous lemmas and propositions it is enough to verify ¢ (f*) and (¢(f))*
are increasing equimeasurable functions in [0, |€2|]. Since the decreasing rearrangement map
and v preserve the order, the increasing property follows straightforward.

Let F'(y) = X(t00) © V(Y) = X{u(f()>t)}, Which is a positive and measurable function.

Hence
12|

{(f) > 1] = / iy ()ds,

0

by the equi-integrability theorem (3.1.25)

12|

/X{w(f*)>t}(5>d3 = /X{w(f)>t}($)d$ = {(f) >t}

0 Q

and by the equimeasurability property (3.1.21)

{o(f) >t = ()" >},

concluding that ¢ (f*) and (¢(f))* are equimeasurable. O

3.1.2 Some other properties of rearrangements

Here we want to give some other properties of the rearrangements of non general knowledge

which are ad hoc for our work.

Proposition 3.1.33. Let ¢ : QQ — R be a constant function in Q (let say c), then
c’(s)=c Ysel0,]Q]. (1.18)

Proof. For s € [0, €]
(s)=sup{t | He>t}| >s}t=c

O

The following property will be very important in chapter 6, one the main chapters of this

thesis.

Proposition 3.1.34. If Q= AUB, ANB = ¢ and a < 3, then
(axa + Bxe)" (s) = Bxp,5) + aX|BLI)- (1.19)
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Reciprocally, if f* = Bxjop) + axp, o). then
[ =axa+ Bxs. (1.20)

with AUB =Q, ANB = ¢ and |B| =b.

Proof. From equimeasurability, since

{f =8} =[{f=06}=[{f =8}
and
{f > B =0={f"> 0},

we have

[{f =6} = [{f" =5}

Doing a similar analysis for the level set {f < o} we obtain

[{f=ai| = =a}

Since f has only 2 different levels of values, using the equalities showed above we deduce
that f* also has only two different values, namely f* is a step function with the values of f

and preserving the measure of the places where is a and (. O

Sometimes it will be useful to symmetrize but considering an increasing function.

Definition 3.1.35. Let 2 C R™ be a bounded set and f : 2 — R a bounded measurable
function. The (unidimensional) increasing rearrangement of f is the function f, :
0, ]€2]] — R defined by:

2 = sup(f) if s = [0 (1.21)
inf{t | se{f<t}} ifs <|Q]

It is not so difficult to prove similar properties we have stayed for the decreasing rear-
rangement. The following lemma resumes the properties of the increasing rearrangement.

We recommend to see [21, 19] for further information.

Lemma 3.1.36. Given a function f : Q0 — R, the increasing rearrangement f, is a in-

creasing function and is equimeasurable with the function f.
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In the next lines, we give two properties that relates the decreasing with the increasing

rearrangement.
Proposition 3.1.37.

ff=—(-f), as. (1.22)
Proof. We have

{f > = K>t}
= H=f <t}
= H(=/). < -t}
= H=(=1.>1}

Then both f* and — (—f)
sition (3.1.31) it follows they are equals a.s. O

are decreasing and equimeasurable functions, due to the propo-

*

Proposition 3.1.38.
(f)"=[f" as. (1.23)
Proof. We have

{(f)" > = Hi>t}
= {=(=N">1}
= (=) < -t}
= {=(=">1t}
= K=f<-t}
= {f >t}
= [/ >t

Then both f* and (f,)" are decreasing and equimeasurable functions, due to the proposition

3.1.31) it follows they are equals a.s. O
( ) y q

The following proposition will be demanding in the important proposition (6.3.1) which
is a kind of generalization of the Pélya Szegd inequality (3.1.45).

Proposition 3.1.39. Let Q C RY be bounded and let f : Q@ — R be an integrable function.
Let E C ) be a measurable subset. Then

|E]

/Ef(x)d:cg i f*(s)ds (1.24)
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and equality holds if, and only if,

(fle)" = [,z ae.

Proof. Here we rewrite the proof given in [21, Proposition 1.2.2]. Let g = f|g. If s € [0, |E]]
and if | {f > t}| < s, then

o>t =[{f >t} NE[<s.

Thus
{t | [{f>trl<syC{t | [{g>t}|<s}

and so g*(s) < f*(s). Thus

|| |E|
/Ef(x)da? :/0 g*(s)ds < f*(s), (1.25)

0

which proves (1.24). If equality holds in (1.24), then we have equality throughout in (1.25)
and this is possible if, and only if, g* = f* a.e. in F the result is proved. O

Proposition 3.1.40. Let Q C RY be bounded and let f : Q@ — R be an integrable function.
Then

T

/f*:max /f | A is a Borelian Set , ACQ, |Al=r,. (1.26)
A

0

Proof. From the previous proposition (3.1.39)

Zféfﬁ-

Thus,

s

max /f | Aisa Borelian set, A C Q, |Al =7 g/f*
A 0

Al =Hf*>rH=r

Define
g:{f if f > f* (r)

0 otherwise.
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We have

and
g = (9la)" = [ljom-
]

The next result shows in the definition (3.1.3) of function rearrangements we can consider

level sets with an > sign instead of the strict inequality.

Lemma 3.1.41. Let f: Q) — R. Let s € [0, |s|]. Then

sup{c | se{f>c}}=sup{c | se{f>c}}. (1.27)

In other words

fr(s)=sup{c | se{f=c}}. (1.28)
Proof. Define

l(s) =sup{c [ se{f=c}}
g(s) =sup{c | s €{f>c}"}

Since

{f>cc{fzc
By the monotonicity property (1.1) of the rearrangement of sets we have

{f>c c{fzcp

Taking supreme over ¢ we have
g(s) <1(s)
Let ¢, /" I(s) such that s € {f > ¢,}". We can redefine ¢, such that
se{f>c,} andc, 7(s)
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Then, for all € > 0 there exists some ng such that for all n > ng we have
I(s) <cp+eand s € {f >c,}

Hence, since ¢, < g(s) ¥V n
[(s) <g(s)+€ Vex>0

and therefore

I(s) = g(s)
U
Lemma 3.1.42. Let f: Q — R with f(z) #0 a.e . Then
(F) = (1.29)
Proof. Let s € [0,|Q]]. We have
() () =sup{e | se{f">c}"}
=sup{c | s€{l/c> f}'}
= (inf{5 | se{f<ayp”’
= f.'(s)
U

The following property will be strongly required in the proof of the main theorem showed

in section (6.4).

Corollary 3.1.43. Let f : QQ — R with f(x) #0 a.e . If 0 = f* then

(FH =(67Y". (1.30)
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using the preceding lemma (3.1.42) we have

3.1.3 Main theorems of rearrangements

Here we show the classical inequality properties of rearrangements such as Hardy-Littlewood
and Pdlya - Szegd inequalities and some isoperimetric inequalities that were useful in this
work. This properties leaded us to get new proofs of the properties from Alvino and Trom-
betti [3, Lemma 1.2] and the Alvino, Trombetti and Lions [4, Theorem 3.1]. We redo this
propositions in order to enlighten or get a better understanding of the general problem (GP)
when we are not in a fully symmetrical case (such as the case when € is a ball). We expect
this tools give us some knowledge of Steiner symmetries, for instance, the case of square

domains. See [21, 19, 8] for further information.

Theorem 3.1.44 (Hardy- Littlewood). Let € be a bounded set, p, ¢ > 0 such that %+% =1.
Let f € LP(Q2), g € LT(2). Then

/fg < /Qf*g*- (1.31)
Q 0

o]
/fg > /f*g*. (1.32)
Q 0

Proof. The proof of the first equation can be checked in [21, Theorem 1.2.2]. We will prove

And

the second inequality, supposing valid the first one.

Since f, = — (—f)", using Hardy-Littlewood inequality (1.31) for —f and g we obtain

I/Q(—f)*g* > /—fg

0 Q
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hence

0

Theorem 3.1.45 (Pélya - Szeg6 ). [21, Theorem 2.5.1][27]. Let 1 < p < o0, Q a bounded
domain and v € WP (Q) such that u > 0. Then

/‘Vuﬁ}pdxﬁ /|Vu|pdx. (1.33)
' 0

In particular, the Schwarz symmetrization u® is in VVO1 P (Qﬁ)

The following definitions and propositions concerns the framework of isoperimetric in-

equalities.

Definition 3.1.46 (The de Giorgi Perimeter). [21, Chapter 2] Let  C RY be an open set
and let £ C () be a measurable set. The de Giorgi perimeter of E with respect to €2
, denoted Pq(E), is defined as the total variation of the characteristic function xz of E. In

mathematical terms,

sup { (@)Y 60}
Po(E) = (1.34)
sup { L7 (D) . 6 #0}
where
6] = max {2;\@ <¢1,...,¢N>}. (1.35)

If Q = RY we write P(E).

One could also interpret Po(E) as the surface area of that part of the boundary of E

contained in {2 where a normal can be unambiguously defined. If 2 were smooth, then, by

/dz’v(gb)dm zagqb-ndS

Q

the divergence theorem,

where n is the outer normal on 0f). It clear that

/cz»-ndssllasnfmds

o0
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and since we can choose ¢ = n in the arguments of the supreme defined in (1.34) we have
Ppn () = P(Q) = (09)]. (1.36)

and thus P(€2) would be the usual surface area of OS).

Theorem 3.1.47 (Isoperimetric Inequality). The Schwarz rearrangement u* of the function

u satisfies

P({u>t}) > P({uf > t}). (1.37)

and
P({uf > t}) = Nuj (). (1.38)

which correspond to the perimeter of the ball {ujj > t}, being pu,(t) the distribution function
of u defined in (8.1.12) and wy the volume of the unit sphere in RY

Theorem 3.1.48 (Fleming - Rischell ). [21, Theorem 2.2.1] Let Q C RY be an open set
and let u € WH(Q). Then

/|Vu| - /_OO Po ({u > 1)) dt. (1.39)

Theorem 3.1.49 (Co-area formula). [21, formula (2.2.1)]

/g(x) |Vu(x)| de = ]O / g(x)do(zx)ds. (1.40)

Q —00 uU=s
where o(x) stands for the integration with respect to an appropriate (N — 1)— dimensional

measure on the level set {u = t}.

Theorem 3.1.50. [21, Theorem 2.2.3] Let uw € D(Q2) be such that u > 0. Let v denote the

distribution function of w. Then, for almost every t in the range of u, we have

= [ 47 o
—“(t)_/{uzt} Yl /{uﬁ:t} N (1.41)

where u* is the Schwarz symmetrization of u defined in (3.1.7).
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3.2 Eigenvalue value problem for second order linear

elliptic operators

Let €2 be a domain in R™ and consider the the elliptic operator in the divergence form

Lu=— Z (aijuxi)xj (2.42)

i,j=1

where a” € L* (). We suppose the operator is uniformly elliptic and it satisfies the sym-

metry property:
av =ad’" Vi, j (2.43)

The operator L is symmetric, hence, in particular, the bilinear form B[, ] satisfies
Blu,v| = Blv,u] Yu,ve€ H) Q)

where

[u, v] /Z a”uy,vy,) (2.44)

i,7=1

Theorem 3.2.1 (Eigenvalues of elliptic operators [14]). We have the following properties:
1. Fach eigenvalue of L is real.

ii. Besides, if we repeat the eigenvalue according to its multiplicity (which is finite), we

have
Y= {)\k}zil
where
O0< A <A< <
and

A, — 00 when k — 00

ii. Finally, there exists an orthonormal base {wy},—, of L* (Q), where wy, € H} (Q) is an

ergenfunction corresponding to the eigenvalue A\, namely, the base satisfies

Lw, = A n  Q
{ Wk Rk mn (2.45)

w, = 0 on  0f)
foreach k=1,2,...
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Proof. We know the unique weak solution v € H{(€2) of the problem

Blu,v] = / fv VoueHy(Q) (2.46)
Q
satisfies
Mullyo < Bluu
< Ol lull 2
< Ol g2 el gy o)
Hence,

||u||H3(Q) <C ||f||L2(Q)

Using the compact embedding (3.2.2) of H}(2) in L*(Q) and defining the operator K :
L*(Q2) — L*(Q2) which associates to each f the only weak solution u of the problem (2.46),
but considering it as a function in L?(§2), it follows that K is a compact operator.

Furthermore, K is selfadjoint and injective:

e Selfadjoint:

(), 6oy = / K(f)g

=/K>f

= )7f>L2(Q
= < K(9) 120

e Injective:
If K(f)=0= B[K(f),v] = [, fv=0Vve HjQ).
Since H} () is dense in L*(Q) it follows f =0

If we apply the spectral theory of compact selfadjoint operators to the operator K it
follows there is an orthonormal base {wy} of L?(Q) and {uz} such that:
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o p— 0, >0 VE.

e Each py has finite multiplicity.

Then
B [K(wg),v] = /wkv
Q
=
1
Blwg,v] = — [ wyo
HE Jo
Which is equivalent to
1
ka = — Wi in Q
Mk
w, = 0 on 0f2

Theorem 3.2.2 (Rellich). We have the following well known inclusion property.
e For any bounded open set Q, the embedding H} (Q) — £*(Q) is compact.

o IfQ is a bounded open set with Lipschitz boundary, the embedding H'(Q) — L*() is

compact.

Theorem 3.2.3 (Positiveness of the first eigenfunction). Let us assume that ) is a reqular
connected open set. Then the first eigenvalue A(L,Y) of the elliptic operator given in (2.42)
s simple and the first eigenfunction u has a constant sign on €2. Usually, we chose it to be

positive on 2.

Actually, the previous theorem is a consequence of the Krein-Rutman Theorem which is

an abstract result we recall here.

Theorem 3.2.4 (Krein Rutman). Let E be a Banach space and C' be a closed convex cone
in E with vertex at O, non-empty interior Int(C) satisfying C N (—C) = {O}. Let T be a
compact operator in E which satisfies T(C\ {O}) C Int(C); then the greatest eigenvalue of
T is simple, and the corresponding eigenvector is in Int(C) (or in —Int(C)).

The following classic result a very useful characterization of the first eigenvalue.
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Theorem 3.2.5 (Rayleigh quotient). Let us define the Rayleigh quotient of the operator

L to be: .
Z / aijvmivxjdx
Q

Ru[o] = 2= e (2.47)

Then, the first eigenvalue satisfies

AL, Q) = Uergil?m Ry [v]. (2.48)

And the minimum is achieved by the corresponding eigenfunction.

3.3 Measure theory

Theorem 3.3.1. Let v be a measure over the borel sets in the real positive line [0, 00) such
that
o(t) = v ([0,t]) (3.49)

is finite for allt > 0. (Realize that (0) = 0 and ¢, since it is monotone, is Boreal measur-
able.) Let (Q, %, p) be a measure space and f be a non-negative measurable function over Q.
Then

[e.9]

/ b (f () o (dr) = / w{f > thv(dr). (3.50)

0

In particular, taking v (dt) = ptP~1dt for p > 0, it follows

[e.e]

[ty utin) =p [ouis > o a
Q

0

Choosing p =1 and p as the Dirac measure in a point v € R™, we have

[e.e]

f(x) = / xroe(z)dt

0

Definition 3.3.2. Let Q be a bounded domain in RY and f € L! () a non-negative function
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such that 1/f € L'(Q2). We define the harmonic mean of f as

IQI
/ —dx

Proposition 3.3.3. Let Q be a bounded domain in RN and f € L'(Q)) a non-negative
function such that 1/f € L' (). Then

F(x)dz LA
/Qﬂ = /sz (3:52)

(3.51)

That is, the arithmetic mean is greater than the harmonic mean.

Sketch of the proof. We have

o= ([0 ) = s = o

Where in the next to last inequality we have used Jensen inequality and in the last one
Cauchy-Schwartz. O

Definition 3.3.4 (Absolute continuity of functions). Let (X, d) be a metric space and let [
be an interval in the real line R. A function f: [ — X is absolutely continuous on [ if
for every positive number e, there is a positive number ¢ such that whenever a sequence of

pairwise disjoint sub-intervals [z, yx] of I, k =1,2,..., n satisfies

> gk — ] <6
k=1

then

3.4 Convex analysis

In this section we give some basic ideas and well known theorems of convex analysis. Some

of this concepts were rewritten from chapter 32 of [28]. We can say -in advance of the main
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theorem of this thesis- we are going to require the treatment of extreme points from certain
convex compact sets. In addition, we will deal with minimizing sequences of a concave
functional, so is important to have a background knowledge in convex functions and sets
which could permit us to extract some information of convex sets, its extreme points and
minimizing sequences.

The theory of the maximum of a convex function relative to a convex set has an entirely
different character from the theory of the minimum [28]. In this perspective we give the

following definitions and propositions.

Definition 3.4.1 (Affine hull). [28]. Given any S C R", we define the affine hull of S,
as the affine set given by the intersection of the collection of affine sets M such that M D S.

Definition 3.4.2 (Relative interior). [28]. The relative interior of a convex set C' € R,

which we denote by ri ', is defined as the interior which results when C' is regarded as a
subset of the affine hull of C'.

Theorem 3.4.3. Let f be a convex function, and let C be a convex set contained in domf.
If f attains its supremum relative to C at some point of ri C, then f is actually constant
throughout C'.

Proof. [28]. Suppose the relative supremum is attained at a point z € riC. Let x be a point
of C' other than z. We must show that f(x) = f(z). Since z € ri C, there is a real number
@ > 1 such that the point y = (1 — p)x + pz belongs to C. For A = u~!, one has

z=(1-Nz+Xy, 0<A<1
and the convexity of f implies that
f(2) < (=Nf(z)+Af(y)

. At the same time, f(z) < f(2) and f(y) < f(z) because f(z) is the supremum of f relative
to C. If f(x) # f(z), we would necessarily have f(z) > f(z). Then f(y) would have to

be finite in the convexity inequality (since otherwise f(y) = —oo and f(z) = —o0), and we

would deduce the impossible relation

f(2) < (M=) f(2) + Af(2) = f(2)

Therefore f(z) = f(z) O
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Definition 3.4.4. Given a set X C F we define its convex hull as the set
co(X)={zx € E | Jx;,25 € X,3\ €[0,1] such that x = Az + (1 — Axq)}. (4.53)
Proposition 3.4.5. Let f : co(X) — R be a convex function over the set co(X). Then

sup{f(z):x € X} =sup{f(z):x € Co(X)}. (4.54)

Proof. We always have

sup{f(z) | € X} <sup{f(x) | v € Co(X)}.

Since f is convex, its level sets of the form {f < A} are convex. So f is quasiconvex and
then
floxy + (1 — a)ry) < max{f(x1), f(z2)} Vael0,1]

Therefore,
sup{f(z) | z€co(X)} =sup{flar;+(1—a)rs) | 1,226 X ,a€l0,1]}

< sup {mazx {f(z1), f(x2)} | 21,79 € X} =sup{f(z) | z € X}

O

Theorem 3.4.6 (Krein Milman). Let X be a locally convex topological vector space, and let

K be a compact convex subset of X. Then, K is the closed convex hull of its extreme points.

Proposition 3.4.7. Let f : C — R be a convex function and C a convexr compact set. Let
E be the set of extreme points of C. Then

sup{f(z):x €C} =sup{f(x):zecE}. (4.55)

and in the case of the existence of a maximizing element in either both sides of the previous

equality, then
max {f(z):z € C} =max{f(z):x € E}. (4.56)

Proof. The equation (4.55) holds straightforward from Krein Milmam theorem (3.4.6) and
the proposition (3.4.5).

If we have a maximizing value, let suppose by contradiction that the supreme is reached

in the interior, but does not in the in E. Let 7 = Az + (1 — Ay) element in C which maximizes
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fen C, with z, y € E. Then f(x), f(y) < f(z). Due to the convexity of f:

f@) < Af(x) + (1 =N f(y) < f(7)

which is a contradiction. O

Theorem 3.4.8. Let f : C — R be a convex lower semi-continuous function and C a convex

compact set. Then f reaches its mazimum value at an extreme point of C.

3.5 Homogenization

In this section we restrict ourself to give some basic ideas and results from homogenization
theory although we do not use it directly in any of our results. However one can obtain
generalized solutions to our problem using this theory. (See [26, 11]). Here we describe ho-
mogenization of second order elliptic operators, which appear in connection with conductivity
problems. See [2, 26, 25] for more details.

Let My be the linear space of square matrices with real coefficients of order N. For every
pair of numbers 0 < a and 0 < 3, we define the subspace of My of the coercive matrices

with inverse coefficients:
Mag={MeMy:ME-E>algf , M- =57 ¢ VEeRY) (5.57)

A coercive matrix such its inverse is also coercive is bounded. In fact if M € M,g,
writing n = M~1¢ we deduce from the definition (5.57)

87 [Mn|* < Mn -,
Applying the Cauchy-Schwarz inequality, we have
|Mn| < gy VneRY. (5.58)

Similarly, we have

M| <a™'n VneRY. (5.59)

Remark 3.5.1. From (5.57) and (5.58) it follows that a necessarily and sufficient condition
for a matrix M belongs to the space M, g is that « ]* < M€ -€ < BE) for every vector €.
Then, the set M, 5 is no-empty if and only if the positive constants a y 3 satisfy a3~ < 1.

From now on, we assume always the have this condition.
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Let Q be an open bounded set in RY. We define the space of admissible coefficients
in Q by
L (M) = [o; 5]

and if the matrices are symmetric we write the symbol [o; 3]..
Denoting by € > 0 a real sequence of numbers which tends to zero, we will consider the
sequence of matrices A°(z) € [o; (.
For a given source f € H~ (), we consider the following elliptic equation of second order

with Dirichlet condition:

{—dz’v(AEVue) = f in 0 (5.60)

u = 0 on 0f2

The former equations admits the following varational formulation. For every ¢ € H] (Q)

we have

/Q AV, V6 = (£.6) -1 e (5.61)

Replacing ¢ by u. in the previous equation, the norm of the solution u, can be a priori

estimated using the coercivity of A

IN

/ AVu, - Vu,
Q

(f, ue)Hfl,Hg(Q)

< AN el 0

2
o Hvue||L2(Q)

IN

Since (2 is a bounded domain, using the Poincare inequality, namely, we know there exists a

positive constant C' which depends only of € such that

[0l 20y < ClIVOl 2y Vo€ Hy ()

Hence, we have

C
||Vue||L2(Q)N < o ||f||H*1(Q) (5.62)
The a priori bound found in the former equation implies that the sequence of solutions . is
bounded in H{ (), independently of €. Since the bounded sets are relatively compact for the
weak topology in HJ(€2), there is a subsequence, which we still write as u,, that converges
weakly in H}(Q) to a limit u € Hy(Q).
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Introducing the flux

oo = AVu,,
it follows from (5.58) for the operator A€ that the sequence o is also bounded in L*(Q)".
Then, there is a subsequence of o, called it in the same way, that weakly converges to a limit

oe LX)V,
From the equation (5.60) o, satisfies
—divo.=f in €
Therefore, taking the limits in the previous equation we have that
—div o= f

The very interesting question is if ¢ = A*u, for some matrix A, and if in that case u

solves the problem

—div(AVu) = f in
u = 0 on 0f2

The following definition formalizes the notion involved in the above question.

Definition 3.5.2 (H-Convergence). Given a sequence of matrices A° € [«; ], we say it
converges in the homogenization sense, or simply H-converges, to a homogenized
limit, or H-limit A* € [a; 3], if for every given right side f € H~(Q), the solution u, of the
equation (5.60) satisfies

ue — u weakly in H}(Q) (5.63)
AVu, — A*Vu weakly in L2(Q)N '
where u is the solution of the homogenized equation
—divA*Vu = f in Q (5.64)
u = 0 on 0f)

The next theorem shows always we can extract subsequences that H converges.

Theorem 3.5.3 (Spagnolo). Let A° € [o; 3], be a sequence of symmetric matrices that

satisfies (5.60) for all . Then there is a subsequence A" of A¢ and there is a symmetric
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matriz A € [a; (], such that

s

A" H-converges to A*.

3.6 Shape derivative

The shape derivative is a tool which permits to understand the variation of quantities which
depend on the domain (cf. Simon [31]). This is widely used in the study of shape optimiza-
tion, front tracking, image segmentation problems etc. In this chapter we only give the basic

definitions.

Definition 3.6.1. Let w C RY. Let ¢ > 0. If § is a map from RY to RY, we say that w + t0

is a perturbation of the domain w in the direction # with scalar t. We write

rEw+th & x+th(x) € w. (6.65)

Let us consider a functional F' which depends on the domain w (shape functional). For
a variation of the domain w by a fairly smooth perturbative vector field 6, which has its

support in a neighborhood of Jw, we are interested in the variation of the functional F'.

Definition 3.6.2. The total derivative of F' in the direction 0 is defined as

F(w:0) o F(w+th)o(I+10)— F(w) (6.66)

=1
t—0 t

Definition 3.6.3. The local derivative of F' in the direction 6 is defined as

lim Fw+1t0) — F(w)

o t—0 t

Fl(w; ) (6.67)

It is useful to recall the following important relation between the total and local derivatives

Remark 3.6.4. The following relation usually holds

u'(z) =u(x) — 0 - Vu. (6.68)
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Some (zeneral Aspects

In the introduction we said that €2 C R™ corresponds to the shape of a conductor which is
composed of two materials, one of conductivity a > 0 and the other of conductivity 5 > «a.
The quantity of the material of conductivity [ is limited. Let us call b the available volume
for this material, which we suppose is smaller than the volume of €.

If A is the region where is located the material of conductivity o and B = Q\ A the region
where is placed the other material, the conductivity coefficient of the material in the whole
region is given by:

o= axa+ Bxs. (0.1)

And the conductivity equation which rules the phenomena is given by

—div (oVu) = f in Q
u = 0 on 0N

where f € H™(Q) is given source. Hence, for every o of the form (0.1) we have a second
order elliptic equation, and since 0 < @ < 0 < 3 is easy to see is a uniformly elliptic family
with uniform ellipticity constant o and continuity constant 3 (the coefficient o can be seen
in [o; 8] defined in (5.57)).

From the theorem (3.2.1) we know there is a orthogonal basis in Hj () such that each
element of the base is an eigenvalue of the operator T, : Hg () — L*(Q) defined by

Tou = —div (cVu) (0.2)

We know from the theorem (3.2.1) and (3.2.3) that the first eigenvalue of 7,,, which

we call \(0), is strictly positive, the eigenfunction is simple and can be taken positive.
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From the Rayleigh formula (2.48) we know that

\V4 2
ANo)= g Ja7lVU

0.3
ueH} (Q2),u#£0 fﬂ u? ( )

In terms of o, we can rewrite the constant volume constraint as [ o = a (|2 \b) + b := c.

Q
Hence the integral of ¢ is constant independently of the distribution of A and B.

Let © be the feasible set

©=Co=axa+0xs | A, BCQ and /a:c . (0.4)
Q

The main question this document is based upon is if we can find Ay B such that & = x5 + x5
and:
A(@) = inf X (o) (GP)

7€®
The general problem (GP) is very difficult to handle without homogenization. Besides, if we
use this tools, it is still very difficult to find a non-homogenized solution, so it is even harder
to find a classical one which could live in (0.4). As we have seen in the background several
researchers such as Murat, Tartar, Cox and Lipton could not find -or even did not try to

find- a classical solution to this kind of problem.
In order to obtain at least partial friendlier results, we have simplified the problem. The
main problem we are going to manage in this thesis is solving (GP) in RY when  is the

unit ball, namely, when € is
Q=D={zeR" | ||z <1}

We want to find a classical solution and, if possible, obtain a partial characterization
of this solution. We believe the characterization is going to be strongly related with the
symmetrical properties of the disc 2. It is expected in a spherically symmetrical domain the
solution has spherically symmetrical level sets. Indeed, this is happening and can be checked
after a reformulation of the problem with the arguments shown by Alvino. et. al in [4].

Our intuition tells us a classical solution is not only spherically symmetrical but it also
happens when the whole material  is placed in the center. We are giving numerical ex-
periments that could make stronger our intuition, reaffirming this conjecture numerically

speaking.
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Despite the thesis problem is strongly bounded since we have restrict us to the unitary
disc in R?, we will give more general results when possible. Most of the properties we have
proved also hold for a unitary ball in RY. In addition, we expect some of the properties we
have proved, not only hold in the spherically symmetrical case, but also when the domain
satisfies other types of symmetries, such as squares or stars. We encourage the readers and

ourselves to give new results for this type of symmetries in future researches.

4.1 Structural properties of the objective functional

In order to find a solution to the problem (GP) is necessary to obtain good properties of the
eigenvalue functional (0.3). Unfortunately, in the general case we cannot say much. We only

deduced the following result.
Proposition 4.1.1. The objective function A(o) is concave and upper semi-continuous in o.

Proof. The proof follows immediately from the definition of A through (GP). In fact, A is

the infimum of the linear -so concave- continuous functionals

as u ranges over Hg(€2) and thus, concavity and upper semi-continuity hold immediately. [

4.2 Conclusions

The infimum in a minimization problem will be attained, by the direct methods of the
calculus of variation, if it happens that the objective functional is lower semi-continuous and
the constraint set is compact for some topology.

The constraint set (0.4) is relatively compact for the weak-* topology as a subset of L>(€2)
as bounded sets in L*>(Q2) are weak-* compact.

However the objective functional is only upper semi-continuous for this topology and so
we cannot obtain immediately a solution to our problem (GP).

In general, in order to calculate the infimum, at first, the closure of the constraint set
needs to be calculated with respect to a suitable topology and then, the lower semi-continuous

envelope of the objective functional with respect to the same topology. In our problem, this
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CHAPTER 4. SOME GENERAL ASPECTS 4.2. CONCLUSIONS

is hard to achieve without the consideration of micro-structural designs and, the results of

Cox and Lipton [11] are in this spirit but lead further away from the study of a classical

solution.
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Chapter 5

Unidimensional Case

5.1 Introduction

Krein [22, 16] has shown the minimum value in the unidimensional case for the general
problem (GP) is actually reached and it has a classical representation, that is, without
micro-structure or homogenized coefficients. He also characterized the solution, proving that
an optimal solution is to place all the material 3 in the center. In this section we rewrite the
proof showed in Henrot’s book [16] explaining deeply all the necessary steps.

In section (5.2) we set the problem in the unidimensional case and we rewrite the equations
in order to get more manageable equations. This new formulation belongs to the PDE class of
membrane systems and thanks to the rearrangement tools it can be solved successfully giving
a complete characterization of the solution. Luckily the treatment with homogenization
techniques is completely avoidable, which allows giving a step further from Murat-Tartar
[26] and Cox-Lipton [11] researches.

The new vibrating membrane problem involves the objective functional

/|vu\2
A(p) = inf( )97.
UEH&Q / 2
plv
i v

which represents the first eigenvalue of the membrane equation

(1.1)

Av = Apv in €
v = 0 on 0f2
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CHAPTER 5. UNIDIMENSIONAL CASE 5.2. SETTING THE PROBLEM

Cox and McLaughlin [12, 13] exhibited the former problem has a true solution in any dimen-
sion, but unfortunately, this equivalence does not hold in higher dimensions. !

In this new formulation, a lower semi-continuous concave functional over a compact convex
set is minimized. A classical result from convex analysis (3.4.8) tell us that the solution is
an extreme point. In the section (5.4) we find out the characterization of this points.

With the rearrangement machinery assistance, in section (5.6) we exhibit the solution
of the membrane problem can be chosen with symmetric properties. Afterward it is proved
the unidimensional conductivity problem (2.3) has a solution with the material of higher

conductivity in the center.

5.2 Setting the problem

Studying the limit of minimizer sequences in this type of elliptic problems (GP), even in the
unidimensional case, is difficult without homogenization tools. 2

We want to find a coefficient 0 = axa + Bxp which hopefully satisfies de minimum
condition (GP). The first step is change the feasible set (0.4) into a new convex one. We

enlarge the conditions for the functions o considering the set:

C:=R0€L™(0,1)/ 0<a<o<fand /a(x)dx:c . (2.2)

Given o € C, the conductivity equation in the unidimensional case is given by

d (a(g;)d“) = u(z) (2.3)

Cdx dz
u(@0) = 0
u(l) = 0

5.2.1 Equivalence with the membrane problem

We are going to see that the statement given above (2.3) is equivalent to a membrane prob-

lem. This membrane problem is in fact tractable with rearrangements and classical tools of

! Nevertheless, the improve for the unidimensional case using rearrangement tools motivated us to find
classical solutions in any dimension when we consider domains with some kind of symmetries, such as the
case of a symmetrically spherical €2, namely, a ball. See chapter 6 for more details.

2There is a classical unidimensional example which motivates the theory of homogenization [26], showing
this undesirable behavior.
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CHAPTER 5. UNIDIMENSIONAL CASE 5.2. SETTING THE PROBLEM

functional analysis, without using homogenization techniques.

Scheme. The first step is to define the transformation y : [0,1] — R as

xT

y(z) = /a_l(t)dt. (2.4)

0

Since y/'(-) > 0, we have that y is a bijective map of [0, 1] into [0, 1], with [ = y(1). Integrating,

the equation (2.3) can be written as:

a(x);i—z = —A/u(t)dt. (2.5)

Now we define the auxiliary functions which will permit us obtain a membrane equivalent

problem. We define v, p and z as

m%% — / w(t(2))pl2)d=. (2.9)

The last equation leads to

dv /
& = —AO/v(z)p(z)dz

The derivative of the above equation reads

Now the condition



CHAPTER 5. UNIDIMENSIONAL CASE 5.3. MEMBRANE FUNCTIONAL

say that
! 1

/p(y)dyz /a-y‘l'dt = 1.

0 0

Defining
l

C:=<{pecL>(0,1])/ 0<a§p§ﬂy/p(y)dy:1 (2.10)

the conductivity problem (2.3) for o € C' is equivalent to the following membrane problem
for p € C:

—— = Ap(yv (2.11)

Thus, we have the equivalence. O

5.3 Properties of the eigenvalue membrane functional

Let 0 € C and A (o) the first (positive) eigenvalue of the problem (2.3). The Rayleigh quotient

! 2
/O’ (d_u) dx
) dx
Ao) = ue}{élg)f)’u#o - (3.12)
/u2dx
0

In the previous subsection we have shown that the conductivity problem (2.3) is equivalent

says that o satisfies

to the membrane problem (2.11). By straightforward calculations it can be seen that the
eigenvalues of both problems are the same and if u(z), A is an eigen-pair of the problem

(2.3), then v(y) = uwo (y~*(y)) is an eigenfunction of the problem (2.11) with eigenvalue \.
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CHAPTER 5. UNIDIMENSIONAL CASE 5.3. MEMBRANE FUNCTIONAL

The first eigenvalue for the membrane problem also satisfies the Rayleigh quotient

| [(5)
Mp)=  inf L ——— (3.13)

veH([0,1]),0#40 7

/ pvidy

0

We are interested in lower semi-continuity properties of this functional with a certain
topology which hopefully assures at the same time compactness of the feasible set. If this
two condition are satisfied, applying the theorem (3.4.8) we can obtain the existence of a

minimizer element for the membrane problem.

Theorem 5.3.1. The eigenvalue functional defined for the membrane problem (2.11) is a

lower semi-continuous application with the week x topology in L™ ().

Proof. Let (\,, u,) be sequence of eigenvalues and eigenfunctions associated to the membrane

parameter p, € C with ||un||H3 = 1. The Rayleigh quotient (3.13) says

/l (dun>2

~ d

Mpn) = 27
/ani
0

Since u,, is a bounded sequence in H; by Rellich-Kondrachov theorem (3.2.2) there exists a
subsequence (which we called in the same way) such that u,, — u in L? and u,, — u in H}.

By lower semi-continuity of the norm we have

liminf/ % 2>/ d_u 2
dy - dy

Since p,, is bounded we can extract a subsequence (which we called in the same way) that
weakly-* converges in L*° to some p € L.
Then

(P tn) 1 oo — (P U") 1 e

fost— [ o
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CHAPTER 5. UNIDIMENSIONAL CASE 5.4. MEMBRANE FEASIBLE SET

2
liminf/ <%)
7> \(p)
/ Pt

which shows the lower semi-continuity of A. O

Then

liminf \(p,) =

5.4 Properties of the feasible set of the membrane prob-

lem

In the previous section we have shown the continuity properties of the functional that is
required to be minimized. Besides it is important to have manageable properties - like
compactness - of the feasible set. In this section we show properties in that direction: the

feasible set C is a convex compact set which their extreme points are of the form o =

axa + Bxs-

Proposition 5.4.1. The feasible set C defined in (2.10) for the membrane equation (2.11)

1S a compact convex set.

Proof. Let py, p; € C and 1 € [0,1]. Tt is clear that

a<npr+(1—=n)p <P

and

1 1 1
/np1+(1—n)p2=n/ p1+(1—77)/ pp=nl+(1-n1=1
0 0 0

Then C is a convex set. By standard argument we can see C' is bounded and closed for
the weakly-* convergence. This follows from the fact that the integral constraint fol pn =1
is satisfied in the limit because the function yo € L' () and the compactness in R of the

inequality constraint which defined C. O

Proposition 5.4.2. The extreme points of the set C defined in (2.10) are of the form

Xw + BXw- (4.14)

Proof. Let A= {ax, + Bxe | w C Q) and E the set of extreme points of C.
We are going to prove first that E C A, which means (f\A does not contain any extreme

point.
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CHAPTER 5. UNIDIMENSIONAL CASE 5.4. MEMBRANE FEASIBLE SET

Let f € C\\A. There exists some ¢ > 0 and a set © of non zero Lebesgue measure that
ate< f(r)<pf—€ Yreo.

Let ©4, O, disjoint sets which have the same Lebesgue measure such that © = ©; U O,.
We define the function g such that

% if v € ©;
g(z) = -5 if v € O,
0 in other case.
We have:
€ €
+ [o=51eil-5lexd =0
=f—-5>a+35in 6,
— €< B¢
«foy f+z_/5 zen@2
= —§ZOK+§€H@1
Then f+geC, f—geCand
ftg -y
f_ 2 + 2 )

hence f is not an extreme point of C.

Let us prove now that A C E, namely, if f is not an extreme point, then f ¢ A. We
prove this by contradiction. Suppose we have that f ¢ E and f € A.

There exist fi, fo € E, fi # fo such that % = f. But the former proved inclusion
shows that fi, fo € A, in particular, f; y fo are of the form

fl = OXuw T 6X9\w1
f2 = OXuw, T 6X9\w2

Hence
n wp; Nwsy
f= QTJFB in (w NQ\ws) U (wa N Q\wn)
3 in (Q\w;y) U (Q\w2)
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CHAPTER 5. UNIDIMENSIONAL CASE 5.5. EXISTENCE-MEMBRANE PROBLEM

Therefore, f does not belong to the set 4, which is a contradiction. !

5.5 Existence for the membrane problem

In the previous subsection 5.4 we have shown the set C is compact and convex. Since we are
minimizing A(p) over the compact set C and the theorem (5.3.1) and the concavity indicated
in (4.1.1) show that p is a lower semi-continuous concave application, applying the theorem

(3.4.8), we see the infimum is achieved at an extreme point of C.

5.6 Characterization of the membrane problem

Using rearrangement tools, we are going to show the solution of the membrane problem (2.11)

is symmetric.

Lemma 5.6.1. For the membrane problem (2.11) the minimization of the first eigenvalue
has a solution which can be taken symmetrical, namely, can be consider with the coefficient

of higher elasticity in the muiddle of the interval.

Proof. Let p be the limit of a minimizing sequence of X. Let © be an eigenfunction of the

(2.11) membrane problem associated to p. We know from the preceding subsection 5.5 that

!
dv >
— | d
/ (dy> !
Ap)= inf L —
(p) uEHé(l[rOl,l]),v;éO !

/ pv*dy
0

If we employ the Schwarz rearrangement in the unidimensional case displaced in [/2 it is
clear that v*(0) = v*(l) = 0. Furthermore by the Pdlya - Szegd inequality (3.1.45)

I 7—%2 1 3=2

d d

/ e (6.15)
o dy 0 dy

Applying the Hardy-Littlewood inequality (1.31) we have
I I
[oeyz [ (6.16)
0 0
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CHAPTER 5. UNIDIMENSIONAL CASE 5.7. CHARACTERIZATION

Since v > 0, from the lemma (3.1.32)

thus, the pair v*-p* must be the minimum, which shows the minimum is reached in symmet-
rical parameters. In other words, the solution p* has the coefficient of higher elasticity in the
middle of the interval . O

5.7 Characterization of the conductivity problem

In the previous lines we have proved that the solution of the membrane equation (2.11) is of
the form

p=axa+ Bxs

where B is an interval who is centered with respect to [o,[], that is, its center is [/2. Now, we
want to show that the solution of the original conductivity equation (2.3), which we called

o, has a similar symmetry.

Characterization of the conductivity problem. Realize that o(z) = poy(x) = ax,-1(a)+
Bxy-1(B)- Since the transformation y is an homeomorphism and B is connected it follows
y~! (B) is connected. Since A has two connected components, y~! (A) has two connected
components.

Besides, 0, belong to different connected components of A and since y(0) = 0 and
y(1) = 1, it follows that y~' (B) is in the interior of the interval [0,1]. Let suppose the
interval limits of y=' (B) are z; < zs.

We want to prove this interval is in the middle of the [0, 1] interval. It is enough to show

that the distance of its boundaries x1, x5 to 0 y 1 respectively is the same. In other words,

it is enough to show that |x1| = |1 — z3|, namely, z1 + o = 1.
Since
dy 1
de " p
then

Y
o= [
0

. Let y; < y5 the boundaries of the interval B. We have

Y2 Y1 Y2
$2:/ P:/ ﬂ+/ p
0 0 Y1
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l Y2
$2:/P+/ p
Y2 Y1
Y1 l Y2 l
931+172:/ —I—/p—l—/ P:/P:1-
0 Y2 Y1 0

But pl(o4:) = plgz.)- Then

Hence
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Chapter 6

N Dimensional Case: Spherical

Symmetry

6.1 A First reformulation

Since homogenization tools only lead us far away from classical solutions, if we want to get
one it is imperative to think of the problem in different terms, so with this new conception
of the problem. Perhaps taking a different view of the problem it is easier to get closer to a
solution.

The key point is the (3.1.34) rearrangement property, which allows to reformulate the
feasible set (0.4) given in chapter 4.

Proposition 6.1.1 (First reformulation). If A is the place where we put the material «,

gwen a decreasing unidimensional function p : R — R of the form

¢ = axio,a) + Bxjalje)
the set of classical solutions (0.4) given in chapter 4 can be recast as
C={ocecl>®(Q) | c"=¢}. (1.1)

Hence, the general problem (GP) can be reformulated in terms of C given above, namely
(GP) is equivalent to
inf A (o). (1.2)

oeC
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Proof. Since the feasible set (0.4) given in chapter 4 is the set of indicator functions with a
prescribe measure of the only two non trivial level sets, the proof follows directly form the

proposition (3.1.34) and the equimeasurability property (3.1.21). O

It is important to endow the feasible set C with some topology that hopefully makes C
compact and at the same time assures lower semi continuity of the functional A\(¢). Due to
the concavity (4.1.1), we might guarantee the infimum of (1.2) is still reached at C.

Mainly, what we are going to do is to give some properties related to new topologies and
the closure of sets that have similar structures with (1.1). We found some of this results in
[4, 3]. In addition, we are going to study the properties of the extension of the functional
A(o) related to the new closures of the feasible regions, and some other properties of this

type of sets which can lead us to find the solution in the original feasible set.

6.2 Prescribed rearrangement Sets

Let f € LP(Q), Q € RY be a bounded domain. Suppose also that f > 0. Recall the
distribution function of f defined in (3.1.12) is given by

pp(t) = {f >t}

and the decreasing rearrangement of f is given by

[ (s) =sup{t > 0: pus(t) > s}

Definition 6.2.1. For fy > 0 in L? (2) we define the set of equimeasurable functions of fy

as

Clh)=Af=01 =/, fel’(Q)} (2.3)

By definition, we see all the functions in C(fy) are equimeasurable. Hence, this set
defines an equivalence class over the functions having the same rearrangement. In order to

understand better this set equivalence relation we define the following ordering relation in
L' (Q).

Definition 6.2.2. Given two functions f,g € L' (), we write f < g and we say that f has
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less measure than g, if

t t
/ frds < / g'ds Y tel0,|Q
0 0

1€2] 1€2]
frds = / g*ds
0

Proposition 6.2.3. Let 1 < p < oo and fo € L (2). Then C(fo) is relatively weak compact

for 1 < p < oo and relatively weak * compact for p = oo.

(2.4)

0

Proof. For 1 < p < oo, thanks to the equimeasurability property (3.1.21) , for all f € C(fo)

we have

||f||Lp(Q) = ||f0||LP(Q) :
Then result follows for 1 < p < oo. We skip the proof for p = 1. O

Notation 6.2.4. Let 1 < p < oo and fy, € LP(Q). We denote the weak closure (weak *
closure if p = 00) of C(fy) as the set K(fy), namely

LP(Q)) weak

K(fo) = C (fo) (2.5)

The following proposition shows a relation between the ordering relation and the set C( fo).

Proposition 6.2.5. Let 1 < p < oo and fy € LP (). Then

felClg)e f<gandg=<f. (2.6)

Proof. The necessary condition follows straightforward. In order to prove the sufficient con-

dition it is enough to show

b b
/f*ds:/g*ds Va,bel0,]Q].

and this holds because

b b a
/f*ds:/ f*—/ *ds
a 0 0
b a
:/ g*ds—/ g*ds
0 0
b
:/ g*ds
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0

Notation 6.2.6. We denote L' () as the set of functions in L' () that are not negative.

Now we give several characterizations of the first condition in of the ordering relation <

which could make more tractable this relation.

Proposition 6.2.7. Let f, g € L} (Q). The following properties are equivalent:

t

(UWEMM]jFS/f

0

12|

(ii)) Ve Ll (Q) [ fe< [g"
[r2<]

9] 19]
(mvwe&m>/fws/¢w
0 0

(iv) /F(f) < /F(g) For all functions F' convez, non negative such that F'(0) =0 and
0

Q
F' Lipschitz.

Remark 6.2.8. If f, g € L? (Q2) we take ¢ € L?(£2), with %—I—% =1,p,¢>1and in (iv) we
change F” bounded with F(t) < C (1 + |t]").

Proof. We are going to prove iii) = ii), ii) = i), i) = iii), iii) = iv) and iv) = i).
iii) = ii) Using Hardy-Littlewood inequality (3.1.44)

1€ 12|

/fsoS/f*sO* S/g*w*
Q 0 0
ii) = i) Applying the proposition (3.1.40), if ii) holds we have

Q/fw < Q/g*w*-

Taking ¢ = x4,

Al
/fg/f* V A such that |A| =r.
A 0
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Taking supreme over A, using the proposition (3.1.40) we have

!f*ﬁ!ﬁf

i) = iii) We integrate by parts to obtain

I/Qf*go*dsz_|/ﬂ jf*(s)ds d* (t) + jf*(s)ds o (012!,
) ‘/Q / / SR dso*<t>+/ﬂ<g*—f*> (s)ds"[)
QI ¢

> [ | [t = )| ae

Since ¢* is a decreasing function, the differential dy*(t) is negative for all ¢, hence it

follows the result.

iii) = iv) We will prove F € C! is convex. We have F” is decreasing which implies
(F'(f) =F"(f).

Using the hypothesis
9] 2]

[reu< [or@)

and due to the convexity property

=]
=]

71



CHAPTER 6. SPHERICAL SYMMETRY 6.2. PRESCRIBED REARRANGEMENT

iv) = i) By contradiction, suppose it holds iv) but i) does not. The exists ¢ > 0 such that
t t
/ g < / I
0 0

Let [r,7] be the maximal interval where the former inequality holds for ¢.

Hence

/f*—g*ds:/f*—g*ds:() 0<r<7<|Q.
0 0

Let ry €]r,7[ tal que f*(r1) > ¢g*(r1). Let F(t) = (t — g*(r1))". We have that F is
convex, F'(0) =0y and is Lipschitz.

Since F'is convex

[e=]
[e=]

v
—~
s
*
—~
~
S~—
|
Q/-\
<
—
N—
N—
+

(adding non-negative numbers)

v
o\: o

—
s
*
—~
~
~—r
I
SS)
*
—~
=
—
N~—
N~—

0/
r1
= /(g*(t) — g*(r1))"  ( since the integrand is positive)
0
]1
0

Which is a contradiction with iv).
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0

The following propositions show the interesting fact the ordering relation < is in indeed

a characterization of the weak-x limits of C(fy), namely is a characterization of IC(f).
Proposition 6.2.9. If f € K(fy) then f < fo.
Proof. 1t is enough to prove that
veerr@ [fe< g
Q €2

and
€] 1]

[r=[5

0 0

Let f, € C(fo) such that f, — f weakly.
Since f, < fo v fo < fn we have

12| 12|

!ﬁws!ﬁwzjﬁw

Taking the limit it follows

€]
/ fo< [ fov
Q 0
On the other hand
12 12|
fn=11
0 0
and
12| 12
fi=fr— [r=[r
0 Q Q 0
Then
12 1]
f=115%.
0 0
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O
The converse relation is proved in the paper of Alvino, Trombetti and Lions [4].
Proposition 6.2.10. If f < fo then f € K(fo).
Proof. See [4] for a complete proof. O

The following corollary will be used in the proof of a very important result.

Corollary 6.2.11. Let ¢ = ¢, namely, ¢ is a radially symmetric decreasing function. The

set () is a weak-* compact conver set characterized by the relation

o(z)dz ¥, /Q f(a)de = /Q go(x)dm}.
(2.7)

fntr < [

B(0,r)

K(e) = {feL"" @ |

B(0,r)

Proof. Using the equivalence ii) of (6.2.7) that induces the order relation f < ¢, we have
that

12|

fekpevien®@ [ros [ ad [ f@d= [ ot @8)

0
Taking 1 = xp(o,), we have " = xjoq where ¢ = |B(0,7)|. Hence, the inequality of (2.8)

implies
t

[i<]e

B(0,r) 0

Since the property (3.1.11) says that ¢(z) = f*(wy |z|"), and ¢! = ¢, the former inequality,

after a change of variables, reads

/B L J@is / G

And thus, the relation (2.7). O
Now we are going to see other properties of the set IC(fy).

Proposition 6.2.12. K(fy) is a convex set.
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Proof. Let fi,f> € K(fo). There exist subsequences (f}), (f2) C C(fy) such that f} — fi,
2 — fy weakly to f1 y fo respectively. For A € [0,1], let f, = Afl + (1 — \)f% Let F
be a convex function satisfying the requirements in the characterization of (fy) (See (6.2.7)
point iv) or [4]).

Clearly

[Fay < [Fan+a-n [Fa.

Q Q Q

and using the characterization iv), since f!, f2 < fo we obtain that

fn = fO-

Since

fo — A1+ (1= N)f2

we obtain

AMi+ (1= X)fa € K(fo).
]

The following theorem provides a good result which will lead to the finding of the classical
solution of the problem (GP).

Theorem 6.2.13. C(fy) are the extreme points of K(fo)
We only give a proof of one of the inclusions. The other one can be found in [4].

Proposition 6.2.14. Let E(fy) the set of extreme points of K(fy). Then,

C(fo) C E(fo). (2.9)

Proof. By contrapositive, if f is not an extreme point of IC(fy), then there exist fi, fo € E,
fi# fo, A€ (0,1) such that
f=A+ 1 =XA)fe

Taking an strictly convex function F' (for example F'(t) = /1 + ¢?) we have

JFn<x [+@=n [F

Q Q Q
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since f1, fa € K(fo), using the characterization iv), it follows

JFa< [P

Q Q
which says that
/¢ Clh)
]
Proposition 6.2.15. We have
K(fo) = convC(fo). (2.10)
Proof. K(foy) is close convex set which contains C'(fy). Then
K D ConvC(fy).
On the other hand
ConvC(fo) D C(fo)
then
ConvC(fo)  C(fo) = K(fo).
0

We believe the solution to our problem (GP) in the radially symmetric case has indeed
a spherical symmetry. In order to prove this believe we will need the following simple obser-

vation.

Proposition 6.2.16. Let Q be a ball in RY. Let ¢; be a sequence of bounded radially
symmetric functions which converges weak-+ in L () to a function ¢. Then ¢ is a radially

symmetric function.

Proof. Let T : RV — R be a rotation transformation. Then is an orthonormal linear
transformation, invertible, |det T'| = 1 and T—(Q) = Q.It is enough to show that

o(z) =p(Tz) aee

The last equation holds for all ; since there are spherically symmetrical. Let g € L' ().
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We have

/Q (0i(T) — o(Tx)) g(x)dz = / (i) — o)) (T y) |det T~ | dy

()
So, since g o T~! € L' (Q2) the result holds. O

The property proved above encourage us to study the prescribe rearrangement sets with

symmetry constraints. In that spirit are the following definitions and propositions.

Definition 6.2.17. For fy > 0in L* (Q2) we define the set of radially symmetric equimea-

surable functions of f, as
Cs(fo)={f>0 1| fr=f,feL*(Q) radially symmetric} (2.11)
Notation 6.2.18. For fy > 0 in L™ (©2) we denote the set ICs(fo) as the set
Ks(fo) ={f € K(fo) | fisradially symmetric } (2.12)

As we expect, we have the following proposition.

Proposition 6.2.19. We have

weak *

Co (Cs(fo)) = K (fo) - (2.13)

Proof. This follows directly from the theorem (3.4.6) and the next proposition. O
Proposition 6.2.20. C(fy) are the extreme points of Ks(fo)

Proof. Let f be an extreme point of Ks(fo) Let f € Cy(fo) € C(fo). Since the theorem
(6.2.13) says C(fo) is the set of extreme points of K(fy), if g1, g2 € K(fp), then

fé¢(91,9).

In particular, this is satisfied if g1, g2 € Ks(fo) C K(fo), which says f is an extreme point of
Ks(fo). Reciprocarly, to show the extreme points of K(fy) are points of Cs(fp), it is enough
to show the extreme points of K (fy) are in C(fy) where this sets represent X and C when in
dimension N = 1. Thus, due to (6.2.13) with N = 1 this is satisfied. O
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6.3 Properties of A

In this section we construct good properties for the eigenvalue functional (0.3) of chapter 4
that we wish to minimize. In order to find a solution of the problem (GP) when the domain
(2 is a ball, we desire to create an extension of the functional that appears in (GP) which with
a certain topology could be lower semi continuous and at the same time assures compactness
of the feasible region.

We give new formulations or extensions of the eigenvalue functional with properties which
can assure the existence of a minimum.

We gladly show with the re-formulation of the problem along with the new eigenvalue
functional that it is possible to find a classical solution, and even better, the parameters of
this solution can be taken spherically symmetrical.

The following results are crucial for the proof of our main theorem functions. The first
of these is a consequence of a result form Alvino and Trombetti [3, Lemma 1.2] which we
shall use, instead of a finer result [4, Theorem 3.1], to limit our search for minimizers among
radially symmetric functions. The theorem 3.1 proved in [4] could be more complicated to

extend to domains with partial symmetry compared to this simpler result.

Proposition 6.3.1. Given any v € C(0) and any u € H, (), there exists a v which is
radially symmetric with v~ € K((07)*) such that

/V|Vu|2de/D‘Vuﬁ‘2da:. (3.14)
Q 0

Proof. With the same hypothesis as in this proposition, the Lemma 1.2 in Alvino et. al. [3]
says that (3.14) holds for the radially symmetric function 7(z) = &(wy |2|") for € defined
below through the relation

lu<el 1 1
/0 %dr = /{ugc} mdz. (3.15)

which holds for all ¢ € R. This gives the relation

/g ,a(lx)df’f: / ﬁdm (3.16)

*
u,c

for all ¢ real, where we recall that 2, is the level set of u at the level ¢ and (2} . is a ball
centered at the origin having the same measure as €2, .. In particular the above identity hold
on the full domain Q. So due to the property (3.1.43) we have (v1)* = (67!)*, using the
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formula (3.1.25) it follows
1
——dx :/ 01 (z)dx. 3.17
| st = @ (317)

Once again as (v~1)* = (7')*, form the property (3.1.39) we obtain

[ i< [ oy

*
u,c

The above inequality combined with (3.16) gives the relation

/Q L g< /Q (0-1) () de. (3.18)

5 V(@)

*
u,c

for all ¢ real. We then note that the two relations (3.17) and (3.18), by the characterization
(6.2.11), imply that
e K((07Y))

Now we prove a symmetry result which is very intuitive.

Proposition 6.3.2. If v is a non-negative, radially symmetric measurable function bounded
form below and above by positive constants defined on the unit ball, then any eigenfunction

corresponding to the first eigenvalue \(v) is radially symmetric. So, we have

/1/|Vu\2d:c /1/|Vu\2d3:

Av) = inf1 U inf C (3.19)
u € Hy (Q) /|u|2 dx ue H(Q) /|u|2 dx
Q u radially symmetric Q

Proof. By the Krein-Rutman theorem (3.2.4), the first eigenvalue A(v) is simple and any
eigenfunction is of constant sign. So, it is enough to prove the result for a normalized
eigenfunction « which can be taken to be positive and having L? norm equal to 1.

Let, now, T" be any orthogonal transformation on the unit ball and let v = v o T". Since

T is a linear transformation, we have

Vyo(y) = TV, (u(Ty))

79



CHAPTER 6. SPHERICAL SYMMETRY 6.3. PROPERTIES OF X

and since T is a rotation, it has unit norm, then
Vau(Ty)| = [Vyu(y)]-

Using change of variables we obtain

/Q v(2) |V pu() de / V(Ty) |V ou(Ty) P |det(T)] dy / v(y) [V,0()] dy

/Q jua)|? dx / [u(Ty) [ |det(T) | dy / jo(y) [ dy

The last equality hold being v radially symmetric, since in this case |det(7")] = 1. So the
function v is also a positive minimizer for A(v) having the same L? norm as u So, by the

Krein- Rutman theorem, we have u = v, that is
u=u(Tz) a.e

an this holds for any orthogonal transformation 7'. This proves the radial symmetry of the
function v and establishes the identity (3.19). O

The following proposition establishes the continuity of the first eigenvalue with respect to
weak-* convergence of the reciprocal of the coefficients, for radially symmetric coefficients.
A much more restrictive convergence result having a similar flavor is proved in [4, Corollary

3.2], which assures convergence only to minimizing sequences.

Proposition 6.3.3. Let v; be a sequence of radially symmetric functions in K(p) such that

1

v; b converges weakly-* to a function v as i tends to co. Then, we have N(v;) converges to

)

Av) as i tends to oo.

Proof. Let the sequence v; and the function v satisfy the hypotheses of the proposition. We

write .
Ale) = 2l

and .
V) = e

Then, by the hypotheses it follows that &; weak-* converges to £ in L™ (0, 1).
Now, if u; gives the minimum value in the definition of A\(1;) then, by proposition (6.3.2)
it is radially symmetric. We may also assume that u; is non-negative and further, normalize

it so that it’s L? norm is 1. The Euler equation corresponding to the minimizing property of
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u; reads

— div (v;Vu;) = X (1) u;. (3.20)

It can be checked from this that the sequence u; is bounded in H} (2) and a subsequence
can be extracted converging weakly in H} () to a radial function u(z) = v(|z|). A further

subsequence, indexed by i;, may be extracted so that
A (v;,) converges to some A as k — 00

Now, writing

ui, () = ve(|]),

the Euler equation (3.20) in radial co-ordinates, for this subsequence, reads

_ (r”—lév;(r))/ = AMui, )" tog(r). (3.21)

By integration, we obtain
" —(r)(r) = —)\(l/ik)/ s" Lo (s)ds. (3.22)
0

Since wu;, is bounded in Hj (£2), it can be checked that the sequence v, converges weakly in
H;g (0,1),. So after transferring &;, to the right hand side of (3.22), it is possible to pass to

the limit therein as £k — oo to obtain the relation
" (r) = —Xf(r)/ s" 1 (s)ds.
0

We then divide by &(r), differentiate with respect to r and write the equation that we

obtain in the original co-ordinates as
— div (vVu) = M. (3.23)

The function u is non-zero as its L? norm is 1 and thus, is an eigenfunction and, being the
limit o f non-negative functions, is itself non-negative. So, by the Krein -Rutman theorem,

A is the first eigenvalue in the above spectral problem. By the uniqueness of the limit,
A= A\v)
Therefore, it follows that the entire sequence A(v;) converges to A(v). O
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Remark 6.3.4. If we consider positive the first eigenvalue of the Euler equation (3.20), the

radial co-ordinates equation (3.21) says that r— is decreasing in each region where v is
n

constant and the integral equation (3.22) also says that u is decreasing.

6.4 Proof of the main theorem

This proof is given in several steps.

Step 1: Reformulation

Let us recall that the constraint in the original problem can be written as
vecC(d).
Thanks to the corollary (3.1.43) this constrain can be recast as
vtec((67Y)7). (4.24)
So the minimization problem reads
inf {\(v) | vtec ((9_1)*)} : (4.25)
Proposition 6.4.1. We have the following problem equivalence
inf {\(v) | vltec ((9_1)*)} =inf {\(v) | v ek, ((9_1)*)} : (4.26)

Proof. Following the proposition (6.2.19) we have that K, ((07!)) is the closed convex hull
of Cq ((9_1)*) for the weak-x topology. So applying the continuity property in proposition
(6.3.3) and the proposition (3.4.5) we have

inf (A() | viec (7)) =inf {A@) | ve k. ((07Y))).
So it readily follows that
inf {A(v) | v ek, ((07))}=inf{A(v) | v eCc((67"))}. (4.27)

To prove the reverse inequality, let v € C ((671)") be arbitrary and let u be the cor-

responding minimizer in the definition of A (v). Considering 7~! € K, ((67')") and u* asso-
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ciated to the pair (v, u) as given by proposition (6.3.1) and using the property (3.1.24) we

obtain
/1/|Vu|2dx /17|Vu*|2d:17
Ap) = © > & >A() zinf {A(v) | v e K ((671)7)}
Jurar [
9] Q

By the arbitrariness of v the reverse inequality to (4.27) follows.

Step 2: The reformulation achieves the infimum

We define a topology on the set
K= {v | v'ek, ((9_1)*)}.

Definition 6.4.2. We write

,
Vi — Vv

Saying that 1; Tau inverse converges to v, if and only if

v; ! converges to v

weakly-* in L (Q).
Proposition 6.4.3. The infimum of the right hand side of (4.26) is in fact a minimum, that

is to say, the infimum value is achieved.

Proof. Tt is clear from (6.2.3) and (6.2.15) that K is a compact set for the weak-* topology on
L*> (Q). It follows that K is a compact set for the topology defined above. In fact let be v, € K
a sequence. There exists a subsequence v, ! of v, ! which converges to v~ € K, ((07')"),
hence by definition v, — v € K.

Besides, by proposition (6.3.3) we know that A restricted to K is continuous for the above

topology. Thus, our thesis follows. O

Step 3: The problem has a classical solution

In the previous step, we have been able to show that the minimization problem admits a

solution in a slightly enlarged class. Although, the functional A is concave, it is not clear
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whether the constraint set
{I/ v e K, ((9_1)*)}
is convex. If this were so it is immediate (by proposition (3.4.7)) to obtain a solution in the
original class as, whenever a concave function admits a minimum over a compact convex set
there is a minimizer which is an extreme point.
So, in this problem, in order to show that there is a solution in the original class, we
shall have to do differently as is done in Alvino et. al [4]. We have the following technical

proposition showed in [4].

Proposition 6.4.4. The map
J:iv ™t — )™

when s restricted to K ((9_1)*) s a convex application.

Sketch. Indeed, in [4, Corollary 3.2] it is shown that

& ’
J(p) = max / i <|x|N_1/ sN_lv(s)ds> dr | ve L*(Q), / v?(z)dr =1, o radial
Q 0 Q

showing that J(u) is a supremum of linear functionals. O

Due to the previous proposition the minimization problem on the right hand side of
(4.26) is equivalent to maximizing the reciprocal functional J. The above mentioned con-
vexity guarantees that there is a maximizer of J which is an extreme point of the compact
convex set K, ((671)"). By proposition (6.2.20) it has to belong to C, ((67')"). This permits

us to conclude that the infimum in (4.25) is achieved for a radially symmetric function. [

Finally, we are able to announce the following main theorem.

Theorem 6.4.5. Let Q denote a ball in RY. The problem (GP) of minimizing the first
eigenvalue, defined by (0.3), given two conducting materials with conductivities o and (3, in

a given ratio, admits a radially symmetric solution.

6.5 Remarks

We remark that we only require Lemma 1.2 [3] in the form state below for our applications.

Now, we give a more flexible alternate proof of the same.
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Proposition 6.5.1. Given any v € C(0) an any non-negative u € Hj (Q), for v radially

symmetric defined through the relation,

/ ﬂ(lx)dx: / %dm (5.28)

* -
u,c u,c

we have

/1/|Vu|2 2/17|Vu*|dx. (5.29)
Q Q

Proof. We shall make repeated use of the co-area formula (3.1.49). Applying (1.40) given in
(3.1.49), we obtain the identity

/ o(z) V() do = / / U(z) |Vau(z)| do(z)dt.
{u>n) tfu=s)
Therefore, it follows that,
_% / v(z) [Vu(@)P | = / u(z) |Vu(z)| do(z). (5.30)

{u>1} {u=t}

We apply the fact that the arithmetic mean of a non-negative function is always grater than
the harmonic mean (3.3.3), to the function v |Vu| on the surface {u =t} equipped with its

surface measure, to conclude that
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v(x) [Vu(x)| do(x)

v[Vu(a)| do(z) ="~ do(x)
e / do(z) {u:/t}
{u=t}
do(x)
= {u:t}l do(z)
| oy
{u=t}
1 2
| | somae®| ez
{u=t}
1 . ,
Z {u:/t} S @ | (Phe =)t (53

The last inequality above is due to the isoperimetric inequality (3.1.47). Therefore, from
(5.30) and (5.31) we have

-1

—% /V($)|Vu(:c)|2dx > /mda(x) (P({u* > 1)), (5.32)

{u>1} {u=t}

We remember that {u* > ¢} form a continuum of concentric balls, having radius r;, whose
union over ¢ > 0 is the ball 2. Observe that, as u* is a radially symmetric function, Vu*(x)

depends only on |z|. So, we may define a radially symmetric function o as follows.

[ o)

v(x) = =) for any z, |z| = 7. (5.33)

1
{/ v gy W | Vel
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We check, first, that o satisfies (5.28). To see this we use the co-area formula. We have

/ / / |Vu |d0’(£L')dS

{ur=>t} t {ur=t}

/ / |Vu da(x)ds

t {u=t}

:/mdx

{u>t)

where in the penultimate expression we have plugged in (5.33). Then, (5.32) may be rewritten

using v as
d 2 ~ * *
% v(z) |Vu(z)|"dz | > v(x)|Vu'(z)| P{u" >t}) for any z, |z| = r.
{u=>t}
= / v(z) |Vu*(z)| do(x)
{u =t}
—-5| [ e
=3 v(x)|Vu*(z)|” dx
Ju*>t}
Integrating the last equation we obtain the needful. O
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Chapter 7

Shape Derivative of the Eigenvalue

Functional

7.1 Introduction

Let w be given the region where we put the material 5. Let u and \ be the first eigenfunction
and eigenvalue of the problem (0.1) given in Chapter 1. The questions that immediately
appear are: Is this configuration optimal? Can we diminish the eigenvalue changing the
configuration? In order to have an answer to these questions we analyze the sensitivity of
the first eigenvalue when we slightly perturb the distribution of the materials.

The shape derivative defined in Section 3.6 will be our tool to address these questions.
We shall calculate the shape derivative of the eigenvalue formally without worrying much

about the hypothesis necessary for everything to make complete sense.

7.2 Some results
Recall the spectral problem (GP) for the first eigenvalue functional is given by

{—div(aVu) = \u in (2.1)

u = 0 on 00

where the first eigenvalue Ay = A = A(w) depends of the material distribution and o =

AXO\w + ﬁXw
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We can suppose the eigenfunction is normalized in order to satisfy

/Qu%ix =1 (2.2)

Let us define the set
w=w+th={zeRY | 2w,z +tl(z) Ew}. (2.3)

Definition 7.2.1. Suppose for this context that w = wy CC . The admissible pertur-
bations of w are of the form w + t6 where 6 is a sufficiently smooth vector field such that
w+t6 CC ) and such that

lw + 0| = |w|. (2.4)

From now on we consider the same eigenvalue problem given in (2.1) but now when the
material with conductivity [ is placed in the region w;. If oy, us;, A; are the corresponding

symbols for the new problem, we write:

{ —div (UtVut) = )\tut in Q (25)

w = 0 on 90
where )\; is the fist eigenvalue regarding this equation.

Hypothesis 7.2.2. The shape derivative of A\ exists and the shape derivative of u exists and
belongs to a suitable space. We also assume all the additional hypothesis necessary for our

calculations to makes sense.

Lemma 7.2.3. Assuming the hypothesis (7.2.2) we have
— div (6'Vu+ oVu') = Nu + M/ in € (2.6)

Remark 7.2.4. The earlier equation is very formal. Is not very clear in this equation what
the term ¢’ means or how to interpret o'Vu. In spite of all this the formula that we shall

obtain for (LP) can be rigorously justified. See appendix 8.16(b).

Sketch. From the equations (2.1) and (2.5) we have

—div (cVu) = lu
—dwv (UtVut) = )\tut
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Subtracting both equation and adding a zero term, we have
—div ((op — o) Vug + 0 (Vuy — Vu)) = (A — A) ug + A (up — u)

Dividing by ¢, and making ¢ tends to zero, applying the hypothesis (7.2.2) we obtain
(2.6). O

It is a standard fact that the volume constraint (2.4) is equivalent to the following incom-

pressibility condition

Proposition 7.2.5. From the constraint |w;| = |w| follows

/div Odx = /9 -ndS = 0. (2.7)

w Jw

Sketch. We have

0 - de_/dx
= /der/d:c—/dx—/dx

wiNw wi\w wNwg w\w
= / dr — / dx
wi\w w\we

If ¢ tends to zero, noting o(t) a “little 0” of ¢ (assuming the hypothesis (7.2.2)), from the last
equation we have (see the figure (7.1))

/t@-nd5+0(t) =0
dw

Dividing by ¢, , and tending ¢ to zero it follows (2.7). O

Lema 7.2.1. The normalization constraint (2.2) leads to the following orthogonal relation

in L? (Q) between v and u':
/uu' = 0. (2.8)

Q
Sketch. We have

N (T el ]
].lm —_— =UU
t—0 t
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Ow + to
ow

Figure 7.1: A drawing of w and w

[ G =) =0

Q

2 2
hm/L' I,
t—0 t

Q

Assuming (7.2.2)

which implies (2.8).
Proposition 7.2.6. The function
Ot = OXO\w; T B X

Satisfies

] . oo (I+1t0)— o9
o= lim
t—s0 t

=0 a.e .

Sketch. 1If x € Ow, then = + t0(x) € Ow;, hence

(I +10)(x) = op(x) Vt.

If x € wUint (Q2\w) we have the same relation showed above. Therefore the result follows. [

7.3 Variation of the first Eigenvalue

In the construction of the derivative of the eigenvalue functional we will need the following

proposition.
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Proposition 7.3.1. For functions ¢ € C* (W) NC™ (Q\w) we have

—/9-VU|VU|2 = (0-Vo, o) (3.10)
= /adz’v(@)gp—l—/a@-Vg@ (3.11)
_ / (0] 8 - ndS (3.12)
Ow
= /(ﬁ(pﬁ—agpa)e-nds (3.13)
Ow

Where pg(z) = lim ¢(x), pg(x) = lm  ¢(z).

WTp—T Nwzyp—2

Proof. Let ¢ € C*(Q),

N
do
=1
N
do
= Z:: Hzazlso (3.15)

— Z/%HW —Z/H,-gpanidS (3.16)
S

N
B 00; Op
= Z (/Uaxz / ob; 093,) —/ng@-ndS (3.17)
Q

_ /adiv (9)¢+/09~V<p (3.18)

Q

but o = axo\w + Bxw, then

(—0-Vo,p) = /adiv(e)ap—a/div(e)ap— / Q-ngp—ﬁ/div(ﬁ)ap—/ﬁ-ngo

Q Q\w A(Q\w) w Ow

= /9ng0+ﬁ/9ng0

O0\w
where n corresponds to the exterior normal in each domain Q\w and w. Since 0 = a in Q\w
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and 0 = [ in w, it follows that

(—0-Vo,0) = [ [op]8-ndS
/

O

Theorem 7.3.2. The shape derivative of X, given an admissible perturbation 0, reads as
follows

N(w; 0) = /8 [o|Vul?] 6 ndS. (LP)

where [@] is the jump of ¢ across Ow, that is,

0] (z) = (plow-—¢law+) (2)- (3.19)

with ¢|gw- and @|a.+ denoting, respectively the inner and outer trace of ¢ on Ow.

Proof. We denote A\(w) quite simply by A. By standard calculations in shape derivative

calculus (see Simon [31] and (7.2.3)), we have

—div (c'Vu+oVu') = Nu+ M/ in 0
, Ju : (3.20)
o= —0-n— on 0
on

We multiply the equation (2.6) by u and integrate by parts on €2 to obtain:

/ —div (6'Vu + oVu')u )\’/u +)\/uu
Q

/(O'/VU—I-O'VU/)-VU—/a( vu+avu)u:)\'+)\/u'u

on
0 90 0
/ /
/UI|VU|2+/0VU’-Vu—/a(gvuazavu)u:)\'%—)\/u’u
0 0 80 0
/a’\VuV—i—/aVu’-Vu :X—l—)\/u’u (u=0 on 90)
Q Q 0
(3.21)
We have 507
/UVU.VU’ :/—div (oVu) u'+/ 2 S (3.22)
n
Q 0 o0
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and by the formula (6.67)

ugo (I +1t0) () — u(a:)

U(z) = lim

t—0

Since the perturbation # = 0 in a neighborhood of 0f), we have

r+t(x) =x Vr e 5.

Since u y u; are solutions of the Dirichlet problems in {2 we have

uro (I +t0)(x) =w(z) =0 andu(z) =0 Vaxedfd

Hence, the relation of the total and local derivative (6.68) implies
v = —6-Vu on 09
But again, using that # = 0 on 0f2
u'=0 ondf
It is possible to show (see appendix for further details)

U|ow€ H' (Q\w) and  o'|,€ H'(w). (3.23)

Then, the last equation with integrals (3.22) the boundary integral is zero, thus

/—div (oVu)u' = /UVU V!

Q Q

Since u is an eigenfunction, the week formulation says

/aVu-Vu/:)\/uu/

Q Q
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Then, from the equation (3.21) we have

N = /o—f IV’ (3.24)
Q

In (7.2.6) we showed easily that ¢ = 0 in 2. Thus, thanks to the formula (6.68)

o=6-60-Vo
therefore
N = —/e-vo—\vuf (3.25)
= /a [o|Vul*] 6 - ndS (3.26)

where in the last equivalence we have used the relation (3.12) of the proposition (7.3.1) O
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Chapter 8

Desarrollo Numeérico

8.1 Implementacion

En esta seccién se mostrara la implementacion numérica de la derivada con respecto al
dominio del valor propio obtenida en la férmula (LP).

La implementacién se realizé inicialmente con el programa Matlab!. Se elegié este pro-
grama en particular ya que posee el paquete de programas PDE Toolbox, el cual resuelve
EDPs con una interfaz intuitiva para el usuario, con botones y ventanas, para una gran var-
iedad de geometrias del dominio. Esta caracteristica permite revisar los resultados obtenidos
del célculo de valor propio, comparando los valores del algoritmo con los obtenidos mediante
la interfaz gréifica del toolbox de Matlab. 2

La implementacion se puede subdividir en 3 subpartes:

1) Implementacién de la geometria del dominio.

2) Célculo del primer valor propio y de la primera funcién propia.
3) Calculo de la integral de contorno dada por la férmula (LP).

En las préoximas subseciones mostraremos las etapas necesarias para implementar los puntos

1), 2) y 3) explicados anteriormente.

'En un trabajo posterior de investigacién se implementé también con el programa freeFem. En esta tesis
explicaremos el detalle del cédigo solamente para el programa Matlab.

2En virtud de comparar los resultados con otro programas, en un trabajo de investigacién que va un poco
mas alla que esta tesis, se estda implementando el mismo codigo en freefem.
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Figure 8.1: Configuraciones de geometria del dominio. Anillos concéntricos, bola desplazada
y cuadrados. concentricos. EL material § se encuentra en la region café, naranja y azul
respectivamente.

8.1.1 Geometria del dominio

En los experimentos numéricos que realizaremos, nos interesan tres tipos de geometrias para

el dominio:

a) Tres Anillos concéntricos. En este caso considereramos 2 el disco unitario en R
La regién donde incorporamos el material con conductividad g corresponde a un anillo
concéntrico en el interior del disco, y por lo tanto, el material de conductividad « en

los anillos concéntricos aledarnos.

b) Disco desplazado dentro del disco unitario. En este caso consideramos € el
disco unitario en R2. La regién donde incorporamos el material con conductividad 3
corresponde a un disco w C €, el cual se encuentra ubicado en alguna regién de €2, no

necesariamente en el centro.

c) Tres Cuadrados concéntricos. En este caso 2 es un cuadrado en R?. La regién
donde incorporamos el material con conductividad 3 corresponde a un marco rectangular
concéntrico en el interior del rectangulo mas grande €2, donde los bordes son cuadrados
centrados en el centro de 2. El material de conductividad « se ubica en el interior de

los marcos aledanos a la region del material /3.

En cada una de estas geometrias nos interesa generar las condiciones que delimitan las
regiones donde se encuentran los materiales. Las funciones implementadas par tal efecto
fueron prefirDecomposedGeometryMatrix y prefitBoundaryCondition, donde prefiz puede
ser la palabra ring, ball, squares segin sea la geometria a), b) o ¢) respectivamente.

La entrada de la funcion prefizDecomposedGeometryMatriz corresponde a los parametros

de configuracién siguientes:
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decomposedGeo

boundaryCondition metryMatrix

Geometry

A

Matlab
decsg

Figure 8.2: Esquema que representa la implementacion de la geometria del dominio.

i) Cantidad de volumen ocupada por la region de conductividad (3.

ii) Parametro de ubicacién de la region de conductividad f: radio menor de los anillos o

cuadrados concéntricos o desplazamiento de la bola segiin sea la geometria del dominio.

Con la ayuda de la funcién decsg de matlab, se obtiene una completa descripcién de la
geometria del problema, que puede ser utilizada por otras funciones del PDE toobox.

En prefizBoundaryCondition se generan las condiciones de borde asociadas a la geometria
para nuestro problema. Se generan las condiciones Dirichlet en el borde de €2 y las condiciones
de transmision en la frontera de las subregiones donde se encuentran los materiales. Ademas,

para simplificar los calculos posteriores entrega la salida de prefizDecomposed GeometryMatrix.

8.1.2 Malla

Dada la geometria del dominio entregada por la funcién prefirBoundaryCondition, la funcién
generateMesh genera la malla de la geometria con el refinamiento y propiedades dadas en la
entrada.

En términos generales, generamos 2 tipos de mallado:

i) Mallado Homogéneo. En este tipo de mallado nos preocupamos que los tridngulos
generados sean lo mas similares posibles, esto es, en promedio dejamos los triangulos
con la misma area. Utilizamos principalmente las funciones initmesh, refinemesh vy

jigglemesh v el pardmetro Hgrad de Matlab con el fin de generar tales efectos. !

e Mallado Simple. En este tipo de mallado, en térmimos generales, dejamos la trian-
gulacién con las opciones por defecto que entregan las funciones de matlab initmesh y

refinemesh.t

IPara ver mas detalles, ver el cédigo comentado en el programa.
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generateMesh
Mesh
4
Matlab R Matlab
initMesh refineMesh

En las figuras (8.3) se muestran los tipos de mallados para distintas situaciones.

Cuando utilizamos el mallado simple y tenemos geometrias que tienen zonas muy del-
gadas con un tipo de material, la triangulacion que se forma tiende a generar muchismos
mas triangulos en las zonas delgadas. Para tener una medida mas uniforme utilizamos la
triangulacién homogénea, la cual tiene como fin homogenizar la cantidad de triangulos en las

regiones, independiente de el espesor de las zonas.

8.1.3 Poniendo el material

Para poner los materiales conductores en las diferentes regiones implementamos las funciones
findBetaSubdomain Postfiz y putMaterial Postfiz, donde Postfiz es la palabra Ring, Square o
Ball segin corresponda la geometria.

En findBetaSubdomain Postfiz obtenemos el indice de la regiéon donde esta colocado el
material de conductividad j3.

En putMaterial Postfiz colocamos los materiales en las distintas regiones del dominio,

seguin lo especificado por los indices de los subdominios.

8.1.4 Valor propio

Para calcular el valor propio y la funciéon propia asociada a una configuracién especifica,
utilizamos la funcion pdeeig del PDE toolbox de Matlab. A esta funcién entregamos como

parametro las siguientes variables:
i. Descripcién de las condiciones de borde asociadas a la geometria.
ii. Malla de la geometria.
iii. Coeficientes de los materiales.
iv. Intervalo donde el algoritmo buscara valores propios.

Para tener mas detalles de la funciéon sugerimos ver la ayuda de matlab.
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08 o8 04 02 0 02 04 06 08 1

Figure 8.3: Ejemplos de Mallados

To0s

Figure 8.4: Cambio de tamano en los tridngulos cuando la diferencia de porte en las regiones
es considerable.
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Figure 8.5: Valores propios para distintas configuraciones. Los colores representan la magni-

tud del gradiente.

En las figuras (8.5) mostramos distintas funciones propias generadas para distintas ge-

ometrias.

8.1.5 Integral de contorno

Esta funcién es la que implementa el cdlculo de integral de borde dada por la férmula (LP).

Los parametros de entrada son:

i. Los arcos de la frontera de la region con material (.

ii. El indice de la subregion con material 3.

iii. La malla de la geometria.

iv. Los coeficientes a0 y 3.
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Figure 8.6: El mallado de la geometria permite discretizar la frontera de las subregiones
con algunos arcos de la triangulaciéon. Con la funcién findBetaSubdomain recuperamos estos
arcos y con findTrianglesFromFEdge obtenemos los triangulos limitrofes.

v. La primera funcién propia asociada a la configuracion.
vi. La perturbacion del dominio.

En lo que sigue explicaremos con un poco de mas detalle esta funcion.

i. Para obtener un valor del gradiente del valor propio, generamos lo aproximamos generando
una interpolacion de éste en los puntos medio de cada triangulo con la funcion de matlab

pdegrad.

ii. Encontramos los triangulos asociados a los arcos de la frontera de la regién con la

funcién findTrianglesFromFEdge. Cada uno de estos tridangulos esta una regién diferente.

iii. Discretizamos la integral de contorno (LP) utilizando una suma de Riemman sobre
los arcos del contorno. Aproximamos la integral por una suma sobre los arcos de la
frontera de la regién. En la figura (8.6) se puede apreciar la discretizaciéon del borde de

las subregiones.

iv. En cada uno de los arcos del contorno calculamos el salto [a \Vuﬂ utilizando los
valores de o y \Vu|2 en el par de triangulos que comparten el arco. Cada uno de estos

triangulos pertence a una regién con distinto material.

v. Aproximamos la normal en el contorno por la normal a cada uno de los arcos del

contorno.

vi. Multiplicamos la normal por el vector § (que perturba la regiéon w) pasado por parametro.
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8.1.6 X

Para implementar la derivada con respecto al dominio dada por (LP) obtenemos las com-
ponentes conexas del borde de la region con material de conductividad 3. En cada una de
estas regiones calculamos las integrales de contornos entregadas por la funcion contourinte-
gral. Luego sumamos las cantidades (o las restamos, si consideramos el mismo signo para la

normal) obtiendo la discretizacion de la cantidad (LP).

8.2 Resultados numéricos

En esta secciéon mostramos los resultados numericos obtenidos del calculo de la derivada con
respecto al dominio del primer valor propio de la ecuacién de conductividad encontrada en
la formula (LP).

Se realizaron experimentos concerniendo 3 tipos de geometria diferente:

a) Tres Anillos concéntricos. En este caso considereramos 2 el disco unitario en R
La regién donde incorporamos el material con conductividad 3 corresponde a un anillo
concéntrico en el interior del disco, y por lo tanto, el material de conductividad a en

los anillos concéntricos aledanos.

b) Disco desplazado dentro del disco unitario. En este caso consideramos €2 el
disco unitario en R?. La regién donde incorporamos el material con conductividad 3
corresponde a un disco w C €, el cual se encuentra ubicado en alguna regién de €2, no

necesariamente en el centro.

c) Tres Cuadrados concéntricos. En este caso 2 es un cuadrado en R?. La regién
donde incorporamos el material con conductividad 3 corresponde a un marco rectangular
concéntrico en el interior del rectangulo mas grande €2, donde los bordes son cuadrados
centrados en el centro de €. El material de conductividad « se ubica en el interior de

los marcos aledanos a la region del material (3.

Para cada una de estas geometrias (ver figura (8.1)) se hicieron calculos del primer valor
propio ( ver férmula (0.3) del capitulo 4 ) y la derivada de forma (LP). Cada dupla valor
propio-derivada estd en funcién del paramétro libre segin la geometria del dominio. Este

paramétro corresponde a:

e El radio interno del anillo donde se encuentra el material 3, para el caso de los anillos

concéntricos.
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proporcion
0.1
0.5
0.9
200 0.1
200 0.5
200 0.9

O O NN N

Table 8.1: Distintos valores de 3 y su proporcion en los experimentos realizados.

e El desplazamiento del centro del disco donde se encuentra material 3, para el caso de

los discos desplazados.

e El semi-ancho del cuadrado interno que correponde a la frontera interna donde se

encuentra el material 3, para el caso de los cuadrados concéntricos.

En todos los experimentos se fijo el valor « = 1. Se generaron datos para los valores de
[ y proporcién con respecto al area total dados en la tabla (8.1).

En las figuras (8.7) y (8.8) mostramos los resultados de los experimentos para el caso
de los anillos concéntricos. En las figuras (8.9) y (8.10) mostramos los resultados de los
experimentos para el caso de discos desplazados. En las figuras (8.11) y (8.12) mostramos
los resultados de los experimentos para el caso de los cuadrados concéntricos. En este tltimo

caso no implementamos el calculo de la derivada.
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Figure 8.7: Discos concéntricos para 3 = 2

8.3 Analisis numérico

La generacién de datos mostrada en la seccién anterior tiene el proposito de validar las

siguientes conjeturas:
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Figure 8.8: Discos concéntricos para 5 = 200
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Conjectura 8.3.1. La solucién éptima de (GP), en el caso del disco unitario en R* o en

la bola unitaria en RY, se encuentra poniendo el material de conductividad 3 en el medio.

Conjectura 8.3.2. La férmula formal de la derivada con respecto al dominio dada por (LP)

es correcta.

Los experimentos relevantes son en virtud de las conjeturas anteriores son:

e Fl caso de anillos concéntricos.

e El caso de la bola desplazada del
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Figure 8.11: Cuadrados concéntricos para § = 2
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Figure 8.12: Cuadrados concéntricos para 3 = 200

El experimento en cuadrados tiene la funcién de dar una senal al estudio posterior (no
considerado en esta tesis) del problema (GP) en el caso de un dominio con otro tipo de
geometrias, como es el caso de cuadrados o estrellas.

Los datos numéricos resumidos en los graficos (8.7), (8.8), (8.9), (8.10) muestran que en
todos los experimentos, y en todas la geometrias, la formula (LP) tiene el mismo signo de
la variacién del primer valor propio con respecto al pardmetro de la geometria. En otras
palabras, la derivada con respecto al dominio (LP) pareciera, al menos en sentido numérico,
ser correcta.

Pareciera que los datos numéricos comprueban la conjetura (8.3.1), sin embargo, en el
caso de la bola desplazada (8.9), cuando la proporcion de (3 es 0,9, el resultado numérico da
a entender que el minimo no se encuentra en la region esperada.

Cabe mencionar que el experimento anterior es bastante critico. Apriori, sin analizar en
detalle el experimento, podemos apreciar que la proporcion de material 3 en este caso es muy
grande. También, la variacién numérica del valor propio es muy pequena comparativamente
todos los otros experimentos, del orden de un centésimo.

En virtud de los resultados espurios del experimento anterior, se generaron mas datos en
posibles configuraciones indeseables (que no satisfagan ni (8.3.1) ni (8.3.2)). En la préxima

seccién se analiza lo més en detalle posible este tipo de configuraciones.

8.4 Errores numéricos

Nos dimos cuenta que en el caso de la bola desplazada (8.9), cuando la proporcién de material
[ es grande, la solucién 6ptima numéricamente pareciera que no se encuentra distribuyendo

el material de conductividad § en el medio, si no que dejando la bola desplazada lo mas al
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borde posible.

Creemos fuertementemente que esto es solo un error numérico. En esta seccion buscaremos
mas pruebas, que nos permitan decir con méas conviccién que esto es un error numérico y
que, por lo tanto, no se relaciona con los resultados esperados.

Para entender cual es el fenémeno de por medio se realizaron més experimentos con
( = 2, cambiando la proporcién del material. En la figura (8.13) se muestra el cambio de la
proporcién en multiplos de 10. Se observa que antes de tener el 70% de la regién ocupada

con material 3 los resultados concuerdan con las conjeturas (8.3.1) y (8.3.2).
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Figure 8.13: Comportamiento en el experimento de discos desplazados. El error numérico
comienza entre las proporciones 0.7 y 0.8 para (.

Probando en distintas configuraciones, nos dimos cuenta de la siguiente observacién.

Remark 8.4.1 (Configuracién Critica). El conjunto de configuraciones criticas a analizar
que arrojaron la mayor cantidad de errores numéricos, se encuentran en torno al punto de

configuracion siguiente:
e =2
e Proporcion de 3: 0.75 0 0.753
e Numero de nodos en la frontera del disco unitario: 100.
e Numero de nodos en la frontera del disco interno: 100.

Algunas configuraciones se muestran en la figura (8.14).

Comparando el grupo de graficos de las figuras (8.13) y (8.14) se puede apreciar que, en
los resultados que estéan de acuerdo con las conjeturas (8.3.1) y (8.3.2), el valor numérico del
valor propio varia segtn el parametro de la geometria en un orden ya sea de centésismos o
décimos. Sin embargo, en los experimimentos que no concuerdan con nuestras suposiciones,

las variaciones son del orden de los milésimos y centésimos. Es bastante claro que el orden
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Figure 8.14: Comportamiento en el experimento de discos desplazados. Algunas configura-
ciones criticas.

de la variacién tiene mucha relaciéon con lo poco esperado de los resultados: la variacion del
valor propio es muy pequena en estos casos.

Nos interesa ahora observar el comportamiento cuando refinamos la malla. Denotamos
por ny y ns la cantidad de nodos en los bordes del disco exterior e interior respectivamente.
Estudiamos el caso para § = 2, proporcién 0.773 para distintos valores de ny y ne. En
la figura (8.15) se muestran los resultados. Para el valor propio, se observan variaciones

del orden de un milésimo. El valor propio decrece muy poco y el calculo de la derivada es
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Figure 8.15: Comportamiento en el experimento de discos desplazados cambiando el refi-
namiento de la malla.

Ahora nos interesa estudiar los casos problematicos dados en la observacién (8.4.1) cuando
perturbamos el valor de (.

En los experimentos mostrados en el bloque de figuras (8.16) dejamos fijo la proporcién
de 3 en el valor 0.755 y la cantidad de nodos en las fronteras externa e interna los fijamos
en 200 cada uno. Se aprecia que para las configuraciones con [ ligeramente diferentes de
2, el comportamiento no refleja claramente lo esperado por las conjeturas (8.3.1) y (8.3.2).
A partir de 8 = 2.05 en adelante, tanto (8.3.1) como (8.3.2) se condicen con los resultados

numéricos.
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(a) Bad configurations near 8 = 2
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(b) From 8 = 2.05 on the configurations behave correctly

Figure 8.16: Behavior in the displaced disc experiment changing the value of j3.

8.5 Conclusiones numéricas

El comportamiento numérico que se observa en las configuraciones mostradas en la seccién
de errores anterior (8.4), es de una alta inestabilidad, tanto para el primer valor propio como
para la férmula (LP) de la derivada del primer valor propio con respecto a la geometria.

En estas experiencias numéricas, el cambio del valor propio numérico no supera el orden
1073, salvo en pocos casos como en el que la proporcién de 3 es igual a 0.9, donde el orden
es de 1072,

A excepcion de lo anterior, los experimentos se comportan segin nuestras conjeturas
(8.3.1) y (8.3.2) y, en estas configuraciones, los cambios del valor propio son mayores a 1072,

Ademéds, en el grupo de graficos (8.16) apreciamos que, aumentando levemente el valor
de (3, desde 2.05 en adelante, el cdlculo para las configuraciones problemdticas se regulariza,
entregando valores segun las conjeturas (8.3.1) y (8.3.2). Claramente el valor la magnitud de
la diferencia entre los coeficientes o y 3 tiene relevancia para el desempeno numeérico.

Por otro lado, debido a que el problema tiene una condicién Dirichlet, el computador
penaliza con valores muy altos los nodos del borde, otorgando, para la matriz de esfuerzos,
un condicionamiento muy grande, del orden de 10%.

Concluimos que los resultados espurios se deben a turbulencias numéricas. Los calculos
del valor propio y de la derivada con respecto a la forma se tornan inestables, poco analizables,

y ademas, los 6rdenes de magnitud del valor propio son muy pequenos. Estos valores no son
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relevantes para el andlisis debido al mal condicionamiento de la matriz .
Finalmente, en términos generales, concluimos que el desempeno numérico confirma las
conjeturas (8.3.1) y (8.3.2).
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Chapter 9

Characterization of the Solution

In the theorem (6.4.5) we have proved the existence of a classical radially symmetric
solution of the problem (GP) when the domain €2 is a ball in RY | which in other words, assures
the two materials are distributed in measurable rings, and so there is no homogenization
zone. Nevertheless, nothing tell us that it is not possible to have a zone of positive measure
with empty interior where the materials are distributed. Thus in the practice it couldn’t be
possible to distinguish accurately where the materials are placed.

The previous situation is not very comforting, at least practically speaking. We can ask

ourself several questions that partially relieve us from a situation like this.
e How many connected components can there be of the different materials?

e What can be said about the perimeter of each set where are placed the materials? Is
it finite?

e [s it possible to find connected components having only material o or (37

In particular we strongly think that in the case of a ball in RY, the solution consists in
placing the material 3 in the middle of the ball.

9.1 Optimal distribution in a ball

We know by the results of the paper Alvino et. al. that the minimum is attained for a
radially symmetric distribution of the materials o and  which means that the materials
could be distributed in various spherical shells.

We have the following conjecture
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Conjecture 9.1.1. When Q is a ball, among all radially symmetric distributions of 3 with
fixed volume m the configuration where all the material 3 is in the middle gives the lowest

value to the first eigenvalue.

We now give some arguments which partially justify this conjecture. The procedure
consists in showing, systematically, using the shape derivative calculated in the previous
section, that whenever there is a layer of a preceding a layer of # (as we move radially
outward) X (w;#) < 0 for the radially symmetric perturbation ¢ which moves the layer of 3

inwards while conserving the volumes of o and j3.

Theorem 9.1.2. Assuming that the formula (LP) holds, given an annulus configuration
wo where we put the material 5 in a annulus of non empty interior, for perturbation 6 of
this annulus which moves it outwards while preserving the volume, we have that the shape

deriwative of the first eigenvalue satisfies
)\/(wo) Z 0.

This indicates that is better to place the material B in the middle.

Proof. Denote the reference configuration by ¢ and let u be the normalized first eigenfunction,
which we know to be radially symmetric (see for instance [9]). Let us concentrate on a layer
wo of B which follows a layer of o and let us write its boundary as S; U Sy where S; and
S, are, respectively, the inner and outer boundaries. We may consider a radially symmetric
perturbation € which is zero outside wy and conserves the volume of wy. The conservation of

mass condition (2.4) gives the relation
(0 -n)|s,per(Sy) + (6 -n)|s,per(Sz) =0 (1.1)

where per(S) is the perimeter in RN~! defined in (3.1.46) of S, for instance, if wy is an annulus
in R? and S is one of its boundaries, per(S) = 277 with an appropriate radius r. Now, from

the equation (LP) we have

N = / [o|Vul?] 6 - ndS +/ [0|Vul?] 6 - ndS
Sl SQ

= ([o |Vu|2} 0-n) [s,per(S1) + ([o |Vu|2} 0-n) |s,per(Ss)
= ([o|Vul] Ls,— [o |Vul’] [s,) (6 - n) [s,per(S2) (1.2)

where we in the last to equations we have used that [0 |Vu|2} is constant in each boundary.

Let us analyze (1.2) for its sign. Denoting by S; and S;" the inner and outer surfaces of S;
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with respect to wy, for i = 1,2 (see figure 9.1), the transmission condition on S; reads

(oVu-n)g- =(oVu-n)g+ =12 (1.3)

Figure 9.1: Symbols for the different boundaries.

Vu

] and, therefore,

In view of the fact that w is radially symmetric, we can write n =

from the above relation we conclude that
o|Vul |g-=0|Vu||g+ 1=1,2. (1.4)
This allows to write the jumps in o |Vu\2 as follows
[ 1VuP] = (IVal Lss = [Vl L) (o IVal) L
_( 1)V \V
= (2 1) |vul Ly (o IV s

Therefore, the shape derivative in (1.2), can be rewritten as

V= (5-5) (@IVulg P = @ITa L) @ nlsperts. (19)

113



CHAPTER 9. SOLUTION CHARACTERIZATION 9.1. BALL CASE

Recalling the remark (6.3.4) says that u is a decreasing function and that Ua—z is a decreasing
function in each region where o is constant, it follows that o |Vu| is non-decreasing in the
radial direction on wy. Therefore, A" assumes a positive sign if 6 is such that 6 - n is positive
on Sy and consequently 6 - n is positive on S;. This means that \ increases if shell is moved

outwards. This concludes the proof of the theorem.
O
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Chapter 10

Conclusions

We have been able to give a new proof of the fact that the problem (GP), in a spherically
symmetrical domain in RY has a radially symmetrical solution. We expect very soon to
extend the existence result to the case of domains with less symmetries, such as squares and
stars, by using other forms of symmetrization.

In Chapter 7 we calculated the shape derivative of the eigenvalue functional. Using this
and also through some numerical experiments made in planar domains we gathered evidence
for our conjecture that the minimum value in (GP) is obtained by placing the material of
conductivity 3 in the middle. One of our aims is to rigorously establish this conjecture based

on a careful analysis of the shape derivative.
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Conclusiones

Hemos podido dar una nueva prueba del hecho que el problema (GP), restringido a un
dominio esféricamente simétrico en RY, posee una solucién radialmente simétrica. Con los
elementos matematicos introducidos esperamos, en un futuro préximo de investigacion, tener
un mejor entendimiento de este problema, lo que nos permitiria en particular, extender el
resultado de existencia a dominios con menos simetrias, como cuadrados o estrellas.

Las herramientas de derivacién con respecto al dominio introducidas en la seccién (3.6)
permitieron obtener la derivada del primer valor propio con respecto a la distribucion de
materiales. Usando lo anterior, en conjunto con algunos experimentos numéricos realizados
en dominios planos, fue posible obtener evidencia del hecho que, cuando el dominio es una
bola en R, es conveniente distribuir el material 3 en el centro.

Nuestra intencion, en un trabajo de investigacion ulterior, es confirmar rigurosamente
esta conjetura, analizando cuidadosamente la derivada del primer valor propio con respecto

al dominio.
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Appendix A

First Paper

A.1 Abstract

The pioneering works of F. Murat and L. Tartar [26] go a long way in showing, in general, that
problems of optimal design may not admit solutions if microstructural designs are excluded
from consideration. Therefore, assuming, tactitly, that the problem of minimizing the first
eigenvalue of a two-phase conducting material with the conducting phases to be distributed
in a fixed proportion in a given domain has no true solution in general domains, S. Cox
and R. Lipton only study conditions for an optimal microstructural design [11]. Although,
the problem in one dimension has a solution (cf. Krein [22]) and, in higher dimensions, the
problem set in a ball can be deduced to have a radially symmetric solution (cf. Alvino et. al.
[4]), these existence results have been regarded so far as being exceptional owing to complete
symmetry. It is still not clear why the same problem in domains with partial symmetry should
fail to have a solution which does not develop microstructure and respecting the symmetry
of the domain. We hope to revive interest in this question by giving a new proof of the result

in a ball using a simpler symmetrization result from A. Alvino and G. Trombetti [3].

A.2 Introduction

Let Q2 be a bounded domain in R™ which is to be called the design region. Let m be a positive
number, 0 < m < ||, where || is the total volume (Lebesgue measure) of the region €.
Two materials with conductivities o and § (0 < a < 3) are distributed in arbitrary disjoint

measurable subsets A and B, respectively, of {2 so that AU B = Q and |B| = m. For any
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such distribution, it is well known (cf. [10, 6, 21]) that the first eigenvalue in the spectral

problem
—div ((axa + Bxp)Vu) = Au  inQ
(2.1)
u = 0 on )
is given by
Vu|d
A(B) = min Jo(oxa + Ox)[Vul*de (2.2)

weHL(Q) o, lul?da

Let A:={B: B C ), B measurable, |B| = m} be the class of admissible domains for the
material with conductivity 3. We are interested in the following eigenvalue minimization

problem
inf {\'(B): B€ A} . (2.3)

Starting from the works of Murat and Tartar on a control problem involving immiscible fluids
[26] it is well known that, generally speaking, optimal design problems may not always have
a solution if the development of microstructures is not taken into consideration. However, if
microstructures are allowed as admissible designs then the infimum is reached corresponding
to some microstructure. In the case of our problem such an approach was followed by Cox
and Lipton [11] and a characterization of the optimal microstrucure has been established.
Nevertheless, the original problem in the one-dimensional case and, in the case of a ball
admit true solutions with symmetry as has been shown by Krein [22] and Alvino et. al. [4],
respectively. The one-dimensional problem was solved by Krein [22, 16] by exploiting the
equivalence between the original problem and a similar problem for a vibrating membrane
involving the objective functional
Jo IVul?dz

(B e 2.4
(B) we i) Jo(oxa + Bxp)ulfdz (2.4)

although this equivalence does not hold in higher dimensions. The works of Cox and
McLaughlin [12, 13] show that the latter problem, in any dimension, has a true solution.
It still remains to answer the question whether the original problem admits a minimum. Our
alm is to revive interest in this question by giving an almost self-contained and a vastly
simplified treatment of the existence result in a ball originally due to Alvino et. al. [4]. The

main result of our paper reads as follows.

Theorem Let Q) denote a ball in R™. The problem (2.3) of minimizing the first eigenvalue,
defined by (2.1), given two conducting materials with conductivities o, (3, in given ratio,

admits a radially symmetric solution.
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It is worth observing that this is a kind of Faber-Krahn inequality for non-homogeneous
elliptic operators. The paper of Alvino et. al. [4] treats many other problems of this kind.
We refer also to Burton [7] for some results on problems of a similar nature.

Our proof of the above theorem will be based on a symmetrization result from Alvino
and Trombetti [3, Lemma 1.2] whereas the original proof given in [4] is based on a more fine

comparison result for the solutions of Hamilton-Jacobi equations [4, Theorem3.1].

Plan of the paper: In the next section we shall introduce some notations and recall, briefly,
the Schwarz symmetrization and some basic results on the Schwarz symmetrization. The
problem will then be reformulated in a way that makes it possible to apply symmetrization
techniques. Subsequently, we shall discuss some of the structural properties of the objective
functional and the constraint set provided in [4, 3]. We then recall a symmetrization result
[3, Lemma 1.2] of which we give a different but formal proof (see Appendix) which could be
adapted to domains with partial symmetry.

In Section 3, we shall give a proof of the main theorem (cf. Corollaries 3.1 and 3.2 [4])
with the help of the above symmetrization result and some basic properties discussed in [4, 3]

instead of the more intricate [4, Theorem 3.1].

A.3 Notations and Preliminaries

As the results of this article concern a ball, henceforth, Q will refer to B(0,1), the n-
dimensional unit ball in R™ centered at the origin. We shall use f~! to denote the reciprocal
of a non-vanishing real valued function f. Given a measurable function f :  — R and a

real number ¢, Q. will denote the level set
Qe i={z€Q: f(zx)>c} (3.5)

which is a measurable subset of €2 and, of course, depends on the function f. We denote by

2} . a ball concentric to 2 and having the same Lebesgue measure as €.

Schwarz symmetrization: The Schwarz symmetrization of the function f is a radially

symmetric decreasing function f* defined on €2 through the relation
f7(z) =sup{ceR:2€Q} }. (3.6)

It follows from the very definition of f* that {f* > c} = Q7% . and therefore, that the functions
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f and its Schwarz symmetrization f* are equimeasurable in the sense that

{zeQ: flz) =2} =H{zeQ: [ (2) 2 c}] . (3.7)

Remark A.3.1. The > sign in (3.7) can be changed to < without changing any of the
consequences. As a consequence, the relation in (3.7) holds with the = sign replacing >, but
this cannot be taken as a characterization of equi-measurability, except when we deal with

simple functions.

The equimeasurability property has several important consequences such as, for any mea-

surable function, A : R — R, we have:

/Q h(f (x)) dz = / h(f* (2)) dz. (3.8)

Q

| lr@rds= [ 1reF . (3.9)

The following inequality is also fundamental (cf. [21, Proposition 1.2.2]) :

/E f()de < /E f(a)da (3.10)

for all measurable subsets £ C 2. Another fundamental property of the Schwarz symmetriza-

In particular, one has

tion is the iso-perimetric inequality

P{f=ct) =2 PH{[ =c}) (3.11)

where P(C') denotes the perimeter of a subset C' in €2, when it is defined.

Suitable forms of the above properties are also true of various other forms of symmetrization.
An extensive treatment of the various forms of symmetrizations and their applications may
be found in the monographs [19, 21, 27].

A reformulation of the minimization problem: Let us begin by considering A', defined
n (2.1), as a function of v := axa\s + Bxp instead of looking at it as a set function while
writing A'(v) for A'(B). Let 6 := aoxonp, + x5, be the simple function where By is a ball
centered at 0 having Lebesgue measure m. Note that § is a radially symmetric and decreasing

function.
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Proposition A.3.2. The minimization problem (2.3) can be recast as
inf {\'(v) : " =6} . (3.12)

Proof: It is clear that if v := axo\p + Bxp for some B € A then it’s radially symmetric
decreasing rearrangement is the function #. We would like to establish the converse now. By
the last part of Remark A.3.1 in the previous section, as 6 is a simple function, if we have
v* = 0 then v is a simple function taking the same values as 6 on sets of equal measure.
In particular, [{z € Q: v(z) = 5}| = |Bo| = m. So, the one-one correspondence between the
constraints in (2.3) and (3.12) is established. O

In the same way, if we set (&) = \! (f _1), the minimization problem can also be written as

inf {n(¢):&=(0")"}. (3.13)

The infimum in a minimization problem will be attained, by the direct methods of the
calculus of variation, if it happens that the objective functional is lower semi-continuous and
the constraint set is compact for some topology.

The constraint set in either formulation (3.12) or (3.13) is of the form

Cle)={f: 1" =¢} (3.14)

given  which is a non-negative, bounded, measurable, radially symmetric decreasing function
on the ball 2. This set is relatively compact for the weak-* topology as a subset of L>(€2)
as all f € C(p) have the same L> norm as ¢, being equimeasurable with ¢ and, as bounded
sets in L>°(Q) are weak-* compact. However, this is not closed as, in the first place, weak-x
limits of simple functions need not be simple whereas, we have seen, in the arguments given
in the proof of Proposition A.3.2, that the Schwarz symmetrization of a simple function is

also a simple function.

Remark A.3.3. In general, in order to calculate the infimum, at first, the closure of the
constraint set needs to be calculated with respect to a suitable topology and then, the lower
semicontinuous envelope of the objective functional with respect to the same topology. In
our problem, this is hard to achieve without the consideration of micro-structural designs
and, the results of Cox and Lipton [11] are in this spirit but lead further away from the study

of a classical solution.

We now put together some observations which highlight some of the structure of the prob-

lem leading to the determination of a classical solution to our problem. A characterization
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of the weak-* closure of this set in L>(2), to be denoted by K(¢), was given by Migliaccio
[24].

Proposition A.3.4. The set K(p) is a weak-x compact convex set characterized by the

relation

k) ={rer=@: [ L Sayde / BRICLAs [ r@de= [ pa).
(3.15)

Proposition A.3.5. The set C(p) is the set of extreme points of K(p).

These results can be found in Alvino et. al. [4, Section 2]. Let us now make the following

simple observation.

Remark A.3.6. It is quite easy to see that the above propositions continue to hold if we
consider C*(¢) and K*(y) consisting of the radially symmetric functions in C'(¢) and K (),

respectively.

The following proposition establishes the continuity of the first eigenvalue with respect to
weak-* convergence of the reciprocals of the coefficients, for radially symmetric coefficients.
A similar convergence result is proved in [4, Corollary 3.2] but for minimizing sequences of
the functional \'. It is worth mentioning here that the objective functional ! is not lower

semi-continuous for the weak-* convergence of the coefficients.

Proposition A.3.7. Let v; be a sequence of radially symmetric functions in K(p) such that

1

v; b converges weakly-+ to a function v=' as i tends to oo. Then, we have \'(v;) converges

to \'(v) as i tends to co.

Proof: Let the sequence v; and the function v satisfy the hypotheses of the proposition. We

1 1
= and v(x) = ———. Then, by the hypothesis it follows that &; weak-x
&illz)) &(ll)

converges to & in L°(0,1). Now, if u; gives the minimum value in the definition of \*(1;)

write v;(x)

then it can be argued, using the Krein-Rutman theorem, that this is radially symmetric. We
may also assume that u; is non-negative and further, normalize it so that it’s L? norm is 1.

The Euler equation corresponding to the minimizing property of u; reads
—div (1;Vu;) = N (v)u; - (3.16)

It can be checked from this that the sequence u; is bounded in Hj}(€2) and a subsequence

can be extracted converging weakly in H}(£2) to a radial function u(z) = v(|z|). A further
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subsequence, indexed by iy, may be extracted so that \'(v;, ) converges to some \ as k —
oo. Now, writing u;, () = vi(|z|), the Euler equation (3.16) in radial co-ordinates, for this

subsequence, reads

— (r"‘l& 1(71)21,;(7’)) = M (v )" top(r) . (3.17)

By integration, we obtain

L) = -\ Vi Ts”_lv s) ds
&k(r)vk(r) = =AY Zk)/o k(s)ds. (3.18)

n—1

It can be checked that the sequence vy, converges weakly in L?(0,1) to the function v. So,
after transferring &;, to the right hand side of (3.18), it is possible to pass to the limit therein

as k — oo to obtain the relation
" (r) = —)\5(7’)/ s"1u(s)ds . (3.19)
0

We then divide by £(r), differentiate with respect to r and write the equation that we obtain
in original co-ordinates as

—div (vVu) = Au. (3.20)

The function u is non-zero as it’s L? norm is 1 and thus, is an eigenfunction and, being the
limit of non-negative functions, is itself non-negative. So, by the Krein-Rutman theorem, A is
the first eigenvalue in the above spectral problem. By the uniqueness of the limit, A = A}(v)

it follows that the entire sequence A'(v;) converges to A (v). O

Next, we make the observation that the objective functional \! is concave in v being, by its
definition, the infimum of linear functionals. It is interesting to know whether it is strictly
concave in v.

In the proof of our main theorem, we shall employ the following symmetrization result, based
on [3, Lemma 1.2 to limit our search for minimizers among radially symmetric functions.
The older proof by Alvino et. al. [4] achieves the same while it is based on a finer comparison

result based for solutions of Hamilton-Jacobi equations [4, Theorem 3.1].

Proposition A.3.8. Given any v € C(0) and any v € Hy(Q), there evists a U which is
radially symmetric with v € K ((07")*) such that

/ v|Vu|* do 2/ U VUt d . (3.21)
Q Q
Proof: With the same hypothesis as in this proposition, the Lemma 1.2 in Alvino et. al.
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[3] says that (3.21) holds for the radially symmetric function v(z) = ¢(C,|z|") for ¢ defined
below through the relation

H{uzell 4 1
/ dr = / ——dx (3.22)
0 (p(?") {u>c} V(LIZ')

which holds for all ¢ € R. This gives the relation

/ﬂ::,c % = /Q ﬁ de (3.23)

for all ¢ real, where we recall that (2, is the level set of u at the level ¢ and (2} . is a ball
centred at the origin having the same measure as €, .. In particular the above identity holds
on the full domain €. So, as (1/_1)* = (9_1)*, by using the formula (3.8) we have,

/Q%dx:/s)(ﬁ_l)*(x)dx. (3.24)

Once again as (1/_1)* = (9_1)*, from the property (3.10) we obtain

/gwﬁdxg/ﬂ (07 @

*
u,c

The above inequality combined with (3.23) gives the relation

L s 0 @e (3.25)

i V(@)

*
u,c

for all ¢ real. We then note that the two relations (3.24) and (3.25), by the characterization
(3.15), imply that 7' € K ((67')%). O

A.4 Proof of the Main Theorem

The proof of the main theorem is given in several steps.

STEP 1: Let us recall that the constraint in the original problem can be written as v € C(0)

or equivalently, as v=' € C ((9_1)*). So the minimization problem reads
inf (N () vt e ((071))} . (4.26)
We shall denote by C* ((67')*) and K* ((6~')*) the subset of radially symmetric functions

124



APPENDIX A. FIRST PAPER A.4. PROOF OF THE MAIN THEOREM

in C((~1)*) and K ((~")*), respectively. We use Proposition A.3.8 above to show that
inf {\N'(v) v eC((07"))} =mf{N () :v ek ((67))}. (4.27)

Following Remark A.3.6 we deduce that K* ((#~")*) is the closed convex hull of C* ((67")")
for the weak-* topology. So, applying the continuity property in Proposition A.3.7, we obtain
first that

inf {A\'(v) vt e (071 =mf (N (v): v e K°((67H))} .
So, it readily follows that

inf {\'(v):v e K2 (7))} >inf {\'(v): v eC((67H))} . (4.28)
To prove the reverse inequality, let v=! € C' ((#~1)*) be arbitrary and let u be the correspond-

ing minimizer in the definition of \'(v). Considering a v~' € K* ((67')*) and u* associated

to the pair (v, u) as given by Proposition A.3.8 and using the property (3.9) we obtain

1)) — fQI/|VU|2dZL’ fQTJ|Vu*|2dx 1y af () ] s ((n—1\*
AM(v) = P dz > [P de >\ (v) > f{)x( ) c K ((9 ))} (4.29)

By the arbitrariness of v the reverse inequality to (4.28) follows.

STEP 2: The inf on the right hand side of (4.27) is in fact a minimum, that is to say,
the infimum value is achieved. To see this let us define a topology on the set K :=
{1/ v e K* ((9_1)*)} by saying that v; converges to v if and only if v, * converges weakly-*
to v~!in L>°(€2). Then, with the knowledge that K* ((§~")*) is a compact set for the weak-x
topology on L*(2) as announced by Proposition A.3.4, it follows that K is a compact set
for the topology defined above. Besides, by Proposition A.3.7, we know that ! restricted to

K is continuous for the above topology. Thus, our thesis follows.

STEP 3: In the previous step, we have been able to show that the minimization problem
admits a solution in a slightly enlarged class. Although, the functional A is concave, it is
not clear whether the constraint set {v:v~" € K*((67")")} is convex. If this were so it is
immediate to obtain a solution in the original class as, whenever a concave function admits
a minimum over a compact convex set there is a minimizer which is an extreme point. So, in
this problem, in order to show that there is a solution in the original class, we shall have to
do differently as is done in Alvino et. al [4]. It can be shown that J : v~ " ()xl(y))_l is a
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convex map when restricted to K* ((67)*) (cf. [4, Corollary 3.2] ). Indeed, it is shown that

g ?
J(p) = max / i (|x|"_1/ s"1o(s) ds) dr v e L*(Q), / v?(x) dx = 1,v radial
Q 0 Q
(4.30)

So, as the minimization problem on the right hand side of (4.27) is equivalent to maximiz-
ing the reciprocal functional J, the above mentioned convexity guarantees that there is a
maximizer of J which is an extreme point of the compact convex set K* ((9_1)*) which,
by Proposition A.3.5 and Remark A.3.6, has to belong to C* ((9_1)*). This permits us to

conclude that the infimum in (4.26) is achieved for a radially symmetric function. O

A.5 Appendix

We remark that we only require Lemma 1.2 [3] in the form stated below for our applications.

Now, we give a more flexible alternate proof of the same.

Proposition A.5.1. Given any v € C(6) and any non-negative u € Hy (), for v defined

/ﬂ::,c % = /Q ﬁ du (5.31)

/1/|Vu|2d932/ PV de. (5.32)
Q Q

through the relation,

we have

Proof: We shall make repeated use of the co-area formula (cf. formula (2.2.1) Kesavan
[20])

/Qg(x) |Vu(x)| de = /_Z /uzsg(x) do(x)ds (5.33)

where do(x) is the surface element on the level surface u = s at the point z. Applying (5.33),

we obtain the identity

v(z) [Vu(2)|? do = b viz) |Vu(x)| do(x) ds 5.34
J @ vl = [ v vu) @ (5.34)

Therefore, it follows that,

_% ( /{ @ Vu(z)[ dm) = /{ _,/@Vu@) do(e). (5.35)
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We apply the fact that the arithmetic mean of a non-negative function is always greater than
the harmonic mean, to the function v |Vu| on the surface {u = t} equipped with it’s surface

measure, to conclude that

/u ) [Vu(a)] dofa) = Jumn Vf({izii((xx))‘ dotz) ( /{u:t} da(x))

f{u:t}ldo—(:c) o ( /{ - da(m)) :

om0 gy

1 ! 2
_ < /{u:t}—y(x)|vu(x)|da(x)) (P({u>1t)?  (5.36)

1 - . 2
> /{u:t}md"(x’) (P({u > 1)) . (5.37)

The last inequality above is due to the iso-perimetric inequality (3.11). Therefore, from (5.35)
and (5.37) we have

_% ( /M} () [Vu(z)|? dx) > ( /{ . mda(as)) TP ). (539)

We remember that {u* > t} for ¢ > 0 form a continuum of concentric balls, having radius ry,

v

whose union over ¢ > 0 is the ball 2. Observing that u* is a radially symmetric function and

consequently, so is Vu*(z), we may define a radially symmetric function v as follows.

f{u*:t} do(x)
(f{u:t} STV d“@)) |[Vur(@)]

V(|z]) =

for any z, |z| = . (5.39)

We check, first, that v satisfies (5.31). To see this we use the co-area formula. We have

/{u*>t} %dm N /too /{u*zs}mda(@ ds
- 1
- /{uzs}md“@ds
1
) /{} v

where in the penultimate expression we have plugged in (5.39). Then, (5.38) may be rewritten
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using v as
d ~
4 (/ () V() dx) > / 5(z) |V (@) do()
dt {uxt} {u*=t}
d
= —— (/ v(x) |V (z)]? dm) : (5.40)
Integrating (5.40) we obtain the needful. O

Remark A.5.2. The definition (5.39) of the rearranged coefficient can be written entirely in
terms of the coefficient v, the function v and the derivative of the corresponding distribution
function p,(t) = [{u > t}| = pu(t) as

va(|xD — — (Mu)l (t)

5 for any z, |z| = r; . (5.41)
(f{uzt} V@)Vu(@)] dg(z))

This is due to the fact that, by using the co-area formula, we have (see also [8, Lemma 4.1]

for a similar result in the case of Steiner symmetrization)

1
(1) () = () (1) = _/ oy 20 (@)
(=t |Vu* ()]
It is worthwhile to note from the above that the gradient of the rearranged function u* can

be written in terms of the distribution function pu, and it’s derivative as

1 .
_ nCiy qu(t)l—;

Ve = )

for any z, |z| = r (5.42)

1
since P ({u* =t}) =nCy ,uu(t)l_v_ll, being C,, the volume of the unit sphere in R".
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Appendix B

Second paper (In Revision)

B.1 Abstract

This article deals with the minimization of the first eigenvalue of a two-phase conducting
medium problem. Although, in general, this minimization problem may have to be relaxed to
include microstructural designs, it, nevertheless, admits a true solution in the one-dimensional
case [22] and in balls in any dimension [4]. In the light of these and other recent results
obtained in [9] we are led to believe that a classical minimizer (that is, without micro-
structures) exists not only in balls but also in other domains, possibly having lesser symmetry.
Our conjecture is that, in such domains, optimal distribution of the material for this problem
requires placing the material with higher conductivity in the middle. In this article, we show
the existence and then give an expression for the shape derivative of the eigenvalue functional,
which is an important tool for understanding the sensitivity of the eigenvalue with respect
to domain variations. We gather evidence for our conjecture by analyzing this derivative
for certain initial annular configurations in a ball. Numerical results obtained in discs and

squares also give more substance to our conjecture.

B.2 Introduction

Given the design region {2 C R"™ and two conducting materials with conductivities o and /3
(0 < a < ) which are to be distributed in €2 so that the volume of the region w occupied by

(3 is a fixed number m (0 < m < |Q]), we are required to minimize the first eigenvalue of a
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Dirichlet problem given by

2
M(w) == min fQ(CYXQ\w + Pxe)|Vulide
ueHL(Q) o, lul?dz

(2.1)

In general, such shape optimization problems may not have a solution as shown by Murat
and Tartar in the case of a control problem involving immiscible fluids [26]. One may need
to consider also micro-structures in addition to classical shapes. In the above problem,
characterizations of optimal designs involving micro-structures have been given by Cox and
Lipton [11]. As compared to this, in the one-dimensional case Krein [22, 16] has shown that
the solution consists in placing the material with higher conductivity in the middle and when
the domain is a ball in any dimension, Alvino et. al. [4] have shown that the minimum is
attained for a classical design (that is, without micro-structures) having radial symmetry.
However, this does not fully resolve the problem as it remains to characterize the radially
symmetric minimizer.

Our conjecture is that, in such domains, optimal distribution of the material for this
problem requires placing the material with higher conductivity in the middle. A tool which
can be used to analyze possible local or global minimizers and to develop some algorithms
for the numerical search of such minimizers is the derivative of the objective functional with
respect to variations of the domain. In line with this idea, the main results of this paper
are Theorem B.3.2, where we show the existence of the shape derivative of the two-phase
eigenvalue problem, and Theorem B.3.4 wherein we obtain an explicit formula for it.

There are very few results of the shape derivative calculus for two-phase conductivity
problems which can also be seen as transmission problems. The shape derivatives in an
inverse conductivity problem with two conducting phases was first calculated in Hettlich and
Rundell [18] and later established rigorously in Afraites et. al. [1]. Discussions of the shape
derivative of one phase eigenvalue problems for different operators and boundary conditions
can be found in [5, 29, 30, 31, 32, 16, 17]. Our results on the shape derivative of a two-phase
eigenvalue problem (see Theorem B.3.2 and B.3.4) seem to be the first of its kind and should
be interesting in themselves.

We then use the calculated shape derivative to analyze the sensitivity of the first eigenvalue
for domain variations of certain annular configurations in a ball. The Theorem B.4.1 shows
that when there are a finite number of annuli in which to distribute the two materials one can
always obtain smaller values for the eigenvalues by moving the material with conductivity
( more to the centre. We also study, numerically, the variation of the first eigenvalue with

respect to the position of the domain containing the material having higher conductivity for
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certain annular and disc-like configuration inside a disc. The results that we obtain point
towards the veracity of our conjecture.

The methods which we used to show the existence of a classical minimizer to the problem
in a ball in [9] lead us to believe that in domains with only a few planes of symmetry there
is once again a classical minimizer. The results from a numerical experiment conducted in a
square domain where the materials are arranged in three concentric squares seem to indicate,
once again, that the material with higher conductivity should be placed in the middle.

The layout of the article is as follows. In the next section we prove Theorems B.3.2 and
B.3.4 which are about the shape derivative of the eigenvalue functional. In Section 4, we
prove Theorem B.4.1 and we present the numerical results in a disc providing more substance
to our conjecture. In Section 5, we give the numerical results in a square and in the final

section, conclude by proposing some future directions of work.

B.3 Shape derivative of the eigenvalue functional

The shape derivative is a tool which permits to understand the variation of quantities which
depend on the domain (cf. Simon [31]). This is widely used in the study of shape optimiza-
tion, front tracking, image segmentation problems etc. It is defined in the following way. Let
us consider a functional F' which depends on the domain w (shape functional). For a varia-
tion of the domain w by a fairly smooth perturbative vector field 6, which has its support in

a neighbourhood of dw, the infinitesimal variation of F' in the direction u is defined as

Fl(w:0) = lim L@+ = F(w),

t—0 t

(3.1)

Now F itself may depend on a function u defined on w. So, if u; is the corresponding function
when w changes to w; := (id + t0) (w), the local derivative (also called shape derivative)and

the total derivative (also called material derivative) of u are defined, respectively, to be
_ 1) —
/() = lim M and () = lim u(z + t> u(x)

Remark B.3.1. An important part of the shape derivative calculus is to rigorously establish
the existence of the shape derivatives. This requires some careful analysis as it is usually
hard to explicit the dependence of the quantities on the perturbation field 8 or to say whether
even this dependence is continuous, Lipshitzian etc. An alternate way is to use some form of
the implicit function theorem as the quantities depend on the perturbation field usually in
an implicit way. We shall use the latter approach in this article as it turns out to be quite

simple for this problem.
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We recall the setting of the spectral problem for the first eigenvalue functional before
stating the existence theorem of the shape derivative. Let w be a reference configuration with
smooth boundary where the material 3 is given. Given the distribution o = axo\. + Bxw

with w CC €2, the eigenvalue problem reads as follows:

{—div(a(w)VU) = Aw) uin Q (3.2)

v = 0 on 9N

Let A\ (w) be the first eigenvalue. It is simple and the first eigenfunction is characterized by
its constant sign [23]. We normalize the first eigenfunction by assuming it to be non-negative

and taken to satisfy
/ lul>de =1. (3.3)
Q

The admissible perturbations of w are the images w; of w under transformations id + tf where
f is a smooth vector field with its support inside a neighbourhood of dw such that w; CC 2

and such that |w;| = |w|.

Theorem B.3.2. The material derivative @ of the normalized first eigenfunction u exists
and w € H}(Q). Its shape derivative v’ also exists and is such that its restrictions to w and
Q\ @ belong to H'(w) and H*(Q\ @) respectively. In addition, the shape derivative of X,
denoted by N (w;0), ezists.

Proof: We prove this result using an argument based on the Implicit Function Theorem
following an established procedure which is well explained in the text [17]. The existence of
the material derivative will be obtained as an existence result of a smooth family of solutions
after rewriting the perturbed eigenvalue problem in a suitable way. The perturbed eigenvalue

problem is

{—div(a(wt)wt) = AMwi) u in Q (3.4)

u; = 0 on 0f)
where w; = (id + t0) (w) under the assumptions made above on the perturbative vector field
0 and wu; is the first eigenfunction normalized as above. For small ¢ the smooth change

of variables ®; := (id 4 tf) on 2 is invertible while it maps w onto w;. The problem (3.4)

transported to the inverse image of €2 may be rewritten using this change of coordinates as

(3.5)

{ —div ((o(wy) 0 @) AV (w0 D)) = Mewy) ( (g0 @) J(Dy)) in Q
ugo®, = 0 on 0N

where A; := D®;* (D<I>[1)T J(®;) and J(®P;) is the Jacobian of the transformation ®;. We
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also observe that the function u; o ®; remains non-negative and satisfies the normalization

condition

/Q g 0 > J(Dy)da = 1. (3.6)

We refer to [1, 17] for the details. Note that by the preceding discussion (A(wy), u; o ®;) sat-
isfies the equations (3.5) and (3.6) if and only if (A(w;), u:) is a normalized eigenpair of (3.4).
Let (A1(wt), u) be a normalized eigenpair of (3.4). The existence of the material derivative
of u; and the existence of the shape derivative of A;(w;) can be drawn as a consequence of

the existence of a smooth curve of zeros for the following function in a neighbourhood of

(O, )\1(0&)), UQ)Z

F(t,\v) = <—div(( (wi) 0 ®,) A, V) — / Mk J(@t)dx—l)

_ (—div( (W) A, Vo) — / o]? J(®,) x—l)

Note that the last equality is due to the fact that o(w;) o ; = o(w) (indeed, as ®; maps w

(3.7)

onto w; and the coefficient o(w;) has the value 5 on w; and the value « elsewhere on 2 while
o(w) takes the values § and «, respectively, on the regions w and Q \ w).
We now obtain the existence of a smooth curve of zeros for the function F' defined above
by verifying the hypotheses of the implicit function theorem. As ®, is a smooth function of
t we deduce that the maps t — D®,, and t — A; are smooth functions of ¢. Consequently,
F:R xR x Hi(Q) — H'(Q) x R is a smooth function of ¢ as also in the varibales A and v
being linear or quadratic in those. Now we check that F ,(0, Ay (w), ug) : R x Hy (), — H'(Q) x R

is invertible. As
(Fr0(0, A1 (w), up) , (A, 0)) = (—div (0(w)Vv) — A (w)v — Aug 2/Q VU dx) (3.8)

we now solve
—div (o(w)Vv) = M (w)v —Auyg = f
(3.9)

Qvauodx = c.

The first of these equations has a solution, by the Fredholm alternative, if and only if
<f‘|‘)\U(), U0> =0.

Thus A = (f, up). Let w be a particular solution of the first equation for this value of A.

The solution space is one dimensional and all the solutions are of the form w + kugy. Plugging
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this in the second equation in (3.9) we have

2/(w+ku0)u0 de =c.
Q

This determines &k uniquely. Thus, the system (3.9) admits a unique solution (A, w + kug)
which shows that the operator F) ,(0, \(w), ug) is bijective. The continuity of the inverse
follows from the Banach-Steinhaus open mapping theorem. So, by applying the Implicit
Function Theorem we obtain a smooth curve of zeros t +— (, Ay, v;) to F' in a neighbourhood
of (0, A\ (w), ug).

We now reach the conclusions that the shape derivative of the first eigenvalue and the
material derivative of the first eigenfuntion exist as follows. By our earlier observation,
(e, v 0 @) is a normalized eigenpair for (3.4). So, indeed, A\, = Ai(w;) and so it follows
that the shape derivative of \; exists. Writing u; = v, o &, ! we have that u,; o ®, is a smooth

d
function of t. However, by the definition of the material derivative & = —  (u; o ®;) and it
[t=0
exists due to the differentiability of v,.
Finally, we conclude that the shape derivative of u exists from the the following simple

but important relation between the local and total derivatives (see Simon [31])
u'(z) = u(z) — 0 - Vu(x) (3.10)

where u is the function on the unperturbed domain. On the one hand we have seen that
@ € Hi(Q). On the other hand, as w is a smooth domain and on each of w and Q \ @,
u satisfies an elliptic eigenvalue problem with smooth coefficients, by standard regularity

theory, it is smooth in each of these domains and consequently also Vu (see Gilbarg and

Trudinger [15]). However, we have only the continuity of Ua—u across the boundary dw and
n

as o is discontinuous across dw so must be Vu. Thus, from the relation (3.10) we can only

conclude that u'|,€ H'(Q) and v/ | o€ H'(Q\ w). 0O

Remark B.3.3. The above theorem shows the Gateaux differentiablity of the first eigenfunc-
tion u in the direction of the perturbative field #. The same proof modified, while considering
the deformations id+6 for sufficiently small 6, will show that the first eigenfunction is Frechét
differentiable with respect to 6. O

Theorem B.3.4. The shape derivative of A\, given an admissible perturbation 6, reads as

follows

N (w; 0) :/8 [o|Vul?] 6 - ndS (3.11)
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where [p] is the jump of ¢ across Ow, that is, [p] () = (p|aw-—p|ow+) (z) with ¢|a,- and

©|aw+ denoting, respectively the inner and outer trace of ¢ on Ow.

Proof: The variational formulation of the equation (3.5) is

/Qa(w)At (Vugo ®y) - Vw do = / Mwy) (ug o &) w d. (3.12)

Q

The integrands are continuosly differentiable with respect to the variable ¢t and thus we are

allowed to differentiate under the integral sign with respect to t at t = 0. Doing so, we obtain

/ o(w)Vu - Vw dx + / o(w) (dive I — ((DO)" + DF)) Vu - Vw df3.13)

:/Xluw d:)s+/)\1uw dz+/)\1uw divé dx .
Q Q

Q

Similarly, differentiating the relations (3.6) and the volume constraint |w;| = |w|, written as

/ J(®;) dx =1, with respect to t, we have, respectively,

/ 2uil dx + / u? div dx = 0 (3.14)
Q Q

/div@dx:/H-ndS:O. (3.15)
w Ow

Now, we shall use the above relations to deduce the expression for the shape derivative of A.

To begin with, we take w = u in (3.13) and use u as a test function in (3.2) to obtain

/ o(w)Vi - Vu dx + / o(w) (dive |Vu|*~2DOV, - Vu) dr=X\, +/ A (w)iu dx +/ Mu? divl da
0 Q 0 0

(3.16)
/ o(w)Vu - Vi de = M\ (w) / ut dx . (3.17)
Q Q
Subtracting (3.17) from (3.16) we get
/ o(w) (divé IVu|* — 2DOVu - Vu) dz =\ +/ Mu? dive dx (3.18)
Q Q

As Vu is smooth in each of w and 2\ @ we have the following identity (see [1, Theorem 3.1
equation (3.10)])

dive |Vul> — 2DV - Vu = —div (20 - VuVu — [Vu[*0) + 260 - Vulu (3.19)
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while we also have straightaway that
div (26 - VuVu) = 26 - VuAu + 2Vu -V (0 - Vu). (3.20)
So, from (3.19) and (3.20) we have
dive |Vu|> — 2DV - Vu = div (|Vul?0) — 2Vu -V (0 - V). (3.21)
This allows us to rewrite (3.18) as

N = / o(w)div (\Vu|2 ) —2Vu -V (0-Vu) dz — / M’ divl dz . (3.22)
Q Q

Now, if we take 0 - Vu as a test function in (3.2) and use the fact that 6 is identically zero

near 0f), we shall obtain

/Vu-V(@-Vu) dr = Al(w)/ue-udx
Q 0

_ 1 2

= 2/99 V(u) dx
1

= ——/u2d1v6’ dzx . (3.23)
2 Ja

So, we conclude from (3.22) and (3.23) that
N :/U(u))div (|Vu\29) dx . (3.24)
Q

The expression (3.11) follows by an integration parts on each of the domains w and Q \ @

while using the fact that ¢ is constant on each of these subdomains. O

B.4 Minimizing distribution in a ball

We know by the results of [4] and [9] that there exists minimizing configurations in a ball
which are radially symmetric. This means that the materials are to be distributed in various
spherical shells. We prove the following theorem by using the shape derivative calculated in

the previous section.

Theorem B.4.1. Whenever there is a layer of a preceding a layer of B (as we move radially

outward) N (w;0) < 0 for the radially symmetric perturbation 6 which moves the layer of (3
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inwards while conserving the volumes of a and (3.

Proof: Denote the reference configuration by ¢ and let u be the normalized first eigenfunc-
tion, which we know to be radially symmetric (see for instance [9]). Let us concentrate on a
layer wg of 3 which follows a layer of o and let us write its boundary as S; U Sy where S; and
S, are, respectively, the inner and outer boundaries. We may consider a radially symmetric
perturbation ¢ which is zero outside wy and conserves the volume of wy. The conservation of

mass condition (3.15) gives the relation
(0-n) s xper(Sy)+ (0 -n) s, xper(Sz) =0. (4.25)
Now, we have

)\/

/ o |Vul? 9~ndS+/ [o|Vul?] 0 - ndS
= ([ |Vul ] 0 - n) | s,per(Sy) + ([a |Vu|2] 0 - n) | s,per(.Ss)
= ([o|Vul] Ls,— [0 [Vul’] Ls,) (0 - n) |s,per(Ss) (4.26)

Let us analyze (4.26) for it’s sign. Denoting by S; and S;" the inner and outer surfaces of

S; with respect to wg, for i = 1,2, the transmission condition on S; reads

(oVu-n)g- = (oVu-n)g+ ,i=1,2.

. . . . ) Vu
In view of the fact that u is radially symmetric, we can write n = ﬁ’ and therefore, from
u
the above relation we conclude that

oVl [ = o [Vl [g5 i = 1,2, (127)
This allows to write the jumps in o |Vu|? as follows

o IVuP] s, = (19l Loy = IVul Ls ) (@ Vul) L
= (Z-1)Ivulls (o1va L

Therefore, the shape derivative in (4.26), can be written as

V= (2= 5){ (L) - (L) 0 mlapes. @

«v
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Observing that u is a decreasing function (see equation (3.18) in appendix A)) and that

Ug—z (see equation (3.17) n appendix A)) is a decreasing function in each region where o
is constant, it follows that o |Vu/| is non-decreasing in the radial direction on wy Therefore,
A assumes a negative sign if 6 is such that € - n is negative on S, and consequently 6 - n is
positive on S;. This means that 6 is opposite to the radial direction on Sy and follows the
external normal on the boundary surface S of wy, that is once again in the direction opposite
to the radial direction. This means that A can be decreased by moving exterior shells where
there is 3 towards the centre. This concludes the proof of the theorem. O

We now give further evidence to our conjecture in a ball by plotting numerically the
eigenvalues for some two-dimensional configurations in a disk.

In the first of these experiments, we consider a domain which is a disk of unit radius and
we assume that the material 3 to be placed in an annular region having internal and external
radius r; and ry respectively within a disk and the material «, in the complement of this
annulus within the unit disk. Let m be the proportion of the total volume that the material
3 occupies so that m = (13 — r?).

In figure B.1 we plot the first eigenvalue and the shape derivative as a function of the
internal radius taking @ = 1, § = 2 and proportions m = 0.1, 0.5, and 0.9. We have do the

same for a = 1, # = 200 in figure B.2.  We make the followings the observations.

First EigenValue Vs Internal Radius. (Concentric Rings) First EigenValue Vs Internal Radius. (Concentric Rings) First EigenValue Vs Internal Radius. (Concentric Rings)
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Figure B.1: Concentric disks for § = 2

In all the cases we see that the first eigenvalue is the smallest for 1 = 0 which corresponds
to taking the material 3 in the middle.

The only significant information which is contained in graph of the shape derivative
function is the sign of this function. The shape derivative is a directional derivative which
depends on the perturbation 6 and its sign is independent of the magnitude of §. In plotting
the graph of the shape derivative function we have chosen as 6, the radial perturbation
towards the centre which respects the area constraint. At those points r; where the shape

derivative function is negative we conclude, therefore, that the first eigenvalue can be reduced
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Figure B.2: Concentric disks for g = 200

by perturbing the ring inwards. This is in concordance with what is observed in the graph

of the first eigenvalue function.

In the second of these experiments, we consider a domain which is a disk of unit radius
and we put the material 3 in a smaller disk inside occupying a fraction m of the total area.
The centre of the smaller disk is displaced from the center of the domain. We can assume
the centre of the smaller disk is on the horizontal axis.

In figure B.3 we plot the first eigenvalue and the shape derivative as a function of the
displacement taking o = 1, # = 2 and proportions m = 0.1, 0.5, and 0.9. We have do the
same for a = 1, § = 200 in figure B.4.
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Figure B.3: Non-concentric disks configurations for g = 2

In plotting the graph of the shape derivative function we have chosen as 6, the pertur-
bation of the disk towards the centre of the domain. We see once again that the sign of
the shape derivative is in accordance with the behavior of the eigenvalue with respect to the
displacement. This is in concordance with what is observed in the graph of the first eigen-
value function. In general we see that we obtain smaller values for the eigenvalue when the
inner disk is near the centre of the domain. In the case when the inner disk occupies a large
proportion of the area the range of displacement is small and the eigenvalues vary very little

with the displacement. Although for coefficients of the same order displaced configurations
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Figure B.4: Non-concentric disks configurations for 3 = 200

seem to have smaller eigenvalues than when the disk is in the centre, we believe that this
does not have much significance because the eigenvalues vary very little and the numerical

result could be spurious because of numerical errors.

B.5 Minimal configurations in domains with less sym-

metry

We are of the firm belief that the arguments that we have used to show the existence of a
classical minimizer in a ball can be extended using the Steiner symmetrization to show the
existence of a classical solution in a domain with Steiner symmetry. If that be case, one might
be interested in knowing once again what are the distributions which give the minimal value
to our problem in such domains. We provide partial answers this by numerically studying
the behaviour of the eigenvalue for certain concentric configurations in a square-domain.

We consider a square domain and the material 3 is to be placed in the middle region of
three concentric squares. We plot the first eigenvalue as a function of the inner radius as a
function of the inner radius (where by inner radius, we half the length of the inner square)
for different proportions of o and 3 and for different orders of magnitude. The length of the
middle square is set considering the measure constraint. In the figure B.5, we have plotted
the first eigenvalue against the inner radius for & = 1 and 3 = 2 for the proportions 0.1, 0.5
and 0.9 of the total volume occupied by the material 3. In figure B.6, we have done the same
for « =1 and 3 = 200.

We see the same behaviour of the eigenvalue function as in the first experiment. In all

the cases we see that the first eigenvalue is the smallest when all the ( is placed inside.
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Figure B.5: Square configurations for § = 2
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Figure B.6: Square configurations for 5 = 200

B.6 Conclusions

On the basis of the above numerical results we reach the conclusion that in domains like balls
or squares it may be better to place the material with higher conductivity in the middle in
order to minimize the first eigenvalue. A task that we set for ourselves is to verify the truth
of this conjecture using the shape derivative calculus and to devise algorithms for automatic

discovery of the optimal shape.
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