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UN PROBLEMA EXTREMAL DE VALORES PROPIOS PARA UN

CONDUCTOR DE DOS FASES EN UNA BOLA.

El tema que trata esta memoria de t́ıtulo es minimizar el primer valor propio de un conductor
compuesto por dos materiales homogéneos, que son distribuidos en proporciones fijas dentro
de un dominio.

Los trabajos pioneros de F. Murat y L. Tartar [26] muestran que esta clase de problemas
del cálculo de variaciones podŕıan tener existencia de minimizadores sólo en una clase más
grande, llamada clase de materiales homogenizados o con micro-estructura, excluyendo a
priori distribuciones clásicas de material como soluciones optimales. Para dominios en una
dimensión, M. G. Krĕın [22] probó la existencia de una solución clásica. En dimensiones más
altas, cuando el problema se restringe a una bola, A. Alvino, P. L. Trombetti y P. L. Lions
[4] probaron que se pueden obtener soluciones clásicas radialmente simétricas. Sin embargo,
estos resultados han sido vistos como excepcionales, atribuidos a la completa simetŕıa del
dominio. Cox y Lipton [11], sólo estudiaron condiciones para un diseño óptimo del problema
asumiendo soluciones homogenizadas. Aún es desconocido si en dominios con simetŕıa parcial
es posible o no obtener una solución clásica que respete la simetŕıa del dominio.

Esperamos revivir el interés a esta pregunta dando una nueva prueba del resultado en
una bola. Creemos además que, en este caso, distribuir el material de mayor conductividad
en el centro es una solución óptima.

En los primeros caṕıtulos se introduce el problema y se hace un resumen cŕıtico del
estado del arte en lo que se refiere a la existencia de un minimizador, incluyendo algunas
referencias clásicas que plantean la no existencia de solución para problemas similares. Luego
se describen las principales herramientas utilizadas en el desarrollo de esta tesis. Se da un
énfasis particular a los re-arreglos de funciones. En el caṕıtulo cuarto se describe el problema
general y en el quinto un análisis exhaustivo del problema en una dimensión. En el caṕıtulo
sexto se desarrolla el caso de una bola N dimensional, otorgando una nueva prueba de la
existencia de una solución clásica radialmente simétrica. En el caṕıtulo séptimo se desarrolla
el cálculo de la derivada con respecto al dominio del primer valor propio, y en el octavo se
muestran experiencias numéricas asociadas al problema, en el caso de un disco en R

2. En
el caṕıtulo noveno se genera un análisis del signo de la derivada para el caso de una bola N
dimensional, otorgando resultados, con los cuales se espera concluir, en un futuro próximo,
que la solución del problema para este tipo de dominios, se encuentra disponiendo el material
de más alta conductividad en el centro.
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Chapter 1

Introduction

Let Ω be a bounded domain in R
n which is to be called the design region. Let m be a positive

number, 0 < m < |Ω|, where |Ω| is the total volume (Lebesgue measure) of the region Ω.

Two materials with conductivities α and β (0 < α < β) are distributed in arbitrary disjoint

measurable subsets A and B, respectively, of Ω so that A ∪ B = Ω and |B| = m. For any

such distribution the first eigenvalue in the spectral problem

{
−div((αχA + βχB)∇u) = λu in Ω

u = 0 on ∂Ω
. (0.1)

is obtained by minimizing the Rayleigh quotient (2.47) as below

λ(B) := min
u∈H1

0
(Ω)

∫
Ω
(αχA + βχB) |∇u|2 dx

∫
Ω
|u|2 dx

(0.2)

Let A := {B : B ⊂ Ω, B measurable, |B| = m} be the class of admissible domains for the

material with conductivity β. We are interested in the following eigenvalue minimization

problem

inf {λ(B) : B ∈ A} . (GP)

In this thesis we mainly study problem (GP) when the domain is a ball in R
N . Since the

geometry involved has radial symmetry, the adopted strategy consists in using rearrangement

techniques. In fact, in this work we give a new simpler proof of an existence result of a radially

symmetric admissible domain for the problem (GP) in a ball which is originally due to Alvino,

Trombetti and Lions [4]. We expect that these results could be generalized to domains with

less symmetries, such as squares or stars.
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CHAPTER 1. INTRODUCTION

One of the problems of interest is to characterize the solution. We conjecture that the

optimal solution consists in placing the material of conductivity β in the center of the ball.

A way to prove this conjecture is using the shape derivative of the eigenvalue functional

which is explicitly calculated. We later analyze this for certain configurations to substantiate

our conjecture. We give further evidence to this conjecture through some numerical results

obtained in a disc.

The numerical experiments that we carry out here are mainly in the disc and square in

R
2 for greater simplicity.
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Introducción

Sea Ω un dominio acotado de R
N y m un número positivo, 0 < m < |Ω|, donde Ω es

el volumen total (medida de Lebesgue) de la región Ω. Dos materiales de conductividad

α y β (0 < α < β) son distribuidos en subconjuntos arbitrarios de Ω disjuntos A y B

respectivamente, de tal manera que A∪B = Ω y |B| = m. Para cada una de estas formas de

distribuir los materiales α y β, analicemos el primer valor propio del problema espectral

{
−div((αχA + βχB)∇u) = λu en Ω

u = 0 sobre ∂Ω
, (0.3)

que se expresa mediante el cuociente de Rayleigh, por

λ1(B) := min
u∈H1

0
(Ω)

∫
Ω
(αχA + βχB) |∇u|2 dx

∫
Ω
|u|2 dx

(0.4)

Sea A := {B : B ⊂ Ω, B medible, |B| = m} la clase de dominios admisibles asociado a

esta configuración. Nos interesa el problema de minimizar el primer valor propio de (0.3),

esto es,

inf {λ1(B) : B ∈ A} . (GP)

En esta memoria, nos interesa principalmente estudiar el problema (GP) cuando el do-

minio es una bola en R
N . En virtud de la geometŕıa radial del problema, utilizaremos las

técnicas de rearreglos como estrategia para resolverlo. En efecto, en este trabajo se desarrolla

una demostración más simple de un resultado de existencia debido a Alvino, Trombetti y Li-

ons [4], el cual dice que, cuando el dominio es una bola, existe una solución radial para (GP)

en el conjunto de dominios admisibles A. Esperamos que estos resultados sean generalizables

a dominios con menos simetŕıas, como es el caso de cuadrados o estrellas.

Uno de los problemas que nos interesa es el de caracterizar la solución. Se conjetura que

la solución óptima consiste en distribuir todo el material de conductividad β en el centro de

la bola. Se espera poder potenciar esta conjetura en base a un estudio numérico riguroso que

9



CHAPTER 1. INTRODUCTION

incluye el cálculo de derivada de λ1 con respecto a la geometŕıa, en conjunto con el análisis

del signo de esta derivada, para algunos casos interesantes en R
N .

Por simplicidad, los experimentos numéricos fueron realizados en discos y cuadrados

planos, y se buscó confirmar la conjetura antes mencionada, aśı como describir el compor-

tamiento del primer valor propio en algunos dominios con menos simetŕıas.

10



Chapter 2

Background

In this section we show the background research that is currently in the literature con-

cerning the problem (GP) or (GP).

The pioneering work of F. Murat and L. Tartar [26] go a long way showing, in general,

some problems of optimal design may not admit solutions if microstructural designs are

excluded from consideration. Therefore, assuming, tacitly, that the problem of minimizing

the first eigenvalue of a two-phase conducting material with the conducting phases to be

distributed in a fixed proportion in a given domain, has no true solution in general domains,

S. Cox and R. Lipton only study conditions for an optimal microstructural design [11].

Although, the problem in one dimension has a classical solution (cf. Krĕın [22]) and, in

higher dimensions, the problem set in a ball can be deduced to have a radially symmetric

solution (cf. Alvino et. al. [4]), these existence results have been regarded so far as being

exceptional owing to complete symmetry.

2.1 A classical example of non existence

Let us consider the following minimization problem: We want to minimize the functional

J(x) =

∫ 1

0

(1 + x2)(1 + (ẋ2 − 1)2)dt. (1.1)

for x = x(t) smooth; x(0) = x(1) = 0. Examining the J functional, we observe that x ≡ 0

gives the value 2 to the J objective function (x ≡ 0 minimizes properly the factor (1 + x2),

but it does not adapt well to the factor with ẋ ). If we consider broken functions such as

the function in the figure (2.1) we see it is possible to improve initial guess for the minimum

11



CHAPTER 2. BACKGROUND 2.2. MURAT TARTAR

value of J . In fact, in this broken line we have that ẋ takes the values 1 and −1 alternately,

over sequent subintervals which divide the domain (0, 1) in a pair number of subintervals

with the same length. If we consider the function x that takes values between 0 and ǫ we

have

J(x) ≤ 1 + ǫ2.

On the other hand, for all admissible curves x(·), it is clear that J(x) ≥ 1 and J(x) = 1

if and only if x = 0 and ẋ = ±1. Then, the infimum is 1, and is not reached by any

admissible function and the minimizing sequence can be considered as oscillating functions

in subintervals that tend to zero.

2.2 Murat Tartar

The minimizing sequences related to the problem of optimal distribution of two conducting

materials with fixed proportions, in general, can develop micro-structures, that is, the value

that accomplish the infimum is an homogenized value. We show some examples where it

is natural to find a homogenized limit for the minimizing sequence, but finding a classical

solution (without homogenization) is not really natural.

2.2.1 First example

Let

K = {a ∈ L∞ (Ω) | 0 < α ≤ a(x) ≤ β a.e x ∈ Ω} . (2.2)

where Ω is an open bounded set in R
N . For each a ∈ K, we set A = aI with I the identity

matrix in R
N × R

N . Consider the unique solution of

{
−div(a(x)∇u) = f in Ω

u = g on ∂Ω
. (2.3)

12



CHAPTER 2. BACKGROUND 2.2. MURAT TARTAR

where f ∈ L2 (Ω), g ∈ H1/2(∂Ω) are given functions. We are interested in find the best

a ∈ K, in the sense a functional of the form

J(a) =

∫

Ω

|u− η|2 dx

is minimum, where η ∈ L2 (Ω) is also a given function.

The problem

inf
a∈K

J(a). (2.4)

is solve, theoretically, in a simple manner. In fact, let aǫ ∈ K be a minimizing sequence,

namely, such that

J(aǫ) −→ γ0 = inf
a∈K

J(a)

Denote uǫ the solution of (2.3) with a = aǫ. It is clear that uǫ is bounded in H1(Ω) and then,

excepting a subsequence,

uǫ −→ u0 in H1(Ω) weak, L2 (Ω) strong

and then ∫

Ω

|uǫ − η|2 dx = J(aǫ) −→
∫

Ω

∣∣u0 − η
∣∣2 dx.

The question that naturally appears is if u0 is solution of a problem of the form (2.3),

namely, if there is a coefficient a(x) ∈ L∞ (Ω) (or a matrix A ∈ L∞ (Ω)N×N , with A = a(x)I

) such that {
−div(a(x)∇u0) = f in Ω

u0 = g on ∂Ω
. (2.5)

Usually, we don’t have a reliable answer to this question.

The theory of homogenization [26] shows that u0 is the solution of a more general problem

of the form {
−div(A0(x)∇u0) = f in Ω

u0 = g on ∂Ω
.. (2.6)

but where A0(x) is a matrix which lives in a different set than K. Due to Spagnolo theorem

(3.5.3), A0 lives in [α; β]s, so there is no indication that A0 is necessarily a scalar matrix.

Furthermore, there are examples []where we don’t have the existence of a0 ∈ K, such that

J(a0) = infa∈K J(a), but as can be shown with the H-convergence theory

J(A0) = inf
a∈K

J(a).

13



CHAPTER 2. BACKGROUND 2.3. COX LIPTON

This problem is of those of calculus of variations which don’t have an optimum and need to

be relaxed in order to have a solution. In this case, a possible relaxation is

inf
A∈K̄

J̃(A)

where K̄ is the adherence of K in [α; β]s with respect to the H-convergence. Unfortunately,

it is not easy to find a simple characterization of K̄.

2.2.2 Second example

Let Ω ⊆ R
N be an open bounded set with regular boundary. We search for a set Ω1 ⊂ Ω

such that

a(x) =

{
α in Ω1

β in Ω\Ω1

and if u is a solution of the problem

{
−div(a(x)∇u) = f in Ω

f = 0 on ∂Ω
. (2.7)

then u minimizes

J(a) =

∫

Ω

F (x, u(x))dx.

Without smooth properties of Ω1, it could be impossible to find a solution.

Let aǫ be a minimizing sequence. Then aǫ ∈ [α; β]s and we can redo the analysis given in

the first example, showing that in this case

aǫ H-converges to A0

where in general A0 neither takes only the values α and β nor is a scalar matrix.

2.3 Cox Lipton

Roughly speaking, if c denotes the conductivity of some material, κ the specific heat, and

ρ its density, in Extremal eigenvalue problems for a two phase conductors Steven Cox and

14



CHAPTER 2. BACKGROUND 2.3. COX LIPTON

Robert Lipton [11] were interested in the study some extremal problems like

inf
c,̺=κρ∈adγ

λk(c, ̺) (3.8)

Where λ = λk(c, ̺) is the kth eigenvalue of the problem

{
−div(c∇v) = λ̺v in Ω

v = 0 on ∂Ω

and adγ is an admissible set of conductivities and capacities.

In great detail, they define the admissible set

adγ =

{
χ ∈ L∞ (Ω) | χ(x) ∈ {0, 1} a.e.,

∫

Ω

χdx = γ

}

and if χω denotes the indicator function of the subset ω ⊂ Ω, they define the capacity

̺+(χω) = ̺2 + χω(̺1 − ̺2)

and the conductivity of the material by

c+(χω) = c2 + χω(c1 − c2)

In the section 2 of their article [11], they established the existence of solutions of the

relax formulation of (3.8) associated to the parameters c+(χ) and ̺+(χ). They relaxed the

problem in the sense that they considered a bigger admissible set which is defined by the

weak-∗ limits in adγ regarding to L∞ (Ω),

θ ∈ ad∗γ =

{
ϑ ∈ L∞ (Ω) | 0 ≤ ϑ(x) ≤ 1 a.e.,

∫

Ω

ϑdx = γ

}

and they allow c to range over the class of matrix valued functionsMθ given in [26, Proposition

10]. This Mθ set is defined in the following way. For a matrix A∗ ∈ [α; β]s we consider for

every x ∈ R
N the eigenvalues (µ1(x), . . . , µN(x)) of the matrix A∗(x) and we define the values





µ+(θ) = θα + (1 − θ)β

µ−(θ) =
1

θ/α+ (1 − θ)/β

(3.9)

15



CHAPTER 2. BACKGROUND 2.4. KREĬN

Then A∗ ∈Mθ is equivalent to (µ1, . . . , µN) ∈ Kθ, where Kθ is defined by





µ−(θ) ≤ µj ≤ µ+(θ) j = 1, . . . , N
N∑
j=1

1
µj−α

≤ 1

µ−(θ) − α
+

N − 1

µ+(θ) − α
N∑
j=1

1
β−µj

≤ 1

β − µ−(θ)
+

N − 1

β − µ+(θ)

(3.10)

The new relaxed admissible set is then

G =
{
(θ, c) | θ ∈ ad∗γ, c ∈Mθ

}

Cox and Lipton showed, using the H convergence defined in (3.5.2) [26], that actually there

exists a relaxed solution, namely

inf
χ∈adγ

λk(c+(χ), ̺+(χ)) = min
(θ,c)∈G

λk(c, ̺+(θ))

2.4 Krĕın

The one-dimensional version of the problem GP admits a classical solution as shown by

Krĕın [22]. He exploits the equivalence of the original problem and a similar problem for

λ(B) := min
u∈H1

0
(Ω)

∫
Ω
|∇u|2 dx

∫
Ω

(αχA + βχB) |u|2
dx.

a vibrating membrane involving the objective functional

In chapter (5) we show in detail this development, giving a complete characterization of the

solution.

It is important to remark that the equivalence with the vibrating membrane problem is

not hold in higher dimensions. The work of Cox and McLaughlin [12, 13] show that the

vibrating problem, in any dimension, has a true solution.

2.5 Alvino Trombetti Lions

A. Alvino, G. Trombetti and P.L.Lions in the paper On Optimization Problems With Pre-

scribed Rearrangements review some results concerning functions with prescribed distribu-

tions and related optimization problems, giving also new applications of these tools.
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Concerning to us, they study a minimization problem of eigenvalues which is very related

to our problem. In fact, in (6.1) we reformulate the general problem (GP) in terms of the

notation given in [4] and with a straightforward application of [4, Corollary 3.2] we get a

classical spherical solution for the case when Ω is a ball in R
N . Let us enunciate the results

of our interest.

Let A > 0 and 1 < p <∞. Let 1 ≤ q ≤ Np/(N−p). Let ϕ ∈ L∞ (0, A) such that ϕ = ϕ∗

( namely, ϕ is a decreasing rearrangement) such that ϕ ≥ α a.e. Let Ω be an open set in R
N

with |Ω| = A and ν ∈ L∞
+ (Ω) defined by ν∗ = ϕ.

Alvino et. al. consider in [4, Corollary 3.2] the functional F : W 1,p
0 \ {0} −→ R such that

F (u) =

∫
Ω
ν |∇u|p

(∫
Ω
|u|q
)p/q

and they were interested in the quantity:

λ (ν,Ω) = inf
u 6=0

F (u) (5.11)

In the following propositions B is going to be the N -dimensional centered at the origin ball

with measure |B| = A. The following corollaries concern our work.

Corollary 2.5.1. Let Ω be an open set in R
N with Lebesgue measure |Ω| = A and let

ν ∈ L∞
+ (Ω). Then, there exists ν̃ ∈ L∞

+ (Ω) spherical symmetrical such that ν̃∗ = ν∗ y

λ (ν̃, B) ≤ λ (ν,Ω).

Corollary 2.5.2. There exists ν̄ ∈ L∞
+ (B) spherical symmetrical such that ν̄∗ = ϕ and

λ (ν̄, B) ≤ λ (ν,Ω) for all ν ∈ L∞
+ (Ω), with |Ω| = A and ν∗ = ϕ.

In order to prove those corollaries Alvino et. al. needed to prove the following theorem

which we have tried to generalize unsuccessfully to other type of domains B with partial

symmetries like the case of Steiner symmetries.

Theorem 2.5.3. Let f ≥ 0 in Lp(Ω), Alvino et. al. use that there exists a non-negative

maximal solution u ∈W 1,p(Ω) if

|Du| ≤ f a.e in Ω , u ∈W 1,p
0 Ω)

Then they choose q ∈ {1, Np/(N − p)} where p < N , they consider the following maxi-

mization problem:

I(Ω) = sup
{
‖u‖Lq(Ω) /f ∈ C(ϕ)

}
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Then, they prove that there exist functions u and f defined in B spherically symmetrical

such that f ∗ = ϕ, I(B) = ‖u‖Lp(Ω), u is of the form

u(|x|) =

R∫

|x|

f(s)ds

and

|Du| = f a.e in B , u ∈W 1,p(B) u ≥ 0 in B

2.6 Alvino Trombetti

In the paper [3] A lower bound for the first eigenvalue of an elliptic operator Alvino and

Trombetti proved the following inequality which permits a better understanding of our prob-

lem and to give a more meaningful proof of the main result (6.4.5). We remark in (6.5.1) we

have given another proof of the same inequality.

Lemma 2.6.1 (Lemma 1.2 [3]). If u ∈ Ĥ1(ν), we have

∫

Ω

ν(x) |∇u|2 dx ≥
∫

Ω♯

ν̃(wN |x|N )
∣∣∇u♯

∣∣2 dx. (6.12)

where Ĥ1(ν) denote the closure of C∞
0 (Ω) under the norm

‖u‖Ĥ1(ν) =

(∫

Ω

ν(x) |∇u|2
)2

dx,

u♯ is the Schwarz rearrangement of u, wN is the volume of the unitary ball in R
N and ν̃ is a

radially symmetric function defined through the relation,

∫

{u≥c}♯

1

ν̃(x)
dx =

∫

{u≥c}

1

ν(x)
dx ∀ c ∈ R. (6.13)

2.7 Continuity of eigenvalues

Our problem (GP) or (GP) relates to continuity properties of the first eigenvalue depending

of a specific parameter, in this case, where the β material is placed. In the following section

we give a large background of problems concerning continuity properties of different classes

of eigenvalues and parameters. This summary was made by Henrot in his book Extremum
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problems for Eigenvalues Of Elliptic Operators [16]. We just rewrite some of the propositions

written there.

In order to prove existence of minimizers or maximizers for eigenvalues or functions of

eigenvalues, we obviously need continuity of eigenvalues with respect to the variable. We

give some references of eigenvalues depending:

• either on the domain

• or on the coefficients of the operator.

The latter is simpler and classical. The former is less classical and it is related with the

so-called γ−convergence. Let us start with a classical result of eigenvalues of operators.

Theorem 2.7.1. Let T1 and T2 be two self-adjoint, compact and positive operators on a

separable Hilbert space H. Let µk(T ) and µk(T2) be their k-th respective eigenvalues. Then

|µk(T1) − µk(T2)| ≤ ‖T1 − T2‖ := sup
f∈H

‖(T1 − T2) (f)‖
‖f‖ . (7.14)

An immediate consequence of Theorem (2.7.1) is that strong convergence of operators

implies convergence of eigenvalues. We are now going to see that, in our particular context,

thanks to compactness properties of embeddings H1(Ω) →֒ L2(Ω) and L2(Ω) →֒ H−1(Ω),

actually simple convergence of resolvant operators implies convergence of eigenvalues.

We are concerned with Dirichlet boundary conditions. If L is any elliptic operator given

by (7.16) but considering constant coefficients, we denote by AL (or AΩ
L when we want to

emphasize dependence on the domain Ω) its resolvant operator, namely the operator from

L2(Ω) into L2(Ω) such that AL(f) is the solution of the Dirichlet problem u ∈ H1
0 (Ω),

Lu = f . When we consider a sequence of domains Ωn included in a fixed domain D, we

decide to extend the operators AΩ
L to L2(D) by setting

AΩ
L : L2(Ω) −→ L2(Ω)

f 7−→ ũ
, (7.15)

where u ∈ H1
0 (Ω) is the solution of Lu = f and ũ is its extension by zero outside Ω. For

sake of simplicity, we go on denoting by u the extension (instead of ũ).

Theorem 2.7.2. Let An, A be a sequence of resolvant operators from L2(D) to L2(D),

corresponding to a sequence of uniformly elliptic operators with Dirichlet boundary conditions.

We assume that, for every f ∈ L2(D), An(f) converges to A(f) in L2(D). Then An converges
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to A strongly (i.e for the operator norm). In particular, the eigenvalues of An converge to

the corresponding eigenvalues of A.

Continuity with variable coefficients

We can now state the continuity result for eigenvalues when the coefficients on the elliptic

operator vary. We consider a sequence of elliptic operators Ln defined by:

Lnu := −
N∑

i,j=1

∂

∂xi

(
ani,j(x)

∂u

∂xj

)
+ an0 (x)u. (7.16)

where the bounded functions ani,j are assumed to satisfy an uniformly ellipticity condition,

namely, the positive ellipticity constant can be chosen independently of n.

Theorem 2.7.3. Let Ln be a sequence of uniformly elliptic operators defined on an open set

D by (7.16). We assume that for fixed i, j, the sequence ani,j is bounded in L∞ and converge

almost everywhere to a function ai,j; we also assume that the sequence an0 is bounded in L∞

and converges weakly-∗ in L∞ to a function a0. Let L be the (elliptic) operator defined on

D as in (7.16) by the functions ai,j and a0. Then each eigenvalue of Ln converges to the

corresponding eigenvalue of L.

In one dimension, we can prove the same continuity result with weaker assumptions on

the convergence of the ai,j = a11 = σ(x). Actually weak-∗ convergence of the inverse is

enough in this case:

Theorem 2.7.4. Let Ω = (0, L), 0 < α ≤ β, and σn(x) be a sequence of functions satisfying

α ≤ σn(x) ≤ β. We denote by λk(σ) the eigenvalues of the operator − d
dx

(
σ(x) d

dx

)
. Then, if

1/σn converges weak-∗ in L∞(Ω) to 1/σ, each eigenvalue λk(σn) converges to λk(σ) and the

corresponding eigenfunctions converge weakly in H1(Ω) and strongly in LΩ.

Remark 2.7.5. From the min Rayleigh formulae, we see that σ 7−→ λk(σ) is upper-semi

continuous for the weak-∗ convergence (as infimum of continuous functions), but the previous

theorem shows that it is not continuous in general.

Continuity with variable domains (Dirichlet case)

Definition 2.7.6 (γ-convergence). Let D be a fixed ball, Ωn ⊆ D a sequence or open set.

We say Ωn γ-converges to Ω (and we write Ωn
γ−→ Ω) if, for every f ∈ L2(Ω), the solution
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ufΩn
of the Dirichlet problem for the Laplacian

{
Lu = f in Ωn

u = 0 on ∂Ωn

conver ges (strongly) in L2(D) to ufΩ, the solution on Ω (as usual, every function in H1
0 (Ω)

is extended by zero outside Ωn).

In other words, using the notation (7.15) , Ωn
γ−→ Ω, if ∀ f ∈ L2(Ω), AD△(Ωn)(f) −→

AD△(Ω)(f) in L2 (Ω). We gather in the following theorem different characterization of the

γ-convergence. See the references in [16].

Theorem 2.7.7. The following properties are equivalent.

(i) Ωn γ-converges to Ω.

(ii) Sverak: AD△(Ωn)(1) −→ AD△(Ω)(1) (i.e the convergence takes place for f = 1).

(iii) Mosco Convergence. H1
0 (Ωn) converges in the sense of Mosco to H1

0 (Ω) i.e

(M1) For every v ∈ H1
0 (Ω), there exists a sequence vn ∈ H1

0 (Ωn) such that vn −→ v

(strong convergence in H1
0 (D)).

(M2) For every sub-sequence vnk
of functions in H1

0 (Ωnk
) which converges weakly to a

function v ∈ H1
0 (D), then v ∈ H1

0 (Ω).

(iv) Distance to H1

0
: ∀ ϕ ∈ H1

0 (D), d(ϕ,H1
0 (Ω)) = lim

n−→+∞
d(ϕ,H1

0(Ωn)) (where d(ϕ,X)

denotes, as usual, the distance of ϕ to the convex set X).

(v) Projection on H1

0
: ∀ ϕ ∈ H1

0 (D), projH1
0
(Ω)(ϕ) = lim

n−→+∞
projH1

0
(Ωn)ϕ (where projX(ϕ)

denotes the projection of ϕ on the convex set X).

(vi) Γ-Convergence: JΩn Γ-converges to JΩ where, for any open set ω ⊂ D, Jω is defined

by

Jω =
1

2

∫

D

|∇v(x)|2 dx−
∫

D

fv(x)dx+

{
0 if v ∈ H1

0 (ω)

+∞ else

and the Γ-convergence means:

(G1) ∀ vn −→ v JΩ(v) ≤ liminf JΩn(vn).

(G2) ∃ vn −→ v JΩ(v) ≥ limsup JΩn(vn).
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(vii) (Strong) Convergence resolvant operators:
∥∥AD△(Ωn) −AD△

∥∥ (Ω) −→ 0.

Applying Theorem (2.7.2), we have:

Corollary 2.7.8. If any of the above items (i)-(vii) is true, then λ(Ωn) −→ λ(Ω).
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Chapter 3

Tools

In this chapter we show the main mathematical tools we use in this work. We give some

references and definitions for classical theorems, some of them with their proof. Also, we

explain in a more detailed fashion the results that are not really known.

In the section (3.1) we give detailed information about symmetrization through rearrange-

ments, giving the according definition in different dimensions. We also give the proof of basic

theorems such as equimeasurability (3.1.21) and Hardy-Littlewood Inequality (3.1.44) and

some other rearrangements results. Due to the complexity of the proof, for the important

Pólya and Szegö theorem (3.1.45) we just give the definition.

In the sections (3.2), (3.3), (3.4), we mainly show classic results of PDE, measure, and

convex analysis theory. We wrote this propositions in order to make a self contained book.

In (3.5) we give the definition of H-convergence and we declare the Spagnolo theorem. In

(3.6) we give some theorems written by Simon in [31] but without a very strict description

of their hypothesis.

3.1 Rearrangements

Symmetrization is a tool that can be useful in some minimization problems, in which it is

expected that the possible minimizer, if exists, has some kind of symmetry.

Roughly speaking, a rearrangement operation maps a measurable function into a new one

that is distributed in a similar way enjoying some additional symmetry properties. This kind

of property is also called symmetrization [19].

The common feature of all rearrangements is that if a given function f is transformed

into a new function f ∗, we want f ∗ has some desired symmetry property. This is done by a
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rearrangement of the level sets of f . Therefore the rearrangement of a function f is closely

tied to the rearrangement of the level-set of the function f .

Notation 3.1.1. Given a Lebesgue measurable set D we write its rearrangement as D∗.

The symbol D∗ will slightly vary its definition according to the required type of sym-

metrization. We remark the space where it is defined is not mentioned, so nothing prevents

the rearrangement set lies in a different vector space. Nevertheless, D∗ has common proper-

ties regardless the type of the definition of rearrangement:

R 1) If D = φ, then D∗ = φ.

R 2) If D 6= φ, then D∗ is a Lebesgue measurable set having the same Lebesgue measure

than D.

R 3) If D1 ⊆ D2, then

D∗
1 ⊆ D∗

2. (1.1)

Definition 3.1.2. Let Ω be a bounded domain in R
N and c a real number. Consider a

function f : Ω −→ R. We define the level set Ωf,c of f as

Ωf,c = {f > c} = {x ∈ Ω | f(x) > c} . (1.2)

The next step is defining the rearrangement of functions. From this moment on the

supreme of a function will always be understood as the essential supreme with the Lebesgue

measure.

Definition 3.1.3. Given the function f : Ω −→ R, we define its rearrangement as the

function f ∗ : Ω∗ −→ R given by:

f ∗(x) = sup
{
c | x ∈ Ω∗

f,c

}
. (1.3)

There are several types of rearrangements in the literature [19] depending of the wanted

symmetries and the number of variables of the rearrangement. In this document we want to

focus in the main properties of the two most well-known, the unidimensional and the Schwarz

symmetrization rearrangement.

Remark 3.1.4. In the literature [9, 19, 27] related to this research the level sets sometimes

are defined slightly different, with different type of inequalities. In [9] we define the level set
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with the non strict inequality,

Ωf,c = {x ∈ Ω | f(x) ≥ c} .

Thus, the rearrangement f ∗ defined in (1.3) could give different values. This two definitions

with the strict and non-strict sign coincide as we see in the proposition (3.1.41).

Now we define the specific kind of rearrangement we are going to use herein.

Definition 3.1.5 (Schwarz symmetrization of sets). We define the Schwarz symmetriza-

tion Ω♯ ⊆ R
N of the set Ω ⊆ R

N as the ball centered at the origin which has the same

Lebesgue measure of Ω.

Definition 3.1.6 (Decreasing symmetrization of sets). We define the decreasing rear-

rangement Ω∗ ⊆ R of the set Ω ⊆ R
N as the interval [0, |Ω|), where |Ω| denotes the

Lebesgue measure of the set Ω.

Definition 3.1.7 (Schwarz symmetrization). Let f : Ω −→ R be a measurable function.

The Schwarz rearrangement of f is the function f ♯ : Ω♯ −→ R defined as:

f ♯(x) = sup
{
c | x ∈ Ω♯

f,c

}
. (1.4)

Definition 3.1.8 (Decreasing symmetrization). Let f : Ω −→ R be a measurable function.

The (unidimensional) decreasing rearrangement of f is the function f ∗ : Ω∗ −→ R

defined as:

f ∗(x) = sup
{
c | x ∈ Ω∗

f,c

}
. (1.5)

Notation 3.1.9. From now on if A is a set in some R
d, |A| will denote its Lebesgue measure.

It will be important to know some characterizations and relations between the earlier

definitions. In this perspective we present the following propositions.

Proposition 3.1.10. Let Ω ⊆ R
N be bounded and let f : Ω −→ R be a measurable function.

Then the (unidimensional) decreasing rearrangement of f , is given by

f ∗(s) =






sup
x∈Ω

f(x) if s = 0

sup {t | |{f > t}| > s} if s > 0
(1.6)
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Proof. The point 0 always is in any set rearrangement. So the result follows when s = 0. If

s > 0 we have:

f ∗(s) = sup {c | s ∈ Ω∗
c}

= sup {c | s ∈ (0, |{f > c}|)}
= sup {c | |{f > c}| > s , s > 0}
= sup {c | |{f > c}| > s}

From now on wN will denote the Lebesgue measure of the unitary ball in R
N . By simple

computations it can be seen that the Lebesgue measure of the ball with R radio is given by

|B (0, R)| = RNwN .

We give a direct relation between the decreasing and the Schwarz symmetrization.

Proposition 3.1.11. Let f : Ω −→ R, then:

f ♯(x) = f ∗(wN |x|N). (1.7)

Proof.

f ♯(x) = sup {c | x ∈ Ω∗
c}

= sup {c | x ∈ B (0, Rc)}
= sup {c | |x| < Rc , wNRc = |Ωc|}
= sup

{
c | wN |x|N < wNR

N
c = |Ωc|

}

= f ∗(wN |x|N)

We are going to define a function that is very related to the rearrangement of a function.

This function can be understood like the inverse of the rearrangement.

Definition 3.1.12. Given the function f : Ω −→ R, we define its distribution function

as

µf(t) = |{f > t}| for t ≥ 0 (1.8)

where {f > t} = {x ∈ Ω : f(x) > t} and |·| is the Lebesgue measure.
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Remark 3.1.13. It is easy to see the function µf is decreasing and µf(t) = 0 for t ≥ sup(f)

and µf(t) = |Ω| for t ≥ inf f . Hence, the range of the distribution function µf (t) is the

interval [0, |Ω|].

3.1.1 Properties of the decreasing rearrangement

In the following pages we are going to see several properties of the decreasing rearrangement

we suggest to see more carefully. There are several classical results, some of them are ex-

plained in detail and some others are simply mentioned, as the Polya-Szego theorem (3.1.45).

Some of the proofs were taken from the Kesavan book [21]. Furthermore, we give some results

ad-hoc to our problem we have proved -or we just have rewritten- studying the proofs given

in [21].

Proposition 3.1.14. Let f : Ω −→ R be a function in L∞ (Ω). Then f ∗ is a decreasing

function.

Proof. Let s1 < s2. We have

{f > s2} ⊂ {f > s1} .

Then, if there exists some t > 0 such that |{f > s2}| > t, we will have |{f > s1}| > t. Hence

{t : |{f > s2}|} ⊂ {t : |{f > s1}|}. Taking the supreme we get

f ∗(s2) ≤ f ∗(s1).

Proposition 3.1.15. Let f : Ω −→ R be a function in L∞ (Ω). Then

f ∗ ∈ L∞ ([0, |Ω|)) (1.9)

Proof. We have:

• f ∗(0) = sup {t | | {f > t} | > 0} = sup
Ω
f ,

• f ∗(|Ω|) = sup {t | | {f > t} | > |Ω|} = inf
Ω
f .

Since f ∈ L∞ (Ω) and f ∗ is decreasing it follows that f ∗ ∈ L∞ (Ω∗), i.e. f ∗ ∈ L∞ ([0, |Ω|)).

Proposition 3.1.16. Let f : Ω −→ R be a function in L∞ (Ω). Then f ∗ is a right continuous

function.
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Proof. Let s̄ ∈ [0,Ω] and let ǫ > 0. Because f ∗ is a decreasing function, we must show there

exists h > 0 such that

∀ s ∈ [s̄, s̄+ h] f ∗(s̄) − f ∗(s̄+ h) ≤ ǫ.

By definition of f ∗, there exists t > 0 such that t + ǫ > f ∗(s̄), f ∗(s̄) > t and µf(t) =

| {f > t} | > s̄.

Choosing h > 0 such that | {f > t} | > s̄+h, we have |{f > t}| > s ∀ s ∈ [s̄, s̄+ h] then

it follows f ∗ (s) ≥ t ∀ s ∈ [s̄, s̄+ h], therefore

f ∗(s̄) − f ∗(s) ≤ (t+ ǫ) − t = ǫ.

Proposition 3.1.17. T : f 7−→ f ∗ is a increasing map, i.e. if f ≤ g, where f and g are real

valued functions on Ω, then f ∗ ≤ g∗ [21].

Proof. Let f ≤ g be two real valued functions. Because {f > t} ⊂ {g > t}, then if | {f > t} | >
s it follows | {g > t} | > s. Therefor {t | | {f > t} | > s} ⊂ {t | |{g > t}| > s}. Taking

supreme over t we obtain f ∗(s) ≤ g∗(s).

Proposition 3.1.18. Let f : Ω −→ R be a function in L∞ (Ω). Let s = | {f ∗ > t} |. Then

f ∗(s) ≤ t and f ∗(s+ ǫ) < t ∀ ǫ > 0. (1.10)

Proof. Let s = | {f ∗ > t} |. Since f ∗ is a decreasing function and f ∗(0) = sup f , it follows

that {f ∗ > t} is an interval in the form [0, a) or [0, a]. Hence a = s and ∀ ǫ > 0 we have

f ∗(s− ǫ) ≥ t y f ∗(s+ ǫ) ≤ t.

Using right continuity it follows f ∗(s) ≤ t.

Suppose f ∗(s + ǫ) < t ∀ ǫ > 0 was not true. Thus, there would exist ǫ > 0 such that

f ∗(s+ ǫ) = t and since f ∗(s) ≤ t and f ∗ is decreasing, we would have f ∗(s + x) = t ∀ x ∈
[0, ǫ]. Then | {f ∗ > t} | ≥ | {[0, s+ ǫ]} | > s which is a contradiction.

The following property shows the inverse relation between the distribution function and

the rearrangement of a function.
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Proposition 3.1.19. Let f : Ω −→ R be a function in L∞ (Ω). Let s = | {f ∗ > t} | Then

f ∗(s) = t. (1.11)

Proof. We know from the previous proposition (3.1.18) that

f ∗(s) ≤ s.

Let suppose by contradiction that f ∗(s) < t.

By definition of f ∗, we would have | {f > t} | ≤ s. The inequality satisfies strictly because

if it holds | {f > t} | = s, by definition of f ∗ we could take a sequence tn 1 t such that

| {f > tn} | > s, which would lead to f ∗(s) ≥ tn ∀ n. But the former implies f ∗(s) ≥ t,

which is a contradiction. Therefor, supposing f ∗(s) < t (our main contradiction hypothesis),

we have | {f > t} | < s.

Now let take ǫ > 0 such that | {f > t} | < s − ǫ. It follows that f ∗(s − ǫ) < t. If we

suppose that f ∗(s− ǫ) ≥ t, we could take a sequence tn ր t such that | {f > tn} | > s− ǫ and

since {f > tn} ց {f > t}, by measure continuity (and the finite Lebesgue measure of Ω) the

former would lead to | {f > t} | ≥ s. Therefor, supposing f ∗(s) < t (our main contradiction

hypothesis), we have f ∗(s−ǫ) < t. But this is a contradiction because f ∗(s−δ) ≥ t ∀ δ > 0.

Thus, our main contradiction hypothesis is wrong, so we concluded that f ∗(s) = t.

Definition 3.1.20 (Equimeasurable). Two real valued functions (with possibly different

domains of definition) are said to be equimeasurable if they have the same distribution

function. Equimeasurable functions are said to be rearrangements of each other (see [21]).

Theorem 3.1.21 (Equimeasurability). The functions f : Ω −→ R and f ∗ : Ω∗ −→ R are

equimeasurable, ie. for all t,

| {f > t} | = | {f ∗ > t} | (1.12)

Proof. Let s = | {f ∗ > t} |. We know from the proposition (3.1.19) that f ∗(s) = t. It is

easy to see that | {f > t} | ≥ s. In fact, taking a sequence ǫ % 0, by definition of f ∗ it

follows | {f > t− ǫ} | > s. Since {f > t− ǫ} % {f > t} , by measure continuity (and the

finite measure of Ω) we have | {f > t} | ≥ s.

Because f ∗(s+ ǫ) < t ∀ ǫ, we have | {f > t} | ≤ s+ ǫ ∀ ǫ. Therefore,

| {f > t} | = s = |{f ∗ > t}| .
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Corollary 3.1.22. Let f : Ω −→ R. We have

| {f > t} | = | {f ∗ > t} |
| {f ≥ t} | = | {f ∗ ≥ t} |
| {f < t} | = | {f ∗ < t} |
| {f ≤ t} | = | {f ∗ ≤ t} |






(1.13)

Proof. The first relation has already been proved. The rest follow easily by complementation

and suitable limiting arguments.

Remark 3.1.23. From the proposition (3.1.19) and the equimeasurability we have f ∗(µ(t)) =

t ∀ t

We can extend the equimeasurability (3.1.21) property to the Lp sense. The following

propositions leads in this direction.

Corollary 3.1.24. Let f ∈ Lp(Ω) with 1 ≤ p ≤ ∞. If f ≥ 0 then f ∗ ∈ Lp([0, |Ω|]) and

‖f‖p,Ω = ‖f ∗‖p,(0,|Ω|) (1.14)

Proof. If p = ∞, then by definition ‖f ∗‖p,Ω = sup
s∈[0,|Ω|]

{|f ∗(s)|} = f ∗(0) = sup
t≥0

{µf (t) > 0} =

‖f‖∞.

Let 1 ≤ p <∞. By equimeasurability, both f and f ∗ have the same distribution function

and as both functions are positive, we can use the cake slide theorem (3.3.1) to obtain:

‖f‖pp,Ω =

∫

Ω

f p(x)dx

= ‖f ∗‖p,(0,|Ω|) .

This result is also true without the non-negativity condition. In fact, as a consequence of

the equimeasurability (3.1.21), we have the following general powerful result.

Theorem 3.1.25. Let f : Ω −→ R be measurable. Let F : R −→ R be a positive Borel

measurable function. Then

∫

Ω

F (f(x))dx =

|Ω|∫

0

F (f ∗(s))ds (1.15)
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Proof. Let E = [t,∞) and set F (ξ) = χE(ξ) where χE is the characteristic function of E.

Then
∫

Ω

F (f(x))dx = |{f > t}| = |{f ∗ > t}| =

|Ω|∫

0

F (f ∗(s))ds

Similarly, the result holds for F = E where E is any interval and hence if E in any Borel

set, by standard arguments. If F is any non-negative Borel function, it can be expressed as

the limit of an increasing sequence {Fn} of non-negative simple functions F . Thus, for each

n we have
∫

Ω

Fn(f(x))dx =

|Ω|∫

0

Fn(f
∗(s))ds.

We can pass to the limit as n −→ ∞ to get (1.15) using the monotone convergence theorem.

Corollary 3.1.26. Let F : R −→ R be a Borel function and let f : Ω −→ R be such that

F (f) = F ◦ f ∈ L1 (Ω). Then F (f ∗) ∈ L1 ((0, |Ω|)) and (1.15) is still valid.

Proof. We write F = F+ − F− and both F+ and F− are non-negative Borel functions and

so (1.15) holds for each of then in place. If F (f) ∈ L1 (Ω), then both
∫
Ω
F+(f(x))dx and∫

Ω
F−(f(x))dx are finite and we can subtract the relation for F− form that of F+ to get

(1.15).

Corollary 3.1.27. Let f ∈ Lp (Ω) for 1 ≤ p ≤ ∞. Then f ∗ ∈ Lp ((0, |Ω|)) and the corre-

sponding Lp norms are equal.

Proof. If p 6= ∞ take F (t) = |t|p in the preceding theorem. If p = ∞ use corollary (3.1.24)

for the function |f |.

Remark 3.1.28. Since the proofs of Theorem (3.1.25) and its consequences depended only

on the equimeasurability, these results also hold for other types of rearrangements which have

the equimeasurable property.

Now we prove another important property of the decreasing rearrangement which is a

consequence of Theorem 3.1.21.

Lemma 3.1.29. Let l > 0 and f : [0, l] −→ R be a decreasing function. Then f = f ∗ a.e.

Proof. Let s ∈ [0, l]. Since f is a decreasing function we have

| {f > f(s)} | ≥ s.
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Hence, by definition of f ∗

f ∗(s) ≥ f(s).

Let now s ∈ [0, l] and t such that | {f > t} | ≥ s. By equimeasurability (3.1.21), this holds

for t = f ∗(s). Since f is decreasing we have

f(x) > f ∗(s) ∀ x ∈ [0, s),

particularly for x = s − h, with h small enough. Since f is monotone, there are at most a

numerable set of discontinuity points, so they have null Lebesgue measure , therefore

f(s) ≥ f ∗(s) a.s.

Corollary 3.1.30. Let f : Ω −→ R and g : Ω̃ −→ R be equimeasurable functions with

Ω ⊆ R
N , Ω̃ ⊆ RM and |Ω| = |Ω̃|. Then

f ∗ = g∗ (1.16)

Proof. From equimeasurability we have f ∗ and g∗ are decreasing real equimeasurable valued

functions. Since f ∗ = (f ∗)∗ the result follows from the previous lemma (3.1.29) applied to

the rearrangements f ∗ and g∗.

Proposition 3.1.31. Let v , w : [0, l] −→ R be two equimeasurable decreasing functions.

Then v = w a.s.

Proof. By the preceding lemma (3.1.29) v = v∗ y w = w∗ a.s. Since they are equimeasurable

| {v∗ > t} | = | {w∗ > t} |.

From the corollary (3.1.30) we obtain v∗ = w∗.

The following lemma is very useful. It says an increasing function goes through the

rearrangement.

Lemma 3.1.32. Let ψ : R −→ R be an increasing function. Consider f : Ω −→ R where

Ω ⊂ R
n is a bounded set. Then

ψ(f ∗) = (ψ(f))∗ a.s . (1.17)
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Proof. Due to the previous lemmas and propositions it is enough to verify ψ(f ∗) and (ψ(f))∗

are increasing equimeasurable functions in [0, |Ω|]. Since the decreasing rearrangement map

and ψ preserve the order, the increasing property follows straightforward.

Let F (y) = χ(t,∞) ◦ ψ(y) = χ{ψ(f(y)>t)}, which is a positive and measurable function.

Hence

|{ψ(f ∗) > t}| =

|Ω|∫

0

χ{ψ(f∗)>t}(s)ds,

by the equi-integrability theorem (3.1.25)

|Ω|∫

0

χ{ψ(f∗)>t}(s)ds =

∫

Ω

χ{ψ(f)>t}(x)dx = |{ψ(f) > t}| ,

and by the equimeasurability property (3.1.21)

|{ψ(f) > t}| = |{(ψ(f))∗ > t}| ,

concluding that ψ(f ∗) and (ψ(f))∗ are equimeasurable.

3.1.2 Some other properties of rearrangements

Here we want to give some other properties of the rearrangements of non general knowledge

which are ad hoc for our work.

Proposition 3.1.33. Let c : Ω −→ R be a constant function in Ω (let say c), then

c∗(s) = c ∀ s ∈ [0, |Ω|] . (1.18)

Proof. For s ∈ [0, |Ω|]
c∗(s) = sup {t | |{c > t}| > s} = c

The following property will be very important in chapter 6, one the main chapters of this

thesis.

Proposition 3.1.34. If Ω = A ∪B, A ∩ B = φ and α < β, then

(αχA + βχB)∗ (s) = βχ[0,|B|) + αχ[|B|,|Ω|). (1.19)
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Reciprocally, if f ∗ = βχ[0,b) + αχ[b,|Ω|), then

f = αχA + βχB. (1.20)

with A ∪B = Ω, A ∩ B = φ and |B| = b.

Proof. From equimeasurability, since

| {f ≥ β} | = | {f = β} | = | {f ∗ ≥ β} |

and

| {f > β} | = 0 = | {f ∗ > β} |,

we have

| {f = β} | = | {f ∗ = β} |

Doing a similar analysis for the level set {f ≤ α} we obtain

| {f = α} | = | {f ∗ = α} |

Since f has only 2 different levels of values, using the equalities showed above we deduce

that f ∗ also has only two different values, namely f ∗ is a step function with the values of f

and preserving the measure of the places where is α and β.

Sometimes it will be useful to symmetrize but considering an increasing function.

Definition 3.1.35. Let Ω ⊂ R
n be a bounded set and f : Ω −→ R a bounded measurable

function. The (unidimensional) increasing rearrangement of f is the function f∗ :

[0, |Ω|] −→ R defined by:

f∗(s) =





sup(f) if s = |Ω|
inf {t | s ∈ {f < t}∗} if s < |Ω|.

(1.21)

It is not so difficult to prove similar properties we have stayed for the decreasing rear-

rangement. The following lemma resumes the properties of the increasing rearrangement.

We recommend to see [21, 19] for further information.

Lemma 3.1.36. Given a function f : Ω −→ R, the increasing rearrangement f∗ is a in-

creasing function and is equimeasurable with the function f .
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In the next lines, we give two properties that relates the decreasing with the increasing

rearrangement.

Proposition 3.1.37.

f ∗ = − (−f)∗ a.s. (1.22)

Proof. We have

|{f ∗ > t}| = |{f > t}|
= |{−f < −t}|
= |{(−f)∗ < −t}|
= |{− (−f)∗ > t}| .

Then both f ∗ and − (−f)∗ are decreasing and equimeasurable functions, due to the propo-

sition (3.1.31) it follows they are equals a.s.

Proposition 3.1.38.

(f∗)
∗ = f ∗ a.s. (1.23)

Proof. We have

|{(f∗)∗ > t}| = |{f∗ > t}|
= |{− (−f)∗ > t}|
= |{(−f)∗ < −t}|
= |{− (−f)∗ > t}|
= |{−f < −t}|
= |{f > t}|
= |{f ∗ > t}|

Then both f ∗ and (f∗)
∗ are decreasing and equimeasurable functions, due to the proposition

(3.1.31) it follows they are equals a.s.

The following proposition will be demanding in the important proposition (6.3.1) which

is a kind of generalization of the Pólya Szegö inequality (3.1.45).

Proposition 3.1.39. Let Ω ⊆ R
N be bounded and let f : Ω −→ R be an integrable function.

Let E ⊆ Ω be a measurable subset. Then

∫

E

f(x)dx ≤
∫ |E|

0

f ∗(s)ds (1.24)
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and equality holds if, and only if,

(f |E)∗ = f ∗|[0,|E|] a.e.

Proof. Here we rewrite the proof given in [21, Proposition 1.2.2]. Let g = f |E. If s ∈ [0, |E|]
and if | {f > t} | < s, then

| {g > t} | = | {f > t} ∩E| < s.

Thus

{t | | {f > t} | < s} ⊆ {t | | {g > t} | < s}

and so g∗(s) < f ∗(s). Thus

∫

E

f(x)dx =

∫ |E|

0

g∗(s)ds ≤
∫ |E|

0

f ∗(s), (1.25)

which proves (1.24). If equality holds in (1.24), then we have equality throughout in (1.25)

and this is possible if, and only if, g∗ = f ∗ a.e. in E the result is proved.

Proposition 3.1.40. Let Ω ⊆ R
N be bounded and let f : Ω −→ R be an integrable function.

Then
r∫

0

f ∗ = max





∫

A

f | A is a Borelian Set , A ⊂ Ω , |A| = r



 . (1.26)

Proof. From the previous proposition (3.1.39)

∫

A

f ≤
r∫

0

f ∗.

Thus,

max





∫

A

f | A is a Borelian set, A ⊂ Ω , |A| = r



 ≤

r∫

0

f ∗

|A| = |{f ∗ > r}| = r.

Define

g =

{
f if f > f ∗ (r)

0 otherwise.
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We have

∫

Ω

g =

∫

A

f,

∫

Ω

g =

r∫

0

g∗

and

g∗ = (g|A)∗ = f ∗|[o,r].

The next result shows in the definition (3.1.3) of function rearrangements we can consider

level sets with an ≥ sign instead of the strict inequality.

Lemma 3.1.41. Let f : Ω −→ R. Let s ∈ [0, |s|]. Then

sup {c | s ∈ {f ≥ c}∗} = sup {c | s ∈ {f > c}∗} . (1.27)

In other words

f ∗(s) = sup {c | s ∈ {f ≥ c}∗} . (1.28)

Proof. Define

l(s) = sup {c | s ∈ {f ≥ c}∗}
g(s) = sup {c | s ∈ {f > c}∗}

Since

{f > c} ⊆ {f ≥ c}

By the monotonicity property (1.1) of the rearrangement of sets we have

{f > c}∗ ⊆ {f ≥ c}∗

Taking supreme over c we have

g(s) ≤ l(s)

Let cn ր l(s) such that s ∈ {f ≥ cn}∗. We can redefine cn such that

s ∈ {f > cn}∗ and cn ր l(s)

37



CHAPTER 3. TOOLS 3.1. REARRANGEMENTS

Then, for all ǫ > 0 there exists some n0 such that for all n ≥ n0 we have

l(s) ≤ cn + ǫ and s ∈ {f > cn}∗

Hence, since cn ≤ g(s) ∀ n
l(s) ≤ g(s) + ǫ ∀ ǫ > 0

and therefore

l(s) = g(s)

Lemma 3.1.42. Let f : Ω −→ R with f(x) 6= 0 a.e . Then

(
f−1
)∗

= (f∗)
−1 . (1.29)

Proof. Let s ∈ [0, |Ω|]. We have

(
f−1
)∗

(s) = sup
{
c | s ∈

{
f−1 > c

}∗}

= sup {c | s ∈ {1/c > f}∗}
= (inf {δ | s ∈ {f < δ}∗})−1

= f−1
∗ (s)

The following property will be strongly required in the proof of the main theorem showed

in section (6.4).

Corollary 3.1.43. Let f : Ω −→ R with f(x) 6= 0 a.e . If θ = f ∗,then

(
f−1
)∗

=
(
θ−1
)∗
. (1.30)

Proof. From the proposition (3.1.38) we have f ∗ = (f∗)
∗ and also is easy to see that

f∗ = (f ∗)∗
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using the preceding lemma (3.1.42) we have

(
θ−1
)∗

= (θ∗)
−1

= (f∗)
−1

=
(
f−1
)∗

3.1.3 Main theorems of rearrangements

Here we show the classical inequality properties of rearrangements such as Hardy-Littlewood

and Pólya - Szegö inequalities and some isoperimetric inequalities that were useful in this

work. This properties leaded us to get new proofs of the properties from Alvino and Trom-

betti [3, Lemma 1.2] and the Alvino, Trombetti and Lions [4, Theorem 3.1]. We redo this

propositions in order to enlighten or get a better understanding of the general problem (GP)

when we are not in a fully symmetrical case (such as the case when Ω is a ball). We expect

this tools give us some knowledge of Steiner symmetries, for instance, the case of square

domains. See [21, 19, 8] for further information.

Theorem 3.1.44 (Hardy- Littlewood). Let Ω be a bounded set, p, q > 0 such that 1
p
+ 1

q
= 1.

Let f ∈ Lp (Ω), g ∈ Lq (Ω). Then

∫

Ω

fg ≤
|Ω|∫

0

f ∗g∗. (1.31)

And
∫

Ω

fg ≥
|Ω|∫

0

f∗g
∗. (1.32)

Proof. The proof of the first equation can be checked in [21, Theorem 1.2.2]. We will prove

the second inequality, supposing valid the first one.

Since f∗ = − (−f)∗, using Hardy-Littlewood inequality (1.31) for −f and g we obtain

|Ω|∫

0

(−f)∗ g∗ ≥
∫

Ω

−fg
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hence
|Ω|∫

0

f∗g
∗ ≤

∫

Ω

fg

Theorem 3.1.45 (Pólya - Szegö ). [21, Theorem 2.3.1][27]. Let 1 ≤ p < ∞, Ω a bounded

domain and u ∈W 1,p
0 (Ω) such that u ≥ 0. Then

∫

Ω♯

∣∣∇u♯
∣∣p dx ≤

∫

Ω

|∇u|p dx. (1.33)

In particular, the Schwarz symmetrization u♯ is in W 1,p
0

(
Ω♯
)
.

The following definitions and propositions concerns the framework of isoperimetric in-

equalities.

Definition 3.1.46 (The de Giorgi Perimeter). [21, Chapter 2] Let Ω ⊆ R
N be an open set

and let E ⊆ Ω be a measurable set. The de Giorgi perimeter of E with respect to Ω

, denoted PΩ(E), is defined as the total variation of the characteristic function χE of E. In

mathematical terms,

PΩ(E) =

sup
{

〈∇χE ,φ〉
‖φ‖

| φ ∈ (D(Ω))N , φ 6= 0
}

sup
{

R

E
div(φ)

‖φ‖
| φ ∈ (D(Ω))N , φ 6= 0

}





(1.34)

where

‖φ‖2 = max
x∈Ω

{
N∑

i=1

|φi(x)|2 | φ = (φ1, . . . , φN)

}
. (1.35)

If Ω = R
N we write P (E).

One could also interpret PΩ(E) as the surface area of that part of the boundary of E

contained in Ω where a normal can be unambiguously defined. If Ω were smooth, then, by

the divergence theorem, ∫

Ω

div(φ)dx =

∫

∂Ω

φ · ndS

where n is the outer normal on ∂Ω. It clear that

∫

∂Ω

φ · ndS ≤ ‖φ‖
∫

∂Ω

dS
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and since we can choose φ = n in the arguments of the supreme defined in (1.34) we have

PRN (Ω) = P (Ω) = |∂Ω|. (1.36)

and thus P (Ω) would be the usual surface area of ∂Ω.

Theorem 3.1.47 (Isoperimetric Inequality). The Schwarz rearrangement u♯ of the function

u satisfies

P ({u ≥ t}) ≥ P (
{
u♯ ≥ t

}
). (1.37)

and

P (
{
u♯ ≥ t

}
) = Nw

1

N

N µu(t)
1− 1

N . (1.38)

which correspond to the perimeter of the ball
{
u♯ ≥ t

}
, being µu(t) the distribution function

of u defined in (3.1.12) and wN the volume of the unit sphere in R
N

Theorem 3.1.48 (Fleming - Rischell ). [21, Theorem 2.2.1] Let Ω ⊆ R
N be an open set

and let u ∈W 1,1(Ω). Then

∫

Ω

|∇u| =

∫ ∞

−∞

PΩ ({u > t}) dt. (1.39)

Theorem 3.1.49 (Co-area formula). [21, formula (2.2.1)]

∫

Ω

g(x) |∇u(x)| dx =

∞∫

−∞

∫

u=s

g(x)dσ(x)ds. (1.40)

where σ(x) stands for the integration with respect to an appropriate (N − 1)− dimensional

measure on the level set {u = t}.

Theorem 3.1.50. [21, Theorem 2.2.3] Let u ∈ D(Ω) be such that u ≥ 0. Let µ denote the

distribution function of u. Then, for almost every t in the range of u, we have

− µ′(t) =

∫

{u=t}

dσ

|∇u| =

∫

{u♯=t}
dσ

|∇u♯| (1.41)

where u♯ is the Schwarz symmetrization of u defined in (3.1.7).
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3.2 Eigenvalue value problem for second order linear

elliptic operators

Let Ω be a domain in R
n and consider the the elliptic operator in the divergence form

Lu = −
n∑

i,j=1

(
aijuxi

)
xj

(2.42)

where aij ∈ L∞ (Ω). We suppose the operator is uniformly elliptic and it satisfies the sym-

metry property:

aij = aji ∀ i, j (2.43)

The operator L is symmetric, hence, in particular, the bilinear form B [, ] satisfies

B [u, v] = B [v, u] ∀ u, v ∈ H1
0 (Ω)

where

B [u, v] =

∫

Ω

n∑

i,j=1

(
aijuxi

vxj

)
(2.44)

Theorem 3.2.1 (Eigenvalues of elliptic operators [14]). We have the following properties:

i. Each eigenvalue of L is real.

ii. Besides, if we repeat the eigenvalue according to its multiplicity (which is finite), we

have

Σ = {λk}∞k=1

where

0 < λ1 ≤ λ2 ≤ λ3 ≤ . . .

and

λk −→ ∞ when k −→ ∞

iii. Finally, there exists an orthonormal base {wk}∞k=1 of L2 (Ω), where wk ∈ H1
0 (Ω) is an

eigenfunction corresponding to the eigenvalue λk, namely, the base satisfies

{
Lwk = λkwk in Ω

wk = 0 on ∂Ω
(2.45)

for each k = 1, 2, . . .
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Proof. We know the unique weak solution u ∈ H1
0 (Ω) of the problem

B [u, v] =

∫

Ω

fv ∀ v ∈ H1
0 (Ω) (2.46)

satisfies

λ ‖u‖2
H1

0
(Ω) ≤ B [u, u]

≤ C ‖f‖L2(Ω) ‖u‖L2(Ω)

≤ C ‖f‖L2(Ω) ‖u‖H1
0
(Ω)

Hence,

‖u‖H1
0
(Ω) ≤ C ‖f‖L2(Ω)

Using the compact embedding (3.2.2) of H1
0 (Ω) in L2(Ω) and defining the operator K :

L2(Ω) −→ L2(Ω) which associates to each f the only weak solution u of the problem (2.46),

but considering it as a function in L2(Ω), it follows that K is a compact operator.

Furthermore, K is selfadjoint and injective:

• Selfadjoint:

〈K(f), g〉L2(Ω) =

∫

Ω

K(f)g

= B [f, g]

= B [g, f ]

=

∫

Ω

K(g)f

= 〈K(g), f〉L2(Ω)

= 〈f,K(g)〉L2(Ω)

• Injective:

If K(f) = 0 ⇒ B [K(f), v] =
∫
Ω
fv = 0∀ v ∈ H1

0 (Ω).

Since H1
0 (Ω) is dense in L2(Ω) it follows f = 0

If we apply the spectral theory of compact selfadjoint operators to the operator K it

follows there is an orthonormal base {wk} of L2(Ω) and {µk} such that:

• K(wk) = µkwk.
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• µk −→ 0, µk > 0 ∀ k.

• Each µk has finite multiplicity.

Then

B [K(wk), v] =

∫

Ω

wkv

⇒
B [wk, v] =

1

µk

∫

Ω

wkv

Which is equivalent to 



Lwk =
1

µk
wk in Ω

wk = 0 on ∂Ω

Theorem 3.2.2 (Rellich). We have the following well known inclusion property.

• For any bounded open set Ω, the embedding H1
0 (Ω) →֒  L2(Ω) is compact.

• If Ω is a bounded open set with Lipschitz boundary, the embedding H1(Ω) →֒ L2(Ω) is

compact.

Theorem 3.2.3 (Positiveness of the first eigenfunction). Let us assume that Ω is a regular

connected open set. Then the first eigenvalue λ(L,Ω) of the elliptic operator given in (2.42)

is simple and the first eigenfunction u has a constant sign on Ω. Usually, we chose it to be

positive on Ω.

Actually, the previous theorem is a consequence of the Krĕın-Rutman Theorem which is

an abstract result we recall here.

Theorem 3.2.4 (Krĕın Rutman). Let E be a Banach space and C be a closed convex cone

in E with vertex at O, non-empty interior Int(C) satisfying C ∩ (−C) = {O}. Let T be a

compact operator in E which satisfies T (C\ {O}) ⊆ Int(C); then the greatest eigenvalue of

T is simple, and the corresponding eigenvector is in Int(C) (or in −Int(C)).

The following classic result a very useful characterization of the first eigenvalue.
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Theorem 3.2.5 (Rayleigh quotient). Let us define the Rayleigh quotient of the operator

L to be:

RL [v] :=

n∑

i,j=1

∫

Ω

aijvxi
vxj
dx

∫
Ω

v(x)2dx
. (2.47)

Then, the first eigenvalue satisfies

λ(L,Ω) = min
v∈H1

0
(Ω)
RL [v] . (2.48)

And the minimum is achieved by the corresponding eigenfunction.

3.3 Measure theory

Theorem 3.3.1. Let ν be a measure over the borel sets in the real positive line [0,∞) such

that

φ(t) := ν ([0, t]) (3.49)

is finite for all t > 0. (Realize that φ(0) = 0 and φ, since it is monotone, is Boreal measur-

able.) Let (Ω,Σ, µ) be a measure space and f be a non-negative measurable function over Ω.

Then ∫

Ω

φ (f (x))µ (dx) =

∞∫

0

µ {f > t} ν (dt) . (3.50)

In particular, taking ν (dt) = ptp−1dt for p > 0, it follows

∫

Ω

f (x)p µ (dx) = p

∞∫

0

tp−1µ {f > t} dt

Choosing p = 1 and µ as the Dirac measure in a point x ∈ R
n, we have

f(x) =

∞∫

0

χf>t(x)dt

Definition 3.3.2. Let Ω be a bounded domain in R
N and f ∈ L1 (Ω) a non-negative function
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such that 1/f ∈ L1 (Ω). We define the harmonic mean of f as

|Ω|∫

Ω

1

f(x)
dx
. (3.51)

Proposition 3.3.3. Let Ω be a bounded domain in R
N and f ∈ L1 (Ω) a non-negative

function such that 1/f ∈ L1 (Ω). Then

∫

Ω

f(x)dx

|Ω| ≥




∫

Ω

1

f(x)
dx

|Ω|




−1

. (3.52)

That is, the arithmetic mean is greater than the harmonic mean.

Sketch of the proof. We have

|Ω|2 =

(∫

Ω

√
f(x)

1√
f(x)

)2

≤
∫

Ω

f(x)
1

f(x)
≤
∫

Ω

f(x)

∫

Ω

1

f(x)

Where in the next to last inequality we have used Jensen inequality and in the last one

Cauchy-Schwartz.

Definition 3.3.4 (Absolute continuity of functions). Let (X, d) be a metric space and let I

be an interval in the real line R. A function f : I −→ X is absolutely continuous on I if

for every positive number ǫ, there is a positive number δ such that whenever a sequence of

pairwise disjoint sub-intervals [xk, yk] of I, k = 1, 2, . . . , n satisfies

n∑

k=1

|yk − xk| < δ

then

n∑

k=1

d (f(yk), f(xk)) < ǫ.

3.4 Convex analysis

In this section we give some basic ideas and well known theorems of convex analysis. Some

of this concepts were rewritten from chapter 32 of [28]. We can say -in advance of the main
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theorem of this thesis- we are going to require the treatment of extreme points from certain

convex compact sets. In addition, we will deal with minimizing sequences of a concave

functional, so is important to have a background knowledge in convex functions and sets

which could permit us to extract some information of convex sets, its extreme points and

minimizing sequences.

The theory of the maximum of a convex function relative to a convex set has an entirely

different character from the theory of the minimum [28]. In this perspective we give the

following definitions and propositions.

Definition 3.4.1 (Affine hull). [28]. Given any S ⊆ R
n, we define the affine hull of S,

as the affine set given by the intersection of the collection of affine sets M such that M ⊃ S.

Definition 3.4.2 (Relative interior). [28]. The relative interior of a convex set C ∈ R
n,

which we denote by ri C, is defined as the interior which results when C is regarded as a

subset of the affine hull of C.

Theorem 3.4.3. Let f be a convex function, and let C be a convex set contained in domf .

If f attains its supremum relative to C at some point of ri C, then f is actually constant

throughout C.

Proof. [28]. Suppose the relative supremum is attained at a point z ∈ riC. Let x be a point

of C other than z. We must show that f(x) = f(z). Since z ∈ ri C, there is a real number

µ > 1 such that the point y = (1 − µ)x+ µz belongs to C. For λ = µ−1, one has

z = (1 − λ)x+ λy, 0 < λ < 1

and the convexity of f implies that

f(z) ≤ (1 − λ)f(x) + λf(y)

. At the same time, f(x) ≤ f(z) and f(y) ≤ f(z) because f(z) is the supremum of f relative

to C. If f(x) 6= f(z), we would necessarily have f(z) > f(x). Then f(y) would have to

be finite in the convexity inequality (since otherwise f(y) = −∞ and f(z) = −∞), and we

would deduce the impossible relation

f(z) < (1 − λ)f(z) + λf(z) = f(z)

Therefore f(x) = f(z)
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Definition 3.4.4. Given a set X ⊆ E we define its convex hull as the set

co(X) = {x ∈ E | ∃x1, x2 ∈ X, ∃λ ∈ [0, 1] such that x = λx1 + (1 − λx2)} . (4.53)

Proposition 3.4.5. Let f : co(X) −→ R be a convex function over the set co(X). Then

sup {f(x) : x ∈ X} = sup {f(x) : x ∈ Co(X)} . (4.54)

Proof. We always have

sup {f(x) | x ∈ X} ≤ sup {f(x) | x ∈ Co(X)} .

Since f is convex, its level sets of the form {f ≤ λ} are convex. So f is quasiconvex and

then

f(αx1 + (1 − α)x2) ≤ max {f(x1), f(x2)} ∀ α ∈ [0, 1]

Therefore,

sup {f(x) | x ∈ co(X)} = sup {f(αx1 + (1 − α)x2) | x1 , x2 ∈ X ,α ∈ [0, 1]}

≤ sup {max {f(x1), f(x2)} | x1, x2 ∈ X} = sup {f(x) | x ∈ X}

Theorem 3.4.6 (Krĕın Milman). Let X be a locally convex topological vector space, and let

K be a compact convex subset of X. Then, K is the closed convex hull of its extreme points.

Proposition 3.4.7. Let f : C −→ R be a convex function and C a convex compact set. Let

E be the set of extreme points of C. Then

sup {f(x) : x ∈ C} = sup {f(x) : x ∈ E} . (4.55)

and in the case of the existence of a maximizing element in either both sides of the previous

equality, then

max {f(x) : x ∈ C} = max {f(x) : x ∈ E} . (4.56)

Proof. The equation (4.55) holds straightforward from Krĕın Milmam theorem (3.4.6) and

the proposition (3.4.5).

If we have a maximizing value, let suppose by contradiction that the supreme is reached

in the interior, but does not in the in E. Let x̄ = λx+(1−λy) element in C which maximizes
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f en C, with x, y ∈ E. Then f(x), f(y) < f(x̄). Due to the convexity of f :

f(x̄) ≤ λf(x) + (1 − λ)f(y) < f(x̄)

which is a contradiction.

Theorem 3.4.8. Let f : C −→ R be a convex lower semi-continuous function and C a convex

compact set. Then f reaches its maximum value at an extreme point of C.

3.5 Homogenization

In this section we restrict ourself to give some basic ideas and results from homogenization

theory although we do not use it directly in any of our results. However one can obtain

generalized solutions to our problem using this theory. (See [26, 11]). Here we describe ho-

mogenization of second order elliptic operators, which appear in connection with conductivity

problems. See [2, 26, 25] for more details.

Let MN be the linear space of square matrices with real coefficients of order N . For every

pair of numbers 0 < α and 0 < β, we define the subspace of MN of the coercive matrices

with inverse coefficients:

Mα,β =
{
M ∈ MN : Mξ · ξ ≥ α |ξ|2 , M−1ξ · ξ ≥ β−1 |ξ|2 ∀ ξ ∈ R

N
}
. (5.57)

A coercive matrix such its inverse is also coercive is bounded. In fact if M ∈ Mα,β,

writing η = M−1ξ we deduce from the definition (5.57)

β−1 |Mη|2 ≤Mη · η.

Applying the Cauchy-Schwarz inequality, we have

|Mη| ≤ βη ∀ η ∈ R
N . (5.58)

Similarly, we have ∣∣M−1η
∣∣ ≤ α−1η ∀ η ∈ R

N . (5.59)

Remark 3.5.1. From (5.57) and (5.58) it follows that a necessarily and sufficient condition

for a matrix M belongs to the space Mα,β is that α |ξ|2 ≤Mξ · ξ ≤ β |ξ|2 for every vector ξ.

Then, the set Mα,β is no-empty if and only if the positive constants α y β satisfy αβ−1 ≤ 1.

From now on, we assume always the have this condition.
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Let Ω be an open bounded set in R
N . We define the space of admissible coefficients

in Ω by

L∞ (Ω;Mα,β) := [α; β] .

and if the matrices are symmetric we write the symbol [α; β]s.

Denoting by ǫ > 0 a real sequence of numbers which tends to zero, we will consider the

sequence of matrices Aǫ(x) ∈ [α; β].

For a given source f ∈ H−1(Ω), we consider the following elliptic equation of second order

with Dirichlet condition:

{
−div(Aǫ∇uǫ) = f in Ω

uǫ = 0 on ∂Ω
(5.60)

The former equations admits the following varational formulation. For every φ ∈ H1
0 (Ω)

we have ∫

Ω

Aǫ∇uǫ · ∇φ = 〈f, φ〉H−1,H1
0
(Ω) (5.61)

Replacing φ by uǫ in the previous equation, the norm of the solution uǫ can be a priori

estimated using the coercivity of Aǫ:

α ‖∇uǫ‖2
L2(Ω) ≤

∫

Ω

Aǫ∇uǫ · ∇uǫ
≤ 〈f, uǫ〉H−1,H1

0
(Ω)

≤ ‖f‖H−1 ‖uǫ‖H1
0
(Ω)

Since Ω is a bounded domain, using the Poincare inequality, namely, we know there exists a

positive constant C which depends only of Ω such that

‖φ‖L2(Ω) ≤ C ‖∇φ‖L2(Ω)N ∀ φ ∈ H1
0 (Ω)

Hence, we have

‖∇uǫ‖L2(Ω)N ≤ C

α
‖f‖H−1(Ω) (5.62)

The a priori bound found in the former equation implies that the sequence of solutions uǫ is

bounded in H1
0 (Ω), independently of ǫ. Since the bounded sets are relatively compact for the

weak topology in H1
0 (Ω), there is a subsequence, which we still write as uǫ, that converges

weakly in H1
0 (Ω) to a limit u ∈ H1

0 (Ω).
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Introducing the flux

σǫ = Aǫ∇uǫ,

it follows from (5.58) for the operator Aǫ that the sequence σǫ is also bounded in L2(Ω)N .

Then, there is a subsequence of σǫ, called it in the same way, that weakly converges to a limit

σ ∈ L2(Ω)N .

From the equation (5.60) σǫ satisfies

−div σǫ = f in Ω

Therefore, taking the limits in the previous equation we have that

−div σ = f

The very interesting question is if σ = A∗u, for some matrix A, and if in that case u

solves the problem {
−div(A∇u) = f in Ω

u = 0 on ∂Ω

The following definition formalizes the notion involved in the above question.

Definition 3.5.2 (H-Convergence). Given a sequence of matrices Aǫ ∈ [α; β], we say it

converges in the homogenization sense, or simply H-converges, to a homogenized

limit, or H-limit A∗ ∈ [α; β], if for every given right side f ∈ H−1(Ω), the solution uǫ of the

equation (5.60) satisfies

{
uǫ ⇀ u weakly in H1

0 (Ω)

Aǫ∇uǫ ⇀ A∗∇u weakly in L2(Ω)N
(5.63)

where u is the solution of the homogenized equation

{
−divA∗∇u = f in Ω

u = 0 on ∂Ω
(5.64)

The next theorem shows always we can extract subsequences that H converges.

Theorem 3.5.3 (Spagnolo). Let Aǫ ∈ [α; β]s be a sequence of symmetric matrices that

satisfies (5.60) for all ǫ. Then there is a subsequence Aη of Aǫ and there is a symmetric
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matrix A ∈ [α; β]s such that

Aη H-converges to A∗.

3.6 Shape derivative

The shape derivative is a tool which permits to understand the variation of quantities which

depend on the domain (cf. Simon [31]). This is widely used in the study of shape optimiza-

tion, front tracking, image segmentation problems etc. In this chapter we only give the basic

definitions.

Definition 3.6.1. Let ω ⊆ R
N . Let t > 0. If θ is a map from R

N to R
N , we say that ω+ tθ

is a perturbation of the domain ω in the direction θ with scalar t. We write

x ∈ ω + tθ ⇔ x+ tθ(x) ∈ ω. (6.65)

.

Let us consider a functional F which depends on the domain ω (shape functional). For

a variation of the domain ω by a fairly smooth perturbative vector field θ, which has its

support in a neighborhood of ∂ω, we are interested in the variation of the functional F .

Definition 3.6.2. The total derivative of F in the direction θ is defined as

Ḟ (ω; θ) = lim
t−→0

F (ω + tθ) ◦ (I + tθ) − F (ω)

t
. (6.66)

Definition 3.6.3. The local derivative of F in the direction θ is defined as

F ′(ω; θ) = lim
t−→0

F (ω + tθ) − F (ω)

t
. (6.67)

It is useful to recall the following important relation between the total and local derivatives

Remark 3.6.4. The following relation usually holds

u′(x) = u̇(x) − θ · ∇u. (6.68)
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Some General Aspects

In the introduction we said that Ω ⊂ R
n corresponds to the shape of a conductor which is

composed of two materials, one of conductivity α > 0 and the other of conductivity β > α.

The quantity of the material of conductivity β is limited. Let us call b the available volume

for this material, which we suppose is smaller than the volume of Ω.

If A is the region where is located the material of conductivity α and B = Ω\A the region

where is placed the other material, the conductivity coefficient of the material in the whole

region is given by:

σ = αχA + βχB. (0.1)

And the conductivity equation which rules the phenomena is given by

{
−div (σ∇u) = f in Ω

u = 0 on ∂Ω

where f ∈ H−1(Ω) is given source. Hence, for every σ of the form (0.1) we have a second

order elliptic equation, and since 0 < α ≤ σ ≤ β is easy to see is a uniformly elliptic family

with uniform ellipticity constant α and continuity constant β (the coefficient σ can be seen

in [α; β] defined in (5.57)).

From the theorem (3.2.1) we know there is a orthogonal basis in H1
0 (Ω) such that each

element of the base is an eigenvalue of the operator Tσ : H1
0 (Ω) −→ L2(Ω) defined by

Tσu = −div (σ∇u) (0.2)

We know from the theorem (3.2.1) and (3.2.3) that the first eigenvalue of Tσ, which

we call λ(σ), is strictly positive, the eigenfunction is simple and can be taken positive.
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From the Rayleigh formula (2.48) we know that

λ(σ) = inf
u∈H1

0
(Ω),u6=0

∫
Ω
σ |∇u|2∫
Ω

u2
(0.3)

In terms of σ, we can rewrite the constant volume constraint as
∫
Ω

σ = α (|Ω| \b) + βb := c.

Hence the integral of σ is constant independently of the distribution of A and B.

Let Θ be the feasible set

Θ =



σ = αχA + βχB | A, B ⊂ Ω and

∫

Ω

σ = c



 . (0.4)

The main question this document is based upon is if we can find Ā y B̄ such that σ̄ = χĀ + χB̄

and:

λ (σ̄) = inf
σ∈Θ

λ (σ) (GP)

The general problem (GP) is very difficult to handle without homogenization. Besides, if we

use this tools, it is still very difficult to find a non-homogenized solution, so it is even harder

to find a classical one which could live in (0.4). As we have seen in the background several

researchers such as Murat, Tartar, Cox and Lipton could not find -or even did not try to

find- a classical solution to this kind of problem.

In order to obtain at least partial friendlier results, we have simplified the problem. The

main problem we are going to manage in this thesis is solving (GP) in R
N when Ω is the

unit ball, namely, when Ω is

Ω = D =
{
x ∈ R

N | ‖x‖ ≤ 1
}

We want to find a classical solution and, if possible, obtain a partial characterization

of this solution. We believe the characterization is going to be strongly related with the

symmetrical properties of the disc Ω. It is expected in a spherically symmetrical domain the

solution has spherically symmetrical level sets. Indeed, this is happening and can be checked

after a reformulation of the problem with the arguments shown by Alvino. et. al in [4].

Our intuition tells us a classical solution is not only spherically symmetrical but it also

happens when the whole material β is placed in the center. We are giving numerical ex-

periments that could make stronger our intuition, reaffirming this conjecture numerically

speaking.
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Despite the thesis problem is strongly bounded since we have restrict us to the unitary

disc in R
2, we will give more general results when possible. Most of the properties we have

proved also hold for a unitary ball in R
N . In addition, we expect some of the properties we

have proved, not only hold in the spherically symmetrical case, but also when the domain

satisfies other types of symmetries, such as squares or stars. We encourage the readers and

ourselves to give new results for this type of symmetries in future researches.

4.1 Structural properties of the objective functional

In order to find a solution to the problem (GP) is necessary to obtain good properties of the

eigenvalue functional (0.3). Unfortunately, in the general case we cannot say much. We only

deduced the following result.

Proposition 4.1.1. The objective function λ(σ) is concave and upper semi-continuous in σ.

Proof. The proof follows immediately from the definition of λ through (GP). In fact, λ is

the infimum of the linear -so concave- continuous functionals

σ 7−→

∫

Ω

σ |∇u|2 dx
∫

Ω

|u|2 dx

as u ranges over H1
0 (Ω) and thus, concavity and upper semi-continuity hold immediately.

4.2 Conclusions

The infimum in a minimization problem will be attained, by the direct methods of the

calculus of variation, if it happens that the objective functional is lower semi-continuous and

the constraint set is compact for some topology.

The constraint set (0.4) is relatively compact for the weak-∗ topology as a subset of L∞(Ω)

as bounded sets in L∞(Ω) are weak-∗ compact.

However the objective functional is only upper semi-continuous for this topology and so

we cannot obtain immediately a solution to our problem (GP).

In general, in order to calculate the infimum, at first, the closure of the constraint set

needs to be calculated with respect to a suitable topology and then, the lower semi-continuous

envelope of the objective functional with respect to the same topology. In our problem, this
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is hard to achieve without the consideration of micro-structural designs and, the results of

Cox and Lipton [11] are in this spirit but lead further away from the study of a classical

solution.
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Chapter 5

Unidimensional Case

5.1 Introduction

Krĕın [22, 16] has shown the minimum value in the unidimensional case for the general

problem (GP) is actually reached and it has a classical representation, that is, without

micro-structure or homogenized coefficients. He also characterized the solution, proving that

an optimal solution is to place all the material β in the center. In this section we rewrite the

proof showed in Henrot’s book [16] explaining deeply all the necessary steps.

In section (5.2) we set the problem in the unidimensional case and we rewrite the equations

in order to get more manageable equations. This new formulation belongs to the PDE class of

membrane systems and thanks to the rearrangement tools it can be solved successfully giving

a complete characterization of the solution. Luckily the treatment with homogenization

techniques is completely avoidable, which allows giving a step further from Murat-Tartar

[26] and Cox-Lipton [11] researches.

The new vibrating membrane problem involves the objective functional

λ1(ρ) = inf
v∈H1

0
(Ω)

∫

Ω

|∇u|2
∫

Ω

ρ |v|2
. (1.1)

which represents the first eigenvalue of the membrane equation

{
△v = λρv in Ω

v = 0 on ∂Ω
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Cox and McLaughlin [12, 13] exhibited the former problem has a true solution in any dimen-

sion, but unfortunately, this equivalence does not hold in higher dimensions. 1

In this new formulation, a lower semi-continuous concave functional over a compact convex

set is minimized. A classical result from convex analysis (3.4.8) tell us that the solution is

an extreme point. In the section (5.4) we find out the characterization of this points.

With the rearrangement machinery assistance, in section (5.6) we exhibit the solution

of the membrane problem can be chosen with symmetric properties. Afterward it is proved

the unidimensional conductivity problem (2.3) has a solution with the material of higher

conductivity in the center.

5.2 Setting the problem

Studying the limit of minimizer sequences in this type of elliptic problems (GP), even in the

unidimensional case, is difficult without homogenization tools. 2

We want to find a coefficient σ = αχA + βχB which hopefully satisfies de minimum

condition (GP). The first step is change the feasible set (0.4) into a new convex one. We

enlarge the conditions for the functions σ considering the set:

C :=




σ ∈ L∞ ([0, 1]) / 0 < α ≤ σ ≤ β and

1∫

0

σ(x)dx = c




 . (2.2)

Given σ ∈ C, the conductivity equation in the unidimensional case is given by

− d

dx

(
σ(x)

du

dx

)
= λu(x) (2.3)

u(0) = 0

u(1) = 0

5.2.1 Equivalence with the membrane problem

We are going to see that the statement given above (2.3) is equivalent to a membrane prob-

lem. This membrane problem is in fact tractable with rearrangements and classical tools of

1 Nevertheless, the improve for the unidimensional case using rearrangement tools motivated us to find
classical solutions in any dimension when we consider domains with some kind of symmetries, such as the
case of a symmetrically spherical Ω, namely, a ball. See chapter 6 for more details.

2There is a classical unidimensional example which motivates the theory of homogenization [26], showing
this undesirable behavior.
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functional analysis, without using homogenization techniques.

Scheme. The first step is to define the transformation y : [0, 1] −→ R as

y(x) =

x∫

0

σ−1(t)dt. (2.4)

Since y
′

(·) > 0, we have that y is a bijective map of [0, 1] into [0, l], with l = y(1). Integrating,

the equation (2.3) can be written as:

σ(x)
du

dx
= −λ

x∫

0

u(t)dt. (2.5)

Now we define the auxiliary functions which will permit us obtain a membrane equivalent

problem. We define v, ρ and z as

v(y) = u(x(y)) (2.6)

ρ(y) = σ(x(y)) (2.7)

z =

∫ t

0

σ−1(l)l (2.8)

With this notations the integral equation (2.5) can be rewritten as

ρ(y)
dv

dy

dy

dx
= −λ

y(x)∫

0

u(t(z))ρ(z)dz. (2.9)

The last equation leads to

dv

dy
= −λ

y∫

0

v(z)ρ(z)dz

The derivative of the above equation reads

d2v

dy2
= −λρv

Now the condition

c =

1∫

0

σ(x)dx
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say that
l∫

0

ρ(y)dy =

1∫

0

σ · y−1′dt = 1.

Defining

C̃ :=



ρ ∈ L∞ ([0, l]) / 0 < α ≤ ρ ≤ β y

l∫

0

ρ(y)dy = 1



 (2.10)

the conductivity problem (2.3) for σ ∈ C is equivalent to the following membrane problem

for ρ ∈ C̃:

− d2v

dy
= λρ(y)v (2.11)

v(0) = 0

v(l) = 0

Thus, we have the equivalence.

5.3 Properties of the eigenvalue membrane functional

Let σ ∈ C and λ (σ) the first (positive) eigenvalue of the problem (2.3). The Rayleigh quotient

says that σ satisfies

λ (σ) = inf
u∈H1

0
(Ω),u 6=0

1∫

0

σ

(
du

dx

)2

dx

1∫

0

u2dx

(3.12)

In the previous subsection we have shown that the conductivity problem (2.3) is equivalent

to the membrane problem (2.11). By straightforward calculations it can be seen that the

eigenvalues of both problems are the same and if u(x), λ is an eigen-pair of the problem

(2.3), then v(y) = u ◦ (y−1(y)) is an eigenfunction of the problem (2.11) with eigenvalue λ.
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The first eigenvalue for the membrane problem also satisfies the Rayleigh quotient

λ̃(ρ) = inf
v∈H1

0
([0,1]),v 6=0

1∫

0

(
dv

dy

)2

dy

1∫

0

ρv2dy

(3.13)

We are interested in lower semi-continuity properties of this functional with a certain

topology which hopefully assures at the same time compactness of the feasible set. If this

two condition are satisfied, applying the theorem (3.4.8) we can obtain the existence of a

minimizer element for the membrane problem.

Theorem 5.3.1. The eigenvalue functional defined for the membrane problem (2.11) is a

lower semi-continuous application with the week ∗ topology in L∞ (Ω).

Proof. Let (λn, un) be sequence of eigenvalues and eigenfunctions associated to the membrane

parameter ρn ∈ C̃ with ‖un‖H1
0

= 1. The Rayleigh quotient (3.13) says

λ̃(ρn) =

∫ l

0

(
dun
dy

)2

∫ l

0

ρnu
2
n

Since un is a bounded sequence in H1
0 by Rellich-Kondrachov theorem (3.2.2) there exists a

subsequence (which we called in the same way) such that un −→ u in L2 and un ⇀ u in H1
0 .

By lower semi-continuity of the norm we have

liminf

∫ (
dun
dy

)2

≥
∫ (

du

dy

)2

Since ρn is bounded we can extract a subsequence (which we called in the same way) that

weakly-∗ converges in L∞ to some ρ ∈ L∞.

Then 〈
ρn, u

2
n

〉
L1,L∞

−→
〈
ρ, u2

〉
L1,L∞

Namely, ∫
ρnu

2
n −→

∫
ρu2
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Then

liminf λ̃(ρn) =

liminf

∫ (
dun
dy

)2

∫
ρnu

2

≥ λ̃(ρ)

which shows the lower semi-continuity of λ̃.

5.4 Properties of the feasible set of the membrane prob-

lem

In the previous section we have shown the continuity properties of the functional that is

required to be minimized. Besides it is important to have manageable properties - like

compactness - of the feasible set. In this section we show properties in that direction: the

feasible set C̃ is a convex compact set which their extreme points are of the form σ =

αχA + βχB.

Proposition 5.4.1. The feasible set C̃ defined in (2.10) for the membrane equation (2.11)

is a compact convex set.

Proof. Let ρ1, ρ2 ∈ C̃ and η ∈ [0, 1]. It is clear that

α ≤ ηρ1 + (1 − η) ρ2 ≤ β

and ∫ 1

0

ηρ1 + (1 − η) ρ2 = η

∫ 1

0

ρ1 + (1 − η)

∫ 1

0

ρ2 = η1 + (1 − η) 1 = 1

Then C̃ is a convex set. By standard argument we can see C̃ is bounded and closed for

the weakly-∗ convergence. This follows from the fact that the integral constraint
∫ 1

0
ρn = 1

is satisfied in the limit because the function χΩ ∈ L1 (Ω) and the compactness in R of the

inequality constraint which defined C̃.

Proposition 5.4.2. The extreme points of the set C̃ defined in (2.10) are of the form

αχω + βχω. (4.14)

Proof. Let A = {αχω + βχω | ω ⊂ Ω} and E the set of extreme points of C̃.

We are going to prove first that E ⊆ A, which means C̃\A does not contain any extreme

point.
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Let f ∈ C\A. There exists some ǫ > 0 and a set Θ of non zero Lebesgue measure that

α + ǫ < f(x) < β − ǫ ∀ x ∈ Θ.

Let Θ1, Θ2 disjoint sets which have the same Lebesgue measure such that Θ = Θ1 ∪ Θ2.

We define the function g such that

g(x) =





ǫ
2

if x ∈ Θ1

− ǫ
2

if x ∈ Θ2

0 in other case.

We have:

•
∫
g =

ǫ

2
|Θ1| −

ǫ

2
|Θ2| = 0.

• f + g

{
= f + ǫ

2
≤ β − ǫ

2
in Θ1

= f − ǫ
2
≥ α + ǫ

2
in Θ2

• f − g

{
= f + ǫ

2
≤ β − ǫ

2
en Θ2

= f − ǫ
2
≥ α + ǫ

2
en Θ1

Then f + g ∈ C̃ , f − g ∈ C̃ and

f =
f + g

2
+
f − g

2
,

hence f is not an extreme point of C̃.

Let us prove now that A ⊆ E, namely, if f is not an extreme point, then f /∈ A. We

prove this by contradiction. Suppose we have that f /∈ E and f ∈ A.

There exist f1, f2 ∈ E, f1 6= f2 such that f1+f2
2

= f . But the former proved inclusion

shows that f1, f2 ∈ A, in particular, f1 y f2 are of the form

f1 = αχω1
+ βχΩ\ω1

f2 = αχω2
+ βχΩ\ω2

Hence

f =





α in ω1 ∩ ω2

α+β
2

in (ω1 ∩ Ω\ω2) ∪ (ω2 ∩ Ω\ω1)

β in (Ω\ω1) ∪ (Ω\ω2)
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Therefore, f does not belong to the set A, which is a contradiction.

5.5 Existence for the membrane problem

In the previous subsection 5.4 we have shown the set C̃ is compact and convex. Since we are

minimizing λ̃(ρ) over the compact set C̃ and the theorem (5.3.1) and the concavity indicated

in (4.1.1) show that ρ is a lower semi-continuous concave application, applying the theorem

(3.4.8), we see the infimum is achieved at an extreme point of C̃.

5.6 Characterization of the membrane problem

Using rearrangement tools, we are going to show the solution of the membrane problem (2.11)

is symmetric.

Lemma 5.6.1. For the membrane problem (2.11) the minimization of the first eigenvalue

has a solution which can be taken symmetrical, namely, can be consider with the coefficient

of higher elasticity in the middle of the interval.

Proof. Let ρ̄ be the limit of a minimizing sequence of λ̃. Let v̄ be an eigenfunction of the

(2.11) membrane problem associated to ρ̄. We know from the preceding subsection 5.5 that

λ̃(ρ̄) = inf
u∈H1

0
([0,l]),v 6=0

l∫

0

(
dv

dy

)2

dy

l∫

0

ρv2dy

If we employ the Schwarz rearrangement in the unidimensional case displaced in l/2 it is

clear that v̄∗(0) = v̄∗(l) = 0. Furthermore by the Pólya - Szegö inequality (3.1.45)

∫ l

0

dv̄∗

dy

2

≤
∫ l

0

dv̄

dy

2

(6.15)

Applying the Hardy-Littlewood inequality (1.31) we have

∫ l

0

ρ∗(v̄2)∗ ≥
∫ l

0

ρv̄2 (6.16)
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Since v̄ ≥ 0, from the lemma (3.1.32)

(v̄2)∗ = (v̄∗)2

thus, the pair v̄∗-ρ∗ must be the minimum, which shows the minimum is reached in symmet-

rical parameters. In other words, the solution ρ∗ has the coefficient of higher elasticity in the

middle of the interval .

5.7 Characterization of the conductivity problem

In the previous lines we have proved that the solution of the membrane equation (2.11) is of

the form

ρ = αχA + βχB

where B is an interval who is centered with respect to [o, l], that is, its center is l/2. Now, we

want to show that the solution of the original conductivity equation (2.3), which we called

σ, has a similar symmetry.

Characterization of the conductivity problem. Realize that σ(x) = ρ◦y(x) = αχy−1(A)+

βχy−1(B). Since the transformation y is an homeomorphism and B is connected it follows

y−1 (B) is connected. Since A has two connected components, y−1 (A) has two connected

components.

Besides, 0, l belong to different connected components of A and since y(0) = 0 and

y(1) = l, it follows that y−1 (B) is in the interior of the interval [0, 1]. Let suppose the

interval limits of y−1 (B) are x1 < x2.

We want to prove this interval is in the middle of the [0, 1] interval. It is enough to show

that the distance of its boundaries x1, x2 to 0 y 1 respectively is the same. In other words,

it is enough to show that |x1| = |1 − x2|, namely, x1 + x2 = 1.

Since
dy

dx
=

1

ρ

then

x =

∫ y

0

ρ

. Let y1 < y2 the boundaries of the interval B. We have

x2 =

∫ y2

0

ρ =

∫ y1

0

ρ+

∫ y2

y1

ρ
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But ρ|(0,y1) = ρ|(y2,l). Then

x2 =

∫ l

y2

ρ+

∫ y2

y1

ρ

Hence

x1 + x2 =

∫ y1

0

+

∫ l

y2

ρ+

∫ y2

y1

ρ =

∫ l

0

ρ = 1.
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Chapter 6

N Dimensional Case: Spherical

Symmetry

6.1 A First reformulation

Since homogenization tools only lead us far away from classical solutions, if we want to get

one it is imperative to think of the problem in different terms, so with this new conception

of the problem. Perhaps taking a different view of the problem it is easier to get closer to a

solution.

The key point is the (3.1.34) rearrangement property, which allows to reformulate the

feasible set (0.4) given in chapter 4.

Proposition 6.1.1 (First reformulation). If A is the place where we put the material α,

given a decreasing unidimensional function ϕ : R −→ R of the form

ϕ = αχ[0,|A|) + βχ[|A|,|Ω|)

the set of classical solutions (0.4) given in chapter 4 can be recast as

C = {σ ∈ L∞ (Ω) | σ∗ = ϕ} . (1.1)

Hence, the general problem (GP) can be reformulated in terms of C given above, namely

(GP) is equivalent to

inf
σ∈C

λ (σ) . (1.2)

67



CHAPTER 6. SPHERICAL SYMMETRY 6.2. PRESCRIBED REARRANGEMENT

Proof. Since the feasible set (0.4) given in chapter 4 is the set of indicator functions with a

prescribe measure of the only two non trivial level sets, the proof follows directly form the

proposition (3.1.34) and the equimeasurability property (3.1.21).

It is important to endow the feasible set C with some topology that hopefully makes C
compact and at the same time assures lower semi continuity of the functional λ(σ). Due to

the concavity (4.1.1), we might guarantee the infimum of (1.2) is still reached at C.

Mainly, what we are going to do is to give some properties related to new topologies and

the closure of sets that have similar structures with (1.1). We found some of this results in

[4, 3]. In addition, we are going to study the properties of the extension of the functional

λ(σ) related to the new closures of the feasible regions, and some other properties of this

type of sets which can lead us to find the solution in the original feasible set.

6.2 Prescribed rearrangement Sets

Let f ∈ Lp (Ω), Ω ∈ R
N be a bounded domain. Suppose also that f ≥ 0. Recall the

distribution function of f defined in (3.1.12) is given by

µf(t) = |{f > t}|

and the decreasing rearrangement of f is given by

f ∗(s) = sup {t > 0 : µf(t) > s}

Definition 6.2.1. For f0 ≥ 0 in Lp (Ω) we define the set of equimeasurable functions of f0

as

C (f0) = {f ≥ 0 | f ∗ = f ∗
0 , f ∈ Lp (Ω)} (2.3)

By definition, we see all the functions in C(f0) are equimeasurable. Hence, this set

defines an equivalence class over the functions having the same rearrangement. In order to

understand better this set equivalence relation we define the following ordering relation in

L1 (Ω).

Definition 6.2.2. Given two functions f, g ∈ L1 (Ω), we write f ≺ g and we say that f has
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less measure than g, if





∫ t

0

f ∗ds ≤
∫ t

0

g∗ds ∀ t ∈ [0, |Ω|]

∫ |Ω|

0

f ∗ds =

∫ |Ω|

0

g∗ds

(2.4)

Proposition 6.2.3. Let 1 ≤ p ≤ ∞ and f0 ∈ Lp (Ω). Then C(f0) is relatively weak compact

for 1 ≤ p <∞ and relatively weak ∗ compact for p = ∞.

Proof. For 1 ≤ p ≤ ∞, thanks to the equimeasurability property (3.1.21) , for all f ∈ C(f0)

we have

‖f‖Lp(Ω) = ‖f0‖Lp(Ω) .

Then result follows for 1 < p ≤ ∞. We skip the proof for p = 1.

Notation 6.2.4. Let 1 ≤ p ≤ ∞ and f0 ∈ Lp (Ω). We denote the weak closure (weak ∗

closure if p = ∞) of C(f0) as the set K(f0), namely

K(f0) = C (f0)
Lp(Ω) weak

(2.5)

The following proposition shows a relation between the ordering relation and the set C(f0).

Proposition 6.2.5. Let 1 ≤ p ≤ ∞ and f0 ∈ Lp (Ω). Then

f ∈ C(g) ⇔ f ≺ g and g ≺ f. (2.6)

Proof. The necessary condition follows straightforward. In order to prove the sufficient con-

dition it is enough to show

∫ b

a

f ∗ds =

∫ b

a

g∗ds ∀ a, b ∈ [0, |Ω|] .

and this holds because

∫ b

a

f ∗ds =

∫ b

0

f ∗ −
∫ a

0

f ∗ds

=

∫ b

0

g∗ds−
∫ a

0

g∗ds

=

∫ b

a

g∗ds

69



CHAPTER 6. SPHERICAL SYMMETRY 6.2. PRESCRIBED REARRANGEMENT

Notation 6.2.6. We denote L1 (Ω)+ as the set of functions in L1 (Ω) that are not negative.

Now we give several characterizations of the first condition in of the ordering relation ≺
which could make more tractable this relation.

Proposition 6.2.7. Let f , g ∈ L1
+ (Ω). The following properties are equivalent:

(i) ∀ t ∈ [0, |Ω|]
t∫

0

f ∗ ≤
t∫

0

g∗.

(ii) ∀ ϕ ∈ L1
+ (Ω)

∫

Ω

fϕ ≤
|Ω|∫

0

g∗ϕ∗.

(iii) ∀ ϕ ∈ L1
+ (Ω)

|Ω|∫

0

f ∗ϕ∗ ≤
|Ω|∫

0

g∗ϕ∗.

(iv)

∫

Ω

F (f) ≤
∫

Ω

F (g) For all functions F convex, non negative such that F (0) = 0 and

F Lipschitz.

Remark 6.2.8. If f , g ∈ Lp (Ω) we take ϕ ∈ Lq (Ω), with 1
p
+ 1

q
= 1, p, q ≥ 1 and in (iv) we

change F ′ bounded with F (t) ≤ C (1 + |t|p).

Proof. We are going to prove iii) ⇒ ii), ii) ⇒ i), i) ⇒ iii), iii) ⇒ iv) and iv) ⇒ i).

iii) ⇒ ii) Using Hardy-Littlewood inequality (3.1.44)

∫

Ω

fϕ ≤
|Ω|∫

0

f ∗ϕ∗ ≤
|Ω|∫

0

g∗ϕ∗

ii) ⇒ i) Applying the proposition (3.1.40), if ii) holds we have

∫

Ω

fϕ ≤
∫

Ω

g∗ϕ∗.

Taking ϕ = χA,
∫

A

f ≤
|A|∫

0

f ∗ ∀ A such that |A| = r.
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Taking supreme over A, using the proposition (3.1.40) we have

r∫

0

f ∗ ≤
r∫

0

g∗.

i) ⇒ iii) We integrate by parts to obtain

|Ω|∫

o

f ∗ϕ∗ds = −
|Ω|∫

0




t∫

0

f ∗(s)ds


 dϕ∗(t) +




t∫

0

f ∗(s)ds


ϕ∗(t)||Ω|

0 .

|Ω|∫

0

g∗ϕ∗ − f ∗ϕ∗ =

|Ω|∫

0

(g∗ − f ∗)ϕ∗

= −
|Ω|∫

0

∫ 


t∫

0

(g∗ − f ∗) (s)ds


 dϕ∗(t) +

|Ω|∫

0

(g∗ − f ∗) (s)dsϕ∗|Ω|

≥ −
|Ω|∫

0




t∫

0

(g∗ − f ∗) (s)ds


 dϕ∗(t)

Since ϕ∗ is a decreasing function, the differential dϕ∗(t) is negative for all t, hence it

follows the result.

iii) ⇒ iv) We will prove F ∈ C1 is convex. We have F ′ is decreasing which implies

(F ′(f))
∗

= F ′ (f ∗) .

Using the hypothesis
|Ω|∫

0

f ∗F ′(f ∗) ≤
|Ω|∫

0

g∗F ′ (f ∗)

and due to the convexity property

|Ω|∫

0

F (g∗) − F (f ∗) ≥
|Ω|∫

0

F ′ (f ∗) (g∗ − f ∗) ≥ 0.
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iv) ⇒ i) By contradiction, suppose it holds iv) but i) does not. The exists t > 0 such that

t∫

0

g∗ <

t∫

0

f ∗

.

Let [r, r] be the maximal interval where the former inequality holds for t.

Hence
r∫

0

f ∗ − g∗ds =

r∫

0

f ∗ − g∗ds = 0 0 ≤ r < r ≤ |Ω| .

Let r1 ∈]r, r[ tal que f ∗(r1) > g∗(r1). Let F (t) = (t− g∗(r1))
+. We have that F is

convex, F (0) = 0 y and is Lipschitz.

Since F is convex

∫

Ω

F (f) =

|Ω|∫

0

F (f ∗) =

|Ω|∫

0

(f ∗(t) − g∗(r1))
+

≥
r1∫

0

(
f ∗(t) − g(r1)

)+

≥
r1∫

0

(f ∗(t) − g∗(r1)) (adding non-negative numbers)

>

r1∫

0

g∗(t) − g∗(r1)dt

=

r1∫

0

(g∗(t) − g∗(r1))
+ ( since the integrand is positive)

=

r1∫

0

F (g∗)

=

r1∫

0

F (g)

Which is a contradiction with iv).
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The following propositions show the interesting fact the ordering relation ≺ is in indeed

a characterization of the weak-∗ limits of C(f0), namely is a characterization of K(f0).

Proposition 6.2.9. If f ∈ K(f0) then f ≺ f0.

Proof. It is enough to prove that

∀ ϕ ∈ L∞
+ (Ω)

∫

Ω

fϕ ≤
∫

|Ω|

f ∗
0ϕ

∗

and
|Ω|∫

0

f ∗ =

|Ω|∫

0

f ∗
0 .

Let fn ∈ C(f0) such that fn −→ f weakly.

Since fn ≺ f0 y f0 ≺ fn we have

∫

Ω

fnϕ ≤
|Ω|∫

0

f ∗
nϕ

∗ =

|Ω|∫

0

f ∗
0ϕ

∗.

Taking the limit it follows
∫

Ω

fϕ ≤
|Ω|∫

0

f ∗
0ϕ

∗.

On the other hand
|Ω|∫

0

f ∗
n =

|Ω|∫

0

f ∗
0

and
|Ω|∫

0

f ∗
n =

∫

Ω

fn −→
∫

Ω

f =

|Ω|∫

0

f ∗.

Then
|Ω|∫

0

f ∗ =

|Ω|∫

0

f ∗
0 .
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The converse relation is proved in the paper of Alvino, Trombetti and Lions [4].

Proposition 6.2.10. If f ≺ f0 then f ∈ K(f0).

Proof. See [4] for a complete proof.

The following corollary will be used in the proof of a very important result.

Corollary 6.2.11. Let ϕ = ϕ♯, namely, ϕ is a radially symmetric decreasing function. The

set K(ϕ) is a weak-∗ compact convex set characterized by the relation

K(ϕ) =

{
f ∈ L∞ (Ω) |

∫

B(0,r)

f(x)dx ≤
∫

B(0,r)

ϕ(x)dx ∀ r,
∫

Ω

f(x)dx =

∫

Ω

ϕ(x)dx

}
.

(2.7)

Proof. Using the equivalence ii) of (6.2.7) that induces the order relation f ≺ ϕ, we have

that

f ∈ K(ϕ) ⇔ ∀ ψ ∈ L1
+ (Ω)

∫

Ω

fψ ≤
|Ω|∫

0

ϕ∗ψ∗ and

∫

Ω

f(x)dx =

∫

Ω

ϕ(x)dx. (2.8)

Taking ψ = χB(0,r), we have ψ∗ = χ[0,t] where t = |B(0, r)|. Hence, the inequality of (2.8)

implies
∫

B(0,r)

f ≤
t∫

0

ϕ∗

Since the property (3.1.11) says that ϕ♯(x) = f ∗(wN |x|N ), and ϕ♯ = ϕ, the former inequality,

after a change of variables, reads

∫

B(0,r)

f(x)dx ≤
∫

B(0,r)

ϕ(x)dx

And thus, the relation (2.7).

Now we are going to see other properties of the set K(f0).

Proposition 6.2.12. K(f0) is a convex set.
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Proof. Let f1,f2 ∈ K(f0). There exist subsequences (f 1
n), (f 2

n) ⊂ C(f0) such that f 1
n −→ f1,

f 2
n −→ f2 weakly to f1 y f2 respectively. For λ ∈ [0, 1], let fn = λf 1

n + (1 − λ)f 2
n. Let F

be a convex function satisfying the requirements in the characterization of K(f0) (See (6.2.7)

point iv) or [4]).

Clearly ∫

Ω

F (fn) ≤ λ

∫

Ω

F (f 1
n) + (1 − λ)

∫

Ω

F (f 2
n),

and using the characterization iv), since f 1
n , f

2
n ≺ f0 we obtain that

fn ≺ f0.

Since

fn −→ λf1 + (1 − λ)f2

we obtain

λf1 + (1 − λ)f2 ∈ K(f0).

The following theorem provides a good result which will lead to the finding of the classical

solution of the problem (GP).

Theorem 6.2.13. C(f0) are the extreme points of K(f0)

We only give a proof of one of the inclusions. The other one can be found in [4].

Proposition 6.2.14. Let E(f0) the set of extreme points of K(f0). Then,

C(f0) ⊂ E(f0). (2.9)

Proof. By contrapositive, if f is not an extreme point of K(f0), then there exist f1, f2 ∈ E,

f1 6= f2 , λ ∈ (0, 1) such that

f = λf1 + (1 − λ)f2.

Taking an strictly convex function F (for example F (t) =
√

1 + t2) we have

∫

Ω

F (f) < λ

∫

Ω

+(a− λ)

∫

Ω

F (f2)
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since f1, f2 ∈ K(f0), using the characterization iv), it follows

∫

Ω

F (f) <

∫

Ω

F (f0)

which says that

f /∈ C(f0)

Proposition 6.2.15. We have

K(f0) = convC(f0). (2.10)

Proof. K(f0) is close convex set which contains C(f0). Then

K ⊃ ConvC(f0).

On the other hand

ConvC(f0) ⊃ C(f0)

then

ConvC(f0) ⊃ C(f0) = K(f0).

We believe the solution to our problem (GP) in the radially symmetric case has indeed

a spherical symmetry. In order to prove this believe we will need the following simple obser-

vation.

Proposition 6.2.16. Let Ω be a ball in R
N . Let ϕi be a sequence of bounded radially

symmetric functions which converges weak-∗ in L∞ (Ω) to a function ϕ. Then ϕ is a radially

symmetric function.

Proof. Let T : R
N −→ R

N be a rotation transformation. Then is an orthonormal linear

transformation, invertible, |det T | = 1 and T−1(Ω) = Ω.It is enough to show that

ϕ(x) = ϕ(Tx) a.e ∈ Ω

The last equation holds for all ϕi since there are spherically symmetrical. Let g ∈ L1 (Ω).
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We have

∫

Ω

(ϕi(Tx) − ϕ(Tx)) g(x)dx =

∫

T (Ω)

(ϕi(y) − ϕ(y)) g(T−1y)
∣∣det T−1

∣∣ dy

So, since g ◦ T−1 ∈ L1 (Ω) the result holds.

The property proved above encourage us to study the prescribe rearrangement sets with

symmetry constraints. In that spirit are the following definitions and propositions.

Definition 6.2.17. For f0 ≥ 0 in L∞ (Ω) we define the set of radially symmetric equimea-

surable functions of f0 as

Cs (f0) = {f ≥ 0 | f ∗ = f ∗
0 , f ∈ L∞ (Ω) radially symmetric} (2.11)

Notation 6.2.18. For f0 ≥ 0 in L∞ (Ω) we denote the set Ks(f0) as the set

Ks(f0) = {f ∈ K(f0) | f is radially symmetric } (2.12)

As we expect, we have the following proposition.

Proposition 6.2.19. We have

Co (Cs(f0))
weak ∗

= Ks (f0) . (2.13)

Proof. This follows directly from the theorem (3.4.6) and the next proposition.

Proposition 6.2.20. Cs(f0) are the extreme points of Ks(f0)

Proof. Let f be an extreme point of Ks(f0) Let f ∈ Cs(f0) ⊆ C(f0). Since the theorem

(6.2.13) says C(f0) is the set of extreme points of K(f0), if g1, g2 ∈ K(f0), then

f /∈ (g1, g2) .

In particular, this is satisfied if g1, g2 ∈ Ks(f0) ⊆ K(f0), which says f is an extreme point of

Ks(f0). Reciprocarly, to show the extreme points of Ks(f0) are points of Cs(f0), it is enough

to show the extreme points of K̃(f0) are in C̃(f0) where this sets represent K and C when in

dimension N = 1. Thus, due to (6.2.13) with N = 1 this is satisfied.
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6.3 Properties of λ

In this section we construct good properties for the eigenvalue functional (0.3) of chapter 4

that we wish to minimize. In order to find a solution of the problem (GP) when the domain

Ω is a ball, we desire to create an extension of the functional that appears in (GP) which with

a certain topology could be lower semi continuous and at the same time assures compactness

of the feasible region.

We give new formulations or extensions of the eigenvalue functional with properties which

can assure the existence of a minimum.

We gladly show with the re-formulation of the problem along with the new eigenvalue

functional that it is possible to find a classical solution, and even better, the parameters of

this solution can be taken spherically symmetrical.

The following results are crucial for the proof of our main theorem functions. The first

of these is a consequence of a result form Alvino and Trombetti [3, Lemma 1.2] which we

shall use, instead of a finer result [4, Theorem 3.1], to limit our search for minimizers among

radially symmetric functions. The theorem 3.1 proved in [4] could be more complicated to

extend to domains with partial symmetry compared to this simpler result.

Proposition 6.3.1. Given any ν ∈ C(θ) and any u ∈ H1
0 (Ω), there exists a ν̃ which is

radially symmetric with ν̃−1 ∈ K((θ−1)∗) such that

∫

Ω

ν |∇u|2 dx ≥
∫

Ω

ν̃
∣∣∇u♯

∣∣2 dx. (3.14)

Proof. With the same hypothesis as in this proposition, the Lemma 1.2 in Alvino et. al. [3]

says that (3.14) holds for the radially symmetric function ν̃(z) = ξ(wN |z|N) for ξ defined

below through the relation

∫ |u≤c|

0

1

ξ(r)
dr :=

∫

{u≤c}

1

ν(x)
dx. (3.15)

which holds for all c ∈ R. This gives the relation

∫

Ω∗
u,c

1

ν̃(x)
dx =

∫

Ωu,c

1

ν(x)
dx. (3.16)

for all c real, where we recall that Ωu,c is the level set of u at the level c and Ω∗
u,c is a ball

centered at the origin having the same measure as Ωu,c. In particular the above identity hold

on the full domain Ω. So due to the property (3.1.43) we have (ν−1)∗ = (θ−1)∗, using the
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formula (3.1.25) it follows ∫

Ω

1

ν̃(x)
dx =

∫

Ω

(θ−1)∗(x)dx. (3.17)

Once again as (ν−1)∗ = (θ−1)∗, form the property (3.1.39) we obtain

∫

Ωu,c

1

ν(x)
dx ≤

∫

Ω∗

u,c

(θ−1)∗dx.

The above inequality combined with (3.16) gives the relation

∫

Ω∗
u,c

1

ν̃(x)
dx ≤

∫

Ω∗
u,c

(θ−1)∗(x)dx. (3.18)

for all c real. We then note that the two relations (3.17) and (3.18), by the characterization

(6.2.11), imply that

ν̃−1 ∈ K((θ−1)∗)

Now we prove a symmetry result which is very intuitive.

Proposition 6.3.2. If ν is a non-negative, radially symmetric measurable function bounded

form below and above by positive constants defined on the unit ball, then any eigenfunction

corresponding to the first eigenvalue λ(ν) is radially symmetric. So, we have

λ(ν) = inf
u ∈ H1

0 (Ω)

∫

Ω

ν |∇u|2 dx
∫

Ω

|u|2 dx
= inf

u ∈ H1
0 (Ω)

u radially symmetric

∫

Ω

ν |∇u|2 dx
∫

Ω

|u|2 dx
. (3.19)

Proof. By the Krĕın-Rutman theorem (3.2.4), the first eigenvalue λ(ν) is simple and any

eigenfunction is of constant sign. So, it is enough to prove the result for a normalized

eigenfunction u which can be taken to be positive and having L2 norm equal to 1.

Let, now, T be any orthogonal transformation on the unit ball and let v = v ◦ T . Since

T is a linear transformation, we have

∇yv(y) = T t∇x(u(Ty))
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and since T is a rotation, it has unit norm, then

|∇xu(Ty)| = |∇yv(y)| .

Using change of variables we obtain

∫

Ω

ν(x) |∇xu(x)|2 dx
∫

Ω

|u(x)|2 dx
=

∫

Ω

ν(Ty) |∇xu(Ty)|2 |det(T )| dy
∫

Ω

|u(Ty)|2 |det(T )| dy
=

∫

Ω

ν(y) |∇yv(y)|2 dy
∫

Ω

|v(y)|2 dy

The last equality hold being ν radially symmetric, since in this case |det(T )| = 1. So the

function v is also a positive minimizer for λ(ν) having the same L2 norm as u So, by the

Krĕın- Rutman theorem, we have u = v, that is

u = u(Tx) a.e

an this holds for any orthogonal transformation T . This proves the radial symmetry of the

function u and establishes the identity (3.19).

The following proposition establishes the continuity of the first eigenvalue with respect to

weak-* convergence of the reciprocal of the coefficients, for radially symmetric coefficients.

A much more restrictive convergence result having a similar flavor is proved in [4, Corollary

3.2], which assures convergence only to minimizing sequences.

Proposition 6.3.3. Let νi be a sequence of radially symmetric functions in K(ϕ) such that

ν−1
i converges weakly-∗ to a function ν−1 as i tends to ∞. Then, we have λ(νi) converges to

λ(ν) as i tends to ∞.

Proof. Let the sequence νi and the function ν satisfy the hypotheses of the proposition. We

write

νi(x) =
1

ξi(|x|)
and

ν(x) =
1

ξ(|x|) .

Then, by the hypotheses it follows that ξi weak-* converges to ξ in L∞ (0, 1).

Now, if ui gives the minimum value in the definition of λ(νi) then, by proposition (6.3.2)

it is radially symmetric. We may also assume that ui is non-negative and further, normalize

it so that it’s L2 norm is 1. The Euler equation corresponding to the minimizing property of
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ui reads

− div (vi∇ui) = λ (νi) ui. (3.20)

It can be checked from this that the sequence ui is bounded in H1
0 (Ω) and a subsequence

can be extracted converging weakly in H1
0 (Ω) to a radial function u(x) = v(|x|). A further

subsequence, indexed by ik, may be extracted so that

λ (νik) converges to some λ as k −→ ∞

Now, writing

uik(x) = vk(|x|),

the Euler equation (3.20) in radial co-ordinates, for this subsequence, reads

−
(
rn−1 1

ξik
v′k(r)

)′

= λ(νik)r
n−1vk(r). (3.21)

By integration, we obtain

rn−1 1

ξik
(r)v′(r) = −λ(νik)

∫ r

0

sn−1vk(s)ds. (3.22)

Since uik is bounded in H1
0 (Ω), it can be checked that the sequence vk converges weakly in

H1
0 (0, 1),. So after transferring ξik to the right hand side of (3.22), it is possible to pass to

the limit therein as k −→ ∞ to obtain the relation

rn−1v′(r) = −λξ(r)
∫ r

0

sn−1v(s)ds.

We then divide by ξ(r), differentiate with respect to r and write the equation that we

obtain in the original co-ordinates as

− div (ν∇u) = λu. (3.23)

The function u is non-zero as its L2 norm is 1 and thus, is an eigenfunction and, being the

limit o f non-negative functions, is itself non-negative. So, by the Krĕın -Rutman theorem,

λ is the first eigenvalue in the above spectral problem. By the uniqueness of the limit,

λ = λ(ν)

Therefore, it follows that the entire sequence λ(νi) converges to λ(ν).
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Remark 6.3.4. If we consider positive the first eigenvalue of the Euler equation (3.20), the

radial co-ordinates equation (3.21) says that ν
∂u

∂n
is decreasing in each region where ν is

constant and the integral equation (3.22) also says that u is decreasing.

6.4 Proof of the main theorem

This proof is given in several steps.

Step 1: Reformulation

Let us recall that the constraint in the original problem can be written as

ν ∈ C (θ) .

Thanks to the corollary (3.1.43) this constrain can be recast as

ν−1 ∈ C
((
θ−1
)∗)

. (4.24)

So the minimization problem reads

inf
{
λ (ν) | ν−1 ∈ C

((
θ−1
)∗)}

. (4.25)

Proposition 6.4.1. We have the following problem equivalence

inf
{
λ (ν) | ν−1 ∈ C

((
θ−1
)∗)}

= inf
{
λ (ν) | ν−1 ∈ Ks

((
θ−1
)∗)}

. (4.26)

Proof. Following the proposition (6.2.19) we have that Ks

(
(θ−1)

∗)
is the closed convex hull

of Cs
(
(θ−1)

∗)
for the weak-∗ topology. So applying the continuity property in proposition

(6.3.3) and the proposition (3.4.5) we have

inf
{
λ (ν) | ν−1 ∈ Cs

((
θ−1
)∗)}

= inf
{
λ (ν) | ν−1 ∈ Ks

((
θ−1
)∗)}

.

So it readily follows that

inf
{
λ (ν) | ν−1 ∈ Ks

((
θ−1
)∗)} ≥ inf

{
λ (ν) | ν−1 ∈ C

((
θ−1
)∗)}

. (4.27)

To prove the reverse inequality, let ν−1 ∈ C
(
(θ−1)

∗)
be arbitrary and let u be the cor-

responding minimizer in the definition of λ (ν). Considering ν̃−1 ∈ Ks

(
(θ−1)

∗)
and u∗ asso-
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ciated to the pair (ν, u) as given by proposition (6.3.1) and using the property (3.1.24) we

obtain

λ (ν) =

∫

Ω

ν |∇u|2 dx
∫

Ω

|u|2 dx
≥

∫

Ω

ν̃ |∇u∗|2 dx
∫

Ω

|u∗|2 dx
≥ λ (ν̃) ≥ inf

{
λ (ν) | ν−1 ∈ Ks

((
θ−1
)∗)}

.

By the arbitrariness of ν the reverse inequality to (4.27) follows.

Step 2: The reformulation achieves the infimum

We define a topology on the set

K̃ :=
{
ν | ν−1 ∈ Ks

((
θ−1
)∗)}

.

Definition 6.4.2. We write

νi
τ
⇀ ν

Saying that νi Tau inverse converges to ν, if and only if

ν−1
i converges to ν−1

weakly-∗ in L∞ (Ω).

Proposition 6.4.3. The infimum of the right hand side of (4.26) is in fact a minimum, that

is to say, the infimum value is achieved.

Proof. It is clear from (6.2.3) and (6.2.15) that K̃ is a compact set for the weak-∗ topology on

L∞ (Ω). It follows that K̃ is a compact set for the topology defined above. In fact let be νn ∈ K̃
a sequence. There exists a subsequence ν−1

nk
of ν−1

n which converges to ν−1 ∈ Ks

(
(θ−1)

∗)
,

hence by definition νnk

τ
⇀ ν ∈ K̃.

Besides, by proposition (6.3.3) we know that λ restricted to K̃ is continuous for the above

topology. Thus, our thesis follows.

Step 3: The problem has a classical solution

In the previous step, we have been able to show that the minimization problem admits a

solution in a slightly enlarged class. Although, the functional λ is concave, it is not clear
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whether the constraint set {
ν : ν−1 ∈ Ks

((
θ−1
)∗)}

is convex. If this were so it is immediate (by proposition (3.4.7)) to obtain a solution in the

original class as, whenever a concave function admits a minimum over a compact convex set

there is a minimizer which is an extreme point.

So, in this problem, in order to show that there is a solution in the original class, we

shall have to do differently as is done in Alvino et. al [4]. We have the following technical

proposition showed in [4].

Proposition 6.4.4. The map

J : ν−1 −→ (λ(ν))−1

when is restricted to Ks

(
(θ−1)

∗)
is a convex application.

Sketch. Indeed, in [4, Corollary 3.2] it is shown that

J(µ) = max






∫

Ω

µ

(
|x|N−1

∫ |x|

0

sN−1v(s)ds

)2

dx | v ∈ L2 (Ω) ,

∫

Ω

v2(x)dx = 1, v radial




 .

showing that J(µ) is a supremum of linear functionals.

Due to the previous proposition the minimization problem on the right hand side of

(4.26) is equivalent to maximizing the reciprocal functional J . The above mentioned con-

vexity guarantees that there is a maximizer of J which is an extreme point of the compact

convex set Ks

(
(θ−1)

∗)
. By proposition (6.2.20) it has to belong to Cs

(
(θ−1)

∗)
. This permits

us to conclude that the infimum in (4.25) is achieved for a radially symmetric function.

Finally, we are able to announce the following main theorem.

Theorem 6.4.5. Let Ω denote a ball in R
N . The problem (GP) of minimizing the first

eigenvalue, defined by (0.3), given two conducting materials with conductivities α and β, in

a given ratio, admits a radially symmetric solution.

6.5 Remarks

We remark that we only require Lemma 1.2 [3] in the form state below for our applications.

Now, we give a more flexible alternate proof of the same.
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Proposition 6.5.1. Given any ν ∈ C(θ) an any non-negative u ∈ H1
0 (Ω), for ν̃ radially

symmetric defined through the relation,

∫

Ω∗
u,c

1

ν̃(x)
dx =

∫

Ωu,c

1

ν(x)
dx (5.28)

we have ∫

Ω

ν |∇u|2 ≥
∫

Ω

ν̃ |∇u∗| dx. (5.29)

Proof. We shall make repeated use of the co-area formula (3.1.49). Applying (1.40) given in

(3.1.49), we obtain the identity

∫

{u≥t}

ν(x) |∇u(x)|2 dx =

∞∫

t

∫

{u=s}

ν(x) |∇u(x)| dσ(x)dt.

Therefore, it follows that,

− d

dt



∫

{u≥t}

ν(x) |∇u(x)|2

 =

∫

{u=t}

ν(x) |∇u(x)| dσ(x). (5.30)

We apply the fact that the arithmetic mean of a non-negative function is always grater than

the harmonic mean (3.3.3), to the function ν |∇u| on the surface {u = t} equipped with its

surface measure, to conclude that
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∫

{u=t}

ν |∇u(x)| dσ(x) =

∫

{u=t}

ν(x) |∇u(x)| dσ(x)

∫

{u=t}

dσ(x)

∫

{u=t}

dσ(x)

≥

∫

{u=t}

dσ(x)

∫

{u=t}

1

ν(x) |∇u(x)|dσ(x)

∫

{u=t}

dσ(x)

=



∫

{u=t}

1

ν(x) |∇u(x)|dσ(x)




−1

(P ({u ≥ t}))2

≥



∫

{u=t}

1

ν(x) |∇u(x)|dσ(x)




−1

(P ({u∗ ≥ t}))2 (5.31)

The last inequality above is due to the isoperimetric inequality (3.1.47). Therefore, from

(5.30) and (5.31) we have

− d

dt



∫

{u≥t}

ν(x) |∇u(x)|2 dx


 ≥



∫

{u=t}

1

ν(x) |∇u(x)|dσ(x)




−1

(P ({u∗ ≥ t}))2 . (5.32)

We remember that {u∗ ≥ t} form a continuum of concentric balls, having radius rt, whose

union over t ≥ 0 is the ball Ω. Observe that, as u∗ is a radially symmetric function, ∇u∗(x)
depends only on |x|. So, we may define a radially symmetric function ν̃ as follows.

ν̃(x) :=

∫

{u∗=t}

dσ(y)



∫

{u=t}

1

ν(y) |∇u(y)|dσ(y)


 |∇u∗(x)|

for any x, |x| = rt. (5.33)
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We check, first, that ν̃ satisfies (5.28). To see this we use the co-area formula. We have

∫

{u∗≥t}

1

ν̃(x)
dx =

∞∫

t

∫

{u∗=t}

1

ν̃(x) |∇u∗(x)|dσ(x)ds

=

∞∫

t

∫

{u=t}

1

ν(x) |∇u(x)|dσ(x)ds

=

∫

{u≥t}

1

ν(x)
dx

where in the penultimate expression we have plugged in (5.33). Then, (5.32) may be rewritten

using ν̃ as

− d

dt



∫

{u≥t}

ν(x) |∇u(x)|2 dx


 ≥ ν̃(x) |∇u∗(x)|P ({u∗ ≥ t}) for any x, |x| = rt.

=

∫

{u∗=t}

ν̃(x) |∇u∗(x)| dσ(x)

= − d

dt



∫

{u∗≥t}

ν̃(x) |∇u∗(x)|2 dx


 .

Integrating the last equation we obtain the needful.
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Chapter 7

Shape Derivative of the Eigenvalue

Functional

7.1 Introduction

Let ω be given the region where we put the material β. Let u and λ be the first eigenfunction

and eigenvalue of the problem (0.1) given in Chapter 1. The questions that immediately

appear are: Is this configuration optimal? Can we diminish the eigenvalue changing the

configuration? In order to have an answer to these questions we analyze the sensitivity of

the first eigenvalue when we slightly perturb the distribution of the materials.

The shape derivative defined in Section 3.6 will be our tool to address these questions.

We shall calculate the shape derivative of the eigenvalue formally without worrying much

about the hypothesis necessary for everything to make complete sense.

7.2 Some results

Recall the spectral problem (GP) for the first eigenvalue functional is given by

{
−div (σ∇u) = λu in Ω

u = 0 on ∂Ω
. (2.1)

where the first eigenvalue λ1 = λ = λ(ω) depends of the material distribution and σ =

αχΩ\ω + βχω.
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We can suppose the eigenfunction is normalized in order to satisfy

∫

Ω

u2dx = 1. (2.2)

Let us define the set

ωt ≡ ω + tθ =
{
x ∈ R

N | x ∈ ω , x+ tθ(x) ∈ ω
}
. (2.3)

Definition 7.2.1. Suppose for this context that ω = ω0 ⊂⊂ Ω. The admissible pertur-

bations of ω are of the form ω + tθ where θ is a sufficiently smooth vector field such that

ω + tθ ⊂⊂ Ω and such that

|ω + tθ| = |ω|. (2.4)

From now on we consider the same eigenvalue problem given in (2.1) but now when the

material with conductivity β is placed in the region wt. If σt, ut, λt are the corresponding

symbols for the new problem, we write:

{
−div (σt∇ut) = λtut in Ω

ut = 0 on ∂Ω
. (2.5)

where λt is the fist eigenvalue regarding this equation.

Hypothesis 7.2.2. The shape derivative of λ exists and the shape derivative of u exists and

belongs to a suitable space. We also assume all the additional hypothesis necessary for our

calculations to makes sense.

Lemma 7.2.3. Assuming the hypothesis (7.2.2) we have

− div (σ′∇u+ σ∇u′) = λ′u+ λu′ in Ω (2.6)

Remark 7.2.4. The earlier equation is very formal. Is not very clear in this equation what

the term σ′ means or how to interpret σ′∇u. In spite of all this the formula that we shall

obtain for (LP) can be rigorously justified. See appendix 8.16(b).

Sketch. From the equations (2.1) and (2.5) we have

−div (σ∇u) = λu

−div (σt∇ut) = λtut
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Subtracting both equation and adding a zero term, we have

−div ((σt − σ)∇ut + σ (∇ut −∇u)) = (λt − λ) ut + λ (ut − u)

Dividing by t, and making t tends to zero, applying the hypothesis (7.2.2) we obtain

(2.6).

It is a standard fact that the volume constraint (2.4) is equivalent to the following incom-

pressibility condition

Proposition 7.2.5. From the constraint |ωt| = |ω| follows

∫

ω

div θdx =

∫

∂ω

θ · ndS = 0. (2.7)

Sketch. We have

0 =

∫

ωt

dx−
∫

ω

dx

=

∫

ωt∩ω

dx+

∫

ωt\ω

dx−
∫

ω∩ωt

dx−
∫

ω\ωt

dx

=

∫

ωt\ω

dx−
∫

ω\ωt

dx

If t tends to zero, noting o(t) a “little o” of t (assuming the hypothesis (7.2.2)), from the last

equation we have (see the figure (7.1))

∫

∂ω

tθ · ndS + o(t) = 0

Dividing by t, , and tending t to zero it follows (2.7).

Lema 7.2.1. The normalization constraint (2.2) leads to the following orthogonal relation

in L2 (Ω) between u and u′: ∫

Ω

uu′ = 0. (2.8)

Sketch. We have

lim
t−→0

|ut|2 − |u|2
t

= u′u
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∂ω
∂ω + tθ

tθ

Figure 7.1: A drawing of ω and ωt

And ∫

Ω

(
|ut|2 − |u|2

)
= 0

Assuming (7.2.2)

lim
t−→0

∫

Ω

|ut|2 − |u|2
t

= 0

which implies (2.8).

Proposition 7.2.6. The function

σt = αχΩ\ωt + βχωt

Satisfies

σ̇ = lim
t−→0

σt ◦ (I + tθ) − σ0

t
= 0 a.e in Ω. (2.9)

Sketch. If x ∈ ∂ω, then x+ tθ(x) ∈ ∂ωt, hence

σt(I + tθ)(x) = σ0(x) ∀ t.

If x ∈ ω∪int (Ω\ω) we have the same relation showed above. Therefore the result follows.

7.3 Variation of the first Eigenvalue

In the construction of the derivative of the eigenvalue functional we will need the following

proposition.
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Proposition 7.3.1. For functions ϕ ∈ C∞ (ω) ∩ C∞
(
Ω\ω

)
we have

−
∫

Ω

θ · ∇σ |∇u|2 := 〈−θ · ∇σ , ϕ〉 (3.10)

=

∫

Ω

σdiv(θ)ϕ+

∫

Ω

σθ · ∇ϕ (3.11)

=

∫

∂ω

[σϕ] θ · ndS (3.12)

=

∫

∂ω

(βϕβ − αϕα) θ · ndS (3.13)

Where ϕβ(x) = lim
ωxn−→x

ϕ(x), ϕβ(x) = lim
Ω\ωxn−→x

ϕ(x).

Proof. Let ϕ ∈ C∞ (Ω),

〈−θ · ∇σ, ϕ〉 =

N∑

i=1

〈
−θi

∂σ

∂xi
, ϕ

〉
(3.14)

=
N∑

i=1

−
∫

Ω

θi
∂σ

∂xi
ϕ (3.15)

=

N∑

i=1

∫

Ω

∂θiϕ

∂xi
−

N∑

i=1

∫

∂Ω

θiϕσnidS (3.16)

=

N∑

i=1



∫

Ω

σ
∂θi
∂xi

ϕ+

∫

Ω

σθi
∂ϕ

∂xi


−

∫

∂Ω

σϕθ · ndS (3.17)

=

∫

Ω

σdiv (θ)ϕ+

∫

Ω

σθ · ∇ϕ (3.18)

but σ = αχΩ\ω + βχω, then

〈−θ · ∇σ, ϕ〉 =

∫

Ω

σdiv (θ)ϕ− α

∫

Ω\ω

div (θ)ϕ−
∫

∂(Ω\ω)

θ · nϕ− β

∫

ω

div (θ)ϕ−
∫

∂ω

θ · nϕ

= α

∫

∂Ω\ω

θ · nϕ+ β

∫

∂ω

θ · nϕ

where n corresponds to the exterior normal in each domain Ω\ω and ω. Since σ ≡ α in Ω\ω

92



CHAPTER 7. SHAPE DERIVATIVE 7.3. VARIATION OF λ

and σ ≡ β in ω, it follows that

〈−θ · ∇σ, ϕ〉 =

∫

∂ω

[σϕ] θ · ndS

Theorem 7.3.2. The shape derivative of λ, given an admissible perturbation θ, reads as

follows

λ′(ω; θ) =

∫

∂ω

[
σ |∇u|2

]
θ · ndS. (LP)

where [ϕ] is the jump of ϕ across ∂ω, that is,

[ϕ] (x) = (ϕ⌊∂ω−−ϕ⌊∂ω+) (x). (3.19)

with ϕ⌊∂ω− and ϕ⌊∂ω+ denoting, respectively the inner and outer trace of ϕ on ∂ω.

Proof. We denote λ(ω) quite simply by λ. By standard calculations in shape derivative

calculus (see Simon [31] and (7.2.3)), we have





−div (σ′∇u+ σ∇u′) = λ′u+ λu′ in Ω

u′ = −θ · n∂u
∂n

on ∂Ω
. (3.20)

We multiply the equation (2.6) by u and integrate by parts on Ω to obtain:

∫

Ω

−div (σ′∇u+ σ∇u′)u =λ′
∫

Ω

u2 + λ

∫

Ω

u′u

∫

Ω

(σ′∇u+ σ∇u′) · ∇u−
∫

∂Ω

∂ (σ′∇u+ σ∇u′)
∂n

u =λ′ + λ

∫

Ω

u′u

∫

Ω

σ′ |∇u|2 +

∫

Ω

σ∇u′ · ∇u−
∫

∂Ω

∂ (σ′∇u+ σ∇u′)
∂n

u =λ′ + λ

∫

Ω

u′u

∫

Ω

σ′ |∇u|2 +

∫

Ω

σ∇u′ · ∇u =λ′ + λ

∫

Ω

u′u (u = 0 on ∂Ω)

(3.21)

We have ∫

Ω

σ∇u · ∇u′ =

∫

Ω

−div (σ∇u) u′ +
∫

∂Ω

∂σ∇u
∂n

u′. (3.22)
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and by the formula (6.67)

u̇(x) = lim
t−→0

ut ◦ (I + tθ) (x) − u(x)

t
.

Since the perturbation θ ≡ 0 in a neighborhood of ∂Ω, we have

x+ tθ(x) = x ∀x ∈ ∂Ω.

Since u y ut are solutions of the Dirichlet problems in Ω we have

ut ◦ (I + tθ) (x) = ut(x) = 0 and u(x) = 0 ∀ x ∈ ∂Ω

Hence, the relation of the total and local derivative (6.68) implies

u′ = −θ · ∇u on ∂Ω

But again, using that θ ≡ 0 on ∂Ω

u′ ≡ 0 on ∂Ω

It is possible to show (see appendix for further details)

u′⌊Ω\ω∈ H1(Ω\ω) and u′⌊ω∈ H1(ω). (3.23)

Then, the last equation with integrals (3.22) the boundary integral is zero, thus

∫

Ω

−div (σ∇u)u′ =

∫

Ω

σ∇u · ∇u′

Since u is an eigenfunction, the week formulation says

∫

Ω

σ∇u · ∇u′ = λ

∫

Ω

uu′
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Then, from the equation (3.21) we have

λ′ =

∫

Ω

σ′ |∇u|2 (3.24)

In (7.2.6) we showed easily that σ̇ = 0 in Ω. Thus, thanks to the formula (6.68)

σ′ = σ̇ − θ · ∇σ

therefore

λ′ = −
∫

ω

θ · ∇σ |∇u|2 (3.25)

=

∫

∂ω

[
σ |∇u|2

]
θ · ndS (3.26)

where in the last equivalence we have used the relation (3.12) of the proposition (7.3.1)
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Chapter 8

Desarrollo Numérico

8.1 Implementación

En esta sección se mostrará la implementación numérica de la derivada con respecto al

dominio del valor propio obtenida en la fórmula (LP).

La implementación se realizó inicialmente con el programa Matlab1. Se elegió este pro-

grama en particular ya que posee el paquete de programas PDE Toolbox, el cual resuelve

EDPs con una interfaz intuitiva para el usuario, con botones y ventanas, para una gran var-

iedad de geometŕıas del dominio. Esta caracteŕıstica permite revisar los resultados obtenidos

del cálculo de valor propio, comparando los valores del algoritmo con los obtenidos mediante

la interfaz gráfica del toolbox de Matlab. 2

La implementación se puede subdividir en 3 subpartes:

1) Implementación de la geometŕıa del dominio.

2) Cálculo del primer valor propio y de la primera función propia.

3) Cálculo de la integral de contorno dada por la fórmula (LP).

En las próximas subseciones mostraremos las etapas necesarias para implementar los puntos

1), 2) y 3) explicados anteriormente.

1En un trabajo posterior de investigación se implementó también con el programa freeFem. En esta tesis
explicaremos el detalle del código solamente para el programa Matlab.

2En virtud de comparar los resultados con otro programas, en un trabajo de investigación que va un poco
más allá que esta tesis, se está implementando el mismo código en freefem.
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Figure 8.1: Configuraciones de geometŕıa del dominio. Anillos concéntricos, bola desplazada
y cuadrados. concentricos. EL material β se encuentra en la región café, naranja y azul
respect́ıvamente.

8.1.1 Geometŕıa del dominio

En los experimentos numéricos que realizaremos, nos interesan tres tipos de geometŕıas para

el dominio:

a) Tres Anillos concéntricos. En este caso considereramos Ω el disco unitario en R
2.

La región donde incorporamos el material con conductividad β corresponde a un anillo

concéntrico en el interior del disco, y por lo tanto, el material de conductividad α en

los anillos concéntricos aledaños.

b) Disco desplazado dentro del disco unitario. En este caso consideramos Ω el

disco unitario en R
2. La región donde incorporamos el material con conductividad β

corresponde a un disco ω ⊆ Ω, el cual se encuentra ubicado en alguna región de Ω, no

necesariamente en el centro.

c) Tres Cuadrados concéntricos. En este caso Ω es un cuadrado en R
2. La región

donde incorporamos el material con conductividad β corresponde a un marco rectángular

concéntrico en el interior del rectángulo más grande Ω, donde los bordes son cuadrados

centrados en el centro de Ω. El material de conductividad α se ubica en el interior de

los marcos aledaños a la region del material β.

En cada una de estas geometŕıas nos interesa generar las condiciones que delimitan las

regiones donde se encuentran los materiales. Las funciones implementadas par tal efecto

fueron prefixDecomposedGeometryMatrix y prefixBoundaryCondition, donde prefix puede

ser la palabra ring, ball, squares según sea la geometŕıa a), b) o c) respect́ıvamente.

La entrada de la función prefixDecomposedGeometryMatrix corresponde a los parámetros

de configuración siguientes:
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Figure 8.2: Esquema que representa la implementación de la geometŕıa del dominio.

i) Cantidad de volumen ocupada por la region de conductividad β.

ii) Parámetro de ubicación de la región de conductividad β: radio menor de los anillos o

cuadrados concéntricos o desplazamiento de la bola según sea la geometŕıa del dominio.

Con la ayuda de la función decsg de matlab, se obtiene una completa descripción de la

geometŕıa del problema, que puede ser utilizada por otras funciones del PDE toobox.

En prefixBoundaryCondition se generan las condiciones de borde asociadas a la geometŕıa

para nuestro problema. Se generan las condiciones Dirichlet en el borde de Ω y las condiciones

de transmisión en la frontera de las subregiones donde se encuentran los materiales. Además,

para simplificar los cálculos posteriores entrega la salida de prefixDecomposedGeometryMatrix.

8.1.2 Malla

Dada la geometŕıa del dominio entregada por la función prefixBoundaryCondition, la función

generateMesh genera la malla de la geometŕıa con el refinamiento y propiedades dadas en la

entrada.

En términos generales, generamos 2 tipos de mallado:

i) Mallado Homogéneo. En este tipo de mallado nos preocupamos que los triángulos

generados sean lo más similares posibles, esto es, en promedio dejamos los triangulos

con la misma área. Utilizamos principalmente las funciones initmesh, refinemesh y

jigglemesh y el parámetro Hgrad de Matlab con el fin de generar tales efectos. 1

• Mallado Simple. En este tipo de mallado, en térmimos generales, dejamos la trian-

gulación con las opciones por defecto que entregan las funciones de matlab initmesh y

refinemesh.1

1Para ver mas detalles, ver el código comentado en el programa.
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En las figuras (8.3) se muestran los tipos de mallados para distintas situaciones.

Cuando utilizamos el mallado simple y tenemos geometŕıas que tienen zonas muy del-

gadas con un tipo de material, la triangulación que se forma tiende a generar much́ısmos

más triángulos en las zonas delgadas. Para tener una medida más uniforme utilizamos la

triangulación homogénea, la cual tiene como fin homogenizar la cantidad de triángulos en las

regiones, independiente de el espesor de las zonas.

8.1.3 Poniendo el material

Para poner los materiales conductores en las diferentes regiones implementamos las funciones

findBetaSubdomainPostfix y putMaterialPostfix, donde Postfix es la palabra Ring, Square o

Ball según corresponda la geometŕıa.

En findBetaSubdomainPostfix obtenemos el indice de la región donde está colocado el

material de conductividad β.

En putMaterialPostfix colocamos los materiales en las distintas regiones del dominio,

según lo especificado por los ı́ndices de los subdominios.

8.1.4 Valor propio

Para calcular el valor propio y la función propia asociada a una configuración espećıfica,

utilizamos la función pdeeig del PDE toolbox de Matlab. A esta función entregamos como

parámetro las siguientes variables:

i. Descripción de las condiciones de borde asociadas a la geometŕıa.

ii. Malla de la geometŕıa.

iii. Coeficientes de los materiales.

iv. Intervalo donde el algoritmo buscará valores propios.

Para tener más detalles de la función sugerimos ver la ayuda de matlab.
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(a)

(b)

(c)

Figure 8.3: Ejemplos de Mallados

Figure 8.4: Cambio de tamaño en los triángulos cuando la diferencia de porte en las regiones
es considerable.
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Figure 8.5: Valores propios para distintas configuraciones. Los colores representan la magni-
tud del gradiente.

En las figuras (8.5) mostramos distintas funciones propias generadas para distintas ge-

ometŕıas.

8.1.5 Integral de contorno

Esta función es la que implementa el cálculo de integral de borde dada por la fórmula (LP).

Los parámetros de entrada son:

i. Los arcos de la frontera de la región con material β.

ii. El ı́ndice de la subregión con material β.

iii. La malla de la geometŕıa.

iv. Los coeficientes α y β.
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Figure 8.6: El mallado de la geometŕıa permite discretizar la frontera de las subregiones
con algunos arcos de la triangulación. Con la función findBetaSubdomain recuperamos estos
arcos y con findTrianglesFromEdge obtenemos los triangulos limı́trofes.

v. La primera función propia asociada a la configuración.

vi. La perturbación del dominio.

En lo que sigue explicaremos con un poco de más detalle esta función.

i. Para obtener un valor del gradiente del valor propio, generamos lo aproximamos generando

una interpolación de éste en los puntos medio de cada triángulo con la función de matlab

pdegrad.

ii. Encontramos los triangulos asociados a los arcos de la frontera de la región con la

función findTrianglesFromEdge. Cada uno de estos triángulos está una región diferente.

iii. Discretizamos la integral de contorno (LP) utilizando una suma de Riemman sobre

los arcos del contorno. Aproximamos la integral por una suma sobre los arcos de la

frontera de la región. En la figura (8.6) se puede apreciar la discretización del borde de

las subregiones.

iv. En cada uno de los arcos del contorno calculamos el salto
[
σ |∇u|2

]
utilizando los

valores de σ y |∇u|2 en el par de triángulos que comparten el arco. Cada uno de estos

triángulos pertence a una región con distinto material.

v. Aproximamos la normal en el contorno por la normal a cada uno de los arcos del

contorno.

vi. Multiplicamos la normal por el vector θ (que perturba la región ω) pasado por parámetro.
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8.1.6 λ′

Para implementar la derivada con respecto al dominio dada por (LP) obtenemos las com-

ponentes conexas del borde de la región con material de conductividad β. En cada una de

estas regiones calculamos las integrales de contornos entregadas por la funcion contourInte-

gral. Luego sumamos las cantidades (o las restamos, si consideramos el mismo signo para la

normal) obtiendo la discretización de la cantidad (LP).

8.2 Resultados numéricos

En esta sección mostramos los resultados numericos obtenidos del cálculo de la derivada con

respecto al dominio del primer valor propio de la ecuación de conductividad encontrada en

la formula (LP).

Se realizaron experimentos concerniendo 3 tipos de geometŕıa diferente:

a) Tres Anillos concéntricos. En este caso considereramos Ω el disco unitario en R
2.

La región donde incorporamos el material con conductividad β corresponde a un anillo

concéntrico en el interior del disco, y por lo tanto, el material de conductividad α en

los anillos concéntricos aledaños.

b) Disco desplazado dentro del disco unitario. En este caso consideramos Ω el

disco unitario en R
2. La región donde incorporamos el material con conductividad β

corresponde a un disco ω ⊆ Ω, el cual se encuentra ubicado en alguna región de Ω, no

necesariamente en el centro.

c) Tres Cuadrados concéntricos. En este caso Ω es un cuadrado en R
2. La región

donde incorporamos el material con conductividad β corresponde a un marco rectángular

concéntrico en el interior del rectángulo más grande Ω, donde los bordes son cuadrados

centrados en el centro de Ω. El material de conductividad α se ubica en el interior de

los marcos aledaños a la region del material β.

Para cada una de estas geometŕıas (ver figura (8.1)) se hicieron cálculos del primer valor

propio ( ver fórmula (0.3) del caṕıtulo 4 ) y la derivada de forma (LP). Cada dupla valor

propio-derivada está en función del paramétro libre según la geometŕıa del dominio. Este

paramétro corresponde a:

• El radio interno del anillo donde se encuentra el material β, para el caso de los anillos

concéntricos.
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β proporción
2 0.1
2 0.5
2 0.9

200 0.1
200 0.5
200 0.9

Table 8.1: Distintos valores de β y su proporción en los experimentos realizados.

• El desplazamiento del centro del disco donde se encuentra material β, para el caso de

los discos desplazados.

• El semi-ancho del cuadrado interno que correponde a la frontera interna donde se

encuentra el material β, para el caso de los cuadrádos concéntricos.

En todos los experimentos se fijó el valor α = 1. Se generaron datos para los valores de

β y proporción con respecto al área total dados en la tabla (8.1).

En las figuras (8.7) y (8.8) mostramos los resultados de los experimentos para el caso

de los anillos concéntricos. En las figuras (8.9) y (8.10) mostramos los resultados de los

experimentos para el caso de discos desplazados. En las figuras (8.11) y (8.12) mostramos

los resultados de los experimentos para el caso de los cuadrados concéntricos. En este último

caso no implementamos el cálculo de la derivada.
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Figure 8.7: Discos concéntricos para β = 2

8.3 Análisis numérico

La generación de datos mostrada en la sección anterior tiene el propósito de validar las

siguientes conjeturas:
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Figure 8.8: Discos concéntricos para β = 200
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Figure 8.9: Discos No-Concéntricos para β = 2

Conjectura 8.3.1. La solución óptima de (GP), en el caso del disco unitario en R
2 o en

la bola unitaria en R
N , se encuentra poniendo el material de conductividad β en el medio.

Conjectura 8.3.2. La fórmula formal de la derivada con respecto al dominio dada por (LP)

es correcta.

Los experimentos relevantes son en virtud de las conjeturas anteriores son:

• El caso de anillos concéntricos.

• El caso de la bola desplazada del origen.
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Figure 8.10: Discos No-Concéntricos para β = 200
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Figure 8.11: Cuadrados concéntricos para β = 2

Figure 8.12: Cuadrados concéntricos para β = 200

El experimento en cuadrados tiene la función de dar una señal al estudio posterior (no

considerado en esta tesis) del problema (GP) en el caso de un dominio con otro tipo de

geometŕıas, como es el caso de cuadrados o estrellas.

Los datos numéricos resumidos en los gráficos (8.7), (8.8), (8.9), (8.10) muestran que en

todos los experimentos, y en todas la geometŕıas, la fórmula (LP) tiene el mismo signo de

la variación del primer valor propio con respecto al parámetro de la geometŕıa. En otras

palabras, la derivada con respecto al dominio (LP) pareciera, al menos en sentido numérico,

ser correcta.

Pareciera que los datos numéricos comprueban la conjetura (8.3.1), sin embargo, en el

caso de la bola desplazada (8.9), cuando la proporción de β es 0,9, el resultado numérico da

a entender que el mı́nimo no se encuentra en la region esperada.

Cabe mencionar que el experimento anterior es bastante cŕıtico. Apriori, sin analizar en

detalle el experimento, podemos apreciar que la proporción de material β en este caso es muy

grande. También, la variación numérica del valor propio es muy pequeña comparat́ıvamente

todos los otros experimentos, del orden de un centésimo.

En virtud de los resultados espurios del experimento anterior, se generaron más datos en

posibles configuraciones indeseables (que no satisfagan ni (8.3.1) ni (8.3.2)). En la próxima

sección se analiza lo más en detalle posible este tipo de configuraciones.

8.4 Errores numéricos

Nos dimos cuenta que en el caso de la bola desplazada (8.9), cuando la proporción de material

β es grande, la solución óptima numéricamente pareciera que no se encuentra distribuyendo

el material de conductividad β en el medio, si no que dejando la bola desplazada lo más al
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borde posible.

Creemos fuertementemente que esto es solo un error numérico. En esta sección buscaremos

más pruebas, que nos permitan decir con más convicción que esto es un error numérico y

que, por lo tanto, no se relaciona con los resultados esperados.

Para entender cuál es el fenómeno de por medio se realizaron más experimentos con

β = 2, cambiando la proporción del material. En la figura (8.13) se muestra el cambio de la

proporción en multiplos de 10. Se observa que antes de tener el 70% de la región ocupada

con material β los resultados concuerdan con las conjeturas (8.3.1) y (8.3.2).
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Figure 8.13: Comportamiento en el experimento de discos desplazados. El error numérico
comienza entre las proporciones 0.7 y 0.8 para β.

Probando en distintas configuraciones, nos dimos cuenta de la siguiente observación.

Remark 8.4.1 (Configuración Critica). El conjunto de configuraciones cŕıticas a analizar

que arrojaron la mayor cantidad de errores numéricos, se encuentran en torno al punto de

configuración siguiente:

• β = 2

• Proporcion de β: 0.75 o 0.753

• Numero de nodos en la frontera del disco unitario: 100.

• Número de nodos en la frontera del disco interno: 100.

Algunas configuraciones se muestran en la figura (8.14).

Comparando el grupo de gráficos de las figuras (8.13) y (8.14) se puede apreciar que, en

los resultados que están de acuerdo con las conjeturas (8.3.1) y (8.3.2), el valor numérico del

valor propio vaŕıa según el parámetro de la geometŕıa en un orden ya sea de centésismos o

décimos. Sin embargo, en los experimimentos que no concuerdan con nuestras suposiciones,

las variaciones son del orden de los milésimos y centésimos. Es bastante claro que el orden
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Figure 8.14: Comportamiento en el experimento de discos desplazados. Algunas configura-
ciones cŕıticas.

de la variación tiene mucha relación con lo poco esperado de los resultados: la variación del

valor propio es muy pequeña en estos casos.

Nos interesa ahora observar el comportamiento cuando refinamos la malla. Denotamos

por n1 y n2 la cantidad de nodos en los bordes del disco exterior e interior respect́ıvamente.

Estudiamos el caso para β = 2, proporción 0.773 para distintos valores de n1 y n2. En

la figura (8.15) se muestran los resultados. Para el valor propio, se observan variaciones

del orden de un milésimo. El valor propio decrece muy poco y el cálculo de la derivada es

incongruente.
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Figure 8.15: Comportamiento en el experimento de discos desplazados cambiando el refi-
namiento de la malla.

Ahora nos interesa estudiar los casos problemáticos dados en la observación (8.4.1) cuando

perturbamos el valor de β.

En los experimentos mostrados en el bloque de figuras (8.16) dejamos fijo la proporción

de β en el valor 0.755 y la cantidad de nodos en las fronteras externa e interna los fijamos

en 200 cada uno. Se aprecia que para las configuraciones con β ligeramente diferentes de

2, el comportamiento no refleja claramente lo esperado por las conjeturas (8.3.1) y (8.3.2).

A partir de β = 2.05 en adelante, tanto (8.3.1) como (8.3.2) se condicen con los resultados

numéricos.
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(a) Bad configurations near β = 2
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(b) From β = 2.05 on the configurations behave correctly

Figure 8.16: Behavior in the displaced disc experiment changing the value of β.

8.5 Conclusiones numéricas

El comportamiento numérico que se observa en las configuraciones mostradas en la sección

de errores anterior (8.4), es de una alta inestabilidad, tanto para el primer valor propio como

para la fórmula (LP) de la derivada del primer valor propio con respecto a la geometŕıa.

En estas experiencias numéricas, el cambio del valor propio numérico no supera el orden

10−3, salvo en pocos casos como en el que la proporción de β es igual a 0.9, donde el orden

es de 10−2.

A excepción de lo anterior, los experimentos se comportan según nuestras conjeturas

(8.3.1) y (8.3.2) y, en estas configuraciones, los cambios del valor propio son mayores a 10−2.

Además, en el grupo de gráficos (8.16) apreciamos que, aumentando levemente el valor

de β, desde 2.05 en adelante, el cálculo para las configuraciones problemáticas se regulariza,

entregando valores según las conjeturas (8.3.1) y (8.3.2). Claramente el valor la magnitud de

la diferencia entre los coeficientes α y β tiene relevancia para el desempeño numérico.

Por otro lado, debido a que el problema tiene una condición Dirichlet, el computador

penaliza con valores muy altos los nodos del borde, otorgando, para la matriz de esfuerzos,

un condicionamiento muy grande, del orden de 1028.

Concluimos que los resultados espurios se deben a turbulencias numéricas. Los cálculos

del valor propio y de la derivada con respecto a la forma se tornan inestables, poco analizables,

y además, los órdenes de magnitud del valor propio son muy pequeños. Estos valores no son
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relevantes para el análisis debido al mal condicionamiento de la matriz .

Finalmente, en términos generales, concluimos que el desempeño numérico confirma las

conjeturas (8.3.1) y (8.3.2).
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Chapter 9

Characterization of the Solution

In the theorem (6.4.5) we have proved the existence of a classical radially symmetric

solution of the problem (GP) when the domain Ω is a ball in R
N , which in other words, assures

the two materials are distributed in measurable rings, and so there is no homogenization

zone. Nevertheless, nothing tell us that it is not possible to have a zone of positive measure

with empty interior where the materials are distributed. Thus in the practice it couldn’t be

possible to distinguish accurately where the materials are placed.

The previous situation is not very comforting, at least practically speaking. We can ask

ourself several questions that partially relieve us from a situation like this.

• How many connected components can there be of the different materials?

• What can be said about the perimeter of each set where are placed the materials? Is

it finite?

• Is it possible to find connected components having only material α or β?

In particular we strongly think that in the case of a ball in R
N , the solution consists in

placing the material β in the middle of the ball.

9.1 Optimal distribution in a ball

We know by the results of the paper Alvino et. al. that the minimum is attained for a

radially symmetric distribution of the materials α and β which means that the materials

could be distributed in various spherical shells.

We have the following conjecture
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Conjecture 9.1.1. When Ω is a ball, among all radially symmetric distributions of β with

fixed volume m the configuration where all the material β is in the middle gives the lowest

value to the first eigenvalue.

We now give some arguments which partially justify this conjecture. The procedure

consists in showing, systematically, using the shape derivative calculated in the previous

section, that whenever there is a layer of α preceding a layer of β (as we move radially

outward) λ′(ω; θ) < 0 for the radially symmetric perturbation θ which moves the layer of β

inwards while conserving the volumes of α and β.

Theorem 9.1.2. Assuming that the formula (LP) holds, given an annulus configuration

w0 where we put the material β in a annulus of non empty interior, for perturbation θ of

this annulus which moves it outwards while preserving the volume, we have that the shape

derivative of the first eigenvalue satisfies

λ′(w0) ≥ 0.

This indicates that is better to place the material β in the middle.

Proof. Denote the reference configuration by σ and let u be the normalized first eigenfunction,

which we know to be radially symmetric (see for instance [9]). Let us concentrate on a layer

ω0 of β which follows a layer of α and let us write its boundary as S1 ∪ S2 where S1 and

S2 are, respectively, the inner and outer boundaries. We may consider a radially symmetric

perturbation θ which is zero outside ω0 and conserves the volume of ω0. The conservation of

mass condition (2.4) gives the relation

(θ · n)⌊S1
per(S1) + (θ · n)⌊S2

per(S2) = 0 (1.1)

where per(S) is the perimeter in R
N−1 defined in (3.1.46) of S, for instance, if ω0 is an annulus

in R
2 and S is one of its boundaries, per(S) = 2πr with an appropriate radius r. Now, from

the equation (LP) we have

λ′ =

∫

S1

[
σ |∇u|2

]
θ · ndS +

∫

S2

[
σ |∇u|2

]
θ · ndS

=
([
σ |∇u|2

]
θ · n

)
⌊S1

per(S1) +
([
σ |∇u|2

]
θ · n

)
⌊S2

per(S2)

=
([
σ |∇u|2

]
⌊S2

−
[
σ |∇u|2

]
⌊S1

)
(θ · n)⌊S2

per(S2) (1.2)

where we in the last to equations we have used that
[
σ |∇u|2

]
is constant in each boundary.

Let us analyze (1.2) for its sign. Denoting by S−
i and S+

i the inner and outer surfaces of Si
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with respect to w0, for i = 1, 2 (see figure 9.1), the transmission condition on Si reads

(σ∇u · n)S−

i
= (σ∇u · n)S+

i
i = 1, 2. (1.3)

α

β

S+
1

S−
1

S+
2

S−
2

Figure 9.1: Symbols for the different boundaries.

In view of the fact that u is radially symmetric, we can write n = ∇u
|∇u|

, and, therefore,

from the above relation we conclude that

σ |∇u| ⌊S−

i
= σ |∇u| ⌊S+

i
i = 1, 2. (1.4)

This allows to write the jumps in σ |∇u|2 as follows

[
σ |∇u|2

]
=
(
|∇u| ⌊S+

i
− |∇u| ⌊S−

i

)
(σ |∇u|)⌊S−

i

=

(
β

α
− 1

)
|∇u| ⌊S−

i
(σ |∇u|)⌊S−

i

Therefore, the shape derivative in (1.2), can be rewritten as

λ′ =

(
1

α
− 1

β

)(
(σ |∇u| ⌊S−

2
)2 − (σ |∇u| ⌊S−

1
)2
)

(θ · n)⌊S2
per(S2). (1.5)
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Recalling the remark (6.3.4) says that u is a decreasing function and that σ
∂u

∂n
is a decreasing

function in each region where σ is constant, it follows that σ |∇u| is non-decreasing in the

radial direction on ω0. Therefore, λ′ assumes a positive sign if θ is such that θ · n is positive

on S2 and consequently θ · n is positive on S1. This means that λ increases if shell is moved

outwards. This concludes the proof of the theorem.
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Chapter 10

Conclusions

We have been able to give a new proof of the fact that the problem (GP), in a spherically

symmetrical domain in R
N has a radially symmetrical solution. We expect very soon to

extend the existence result to the case of domains with less symmetries, such as squares and

stars, by using other forms of symmetrization.

In Chapter 7 we calculated the shape derivative of the eigenvalue functional. Using this

and also through some numerical experiments made in planar domains we gathered evidence

for our conjecture that the minimum value in (GP) is obtained by placing the material of

conductivity β in the middle. One of our aims is to rigorously establish this conjecture based

on a careful analysis of the shape derivative.
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Conclusiones

Hemos podido dar una nueva prueba del hecho que el problema (GP), restringido a un

dominio esféricamente simétrico en R
N , posee una solución radialmente simétrica. Con los

elementos matemáticos introducidos esperamos, en un futuro próximo de investigación, tener

un mejor entendimiento de este problema, lo que nos permitiŕıa en particular, extender el

resultado de existencia a dominios con menos simetŕıas, como cuadrados o estrellas.

Las herramientas de derivación con respecto al dominio introducidas en la sección (3.6)

permitieron obtener la derivada del primer valor propio con respecto a la distribución de

materiales. Usando lo anterior, en conjunto con algunos experimentos numéricos realizados

en dominios planos, fue posible obtener evidencia del hecho que, cuando el dominio es una

bola en R
N , es conveniente distribuir el material β en el centro.

Nuestra intención, en un trabajo de investigación ulterior, es confirmar rigurosamente

esta conjetura, analizando cuidadosamente la derivada del primer valor propio con respecto

al dominio.
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Appendix A

First Paper

A.1 Abstract

The pioneering works of F. Murat and L. Tartar [26] go a long way in showing, in general, that

problems of optimal design may not admit solutions if microstructural designs are excluded

from consideration. Therefore, assuming, tactitly, that the problem of minimizing the first

eigenvalue of a two-phase conducting material with the conducting phases to be distributed

in a fixed proportion in a given domain has no true solution in general domains, S. Cox

and R. Lipton only study conditions for an optimal microstructural design [11]. Although,

the problem in one dimension has a solution (cf. Krĕın [22]) and, in higher dimensions, the

problem set in a ball can be deduced to have a radially symmetric solution (cf. Alvino et. al.

[4]), these existence results have been regarded so far as being exceptional owing to complete

symmetry. It is still not clear why the same problem in domains with partial symmetry should

fail to have a solution which does not develop microstructure and respecting the symmetry

of the domain. We hope to revive interest in this question by giving a new proof of the result

in a ball using a simpler symmetrization result from A. Alvino and G. Trombetti [3].

A.2 Introduction

Let Ω be a bounded domain in R
n which is to be called the design region. Let m be a positive

number, 0 < m < |Ω|, where |Ω| is the total volume (Lebesgue measure) of the region Ω.

Two materials with conductivities α and β (0 < α < β) are distributed in arbitrary disjoint

measurable subsets A and B, respectively, of Ω so that A ∪ B = Ω and |B| = m. For any
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such distribution, it is well known (cf. [10, 6, 21]) that the first eigenvalue in the spectral

problem {
−div ((αχA + βχB)∇u) = λu in Ω

u = 0 on Ω
(2.1)

is given by

λ1(B) := min
u∈H1

0
(Ω)

∫
Ω
(αχA + βχB)|∇u|2dx∫

Ω
|u|2dx . (2.2)

Let A := {B : B ⊂ Ω, B measurable, |B| = m} be the class of admissible domains for the

material with conductivity β. We are interested in the following eigenvalue minimization

problem

inf
{
λ1(B) : B ∈ A

}
. (2.3)

Starting from the works of Murat and Tartar on a control problem involving immiscible fluids

[26] it is well known that, generally speaking, optimal design problems may not always have

a solution if the development of microstructures is not taken into consideration. However, if

microstructures are allowed as admissible designs then the infimum is reached corresponding

to some microstructure. In the case of our problem such an approach was followed by Cox

and Lipton [11] and a characterization of the optimal microstrucure has been established.

Nevertheless, the original problem in the one-dimensional case and, in the case of a ball

admit true solutions with symmetry as has been shown by Krĕın [22] and Alvino et. al. [4],

respectively. The one-dimensional problem was solved by Krĕın [22, 16] by exploiting the

equivalence between the original problem and a similar problem for a vibrating membrane

involving the objective functional

λ1(B) := min
u∈H1

0
(Ω)

∫
Ω
|∇u|2dx∫

Ω
(αχA + βχB)|u|2dx (2.4)

although this equivalence does not hold in higher dimensions. The works of Cox and

McLaughlin [12, 13] show that the latter problem, in any dimension, has a true solution.

It still remains to answer the question whether the original problem admits a minimum. Our

aim is to revive interest in this question by giving an almost self-contained and a vastly

simplified treatment of the existence result in a ball originally due to Alvino et. al. [4]. The

main result of our paper reads as follows.

Theorem Let Ω denote a ball in R
n. The problem (2.3) of minimizing the first eigenvalue,

defined by (2.1), given two conducting materials with conductivities α, β, in given ratio,

admits a radially symmetric solution.
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It is worth observing that this is a kind of Faber-Krahn inequality for non-homogeneous

elliptic operators. The paper of Alvino et. al. [4] treats many other problems of this kind.

We refer also to Burton [7] for some results on problems of a similar nature.

Our proof of the above theorem will be based on a symmetrization result from Alvino

and Trombetti [3, Lemma 1.2] whereas the original proof given in [4] is based on a more fine

comparison result for the solutions of Hamilton-Jacobi equations [4, Theorem3.1].

Plan of the paper: In the next section we shall introduce some notations and recall, briefly,

the Schwarz symmetrization and some basic results on the Schwarz symmetrization. The

problem will then be reformulated in a way that makes it possible to apply symmetrization

techniques. Subsequently, we shall discuss some of the structural properties of the objective

functional and the constraint set provided in [4, 3]. We then recall a symmetrization result

[3, Lemma 1.2] of which we give a different but formal proof (see Appendix) which could be

adapted to domains with partial symmetry.

In Section 3, we shall give a proof of the main theorem (cf. Corollaries 3.1 and 3.2 [4])

with the help of the above symmetrization result and some basic properties discussed in [4, 3]

instead of the more intricate [4, Theorem 3.1].

A.3 Notations and Preliminaries

As the results of this article concern a ball, henceforth, Ω will refer to B(0, 1), the n-

dimensional unit ball in R
n centered at the origin. We shall use f−1 to denote the reciprocal

of a non-vanishing real valued function f . Given a measurable function f : Ω → R and a

real number c, Ωf,c will denote the level set

Ωf,c := {x ∈ Ω : f(x) ≥ c} (3.5)

which is a measurable subset of Ω and, of course, depends on the function f . We denote by

Ω∗
f,c a ball concentric to Ω and having the same Lebesgue measure as Ωf,c.

Schwarz symmetrization: The Schwarz symmetrization of the function f is a radially

symmetric decreasing function f ∗ defined on Ω through the relation

f ∗(z) := sup{c ∈ R : z ∈ Ω∗
f,c} . (3.6)

It follows from the very definition of f ∗ that {f ∗ ≥ c} = Ω∗
f,c and therefore, that the functions

119



APPENDIX A. FIRST PAPER A.3. NOTATIONS AND PRELIMINARIES

f and its Schwarz symmetrization f ∗ are equimeasurable in the sense that

|{x ∈ Ω : f(x) ≥ c}| = |{z ∈ Ω : f ∗(z) ≥ c}| . (3.7)

Remark A.3.1. The ≥ sign in (3.7) can be changed to ≤ without changing any of the

consequences. As a consequence, the relation in (3.7) holds with the = sign replacing ≥, but

this cannot be taken as a characterization of equi-measurability, except when we deal with

simple functions.

The equimeasurability property has several important consequences such as, for any mea-

surable function, h : R → R, we have:

∫

Ω

h(f(x)) dx =

∫

Ω

h(f ∗(z)) dz . (3.8)

In particular, one has ∫

Ω

|f(x)|2 dx =

∫

Ω

|f ∗(z)|2 dz . (3.9)

The following inequality is also fundamental (cf. [21, Proposition 1.2.2]) :

∫

E

f(x) dx ≤
∫

E∗

f ∗(x) dx (3.10)

for all measurable subsets E ⊂ Ω. Another fundamental property of the Schwarz symmetriza-

tion is the iso-perimetric inequality

P ({f ≥ c}) ≥ P ({f ∗ ≥ c}) (3.11)

where P (C) denotes the perimeter of a subset C in Ω, when it is defined.

Suitable forms of the above properties are also true of various other forms of symmetrization.

An extensive treatment of the various forms of symmetrizations and their applications may

be found in the monographs [19, 21, 27].

A reformulation of the minimization problem: Let us begin by considering λ1, defined

in (2.1), as a function of ν := αχΩ\B + βχB instead of looking at it as a set function while

writing λ1(ν) for λ1(B). Let θ := αχΩ\B0
+ βχB0

be the simple function where B0 is a ball

centered at 0 having Lebesgue measure m. Note that θ is a radially symmetric and decreasing

function.
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Proposition A.3.2. The minimization problem (2.3) can be recast as

inf
{
λ1(ν) : ν∗ = θ

}
. (3.12)

Proof: It is clear that if ν := αχΩ\B + βχB for some B ∈ A then it’s radially symmetric

decreasing rearrangement is the function θ. We would like to establish the converse now. By

the last part of Remark A.3.1 in the previous section, as θ is a simple function, if we have

ν∗ = θ then ν is a simple function taking the same values as θ on sets of equal measure.

In particular, |{x ∈ Ω : ν(x) = β}| = |B0| = m . So, the one-one correspondence between the

constraints in (2.3) and (3.12) is established.

In the same way, if we set η(ξ) = λ1
(
ξ−1
)
, the minimization problem can also be written as

inf
{
η(ξ) : ξ∗ =

(
θ−1
)∗}

. (3.13)

The infimum in a minimization problem will be attained, by the direct methods of the

calculus of variation, if it happens that the objective functional is lower semi-continuous and

the constraint set is compact for some topology.

The constraint set in either formulation (3.12) or (3.13) is of the form

C(ϕ) = {f : f ∗ = ϕ} (3.14)

given ϕ which is a non-negative, bounded, measurable, radially symmetric decreasing function

on the ball Ω. This set is relatively compact for the weak-∗ topology as a subset of L∞(Ω)

as all f ∈ C(ϕ) have the same L∞ norm as ϕ, being equimeasurable with ϕ and, as bounded

sets in L∞(Ω) are weak-∗ compact. However, this is not closed as, in the first place, weak-∗
limits of simple functions need not be simple whereas, we have seen, in the arguments given

in the proof of Proposition A.3.2, that the Schwarz symmetrization of a simple function is

also a simple function.

Remark A.3.3. In general, in order to calculate the infimum, at first, the closure of the

constraint set needs to be calculated with respect to a suitable topology and then, the lower

semicontinuous envelope of the objective functional with respect to the same topology. In

our problem, this is hard to achieve without the consideration of micro-structural designs

and, the results of Cox and Lipton [11] are in this spirit but lead further away from the study

of a classical solution.

We now put together some observations which highlight some of the structure of the prob-

lem leading to the determination of a classical solution to our problem. A characterization
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of the weak-∗ closure of this set in L∞(Ω), to be denoted by K(ϕ), was given by Migliaccio

[24].

Proposition A.3.4. The set K(ϕ) is a weak-∗ compact convex set characterized by the

relation

K(ϕ) =

{
f ∈ L∞(Ω) :

∫

B(0,r)

f(x) dx ≤
∫

B(0,r)

ϕ(z) dz ∀r,
∫

Ω

f(x) dx =

∫

Ω

ϕ(z) dz

}
.

(3.15)

Proposition A.3.5. The set C(ϕ) is the set of extreme points of K(ϕ).

These results can be found in Alvino et. al. [4, Section 2]. Let us now make the following

simple observation.

Remark A.3.6. It is quite easy to see that the above propositions continue to hold if we

consider Cs(ϕ) and Ks(ϕ) consisting of the radially symmetric functions in C(ϕ) and K(ϕ),

respectively.

The following proposition establishes the continuity of the first eigenvalue with respect to

weak-∗ convergence of the reciprocals of the coefficients, for radially symmetric coefficients.

A similar convergence result is proved in [4, Corollary 3.2] but for minimizing sequences of

the functional λ1. It is worth mentioning here that the objective functional λ1 is not lower

semi-continuous for the weak-∗ convergence of the coefficients.

Proposition A.3.7. Let νi be a sequence of radially symmetric functions in K(ϕ) such that

ν−1
i converges weakly-∗ to a function ν−1 as i tends to ∞. Then, we have λ1(νi) converges

to λ1(ν) as i tends to ∞.

Proof: Let the sequence νi and the function ν satisfy the hypotheses of the proposition. We

write νi(x) =
1

ξi(|x|)
and ν(x) =

1

ξ(|x|). Then, by the hypothesis it follows that ξi weak-∗
converges to ξ in L∞(0, 1). Now, if ui gives the minimum value in the definition of λ1(νi)

then it can be argued, using the Krĕın-Rutman theorem, that this is radially symmetric. We

may also assume that ui is non-negative and further, normalize it so that it’s L2 norm is 1.

The Euler equation corresponding to the minimizing property of ui reads

−div (νi∇ui) = λ1(νi)ui . (3.16)

It can be checked from this that the sequence ui is bounded in H1
0 (Ω) and a subsequence

can be extracted converging weakly in H1
0 (Ω) to a radial function u(x) = v(|x|). A further
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subsequence, indexed by ik, may be extracted so that λ1(νik) converges to some λ as k →
∞. Now, writing uik(x) = vk(|x|), the Euler equation (3.16) in radial co-ordinates, for this

subsequence, reads

−
(
rn−1 1

ξik(r)
v′k(r)

)′

= λ1(νik)r
n−1vk(r) . (3.17)

By integration, we obtain

rn−1 1

ξik(r)
v′k(r) = −λ1(νik)

∫ r

0

sn−1vk(s) ds . (3.18)

It can be checked that the sequence vk converges weakly in L2(0, 1) to the function v. So,

after transferring ξik to the right hand side of (3.18), it is possible to pass to the limit therein

as k → ∞ to obtain the relation

rn−1v′(r) = −λξ(r)
∫ r

0

sn−1v(s) ds . (3.19)

We then divide by ξ(r), differentiate with respect to r and write the equation that we obtain

in original co-ordinates as

−div (ν∇u) = λu . (3.20)

The function u is non-zero as it’s L2 norm is 1 and thus, is an eigenfunction and, being the

limit of non-negative functions, is itself non-negative. So, by the Krĕın-Rutman theorem, λ is

the first eigenvalue in the above spectral problem. By the uniqueness of the limit, λ = λ1(ν)

it follows that the entire sequence λ1(νi) converges to λ1(ν).

Next, we make the observation that the objective functional λ1 is concave in ν being, by its

definition, the infimum of linear functionals. It is interesting to know whether it is strictly

concave in ν.

In the proof of our main theorem, we shall employ the following symmetrization result, based

on [3, Lemma 1.2] to limit our search for minimizers among radially symmetric functions.

The older proof by Alvino et. al. [4] achieves the same while it is based on a finer comparison

result based for solutions of Hamilton-Jacobi equations [4, Theorem 3.1].

Proposition A.3.8. Given any ν ∈ C(θ) and any u ∈ H1
0 (Ω), there exists a ν̃ which is

radially symmetric with ν̃−1 ∈ K
(
(θ−1)∗

)
such that

∫

Ω

ν|∇u|2 dx ≥
∫

Ω

ν̃|∇u∗|2 dx . (3.21)

Proof: With the same hypothesis as in this proposition, the Lemma 1.2 in Alvino et. al.
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[3] says that (3.21) holds for the radially symmetric function ν̃(z) = ϕ(Cn|z|n) for ϕ defined

below through the relation

∫ |{u≥c}|

0

1

ϕ(r)
dr :=

∫

{u≥c}

1

ν(x)
dx (3.22)

which holds for all c ∈ R. This gives the relation

∫

Ω∗

u,c

1

ν̃(x)
dx =

∫

Ωu,c

1

ν(x)
dx (3.23)

for all c real, where we recall that Ωu,c is the level set of u at the level c and Ω∗
u,c is a ball

centred at the origin having the same measure as Ωu,c. In particular the above identity holds

on the full domain Ω. So, as
(
ν−1
)∗

=
(
θ−1
)∗

, by using the formula (3.8) we have,

∫

Ω

1

ν̃(x)
dx =

∫

Ω

(
θ−1
)∗

(x) dx . (3.24)

Once again as
(
ν−1
)∗

=
(
θ−1
)∗

, from the property (3.10) we obtain

∫

Ωu,c

1

ν(x)
dx ≤

∫

Ω∗
u,c

(
θ−1
)∗

(x) dx .

The above inequality combined with (3.23) gives the relation

∫

Ω∗
u,c

1

ν̃(x)
dx ≤

∫

Ω∗
u,c

(
θ−1
)∗

(x) dx (3.25)

for all c real. We then note that the two relations (3.24) and (3.25), by the characterization

(3.15), imply that ν̃−1 ∈ K
(
(θ−1)∗

)
.

A.4 Proof of the Main Theorem

The proof of the main theorem is given in several steps.

Step 1: Let us recall that the constraint in the original problem can be written as ν ∈ C(θ)

or equivalently, as ν−1 ∈ C
(
(θ−1)∗

)
. So the minimization problem reads

inf
{
λ1(ν) : ν−1 ∈ C

(
(θ−1)∗

)}
. (4.26)

We shall denote by Cs
(
(θ−1)∗

)
and Ks

(
(θ−1)∗

)
the subset of radially symmetric functions
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in C ((θ−1)∗) and K ((θ−1)∗), respectively. We use Proposition A.3.8 above to show that

inf
{
λ1(ν) : ν−1 ∈ C

(
(θ−1)∗

)}
= inf

{
λ1(ν) : ν−1 ∈ Ks

(
(θ−1)∗

)}
. (4.27)

Following Remark A.3.6 we deduce that Ks
(
(θ−1)∗

)
is the closed convex hull of Cs

(
(θ−1)∗

)

for the weak-∗ topology. So, applying the continuity property in Proposition A.3.7, we obtain

first that

inf
{
λ1(ν) : ν−1 ∈ Cs

(
(θ−1)∗

)}
= inf

{
λ1(ν) : ν−1 ∈ Ks

(
(θ−1)∗

)}
.

So, it readily follows that

inf
{
λ1(ν) : ν−1 ∈ Ks

(
(θ−1)∗

)}
≥ inf

{
λ1(ν) : ν−1 ∈ C

(
(θ−1)∗

)}
. (4.28)

To prove the reverse inequality, let ν−1 ∈ C ((θ−1)∗) be arbitrary and let u be the correspond-

ing minimizer in the definition of λ1(ν). Considering a ν̃−1 ∈ Ks
(
(θ−1)∗

)
and u∗ associated

to the pair (ν, u) as given by Proposition A.3.8 and using the property (3.9) we obtain

λ1(ν) =

∫
Ω
ν|∇u|2 dx∫
Ω
|u|2 dx ≥

∫
Ω
ν̃|∇u∗|2 dx∫
Ω
|u∗|2 dx ≥ λ1(ν̃) ≥ inf

{
λ1(ν) : ν−1 ∈ Ks

(
(θ−1)∗

)}
. (4.29)

By the arbitrariness of ν the reverse inequality to (4.28) follows.

Step 2: The inf on the right hand side of (4.27) is in fact a minimum, that is to say,

the infimum value is achieved. To see this let us define a topology on the set K :={
ν : ν−1 ∈ Ks

(
(θ−1)∗

)}
by saying that νi converges to ν if and only if ν−1

i converges weakly-∗
to ν−1 in L∞(Ω). Then, with the knowledge that Ks

(
(θ−1)∗

)
is a compact set for the weak-∗

topology on L∞(Ω) as announced by Proposition A.3.4, it follows that K is a compact set

for the topology defined above. Besides, by Proposition A.3.7, we know that λ1 restricted to

K is continuous for the above topology. Thus, our thesis follows.

Step 3: In the previous step, we have been able to show that the minimization problem

admits a solution in a slightly enlarged class. Although, the functional λ1 is concave, it is

not clear whether the constraint set
{
ν : ν−1 ∈ Ks

(
(θ−1)∗

)}
is convex. If this were so it is

immediate to obtain a solution in the original class as, whenever a concave function admits

a minimum over a compact convex set there is a minimizer which is an extreme point. So, in

this problem, in order to show that there is a solution in the original class, we shall have to

do differently as is done in Alvino et. al [4]. It can be shown that J : ν−1 7→
(
λ1(ν)

)−1
is a
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convex map when restricted to Ks
(
(θ−1)∗

)
(cf. [4, Corollary 3.2] ). Indeed, it is shown that

J(µ) = max





∫

Ω

µ

(
|x|n−1

∫ |x|

0

sn−1v(s) ds

)2

dx : v ∈ L2(Ω),

∫

Ω

v2(x) dx = 1, v radial



 .

(4.30)

So, as the minimization problem on the right hand side of (4.27) is equivalent to maximiz-

ing the reciprocal functional J , the above mentioned convexity guarantees that there is a

maximizer of J which is an extreme point of the compact convex set Ks
(
(θ−1)∗

)
which,

by Proposition A.3.5 and Remark A.3.6, has to belong to Cs
(
(θ−1)∗

)
. This permits us to

conclude that the infimum in (4.26) is achieved for a radially symmetric function.

A.5 Appendix

We remark that we only require Lemma 1.2 [3] in the form stated below for our applications.

Now, we give a more flexible alternate proof of the same.

Proposition A.5.1. Given any ν ∈ C(θ) and any non-negative u ∈ H1
0 (Ω), for ν̃ defined

through the relation, ∫

Ω∗

u,c

1

ν̃(x)
dx =

∫

Ωu,c

1

ν(x)
dx (5.31)

we have ∫

Ω

ν|∇u|2 dx ≥
∫

Ω

ν̃|∇u∗|2 dx . (5.32)

Proof: We shall make repeated use of the co-area formula (cf. formula (2.2.1) Kesavan

[20]) ∫

Ω

g(x) |∇u(x)| dx =

∫ ∞

−∞

∫

u=s

g(x) dσ(x) ds (5.33)

where dσ(x) is the surface element on the level surface u = s at the point x. Applying (5.33),

we obtain the identity

∫

{u≥t}

ν(x) |∇u(x)|2 dx =

∫ ∞

t

∫

{u=s}

ν(x) |∇u(x)| dσ(x) ds (5.34)

Therefore, it follows that,

− d

dt

(∫

{u≥t}

ν(x) |∇u(x)|2 dx
)

=

∫

{u=t}

ν(x) |∇u(x)| dσ(x) . (5.35)
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We apply the fact that the arithmetic mean of a non-negative function is always greater than

the harmonic mean, to the function ν |∇u| on the surface {u = t} equipped with it’s surface

measure, to conclude that

∫

u=t

ν(x) |∇u(x)| dσ(x) =

(∫
{u=t}

ν(x) |∇u(x)| dσ(x)
∫
{u=t}

dσ(x)

)(∫

{u=t}

dσ(x)

)

≥




∫
{u=t}

dσ(x)

∫
{u=t}

1

ν(x) |∇u(x)| dσ(x)




(∫

{u=t}

dσ(x)

)
.

=

(∫

{u=t}

1

ν(x) |∇u(x)| dσ(x)

)−1

(P ({u ≥ t}))2 (5.36)

≥
(∫

{u=t}

1

ν(x) |∇u(x)| dσ(x)

)−1

(P ({u∗ ≥ t}))2 . (5.37)

The last inequality above is due to the iso-perimetric inequality (3.11). Therefore, from (5.35)

and (5.37) we have

− d

dt

(∫

{u≥t}

ν(x) |∇u(x)|2 dx
)

≥
(∫

{u=t}

1

ν(x) |∇u(x)| dσ(x)

)−1

(P ({u∗ ≥ t}))2 . (5.38)

We remember that {u∗ ≥ t} for t ≥ 0 form a continuum of concentric balls, having radius rt,

whose union over t ≥ 0 is the ball Ω. Observing that u∗ is a radially symmetric function and

consequently, so is ∇u∗(x), we may define a radially symmetric function ν̃ as follows.

ν̃(|x|) :=

∫
{u∗=t}

dσ(x)
(∫

{u=t}
1

ν(x)|∇u(x)|
dσ(x)

)
|∇u∗(x)|

for any x, |x| = rt . (5.39)

We check, first, that ν̃ satisfies (5.31). To see this we use the co-area formula. We have

∫

{u∗≥t}

1

ν̃(x)
dx =

∫ ∞

t

∫

{u∗=s}

1

ν̃(x) |∇u∗(x)| dσ(x) ds

=

∫ ∞

t

∫

{u=s}

1

ν(x) |∇u(x)| dσ(x) ds

=

∫

{u≥t}

1

ν(x)
dx

where in the penultimate expression we have plugged in (5.39). Then, (5.38) may be rewritten
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using ν̃ as

− d

dt

(∫

{u≥t}

ν(x) |∇u(x)|2 dx
)

≥
∫

{u∗=t}

ν̃(x) |∇u∗(x)| dσ(x)

= − d

dt

(∫

{u∗≥t}

ν̃(x) |∇u∗(x)|2 dx
)
. (5.40)

Integrating (5.40) we obtain the needful.

Remark A.5.2. The definition (5.39) of the rearranged coefficient can be written entirely in

terms of the coefficient ν, the function u and the derivative of the corresponding distribution

function µu(t) = |{u ≥ t}| = µu∗(t) as

ν̃(|x|) :=
− (µu)

′ (t)(∫
{u=t}

1
ν(x)|∇u(x)|

dσ(x)
) for any x, |x| = rt . (5.41)

This is due to the fact that, by using the co-area formula, we have (see also [8, Lemma 4.1]

for a similar result in the case of Steiner symmetrization)

(µu)
′ (t) = (µu∗)

′ (t) = −
∫

{u∗=t}

1

|∇u∗(x)| dσ(x) .

It is worthwhile to note from the above that the gradient of the rearranged function u∗ can

be written in terms of the distribution function µu and it’s derivative as

|∇u∗(x)| = −nC
1

n
n µu(t)

1− 1

n

(µu)
′ (t)

for any x, |x| = rt (5.42)

since P ({u∗ = t}) = nC
1

n
n µu(t)

1− 1

n , being Cn the volume of the unit sphere in R
n.
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Appendix B

Second paper (In Revision)

B.1 Abstract

This article deals with the minimization of the first eigenvalue of a two-phase conducting

medium problem. Although, in general, this minimization problem may have to be relaxed to

include microstructural designs, it, nevertheless, admits a true solution in the one-dimensional

case [22] and in balls in any dimension [4]. In the light of these and other recent results

obtained in [9] we are led to believe that a classical minimizer (that is, without micro-

structures) exists not only in balls but also in other domains, possibly having lesser symmetry.

Our conjecture is that, in such domains, optimal distribution of the material for this problem

requires placing the material with higher conductivity in the middle. In this article, we show

the existence and then give an expression for the shape derivative of the eigenvalue functional,

which is an important tool for understanding the sensitivity of the eigenvalue with respect

to domain variations. We gather evidence for our conjecture by analyzing this derivative

for certain initial annular configurations in a ball. Numerical results obtained in discs and

squares also give more substance to our conjecture.

B.2 Introduction

Given the design region Ω ⊂ R
n and two conducting materials with conductivities α and β

(0 < α < β) which are to be distributed in Ω so that the volume of the region ω occupied by

β is a fixed number m (0 < m < |Ω|), we are required to minimize the first eigenvalue of a
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Dirichlet problem given by

λ1(ω) := min
u∈H1

0
(Ω)

∫
Ω
(αχΩ\ω + βχω)|∇u|2dx∫

Ω
|u|2dx . (2.1)

In general, such shape optimization problems may not have a solution as shown by Murat

and Tartar in the case of a control problem involving immiscible fluids [26]. One may need

to consider also micro-structures in addition to classical shapes. In the above problem,

characterizations of optimal designs involving micro-structures have been given by Cox and

Lipton [11]. As compared to this, in the one-dimensional case Krĕın [22, 16] has shown that

the solution consists in placing the material with higher conductivity in the middle and when

the domain is a ball in any dimension, Alvino et. al. [4] have shown that the minimum is

attained for a classical design (that is, without micro-structures) having radial symmetry.

However, this does not fully resolve the problem as it remains to characterize the radially

symmetric minimizer.

Our conjecture is that, in such domains, optimal distribution of the material for this

problem requires placing the material with higher conductivity in the middle. A tool which

can be used to analyze possible local or global minimizers and to develop some algorithms

for the numerical search of such minimizers is the derivative of the objective functional with

respect to variations of the domain. In line with this idea, the main results of this paper

are Theorem B.3.2, where we show the existence of the shape derivative of the two-phase

eigenvalue problem, and Theorem B.3.4 wherein we obtain an explicit formula for it.

There are very few results of the shape derivative calculus for two-phase conductivity

problems which can also be seen as transmission problems. The shape derivatives in an

inverse conductivity problem with two conducting phases was first calculated in Hettlich and

Rundell [18] and later established rigorously in Afraites et. al. [1]. Discussions of the shape

derivative of one phase eigenvalue problems for different operators and boundary conditions

can be found in [5, 29, 30, 31, 32, 16, 17]. Our results on the shape derivative of a two-phase

eigenvalue problem (see Theorem B.3.2 and B.3.4) seem to be the first of its kind and should

be interesting in themselves.

We then use the calculated shape derivative to analyze the sensitivity of the first eigenvalue

for domain variations of certain annular configurations in a ball. The Theorem B.4.1 shows

that when there are a finite number of annuli in which to distribute the two materials one can

always obtain smaller values for the eigenvalues by moving the material with conductivity

β more to the centre. We also study, numerically, the variation of the first eigenvalue with

respect to the position of the domain containing the material having higher conductivity for
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certain annular and disc-like configuration inside a disc. The results that we obtain point

towards the veracity of our conjecture.

The methods which we used to show the existence of a classical minimizer to the problem

in a ball in [9] lead us to believe that in domains with only a few planes of symmetry there

is once again a classical minimizer. The results from a numerical experiment conducted in a

square domain where the materials are arranged in three concentric squares seem to indicate,

once again, that the material with higher conductivity should be placed in the middle.

The layout of the article is as follows. In the next section we prove Theorems B.3.2 and

B.3.4 which are about the shape derivative of the eigenvalue functional. In Section 4, we

prove Theorem B.4.1 and we present the numerical results in a disc providing more substance

to our conjecture. In Section 5, we give the numerical results in a square and in the final

section, conclude by proposing some future directions of work.

B.3 Shape derivative of the eigenvalue functional

The shape derivative is a tool which permits to understand the variation of quantities which

depend on the domain (cf. Simon [31]). This is widely used in the study of shape optimiza-

tion, front tracking, image segmentation problems etc. It is defined in the following way. Let

us consider a functional F which depends on the domain ω (shape functional). For a varia-

tion of the domain ω by a fairly smooth perturbative vector field θ, which has its support in

a neighbourhood of ∂ω, the infinitesimal variation of F in the direction u is defined as

F ′(ω; θ) = lim
t−→0

F (ω + tθ) − F (ω)

t
. (3.1)

Now F itself may depend on a function u defined on ω. So, if ut is the corresponding function

when ω changes to ωt := (id+ tθ) (ω), the local derivative (also called shape derivative)and

the total derivative (also called material derivative) of u are defined, respectively, to be

u′(x) = lim
t→0

ut(x) − u(x)

t
and u̇(x) = lim

t→0

ut(x+ tθ) − u(x)

t
.

Remark B.3.1. An important part of the shape derivative calculus is to rigorously establish

the existence of the shape derivatives. This requires some careful analysis as it is usually

hard to explicit the dependence of the quantities on the perturbation field θ or to say whether

even this dependence is continuous, Lipshitzian etc. An alternate way is to use some form of

the implicit function theorem as the quantities depend on the perturbation field usually in

an implicit way. We shall use the latter approach in this article as it turns out to be quite

simple for this problem.
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We recall the setting of the spectral problem for the first eigenvalue functional before

stating the existence theorem of the shape derivative. Let ω be a reference configuration with

smooth boundary where the material β is given. Given the distribution σ = αχΩ\ω + βχω

with ω ⊂⊂ Ω, the eigenvalue problem reads as follows:

{
−div (σ(ω)∇u) = λ(ω) u in Ω

u = 0 on ∂Ω
(3.2)

Let λ1(ω) be the first eigenvalue. It is simple and the first eigenfunction is characterized by

its constant sign [23]. We normalize the first eigenfunction by assuming it to be non-negative

and taken to satisfy ∫

Ω

|u|2 dx = 1 . (3.3)

The admissible perturbations of ω are the images ωt of ω under transformations id+ tθ where

θ is a smooth vector field with its support inside a neighbourhood of ∂ω such that ωt ⊂⊂ Ω

and such that |ωt| = |ω|.

Theorem B.3.2. The material derivative u̇ of the normalized first eigenfunction u exists

and u̇ ∈ H1
0 (Ω). Its shape derivative u′ also exists and is such that its restrictions to ω and

Ω \ ω belong to H1(ω) and H1(Ω \ ω) respectively. In addition, the shape derivative of λ,

denoted by λ′1(ω; θ), exists.

Proof: We prove this result using an argument based on the Implicit Function Theorem

following an established procedure which is well explained in the text [17]. The existence of

the material derivative will be obtained as an existence result of a smooth family of solutions

after rewriting the perturbed eigenvalue problem in a suitable way. The perturbed eigenvalue

problem is {
−div (σ(ωt)∇ut) = λ(ωt) ut in Ω

ut = 0 on ∂Ω
(3.4)

where ωt = (id+ tθ) (ω) under the assumptions made above on the perturbative vector field

θ and ut is the first eigenfunction normalized as above. For small t the smooth change

of variables Φt := (id+ tθ) on Ω is invertible while it maps ω onto ωt. The problem (3.4)

transported to the inverse image of Ω may be rewritten using this change of coordinates as

{
−div ((σ(ωt) ◦ Φt)At∇ (ut ◦ Φt)) = λ(ωt) ( (ut ◦ Φt)J(Φt)) in Ω

ut ◦ Φt = 0 on ∂Ω
(3.5)

where At := DΦ−1
t

(
DΦ−1

t

)T
J(Φt) and J(Φt) is the Jacobian of the transformation Φt. We
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also observe that the function ut ◦ Φt remains non-negative and satisfies the normalization

condition ∫

Ω

|ut ◦ Φt|2 J(Φt)dx = 1 . (3.6)

We refer to [1, 17] for the details. Note that by the preceding discussion (λ(ωt) , ut ◦ Φt) sat-

isfies the equations (3.5) and (3.6) if and only if (λ(ωt) , ut) is a normalized eigenpair of (3.4).

Let (λ1(ωt) , ut) be a normalized eigenpair of (3.4). The existence of the material derivative

of ut and the existence of the shape derivative of λ1(ωt) can be drawn as a consequence of

the existence of a smooth curve of zeros for the following function in a neighbourhood of

(0, λ1(ω), u0):

F (t, λ, v) :=

(
−div ((σ(ωt) ◦ Φt)At∇v) − λv ,

∫

Ω

|v|2 J(Φt)dx− 1

)

=

(
−div (σ(ω)At∇v) − λv ,

∫

Ω

|v|2 J(Φt)dx− 1

)
.

(3.7)

Note that the last equality is due to the fact that σ(ωt) ◦ Φt ≡ σ(ω) (indeed, as Φt maps ω

onto ωt and the coefficient σ(ωt) has the value β on ωt and the value α elsewhere on Ω while

σ(ω) takes the values β and α, respectively, on the regions ω and Ω \ ω).

We now obtain the existence of a smooth curve of zeros for the function F defined above

by verifying the hypotheses of the implicit function theorem. As Φt is a smooth function of

t we deduce that the maps t 7→ DΦt, and t 7→ At are smooth functions of t. Consequently,

F : R × R ×H1
0 (Ω) → H−1(Ω) × R is a smooth function of t as also in the varibales λ and v

being linear or quadratic in those. Now we check that Fλ,v(0, λ1(ω), u0) : R ×H1
0 (Ω) , → H−1(Ω) × R

is invertible. As

〈Fλ,v(0, λ1(ω), u0) , (λ, v)〉 =

(
−div (σ(ω)∇v) − λ1(ω)v − λu0 , 2

∫

Ω

vu0 dx

)
(3.8)

we now solve
−div (σ(ω)∇v) − λ1(ω)v − λu0 = f

2
∫
Ω
vu0 dx = c .

(3.9)

The first of these equations has a solution, by the Fredholm alternative, if and only if

〈f + λu0 , u0〉 = 0 .

Thus λ = 〈f , u0〉. Let w be a particular solution of the first equation for this value of λ.

The solution space is one dimensional and all the solutions are of the form w+ku0. Plugging
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this in the second equation in (3.9) we have

2

∫

Ω

(w + ku0)u0 dx = c .

This determines k uniquely. Thus, the system (3.9) admits a unique solution (λ , w + ku0)

which shows that the operator Fλ,v(0, λ1(ω), u0) is bijective. The continuity of the inverse

follows from the Banach-Steinhaus open mapping theorem. So, by applying the Implicit

Function Theorem we obtain a smooth curve of zeros t 7→ (t, λt, vt) to F in a neighbourhood

of (0, λ1(ω), u0).

We now reach the conclusions that the shape derivative of the first eigenvalue and the

material derivative of the first eigenfuntion exist as follows. By our earlier observation,(
λt, vt ◦ Φ−1

t

)
is a normalized eigenpair for (3.4). So, indeed, λt = λ1(ωt) and so it follows

that the shape derivative of λ1 exists. Writing ut = vt ◦ Φ−1
t we have that ut ◦Φt is a smooth

function of t. However, by the definition of the material derivative u̇ =
d

dt |t=0

(ut ◦ Φt) and it

exists due to the differentiability of vt.

Finally, we conclude that the shape derivative of u exists from the the following simple

but important relation between the local and total derivatives (see Simon [31])

u′(x) = u̇(x) − θ · ∇u(x) (3.10)

where u is the function on the unperturbed domain. On the one hand we have seen that

u̇ ∈ H1
0 (Ω). On the other hand, as ω is a smooth domain and on each of ω and Ω \ ω,

u satisfies an elliptic eigenvalue problem with smooth coefficients, by standard regularity

theory, it is smooth in each of these domains and consequently also ∇u (see Gilbarg and

Trudinger [15]). However, we have only the continuity of σ
∂u

∂n
across the boundary ∂ω and

as σ is discontinuous across ∂ω so must be ∇u. Thus, from the relation (3.10) we can only

conclude that u′⌊ω∈ H1(Ω) and u′⌊Ω\ω∈ H1(Ω \ ω).

Remark B.3.3. The above theorem shows the Gateaux differentiablity of the first eigenfunc-

tion u in the direction of the perturbative field θ. The same proof modified, while considering

the deformations id+θ for sufficiently small θ, will show that the first eigenfunction is Frechêt

differentiable with respect to θ.

Theorem B.3.4. The shape derivative of λ, given an admissible perturbation θ, reads as

follows

λ′1(ω; θ) =

∫

∂ω

[
σ |∇u|2

]
θ · ndS (3.11)
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where [ϕ] is the jump of ϕ across ∂ω, that is, [ϕ] (x) = (ϕ⌊∂ω−−ϕ⌊∂ω+) (x) with ϕ⌊∂ω− and

ϕ⌊∂ω+ denoting, respectively the inner and outer trace of ϕ on ∂ω.

Proof: The variational formulation of the equation (3.5) is

∫

Ω

σ(ω)At (∇ut ◦ Φt) · ∇w dx =

∫

Ω

λ(ωt) (ut ◦ Φt)w dx . (3.12)

The integrands are continuosly differentiable with respect to the variable t and thus we are

allowed to differentiate under the integral sign with respect to t at t = 0. Doing so, we obtain

∫

Ω

σ(ω)∇u̇ · ∇w dx+

∫

Ω

σ(ω)
(
divθ I −

(
(Dθ)T +Dθ

))
∇u · ∇w dx(3.13)

=

∫

Ω

λ′1uw dx+

∫

Ω

λ1u̇w dx+

∫

Ω

λ1uw divθ dx .

Similarly, differentiating the relations (3.6) and the volume constraint |ωt| = |ω|, written as∫

ω

J(Φt) dx = 1, with respect to t, we have, respectively,

∫

Ω

2uu̇ dx+

∫

Ω

u2 divθ dx = 0 (3.14)
∫

ω

divθ dx =

∫

∂ω

θ · n dS = 0 . (3.15)

Now, we shall use the above relations to deduce the expression for the shape derivative of λ.

To begin with, we take w = u in (3.13) and use u̇ as a test function in (3.2) to obtain

∫

Ω

σ(ω)∇u̇ · ∇u dx+

∫

Ω

σ(ω)
(
divθ |∇u|2−2Dθ∇u · ∇u

)
dx=λ′1 +

∫

Ω

λ1(ω)u̇u dx+

∫

Ω

λ1u
2 divθ dx

(3.16)
∫

Ω

σ(ω)∇u · ∇u̇ dx = λ1(ω)

∫

Ω

uu̇ dx . (3.17)

Subtracting (3.17) from (3.16) we get

∫

Ω

σ(ω)
(
divθ |∇u|2 − 2Dθ∇u · ∇u

)
dx = λ′1 +

∫

Ω

λ1u
2 divθ dx (3.18)

As ∇u is smooth in each of ω and Ω \ ω we have the following identity (see [1, Theorem 3.1

equation (3.10)])

divθ |∇u|2 − 2Dθ∇u · ∇u = −div
(
2θ · ∇u∇u− |∇u|2 θ

)
+ 2θ · ∇u∆u (3.19)
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while we also have straightaway that

div (2θ · ∇u∇u) = 2θ · ∇u∆u+ 2∇u · ∇ (θ · ∇u) . (3.20)

So, from (3.19) and (3.20) we have

divθ |∇u|2 − 2Dθ∇u · ∇u = div
(
|∇u|2 θ

)
− 2∇u · ∇ (θ · ∇u) . (3.21)

This allows us to rewrite (3.18) as

λ′1 =

∫

Ω

σ(ω)div
(
|∇u|2 θ

)
− 2∇u · ∇ (θ · ∇u) dx−

∫

Ω

λ1u
2 divθ dx . (3.22)

Now, if we take θ · ∇u as a test function in (3.2) and use the fact that θ is identically zero

near ∂Ω, we shall obtain

∫

Ω

∇u · ∇ (θ · ∇u) dx = λ1(ω)

∫

Ω

uθ · u dx

=
1

2

∫

Ω

θ · ∇
(
u2
)
dx

= −1

2

∫

Ω

u2divθ dx . (3.23)

So, we conclude from (3.22) and (3.23) that

λ′1 =

∫

Ω

σ(ω)div
(
|∇u|2 θ

)
dx . (3.24)

The expression (3.11) follows by an integration parts on each of the domains ω and Ω \ ω
while using the fact that σ is constant on each of these subdomains.

B.4 Minimizing distribution in a ball

We know by the results of [4] and [9] that there exists minimizing configurations in a ball

which are radially symmetric. This means that the materials are to be distributed in various

spherical shells. We prove the following theorem by using the shape derivative calculated in

the previous section.

Theorem B.4.1. Whenever there is a layer of α preceding a layer of β (as we move radially

outward) λ′(ω; θ) < 0 for the radially symmetric perturbation θ which moves the layer of β
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inwards while conserving the volumes of α and β.

Proof: Denote the reference configuration by σ and let u be the normalized first eigenfunc-

tion, which we know to be radially symmetric (see for instance [9]). Let us concentrate on a

layer ω0 of β which follows a layer of α and let us write its boundary as S1 ∪S2 where S1 and

S2 are, respectively, the inner and outer boundaries. We may consider a radially symmetric

perturbation θ which is zero outside ω0 and conserves the volume of ω0. The conservation of

mass condition (3.15) gives the relation

(θ · n) ⌊S1
×per(S1) + (θ · n) ⌊S2

×per(S2) = 0 . (4.25)

Now, we have

λ′ =

∫

∂S1

[
σ |∇u|2

]
θ · ndS +

∫

∂S2

[
σ |∇u|2

]
θ · ndS

=
([
σ |∇u|2

]
θ · n

)
⌊S1

per(S1) +
([
σ |∇u|2

]
θ · n

)
⌊S2

per(S2)

=
([
σ |∇u|2

]
⌊S2

−
[
σ |∇u|2

]
⌊S1

)
(θ · n) ⌊S2

per(S2) (4.26)

Let us analyze (4.26) for it’s sign. Denoting by S−
i and S+

i the inner and outer surfaces of

Si with respect to ω0, for i = 1, 2, the transmission condition on Si reads

(σ∇u · n)S−

i
= (σ∇u · n)S+

i
, i = 1, 2 .

In view of the fact that u is radially symmetric, we can write n =
∇u
|∇u| , and therefore, from

the above relation we conclude that

σ |∇u| ⌊S−

i
= σ |∇u| ⌊S+

i
, i = 1, 2 . (4.27)

This allows to write the jumps in σ |∇u|2 as follows

[
σ |∇u|2

]
⌊Si

=
(
|∇u| ⌊S+

i
− |∇u| ⌊S−

i

)
(σ |∇u|) ⌊S−

i

=

(
β

α
− 1

)
|∇u| ⌊S−

i
(σ |∇u|) ⌊S−

i
.

Therefore, the shape derivative in (4.26), can be written as

λ′ =

(
1

α
− 1

β

){(
(σ |∇u|) ⌊S−

2

)2

−
(
(σ |∇u|) ⌊S−

1

)2
}

(θ · n) ⌊S2
per(S2) . (4.28)
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Observing that u is a decreasing function (see equation (3.18) in appendix A)) and that

σ
∂u

∂n
(see equation (3.17) n appendix A)) is a decreasing function in each region where σ

is constant, it follows that σ |∇u| is non-decreasing in the radial direction on ω0 Therefore,

λ′ assumes a negative sign if θ is such that θ · n is negative on S2 and consequently θ · n is

positive on S1. This means that θ is opposite to the radial direction on S2 and follows the

external normal on the boundary surface S1 of ω0, that is once again in the direction opposite

to the radial direction. This means that λ can be decreased by moving exterior shells where

there is β towards the centre. This concludes the proof of the theorem.

We now give further evidence to our conjecture in a ball by plotting numerically the

eigenvalues for some two-dimensional configurations in a disk.

In the first of these experiments, we consider a domain which is a disk of unit radius and

we assume that the material β to be placed in an annular region having internal and external

radius r1 and r2 respectively within a disk and the material α, in the complement of this

annulus within the unit disk. Let m be the proportion of the total volume that the material

β occupies so that m = (r2
2 − r2

1).

In figure B.1 we plot the first eigenvalue and the shape derivative as a function of the

internal radius taking α = 1, β = 2 and proportions m = 0.1, 0.5, and 0.9. We have do the

same for α = 1, β = 200 in figure B.2. We make the followings the observations.
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Figure B.1: Concentric disks for β = 2

In all the cases we see that the first eigenvalue is the smallest for r1 = 0 which corresponds

to taking the material β in the middle.

The only significant information which is contained in graph of the shape derivative

function is the sign of this function. The shape derivative is a directional derivative which

depends on the perturbation θ and its sign is independent of the magnitude of θ. In plotting

the graph of the shape derivative function we have chosen as θ, the radial perturbation

towards the centre which respects the area constraint. At those points r1 where the shape

derivative function is negative we conclude, therefore, that the first eigenvalue can be reduced
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Figure B.2: Concentric disks for β = 200

by perturbing the ring inwards. This is in concordance with what is observed in the graph

of the first eigenvalue function.

In the second of these experiments, we consider a domain which is a disk of unit radius

and we put the material β in a smaller disk inside occupying a fraction m of the total area.

The centre of the smaller disk is displaced from the center of the domain. We can assume

the centre of the smaller disk is on the horizontal axis.

In figure B.3 we plot the first eigenvalue and the shape derivative as a function of the

displacement taking α = 1, β = 2 and proportions m = 0.1, 0.5, and 0.9. We have do the

same for α = 1, β = 200 in figure B.4.
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Figure B.3: Non-concentric disks configurations for β = 2

In plotting the graph of the shape derivative function we have chosen as θ, the pertur-

bation of the disk towards the centre of the domain. We see once again that the sign of

the shape derivative is in accordance with the behavior of the eigenvalue with respect to the

displacement. This is in concordance with what is observed in the graph of the first eigen-

value function. In general we see that we obtain smaller values for the eigenvalue when the

inner disk is near the centre of the domain. In the case when the inner disk occupies a large

proportion of the area the range of displacement is small and the eigenvalues vary very little

with the displacement. Although for coefficients of the same order displaced configurations
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Figure B.4: Non-concentric disks configurations for β = 200

seem to have smaller eigenvalues than when the disk is in the centre, we believe that this

does not have much significance because the eigenvalues vary very little and the numerical

result could be spurious because of numerical errors.

B.5 Minimal configurations in domains with less sym-

metry

We are of the firm belief that the arguments that we have used to show the existence of a

classical minimizer in a ball can be extended using the Steiner symmetrization to show the

existence of a classical solution in a domain with Steiner symmetry. If that be case, one might

be interested in knowing once again what are the distributions which give the minimal value

to our problem in such domains. We provide partial answers this by numerically studying

the behaviour of the eigenvalue for certain concentric configurations in a square-domain.

We consider a square domain and the material β is to be placed in the middle region of

three concentric squares. We plot the first eigenvalue as a function of the inner radius as a

function of the inner radius (where by inner radius, we half the length of the inner square)

for different proportions of α and β and for different orders of magnitude. The length of the

middle square is set considering the measure constraint. In the figure B.5, we have plotted

the first eigenvalue against the inner radius for α = 1 and β = 2 for the proportions 0.1, 0.5

and 0.9 of the total volume occupied by the material β. In figure B.6, we have done the same

for α = 1 and β = 200.

We see the same behaviour of the eigenvalue function as in the first experiment. In all

the cases we see that the first eigenvalue is the smallest when all the β is placed inside.
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Figure B.5: Square configurations for β = 2

Figure B.6: Square configurations for β = 200

B.6 Conclusions

On the basis of the above numerical results we reach the conclusion that in domains like balls

or squares it may be better to place the material with higher conductivity in the middle in

order to minimize the first eigenvalue. A task that we set for ourselves is to verify the truth

of this conjecture using the shape derivative calculus and to devise algorithms for automatic

discovery of the optimal shape.
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