

"RESISTENCIA A LA FRACTURA DEL COMPUESTO PASTA DE CEMENTO REFORZADO CON FIBRA DE CELULOSA OBTENIDA DEL TRIGO"

MEMORIA PARA OPTAR AL TITULO DE INGENIERO CIVIL EN MATERIALES

JUAN AUGUSTO MUNIZAGA ROMÁN

PROFESOR GUÍA GERARDO DÍAZ RODENA

MIEMBROS DE LA COMISIÓN EDUARDO DONOSO CATALAN HUGO ALCOTA LOPEZ

> SANTIAGO DE CHILE AGOSTO 2009

RESUMEN DE LA MEMORIA PARA OPTAR AL TITULO DE

INGENIERO CIVIL EN MATERIALES

POR: JUAN MUNIZAGA R.

FECHA: 20 / 08 / 2009

PROF. GUÍA: SR. GERARDO DIAZ R.

"RESISTENCIA A LA FRACTURA DEL COMPUESTO PASTA DE CEMENTO REFORZADO CON FIBRA DE CELULOSA OBTENIDA DEL TRIGO"

Trabajos sobre las propiedades del cemento y otros materiales frágiles reforzados

con distintos tipos de fibras, han sido y están siendo desarrollados en los últimos años en

diversas partes del mundo, enfocados particularmente sobre el tipo de fibra usada, tipo de

material, edad, contenido de fibra y sus efectos sobre las propiedades mecánicas de los

materiales compuestos fabricados.

El presente trabajo describe un estudio experimental sobre las propiedad mecánica

de resistencia a la fractura de un material compuesto de cemento Portland y fibras de

celulosa, de manera de ver cuál es el porcentaje óptimo de fibra celulosa que se le debe

agregar a este material compuesto con el fin de obtener la mayor resistencia a la fractura.

También se efectúa un análisis de los valores obtenidos aplicando la distribución de

Weibull, estableciendo comparaciones entre pastas de cemento y el fibrocompuesto con

distintos porcentajes de celulosa.

Para corroborar que el modelo teórico que impusimos, representa a la población del

conjunto de todas las muestras, se hizo uso de la distribución de chi-cuadrado. Esto consiste

en comparar la distribución de frecuencia observada en la muestra con la distribución de

frecuencia esperada basada en el modelo teórico encontrado. Lo que permite ver si el

modelo teórico de Weibull se puede o no ajustar a nuestros datos.

Se concluye que el refuerzo óptimo de la matriz de cemento corresponde a un

porcentaje en peso de fibra de celulosa de 12% y además que el modelo teórico de Weibull

usado en este trabajo se ajusta a los valores obtenidos experimentalmente en el ensayo de

flexión.

1

AGRADECIMIENTOS

Agradezco a mi profesor Guía, Sr. Gerardo Díaz, el apoyo y esfuerzo que me ofreció durante el desarrollo de la Memoria.

Del mismo modo, doy las gracias al Sr. Eduardo Donoso, coayudante de mi profesor guía, por su permanente disposición de ayuda.

Además, agradezco al Sr. Marcelo González que me ayudo con la obtención de las fibras de celulosa para usarlas en la presente Memoria.

Por último, agradezco a mi familia, que fue un sostén indispensable para obtener este logro y al mismo tiempo les doy las gracias a mis amigos de la Universidad (los de la terraza).

INDICE

CAPI	TULO	PÁGINA
1	INTRODUCCION	6
1.1	GENERALIDADES	6
1.2	OBJETIVOS GENERALES	8
1.3	OBJETIVOS ESPECIFICOS	8
1.4	PLANIFICACION Y DISEÑO DE LAS EXPERIENCIAS	9
2	ANTECEDENTES GENERALES	10
2.1-	MORFOLOGIA DEL TRIGO	10
2.2-	ANATOMIA DEL TRIGO	11
2.2.1-	EPIDERMIS DE LA HOJA	11
2.2.2-	MESOFILO	12
2.2.3-	PULVINO	12
2.2.4-	ARQUITECTURA VASCULAR	13
2.2.5-	CAÑA MADURA	14
2.3-	RASTROJOS DEL TRIGO	16
2.3.1-	CERO LABRANZA	18
2.4-	COMPOSICION QUIMICA DEL TRIGO	19
2.4.1-	CELULOSA	20
2.4.2-	HEMICELULOSA	21
2.4.3-	LIGNINA	21
2.5-	FIBRA DEL TRIGO	21
2.6-	GENERALIDADES DEL PULPAJE	22
2.6.1-	PULPAJE KRAFT	22
2.7-	CEMENTO	22
3	PROCEDIMIENTO EXPERIMENTAL	27
3.1-	DESCRIPCION GENERAL DE LOS MATERIALES	27
3.1.1-	CEMENTO PORTLAND	27

CAPI	TULO	PÁGINA
3.1.2-	CELULOSA	27
3.2-	FASES COMPONENTES DEL FIBROCOMPUESTO	27
3.2.1-	MATRIZ	27
3.2.2	FIBRAS	28
3.3-	OBTENCION DE LA FIBRA DE CELULOSA	28
3.4-	FABRICACION DEL COMPUESTO	29
3.5-	ENSAYO DE PROBETAS	30
3.5.1-	FORMA Y TIPO DE ENSAYO	30
3.5.2-	ENSAYOS DE PRUEBA	31
3.6-	ANALISIS Y OBSERVACIONES DE LA FABRICACION	
	DE LAS PROBETAS	32
3.6.1-	FORMA Y DIMENSIONES DE LAS PROBETAS	32
3.6.2-	DETERMINACION EXPERIMENTAL DEL PORCENTAJE D	E
	AGUA PARA PODER DIGREGAR LA CELULOSA QUE SE L	Æ
	AGREGA AL CEMENTO	32
3.6.3-	PRESION DE COMPACTACION	35
3.6.4-	TIEMPO DE INMERSION EN AGUA	35
3.6.5-	CURADO DE LAS PROBETAS	36
3.6.6-	INFLUENCIA DEL SECADO DE LAS PROBETAS	36
4	EQUIPOS UTILIZADOS	37
4.1-	CAMARA DE CURADO	37
4.1.1-	FUNCIONAMIENTO DE LA CAMARA DE CURADO	38
4.2	PRENSA HIDRAHULICA	39
4.3-	MAQUINA MONSANTO	40
4.3.1-	DESCRIPCION Y CARACTERISTICAS GENERALES	40
4.3.2-	FUNCIONAMIENTO DEL TENSOMETRO W	40
4.4-	HORNO DE SECADO	41

CAP	ITULO		PÁGINA
5	DET	ERMINACION DEL PORCENTAJE OPTIMO DE	
	CEL	ULOSA	43
5.1-	ENSA	AYOS REALIZADOS	43
5.2-	RES	ULTADOS OBTENIDOS	43
5.3-	ANA	LISIS DE LOS RESULTADOS	44
5.4-	CON	CLUSIONES	45
6	RESI	STENCIA PROBABILISTICA DE MATERIALES	46
6.1-	INTF	RODUCCION	46
6.2-	TRA	BAJO CON LOS DATOS	47
6.3-	CAL	CULOS DE LOS PARAMETROS m Y σ_0	61
6.4-	BON	DAD DE AJUSTE	63
6.5-	RESU	UMEN DE LO PARAMETROSCALCULADOS Y BOND	AD
	DE A	JUSTE	69
6.6-	CAL	CULO DE FUNCION ACUMULATIVA DE WEIBULL	70
6.7-	GRA	FICOS DE LA PROBABILIDAD ACUMULATIVA PAR	A
	CAD	A PORCENTAJE DE FIBRA DE CELULOSA	71
7	DET	ERMINACION DEL MODULO DE ELASTICIDAD DEI	
	FIBR	ROCEMENTO	76
7.1-	DET	ERMINCAION DEL MODULO DE ELASTICIDAD	76
8	CON	CLUSIONES FINALES	77
ANE	XOS		
ANE	XO I	DATOS OBTENIDOS DE TODOS LOS ENSAYOS DE	•
		FLEXION	79
ANE	XO II	MICROGRAFIAS DE LAS FIBRAS DE CELULOSA	89
BIBI	JOGR	AFIA	93

CAPITULO 1

INTRODUCCION

1.1. GENERALIDADES

El estudio de la falla de los materiales que están sometidos a esfuerzos es un problema de gran importancia en las ciencias de la ingeniería. Conocer cómo deben comportarse estos materiales y determinar la medida de solicitación mecánica a que éstos se encuentran sin que el material tenga que colapsar, es el objetivo principal de esta ciencia.

Habitualmente los materiales al estar sometidos a esfuerzos, fallan a tensiones menores a la nominal que específica el material, esto se debe a diferentes factores que existen en el material como son las grietas y los defectos de tamaño microscópico. Al presentarse una tensión sobre el cuerpo se producen concentraciones de esfuerzos en las grietas por su geometría, por lo que en las zonas cercanas a las grietas se puede alcanzar la tensión de fractura, lo que lleva a que las grietas comiencen a crecer hasta colapsar.

Un elemento importante que se va utilizar en este trabajo es el estudio de la resistencia probabilística de materiales, esta teoría fue desarrollada por Weibull, quien logró determinar la función de probabilidad acumulativa de fractura para un material frágil bajo un estado uniaxial variable de esfuerzos (encontrar una función que relacione la probabilidad de fractura con el esfuerzo máximo). Sin embargo, este análisis también se aplica a materiales dúctiles en el cual la variable aleatoria es la tensión de fluencia.

La adición de fibras como refuerzo en pastas de cemento puede aumentar varias propiedades de este material compuesto, entre las cuales se pueden acentuar, la resistencia a flexión, fatiga, impacto, tenacidad y permeabilidad.

Un reforzamiento mediante fibras puede ofrecer un conveniente y económico método para superar deficiencias que el cemento presenta como son la baja resistencia a la tracción y a los impactos.

La mayoría de las tecnologías modernas requiere materiales con una combinación inusual de propiedades, imposibles de conseguir con metales, cerámicas y polímetros convencionales.

Las combinaciones de propiedades de los materiales y la gama de sus valores se han ampliado, y se siguen ampliando, mediante el desarrollo de materiales compuestos. En términos generales, se considera que un material compuesto es un material multifase que conserva una proporción significativa de las propiedades de las fases constituyentes de manera que presente la mejor combinación posible. De acuerdo con este principio de acción combinada, las mejores propiedades se obtienen por la combinación razonada de dos o más materiales diferentes.

Existen materiales compuestos naturales, como por ejemplo, la madera, que consiste en fibras de celulosa flexibles embebidas en un material rígido llamado lignina. El hueso es también un material compuesto formado por colágeno, una proteína resistente pero blanda.

En el presente trabajo, el material compuesto es un material multifase obtenido artificialmente, en oposición a los que se encuentran en la naturaleza. Además, las fases constituyentes son químicamente distintas.

La mayoría de los materiales compuestos se han creado para mejorar la combinación de propiedades mecánicas tales como rigidez, tenacidad y resistencia a la tracción tanto a temperatura ambiente como a elevadas temperaturas.

La mayor parte de los materiales compuestos están formados por dos fases; una, llamada matriz, es continua y rodea a la otra fase, llamada fase dispersa. Las propiedades de los compuestos son función de las propiedades de las fases constituyentes, de sus proporciones relativas y de la geometría de la fase dispersa.

Para clasificar los materiales compuestos debemos dividirlos como sigue: compuestos reforzados con partículas, compuestos reforzados con fibras y compuestos estructurales. Se debe mencionar que la fase dispersa de los materiales compuestos reforzados con fibras tiene una relación longitud diámetro muy alta.

Tecnológicamente los materiales compuestos con fases dispersas en forma de fibra son los más importantes. Éstos se diseñan para obtener gran resistencia y rigidez a baja densidad. Las características se miden mediante los parámetros resistencia especifica y módulo especifico, que corresponden, al cuociente entre la resistencia a la tracción y el peso especifico y entre el modulo de elasticidad y el peso especifico.

El material fibrocompuesto que se estudió en esta memoria fue pasta pura de cemento fibroreforzada con fibras celulósicas obtenidas del trigo [1].

1.2 Objetivos generales

El principal objetivo de este trabajo es determinar cuál es el porcentaje óptimo de fibra de celulosa en peso que se debe agregar al material compuesto formado por una matriz de pasta de cemento y por fibras de celulosa para obtener una mayor resistencia a la fractura, desarrollando una metodología de fabricación y estudio del material que pueda servir de referencia en la investigación de otros materiales compuestos o de éste mismo pero para la investigación de otro tipo de propiedad mecánica u otra.

Con respecto al análisis de resultados, se usará la distribución de Weibull aplicándole el test de chi cuadrado para estudiar si los resultados experimentales se ajustan al modelo teórico.

1.3 Objetivos específicos

Determinados los objetivos generales de este trabajo, la investigación se abordará definiendo y estudiando los siguientes conceptos:

- Extracción de la fibra de celulosa de los rastrojos del trigo a través de un proceso químico
- Tipo de cemento a usar en la matriz del material compuesto.
- Moldes, materiales y usos de laboratorios para la fabricación de las probetas del compuesto a ensayar.
- Método de curado a las probetas.
- Método de secado a las probetas.
- Ensayos a realizar a las probetas.
- Procedimiento y forma de los ensayos.

1.4 Planificación y diseño de las experiencias

Se tratará que el proceso de planificación sea el adecuado, de forma de cumplir con 2 aspectos fundamentales:

- Concretar los objetivos de las experiencias.
- Diseñar las experiencias.

En cada experiencia se hará un análisis de ésta, para determinar el plan a seguir, el cual estará sujeto a modificaciones si fuese necesario en base a las observaciones de las experiencias.

Con respecto al diseño de las experiencias, se tratará de seguir pautas establecidas, como son:

- Selección de las variables a medir.
- Selección del equipo necesario para realizar una determinada experiencia.
- Construcción de equipos y aparatos si es necesario.
- Organización y montaje de equipos.
- Estimación del número de mediciones necesarias.
- Distribución y orden de estas mediciones.
- Tratar de descubrir, medir y eliminar errores sistemáticos.
- Evitar errores personales, usando técnicas de medición adecuadas.

CAPITULO 2

Antecedentes generales del trigo, celulosa y cemento

2.1 Morfología del trigo

Los rizomas se presentan en gran cantidad en algunas cañas (vástagos) frondosas, desarrollándose por cada metro de alto que estas tienen. El número de cañas depende de la profundidad y densidad del cultivo como también de las condiciones ambientales. Cada caña tiene de 5 a 7 nudos, de los cuales solo 3 ó 4 desarrollan follaje esto porque, a menudo, los internudos bajos se encuentran bajo superficie del suelo. Los internudos más altos sostienen las inflorescencias. Cada caña produce una inflorescencia, de aspecto tupido condensada en un sistema de ramas. El sistema radicular consiste en un sistema ramificado de raíces adventicias (Figura 1), cada raíz se subdivide en sub raíces, formando numerosos niveles de división. Algunas raíces se extienden horizontalmente a lo largo de 30 a 35 cm justo por debajo del suelo, otras bajan diagonalmente hasta 30 cm de profundidad, mientras que otras se pueden extender verticalmente hasta 1.5 m de profundidad [2].

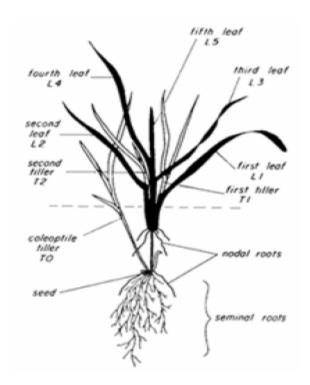


Figura 1: Morfología general del Trigo

Cada hoja de trigo (Figura 2.), al igual que otras hierbas, tiene en los nudos un tallo envainado tubular en lugar de pecíolo, con unas conspicuas hojas laminadas por encima de los nudos en donde las hojas se adjuntan. Un corto collar membranoso sobre la extensión de la vaina se denomina lígula, mientras que las proyecciones de las hojas laminadas recién mencionadas forman unas uñas membranosas llamadas aurículas [2].

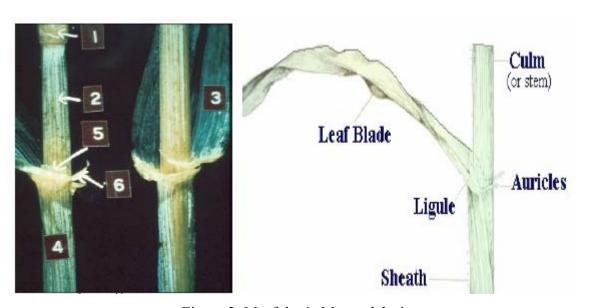
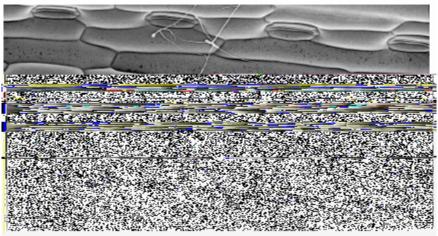


Figura 2: Morfología Macro del trigo


2.2. Anatomía del trigo

2.2.1. Epidermis de la hoja

La cara adaxial de la epidermis forma unas crestas encima de la banda vascular longitudinal principal presente en cada hoja. En la superficie vemos filas de células alargadas, paralelas al eje de la hoja y grandes células encima y adyacentes a estas crestas cubiertas de pequeños pelos en forma de púas (Figura 3), otras células posee elementos de sílice, las que están solas o con células de corcho. También hay bandas largas de células bulbiformes de tres a siete células de ancho, las cuales pueden perder volumen en épocas de escasez de agua, para así reducir su superficie de transpiración. Las estomas están en mayor cantidad en la cara adaxial que en la cara abaxial, y son mas frecuentes cerca de la base de la hoja. El número de estomas por unidad de superficie es mayor en las primeras hojas para luego declinar en las hojas sucesivas. Esta organización es típica de las hierbas. Una cámara

sub estomática se puede apreciar bajo el aparato estomático, esta cámara se encuentra en la mayoría de las plantas cuya epidermis carece de cloroplastos.

Figura 3:Epidermis de la Hoja

La superficie de la hoja posee una densa capa cuticular, la cual a una escala muy pequeña presenta un conjunto de tubos dispuestos aleatoriamente, los cuales en promedio posee un diámetro de 0.1mm y una longitud de 5mm. Los tubos también se encuentran dispuestos en rollos y muchas otras formas más, relacionado con la difusión y la intensa radiación solar [2].

2.2.2.Mesófilo

El interior de la hoja, excluidos los haces vasculares, se denomina como Mesófilo. Este consiste de tres a cinco capas homogéneas de células parenquimáticas ricas en cloroplastos, cada célula del mesófilo posee de 1 a 100 lóbulos. El patrón de los lóbulos determina la razón entre la superficie del Mesófilo interno por unidad de área de la hoja [2].

2.2.3. Pulvino

El Pulvino es una modificación de la base de la hoja envainadora, esta retiene o conserva recursos para las células alargadas en el resto de la hoja madura. Las células del Pulvino en la parte inferior de la caña, pueden elongarse pero no dividirse, ayudando a la rectitud de la caña.

Estomas, tricomas y sílice en la epidermis están ausentes en la zona del Pulvino, células lignificadas también están ausentes, excepto en elementos consistentes en colénquima dispuestos helicoidalmente. Las células parenquimáticas del Pulvino contienen granos de almidón y cristales de oxalato de calcio. Esto hace que estas células sean sensibles a la gravedad, por lo que se le conocen como statocytas [2].

2.2.4. Arquitectura vascular

Todas los haces vasculares están más o menos en el plano medio de la hoja, la nervadura central es recorrida hasta la mitad de las hojas laminadas por haces longitudinales de igual largo, usualmente en un número de cinco (Figura 4).

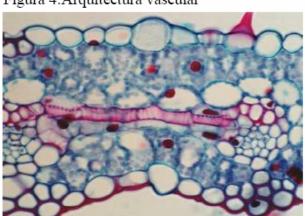


Figura 4:Arquitectura vascular

Entre cualquier par de estas largas agrupaciones hay de uno a tres pequeños haces longitudinales de escasa extensión o con solamente una pequeña extensión adaxial. Todos los haces longitudinales están separados más o menos unos 150 mm. 27 de los 31 haces longitudinales, largos y pequeños, pasan hacia abajo a través de la vaina y dentro del nudo. Todas los haces (principales y menores) están constantemente interconectados, excepto en el Pulvino, a través de pequeñas venas conectivas, también llamadas venas transversales o venas comisurables.

Unos largos haces longitudinales colaterales consisten en una hebra adaxial de xilema y hebras adaxiales de floema. Estos haces tienen uno o dos elementos helicoidales o anulares de protoxilema, dos largos elementos de metaxilema y unos pocos pequeños vasos de floema. Los pequeños haces longitudinales carecen de protoxilema y tienen escasos elementos de metaxilema.

El floema que se encuentra en los pequeños y largos haces longitudinales consisten de tubos típicos con paredes delgadas llamados de "tipo 1", diferentes de los tubos denominados de "tipo 2" cuyas paredes están lignificadas dos a tres veces más que las de tipo 1.

Los elementos de tipo 2 están próximos a los elementos de xilema a lo largo de todo el haz longitudinal. Los miembros tubulares del trigo y otras hierbas carecen de una típica proteína, la tipo P, presentes en las no - hierbas, pero tienen plastídios que contienen cristaloides. Los haces longitudinales tienen una doble agrupación como vaina. La vaina interior (mesosoma) de células están lignificadas, con las paredes que miran hacia la zona vascular de mayor espesor; estas también tienen una lámela suberificada sobre sus paredes. Los plasmodesmos están ausentes entre el mestoma de las células y los elementos xilemáticos, pero son abundantes entre el mestoma de las células y los elementos metafloemáticos. Los plasmodesmos que conectan los mestoma con las células floemáticas son mucho más abundantes en los haces longitudinales pequeños, esto diferencia después a las hojas que comienzan a exportar productos fotosintéticos. En los haces principales estos se diferencian durante etapas tempranas de captación de energía.

La vaina del mestoma contiene solamente cloroplastos rudimentarios llamados proplastios. La vaina de parénquima exterior adyacente tiene solamente pequeños cloroplastos y los cloroplastos normales solo están en las células del mesófilo, esto es típico de las plantas como el trigo.

Las hojas de trigo reportan un mayor transporte de agua y sustancias fotosintéticas en los haces longitudinales aislados, parece que hay un control por parte de la anatomía del mestoma. La lámela suberizada en las paredes de las células del mestoma pueden impedir el paso del agua o solutos mayores, forzando a estas sustancias pasar por los plasmodesmos. Las delgadas conexiones están ausentes en toda la vaina y consisten solamente en un tubo [2].

2.2.5. Caña madura

La epidermis de la caña carece de células bulbiformes, pero posee otras células presentes en la hoja. Las estomas aparecen solamente en una o dos filas justo fuera de algunas franjas de colénquima hipodérmico.

Siete de las diez capas más exteriores de células forman una capa continua de la vaina de esclerénquima justo bajo la epidermis, sobre esta vaina están algunas franjas verticales de colénquima cada una atravesada por un pequeño haz vascular. Cada haz en el anillo perimetral vascular tiene un interior incompleto de mestoma y por fuera parénquima en vaina. Esta vaina se forma solamente donde está en contacto con colénquima.

Entre la vaina de esclerénquima y la lacuna (hueco de la caña) hay algunas capas de parénquima esclerificado entre las cuales existen unos haces de anillos vasculares. Estos haces carecen de una vaina externa.

El tejido parenquimático unido a los haces vasculares horizontales forman un sólido disco en cada nudo. Por lo tanto la caña es liviana en peso, debido a la lacuna, pero fuerte gracias a las fibras corticales y los discos nodales.

Los haces vasculares en la caña están ordenados en cada nudo e internudo, cada hoja contribuye con 27 a 31 haces longitudinales al nudo donde están adjuntas y otros 34 a 48 haces del interior de la caña desde el internudo superior.

En cada nudo sobre la parte media interior del haz anular bajo el internudo se unen otros haces y descienden por el exterior del haz anular volviéndose al interior y formando el nudo, una red de haces conectados provenientes del grupo de hojas todos descendiendo por el haz de la caña. El anillo exterior es reemplazado por la llegada de pequeños haces longitudinales de las hojas. Todos los internudos, por lo tanto, tienen un anillo exterior de pequeños haces derivados desde los pequeños haces longitudinales de las hojas, los que entran al nudo inmediatamente inferior, y un anillo interior de grandes haces, varias de ellas derivadas de los grandes haces longitudinales de las tres hojas superiores. En cada nudo todas los haces del tallo y los provenientes de los haces de las hojas están interconectados por agrupaciones horizontales en el nudo, esto es complejo pero el patrón vascular es típico de las hierbas festucoídeas.

Los haces vasculares en las hojas y en los internudos de la caña están colateralmente en el interior con filas de xilema y en el exterior con filas flemáticas, pero donde los haces confluyen a los nudos vienen amfibasal [2].

La caña esta cubierta por una capa de cera, de aspecto lustroso, constituida por una compleja mezcla de macromoléculas lineares de carbohidratos, cubriendo el tallo y los nudos.

La función de esta capa es de protección contra la lluvia, ya que esta capa es hidrofóbica. Al cortar la caña y al exponer esta al agua, esta capa se empieza a degradar

2.3. RASTROJO DEL TRIGO

Primeramente se define como rastrojo, a toda la biomasa de un cultivo que queda en el suelo después que se ha cosechado. Un índice útil usado en agronomía es el índice de cosecha (IC), el cual se define como el cuociente entre la biomasa que se cosecha (rendimiento) y la biomasa total. Para trigo primaveral este índice de cosecha alcanza un valor de 0.42

Por lo tanto una agricultura productiva con altos rendimientos en granos, también produce abundante cantidad de desechos agrícolas (rastrojos o paja). Las cifras de producción según la ODEPA se muestran en la tabla 2. En el país el rechazo de los agricultores hacia los rastrojos que originan sus cosechas es un fenómeno histórico. Hacen esfuerzos para eliminarlos por medio de la quema, pudiendo en muchos casos provocarse así mismo daños materiales o incurrir en serias sanciones legales por perjuicios a terceros, además de contribuir a la contaminación atmosférica [2].Las quemas de rastrojos son el origen de las emisiones de CO y del COVNM (compuestos volátiles no metano). Si bien el CO no es un gas con efecto invernadero, influye en las mayores concentraciones de metano, ozono y óxidos nitrosos que si lo son. En la tabla 3 se muestra las emisiones de CO, NOx y de compuestos volátiles no metano.

Tabla 2: Cultivos y Producción de trigo en Chile (1989/2004) [3].

Super	Superficie sembrada [Hectáreas]										
R	1989 /	1995 /	1996 /	1997 /	1998 /	1999 /	2000 /	2001 /	2002 /	2003 /	
	90	96	97	98	99	00	01	02	03	04	
IV	8,870	1,285	2,578	3,353	2,296	1,782	1,970	2,570	3,830	3,500	
V	17,090	8,535	9,660	9,946	8,811	8,121	7,060	8,200	9,790	10,000	
RM	36,180	16,459	16,520	16,461	9,680	7,796	7,850	7,930	7,920	8,000	
VI	55,490	34,204	39,715	37,272	18,108	21,874	26,870	34,010	32,900	32,100	
VII	84,600	56,910	64,364	62,717	35,123	53,470	60,830	60,690	61,860	62,200	
VIII	148,59	98,470	105,316	93,592	98,667	112,006	111,600	113,330	108,250	114,100	
	0										
IX	177,62	130,210	130,785	137,694	144,611	160,663	166,970	168,660	161,000	158,900	
	0										
X	52,440	21,518	29,383	21,661	20,361	24,942	29,850	29,710	29,110	30,600	
Produ	icción [T	oneladas									
R	1989 /	1995 /	1996 /	1997 /	1998 /	1999 /	2000 /	2001 /	2002 /	2003 /	
	90	96	97	98	99	00	01	02	03	04	
IV	23,784	3,084	5,029	8,772	6,895	3,333	7,960	7,848	16,141	14,000	
V	62,378	36,067	32,032	36,236	4,047	32,947	26,336	31,821	45,177	47,000	
RM	182,23	92,751	86,373	75,083	47,184	42,123	38,041	45,039	43,000	43,040	
VI	230,29	156,243	183,904	176,030	60,128	78,033	123,356	167,482	136,656	128,400	
VII	257,75	211,476	242,505	239,216	131,768	220,774	264,274	261,400	253,150	266,838	
VIII	343,63	295,263	345,569	392,291	330,003	400,326	471,001	431,516	436,297	505,463	
IX	422,76	340,793	510,702	628,633	514,911	595,282	668,217	698,162	693,628	726,173	
X	190,89	89,537	156,807	124,041	99,951	118,153	177,813	173,960	169,875	187,578	
FUE	FUENTE: ODEPA, 2004.										

Tabla 3: Emisiones de CO, NOx y COVNM* por región para 1994 [3].

							Regió	n						País
Gas	Ι	II	III	IV	V	RM	VI	VII	VIII	IX	X	XI	XII	Total
CO	0,00	0,00	0,27	0,79	1,66	2,86	11,46	12,85	9,16	10,04	2,86	0,02	0,00	51,97
NOx	0,00	0,00	0,01	0,04	0,08	0,14	0,64	0,75	0,52	0,61	0,17	0,00	0,00	2,96
COVNM	0,00	0,00	0,01	0,04	0,09	0,06	0,59	0,66	0,47	0,52	0,15	0,00	0,00	2,59
FUENTE:	FUENTE: Novoa R, González S., et al, 2000.													

Los otros tipos de emisiones, responsables del efecto invernadero son las de metano las cuales son del orden de 321,92 Gg/año producida fundamentalmente por la fermentación ruminal del ganado, y el N20 alcanzando los 21,8 Gg/año. Las principales fuentes de N2O son el uso y manejo del guano y el uso de fertilizantes nitrogenados.

Obviamente todo lo anterior sin considerar la emisión del sector energético (industrias, automóviles) [3].

2.3.1. Cero Labranza.

Los tradicionales sistemas de labranza exigen la eliminación de los rastrojos, ya que cualquier exceso mal manejado puede significar un problema para el suelo al cultivar. A los implementos tradicionales se les puede dificultar su trabajo por atascamiento o dejar los rastrojos amontonados por arrastre. El problema físico que generan los rastrojos mal manejados induce a los agricultores a quemarlos o retirarlos del terreno próximo a sembrar.

Todos estos problemas han llevado a la creación de nuevas técnicas de labranza, donde la más difundida actualmente es la cero labranza. Esta técnica se sustenta bajo el hecho de que los rastrojos son vitales para mantener la fertilidad y una regular estructura del suelo. La pérdida gradual de materia orgánica que puede sufrir el suelo por no disponer de sus propios rastrojos, significaría una lenta perdida de fertilidad, lo que iría en directo perjuicio de la productividad.

Mientras mayor cantidad de rastrojos hallan en el suelo, más fino deben quedar picados para así disminuir el volumen, de hecho hay maquinas de labranza especiales para la aplicación de esta técnica, sólo que generalmente tienen un elevado valor. Muchos agrónomos aceptan esta técnica, pero con ciertas reservas, ya que insisten en que los rastrojos deben ser incorporados al suelo de algún modo para acelerar su descomposición. Pero es esto último lo que se dificulta en el territorio chileno, ya que además de haber una alta relación carbono / nitrógeno (cercana a 60:1), la temperatura y humedad en los lugares de cultivo no incentiva mucho la descomposición .Un estudio realizado por la Facultad de Ciencias Agronómicas de la Universidad de Chile analizó el efecto de la temperatura y humedad sobre la descomposición del rastrojo de trigo, llegando a la conclusión de que la temperatura ambiente durante el tiempo de descomposición es un factor significativo en la magnitud del proceso y que la cantidad de agua aplicada durante la descomposición no es un factor crítico, más importante es la frecuencia de mojamiento de los rastrojos

También se destaca el fenómeno de alelopatia, el cual se genera durante el inicio de la descomposición de residuos de cosechas y que puede afectar seriamente la germinación de las semillas, como también inhibir su desarrollo. La alelopatia se puede definir como una interacción químico-biológica natural por medio de la cual la planta o sus residuos pueden ocasionar daño o interferir en el desarrollo de otras. En esta lucha química hay especies que exudan compuestos fitotóxicos, con lo cual logran dañar a otros seres vivos que reciben este efecto.

La alelopatia se genera con los primeros procesos de descomposición de materia orgánica que coincide con las primeras lluvias de otoño. Su efecto puede ser intenso en rastrojos sobre el suelo, lo que afecta a las semillas que inician su etapa de germinación, también dañaría a las plantas ya establecidas [3].

2.4. Composición química del trigo

En el trigo la celulosa es ligeramente inferior y más variable que en las especies madereras. La Hemicelulosa es de menor pureza que la celulosa, mientras que la lignina es el material cementante que mantiene unidas a las fibras. Dependiendo del producto que se desea obtener cada uno de estos materiales adquiere mayor o menor importancia. Para paneles compuestos, la Hemicelulosa y la lignina proveen un fuerza adherente extra, reduciendo la cantidad de resina requerida en el proceso de fabricación

La mayor diferencia entre la madera y la paja de trigo es el alto contenido de sílice que esta última contiene, trayendo consecuencias positivas y negativas, las positivas es que aumentan la resistencia al fuego y al ataque de insectos, mientras que las negativas corresponden al daño en los procesos de generación de energía y pulpaje. Otro componente especifico del trigo, es una delgada capa de cera sobre la epidermis la cual puede influir en los procesos y productos finales, También la química de la paja de trigo es más alcalina (ph entre 7 y 9) que la de la madera, la cual es mas ácida

El contenido de lignina y cenizas en el rastrojo aumenta a través del tiempo, como lo indica un estudio de selectividad del rastrojo como alimento para ganado ovino, los resultados de las muestras tomadas cada mes se muestran a continuación:

Tabla 4: Cambio de la composición química a través del tiempo en los rastrojos

	Proteínas(%)	Fibra detergente Ácido(%)	Lignina(%)	Cenizas(%)	Energía metabolizante [Mcal/kg]
Febrero	4.3	41.3	4.7	3.6	1.94
Marzo	2.4	50.1	6.9	5.3	1.65
Abril	1.9	54.8	8.4	4.3	1.50

FUENTE: Klee G,; Pulido R. et al, 2000.

El mismo estudio anterior determinó el contenido de minerales en el rastrojo de trigo, aunque un solo estudio es insuficiente para generalizar, la información puede servir como referencia, la tabla con la composición se muestra a continuación:

Tabla 5: Contenido de minerales en los rastrojos

	P	K	Ca	Mg	Cu	Mn	Fe [ppm]
					[ppm]	[ppm]	
Porcentaje(%)	0.04	0.08	0.15	0.06	12	61	1.181

FUENTE: Klee G,;Pulido R. et al, 2000.

2.4.1. Celulosa

Es una macro molécula lineal, de longitud variable, consiste de un gran número de unidades de hexosa unidas por valencias principales de enlaces B-glucósidos.

La molécula de glucosa es C₆H₁₀O₅ y se clasifica como un hidrato de carbono ya que los hidrógenos y oxígenos que las componen están presentes como para formar cinco moléculas de agua (H₂O). Son residuos de B-D glucopiranosa unidos por enlaces glucosídicos entre los carbono 1 y 4. El grado de polimerización de esta macromolécula puede alcanzar valores de entre 5000 y 10000 monómeros. Es el componente presente en las fibras que mayor resistencia ofrece a esfuerzos de tracción.

2.4.2. Hemicelulosa

Son hidratos de carbono de bajo grado de polimerización (200 – 250 monómeros). En su mayoría son moléculas lineales poco estables, solubles en álcalis fuertes y calientes, motivo por el cual se pierden casi totalmente en procedimientos de pulpajes alcalinos.

La Hemicelulosa está compuesta por dos tipos de sustancias; los xilanos que son moléculas formadas por la polimerización de pentosas y las Hemicelulosas, comúnmente llamadas glucomananos, cuyas moléculas están formadas por la polimerización de hexosas, principalmente glucosa y manosa.

2.4.3. Lignina

Es un polímero casi infinito, tridimensional, amorfo, de características termoplásticas, básicamente fenólico y de una estructura extremadamente compleja aún no develada en su totalidad. Todavía no ha sido posible aislar su monómero fundamental, sin embargo las unidades estructurales de éste tienen un esqueleto común del tipo fenilpropano o C6-C3.

Este polímero de alto grado de polimerización y compleja estructura es muy inestable frente a productos químicos, sobre todo a los de característica básica.

Es el polímero encargado de cementar la fibra entre sí, aumentando así la resistencia mecánica para la construcción de paneles.

2.5. FIBRA DEL TRIGO

A un nivel microscópico, las fibras individuales (del trigo) tienen en promedio 0.85 mm de longitud, y comúnmente se clasifican como fibras cortas, delgadas y quebradizas. La capacidad del tallo (caña) de la paja de trigo para convertirse en paneles se puede expresar en función del tamaño de la fibra, contenido de celulosa y porción de lumen. Lo ideal son fibras largas, de alto contenido de celulosa y baja proporción de lumen, seguido de la composición general de la planta, composición de las paredes de las células del tallo y la geometría de la células.

2.6. GENERALIDADES DEL PULPAJE

Se denomina pulpa o pasta al producto fibroso que resulta de la separación de las fibras del tejido vegetal. El tipo de pulpaje utilizado para obtener la pulpa es de suma importancia ya que influye en el grado de deterioro de la fibra, cantidad de lignina residual, cantidad de químicos finales, etc. Todos estos factores van a estar influyendo directamente en el comportamiento de cualquier producto que la utilice como materia prima.

En la fabricación de tableros a base de fibras de madera existen tipos de pulpajes que toman gran importancia, como lo son el Pulpaje Mecánico, Pulpaje Químico y Pulpaje Kraft. De estos tres, el pulpaje Kraft tiene gran importancia en la actualidad debido a la excelente calidad de pasta que origina.

2.6.1. Pulpaje Kraft

Es un proceso de pulpaje químico que extrae la lignina presente en el tejido vegetal a través de reactivos químicos (licores de cocción) tales como el Sulfuro de Sodio (Na2S) e Hidróxido de Sodio o Soda (NaOH), todo esto bajo ciertas condiciones de temperatura y presión controladas. Se produce también una extracción y disolución de gran parte de las Hemicelulosas además de la degradación parcial de la celulosa, sin lograr la extracción total de la lignina lo que genera un remanente residual.

2.7 Cemento

En ingeniería civil y construcción se denomina **cemento** a un aglutinante o aglomerante hidráulico que, mezclado con agregados pétreos (árido grueso o grava más árido fino o arena) y agua, crea una mezcla uniforme, manejable y plástica capaz de fraguar y endurecer al reaccionar con el agua y adquiriendo por ello consistencia pétrea, el hormigón o concreto. Su uso está muy generalizado, siendo su principal función la de aglutinante.

Se pueden establecer dos tipos básicos de cementos:

 a) base de arcilla. Obtenidos a partir de arcilla y piedra caliza en proporción 1 a 4 aproximadamente. b) puzolánicos. La puzolana del cemento puede ser de origen orgánico o de origen volcánico.

Existen diversos tipos de cemento, diferentes por su composición, por sus propiedades de resistencia y durabilidad, y por lo tanto por sus destinos y usos.

Desde el punto de vista químico se trata en general de una mezcla de silicatos y aluminatos de calcio, obtenidos a través del cocido de calcareo, arcilla y arena. El material obtenido, molido muy finamente, una vez que se mezcla con agua se hidrata y solidifica progresivamente. Puesto que la composición química de los cementos es compleja, se utilizan terminologías específicas para definir las composiciones [4].

El cemento Pórtland

El cemento Portland es el tipo de cemento más utilizado como ligante para la preparación del hormigón o concreto.

La fabricación del cemento Portland se da en tres fases: (i) Preparación de la mezcla de las materias primas; (ii) Producción del clinker; y, (iii) Preparación del cemento.

Las materias primas para la producción del Portland son minerales que contienen:

- óxido de calcio (44%),
- óxido de silicio (14,5%),
- óxido de aluminio (3,5%),
- óxido de hierro (3%) y
- óxido de magnesio (1,6%).

La extracción de estos minerales se hace en canteras, que preferiblemente deben estar próximas a la fábrica, con frecuencia los minerales ya tienen la composición deseada, sin embargo en algunos casos es necesario agregar arcilla o calcáreo, o bien minerales de hierro, bauxita, u otros minerales residuos de fundiciones.

La mezcla es calentada en un horno especial, constituido de un inmenso cilindro (llamado *Kiln*) dispuesto horizontalmente con una ligera inclinación, y rodando lentamente.

La temperatura crece a lo largo del cilindro hasta llegar a aproximadamente 1400°C; la temperatura es tal que hace que los minerales se combinen pero no se fundan o vitrifiquen.

En la sección de temperatura menor, el carbonato de calcio (calcáreo) se separa en óxido de calcio y bióxido de carbono (CO₂). En la zona de alta temperatura el óxido de calcio reacciona con los silicatos y forma silicatos de calcio (Ca₂Si y Ca₃Si). Se forma también una pequeña cantidad de aluminato tricálcico (Ca₃Al) y Aluminoferrito de tricalcio (Ca₄AlFe). El material resultante es denominado *clinker*. El clinker puede ser conservado durante años antes de proceder a la producción del cemento, con la condición de que no entre en contacto con el agua.

La energía necesaria para producir el clinker es de aproximadamente 1.700 joules por gramo, pero a causa de las perdidas de calor el valor es considerablemente más elevado. Esto comporta una gran demanda de energía para la producción del cemento, y por lo tanto la liberación de una gran cantidad de dióxido de carbono en la atmósfera, gas de efecto invernadero.

Para mejorar las características del producto final al clinker se le agrega aproximadamente el 4 % de yeso y la mezcla es molida finamente. El polvo obtenido es el cemento preparado para su uso.

El cemento obtenido tiene una composición del tipo:

- 64% óxido de calcio
- 21% óxido de silicio
- 5,5% óxido de aluminio
- 4,5% óxido de hierro
- 2,4% óxido de magnesio
- 1,6% sulfatos
- 1% otros materiales, entre los cuales principalmente agua.

Cuando el cemento Portland en mezclado con el agua, el producto solidifica en algunas horas y endurece progresivamente durante un período de varias semanas. El endurecimiento inicial es producido por la reacción del agua, yeso y aluminato tricálcico, formando una estructura cristalina de calcio-aluminio-hidrato, estringita y monosulfato.

El sucesivo endurecimiento y el desarrollo de fuerzas internas de tensión derivan de la reacción más lenta del agua con el silicato de tricalcio formando una estructura amorfa llamada calcio-silicato-hidrato. En ambos casos, las estructuras que se forman envuelven y fijan los granos de los materiales presentes en la mezcla. Una última reacción produce el gel de silicio (SiO₂). Las tres reacciones generan calor.

Con el agregado de materiales particulares al cemento (calcáreo o cal) se obtiene el *cemento plástico*, que fragua más rápidamente y es más fácilmente trabajable. Este material es usado en particular para el revestimiento externo de edificios.

La calidad del cemento Portland deberá estar de acuerdo con la norma ASTM C 150.

En el 2004, los principales productores mundiales de cemento Portland fueron la *Lafarge* en Francia, la *Holcim* en Suiza y la *Cemex* en México.

Reacciones de formación del clinker

1000-1100°C

 $3CaO+Al_2O_3 \rightarrow 3CaOAl_2O_3$ $2CaO+SiO_2 \rightarrow 2CaOSiO_2$ $CaO+Fe_2O_3 \rightarrow CaOFe_2O_3$

1100-1200°C

 $\begin{array}{lll} \texttt{CaOFe}_2 \texttt{O}_3 + \texttt{3CaOAl}_2 \texttt{O}_3 & \texttt{4CaOAl}_2 \texttt{O}_3 \texttt{Fe}_2 \texttt{O}_3 \\ \textbf{1250 - 1480°C} \\ \texttt{2CaOSiO}_2 + \texttt{CaO} & \to & \texttt{3CaOSiO}_2 \\ \end{array}$

La composición final será de:

- 50% 3CaOSiO₂
- 25% 2CaOSiO₂
- 12% 3CaOAl₂O₃
- 8% 4CaOAl₂O₃Fe₂O₃

Reacciones de hidratación

Las reacciones de hidratación, que forman el *proceso de fraguado* son:

Estas reacciones son todas exotérmicas. La más isotérmica la hidratación de 3CaOAl₂O₃, seguida de la de 3CaOSiO₂, y luego 4CaOAl₂O₃Fe₂O₃ y finalmente 2CaOSiO₂.

Proceso de fabricación

Existe una gran variedad de cementos según la materia prima base y los procesos utilizados para producirlo, que se clasifican en procesos de *vía seca* y procesos de *vía húmeda*.

El proceso de fabricación del cemento comprende cuatro etapas principales:

- extracción y molienda de la materia prima
- homogeneización de la materia prima
- producción del Clinker
- molienda de cemento.

La materia prima para la elaboración del cemento (caliza, arcilla, arena, mineral de hierro y yeso) se extrae de canteras o minas y, dependiendo de la dureza y ubicación del material, se aplican ciertos sistemas de explotación y equipos. Una vez extraída la materia prima es reducida a tamaños que puedan ser procesados por los molinos de crudo.

La etapa de homogeneización puede ser por vía húmeda o por vía seca, dependiendo de si se usan corrientes de aire o agua para mezclar los materiales. En el proceso húmedo la mezcla de materia prima es bombeada a balsas de homogeneización y de allí hasta los hornos en donde se produce el clínker a temperaturas superiores a los 1500 °C. En el proceso seco, la materia prima es homogeneizada en patios de materia prima con el uso de maquinarias especiales. En este proceso el control químico es más eficiente y el consumo de energía es menor, ya que al no tener que eliminar el agua añadida con el objeto de mezclar los materiales, los hornos son más cortos y el clínker requiere menos tiempo sometido a las altas temperaturas.

El clínker obtenido, independientemente del proceso utilizado en la etapa de homogeneización, es luego molido con pequeñas cantidades de yeso para finalmente obtener cemento.

CAPITULO 3

PROCEDIMIENTO EXPERIMENTAL.

3.1 Descripción general de los materiales

3.1.1 Cemento Portland

Es un polvo gris azulado que se obtiene por molienda muy fina del clínker, el cual es producto formado principalmente por silicatos de calcio, obtenidos a su vez por calcinación hasta fusión incipiente de una mezcla íntima de materiales arcillosos y calcáreos. Las materias primas se muelen juntas, ya sea en seco o húmedas y el clínker debe estar calcinado a punto. Se suele añadir yeso para regularizar el fraguado. El color de este cemento se debe principalmente a los óxidos de hierro.

3.1.2 Celulosa

La celulosa se obtienen a partir de los rastrojos del trigo, estos rastrojos pasan a través de un proceso químico para obtener solamente celulosa, la cual se usa para obtener nuestro material compuesto, este proceso se explica en forma más detallada más adelante.

3.2 Fases componentes del fibrocompuesto

3.2.1 Matriz

La matriz es una pasta de cemento Portland, obtenida de la mezcla del cemento con cierto porcentaje de agua, sin aditivos y encontrándose el aire incorporado en forma natural, arrastrado por los gránulos de cemento, en baja proporción. Desde el punto de vista de la dosis de agua, esta es una pasta seca, es decir, preparada con la humedad suficiente como para que apelmace al ser apretada con la mano y se desintegre al caer al suelo [5].

3.2.2 Fibras

Las fibras de celulosa se orientan en nuestro material compuesto en forma aleatoria, son fibras cortas y su diámetro es difícil de determinarlo debido a su gran diversidad, pero aproximadamente es de 100 micrómetros. Las dimensiones y forma de las fibras se pueden apreciar en las fotos que se exhiben en el ANEXO 2.

3.3 Obtención de la fibra de celulosa

Se usó el laboratorio de Ingeniería Forestal para poder extraer de los rastrojos del trigo la celulosa, usando la siguiente metodología:

- Obtención de la celulosa: proceso de pulpaje químico que extrae la lignina presente en el tejido vegetal a través de reactivos químicos (licores de cocción) tales como el Sulfuro de Sodio (Na₂S) e Hidróxido de Sodio (NaOH), a una temperatura de 156°C y con una presión menor a 10 [bar], este proceso se realiza e el interior de un digestor.
- Se introdujo 1 Kg de peso seco de rastrojo de trigo.
- Masa del reactivo: 44gr (Na₂S) + 176gr (NaOH)
- Masa de agua: 13600gr (licor/rastrojos = 14/1, contenido de humedad es 180 gramos)
- Remojar en 6 litros de agua los rastrojos.
- Agregar en el digestor todo el resto del licor, con las siguientes condiciones, presión de 10 [Kg/cm²] y Temperatura de 165[°C] durante 1 hora 45 minutos.
- Tiempo de cocción de 45 minutos a la temperatura de fusión de la lignina (156°C).
- Se usa un digregador con el objeto de separar las fibras por medio de sus aspas.

3.4 Fabricación del compuesto

Para la confección de las probetas del fibrocompuesto, incluyendo las probetas que no contienen celulosa, se usan moldes rectangulares de acero inoxidable, fabricados especialmente con este propósito. El método a seguir es el siguiente:

- Se forma manualmente la pasta de cemento dentro de una bolsa plástica, donde luego de introducir 12 gramos de cemento se le agrega una dosis de agua del 4% del peso del cemento.
- La fibra de celulosa antes de incorporarse a la bolsa plástica se le agrega una dosis de agua dependiendo del porcentaje de fibra que se adicione.
- Se adicionan a la pasta las fibras de celulosa previamente pesadas, en determinado porcentaje en peso de cemento.
- Se realiza el mezclado de ambos materiales, lo más homogéneo posible, tal que no se produzcan apelotamientos de fibra, introduciéndose luego al molde.
- Se comprime esta mezcla en una Prensa Hidráulica, aplicando una fuerza de 1000 Kg., de manera de obtener un compuesto que pueda ser manejable sin destruirlo.
- Se identifican las probetas y se introducen en una cámara de curado.
- Después de 24 horas de fabricadas las probetas, se sumergen en agua hasta que dejen de burbujear (aproximadamente 30 segundos), para que favorezca el proceso de hidratación y son nuevamente introducidas a la cámara de curado, el tiempo en el que se encuentran las probetas dentro de la cámara de curado es de 7días.
- Las probetas una vez que salen de la cámara de curado deben ser secadas por intermedio de un horno que funciona a 110°C durante 24 horas.
- Por último las probetas son ingresadas en un medio donde no existe humedad para que no altere sus propiedades mecánicas hasta que se les realice el ensayo de fractura a la flexión.

Se hicieron probetas de pasta de cemento (sin fibras), mediante la metodología anteriormente mencionada, se determinó que se deben confeccionar 9 tipos distintos del material compuesto, los 9 grupos van variando dependiendo del porcentaje de fibra de celulosa que se le va agregando al cemento para formar el material compuesto, los grupos van de 0, 2, 4, 6, 8, 10, 12, 14 hasta un 16% de fibra de celulosa, y en cada grupo se confeccionaron 30 probetas con iguales características, por lo que se confeccionaron 270 probetas en total.

3.5 Ensayo de probetas

Se definió en primer lugar, el tipo de ensayo a realizar para la medición de cada variable, continuando con una cuidadosa planificación de las series de ensayos, de acuerdo a las características del material. Posteriormente se hizo un estudio de los principios de operación de la máquina a usar en estos ensayos, con el objetivo de conocer su funcionamiento y de tratar de descubrir posibles errores en el sistema o en el ensayo por parte del operador.

3.5.1 Forma y tipo de ensayo

Con objeto de investigar la respuesta del material compuesto, cuando éste es ensayado a la flexotracción, estimando la resistencia a la tracción a través de la tensión de rotura por flexión, varias series de ensayos, para cada variable investigada, fueron hechas sometiendo a flexión pequeñas vigas de material compuesto, mediante el ensayo de los 3 puntos, método de carga en el cual la carga es aplicada en forma concentrada a la viga, en el punto medio de la luz libre.

El modo de aplicación de la carga es el de carga estática hasta el instante de rotura. La carga se va aumentando lenta y progresivamente hasta alcanzar la tensión máxima. El equipo donde se realizan estos ensayos es en la máquina MONSANTO, la cual se describirá mas adelante.

La tensión de rotura a la flexión, ensayo 3 puntos, para una viga de sección rectangular viene dada por la siguiente ecuación (1):

$$\sigma = (3 * P * L) / (2 * b * h^{2})$$
 (1)

P: carga a la que se somete la probeta.

L: distancia entre apoyos de la maquina (3,8 cm).

b: ancho de la probeta.

h: espesor de la probeta.

3.5.2 Ensayos de prueba

Se realizaron 2 series de ensayos, de 20 probetas de pasta de cemento cada una, con el objeto de verificar el funcionamiento de la máquina, para poder descubrir posibles errores sistemáticos y personales en la medición, determinar sobre que rango se pueden tomar las mediciones, estimar el tiempo necesario para cada medida y en general para obtener conclusiones referentes a la planificación de las próximas experiencias.

Las siguientes fueron las observaciones mas destacadas:

- Se optó por la aplicación de la carga en forma manual, lenta y continua, lo más uniforme posible para todas las probetas.
- La probeta debe colocarse lo más centrada, para que la carga se aplique en el centro de la probeta.
- La probeta al ajustarse con las modazas debe sostenerse con un ajuste suave, ya que si es ajustada con mucha fuerza la probeta queda con una carga residual y nuestra medición será equivocada.

3.6 Análisis y observaciones de la fabricación de las probetas

3.6.1 Forma y dimensiones de las probetas

Los resultados deben ser comparables, por lo que se tratará que todas las probetas se confeccionen con idénticas condiciones, principalmente de presión. Serán probetas de sección rectangular (viguetas) con las siguientes dimensiones: largo de 5.5 [cm], ancho 2.05 [cm] y espesor de 0.6 [cm].

Basados en el hecho de que cerca de los apoyos el esfuerzo de corte es mas importante que el esfuerzo de tracción y que para cada probeta de gran altura las deformaciones de corte son más importantes, pudiendo en este caso deberse la rotura a tensiones de corte, por lo que es recomendable para ensayos de flexotracción una razón aproximada h/L = 1/10, y apoyados en los ensayos de prueba mencionados anteriormente donde se observó que la rotura (agrietamiento) comienza a producirse por la parte inferior de la viga avanzando hacia la superior (falla por flexión) y que aquella se produce cerca del punto de aplicación de la carga, lo que significa que es debida a esfuerzos de tracción principalmente, se determinó usar alturas de aproximadamente 0.50 centímetros.

3.6.2 Determinación experimental del porcentaje de agua para poder disgregar la celulosa y porcentaje de agua que se le agrega al cemento

Experimentalmente se hicieron probetas con una variación del porcentaje de fibra de celulosa, nuestro rango de trabajo variara desde un 0% hasta un 16% de porcentaje celulosa en peso con respecto a nuestro material compuesto.

Debido a que la celulosa cuando se encuentra en forma seca es dificil de disgregarla, para cada porcentaje de celulosa se hicieron distintas probetas, variando su porcentaje de agua, este trabajo experimental se hizo para ver el porcentaje de agua que hay que agregarle a la celulosa para poder disgregarla

Para el caso de 4% de celulosa se le agrego un 20% de agua al material compuesto y para el 2% de celulosa se le agrego sólo un 10% de agua para poder disgregar la celulosa.

Este trabajo queda resumido en la Tabla (6), destacándose el porcentaje de agua que se va a usar para cada porcentaje de celulosa.

Tabla (6): Porcentaje de agua que se le va agregar a cada porcentaje de celulosa

Probeta	% celulosa	Gramos celulosa	% agua	Gramos agua	Observaciones
1-2	16	1,92	60	8,25	Es homogéneo, con agua adecuada
2-2	16	1,92	14,4	2	No es homogéneo
3-2	16	1,92	10,1	1,4	No es homogéneo
4-2	16	1,92	4,3	0,6	No es homogéneo
1-3	14	1,68	60	8,21	Bien homogéneo, sale mucha agua
2-3	14	1,68	50	6,84	Homogéneo, sale menos agua
3-3	14	1,68	40	5,47	Menos homogéneo, sale poca agua
4-3	14	1,68	30	4,1	Poco homogéneo, sale muy poco agua
5-3	14	1,68	20	2,74	No homogéneo, no sale agua
6-3	12	1,44	60	8,06	Bien homogéneo, sale excesiva agua
7-3	12	1,44	50	6,72	Bien homogéneo, sale mucho agua
8-3	12	1,44	40	5,38	Homogéneo, sale poco agua
9-3	12	1,44	30	4,03	Poco homogéneo, sale muy poco agua
10-3	12	1,44	20	2,68	No homogéneo, no sale agua
6-2	10	1,2	60	7,92	No se puede realizar la probeta
7-2	10	1,2	50	6,6	Bien homogéneo, con exceso de agua
8-2	10	1,2	40	5,28	Homogéneo, con agua adecuada
9-2	10	1,2	30	3,96	Poco homogéneo, sale poca agua
10-2	10	1,2	20	2,64	No homogéneo, no sale agua
11-2	8	0,96	50	6,5	No se puede realizar la probeta
12-2	8	0,96	40	5,2	Bien homogéneo, con exceso de agua
13-2	8	0,96	30	3,9	Homogéneo, con agua adecuada
14-2	8	0,96	20	2,6	Poco homogéneo, sale poca agua
15-2	8	0,96	10	1,3	No homogéneo, no sale agua
16-2	6	0,72	50	6,36	No se puede realizar la probeta
17-2	6	0,72	40	5,1	Bien homogéneo, con exceso de agua
18-2	6	0,72	30	3,8	Homogéneo, con agua adecuada
19-2	6	0,72	20	2,5	Poco homogéneo, sale poca agua
20-2	6	0,72	10	1,3	No homogéneo, no sale agua

Las probetas fueron hechas bajo idénticas condiciones, en cuanto al método de fabricación, presión de compactación y curado, con el fin de tener resultados comparables. El porcentaje de un 4% de agua que se le agrega al cemento se determinó por la ayuda de memorias anteriores, ya que hicieron un estudio donde encontraron que el porcentaje de un 4% es el que pose mayor resistencia a la fractura, además la pasta tiene buena trabajabilidad y los resultados de resistencia media se encuentran comprendidos dentro del rango de valores máximos obtenidos.

3.6.3 Presión de compactación

Se determinó en forma experimental que las probetas fueran compactadas a presiones de 300 [Kg/cm²], según el manómetro que indica la presión de aceite que existe en el interior de la prensa hidráulica. Esta determinación se hizo fabricando 4 conjuntos de probetas con las siguientes presiones: 100[Kg/cm²], 200[Kg/cm²], 300[Kg/cm²] y 400[Kg/cm²]. Por lo que se concluyó una vez hechas estas probetas que la de mejor manejabilidad era la de 300[Kg/cm²]. De acuerdo a la capacidad de la prensa hidráulica y con la lectura que se tiene del manómetro, se determinó que la presión de compactación que se ejerce al molde es de 1000 [Kg.Fuerza].

3.6.4 Tiempo de inmersión en agua

El efecto de tiempo de inmersión en agua de las probetas después de las 24 horas que fueron compactadas, fabricadas con la presión anteriormente mencionadas, con la razón agua/cemento de un 4% y ensayándolas luego a flexión después de 7 días de su confección, se concluyó que no existe dependencia clara del tiempo de inmersión y se adoptará sumergir las probetas hasta que deje de burbujear, aproximadamente 30 segundos.

3.6.5 Curado de las probetas

Las probetas fueron mantenidas en ambiente húmedo en una cámara de curado construída para tal efecto, cuyo funcionamiento cumplió con lo pretendido. Se determinó que las probetas bastaba tenerlas una semana en la cámara de curado, además de la inmersión en agua a las 24 horas después de fabricarlas, para que existiera un buen fraguado y no excesiva agua ya que provocaría una disminución de su resistencia.

3.6.6 Influencia del secado de las probetas

Se analizó el efecto del secado de las probetas en la resistencia mecánica, ensayando a flexión dos series de 5 probetas, el primer grupo fue ensayado directamente sacadas de la cámara de curado y el segundo grupo una vez sacadas de la cámara de curado pasaron por un horno a 110°C durante 24 horas, para posteriormente ser ensayadas. Se concluyó que la resistencia del segundo grupo aumentaba en un 100% aproximadamente, por lo que se consideró secarlas y aplicarles el método de secado anteriormente mencionados.

CAPITULO 4

EQUIPOS UTILIZADOS

4.1 Cámara de curado

Se confeccionó una cámara de curado (Figura 5), su estructura es de madera y está forrada interiormente con plástico en todas sus caras, para evitar que pierda humedad fue sellada totalmente con silicona, sus dimensiones son de 60 * 60 * 30 centímetros de largo por ancho por alto y posee una puerta de 30 * 40 (cm²). Su función es mantener el adecuado proceso de fraguado de las probetas fabricadas, por lo que se espera que opere en condiciones de temperatura ambiente y con una humedad cercana al 90%.

Figura (5): cámara de curado

4.1.1 Funcionamiento de la cámara de curado

Para poder determinar la humedad y temperatura que estaba generando la cámara de curado, usamos un termohigrómetro, el cual tomaba datos cada 5 minutos de humedad y temperatura durante una hora y media aproximadamente.

Los resultados que obtuvimos de este dispositivo quedan determinados por la Figura (6).

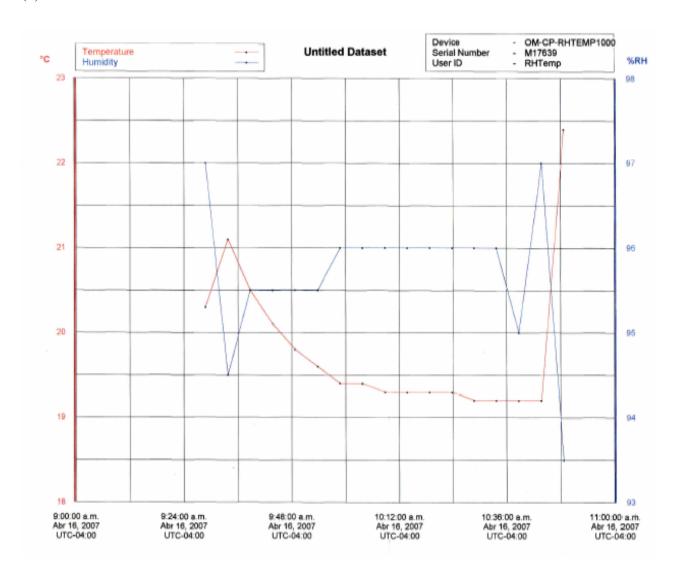


Figura (6): Temperatura y humedad que genera la cámara de curado

Se puede concluir que nuestra cámara de curado está generando un 96% de humedad y una temperatura de 19°C aproximadamente, por lo que se puede decir que está funcionando en forma óptima y por lo que está hidratando las probetas en forma adecuada.

4.2 Prensa hidráulica

Esta máquina posee una capacidad nominal de 2000 KgFuerza, se usó solamente hasta 1000 KgFuerza, su función principal es la compactación del material compuesto en el molde y en el desmolde de la probeta. Se muestra a continuación en la Figura (7).

Figura (7): Prensa hidráulica

4.3 Máquina MONSANTO

En los ensayos de la probeta se usó una máquina de tracción horizontal marca "MONSANTO", denominada Tensómetro W. serie Nº TEK/3/9408, el cual se muestra en la Figura (8).

4.3.1 Descripción y características generales

Este tensómetro puede ser usado para ensayar una variedad de materiales, tales como, plásticos, maderas, gomas, cemento, etc.; en distintos ensayos, como Fuerza-deformación, tracción, comprensión, cizalle y flexión.

Es una máquina compacta y sus dimensiones generales son:

Longitud (L) = 965 (mm)

Ancho (W) = 235 (mm)

Altura (H) = 230 (mm)

4.3.2 Funcionamiento Tensómetro W.

La máquina puede ser operada en forma manual o mediante un motor eléctrico adosado a ella, siguiendo en ambos casos iguales principio de operación, el cual en síntesis es el siguiente:

Al ser accionada la máquina se va aplicando gradualmente una fuerza sobre la probeta de ensayo colocada en las "mordazas" de la máquina, la cual actúa deflectando una viga metálica y esta deflección opera sobre un pistón que va dentro de un cilindro que contiene mercurio, impulsado a éste a través de un tubo de vidrio graduado y magnificando la deflección de la viga metálica 160 veces. A este tubo de vidrio se le adosa una escala de fuerza, donde cada valor de ella corresponde a una posición de la columna de mercurio, la que al ir avanzando progresivamente es seguida por un cursor operado manualmente.

Figura (8): máquina MONSANTO

4.4 Horno de secado

El hormo de secado (Figura (9)), se usó con la única finalidad de secar las probetas para poder ensayarlas en la máquina MONSANTO en igualdad de condiciones, se usó con una temperatura de funcionamiento de 110°C y tiene una capacidad para poder colocar fácilmente 500 probetas, por lo que no hubo problemas de capacidad.

Figura (9): horno de secado

CAPITULO 5

DETERMINACION DEL PORCENTAJE OPTIMO DE FIBRA DE CELULOSA

5.1 Ensayos realizados

Se hicieron numerosas series de probetas, aumentando el porcentaje en peso de fibra de 2% en 2% de celulosa contenida en la matriz, desde 0% (pasta de cemento) a 16%, las cuales fueron ingresadas a la cámara de curado durante 7 días, posteriormente fueron secadas por 1 día a 110°C y por último fueron ensayadas a la flexión en la máquina MONSANTO para determinar la tensión de rotura.

Las condiciones de ensayo, así como las de fabricación y curado, fueron uniformes para todas las probetas, para poder tener resultados comparables.

5.2 Resultados obtenidos

La tensión de rotura de cada probeta se calculó considerando la carga máxima soportada por ella, indicada por la máquina de ensayo. Las dimensiones de cada probeta se hicieron antes de ensayar cada una de las probetas.

Para cada grupo de muestras con igual porcentaje de fibras de celulosa y ensayadas en las mismas condiciones de edad y humedad, se determinó la tensión media de rotura (σ) , a través de la ecuación (1).

Todos los datos y resultados de cada una de las probetas se muestran en los anexos, la Tabla 7 muestra un resumen de los resultados obtenidos en estas experiencias.

Tabla 7: Variación de la tensión media en función del porcentaje de fibra.

N° de probetas	%celulosa	σ (MPa)
30	0	15,8
30	2	14,9
30	4	14,4
30	6	13,6
30	8	13
30	10	13,9
30	12	16,4
30	14	14,4
30	16	13,3

La Figura (10) muestra un resumen de los datos obtenidos de la tensión media presentada en la tabla 7.

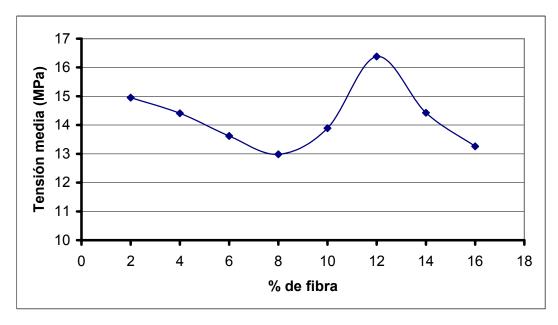


Figura (10): Variación de la tensión media en función del porcentaje de celulosa.

5.3 Análisis de los resultados

De la Tabla 7 y la Figura 10 se puede apreciar que el reforzamiento óptimo de la matriz, con respecto al mayor incremento de la tensión de rotura, corresponde a un porcentaje en peso de fibras de celulosa de 12%. Todos los valores resultantes en los ensayos presentan una alta dispersión, siendo esta una característica propia de los materiales frágiles. Además se puede apreciar claramente que el óptimo se encuentra en el 12% de fibra, ya que al aumentar el porcentaje de fibra la tensión de rotura disminuye en forma violenta. Además se observa que con un 12% en fibra el módulo de tensión de rotura es mayor que el de la pasta de cemento (o sea con 0% en fibras).

5.4 Conclusiones

Se aprecia un incremento en la ductilidad del material a medida que va aumentando el porcentaje de fibra de celulosa como refuerzo, verificándose la buena adherencia entre ambos materiales.

A diferencia de las probetas de pasta de cemento (con 0% en fibras), cuya fractura es totalmente frágil, el fibrocemento presenta un estado de post-agrietamiento, donde, una vez que ha fallado la matriz, las fibras continúan soportando parte de la carga hasta que fallan, principalmente por adherencia.

El agrietamiento para todas las probetas comienza a producirse en la parte inferior de éstas opuestas al punto de aplicación de la carga, lo cual nos confirma que la falla fue por flexión.

La dispersión de los resultados es alta en el fibrocompuesto, esto se puede explicar principalmente por la orientación y distribución de las fibras de celulosa, que en este caso fueron colocadas totalmente al azar.

CAPITULO 6

RESISTENCIA PROBABILISTICA DE MATERIALES

6.1 Introducción

De acuerdo con la resistencia probabilística de materiales si una cierta variable aleatoria, x, sigue una función de distribución de probabilidad de Weibull, entonces su función es de la siguiente forma

$$F(x) = 1 - \exp\left\{-\frac{1}{V_0} \int_{V} \phi(x) dV\right\}$$
 (2)

donde F es la probabilidad acumulativa, que se determina experimentalmente, V_0 es la unidad de volumen, V es el volumen del material, x es la variable aleatoria que actúa en el volumen V y ϕ es la función riesgo específico de Weibull.

La función ϕ se puede expresar, habitualmente, en términos de un cierto número de parámetros, tales parámetros se obtienen a partir de un conjunto de datos experimentales. Es usual encontrar para ϕ funciones del tipo potencia como la siguiente:

$$\phi(\mathbf{x}) = \begin{cases} \left(\frac{\mathbf{x} - \mathbf{x}_{L}}{\mathbf{x}_{0}}\right)^{m} & \mathbf{x} \geq \mathbf{x}_{L} \\ 0 & \mathbf{x} \leq \mathbf{x}_{L} \end{cases}$$
(3)

donde m, x_0 y x_L son los parámetros de Weibull. La expresión dada por la ecuación (3) se denomina función riesgo específico de Weibull de tres parámetros. Cuando $x_L = 0$ se dice que la función riesgo específico de Weibull es de dos parámetros. Para que el análisis estadístico sea válido es necesario mantener constante el proceso de fabricación del material, ya que los parámetros de Weibull dependen del material y de su proceso de fabricación. Luego, ϕ es una función que describe, en el sentido de caracterizar, al proceso de fabricación del material [6, 7, 8, 9].

Para nuestro caso se consideró una distribución de Weibull de 2 parámetros porque se ecuación se ajustaba a los datos experimentales de mucha mejor forma que la de 3 parámetros.

Se confeccionaron los diagramas de Weibull de probabilidad acumulativa para las tensiones de fractura por flexión, σ_f . Se utilizó como estimador de la probabilidad acumulativa:

$$F = (n - 0.5)/N$$

donde n es el número de orden en un ranking ascendente, para cada tensión de fractura y para cada tamaño considerado, y N es el número de muestras ensayadas de cada porcentaje de celulosa, en nuestro caso es 30.

6.2 Trabajo con los datos de tensión de fractura

En todos los ensayos realizados se obtuvo el valor de la carga de fractura, estos datos se usaron con el fin de confeccionar las tablas y gráficos a partir del siguiente procedimiento:

- Se calcula el valor de la tensión máxima alcanzada en el momento de la fractura.
- Se ordenan los valores obtenidos de menor a mayor.
- Se calcula la probabilidad acumulativa de fractura experimental, mediante la expresión anteriormente señalada:

$$F = (n - 0.5)/N$$

- Se calcula $\xi(\sigma)$ experimentalmente mediante la siguiente relación:

$$\xi(\sigma) = \text{Ln} \{1/(1 - F(\sigma))\}$$

- Se grafica Ln ξ (σ) vs Ln (σ), obteniendo así el diagrama de Weibull.

En las tablas 8 a 15 muestran los datos de cálculo para el desarrollo de los diagramas de Weibull para cada porcentaje de fibra.

Tabla 8: Cálculo del Ln $\xi\left(\sigma\right)$ y Ln $\left(\sigma\right)$ para la pasta de cemento

n	O n(MPa)	F(O n)	Ln[Ln(1/{1-F(σn)})]	Ln(σ _n)
1	2,0788	0,01667	-4,08595	0,7318
2	2,0798	0,05000	-2,97020	0,7323
3	2,6084	0,08333	-2,44172	0,9587
4	2,7901	0,11667	-2,08705	1,0261
5	3,2921	0,15000	-1,81696	1,1915
6	6,0165	0,18333	-1,59690	1,7945
7	6,0613	0,21667	-1,40978	1,8019
8	8,1927	0,25000	-1,24590	2,1032
9	8,4972	0,28333	-1,09918	2,1397
10	8,6590	0,31667	-0,96555	2,1586
11	9,2127	0,35000	-0,84215	2,2206
12	12,6899	0,38333	-0,72686	2,5408
13	13,0205	0,41667	-0,61805	2,5665
14	13,7181	0,45000	-0,51444	2,6187
15	14,7328	0,48333	-0,41497	2,6901
16	14,9318	0,51667	-0,31876	2,7035
17	16,0992	0,55000	-0,22501	2,7788
18	18,0954	0,58333	-0,13300	2,8957
19	18,3021	0,61667	-0,04202	2,9070
20	18,5403	0,65000	0,04862	2,9199
21	19,7288	0,68333	0,13968	2,9821
22	20,4817	0,71667	0,23201	3,0195
23	23,3004	0,75000	0,32663	3,1485
24	24,0793	0,78333	0,42487	3,1814
25	25,6603	0,81667	0,52854	3,2449
26	27,5590	0,85000	0,64034	3,3163
27	29,9194	0,88333	0,76474	3,3985
28	31,1317	0,91667	0,91024	3,4382
29	35,5524	0,95000	1,09719	3,5710
30	36,9667	0,98333	1,40961	3,6100

Tabla 9: Cálculo del Ln $\xi\left(\sigma\right)$ y Ln $\left(\sigma\right)$ para un 2% de fibras.

n	O n(MPa)	F(O n)	Ln[Ln(1/{1-F(σn)})]	Ln(σ _n)
1	4,3784	0,01667	-4,08595	1,4767
2	4,5785	0,05000	-2,97020	1,5214
3	5,6469	0,08333	-2,44172	1,7311
4	5,9767	0,11667	-2,08705	1,7879
5	6,7125	0,15000	-1,81696	1,9040
6	8,9116	0,18333	-1,59690	2,1874
7	9,8654	0,21667	-1,40978	2,2890
8	10,8508	0,25000	-1,24590	2,3842
9	11,1157	0,28333	-1,09918	2,4084
10	13,0102	0,31667	-0,96555	2,5657
11	13,0229	0,35000	-0,84215	2,5667
12	13,9463	0,38333	-0,72686	2,6352
13	14,5965	0,41667	-0,61805	2,6808
14	14,7709	0,45000	-0,51444	2,6927
15	14,9525	0,48333	-0,41497	2,7049
16	15,2264	0,51667	-0,31876	2,7230
17	15,2537	0,55000	-0,22501	2,7248
18	15,8034	0,58333	-0,13300	2,7602
19	16,6142	0,61667	-0,04202	2,8103
20	16,7052	0,65000	0,04862	2,8157
21	16,8532	0,68333	0,13968	2,8245
22	17,0234	0,71667	0,23201	2,8346
23	17,9595	0,75000	0,32663	2,8881
24	18,8195	0,78333	0,42487	2,9349
25	19,2807	0,81667	0,52854	2,9591
26	19,7841	0,85000	0,64034	2,9849
27	21,1066	0,88333	0,76474	3,0496
28	21,5524	0,91667	0,91024	3,0705
29	30,6992	0,95000	1,09719	3,4242
30	33,5645	0,98333	1,40961	3,5135

Tabla 10: Cálculo del Ln $\xi\left(\sigma\right)$ y Ln $\left(\sigma\right)$ para un 4% de fibras

N	౮ n(Mpa)	F(O n)	Ln[Ln(1/{1-F(σn)})]	Ln(σ _{n)}
1	0,9890	0,01667	-4,08595	-0,0013
2	1,1880	0,05000	-2,97020	0,1722
3	1,6156	0,08333	-2,44172	0,4797
4	3,8481	0,11667	-2,08705	1,3476
5	4,3938	0,15000	-1,81696	1,4802
6	5,7097	0,18333	-1,59690	1,7422
7	6,7281	0,21667	-1,40978	1,9063
8	8,5155	0,25000	-1,24590	2,1419
9	9,4086	0,28333	-1,09918	2,2416
10	11,8691	0,31667	-0,96555	2,4739
11	13,2860	0,35000	-0,84215	2,5867
12	13,5697	0,38333	-0,72686	2,6078
13	13,5858	0,41667	-0,61805	2,6090
14	14,0028	0,45000	-0,51444	2,6393
15	14,8170	0,48333	-0,41497	2,6958
16	15,3004	0,51667	-0,31876	2,7279
17	15,4938	0,55000	-0,22501	2,7404
18	15,6159	0,58333	-0,13300	2,7483
19	16,1885	0,61667	-0,04202	2,7843
20	17,8875	0,65000	0,04862	2,8841
21	18,0818	0,68333	0,13968	2,8949
22	19,4496	0,71667	0,23201	2,9678
23	21,0274	0,75000	0,32663	3,0458
24	21,5179	0,78333	0,42487	3,0689
25	22,6489	0,81667	0,52854	3,1201
26	22,8661	0,85000	0,64034	3,1297
27	23,7882	0,88333	0,76474	3,1692
28	24,2027	0,91667	0,91024	3,1865
29	27,1473	0,95000	1,09719	3,3013
30	27,5093	0,98333	1,40961	3,3145

Tabla 11: Cálculo del Ln ξ () y Ln () para un 6% de fibras.

N	O n(MPa)	F(O n)	Ln[Ln(1/{1-F(σn)})]	Ln(σ _{n)}
1	3,0656	0,01667	-4,08595	1,1202
2	3,2457	0,05000	-2,97020	1,1773
3	6,4731	0,08333	-2,44172	1,8677
4	6,6412	0,11667	-2,08705	1,8933
5	7,3874	0,15000	-1,81696	1,9998
6	8,0757	0,18333	-1,59690	2,0889
7	8,3304	0,21667	-1,40978	2,1199
8	8,4630	0,25000	-1,24590	2,1357
9	9,0770	0,28333	-1,09918	2,2057
10	9,4909	0,31667	-0,96555	2,2503
11	10,5159	0,35000	-0,84215	2,3529
12	11,0996	0,38333	-0,72686	2,4069
13	11,6703	0,41667	-0,61805	2,4570
14	12,1971	0,45000	-0,51444	2,5012
15	12,6544	0,48333	-0,41497	2,5380
16	13,0661	0,51667	-0,31876	2,5700
17	13,1235	0,55000	-0,22501	2,5744
18	14,2161	0,58333	-0,13300	2,6544
19	15,0299	0,61667	-0,04202	2,7100
20	15,1268	0,65000	0,04862	2,7165
21	15,2806	0,68333	0,13968	2,7266
22	15,5604	0,71667	0,23201	2,7447
23	17,4693	0,75000	0,32663	2,8604
24	19,0283	0,78333	0,42487	2,9459
25	19,8300	0,81667	0,52854	2,9872
26	20,0398	0,85000	0,64034	2,9977
27	20,4126	0,88333	0,76474	3,0162
28	23,7043	0,91667	0,91024	3,1657
29	27,0704	0,95000	1,09719	3,2984
30	31,2881	0,98333	1,40961	3,4432

Tabla 12: Cálculo del Ln ξ () y Ln () para un 8% de fibras.

n	౮ n(MPa)	F(O n)	Ln[Ln(1/{1-F(σn)})]	Ln(On)
1	2,7377	0,01667	-4,08595	1,0071
2	3,5868	0,05000	-2,97020	1,2773
3	4,3234	0,08333	-2,44172	1,4640
4	4,3765	0,11667	-2,08705	1,4763
5	6,4451	0,15000	-1,81696	1,8633
6	7,0273	0,18333	-1,59690	1,9498
7	7,1755	0,21667	-1,40978	1,9707
8	7,2558	0,25000	-1,24590	1,9818
9	8,4854	0,28333	-1,09918	2,1384
10	8,8120	0,31667	-0,96555	2,1761
11	10,2063	0,35000	-0,84215	2,3230
12	10,5383	0,38333	-0,72686	2,3550
13	11,0650	0,41667	-0,61805	2,4038
14	11,1328	0,45000	-0,51444	2,4099
15	11,1840	0,48333	-0,41497	2,4145
16	11,4890	0,51667	-0,31876	2,4414
17	11,5171	0,55000	-0,22501	2,4438
18	11,6371	0,58333	-0,13300	2,4542
19	11,7679	0,61667	-0,04202	2,4654
20	12,9721	0,65000	0,04862	2,5628
21	14,8717	0,68333	0,13968	2,6995
22	16,0623	0,71667	0,23201	2,7765
23	16,6211	0,75000	0,32663	2,8107
24	20,4269	0,78333	0,42487	3,0169
25	22,2379	0,81667	0,52854	3,1018
26	22,7018	0,85000	0,64034	3,1224
27	23,0151	0,88333	0,76474	3,1361
28	23,0888	0,91667	0,91024	3,1393
29	24,4197	0,95000	1,09719	3,1954
30	32,3935	0,98333	1,40961	3,4780

Tabla 13: Cálculo del Ln $\xi\left(\sigma\right)$ y Ln $\left(\sigma\right)$ para un 10% de fibras.

	O n(MPa)	E(G n)	L p[L p/4//4 E/cp)])]	Ln(σ _n)
n		F(O n)	Ln[Ln(1/{1-F(σn)})]	
1	2,0812	0,01667	-4,08595	0,7329
2	2,7316	0,05000	-2,97020	1,0049
3	4,2312	0,08333	-2,44172	1,4425
4	4,3322	0,11667	-2,08705	1,4661
5	6,1661	0,15000	-1,81696	1,8191
6	10,1794	0,18333	-1,59690	2,3204
7	10,6566	0,21667	-1,40978	2,3662
8	11,7290	0,25000	-1,24590	2,4621
9	12,0055	0,28333	-1,09918	2,4854
10	12,0458	0,31667	-0,96555	2,4887
11	12,1389	0,35000	-0,84215	2,4964
12	12,3322	0,38333	-0,72686	2,5122
13	12,5035	0,41667	-0,61805	2,5260
14	13,9151	0,45000	-0,51444	2,6330
15	13,9179	0,48333	-0,41497	2,6332
16	14,7305	0,51667	-0,31876	2,6899
17	15,1820	0,55000	-0,22501	2,7201
18	15,2795	0,58333	-0,13300	2,7265
19	16,4650	0,61667	-0,04202	2,8012
20	16,4876	0,65000	0,04862	2,8026
21	17,0397	0,68333	0,13968	2,8355
22	17,4747	0,71667	0,23201	2,8608
23	17,6250	0,75000	0,32663	2,8693
24	18,3642	0,78333	0,42487	2,9104
25	19,0755	0,81667	0,52854	2,9484
26	19,5111	0,85000	0,64034	2,9710
27	19,7717	0,88333	0,76474	2,9843
28	19,9058	0,91667	0,91024	2,9910
29	24,4113	0,95000	1,09719	3,1950
30	24,4415	0,98333	1,40961	3,1963

Tabla 14: Cálculo del Ln $\xi\left(\sigma\right)$ y Ln $\left(\sigma\right)$ para un 12% de fibras.

n	O n(MPa)	F(O n)	Ln[Ln(1/{1-F(σn)})]	Ln(σ _n)
1	3,2801	0,01667	-4,08595	1,1879
2	4,7859	0,05000	-2,97020	1,5657
3	5,5061	0,08333	-2,44172	1,7059
4	6,8666	0,11667	-2,08705	1,9267
5	8,2582	0,15000	-1,81696	2,1112
6	8,4968	0,18333	-1,59690	2,1397
7	9,6012	0,21667	-1,40978	2,2619
8	10,2716	0,25000	-1,24590	2,3294
9	12,2397	0,28333	-1,09918	2,5047
10	12,5220	0,31667	-0,96555	2,5275
11	13,4877	0,35000	-0,84215	2,6018
12	13,6344	0,38333	-0,72686	2,6126
13	14,6644	0,41667	-0,61805	2,6854
14	15,3222	0,45000	-0,51444	2,7293
15	15,8329	0,48333	-0,41497	2,7621
16	16,4230	0,51667	-0,31876	2,7987
17	16,6380	0,55000	-0,22501	2,8117
18	17,5507	0,58333	-0,13300	2,8651
19	18,1584	0,61667	-0,04202	2,8991
20	18,7227	0,65000	0,04862	2,9297
21	19,4446	0,68333	0,13968	2,9676
22	19,4875	0,71667	0,23201	2,9698
23	19,9697	0,75000	0,32663	2,9942
24	22,0052	0,78333	0,42487	3,0913
25	23,5869	0,81667	0,52854	3,1607
26	23,7402	0,85000	0,64034	3,1672
27	24,1204	0,88333	0,76474	3,1831
28	26,2074	0,91667	0,91024	3,2660
29	27,6205	0,95000	1,09719	3,3186
30	42,9781	0,98333	1,40961	3,7607

Tabla 15: Cálculo del Ln $\xi\left(\sigma\right)$ y Ln $\left(\sigma\right)$ para un 14% de fibras.

n	O n(MPa)	F(O n)	Ln[Ln(1/{1-F(σn)})]	Ln(σ _{n)}
1	3,1045	0,01667	-4,08595	1,1329
2	3,4079	0,05000	-2,97020	1,2261
3	4,4238	0,08333	-2,44172	1,4870
4	5,1388	0,11667	-2,08705	1,6368
5	5,6264	0,15000	-1,81696	1,7275
6	8,1556	0,18333	-1,59690	2,0987
7	10,7458	0,21667	-1,40978	2,3745
8	10,7689	0,25000	-1,24590	2,3767
9	11,0337	0,28333	-1,09918	2,4010
10	11,0700	0,31667	-0,96555	2,4042
11	11,3426	0,35000	-0,84215	2,4286
12	11,5402	0,38333	-0,72686	2,4458
13	12,3837	0,41667	-0,61805	2,5164
14	12,8251	0,45000	-0,51444	2,5514
15	13,4226	0,48333	-0,41497	2,5969
16	14,5089	0,51667	-0,31876	2,6748
17	14,8573	0,55000	-0,22501	2,6985
18	16,3210	0,58333	-0,13300	2,7925
19	16,8595	0,61667	-0,04202	2,8249
20	18,6129	0,65000	0,04862	2,9239
21	19,2755	0,68333	0,13968	2,9588
22	19,7140	0,71667	0,23201	2,9813
23	20,1317	0,75000	0,32663	3,0023
24	20,6430	0,78333	0,42487	3,0274
25	22,2482	0,81667	0,52854	3,1023
26	22,3217	0,85000	0,64034	3,1056
27	22,5939	0,88333	0,76474	3,1177
28	22,7294	0,91667	0,91024	3,1237
29	23,1708	0,95000	1,09719	3,1429
30	23,7494	0,98333	1,40961	3,1676

Tabla 16: Cálculo del Ln $\xi\left(\sigma\right)$ y Ln $\left(\sigma\right)$ para un 16% de fibras.

n	O n(MPa)	F(O n)	Ln[Ln(1/{1-F(σn)})]	Ln(σ _{n)}
1	3,6872	0,01667	-4,08595	1,3049
2	4,2990	0,05000	-2,97020	1,4584
3	5,6077	0,08333	-2,44172	1,7241
4	6,1010	0,11667	-2,08705	1,8085
5	6,1305	0,15000	-1,81696	1,8133
6	6,4788	0,18333	-1,59690	1,8685
7	6,5353	0,21667	-1,40978	1,8772
8	6,7885	0,25000	-1,24590	1,9152
9	7,1510	0,28333	-1,09918	1,9673
10	8,6248	0,31667	-0,96555	2,1546
11	8,7382	0,35000	-0,84215	2,1677
12	9,5336	0,38333	-0,72686	2,2548
13	9,5908	0,41667	-0,61805	2,2608
14	10,7284	0,45000	-0,51444	2,3729
15	11,0126	0,48333	-0,41497	2,3990
16	12,2478	0,51667	-0,31876	2,5053
17	12,4295	0,55000	-0,22501	2,5201
18	12,8362	0,58333	-0,13300	2,5523
19	13,7841	0,61667	-0,04202	2,6235
20	13,9621	0,65000	0,04862	2,6364
21	14,7085	0,68333	0,13968	2,6884
22	14,9223	0,71667	0,23201	2,7029
23	15,8766	0,75000	0,32663	2,7648
24	16,0947	0,78333	0,42487	2,7785
25	18,4798	0,81667	0,52854	2,9167
26	18,6908	0,85000	0,64034	2,9280
27	23,2330	0,88333	0,76474	3,1456
28	24,9921	0,91667	0,91024	3,2186
29	25,7329	0,95000	1,09719	3,2478
30	30,2531	0,98333	1,40961	3,4096

En las figuras 11 a 19 se muestran los diagramas de Weibull para los distintos porcentajes de celulosa.

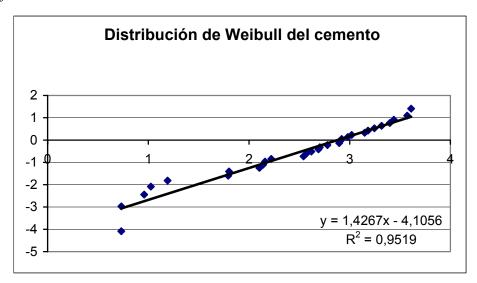


Figura 11: Diagrama de Weibull para pasta de cemento

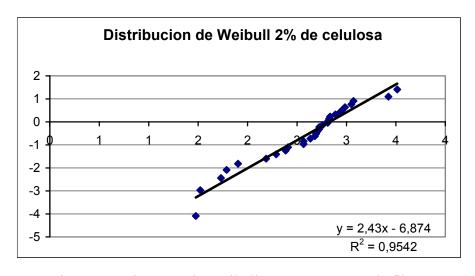


Figura 12: Diagrama de Weibull para 2% en peso de fibras

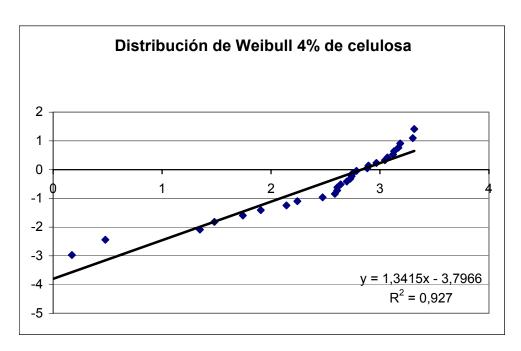


Figura 13: Diagrama de Weibull para 4% en peso de fibras.

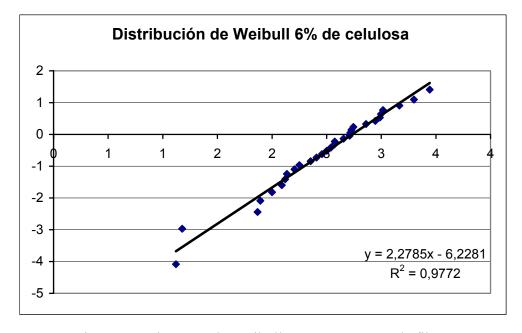


Figura 14: Diagrama de Weibull para 6% en peso de fibras

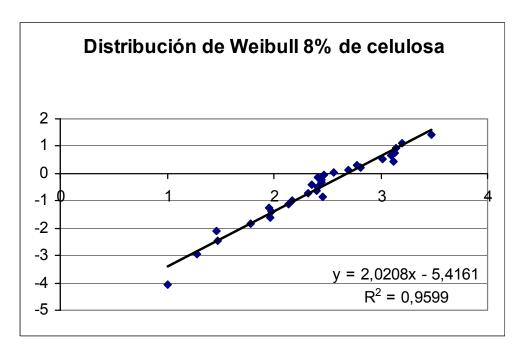


Figura 15: Diagrama de Weibull para 8% en peso de fibras

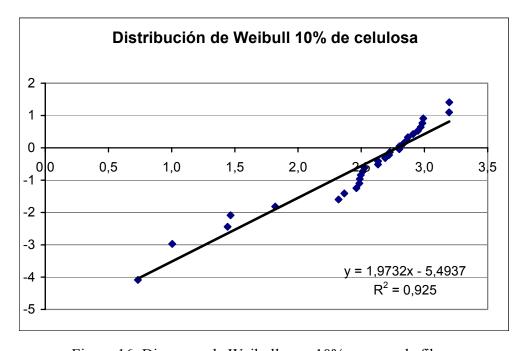


Figura 16: Diagrama de Weibull para 10% en peso de fibras

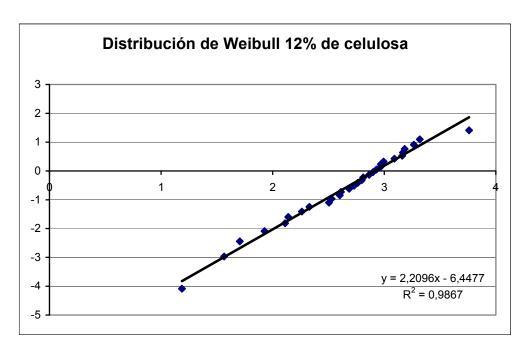


Figura 17: Diagrama de Weibull para 12% en peso de fibras

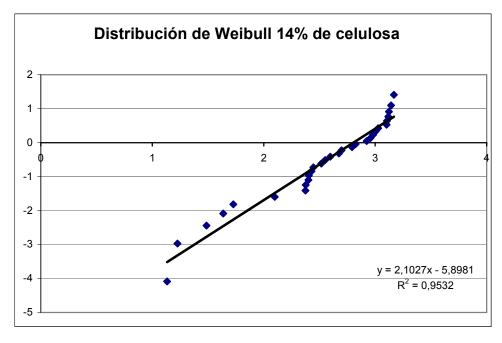


Figura 18: Diagrama de Weibull para 14% en peso de fibras

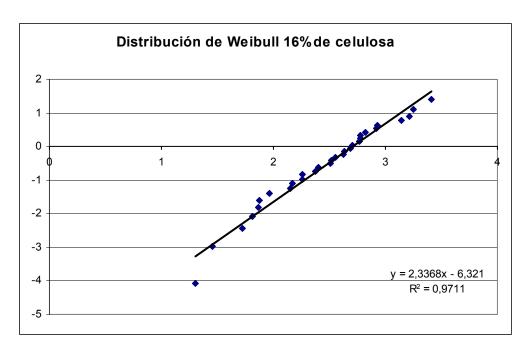


Figura 19: Diagrama de Weibull para 16% en peso de fibras

6.3 Cálculo de los parámetros m y σ_0

De acuerdo a la teoría dice que la función acumulativa de Weibull de puede escribir de la siguiente forma:

$$F(\sigma) = 1 - \exp \{-(bhl/2V_0(m+1)^2) * (\sigma/\sigma_0)^m \}$$

De la expresión anterior se puede obtener de forma directa ξ (σ) y queda de la siguiente manera:

$$\xi (\sigma) = Ln \{1/(1 - F(\sigma))\} = (bhl/2V_0(m+1)^2) * (\sigma/\sigma_0)^m$$

Aplicándole logaritmo natural a la expresión anterior, se obtiene lo siguiente:

$$Ln\;\xi\;(\;\sigma\;) = Ln(Ln\{1/(1-F(\sigma))\}) = m\;Ln\sigma + Ln\;\{(bhl)\;/\;(2V_0(m+1)^2\;{\sigma_0}^m\;)\}$$

→ Ln
$$\xi$$
 (σ) = m Ln σ + Ln $\{(bhl)/(2V_0(m+1)^2 \sigma_0^m)\}$

Con la línea de tendencia que pasa por los puntos del gráfico, el ajuste de la curva viene dado por el método de los mínimos cuadrados y se obtiene la siguiente recta:

$$Y = m * X + C$$

Igualándola con la ecuación anterior determinamos los dos parámetros de Weibull, que son m y $\sigma_{0.}$

El coeficiente de dispersión m se obtiene de forma directa y representa la pendiente de la recta.

El coeficiente σ_0 se obtiene despejándolo de la siguiente ecuación:

$$C = \text{Ln } \{ (bhl) / (2V_0(m+1)^2 \sigma_0^m) \}$$

$$\Rightarrow \sigma_0 = \{ (bhl) / (2V_0(m+1)^2 e^C) \}^{1/m}$$

En la tabla 17 se muestra el valor de **m** y en la tabla 18 el valor de **c**0 que son los dos parámetros de Weibull para cada porcentaje de fibra de celulosa.

Tabla 17: valor de m para cada porcentaje de fibra.

% Celulosa	m
0	1,4267
2	2,43
4	1,3415
6	2,2785
8	2,0289
10	1,9732
12	2,2096
14	2,1027
16	2,2519

Tabla 18: valor de σο para cada porcentaje de celulosa

% Celulosa	b(m)	h(m)	С	O 0(Pa)
0	0,02043	0,00503	-4,1056	510,96
2	0,02055	0,00579	-6,8740	29147,9
4	0,02053	0,00614	-3,7966	307,9928
6	0,02067	0,00640	-6,2281	18921,05
8	0,02055	0,00621	-5,4408	8364,61
10	0,02054	0,00664	-5,4937	7912,54
12	0,02066	0,00696	-6,4477	19540,83
14	0,02059	0,00730	-5,8981	12994,88
16	0,02073	0,00742	-5,9713	17357,65

6.4 Bondad de ajuste

Una forma de corroborar que el modelo teórico que impusimos, con los 2 parámetros anteriormente señalados para cada porcentaje de fibra de celulosa, representa a la población de donde se ha obtenido la muestra, hacemos uso de la distribución de chi-cuadrado. Esto consiste en comparar la distribución de frecuencia observada en la muestra con la distribución de frecuencia esperada basada en el modelo teórico encontrado [10].

La relación (4), se utiliza como medida de la diferencia entre la distribución observada y la distribución esperada:

$$X^{2} = \sum (f_{oi} - f_{ei})^{2} / f_{ei}$$
 (4)

donde:

J: es el número de clases.

f_{oj}: es la frecuencia observada en la clase J.

f_{ej}: es la frecuencia esperada, según el modelo teórico obtenido en la clase J.

Se acepta el modelo obtenido si el valor de chi cuadrado, χ^2 , es menor o igual al valor de chi cuadrado al 95% de significancia, en tablas, con (j-4) grados de libertad.

Para el cálculo de la frecuencia esperada, se debe conocer previamente el valor de la función acumulada, que viene dada por la expresión (5).

$$F(\sigma_c) = 1 - \exp\{-(b^*h^*l^*\sigma_c^m) / (2^*V_0^*(m+1)^{2*}\sigma^m)\}$$
 (5)

donde:

b: es el ancho promedio de las probetas.

h: es el espesor promedio de las probetas.

1: es la distancia que existe entre lo apoyos, donde se ensayan las probetas, en este caso son 3.8 (cm).

 σ_c : tensión promedio del centro de clases.

m: parámetro de Weibull.

 σ_o : parámetro de Weibull.

Una vez encontrada la función acumulada, se puede calcular fácilmente la frecuencia esperada (f_{ei}), que viene dada por la expresión (10):

$$f_{ej} = n * F(\sigma_c)$$
 (10)

Este procedimiento se debe realizar para todas las clases que se hayan definido y con todos los grupos con distinto porcentaje de fibras de celulosa.

En las tablas 19 a 27 se presentan los valores de la función acumulada, la frecuencia esperada, la frecuencia observada y el chi cuadrado para cada clase.

Tabla 19: cálculo de χ^2 para pasta de cemento (0% de fibra de celulosa)

Clase [Mpa]	σ c[Mpa]	fo	Fe	fe	χ^2
2 - 7	4,5	7	0,131	3,93	2,398
7 - 12	9,5	4	0,392	5,94	0,634
12 - 17	14,5	6	0,509	5,4	0,067
17 - 22	19,5	5	0,680	5,14	0,004
22 - 27	24,5	3	0,794	3,41	0,049
27 - 32	29,5	3	0,872	2,34	0,186
32 - 37	34,5	2	0,924	1,56	0,124
		N = 30			$\sum \chi^2 = 3,462$

El valor de χ^2 es de 3.462 está bajo el valor esperado, ya que el valor teórico de la tabla es 9.488 por lo que se puede usar la distribución de Weibull.

Tabla 20: cálculo de χ^2 para 2% en fibras de celulosa

Clase [Mpa]	σc[Mpa]	fo	Fe	fe	χ^2
0 - 5	2,5	2	0,01	0,3	9,63
5 - 10	7,5	5	0,129	3,57	0,57
10 - 15	12,5	8	0,38	7,53	0,03
15 - 20	17,5	11	0,662	8,46	0,76
20 - 25	22,5	2	0,864	6,06	2,72
25 - 30	27,5	1	0,961	2,87	1,22
30 - 35	32,5	1	0,992	0,93	0,01
		N = 30			$\sum \chi^2 = 14.84$

El valor de χ^2 es de 14.84 está sobre el valor esperado. Considerando los datos observados correspondientes a la primera clase como errores experimentales, se obtiene el valor de χ^2 de 5.31 que es el menor al correspondiente al de la tabla que es 9.488, por lo que se puede usar la distribución de Weibull.

Tabla 21: cálculo de χ^2 para 4% en fibras de celulosa

Clase [Mpa]	σ c[Mpa]	fo	Fe	fe	χ^2
0 - 4	2	3	0,055	1,65	1,105
4 - 8	6	4	0,220	4,95	0,182
8 - 12	10	3	0,389	5,07	0,845
12 - 16	14	8	0,539	4,5	2,722
16 - 20	18	4	0,662	3,69	0,026
20 - 24	22	5	0,758	2,88	1,561
24 - 28	26	3	0,831	2,19	0,300
		N = 30			$\sum \chi^2 = 6,741$

El valor de χ^2 es de 6.741 está bajo el valor esperado, ya que el valor teórico de la tabla es 9.488 por lo que se puede usar la distribución de Weibull.

Tabla 22: cálculo de χ^2 para 6% en fibras de celulosa

Clase [Mpa]	σ c[Mpa]	fo	Fe	fe	χ^2
3 - 7	5	4	0,074	2,22	1,427
7 – 11	9	7	0,255	5,43	0,454
11 - 15	13	7	0,494	7,17	0,004
15 - 19	17	5	0,715	6,63	0,401
19 - 23	21	4	0,869	4,62	0,083
23 - 27	25	1	0,951	2,46	0,867
27 - 31	29	1	0,986	1,05	0,002
31 - 34	33	1	0,997	0,33	1,36
		30			$\sum \chi^2 = 4,598$

El valor de χ^2 es de 4.598 está bajo el valor esperado, ya que el valor teórico de la tabla es 11.070 por lo que se puede usar la distribución de Weibull.

Tabla 23: cálculo de χ^2 para 8% en fibras de celulosa

Clase [Mpa]	σc[Mpa]	fo	Fe	fe	χ^2
2 - 6	4	3	0,070	2,1	0,386
6 - 10	8	7	0,255	5,55	0,379
10 - 14	12	10	0,488	6,99	1,296
14 - 18	16	3	0,699	6,33	1,752
18 - 22	20	1	0,849	4,5	2,722
22 - 26	24	5	0,935	2,58	2,270
26 - 30	28	0	0,976	1,23	1,230
30 - 34	32	1	0,993	0,51	0,471
		N = 30			$\sum \chi^2 = 10,506$

El valor de χ^2 es de 10.506 está bajo el valor esperado, ya que el valor teórico de la tabla es 11.070 por lo que se puede usar la distribución de Weibull.

Tabla 24: cálculo de χ^2 para 10% en fibras de celulosa

Clase [Mpa]	σc[Mpa]	fo	Fe	fe	χ^2
2 - 6	4	4	0,061	1,83	2,573
6 - 10	8	1	0,220	4,77	2,979
10 - 14	12	10	0,425	6,15	2,410
14 - 18	16	8	0,624	5,97	0,690
18 - 22	20	5	0,781	4,71	0,018
22 - 26	24	2	0,886	3,15	0,420
		N = 30			$\sum \chi^2 = 9,090$

El valor de χ^2 es de 9.09 está sobre el valor esperado. Considerando los datos observados correspondientes a la primera clase como errores experimentales, se obtiene el valor de χ^2 de 6.517 que es el menor al correspondiente al de la tabla que es 7.815, por lo que se puede usar la distribución de Weibull.

Tabla 25: cálculo de χ^2 para 12% en fibras de celulosa

Clase [Mpa]	σ c[Mpa]	fo	Fe	fe	χ^2
2 - 6	4	3	0,049	1,475	4,459
6 - 10	8	4	0,115	3,451	0,421
10 - 14	12	5	0,158	4,735	0,125
14 - 18	16	6	0,255	7,654	0,220
18 - 22	20	5	0,227	6,823	0,278
22 - 26	24	4	0,136	4,065	0,053
26 - 30	28	2	0,042	1,256	1,875
		N = 29			$\sum \chi^2 = 7,431$

El valor de χ^2 es de 7.431 está bajo el valor esperado, ya que el valor teórico de la tabla es 9.488 por lo que se puede usar la distribución de Weibull.

Tabla 26: cálculo de χ^2 para 14% en fibras de celulosa

Clase [Mpa]	σc[Mpa]	fo	Fe	fe	χ^2
2 - 6	4	5	0,049	1,47	8,477
6 - 10	8	1	0,195	4,38	3,380
10 - 14	12	9	0,400	6,15	1,321
14 - 18	16	4	0,607	6,21	0,786
18 - 22	20	5	0,775	5,04	0,001
22 - 26	24	6	0,888	3,39	2,009
		30			$\sum \chi^2 = 15,974$

El valor de χ^2 es de 15.974 está sobre el valor esperado. Considerando los datos observados correspondientes a la primera clase como errores experimentales, se obtiene el valor de χ^2 de 7.496 que es el menor al correspondiente al de la tabla que es 7.815, por lo que se puede usar la distribución de Weibull.

Tabla 27: cálculo de χ^2 para 16% en fibras de celulosa

Clase [Mpa]	σ c[Mpa]	fo	Fe	fe	χ^2
0 - 5	2,5	2	0,020	0,6	3,267
5 - 10	7,5	9	0,212	5,76	1,823
10 - 15	12,5	9	0,528	9,48	0,024
15 – 20	17,5	6	0,799	8,13	0,558
20 - 25	22,5	2	0,641	4,26	1,199
25 - 30	27,5	1	0,988	1,41	0,119
30 - 35	32,5	1	0,998	0,3	1,633
		N = 30			$\sum \chi^2 = 8,623$

El valor de χ^2 es de 8.623 está bajo el valor esperado, ya que el valor teórico de la tabla es 9.488 por lo que se puede usar la distribución de Weibull.

6.5 Resumen de los parámetros calculados y bondad de ajuste

En la tabla 28 se puede apreciar para cada porcentaje de fibra de celulosa, el valor de los parámetros de Weibull (m y σ_0), la tensión media a la rotura (σ), los grados de libertad y si se acepta o rechaza el modelo teórico (distribución de Weibull).

Tabla 28: resumen de los cálculos en este capítulo

%celulosa	m	O ₀ (MPa)	σ (MPa)	Grados de libertad	acepta
0	1,4267	0,000511	15,7999	4	si
2	2,43	0,029148	14,9527	2	si
4	1,3415	0,000308	14,4084	4	si
6	2,2785	0,018921	13,6211	5	si
8	2,0289	0,008365	12,9858	5	si
10	1,9732	0,007913	13,8910	3	si
12	2,2096	0,019541	16,3808	4	si
14	2,1027	0,012995	14,4242	3	si
16	2,2519	0,017358	13,2595	4	si

6.6 Calculo de la función acumulativa de Weibull

Se muestra como se llega a una función acumulativa, de forma más simple:

$$F(\sigma) = 1 - \exp\{-(b*h*l*\sigma^m)/(2*Vo*(m+1)^2*\sigma_o^m)\}$$

$$F(\sigma) = 1 - \exp\{-[\sigma / \{(2*Vo*(m+1)^2 / (b*h*l))^{1/m} *\sigma_o\}]^m\}$$

Se define
$$\sigma_o$$
' = $\left\{2*Vo*(m+1)^2 / (b*h*l)\right\}^{1/m} * \sigma_o$

Por lo que la función acumulativa de Weibull viene dada por la expresión (6):

$$F(\sigma) = 1 - \exp\{-(\sigma/\sigma_0')^m\}$$
 (6)

En la tabla (29) se muestran todos los parámetros para construir la función acumulativa.

Tabla 29: parámetros de la función acumulativa

% fibra de celulosa	b(m)	h (m)	m	C ₀(MPa)	σ ₀ ' (MPa)
0	0,02043	0,005033	1,4267	0,0000511	17,78
2	0,02055	0,005790	2,43	0,0291479	16,93
4	0,02053	0,006143	1,3415	0,000308	16,95
6	0,02067	0,006403	2,2785	0,018921	15,39
8	0,02055	0,006207	2,0289	0,008364	14,62
10	0,02054	0,006640	1,9732	0,007913	16,19
12	0,02066	0,006957	2,2096	0,019541	18,5
14	0,02059	0,007300	2,1027	0,012995	16,53
16	0,02073	0,007417	2,2519	0,017358	14,19

6.7 Gráficos de la probabilidad acumulativa para cada porcentaje de fibra de celulosa

Las figuras 20 a 28 muestran la probabilidad acumulativa para los diferentes porcentajes de celulosa.

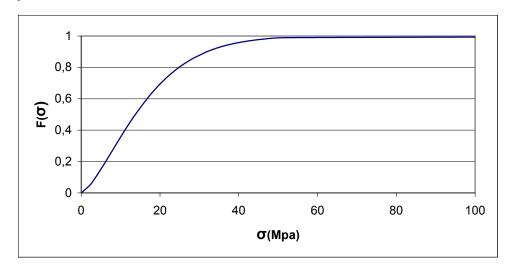


Figura 20: Probabilidad acumulativa de fractura para 0% de fibras.

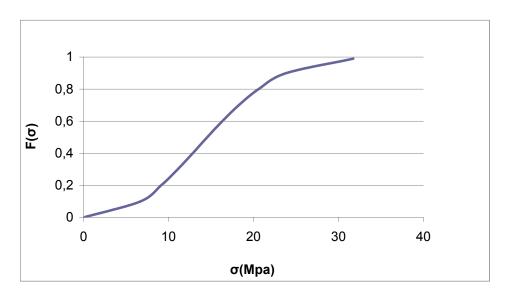


Figura 21: Probabilidad acumulativa de fractura para 2% de fibras

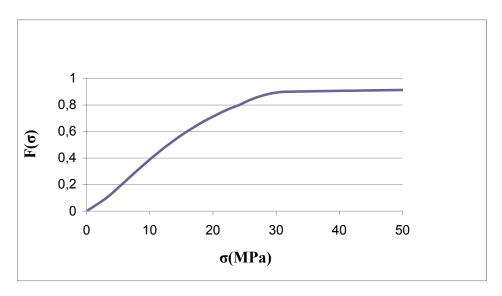


Figura 22: Probabilidad acumulativa de fractura para 4% de fibras



Figura 23: Probabilidad acumulativa de fractura para 6% de fibras

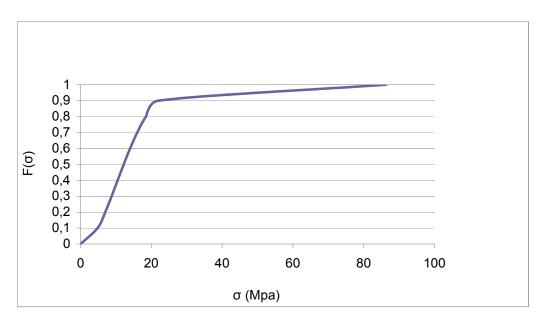


Figura 24: Probabilidad acumulativa de fractura para 8% de fibras

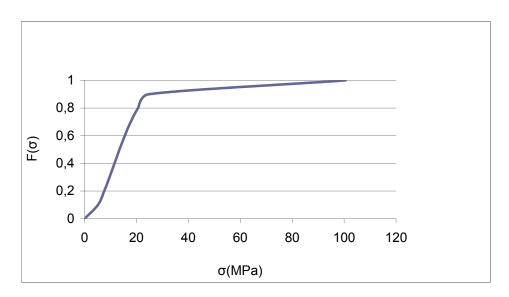


Figura 25: Probabilidad acumulativa de fractura para 10% de fibras

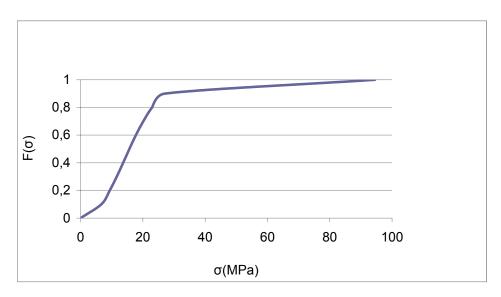


Figura 26: Probabilidad acumulativa de fractura para 12% de fibras

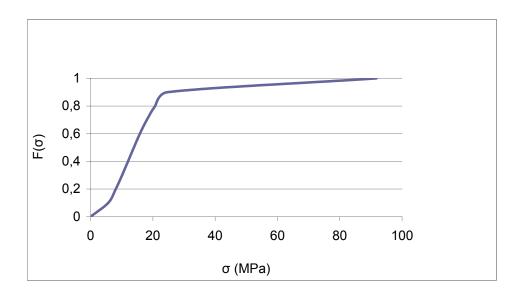


Figura 27: Probabilidad acumulativa de fractura para 14% de fibras

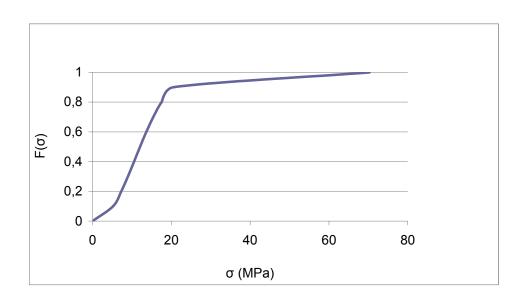


Figura 28: Probabilidad acumulativa de fractura para 16% de fibras

CAPITULO 7

DETERMINACION DEL MODULO DE ELASTICIDAD DEL FIBROCEMENTO Y LARGO CRITICO DE LAS FIBRAS

7.1 Determinación del módulo de elásticidad

Para determinar el módulo de elasticidad del fibrocemento se usará la regla de mezclas que se va usar solamente evaluándola en el porcentaje óptimo que se encontró, es decir, un 12% de fibras de celulosa en peso.

La regla de mezclas predice que el módulo elástico del fibrocompuesto (E_c) está comprendido entre un máximo y un mínimo. Y es función de la fracción de volumen V [5].

Máximo:

$$\boldsymbol{E}_c = \boldsymbol{E}_m \boldsymbol{V}_m + \boldsymbol{E}_f \boldsymbol{V}_f$$

donde

E_m: es el módulo de elasticidad del cemento (20 GPa).

E_f: es el módulo de elasticidad de las fibras de celulosa (0.5 GPa).

V_m: volumen del cemento (88%).

V_f: volumen de la fibra (12%).

Por lo que el módulo de elásticidad máximo del fibrocompuesto es $E_C = 17.66$ (GPa).

Mínimo:

$$\boldsymbol{E}_{c} = \frac{\boldsymbol{E}_{m}\boldsymbol{E}_{p}}{\boldsymbol{E}_{m}\boldsymbol{V}_{f} + \boldsymbol{E}_{f}\boldsymbol{V}_{m}}$$

Por lo que el módulo de elásticidad mínimo del fibrocompuesto es $E_c = 3.52$ (GPa).

CAPITULO 8

CONCLUSIONES FINALES

Este trabajo podrá ser usado de guía para otros trabajos de similar campo, ya que los materiales compuestos son productos relativamente nuevos y tienen un sin número de ocupaciones en nuestra vida cotidiana, además el procedimiento de la tesis resultó bueno y podría ser una adecuada reseña para la investigación del desarrollo de otros fibrocompuestos.

Los resultados logrados permiten decir que las fibras de celulosa, distribuidas lo más uniformemente posible en una matriz de pasta de cemento, en cantidad suficiente para que su separación no sea muy grande, retardan la aparición de grietas y fisuras en elementos de baja carga, creando un material de elevada resistencia mecánica, la cual es una propiedad muy requeridas en las aplicaciones de los fibrocementos.

El fibrocemento estudiado cumple con los objetivos propuestos, debido a que el refuerzo de fibras de celulosa da lugar a un material más resistente a la flexión y además evade la falla de tipo frágil de la pasta de cemento, creando la aparición de una ductilidad post-agrietamiento de la matriz.

El refuerzo óptimo de la matriz corresponde a un porcentaje en peso de fibra de 12%. Además existe un aumento en la ductilidad del material a medida que aumenta el porcentaje de fibra de refuerzo y el fibrocemento presenta un marcado estado de postagrietamiento.

Las fibras de celulosa disminuyen el grado de hidratación y llevan a un aumento en la porosidad total comparado con pastas de cemento, lo que provoca una menor densidad del compuesto y a su vez lleva a una disminución del aumento de la resistencia proporcionado por las fibras de celulosa mientras mayor es el tiempo de fraguado.

Se pueden mencionar algunos de los factores que alteran las propiedades mecánicas del fibrocemento, como lo son el volumen de las fibras, la longitud de las fibras, orientación y distribución de las fibras dentro de la matriz, condición de la superficie de la pasta, edad, condición de almacenamiento, fabricación de la probeta, tipo de extracción de las fibras, etc.

Con respecto a los factores que hay que tomar en consideración para la fabricación de la probetas son: las condiciones atmosféricas, el contenido de humedad, la uniformidad de proporciones del compuesto, el mezclado adecuado de sus componentes, el tipo de cemento y fibras, etc.

Sobre los resultados obtenidos mediante la teoría de Weibull, se puede decir que es aplicable la distribución de Weibull para el fibrocemento estudiado, ya que al aplicarle el test de chi cuadrado se obtuvo como resultado que se aceptaba el modelo teórico que se impuso para el desarrollo de este estudio.

La alta dispersión de los resultados del ensayo de flexión de los materiales frágiles es una característica del tipo de fractura de este material, ya que la microestructura de materiales reales no es homogénea y a que la iniciación de la fractura es un fenómeno localizado, por lo que la alta dispersión se debe a los efectos submicroscópicos y microscópicos.

En la práctica, una vez que se han determinado las cargas de diseño, las piezas que se pueden usar y el tipo de estructura que se quiere construir, puede seleccionarse el tipo de compuesto; sin embargo, ningún compuesto se puede considerar el mejor, en cuanto a todas las propiedades deseables y se deben hacer ajustes modificando el proporcionamiento, de forma de elegir el que mejor satisfaga los requerimientos.

ANEXO 1 DATOS OBTENIDOS DE TODOS LOS ENSAYOS DE FLEXION

Tabla 1 Ensayo de flexión para un 2% de fibras de celulosa

N°	% Agua	% Celulosa	b (cm)	h (cm)	P (Kgf)	σ (Kgf/cm^2)	σ (Mpa)
1	10	2	2,05	0,56	19,008	168,5316	16,8532
2	10	2	2,05	0,56	19,2	170,2339	17,0234
3	10	2	2,05	0,56	17,824	158,0338	15,8034
4	10	2	2,06	0,59	24,256	192,8070	19,2807
5	10	2	2,05	0,57	35,872	306,9919	30,6992
6	10	2	2,05	0,57	17,056	145,9649	14,5965
7	10	2	2,05	0,57	19,52	167,0518	16,7052
8	10	2	2,05	0,57	17,472	149,5250	14,9525
9	10	2	2,05	0,56	14,688	130,2290	13,0229
10	10	2	2,05	0,57	17,824	152,5374	15,2537
11	10	2	2,05	0,57	17,792	152,2636	15,2264
12	10	2	2,06	0,57	10,464	89,1160	8,9116
13	10	2	2,06	0,57	11,584	98,6544	9,8654
14	10	2	2,06	0,59	13,984	111,1565	11,1157
15	10	2	2,06	0,61	5,888	43,7840	4,3784
16	10	2	2,05	0,58	25,536	211,0658	21,1066
17	10	2	2,06	0,6	7,776	59,7670	5,9767
18	10	2	2,08	0,58	17,12	139,4631	13,9463
19	10	2	2,05	0,56	37,856	335,6446	33,5645
20	10	2	2,06	0,57	21,088	179,5946	17,9595
21	10	2	2,06	0,57	17,344	147,7091	14,7709
22	10	2	2,05	0,57	25,184	215,5242	21,5524
23	10	2	2,05	0,58	23,936	197,8411	19,7841
24	10	2	2,06	0,59	5,76	45,7853	4,5785
25	10	2	2,05	0,59	16,288	130,1022	13,0102
26	10	2	2,06	0,58	22,88	188,1948	18,8195
27	10	2	2,06	0,59	7,104	56,4685	5,6469
28	10	2	2,05	0,62	9,28	67,1252	6,7125
29	10	2	2,05	0,59	20,8	166,1423	16,6142
30	10	2	2,06	0,61	14,592	108,5083	10,8508

Tabla 2: Ensayo de flexión para un 4% de fibras de celulosa

NIO	%	%	h (ove)	h (am)	D (Kerf)	= (Verflows AQ)	a (MDa)
Nº	Agua	Celulosa	b (cm)	h (cm)	P (Kgf)	σ (Kgf/cm^2)	σ (MPa)
31	20	4	2,04	0,61	24,08	180,8179	18,0818
32	20	4	2,05	0,61	17,78	132,8596	13,2860
33	20	4	2,05	0,61	28,14	210,2739	21,0274
34	20	4	2,05	0,59	34,44	275,0934	27,5093
35	20	4	2,05	0,64	2,38	16,1562	1,6156
36	20	4	2,05	0,61	36,33	271,4731	27,1473
37	20	4	2,05	0,62	21,42	154,9377	15,4938
38	20	4	2,06	0,61	18,27	135,8584	13,5858
39	20	4	2,06	0,62	24,85	178,8754	17,8875
40	20	4	2,05	0,62	5,32	38,4813	3,8481
41	20	4	2,05	0,62	18,76	135,6971	13,5697
42	20	4	2,05	0,64	13,86	94,0858	9,4086
43	20	4	2,05	0,61	5,88	43,9378	4,3938
44	20	4	2,05	0,59	18,55	148,1702	14,8170
45	20	4	2,05	0,62	33,46	242,0269	24,2027
46	20	4	2,06	0,61	21,77	161,8849	16,1885
47	20	4	2,05	0,64	1,75	11,8795	1,1880
48	20	4	2,04	0,61	8,96	67,2811	6,7281
49	20	4	2,05	0,6	27,86	215,1789	21,5179
50	20	4	2,06	0,61	31,99	237,8823	23,7882
51	20	4	2,06	0,62	27,02	194,4955	19,4496
52	20	4	2,06	0,6	29,75	228,6610	22,8661
53	20	4	2,06	0,62	11,83	85,1548	8,5155
54	20	4	2,06	0,63	8,19	57,0966	5,7097
55	20	4	2,06	0,61	1,33	9,8901	0,9890
56	20	4	2,05	0,6	18,13	140,0285	14,0028
57	20	4	2,05	0,6	19,81	153,0041	15,3004
58	20	4	2,05	0,61	30,31	226,4891	22,6489
59	20	4	2,06	0,61	21	156,1591	15,6159
60	20	4	2,06	0,64	17,57	118,6915	11,8691

Tabla 3: Ensayo de flexión para un 6% de fibras de celulosa

N°	% Agua	% Celulosa	b (cm)	h (cm)	P (Kgf)	σ (Kgf/cm^2)	σ (MPa)
61	30	6	2,07	0,62	18,24	130,6610	13,0661
62	30	6	2,07	0,67	24,66	151,2683	15,1268
63	30	6	2,07	0,62	17,58	126,5445	12,6544
64	30	6	2,06	0,63		· ·	15,5604
65	30	6	2,06	0,63	22,32 27,84	155,6040	
		6			-	200,3980	20,0398
66	30		2,05	0,63	9,24	64,7309	6,4731
67	30	6	2,05	0,63	9,48	66,4123	6,6412
68	30	6	2,06	0,65	12,72	83,3044	8,3304
69	30	6	2,06	0,62	15,42	110,9963	11,0996
70	30	6	2,06	0,61	10,86	80,7566	8,0757
71	30	6	2,06	0,6	35,22	270,7039	27,0704
72	30	6	2,07	0,64	4,56	30,6556	3,0656
73	30	6	2,11	0,68	18	105,1592	10,5159
74	30	6	2,08	0,69	22,8	131,2345	13,1235
75	30	6	2,09	0,65	30,72	198,3002	19,8300
76	30	6	2,06	0,63	16,74	116,7030	11,6703
77	30	6	2,06	0,66	22,38	142,1608	14,2161
78	30	6	2,08	0,67	19,98	121,9712	12,1971
79	30	6	2,09	0,67	31,32	190,2833	19,0283
80	30	6	2,08	0,6	31,14	237,0433	23,7043
81	30	6	2,07	0,63	13,68	94,9095	9,4909
82	30	6	2,06	0,62	20,88	150,2985	15,0299
83	30	6	2,06	0,65	13,86	90,7704	9,0770
84	30	6	2,06	0,64	25,86	174,6933	17,4693
85	30	6	2,06	0,64	22,62	152,8060	15,2806
86	30	6	2,06	0,63	29,28	204,1257	20,4126
87	30	6	2,08	0,68	14,28	84,6295	8,4630
88	30	6	2,07	0,65	4,98	32,4569	3,2457
89	30	6	2,06	0,63	44,88	312,8811	31,2881
90	30	6	2,06	0,65	11,28	73,8737	7,3874

Tabla 4: Ensayo de flexión para un 8% de fibras de celulosa

N°	% Agua	% Celulosa	b (cm)	h (cm)	P (Kgf)	σ (Kgf/cm^2)	σ (MPa)
91	40	8	2,05	0,65	4,16	27,3771	2,7377
92	40	8	2,05	0,63	5,12	35,8682	3,5868
93	40	8	2,06	0,62	6,08	43,7651	4,3765
94	40	8	2,06	0,64	6,4	43,2342	4,3234
95	40	8	2,05	0,63	9,2	64,4507	6,4451
96	40	8	2,05	0,62	9,92	71,7545	7,1755
97	40	8	2,06	0,62	10,08	72,5579	7,2558
98	40	8	2,06	0,63	10,08	70,2728	7,0273
99	40	8	2,06	0,6	11,04	84,8544	8,4854
100	40	8	2,06	0,63	12,64	88,1198	8,8120
101	40	8	2,06	0,59	14,64	116,3710	11,6371
102	40	8	2,06	0,63	14,64	102,0628	10,2063
103	40	8	2,06	0,61	14,88	110,6499	11,0650
104	40	8	2,06	0,61	15,04	111,8397	11,1840
105	40	8	2,06	0,64	15,6	105,3834	10,5383
106	40	8	2,06	0,62	16	115,1713	11,5171
107	40	8	2,05	0,63	16,4	114,8904	11,4890
108	40	8	2,06	0,64	16,48	111,3281	11,1328
109	40	8	2,06	0,63	16,88	117,6790	11,7679
110	40	8	2,05	0,61	17,36	129,7212	12,9721
111	40	8	2,05	0,62	20,56	148,7170	14,8717
112	40	8	2,05	0,6	21,52	166,2114	16,6211
113	40	8	2,06	0,63	23,04	160,6235	16,0623
114	40	8	2,06	0,58	27,6	227,0182	22,7018
115	40	8	2,05	0,62	28,24	204,2689	20,4269
116	40	8	2,05	0,61	29,76	222,3792	22,2379
117	40	8	2,05	0,61	30,8	230,1506	23,0151
118	40	8	2,05	0,62	31,92	230,8875	23,0888
119	40	8	2,05	0,62	33,76	244,1968	24,4197
120	40	8	2,05	0,63	46,24	323,9349	32,3935

Tabla 5: Ensayo de flexión para un 10% de fibras de celulosa

N°	% Agua	% Celulosa	b (cm)	h (cm)	P (Kgf)	σ (Kgf/cm^2)	σ (MPa)
121	50	10	2,05	0,64	17,745	120,4584	12,0458
122	50	10	2,05	0,66	16,695	106,5662	10,6566
123	50	10	2,05	0,64	22,365	151,8203	15,1820
124	50	10	2,05	0,69	17,43	101,7935	10,1794
125	50	10	2,05	0,66	31,185	199,0576	19,9058
126	50	10	2,06	0,66	18,9	120,0554	12,0055
127	50	10	2,05	0,67	22,47	139,1792	13,9179
128	50	10	2,06	0,67	22,575	139,1508	13,9151
129	50	10	2,05	0,66	18,375	117,2899	11,7290
130	50	10	2,05	0,66	9,66	61,6610	6,1661
131	50	10	2,05	0,67	4,41	27,3156	2,7316
132	50	10	2,05	0,66	30,975	197,7172	19,7717
133	50	10	2,05	0,67	28,455	176,2503	17,6250
134	50	10	2,05	0,67	27,51	170,3970	17,0397
135	50	10	2,05	0,66	19,32	123,3219	12,3322
136	50	10	2,05	0,69	7,245	42,3118	4,2312
137	50	10	2,05	0,66	28,77	183,6424	18,3642
138	50	10	2,06	0,68	40,845	244,4155	24,4415
139	50	10	2,05	0,64	24,255	164,6502	16,4650
140	50	10	2,05	0,68	25,41	152,7945	15,2795
141	50	10	2,06	0,65	6,615	43,3222	4,3322
142	50	10	2,08	0,66	23,415	147,3051	14,7305
143	50	10	2,06	0,66	30,03	190,7546	19,0755
144	50	10	2,06	0,66	27,51	174,7473	17,4747
145	50	10	2,06	0,68	20,895	125,0352	12,5035
146	50	10	2,06	0,66	38,43	244,1126	24,4113
147	50	10	2,05	0,66	25,83	164,8760	16,4876
148	50	10	2,05	0,67	31,5	195,1111	19,5111
149	50	10	2,06	0,66	19,11	121,3893	12,1389
150	50	10	2,05	0,67	3,36	20,8118	2,0812

Tabla 6: Ensayo de flexión para un 12% de fibras de celulosa

N°	% Agua	% Celulosa	b (cm)	h (cm)	P (Kgf)	σ (Kgf/cm^2)	σ (MPa)
151	50	12	2,06	0,69	14,62	84,9683	8,4968
152	50	12	2,06	0,67	20,315	125,2203	12,5220
153	50	12	2,06	0,69	32,215	187,2266	18,7227
154	50	12	2,06	0,68	11,475	68,6661	6,8666
155	50	12	2,07	0,69	9,52	55,0609	5,5061
156	50	12	2,06	0,67	35,7	220,0525	22,0052
157	50	12	2,06	0,7	23,885	134,8767	13,4877
158	50	12	2,07	0,7	42,245	237,4017	23,7402
159	50	12	2,06	0,69	23,46	136,3444	13,6344
160	50	12	2,07	0,67	16,745	102,7165	10,2716
161	50	12	2,07	0,7	26,095	146,6445	14,6644
162	50	12	2,08	0,71	44,37	241,2039	24,1204
163	50	12	2,08	0,68	32,81	194,4464	19,4446
164	50	12	2,06	0,7	46,41	262,0735	26,2074
165	50	12	2,06	0,69	73,95	429,7814	42,9781
166	50	12	2,08	0,72	6,205	32,8011	3,2801
167	50	12	2,07	0,71	28,985	158,3292	15,8329
168	50	12	2,07	0,72	9,01	47,8591	4,7859
169	50	12	2,06	0,7	34,51	194,8752	19,4875
170	50	12	2,06	0,71	29,92	164,2300	16,4230
171	50	12	2,06	0,71	15,045	82,5816	8,2582
172	50	12	2,07	0,69	30,345	175,5066	17,5507
173	50	12	2,08	0,7	29,75	166,3805	16,6380
174	50	12	2,07	0,7	17,085	96,0115	9,6012
175	50	12	2,06	0,7	21,675	122,3970	12,2397
176	50	12	2,06	0,71	50,32	276,2050	27,6205
177	50	12	2,07	0,71	28,05	153,2218	15,3222
178	50	12	2,07	0,67	32,555	199,6975	19,9697
179	50	12	2,06	0,68	30,345	181,5837	18,1584
180	50	12	2,07	0,71	43,18	235,8688	23,5869

Tabla 7: Ensayo de flexión para un 14% de fibras de celulosa

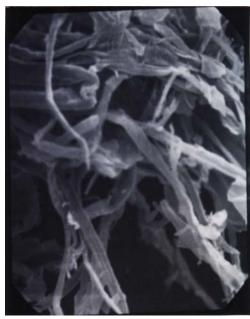
N°	% Agua	% Celulosa	b (cm)	h (cm)	P (Kgf)	σ (Kgf/cm^2)	σ (MPa)
181	50	14	2,06	0,72	38,675	206,4301	20,6430
182	50	14	2,05	0,73	28,475	148,5727	14,8573
183	50	14	2,06	0,73	43,775	227,2941	22,7294
184	50	14	2,05	0,71	33,745	186,1289	18,6129
185	50	14	2,06	0,73	44,625	231,7075	23,1708
186	50	14	2,06	0,74	39,015	197,1405	19,7140
187	50	14	2,06	0,75	21,845	107,4576	10,7458
188	50	14	2,06	0,74	11,135	56,2645	5,6264
189	50	14	2,05	0,74	26,435	134,2261	13,4226
190	50	14	2,06	0,75	48,28	237,4939	23,7494
191	50	14	2,05	0,73	5,95	31,0450	3,1045
192	50	14	2,06	0,73	32,47	168,5948	16,8595
193	50	14	2,05	0,69	18,955	110,6997	11,0700
194	50	14	2,06	0,74	32,3	163,2100	16,3210
195	50	14	2,06	0,75	39,185	192,7547	19,2755
196	50	14	2,06	0,7	21,93	123,8369	12,3837
197	50	14	2,06	0,72	42,33	225,9388	22,5939
198	50	14	2,07	0,74	40,035	201,3172	20,1317
199	50	14	2,06	0,73	20,74	107,6888	10,7689
200	50	14	2,05	0,72	41,48	222,4819	22,2482
201	50	14	2,06	0,74	8,755	44,2385	4,4238
202	50	14	2,06	0,68	5,695	34,0787	3,4079
203	50	14	2,06	0,75	29,495	145,0887	14,5089
204	50	14	2,06	0,73	21,845	113,4264	11,3426
205	50	14	2,06	0,73	21,25	110,3369	11,0337
206	50	14	2,06	0,72	41,82	223,2167	22,3217
207	50	14	2,07	0,73	24,82	128,2509	12,8251
208	50	14	2,07	0,75	16,66	81,5562	8,1556
209	50	14	2,06	0,75	23,46	115,4019	11,5402
210	50	14	2,07	0,73	9,945	51,3882	5,1388

Tabla 8: Ensayo de flexión para un 16% de fibras de celulosa

N°	% Agua	% Celulosa	b (cm)	h (cm)	P (Kgf)	σ (Kgf/cm^2)	σ (MPa)
211	60	16	2,07	0,77	13,95	64,7884	6,4788
212	60	16	2,07	0,72	25,95	137,8405	13,7841
213	60	16	2,08	0,72	43,95	232,3301	23,2330
214	60	16	2,08	0,73	48,6	249,9206	24,9921
215	60	16	2,07	0,75	61,8	302,5314	30,2531
216	60	16	2,08	0,77	13,2	61,0104	6,1010
217	60	16	2,07	0,73	49,8	257,3286	25,7329
218	60	16	2,08	0,74	27,9	139,6215	13,9621
219	60	16	2,07	0,74	13,5	67,8852	6,7885
220	60	16	2,07	0,74	36,75	184,7985	18,4798
221	60	16	2,07	0,72	23,4	124,2955	12,4295
222	60	16	2,07	0,71	6,75	36,8716	3,6872
223	60	16	2,07	0,7	7,65	42,9902	4,2990
224	60	16	2,06	0,73	10,8	56,0771	5,6077
225	60	16	2,07	0,74	29,25	147,0845	14,7085
226	60	16	2,07	0,76	15	71,5103	7,1510
227	60	16	2,09	0,77	18,75	86,2479	8,6248
228	60	16	2,07	0,75	17,85	87,3816	8,7382
229	60	16	2,09	0,77	20,85	95,9076	9,5908
230	60	16	2,07	0,77	13,2	61,3052	6,1305
231	60	16	2,07	0,72	30,3	160,9467	16,0947
232	60	16	2,08	0,71	27,45	149,2235	14,9223
233	60	16	2,08	0,7	21,9	122,4784	12,2478
234	60	16	2,07	0,73	18,45	95,3356	9,5336
235	60	16	2,08	0,74	25,65	128,3617	12,8362
236	60	16	2,07	0,76	23,1	110,1259	11,0126
237	60	16	2,06	0,77	40,05	186,9084	18,6908
238	60	16	2,07	0,75	13,35	65,3527	6,5353
239	60	16	2,07	0,77	23,1	107,2840	10,7284
240	60	16	2,08	0,77	34,35	158,7657	15,8766

Tabla 9: Ensayo de flexión para un 0% de fibras de celulosa

N°	% Agua	% Celulosa	P (om)	h (om)	D (Kaf)	σ (KaflomΔ2)	g (Mpg)
			B (cm)	h (cm)	P (Kgf)	σ (Kgf/cm^2)	σ (Mpa)
241	4	0	20,4	5,1	12,77	137,181	13,718
242	4	0	20,4	4,9	17,6	204,817	20,482
243	4	0	20,3	4,9	15,65	183,021	18,302
244	4	0	20,3	4,9	31,61	369,667	36,967
245	4	0	20,4	5,1	21,69	233,004	23,300
246	4	0	20,5	5,3	12,82	126,899	12,690
247	4	0	20,4	4,9	12,66	147,328	14,733
248	4	0	20,3	4,9	16,87	197,288	19,729
249	4	0	20,4	5	13,36	149,318	14,932
250	4	0	20,3	4,9	20,59	240,793	24,079
251	4	0	20,4	5	26,77	299,194	29,919
252	4	0	20,4	5,6	10,34	92,127	9,213
253	4	0	20,4	4,9	5,17	60,165	6,016
254	4	0	20,4	4,9	7,04	81,927	8,193
255	4	0	20,5	5,1	25,78	275,590	27,559
256	4	0	20,5	5,1	5,67	60,613	6,061
257	4	0	20,5	5,1	15,06	160,992	16,099
258	4	0	20,4	5,1	28,98	311,317	31,132
259	4	0	20,4	5	31,81	355,524	35,552
260	4	0	20,4	4,9	22,05	256,603	25,660
261	4	0	20,5	5	1,87	20,798	2,080
262	4	0	20,5	5	7,64	84,972	8,497
263	4	0	20,5	5,1	2,44	26,084	2,608
264	4	0	20,5	5,1	12,18	130,205	13,021
265	4	0	20,5	5	2,96	32,921	3,292
266	4	0	20,5	5	16,67	185,403	18,540
267	4	0	20,5	5,1	8,1	86,590	8,659
268	4	0	20,5	5	16,27	180,954	18,095
269	4	0	20,4	5	1,86	20,788	2,079
270	4	0	20,5	5,1	2,61	27,901	2,790


ANEXO II MICROGRAFIAS DE LAS FIBRAS DE CELULOSA

Aumento x 170

Aumento x 680

Aumento x 340

Aumento x 340

Aumento x 340

Aumento x 340

Aumento x 340

Aumento x 340

Aumento x 340

Aumento x 340

Aumento x 340

BIBLIOGRAFIA

- [1] Callister, William D. "Introducción a la Ciencia e Ingeniería de los Materiales", 1° Edición, Barcelona, España, Editorial Reverté, 1997.
- [2] Astudillo, Julio C. y Gonzáles, Marcelo N. "Análisis para los primeros tableros de fibro-cemento elaborados en Chile a base de rastrojos de trigo", Universidad de Chile, Facultad de Ciencias Forestales, Santiago, Chile, 2004.
- [3] ASOCIACIÓN CHILENA DE PRODUCTORES DE ASBESTO-CEMENTO A.G, Noviembre 1999. Revista edición Nº 1. Santiago, Chile.
- [4] Sepúlveda, Esteban A., "Cemento con adiciones puzolánicas", Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas, Santiago, Chile, 2004.
- [5] Donoso, Eduardo, "Apuntes de materiales compuestos".
- [6] Mendenhall, William, "Probabilidades y Estadística para ingeniería y ciencias", 4° Edición, México, Editorial Prentice- Hall Hispanoamericana S.A., 1997.
- [7] Díaz, Gerardo, "Apuntes de resistencia probabilística de materiales".
- [8] Montgomery, Duoglas C. y Runger, George C., "Probabilidades y Estadística aplicada a la ingeniería", México, Editorial McGraw-Hill, 1996.
- [9] Bravo, José P., "Comportamiento mecánico de hormigón reforzado con fibra de vidrio", Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas, Santiago, Chile, 2004.
- [10] Torres, Oscar A., "Resistencia Probabilística de fractura de esferas de vidrio, Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas, Santiago, Chile, 1998.