

UNIVERSIDAD DE CHILE

FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS

DEPARTAMENTO DE GEOLOGIA

ANTECEDENTES GEOQUÍMICOS Y GEOCRONOLÓGICOS DE INTRUSIVOS CENOZOICOS DE LA ZONA CENTRAL DE CHILE, 32-33°S

MEMORIA PARA OPTAR AL TITULO DE GEOLOGO

OMAR ANDRÉS RODRÍGUEZ RAMÍREZ

PROFESORA GUIA: KATJA DECKART

MIEMBROS DE LA COMISIÓN: REYNALDO CHARRIER GONZALEZ ESTANISLAO GODOY PIRZIO-BIROLI

> SANTIAGO-CHILE 2009

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE GEOLOGÍA

ANTECEDENTES GEOQUÍMICOS Y GEOCRONOLÓGICOS DE INTRUSIVOS CENOZOICOS DE LA ZONA CENTRAL DE CHILE, 32°-33°S

MEMORIA PARA OPTAR AL TÍTULO DE GEÓLOGO

OMAR ANDRÉS RODRIGUEZ R PROFESORA GUIA KATJA DECKART

MIEMBROS DE LA COMISIÓN REYNALDO CHARRIER GONZALEZ ESTANISLAO GODOY PIRZIO-BIROLI

> Santiago Chile Marzo 2009

ANTECEDENTES GEOQUIMICOS Y GEOCRONOLOGICOS DE LOS INTRUSIVOS JUNCAL-PORTILLO, PORTEZUELO DEL AZUFRE Y UNIDAD TAMBILLOS, ZONA CENTRAL DE CHILE, 32º-33º

El presente estudio se refiere a los intrusivos Juncal-Portillo (JP), Portezuelo del Azufre (PA) y Unidad Tambillos (UT), ubicados en la zona Cordillerana de la V y IV Región, Region de Valparaíso y Coquimbo respectivamente, Chile.Los cuerpos ígneos corresponden a granodioritas y dioritas cuarcíferas principalmente, las que se componen esencialmente por plagioclasas, cuarzo, piroxenos, anfibolas, biotita y, en menor medida, feldespato potasico con algunos indicios de alteración a cloritaepidota.

Se dataron las muestras OMAR-1 perteneciente a Portezuelo del Azufre, QP-1 ubicada en Unidad Tambillos y OMAR-4 que corresponde a una intrusión en Formación Farellones ubicado en el limite Chileno-Argentino .Los datos geocronológicos se obtuvieron mediante el metodo U-Pb en circón para lo cual se obtuvieron edades de 17,62+/-0,5 Ma para Portezuelo del Azufre (PA), 14,57+/-0,14 Ma para Unidad Tambillos (UT) y 8,85+/-0,11 Ma para la intrusión a Fm. Farellones.

De acuerdo a los datos geoquímicos obtenidos se tiene una composición química general de magmas subalcalinos de alto-K, con un rango de SiO₂ entre 55-68%, en peso, altos contenidos de Al₂O₃ (cercanos al 17% en peso) y medianamente altos contenidos de Sr (450 ppm en promedio).

De los patrones de variación de elementos mayores respecto a la sílice se distinguen tendencias de correlación de pendiente negativa para todos los óxidos excepto para Na₂O y K₂O, no existe una correlación muy marcada para los elementos traza pero es importante analizar el comportamiento de Th, Nb, Rb, Ba, Hf, Sr y Eu principalmente.

Las tierras raras (REE) muestran un enriquecimiento en tierras raras livianas (LREE) y un empobrecimiento leve en (HREE), se tiene un patrón de pendiente relativamente suave con anomalías negativas de Eu principalmente.

Se tiene un patrón LILE-HFSE de pendiente ligera con respecto a la corteza inferior, y un patrón con una pendiente más abrupta para su análisis con respecto al MORB, se sugiere una fuente magmática de manto diferenciado con poca contaminación cortical de corteza inferior pero medianamente radiogènica (⁸⁷Sr/⁸⁶Sr= 0.14 en mineral, Montecinos et al., 2008)pero esto se analizaría en mejor detalle con estudios de isótopos; también es posible una contanimación de corteza superior sedimentaria proveniente de la erosión por subducción que se produjo en el Oligo-Mioceno (Kay et al., 2005)

Se analiza también la composición adakitica de las muestras en cuanto a la definición composicional.

Su comportamiento tanto en lo que se refiere a cristalización fraccionada y fusión parcial son la base que se puede tener para una noción de lo que se postula en este estudio como "grado adakitico".

INDICE

I. INTRODUCCIÓN	8
I.1 OBJETIVOS	10
I.2 UBICACIÓN Y VIAS DE ACCESO	11
I.3 METODOLOGIA DE TRABAJO	12
1.3.1 Trabajo de Terreno	12
I.3.2 Trabajo de Gabinete	13
I.3.3 Trabajo de Laboratorio	13
II. ANTECEDENTES	15
II.1 MARCO GEOLOGICO, GEOTECTONICO Y REGIONAL	15
II.1.1 Rocas Estratificadas	18
II.1.2 Rocas Intrusivas	22
II.1.3 Estructuras	27
II.2 ANTECEDENTES BIBLIOGRAFICOS	29
III. PETROGRAFÍA, GEOQUIMICA Y GEOCRONOLOGIA DE LOS INTRUSIVOS	
III. PETROGRAFÍA, GEOQUIMICA Y GEOCRONOLOGIA DE LOS INTRUSIVOS JUNCAL-PORTILLO, PORTEZUELO DEL AZUFRE, UNIDAD TAMBILLOS E INTRUSIONES EN FORMACION FARELLONES Y ABANICO	
III. PETROGRAFÍA, GEOQUIMICA Y GEOCRONOLOGIA DE LOS INTRUSIVOS JUNCAL-PORTILLO, PORTEZUELO DEL AZUFRE, UNIDAD TAMBILLOS E INTRUSIONES EN FORMACION FARELLONES Y ABANICO	33
III. PETROGRAFÍA, GEOQUIMICA Y GEOCRONOLOGIA DE LOS INTRUSIVOS JUNCAL-PORTILLO, PORTEZUELO DEL AZUFRE, UNIDAD TAMBILLOS E INTRUSIONES EN FORMACION FARELLONES Y ABANICO	33 33
III. PETROGRAFÍA, GEOQUIMICA Y GEOCRONOLOGIA DE LOS INTRUSIVOS JUNCAL-PORTILLO, PORTEZUELO DEL AZUFRE, UNIDAD TAMBILLOS E INTRUSIONES EN FORMACION FARELLONES Y ABANICO III.1 PETROGRAFIA	33 33 34
III. PETROGRAFÍA, GEOQUIMICA Y GEOCRONOLOGIA DE LOS INTRUSIVOS JUNCAL-PORTILLO, PORTEZUELO DEL AZUFRE, UNIDAD TAMBILLOS E INTRUSIONES EN FORMACION FARELLONES Y ABANICO 	33 33 34 35
III. PETROGRAFÍA, GEOQUIMICA Y GEOCRONOLOGIA DE LOS INTRUSIVOS JUNCAL-PORTILLO, PORTEZUELO DEL AZUFRE, UNIDAD TAMBILLOS E INTRUSIONES EN FORMACION FARELLONES Y ABANICO III.1 PETROGRAFIA	33 33 34 35
III. PETROGRAFÍA, GEOQUIMICA Y GEOCRONOLOGIA DE LOS INTRUSIVOS JUNCAL-PORTILLO, PORTEZUELO DEL AZUFRE, UNIDAD TAMBILLOS E INTRUSIONES EN FORMACION FARELLONES Y ABANICO III.1 PETROGRAFIA	33 33 34 35 36 38
III. PETROGRAFÍA, GEOQUIMICA Y GEOCRONOLOGIA DE LOS INTRUSIVOS JUNCAL-PORTILLO, PORTEZUELO DEL AZUFRE, UNIDAD TAMBILLOS E INTRUSIONES EN FORMACION FARELLONES Y ABANICO 	33 33 34 35 36 38 38
III. PETROGRAFÍA, GEOQUIMICA Y GEOCRONOLOGIA DE LOS INTRUSIVOS JUNCAL-PORTILLO, PORTEZUELO DEL AZUFRE, UNIDAD TAMBILLOS E INTRUSIONES EN FORMACION FARELLONES Y ABANICO 	33 33 34 35 36 38 38 38
III. PETROGRAFÍA, GEOQUIMICA Y GEOCRONOLOGIA DE LOS INTRUSIVOS JUNCAL-PORTILLO, PORTEZUELO DEL AZUFRE, UNIDAD TAMBILLOS E INTRUSIONES EN FORMACION FARELLONES Y ABANICO 	33 33 34 35 36 38 38 38 41
III. PETROGRAFÍA, GEOQUIMICA Y GEOCRONOLOGIA DE LOS INTRUSIVOS JUNCAL-PORTILLO, PORTEZUELO DEL AZUFRE, UNIDAD TAMBILLOS E INTRUSIONES EN FORMACION FARELLONES Y ABANICO 	33 33 34 35 36 38 38 38 41 46 54

IV PETROGENESIS5

IV.1 DISCR	RIMINACION TECTONICA Y FUENTES MAGMATICAS	57
IV.1.1 D	Diagramas multielementos	58
IV.2 - ENGR	GROSAMIENTO CORTICAL Y ANALISIS DE COMPOSICIÓN -	66

V. ADAKITAS	69
VI. DISCUSIÓN Y CONCLUSIONES	73
VII. REFERENCIAS	76
VIII ANEXOS	81

INDICE DE FIGURAS

Figura I.1 Mapa Resumen Franjas Intrusivas a travès del tiempo (Jerez, 2007)9
Figura I.2 Ubicación Zonas de Estudio11
Figura I.3 Mapa Geológico de la Zona Portillo (Moscoso et al., 1982) modificado a SERNAGEOMIN (2002)12
Figura I.4 Mapa Geológico de la Zona Alicahue (Rivano et.al., 1993)13
Figura II.1 Evolución configuración Placa Nazca-Farallon (Sheuber et al., 1994)16
Figura II.2 Evolución de la dorsal pasiva de Juan Fernandez desde los 22 Ma hasta la actualidad (Yañez et al., 2002)17
Figura III.1 Diagrama Q`F``vs ANOR (Streckeisen and le Maitre, 1979)35
Figura III.2 Diagrama de clasificación TAS para rocas plutonicas (Cox, Bell, Pank, 1979)38
Figura III.3 Diagrama AFM de Irvine Baragar (1971)39
Figura III.4 Diagrama de Clasificación para series subalcalinas K2O vs SiO2 de Pecerillo y Taylor (1976)40
Figura III.5-III.13 Diagramas Harker para Elementos Mayores41-45
Figura III.14-III.16 Diagramas Elementos Traza para Metales de Transición46-47
Figura III.17-III.21 Diagrama de Elementos Traza HFSE48-51
Figura III.22-III.25 Diagrama de Elementos Traza LILE52-53
Figura III.26 Diagrama REE para zona Portillo normalizado a Condrito (Nakamura, 1974)54
Figura III.27 Diagrama REE para zona Alicahue normalizado a Condrito (Nakamura, 1974)55

igura IV.1 Diagrama Ta-Yb (Pearce et al., 1984) 57 igura IV.2 Diagrama multielementos normalizados a manto primordial para zona 58 igura IV.3 Diagrama Multielementos normalizados a manto primordial para la 59 igura IV.3 Diagrama Multielementos normalizados a manto primordial para la 59 igura IV.4 Diagrama multielementos normalizados a la corteza inferior para la 50 igura IV.5 Diagrama multielementos normalizados a la corteza inferior para la 60 igura IV.5 Diagrama multielementos normalizados a la corteza inferior para la 61 igura IV.5 Diagrama multielementos normalizados a MORB para la zona de 61 igura IV.6 Diagrama multielementos normalizados a MORB para la zona de 62 igura IV.7 Diagrama multielementos normalizados a MORB para la zona de 63 igura IV.7 Diagrama multielementos normalizados a E-MORB para la zona de 63 igura IV.8 Diagrama multielementos normalizados a E-MORB para la zona de 64 icahue (Niu & O'Hara, 2003) 64 igura IV.9 Diagrama multielementos normalizados a E-MORB para la zona de 64 icahue (Niu & O'Hara, 2003) 64 igura IV.9 Diagrama multielementos normalizados a E-MORB para la zona de 64 icahue (Niu & O'Hara, 2003) 65 igura IV.10 Diagrama Ba/La vs La/	Figura III.28 Diagrama Sr-Ba para identificación de grados de cristalización fraccionada (Rollinson, 1993)56
igura IV.2 Diagrama multielementos normalizados a manto primordial para zona de Portillo (Mc Donough & Sun, 1995). igura IV.3 Diagrama Multielementos normalizados a manto primordial para la iaona de Alicahue (Mc-Donough & Sun, 1995). igura IV.4 Diagrama multielementos normalizados a la corteza inferior para la iaona de Portillo (Weaver y Tarney, 1984) iaona de Alicahue ((Weaver y Tarney, 1984) iaona de Alicahue ((Bevins et al., 1984) iaona de Bortillo (Bevins et al., 1984) iaona de Bortillo (Niu & O'Hara, 2003) iacahue (Bevins et al., 1984) iacahue (Niu & O'Hara, 2003) iacahue (Niu & O'Hara,	Figura IV.1 Diagrama Ta-Yb (Pearce et al., 1984)57
igura IV.3 Diagrama Multielementos normalizados a manto primordial para la icona de Alicahue (Mc-Donough & Sun, 1995)	Figura IV.2 Diagrama multielementos normalizados a manto primordial para zona de Portillo (Mc Donough & Sun, 1995)58
igura IV.4 Diagrama multielementos normalizados a la corteza inferior para la iona de Portillo (Weaver y Tarney, 1984) 60 iigura IV.5 Diagrama multielementos normalizados a la corteza inferior para la iona de Alicahue ((Weaver y Tarney, 1984) 61 iigura IV.6 Diagrama multielementos normalizados a MORB para la zona de Portillo (Bevins et al., 1984) 62 iigura IV.7 Diagrama multielementos normalizados al MORB para la zona de Alicahue (Bevins et al., 1984) 63 iigura IV.8 Diagrama multielementos normalizados a E-MORB para la zona de Portillo (Niu & O'Hara, 2003) 64 iigura IV.9 Diagrama multielementos normalizados a E-MORB para la zona de Portillo (Niu & O'Hara, 2003) 64 iigura IV.9 Diagrama multielementos normalizados a E-MORB para la zona de Alicahue (Niu &O'Hara, 2003) 64 iigura IV.10 Diagrama (La/Yb)n vs Yb para comparación entre sectores de SVZ Geuna y Lopez Martinez, 2000) 65 iigura IV.12 Diagrama Ba/La vs La/Yb para discriminación del engrosamiento cortica (Geuna y Lopez Martinez, 2000) 66 iigura IV.13 Diagrama Ta/Yb vs Ba/Th para discriminación de fuentes magmaticas(Figura IV.3 Diagrama Multielementos normalizados a manto primordial para la zona de Alicahue (Mc-Donough & Sun, 1995)59
Figura IV.5 Diagrama multielementos normalizados a la corteza inferior para la cona de Alicahue ((Weaver y Tarney, 1984)	Figura IV.4 Diagrama multielementos normalizados a la corteza inferior para la zona de Portillo (Weaver y Tarney, 1984)60
Figura IV.6 Diagrama multielementos normalizados a MORB para la zona de Portillo (Bevins et al., 1984) 62 Figura IV.7 Diagrama multielementos normalizado al MORB para la zona de Alicahue (Bevins et al., 1984) 63 Figura IV.8 Diagramas multielementos normalizados a E-MORB para la zona de Portillo (Niu & O'Hara, 2003) 64 Figura IV.9 Diagrama multielementos normalizados a E-MORB para la zona de Alicahue (Niu & O'Hara, 2003) 64 Figura IV.9 Diagrama multielementos normalizados a E-MORB para la zona de Alicahue (Niu & O'Hara, 2003) 64 Figura IV.10 Diagrama (La/Yb)n vs Yb para comparación entre sectores de SVZ Geuna y Lopez Martinez, 2000) 65 Figura IV.11 Diagrama La/Sm vs La/Yb para determinación del engrosamiento cortica (Geuna y Lopez Martinez, 2000) 66 Figura IV.12 Diagrama Ba/La vs La/Yb para discriminación de influencias nagmaticas(Deckart, Godoy, 2003) 67 Figura IV.13 Diagrama Ta/Yb vs Ba/Th para discriminación de fuentes nagmaticas(Deckart,Godoy) 68 Figura V.1 Diagrama Sr/Y vs Y para discriminación de adakitas (Zhang et al.,2006) <td>Figura IV.5 Diagrama multielementos normalizados a la corteza inferior para la zona de Alicahue ((Weaver y Tarney, 1984)61</td>	Figura IV.5 Diagrama multielementos normalizados a la corteza inferior para la zona de Alicahue ((Weaver y Tarney, 1984)61
Figura IV.7 Diagrama multielementos normalizado al MORB para la zona de Alicahue (Bevins et al., 1984)	Figura IV.6 Diagrama multielementos normalizados a MORB para la zona de Portillo (Bevins et al., 1984)62
Figura IV.8 Diagramas multielementos normalizados a E-MORB para la zona de Portillo (Niu & O´Hara, 2003)	Figura IV.7 Diagrama multielementos normalizado al MORB para la zona de Alicahue (Bevins et al., 1984)63
Figura IV.9 Diagrama multielementos normalizados a E-MORB para la zona de Alicahue (Niu &O'Hara, 2003)64 Figura IV.10 Diagrama (La/Yb)n vs Yb para comparación entre sectores de SVZ Geuna y Lopez Martinez, 2000)65 Figura IV.11 Diagrama La/Sm vs La/Yb para determinación del engrosamiento cortica (Geuna y Lopez Martinez, 2000)66 Figura IV.12 Diagrama Ba/La vs La/Yb para discriminación de influencias magmaticas(Deckart, Godoy, 2003)67 Figura IV.13 Diagrama Ta/Yb vs Ba/Th para discriminación de fuentes magmaticas(Deckart,Godoy)68 Figura V.1 Diagrama Sr/Y vs Y para discriminación de adakitas (Zhang et al.,2006)-	Figura IV.8 Diagramas multielementos normalizados a E-MORB para la zona de Portillo (Niu & O´Hara, 2003)64
Figura IV.10 Diagrama (La/Yb)n vs Yb para comparación entre sectores de SVZ Geuna y Lopez Martinez, 2000)65 Figura IV.11 Diagrama La/Sm vs La/Yb para determinación del engrosamiento cortica (Geuna y Lopez Martinez, 2000)66 Figura IV.12 Diagrama Ba/La vs La/Yb para discriminación de influencias magmaticas(Deckart, Godoy, 2003)67 Figura IV.13 Diagrama Ta/Yb vs Ba/Th para discriminación de fuentes magmaticas(Deckart,Godoy)68 Figura V.1 Diagrama Sr/Y vs Y para discriminación de adakitas (Zhang et al.,2006)-	Figura IV.9 Diagrama multielementos normalizados a E-MORB para la zona de Alicahue (Niu &O´Hara, 2003)64
Figura IV.11 Diagrama La/Sm vs La/Yb para determinación del engrosamiento cortica (Geuna y Lopez Martinez, 2000)66 Figura IV.12 Diagrama Ba/La vs La/Yb para discriminación de influencias magmaticas(Deckart, Godoy, 2003)67 Figura IV.13 Diagrama Ta/Yb vs Ba/Th para discriminación de fuentes magmaticas(Deckart, Godoy)68 Figura V.1 Diagrama Sr/Y vs Y para discriminación de adakitas (Zhang et al.,2006)-	Figura IV.10 Diagrama (La/Yb)n vs Yb para comparación entre sectores de SVZ (Geuna y Lopez Martinez, 2000)65
Figura IV.12 Diagrama Ba/La vs La/Yb para discriminación de influencias magmaticas(Deckart, Godoy, 2003)67 Figura IV.13 Diagrama Ta/Yb vs Ba/Th para discriminación de fuentes magmaticas(Deckart,Godoy)68 Figura V.1 Diagrama Sr/Y vs Y para discriminación de adakitas (Zhang et al.,2006)-	Figura IV.11 Diagrama La/Sm vs La/Yb para determinación del engrosamiento cortica (Geuna y Lopez Martinez, 2000)66
igura IV.13 Diagrama Ta/Yb vs Ba/Th para discriminación de fuentes nagmaticas(Deckart,Godoy)68 igura V.1 Diagrama Sr/Y vs Y para discriminación de adakitas (Zhang et al.,2006)-	Figura IV.12 Diagrama Ba/La vs La/Yb para discriminación de influencias magmaticas (Deckart, Godoy, 2003)67
igura V.1 Diagrama Sr/Y vs Y para discriminación de adakitas (Zhang et al.,2006)-	Figura IV.13 Diagrama Ta/Yb vs Ba/Th para discriminación de fuentes magmaticas(Deckart,Godoy)68
71	Figura V.1 Diagrama Sr/Y vs Y para discriminación de adakitas (Zhang et al.,2006)-

Figura V.2 Diagrama La/Yb vs La para discriminación de adakitas entre fusión parcial (FP) y cristalización fraccionada (CF) (Zhang et al., 2006) -----72

INDICE DE TABLAS

Tabla III-1 Contenidos de AN-AB-OR para las muestras de estudio	-34
Tabla III-2 Datos Geocronológicos intrusivo Juncal-Portillo, U-Pb en circo (Montecinos et al.,2008)	nes 36
Tabla III-3 Datos Geocronológicos prospecto Cu-Au AMOS (Espinoza, 1996)	36
Tabla III-4 Edades U-Pb para Zona Alicahue	-37
Tabla III-5 Edades Intrusivos entre la zona 32º-34ºS (Jerez, 2007)	37
Tabla V-1 Contenidos de elementos para discriminar adakitas	-68
Tabla V-2 Discriminación de adakitas	-69

I INTRODUCCIÓN

El magmatismo intrusivo Mio-Plioceno de los Andes centrales consiste en cuerpos ígneos los cuales, en algunos casos, contienen mineralización, aunque muchos de ellos solo corresponden a intrusivos estériles. Estos cuerpos intruyen a las formaciones Abanico y Farellones de edades de Eoceno superior a Mioceno Inferior y de Mioceno, respectivamente (Thiele, 1980; Charrier et al., 2005; Fock, 2005; Fock et al., 2006). Los cuerpos mineralizados se concentran en tres depósitos gigantes, los pórfidos de Cu-Mo, de norte a sur: Los Pelambres (31°42' S), Río Blanco-Los Bronces (33°08' S) y El Teniente (34°05' S), cuya formación ha sido relacionada al acortamiento cortical, rápido alzamiento y exhumación de sistemas plutónicos, en conjunto con la exsolución de fluidos magmáticos estériles y mineralizadores de Cu referidos en este trabajo como alteración hidrotermal local. Mientras que Los Pelambres tiene una edad Miocena tardía (Bertens et al., 2003), el vacimiento central Rio Blanco-Los Bronces y el yacimiento sur El Teniente son contemporáneos y de edad Pliocena temprana (Deckart et al., 2005; Maksaev et al., 2004). Numerosos intrusivos estériles y de edades similares forman una franja Oligo-Miocena de norte a sur (Figura I.1), los cuales se intercalan en la zona de ocurrencia aunque existe una falta de información geocronológica de varios intrusivos estériles de la misma franja. Las discusiones respecto de la fuente del magma se han centrado principalmente en los cuerpos mineralizados y, por lo tanto, la información geoquímica de los intrusivos estériles es escasa para su comparación con otros intrusivos estériles y mineralizados de edades levemente más antiguas a más jóvenes.

El objetivo de este estudio son tres cuerpos intrusivos que afloran en una zona cercana a la ciudad de Alicahue, y otro que lo hace en una zona cercana a Portillo en el flanco occidental de la Cordillera de Los Andes.

Rivano et al. (1993) incluye a los intrusivos del sector de Alicahue en las unidades Portezuelo del Azufre y Tambillos, mientras que Moscoso et al. (1982) denomina los intrusivos en el sector Portillo como Intrusivos Juncal-Portillo.

Lo que se estudiará en estos intrusivos es su composición geoquímica y su posible relación con otros intrusivos de la zona, además de su relación a magmas adakíticos y de la tendencia

de aumento de concentración, hacia el norte, de razones La/Yb normalizados, además de una posible relación con la edad de los intrusivos (Kay et al., 2005).

Figura I.1. Mapa Resumen Franjas Intrusivas a través del tiempo (Jerez, 2007). Los recuadros corresponden a las zonas de estudio.

I.1 Objetivos

El presente trabajo busca caracterizar geoquímicamente por elementos mayores y trazas tres cuerpos estériles, estos son el intrusivo Juncal-Portillo (Moscoso et al., 1982), y las unidades Portezuelo del Azufre y Tambillos de la Súper-Unidad Río Chicharra (Rivano et al., 1993). Además se estudiará la geoquímica isotópica de estos cuerpos analizando también su geocronología mediante el método U/Pb LA-ICP-MS en granos de circón de las muestras de los intrusivos ya mencionados ubicados en la Cordillera de los Andes entre los 32° y 33°S.

Objetivo General

El objetivo general de este estudio es efectuar una caracterización petrográfica, geoquímica y geocronológica de los cuerpos intrusivos muestreados en los sectores Portillo y Alicahue, Juncal-Portillo (JP), Portezuelo del Azufre (PA) y Tambillos (TB) respectivamente, y formalizar relaciones entre estos e intrusivos contemporáneos de la zona de estudio comprendida entre los 32° y 34°S de los cuales existe una extensa información.

Objetivos Específicos

- Efectuar una caracterización mineralógica y textural de los intrusivos JP, PA y TB.
- Efectuar una caracterización geoquímica para elementos mayores y trazas de los intrusivos JP, PA y TB.
- Datar los intrusivos PA y TB mediante el método U/Pb LA-ICP-MS en circones además de realizar una recopilación bibliográfica sobre la edad del intrusivo Juncal-Portillo.
- Establecer y caracterizar las relaciones geoquímicas y geocronológicas entre los intrusivos estériles y fértiles de la zona.

I.2 Área de Estudio: Ubicación y Vías de Acceso

Las dos zonas de estudio se encuentran en las regiones de Valparaíso y Coquimbo. La primera de éstas se ubica a 60 Km al este de la ciudad de Los Andes, accesible por la ruta 60, específicamente al sur de la Laguna del Inca y Portillo, inmediatamente al sureste de la conjunción de los ríos Juncal y Aconcagua; a esta zona se le denominará Zona Portillo. La segunda zona de trabajo se ubica en las IV y V regiones de Valparaíso y Coquimbo respectivamente, 64 Km al este de la ciudad de La Ligua siguiendo el camino que une a esta última ciudad con el paso fronterizo de La Honda y que pasa por el pueblo de Alicahue; a esta zona se le denominará Zona Alicahue (Figura I.2).

Figura I.2. Ubicación zonas de estudio (en el mapa los rectángulos en negro corresponden a las zonas de estudio, donde el rectángulo más grande corresponde a la zona de Alicahue, mientras que el menor corresponde a la zona de Portillo). Figura tomada de turistel.cl.

I.3 Metodología de Trabajo

I.3.1 Trabajo de terreno

Se realizó una campaña de terreno durante el primer semestre del año 2008 para el muestreo de los cuerpos a estudiar en este trabajo. Se extrajeron 15 muestras de las cuales 4 pertenecen al intrusivo JP (Junc-1, Junc.2, Port-1, Port-2), 2 pertenecen al intrusivo PA (Omar-1, ACH-1), 2 pertenecen al intrusivo TB (QP-1, QP-2), 2 pertenecen a intrusiones en Formación Abanico (Formación Los Pelambres) no mapeadas en Rivano et al. (1993) (Omar-2, Omar-3), mientras que una última muestra (Omar-4) corresponde a una intrusión en Formación Farellones no mapeada en Rivano et al. (1993) (Figura I.3 y Figura I.4). Las últimas 4 muestras, no analizadas, corresponden a un intrusivo del Cretácico denominado Unidad Fredes (Rivano et al., 1993); estas son CAL-1, CAL-2, CAL-3, CAL-4. (ver anexo A y B). Estas no son analizadas en este estudio debido a su edad.

Figura I.3. Mapa Zona Portillo, 1:250.000 (Moscoso et al., 1982) modificado a Sernageomin (2002).

Figura I.4. Mapa Zona Alicahue, (1:250.000) (Rivano et al., 1993).

I.3.2 Trabajo de Gabinete

Se realizó un estudio bibliográfico de la franja Oligo-Miocena de cuerpos ígneos tanto estériles como fértiles para encontrar información entre las latitudes 32°-33° S.

Se recopiló información suficiente pero básicamente al norte de los 33° S no existen muchos estudios publicados.

Se ocuparon los programas Adobe Photoshop, Petrograph, Excel, Word principalmente.

El programa Petrograph tiene dificultades en lo que respecta a guardar una imagen, además de distorsionar la leyenda que arroja muchas veces una información errada.

I.3.3 Trabajo de Laboratorio

En el laboratorio se realizó el estudio petrográfico de las 15 muestras obtenidas, así se analizó la determinación y caracterización tanto mineralógica como textural de las muestras.

Los análisis químicos de elementos mayores fueron efectuados mediante XRF, mientras que los elementos trazas mediante ICP-MS en los laboratorios ACTLABS, Canada.

Se dataron circones mediante el método geocronológico U-Pb, utilizando un LA-ICP-MS, en los laboratorios GEMOC (Geochemical Evolution & Metallogeny of Continent), que pertenece al Departamento de la Tierra y de las Ciencias Planetarias en la Universidad de Mcquarie, Sydney, Australia.

Para el estudio petrográfico se realizaron análisis de cortes transparentes de las 15 muestras (para la caracterización de minerales y texturas), los cuales fueron efectuados en el Laboratorio de Microscopía del Departamento de Geología de la Facultad de Ciencias Físicas y Matemáticas de la Universidad de Chile.

Para los análisis geoquímicos se realizó un chancado grueso en el laboratorio de preparación de muestras del Departamento de Geología de la Universidad de Chile. Para la geocronología en circones, las rocas pasaron por un proceso de chancado grueso, luego chancado fino, separación bajo malla 500 y separación de minerales pesados (mesa Gemeni). Posteriormente, separación magnética y campana de extracción de líquidos densos. Finalmente bajo lupa binocular se limpiaron los circones.

Las muestras se mandaron para los análisis geoquímicos y geocronológicos a los laboratorios correspondientes.

Los análisis de elementos mayores se realizaron en la unidad de geoquímica de análisis ACTLABS, en los cuales se utilizó un instrumento de XRF Spectro XLAB2000 para determinar la concentración de elementos mayores.

Los análisis de elementos trazas en ICP-MS se realizaron en la unidad geoquímica de ACTLABS, en dichos análisis se utilizó un instrumento de ICP-MS: un Agilent HP4500.

Las determinaciones de las edades U-Pb en circón se realizaron con el método de ablación por laser ICP-MS (LA-ICP-MS) Hewlett Packard HP4500.

II ANTECEDENTES

II.1 Marco Geológico, Geotectónico y Regional

La zona de estudio se ubica en el límite meridional del segmento de subducción plana o "flatslab".

Este segmento está comprendido entre los 27° y 33°S.Se ha estudiado que el ángulo de subducción de este segmento es de 10° (Barazangui & Isaac, 1976). En este la Cordillera de la Costa limita por el este con la Cordillera Principal. Desaparece la Depresión Central. No existe volcanismo cuaternario significativo. Se observa una extensión de la deformación compresiva hacia el E (lado argentino) en las Sierras Pampeanas (Jordan et al., 1983; Mpodozis y Ramos, 1989).

Hacia el sur en el segmento comprendido entre los 33° y 41° S el ángulo de subducción aumenta a 30° aproximadamente (Mpodozis y Ramos, 1989).

La tasa y el ángulo de convergencia entre las placas de Nazca-Farallon y Sudamericana ha variado en el tiempo según lo muestran distintos modelos (Pilger, 1984; Pardo-Casas y Molnar, 1987; Somoza, 1998).Pardo-Casas y Molnar (1987) señalan que la Placa de Nazca-Farallón ha convergido con la Sudamericana desde los 70 Ma (Figura II.1), con 2 períodos de altas tasas de convergencia (> 100 mm/año). Estos períodos habrían ocurrido entre los 50 Ma y 42 Ma y desde los 26 Ma hasta la actualidad. Charrier et al. (2001) plantean que la aceleración de la convergencia concluye a los 15 Ma y comienza a los 20 Ma con un desarrollo previo de una cuenca extensional en la zona central. Este último período de alta tasa de convergencia coincide con el fracturamiento de la placa Farallón en las placas de Nazca y de Cocos (Somoza, 1998). Al producirse el fracturamiento de la placa Farallón, las placas de Nazca y Sudamericana habrían pasado de una convergencia oblicua a una prácticamente normal (Yañez et al., 2002).

Figura II.1. Evolución configuración Placa de Nazca-Farallon (Sheuber et al., 1994)

Lavenu et al. (1994) y Lavenu y Cembrano (1999) señalan que durante el Plioceno, a los 33°S, la dirección de los esfuerzos principales eran compresivos con una dirección principal NNE-SSW en la zona de antearco y E-W en la Cordillera Principal.En esta última zona la dirección de esfuerzo principal habría cambiado a NNE-SSW durante el Cuaternario. Es decir habría existido una partición de la deformación. Señalan además que la dirección de convergencia de placas durante el Plioceno es de N78°E.

Otro factor tectónico importante de señalar en esta zona es la subducción de la dorsal pasiva de Juan Fernández. La reconstrucción del camino recorrido por la dorsal de Juan Fernández realizada por Yañez et al. (2002) muestra una colisión sub-paralela contra la placa Sudamericana durante el Mioceno Inferior (Figura II.2), producto de la convergencia oblicua de la placa Farallon antes de los 25 Ma. El punto de la colisión habría migrado hacia el sur desde el codo de Arica durante este período.En cambio a partir de los 12 Ma estos autores señalan que el punto de colisión de la dorsal se habría movido aproximadamente 375 Km hacia el sur, desde la bahia Tongoy (más de 3°) (Le Roux et al., 2005) produciéndose una interacción casi estable entre la dorsal y la placa Sudamericana (Yañez et al., 2002).

Existe un modelo tectónico de dorsales pasivas, como la dorsal de Juan Fernández, donde existe una transpresion evidente pero también existe una transtensión en zonas aledañas al esfuerzo principal, para esto se basan en valores sísmicos y análisis de vectores de esfuerzos tectónicos (Yañez & Cembrano J ,2000).

Figura II.2. Evolución de la dorsal pasiva de Juan Fernández desde los 22 Ma hasta la actualidad (Yañez et al., 2002)

II.1.1 Rocas Estratificadas

Formación Salamanca (Rivano y Sepúlveda, 1991)

La Formación Salamanca aflora según Rivano y Sepúlveda (1991) en el sector norte de la zona de estudio. En ella se han distinguido dos miembros.El miembro inferior denominado Santa Virginia, sedimentario, formado por conglomerados arenosos, aflora en la parte noroccidental de la zona de estudio. El miembro superior llamado Río Manque está formado por lavas, tobas, brechas volcánicas andesíticas a dacíticas, con intercalaciones riolíticas (Rivano et al., 1993). Hacia el norte, en el área de la Hoja de Illapel, el espesor aumenta hasta los 2000 a 2500 metros (Rivano y Sepúlveda, 1991).

Sobreyace en pseudoconcordancia y/o discordancia de erosión a la Formación Las Chilcas (Rivano et al., 1993). En el portezuelo que separa el valle de Alicahue y el Estero Chalcao subyace en discordancia angular y de erosión a la Formación Farellones (Rivano et al., 1993). En otros sectores su techo es la superficie actual de erosión (Rivano et al., 1993). Se correlaciona lateralmente hacia el sur con la Formación Lo Valle de edad Cretácico Superior (Vergara y Drake, 1978; Padilla y Vergara, 1985; Beck et al., 1986; Gana y Wall, 1997).

Por su ubicación litoestratigráfica Rivano et al. (1993) asigna a esta formación una edad Cretácico Superior. Esto se complementa con edades K/Ar que varían entre 86+/-3 y 56+/-2,1 Ma (Camus et al., 1986; Rivano et al., 1993).

Formación Abanico

La Formación Abanico fue definida por Aguirre (1960) en la provincia del Aconcagua, anteriormente fue propuesto por Muñoz Cristi quien indicaba el cordón del cerro Abanico como localidad tipo. Esta formación se habría depositado en una cuenca extensional desarrollada entre el Eoceno medio-superior y el Mioceno inferior (Cuenca de Abanico). En la Cordillera Principal de Chile central esta formación sobreyace a la Formación Colimapu de edad Cretácico Inferior tardío (Klohn, 1960), en un contacto que ha sido descrito como discordante en la zona del río Aconcagua (Aguirre, 1960) y en la zona de Rancagua (Charrier et al., 2002), y concordante en la zona cordillerana al este de Santiago (Thiele, 1980).

En la cordillera de San Fernando, en cambio, se ha observado que esta formación se dispone, tanto sobre las rocas de la Formación Baños del Flaco, como sobre una unidad continental pardo-rojiza denominada informalmente BRCU (brownish-red clastic unit), la cual sobreyace a la anterior (Charrier et al., 1996).

La Formación Abanico subyace a la Formación Farellones en un contacto que ha sido descrito como discordante (Aguirre, 1960; Klohn, 1960; Jaros y Selman, 1969; Thiele 1980; Padilla, 1981; Moscoso et al., 1982; Rivano et al., 1993, Charrier et al., 2002) o concordante según Godoy y Lara, (1994); Godoy et al. (1996, 1999); Navarro, (2001). Más recientemente, se han descrito para algunos sectores la existencia de discordancias progresivas en el techo de esta formación (Charrier et al., 2002; Fock, 2005; Fock et al., 2006). Por este motivo se ha señalado que la variabilidad de este contacto dependería de la cercanía o alejamiento de las fallas que dieron origen a estas estructuras y que los depósitos de esta formación son, en su parte inferior, contemporáneos a la inversión de la Cuenca de Abanico (ya antes mencionada), mientras que el resto es posterior a esta inversión (Charrier et al., 2002, Fock, 2005; Fock et al., 2006). En el flanco oriental de la Cordillera de la Costa la Formación Abanico sobreyace discordantemente a las formaciones Lo Valle y Las Chilcas (Sellés, 2000; Fuentes, 2004). En algunas localidades el contacto lo marcaría la presencia de la Falla Pocuro, como es el caso de la zona de estudio (Rivano et al., 1993).

La Formación Abanico consiste en una secuencia continental, conformada por tobas y brechas volcánicas con intercalaciones de lavas y rocas sedimentarias, alcanzando un espesor de alrededor de 3000 m, el que puede estar sobrestimado producto de las numerosas intrusiones interestratificadas que presenta y las fallas normales en su base (Thiele, 1980).

Se le asigna una edad entre el Eoceno medio a superior y el Mioceno inferior, basado en las edades radiométricas K/Ar, ⁴⁰Ar/³⁹Ar y U-Pb SHRIMP que se tienen de esta formación al sur del area de estudio (Moscoso et al., 1982; Charrier et al., 2002; Fuentes et al., 2002; Fock, 2005).

Los afloramientos asignados a la Formación Abanico entre los 32° y 33° S por algunos autores (Aguirre, 1960; Padilla, 1981; Moscoso et al., 1982; SERNAGEOMIN, 2002) fueron asignados sobre la base de relaciones estratigráficas por otros autores a las formaciones Los

Pelambres y Salamanca de edad Cretácico Inferior y Cretácico Superior, respectivamente (Rivano y Sepúlveda, 1991; Rivano et al., 1993; Rivano, 1996; Diaz, 1996). Rivano (1996) señala que estas rocas se correlacionan hacia el norte con la Formación Los Pelambres y hacia el Sur con la Formación Coya-Machalí de edad Oligoceno a Mioceno temprano, la cual es un equivalente de la Formación Abanico de edad Eoceno superior-Oligoceno (Charrier et al., 1996).

Formación Farellones (Klohn, 1960)

La localidad tipo de esta formación corresponde a la localidad de las canchas de esquí de Farellones en la Cordillera Principal, frente a Santiago.

Esta formación corresponde a una secuencia volcánica bimodal que fue subdividida en dos miembros por algunos autores (Rivano et al., 1993).

Otros autores la subdividen en tres miembros (Vergara et al., 1993; Nystrom et al., 2003) considerando que esta división fue hecha para la localidad tipo.

1. El miembro inferior corresponde a niveles tobáceos a ignimbríticos de composición riolítico-dacítica, con intercalaciones de depósitos lacustres en parte turbidíticos.

2. El miembro medio está formado por lavas andesítico-basálticas, dacitas y conglomerados.

3. El miembro superior estaría compuesto por flujos andesítico-basálticos intruidos por domos riodacíticos y lavas dacíticas a riolíticas (Rivano et al., 1990; Nystrom et al., 2003). La formación tiene características calcoalcalinas, con razones isotópicas que señalan aporte cortical y una corteza relativamente engrosada en comparación con la que existía en el momento de la depositación de la Formación Abanico (Vergara et al., 1993; Nystrom et al., 2003).

Aflora en la parte oriental de la zona de estudio, en la Cordillera Principal. Se ha observado un espesor de 700 metros del miembro inferior, de 850 metros para el miembro medio y de 600 metros para el miembro superior (Nystrom et al., 2003). En su localidad tipo, al este de Santiago, se calculó un espesor de 2100 a 2400 metros. Como se mencionó anteriormente sobreyace a la Formación Abanico en algunas partes en concordancia, en otras discordantemente o pseudodiscordante y en algunas partes se observa un paso gradual entre las dos formaciones (Charrier et al., 2002). Esto como se explicó anteriormente se debería a la reactivación de algunas fallas durante la inversión de la Cuenca de Abanico las que localmente indujeron el desarrollo de las estructuras de crecimiento mencionadas anteriormente (Charrier et al., 2002). Su techo corresponde a la actual superficie de erosión.

Esta formación ha sido datada por métodos radiométricos K-Ar obteniéndose entre los 32° a 33° S edades que fluctúan entre los 20 a 6 Ma. Los datos obtenidos con el método ⁴⁰Ar/³⁹Ar en el área de estudio varían entre los 20 a 18 Ma. Tambien Deckart et al. (2005), mediante análisis U-Pb en circones le asignan una edad entre 18 y 16 Ma. Con estos datos se asigna a la Formación Farellones una edad Miocena (Aguirre, 1999; Charrier et al., 2002; Nystrom et al., 2003).

Las rocas de esta formación representarían un arco volcánico del Mioceno (Vergara et al., 1988) desarrollado en un ambiente continental subaéreo (Moscoso et al., 1982).

Depósito de Terrazas Continentales (Rivano et al., 1993)

Estos rasgos morfológicos corresponden según Rivano et al. (1993) a los depósitos semiconsolidados existentes en el borde oriental del valle de San Felipe–Los Andes. Estos están formados por arenas medias y conglomerados finos a medios. Presentan grandes escarpes de hasta decenas de metros de altura. Esta característica es la que según Rivano et al. (1993) los distingue de los depósitos de la cuenca del valle. Este autor señala que puede existir una relación entre estos depósitos y la Zona de Falla Pocuro. Rivano et al. (1993) les asigna una edad cuaternaria por relaciones estratigráficas con las rocas cenozoicas del área.

Depósitos de caída gravitacional (Rivano et al., 1993)

Estos depósitos son informalmente definidos por Rivano et al. (1993), corresponden a deslizamientos en masa de grandes proporciones. Los principales se ubican en las cercanías de la Zona de la Falla Pocuro y en el borde de las Terrazas Continentales ubicadas al este del valle de San Felipe-Los Andes (Abele, 1984). Los principales son los derrumbes de Conchuca, Alicahue –Los Patos, El Espino, y Campos de Ahumada. Abele (1984) y Rivano (1996) señalan que estos depósitos se habrían generado por colapso gravitacional debido a movimientos sísmicos. Se les asigna una edad post-Formación Farellones (Mio-Plioceno) por sus relaciones de contacto (Rivano et al., 1993).

Depósitos aluviales y coluviales recientes (Rivano et al., 1993)

Corresponde a los sedimentos aluviales, coluviales y depósitos de relleno de valles. Están relacionados a los cursos de los ríos actuales y su mayor expresión es la hoya del río Aconcagua (Rivano, 1996). Están formados por variados tipos de sedimentos, gravas y bloques mal estratificados, arenas limos y arcillas poco consolidadas (Moscoso et al., 1982; Rivano, 1996).

II.1.2 Rocas Intrusivas

Entre los 32° y 34°S se reconoce una serie de franjas de intrusivos que son más jóvenes desde la costa hacia el este (Munizaga y Vicente, 1982; Parada et al., 1988; Rivano, 1996). En el área de estudio afloran rocas intrusivas del Meso-Cenozoico. Plutones pertenecientes a tres de las franjas definidas en la literatura afloran en la zona de estudio. Estas son de edades cretácicas, cretácica paleógena y neógena (Parada et al., 1988; Rivano, 1996).

Intrusivos de la Franja Cretácica

Los plutones cretácicos afloran en la parte occidental de la zona de estudio. Corresponden a rocas de la Súper-Unidad-Illapel, la cual esta formada en este sector por el Stock la Campana y Plutón Caleu (Parada et al., 2000) y las unidades Chalinga, Quebrada Herrera y Chagres (Rivano et al., 1993). Los cuerpos varían de batolitos a stocks, aflorando en forma de franja

discontinua con dirección N20°-30°W de 20 a 25 Km de ancho. Intruyen a rocas del Jurásico y Cretácico Inferior.

El Stock La Campana y el Plutón Caleu afloran en el sector del cerro La Campana. El Plutón Caleu tiene variaciones litológicas, texturales, mineralógicas y geoquímicas, que permiten dividirlo en tres zonas plutónicas: Gabro La Dormida, Cuarzo-Diorita El Roble y Granodiorita Los Penitentes (Parada et al., 2000).Se cuenta con una edad K-Ar en plagioclasa de 66+/-8 Ma para el Stock La Campana (Tidy, 1970) y varias edades ⁴⁰Ar/³⁹Ar que varían entre los 117,4 y 93,9 Ma para el Plutón Caleu (Parada et al., 2000).

La Unidad Chalinga es la que presenta los mayores afloramientos de esta franja. Rivano (1996) señala que presenta un amplio espectro petrográfico desde dioritas a sienogranitos. Las facies principales son granodioritas de hornblenda y biotita y monzodioritas cuarcíferas con textura hipidiomórfica inequigranular en algunas partes porfídicas. Las edades radiométricas K/Ar varían entre los 82+/-2 y 139+/-5 Ma (Rivano, 1996; Parada et al., 1988; Munizaga y Vicente, 1982; Tidy, 1970).

La Unidad Quebrada Herrera corresponde al plutón de la quebrada homónima. Corta unidades litológicas de la Formación Las Chilcas. Rivano (1996) la describe como una monzonita verde de grano medio, equigranular y sin cuarzo.

La Unidad Chagres definida por Rivano et al. (1993), corresponde a un cuerpo que aflora en el camino que une San Felipe y Llay-LLay. Intruye rocas de la Unidad Chalinga. Corresponde a un sienogranito hololeucocrático de grano fino a medio. Es de color rosado claro a anaranjado que hacia el borde con la Unidad Chalinga se hace gris claro (Rivano, 1996). De las Unidades Quebrada Herrera y Chagres, no se dispone de edades radiométricas.

Intrusivos de la Franja Cretácica Paleogeno

Corresponde a las rocas de la Unidad San Lorenzo y la Súper-Unidad Cogoti, formada esta última por las unidades Fredes y Nogales (Parada et al., 1988; Rivano et al., 1993) además de los intrusivos hipabisales del Paleoceno-Eoceno.

Las rocas asignadas a la Unidad San Lorenzo se extienden a lo largo de toda la zona de estudio. Corresponden a pequeños cuerpos intrusivos dioríticos, pórfidos andesíticos y

andesitas de grano fino de color gris a gris verdoso y con texturas holocristalina porfírica hasta glomerofírica (Rivano, 1996). Estos cuerpos cortan rocas de las formaciones Las Chilcas y Salamanca (Rivano et al., 1993). Edades radiométricas K/Ar de esta unidad varían entre los 63+/-2 y 86+/-3 Ma (Camus et al., 1986; Rivano, 1996).

La unidad Fredes está representada por dioritas de piroxeno y hornblenda y cuarzo dioritas (Parada et al., 1988). Forma stocks de 20 a 100 km cuadrados aproximadamente con textura fanerítica de grano medio inequigranular y con tendencia porfídica (Rivano, 1996) que se emplazan en rocas de las formaciones Las Chilcas y Salamanca. Las edades radiométricas K/Ar varían entre los 68+/-10 y 45,5+/-1,2 Ma (Munizaga y Vicente, 1982; Parada et al., 1988; Rivano et al., 1993). Dentro de esta Unidad se encuentran los plutones Alicahue y Los Patos. La Unidad Nogales esta compuesta por leucogranitos de grano fino, de edad cretácico superior (Parada et al., 1988).

Los intrusivos hipabisales del Paleoceno–Eoceno corresponden tanto a stocks basálticos de piroxeno y olivino como félsicos que intruyen a los intrusivos del Cretácico Medio y a las formaciones Las Chilcas y Lo Valle, y más al sur a los Estratos del Cordón de los Ratones. Dataciones K/Ar tanto en roca total como en biotita entrega para estas rocas un rango de edad comprendido entre 64 Ma y 32 Ma, lo cual permite asignarles una edad Paleocena-Eocena (Wall et al., 1999; Sellés y Gana, 2001).

Intrusivos de la Franja Neogena

En esta franja se incluyen las unidades intrusivas Cerro Blanco, Portezuelo del Azufre y Tambillos, todas pertenecientes a la Súper-Unidad Río Chicharra (Rivano, 1996). Afloran al este de la Zona de Falla Pocuro a lo largo de toda la zona de estudio (Rivano et al., 1993). A modo de ser más específicos también se pueden encontrar grupos de intrusivos hipabisales del Eoceno superior-Mioceno inferior, intrusivos del Mioceno inferior, intrusivos del Mioceno superior e intrusivos Pliocenos-Pleistocenos.

La Unidad Cerro Blanco está constituida por cuerpos plutónicos monzodioriticos con hornblenda, clinopiroxenos y biotita (Parada et al., 1988), también existen monzonitas cuarcíferas, monzogranitos y granodioritas (Rivano, 1996). Afloran en la parte norte de la zona de estudio. Intruyen rocas de la Formación Abanico (SERNAGEOMIN, 2002). Las edades radiométricas K/Ar con que se cuentan de esta unidad varían entre los 19,5+/-0,5 y 12,1+/-0.9 Ma (Rivano, 1996; Parada et al., 1988; Rivano et al., 1993; Munizaga y Vicente, 1982; Vergara y Drake, 1978).

La Unidad Portezuelo del Azufre aflora a lo largo de toda la zona de estudio en forma de cuerpos pequeños que cortan rocas de las formaciones Abanico y Farellones (SERNAGEOMIN, 2002). Está formada por pórfidos cuarzo-feldespáticos, amarillos de grano fino. Presentan una textura porfírica, en algunos casos es microgranular (Rivano, 1996). Las edades radiométricas K/Ar que existen varían entre los 19,2+/-0,7 y 17,8+/-0,6 Ma (Rivano, 1996; Vergara et al., 1988).

La Unidad Tambillos corresponde a una serie de stocks y lacolitos, siendo sus principales cuerpos los plutones de los Columpios del Diablo, Rio Blanco y del Cerro la Gloria. Intruye rocas de la Formacion Farellones (Rivano, 1996). Las dataciones K/Ar para esta unidad dieron edades que varían entre los 9,8+/-0,3 y 6,5+/-0,5 Ma (Munizaga y Vicente, 1982).

Intrusivos hipabisales del Eoceno superior-Mioceno inferior: Esta unidad agrupa a stocks, filones manto, cuellos volcánicos y diques, cuya composición varía desde gabros a andesitas de piroxeno, formando cuerpos de tamaño inferior a 1 km² intruyen a las formaciones Las Chilcas, Lo Valle y Abanico. Los conductos alimentadores de estos cuerpos intrusivos (Gana et al., 1999) son propuestos y tienen edades y geoquímica similares a lavas de la Formación Abanico.

Intrusivos del Mioceno inferior: Corresponden a plutones cuyo rango de edad varía entre los 20 y 18 Ma. Intruyen a la Formación Abanico y su litología principal corresponde a granodioritas. Destacan dentro de este grupo el Plutón La Obra y el Plutón del Salto del Soldado (Vergara y Drake, 1978; Thiele, 1980; Kurtz et al., 1997). Kay y Kurtz (1995) describieron la similitud entre la química y edades del plutón La Obra y la franja oriental de Formación Abanico sugiriendo una relación genética entre ambos. A este grupo pertenecen los intrusivos Portezuelo del Azufre y Unidad Tambillos.

Intrusivos del Mioceno superior: Intrusivos cuyo rango de edad varía entre los 13 y 8 Ma, ubicados más al este de la franja de Intrusivos del Mioceno inferior. Destacan dentro de este grupo el plutón San Gabriel (unión ríos Volcán, Yeso y Maipo), Plutón La Gloria (río

Colorado), Batolito San Francisco (parte superior del río Río Blanco), Cerro Mesón Alto (CMA), e Intrusivo Colina (Portezuelo Colina). Las litologías principales de estos cuerpos corresponden a granodiorita, monzogranito y monzonita cuarcífera (Thiele, 1980; Kurtz et al., 1977; Deckart et al., 2005; Deckart y Godoy, 2006). En base a la edad, las características químicas y las relaciones de contacto de estos cuerpos intrusivos con la Formación Farellones, ha sido sugerida una relación genética entre ambos (Thiele, 1980; Kurtz et al., 1977, Deckart et al., 2005, Kay et al., 2005). A este grupo pertenece el intrusivo Juncal-Portillo.

Intrusivos Pliocenos-Pleistocenos: Se reconocen principalmente en la franja oriental del área de estudio. Se incluyen el Intrusivo Colina, edad 3,4+/-0,5 Ma (K/Ar, Ramos et al., 1997) y el Intrusivo Los Lunes, que tiene edades de 1,1+/-0,4 Ma, K/Ar en biotita (Godoy et al., 1994), 1,2+/-0,19 Ma y 1,05+/-0,02 Ma (⁴⁰Ar/³⁹Ar en hornblenda y biotita respectivamente; Baeza, 1999). Su litología corresponde a tonalitas para el intrusivo Colina y a pórfidos dacíticos de biotita para el caso del Intrusivo Los Lunes (Godoy, 1998; Baeza, 1999).

II.1.3 Estructuras

La zona estudiada se puede caracterizar por un sistema de fracturas de orientación promedio norte-sur, el cual atraviesa toda la zona a la longitud 70°W+-0.5°, corresponde a un sistema mayor definido entre los 32° y 33°30'S (Moscoso et al., 1982), en la Hoja Los Andes, este sistema de fracturas se ramifica, al sur del rio Aconcagua, para dar origen a dos zonas de falla:

Zona de Falla Chacabuco (Moscoso et al., 1982): de orientación general N30°E y pone en contacto a la Formación Abanico y Lo Valle

Zona de Falla Pocuro (Carter y Aguirre, 1965) presenta bastante continuidad con el sistema de fracturas norte-sur general entre los 32° y 36°S (Charrier et al., 2001). Esto se complementa con la presencia de fuentes termales en lugares cercanos a ella, además de la ausencia de registro de actividad moderna extrusiva lo que significaría una zona de debilidad estructural ligada a una fuente de energía térmica en profundidad (Lahsen, 1976).

Más al sur se puede encontrar dos fallas de proporción mayor (Espinoza y El Fierro), las cuales corresponden a fallas "thrust" de cabalgamiento con vergencia hacia el este de orientación N-S y que están localizadas al este de los afloramientos de la cuenca de Formación Abanico (Charrier et al., 2001).

La Falla Espinoza corresponde a una falla normal-invertida que muestra como afectó, el movimiento, la disconformidad basal y, la falla Fierro con estratos de crecimiento manteando hacia el oeste sugiere la existencia de una "cara-oeste" que controla la depositación de la Formación Abanico sobre BRCU en esta región (Charrier et al., 2001).

En cuanto a pliegues se puede observar que en la parte mas oriental corresponden a pliegues apretados donde los estratos de formaciones como Lagunillas y San José se disponen formando un anticlinal de rumbo promedio norte-sur e inclinaciones variables de 35°-70°W.

En el flanco occidental, menos inclinado, se ven algunas disarmonías de niveles de calcilutitas y, hacia el oeste, disminuye progresivamente su inclinación, hasta hacerse horizontal en un tramo de no más de 150 m.

La Formación Abanico presenta en este sector referido al flanco occidental sinclinales apretados de longitud de onda mediana (100 m) cuyos ejes son de rumbo promedio NS-N10°W pero que, sin embargo, muestran leves ondulaciones en el rumbo.

Al norte de los 32°45′, se presenta plegada en angostos sinclinales y anticlinales, de rumbo promedio norte-sur, en la franja oriental. Hacia el oeste, aumenta la longitud de onda de los pliegues, los que se transforman en leves ondulaciones apreciables solo a gran escala.

La Formación Farellones se encuentra suavemente plegada, en toda la zona de estudio. Sin embargo, en el cordón de Cerro La Parva-Cerro La Matancilla se observan dos casos de antiformas asimétricas, cuyos flancos llegan a ser verticales.

II.2 Antecedentes Bibliográficos

Kurtz et al. (1997) realizaron dataciones ⁴⁰Ar/³⁹Ar en minerales y roca total de granitoides del Mioceno al Pleistoceno en las cercanías del yacimiento El Teniente, ubicado en el antearco del extremo norte de la zona Volcánica Sur (SVZ). Dividió el conjunto de rocas en tres grupos:

1) Old Plutonic Complex que incluye al plutón La Obra con una edad de 19,6+/-0,5 Ma ⁴⁰Ar/³⁹Ar en biotita y 16,2+/-0,3 Ma en feldespato (Kurtz et al., 1997), el cual tiene afinidad química con las rocas de la Formación Coya-Machali y se ubica en el cordón occidental de la misma haciendo erupción a través de una corteza continental delgada y condiciones de baja presión y bajo contenido de agua. En este grupo se encuentran los plutones Santa Rosa de Rengo y La Obra, ya antes mencionado.

2) Complejo Plutónico El Teniente de una edad de 13-11 Ma, ⁴⁰Ar/³⁹Ar en biotita, que corresponde al grupo promedio 12 Ma y que incluye a plutones como Lago Yeso, Alfalfalito, San Gabriel y Romeral, y de 9-7 Ma, ⁴⁰Ar/³⁹Ar en biotita, que pertenece al grupo promedio 8 Ma al cual corresponden plutones como Estero Crucero, Carlota y Nacimiento Río Cortaderal y que tiene afinidad química con las rocas del complejo Miocénico de El Teniente (Formación Farellones), cuyas características indican erupción a través de una corteza más gruesa y condiciones de media a alta presión y humedad además de oxidación.

3) Complejo Plutónico Joven ubicado al este del anterior tiene una edad ⁴⁰Ar/³⁹Ar en biotita de 6,6+/-0,1 Ma y 5,5+/-0,2 Ma, poseen patrones empinados de tierras raras y una firma isotópica mas enriquecida que los intrusivos más antiguos, lo que es consistente con un emplazamiento en una corteza engrosada tectónicamente por la deformación del Mioceno tardío. A este grupo pertenecen los plutones Jeria y Cruz de Piedra.

Mediante las edades obtenidas en distintos minerales se calculó el alzamiento para cada grupo de plutones, siendo un alzamiento a tasas bajas (0,3-0,55 mm/año) para los plutones más antiguos mientras que los plutones más nuevos señalan un alzamiento consistente con la deformación regional (1,5-2,0 mm/año). En resumen entre los 26 a 16 Ma se observa un alzamiento regional a tasas bajas mientras que entre los 8 y 5 Ma un alzamiento a tasas

elevadas asociadas a deformación regional y migración del arco. El emplazamiento del depósito El Teniente está asociado con este último evento.

Garrido et al., (2002) proponen como génesis de mineralización de los cuerpos mineralizados Los Pelambres, Río Blanco-los Bronces y El Teniente, a la culminación de un evento hidrotermal y de mineralización que actuó progresivamente de norte a sur, relacionado con la progresiva subducción de la dorsal de Juan Fernández, en estrecha asociación con el emplazamiento de granitoides calcoalcalinos, fuertemente oxidados (razón Fe2O3/FeO=entre 1 y 3). Los fluidos mineralizadores estarían unidos en estrecha relación con la tectónica del momento. Existe una contaminación de corteza oceánica debido a las razones isotópicas de ⁸⁷Sr/⁸⁶Sr, además de un aporte por la deshidratación de la corteza subductante.

Yañez & Cembrano (2002) Proponen, en base a estudios de vectores tectónicos, un análisis mas local sobre los efectos de la incidencia de una dorsal pasiva como lo es la Dorsal de Juan Fernández, así como los efectos que podría tener la incidencia de una dorsal activa como lo es el Ridge de Chile. En el primer caso, que es el importante para este estudio, proponen que a través de un régimen transpresivo existen áreas localmente ubicadas donde se genera un efecto de transtensión.

Nystrom et.al., (2003) hacen hincapié en el carácter calcoalcalino del cinturón magmático Oligo-Mioceno. Concluyen que los magmas de la Formación Abanico fueron formados a profundidades mantélicas menos profundas que aquellas que formaron a la Formación Farellones, con los magmas parentales de la Fm Abanico segregados en el campo de estabilidad espinela-peridotita, mientras que los magmas de Formación Farellones muestran evidencia de granate residual en su fuente. Basados en razones de elementos traza Th/Yb vs Ta/Yb, Ta/Yb vs Ba/Th, Ba/La vs La/Yb, postula una contaminación cortical menor posiblemente incluyendo sedimentos. Basado en ɛNd vs razones iniciales de Sr⁸⁷/Sr⁸⁶ se sugiere un manto enriquecido en LILE y HFSE comparado con el manto astenosférico.

Deckart et al. (2005) identificaron la historia de la intrusión hipabisal y actividad hidrotermal de los depósitos y rocas huéspedes de Río Blanco mediante U-Pb y 40 Ar/ 39 Ar. Los depósitos de mena de Río Blanco se encuentran hospedados en rocas volcánicas de la Formación Farellones (16,8+/-0,3 Ma, 17,2+/-0,1 Ma U-Pb en circones), pero las principales

rocas cajas son las unidades del Batolito San Francisco (BSF) (Granodiorita Río Blanco 11,96+/-0,4 Ma; Granodiorita Cascada 8,40+/-0,23 Ma y diorita 8,16+/-0,45 Ma; U/Pb TIMS en circones). Como conclusión debido a la totalidad de los resultados obtenidos muestran un extenso traslape temporal entre el alto grado de mineralización Cu-Mo y el emplazamiento de pórfidos félsicos tardíos.

Kay et al. (2005) utilizaron muestras de rocas ígneas de la región norte del SVZ (aprox. 34°S), con datos de óxidos, elementos traza y razones isotópicas de Sr y Nd. Al graficar la relación entre SiO₂ y FeO/MgO se observa una progresión del campo toleítico al calcoalcalino (desde el Plutón La Obra a Complejo Plutónico Joven), la relación lineal que se observa entre ⁸⁷Sr/⁸⁶Sr y variaciones de Nd muestra resultados de un modelo de mezcla simple entre magma basáltico de Formación Coya Machali (Abanico) y la corteza continental del Paleozoico tardío. Según ellos existe un engrosamiento cortical progresivo hacia el norte entre los 38°S hasta los 33°S además de una baja progresiva en el ángulo de subducción donde el slab subductante se transforma en un ángulo de subducción más plano hacia el norte. Se propone para el Mioceno temprano a medio una corteza de espesor cercano a 40 km en los 36°S mientras que para el Mioceno tardío se tiene una corteza de espesor de 50-55 km a los 35°-34°S.

Se postula un cambio correlativo de más a menos LILE-HFSE a la fuente mantélica además hace hincapié en la no existencia de una relación entre ϵ Nd y SiO₂ mostrando que no existe una contaminación cortical

También existe una migración frontal del arco entre los 19-16 Ma en un régimen tectónico netamente compresional y entre los 7-3Ma. Todo esto en dirección hacia el este.

Montecinos et al. (2008) presenta nuevos datos geocronológicos para el cinturón magmático Oligo-Mioceno específicamente en la zona cercana a Portillo, este cinturón abarca desde los 23°-35°S (Nystrom et al., 2003). En los diagramas TAS y AFM las rocas siguen la típica tendencia de diferenciación de magmas calco-alcalinos con medio-K. A través de isotopos de Pb, Sr, Hf principalmente en base a este último genera un modelo petrogenético para la zona que consiste en una fuente de manto litosférico viejo de una edad de 2 Ga., metasomatizado e inducido por fluidos incluyendo una pendiente débil a moderada LILE/HFSE con altas razones isotópicas de 238 U/ 204 Pb.

A través de datos U-Pb en circón confirman un periodo de magmatismo que va desde los 28,1-11,5 Ma. Agregando datos antiguos, el periodo de magmatismo es entre los 28,8 Ma y 5,2 Ma.

Además presenta pruebas de fusión parcial del manto y cristalización fraccionada en ambos, espinel y granate peridotita como muestras básicas.

A través de isótopos de Sr presentan valores de 87 Sr/ 86 Sr =0.704-0.705 lo que implica una contaminación cortical litosferica de menos del 5% asociando que mientras mas radiogénica se vuelva la corteza menor será la contribución de fundido cortical, todo esto sobre la base de la contaminación cortical que posee el manto.

Finalmente sobre la base de altos contenidos de ²⁰⁷Pb postula el necesario componente de fuente Precámbrica vieja.

Por la presencia de pequeñas cantidades de ²⁰⁷Pb radiogenico en previos y nuevos estudios de U-Pb de circones del cinturón magmático se habla de circones heredados extraídos de fuentes magmáticas asociados al manto litosférico y a la corteza subcontinental.

En cualquier caso la fuente última de herencia de estos circones es la corteza continental ya sea integrado al manto subcontinental durante subducción antigua o directamente extraído desde la corteza sobreyacente por la ascención de magma derivados del manto.

III. PETROGRAFÍA, GEOQUÍMICA Y GEOCRONOLOGÍA DE LOS INTRUSIVOS JUNCAL-PORTILLO, PORTEZUELO DEL AZUFRE, UNIDAD TAMBILLOS Y OTRAS INTRUSIONES EN LAS FORMACIONES ABANICO Y FARELLONES

III.1 Petrografía

III.1.1 Clasificación microscópica

A continuación se muestran las descripciones microscópicas (cortes transparentes) de este estudio, (para mayor conocimiento ver anexo A y B)

Muestra	Clasificación Microscópica	
CAL-1	Monzodiorita CuarcÍfera	
CAL-2	Granitoide rico en cuarzo	
CAL-3	Tonalita	
CAL-4	Granitoide rico en cuarzo	
JUNC-1	Diorita CuarcÍfera	
JUNC-2	Diorita CuarcÍfera	
PORT-1	Tonalita	
PORT-2	Granodiorita	
QP-1	Diorita CuarcÍfera	
QP-2	Diorita CuarcÍfera	
OMAR-1	Granodiorita PorfÍrica	
OMAR-3	Tonalita	
OMAR-4	Diorita PorfÍrica	

III.1.2 Clasificación Normativa

Norma CIPW

La norma CIPW se calculó en planilla Excel programada para este fin. Los minerales normativos para las muestras en general corresponden a cuarzo, plagioclasa, ortoclasa, diópsido, hiperstena, ilmenita, magnetita, apatito y circón (Anexo C).

Los resultados de contenido de anortita, albita y ortoclasa se muestran en la tabla III-1 que se ve a continuación:

Muestra	Anortita(%)	Albita(%)	Ortoclasa (%)
JUNC-1	22,1	37,1	11,6
JUNC-2	25,1	36,3	9,5
PORT-1	16,2	34,6	18,5
PORT-2	14.9	36.7	18,7
QP-1	9.4	34.9	20.9
QP-2	9.03	32.4	24.2
OMAR-1	6.5	36.0	35.2
OMAR-3	17.5	35.0	17.5
OMAR-4	16,6	39,5	16,4

Tabla III-1. Contenidos de An-Al-Or para las muestras en estudio.

III.1.3 Clasificación geoquímica

Se analizará el conjunto de muestras correspondiente a las dos zonas de estudio, las correspondientes a la zona de Portillo y las correspondientes a la zona de Alicahue. En el diagrama Q`F´ vs ANOR (Figura III.1) se ven todas las muestras cuyos análisis geoquímicos arrojan las siguientes clasificaciones:

Muestra	Descripción	LEYENDA		
JUNC-1	Cuarzo Diorita	Zona Portillo		
JUNC-2	Diorita		JUNC-1	
PORT-1	Monzodiorita Cuarcífera		JUNC-2	
PORT-2	Monzodiorita Cuarcífera		PORT-2	-
QP-1	Granodiorita	Zona Alicahue	1011-2	•
QP-2	Granodiorita		Qp-1	\diamond
OMAR-1	Cuarzo Syenita		Qp-2	\diamond
OMAR-3	Monzodiorita		Omar-1	∇
OMAR-4	Monzodiorita]	Omar-3 Omar-4	▼ ▽

Figura III.1. Diagrama Q'F' vs ANOR Streckeisen and le Maitre (1979).

III.2 Geocronología

A continuación se presenta la serie de datos geocronológicos tanto de la bibliografía como de los análisis efectuados en este trabajo. En Kurtz et al. (1997), se establecen tres grupos de plutones determinados por las edades:

Plutones antiguos representados por La Obra (17 Ma)

Complejo Plutónico Teniente, en el que existen dos edades características (12 Ma y 8 Ma)

Complejo Plutónico Joven (6Ma). La edad de la mineralización en el yacimiento Río Blanco-Los Bronces se presentan incluidos en estos grupos.

En Montecinos et al. (2008) se obtuvieron las siguientes edades para la franja magmática Oligo-Mioceno en y cerca de la zona Portillo vista en este trabajo. (Tabla III-2).

Tabla III-2. Datos geocronológicos intrusivo Juncal-Portillo, U-Pb en circones (Montecinos et al., 2008)

Muestra	Descripción	EdadU-Pb (Ma)
Ab-134	Diorita	12,28+/-0,15
Ab-132	Granodiorita	11,53+/-0,19

Para el prospecto de Cu-Au AMOS ubicado en la zona de Alicahue en territorio Chileno-Argentino se tienen dos edades K-Ar en biotita, este prospecto se encuentra en una zona cercana a la muestra Omar-4 (Tabla III-3).

Tabla III-3. Datos geocronológicos prospecto Cu-Au AMOS (Espinoza, 1996)

Muestra	Edad K-Ar(Ma)	
AM1B	9,9 +/-0.5	
AM1C	8,9 +/-0.5	

A continuación en la tabla III-4 se presentan los datos geocronológicos obtenidos en este trabajo para las muestras Omar-1, Omar-4 y QP-1.
Tabla III-4. Edades U-Pb para zona Alicahue

Muestra	Descripción	EdadU-Pb (Ma)
Omar-1	Pórfido Dacítico	17,6 ± 0.2
Omar-4	Pórfido Andesítico	8,9 ± 0.1
QP-1	Diorita	14,6 ± 0.1

En la Tabla III-5 se muestra un resumen con las edades de los más importantes intrusivos Miocenos en la zona comprendida entre los 32°S y los 34°S.

Tabla III-5. Edades Intrusivos entre la zona 32°-34°S, tomada de Jerez (2007)

Intrusivo	Edad	Método	Autor		
La Obra	21,6 ± 4,9 Ma	⁴⁰ Ar/ ³⁹ Ar en hornblenda	Kurtz et al., 1997		
	19,6 ± 0,5 Ma	[⊷] Ar/ ³⁹ Ar en biotita	Kurtz et al., 1997		
	16,2 ± 0,3 Ma	[⊷] Ar/ ^{ae} Ar en feldespato	Kurtz et al., 1997		
Santa Rosa de Rengo	16,2 ± 1,2 Ma	⁴⁰ Ar/ ³⁹ Ar en hornblenda	Kurtz et al., 1997		
Diorita de Hornblenda (LB)	18,5±1,7 Ma	K-Ar en hornblenda	Warnaars et al., 1985		
Alfalfalito	12,3 ± 0,2 Ma	[⊷] Ar/ ³⁹ Ar en biotita	Kurtz et al., 1997		
San Gabriel	11,4 ± 0,2 Ma	⁴⁰ Ar/ ³⁹ Ar en biotita primaria	Kurtz et al., 1997		
Romeral	11,3 ± 0,3 Ma	[⊷] Ar/ ³⁹ Ar en biotita	Kurtz et al., 1997		
	11,9±0,4 Ma	U/Pb en Circón	Deckart et al., 2005		
Granodiorita Río Blanco (BSF)	11,6 ± 0,1 Ma 10,9 ± 0,3 Ma,	⁰Ar/ ^{as} Ar en biotita	Deckart et al., 2005		
	11,7 ± 0,9 Ma	K-Ar en biotita	SERNAGEOMIN. unpub. report (1988)		
Cerro Mesón Alto (CMA)	12,4 ± 2,5Ma	⁴⁰ Ar/ ³⁹ Ar en hornblenda	Kurtz et al., 1997		
	11,3 ± 0,1 Ma	U/Pb en circón	Deckart and Godoy 2006		
Plutón La Gloria (LGP)	10,3 ± 0,2Ma	U/Pb en circón	Deckart and Godoy 2006		
Tonalita Los Pelambres	12	U/Pb intercepto inferior	Bertens et al. 2006		
Cuerpos centrales Los Pelambres	12,5 -13,9Ma	U/Pb circón	Bertens et al. 2006		
Diorita de Hornblenda Los Bonces (BSF)	12 ± 0,5 Ma	K-Ar en biotita	Warnaars et al. 1985		
Estero Crucero	8,8 ± 0,1 Ma	[⊷] Ar/ ³⁹ Ar en biotita	Kuntz et al., 1997		
Carlota	8,7 ± 0,3 Ma	[⊷] Ar/ ³⁹ Ar en biotita	Kurtz et al., 1997		
Nacimiento Río Cortaderal	8,4 ± 0,3 Ma	⁴⁰ Ar/ ³⁹ Ar en biotita	Kuntzetel 1997		
	7,7 ± 0,1 Ma	[⊷] Ar/ ^{ae} Ar en feldespatp K	Kurtz et al., 1997		
Granodiorita Cascada (intrusivo en BSF)	8,4 ± 0,2 Ma	U/Pb en Circón	Deckart et al., 2005		
Diorita (intrusivo en BSF)	8,2 ± 0,5 Ma	U/Pb en Circón	Deckart et al., 2005		
Americanita I. e.e. Durana e.a. (I. D.)/DOD.)	8,6 ± 0,1 Ma 8,4 ± 0,2 Ma	K-Ar en plagioclasa	Vergara y Drake(1979)		
Granodiorita Los Bronces (LB)(BSF)	8,6 ± 0,9 Ma	K-Ar en hornblenda	Warnaars et al., 1985		
	7,9 ± 0,4 Ma	K-Ar en biotita			
Jeria	6,6 ± 0,1 Ma	⁴⁰ Ar/ ³⁹ Ar en biotita	Kurtz et al., 1997		
Cruz	5,5 ± 0,2 Ma	⁴⁰ Ar/ ³⁹ Ar en biotita	Kurtz et al., 1997		
Diorita (BSF)	4,6 ± 0,1 Ma	⁴⁰ Ar/ ³⁹ Ar en biotita secundaria	Deckart et al. 2005		

III.3 Geoquímica

En este subcapítulo se exponen los análisis geoquímicos de los intrusivos para las dos zonas, como antes se mencionaba zona de Portillo donde vemos el intrusivo Juncal-Portillo y que corresponden a las muestras Port-1, Port-2, Junc-1, Junc-2, mientras que para la segunda zona de Alicahue se exponen los análisis geoquímicos de las muestras QP-1, QP-2, Omar-1, Omar-3, Omar-4. El análisis de elementos mayores y de REE fue hecho por el laboratorio Actlabs usando el paquete analítico XRF-4C, mientras que el de elementos traza por paquete analítico ICP-MS 4B-2 STD.

III.3.1 Clasificación Geoquímica y Alcalinidad

En la Figura III-2 se tiene un diagrama TAS en el cual se observan los campos en los cuales se plotean las muestras, estas muestras corresponden al campo subalcalino.

Figura III-2. Diagrama de clasificación TAS para rocas plutónicas (Cox et al., 1979)

Según la Figura III.3 en el triangulo AFM se observa que las rocas siguen una tendencia de diferenciación calco-alcalina para la zona Portillo. En el caso de la zona Alicahue no es posible establecer esta tendencia por su diversidad de edades:

Figura III.3. Diagrama AFM de Irvine Baragar (1971).

Para la zona Portillo (trazado azul) existe esta diferenciación y una tendencia de la misma siguiendo los patrones de Irving-Baragar (1971), esto es una secuencia compuesta por Port-2, Port-1, Junc-1 y Junc-2. Todo esto encaja con la tendencia de diferenciación sobre la base del FeO total / MgO; por otro lado en los diagramas Harkers se tiene una diferenciación en base a SiO2. (ver capitulo siguiente).

Además, complementando en la Figura III.4 se puede observar que la mayoría de las muestras corresponden a las series calco-alcalinas de alto-K, a excepción de la muestra Omar-1 que plotea en el campo de las series shoshoníticas. El alto contenido en K puede indicar también una alteración potásica más pronunciada que observada en las otras muestras.

Figura III.4. Diagrama de clasificación para series subalcalinas K2O vs SiO2 de Peccerillo y Taylor (1976).

En resumen podemos decir que las muestras en general siguen una diferenciación de series subalcalinas, calco-alcalinas de alto K.

Diagramas Harker

III.3.2 Elementos Mayores

La Figura III.5 corresponde al diagrama Harker para Fe_2O_3 , se observa una tendencia de diferenciación de pendiente negativa para la zona de Portillo a medida que aumenta el contenido de SiO₂, esto involucra que la tendencia de diferenciación para la zona de Portillo tiene un orden de diferenciación Junc-2, Junc-1, Port-2 y Port-1. En el caso de la zona de Alicahue no se puede formar una tendencia de diferenciación ya que son de distintas edades, pero en base a su contenido de SiO₂ el orden que se tiene es Omar-3, Omar-4, Omar-1, QP-1 y QP-2. (análisis geoquímicos: Anexo C).

La muestra Omar-3 tiene un contenido de Fe_2O_3 mayor que los del resto de las muestras pertenecientes a la zona de Alicahue, las demas muestras plotean en torno al 4 % en peso mientras que Omar-3 plotea en torno al 6 % en peso.

Figura III.5. Diagrama Harker para Fe₂O₃

Para la Figura III.6, diagrama Harker de Al_2O_3 , la tendencia de diferenciación arroja una correlación negativa para la zona de Portillo con una pendiente más empinada que para el diagrama Harker anterior, mientras que para la zona de Alicahue se tiene un promedio de 16,5 % en peso para el conjunto de muestras, sin grandes variaciones en los valores de estas mismas

Figura III.6. Diagrama Harker para Al₂O₃

Para la Figura III.7, diagrama Harker para MnO, se observa una correlación negativa de las muestras pertenecientes a la zona de Portilo. Para la zona de Alicahue se tiene que la muestra Omar-3 presenta un contenido de 0,1 % en peso, mientras que las demás muestras plotean en torno a 0,05 % en peso.

Figura III.7. Diagrama Harker para MnO

Para la Figura III.8, diagrama Harker para el MgO, se tiene una correlación negativa para las muestras pertenecientes a la zona de Portillo, mientras que para la zona de Alicahue la

muestra Omar-3 presenta un 3 % en peso, no asi las demás muestras que plotean en torno al 1 % en peso de MgO

FiguraIII.8. Diagrama Harker para MgO

Para la Figura III.9, diagrama Harker para CaO, se tiene también una correlación negativa para las muestras pertenecientes a la zona de Portillo, mientras que para la zona de Alicahue las muestras Omar-3 y Omar-4 plotean en torno a los 5 % en peso, sin embargo, para el resto de las muestras el contenido de CaO se encuentran en torno al 2 % en peso.

Para la Figura III.10, diagrama Harker para Na_2O , se tiene una correlación paralela para la zona de Portillo cercano al 4,5 % en peso, mientras que para la zona de Alicahue la muestra Omar-4 se acerca al 5 %, el resto de las muestras plotean entorno al 4,2 % en peso.

FiguraIII.10. DiagramaHarkerparaNa₂O

Para la Figura III.11, diagrama Harker para K_2O , se tiene una correlación positiva para la zona de Portillo mientras que para la zona de Alicahue las muestras plotean en torno al 3 % en peso a excepción de la muestra Omar-1 que se acerca al 6 % en peso y corresponde a la muestra shoshonitica (ver Figura III.4).

Para la Figura III.12, diagrama Harker para TiO_2 , se tiene una correlación negativa para la zona de Portillo, mientras que para la zona de Alicahue la muestra Omar-3 muestra un contenido cercano al 1 % en peso, en cambio las demás muestras plotean en torno al 0,6 % en peso.

Figura III.12. Diagrama Harker paraTiO₂

Para la Figura III.13, diagrama Harker para P_2O_5 , se tiene una correlación negativa para la zona de Portillo, mientras que para la zona de Alicahue, Omar-3 muestra un contenido de 0,3 % en peso, Omar-4 de 0,2 % en peso y las demás muestras plotean en torno a 0,1 % en peso.

Figura III.13. Diagrama Harker para P₂O₅

En resumen para la zona de Portillo se tiene una tendencia de diferenciación con pendiente de correlación negativa a excepción de los elementos K_2O y Na_2O , los cuales plotean correlaciones de pendiente positiva y paralela respectivamente.

III.3.3 Elementos trazas

Elementos Compatibles: Metales de Transición

Los elementos correspondientes a esta sección son Cr, Ni, V, Co, Sc, Zn los que clásicamente se consideran compatibles por su afinidad con fases minerales básicas y por sus características físicas y químicas muy similares. Cabe hacer notar que los elementos como V, Mn, Co, Ni, Cu y Zn son elementos incompatibles con fuentes mantélicas.

En relación con Ni y Cr no se realizaran los diagramas Harker correspondientes ya que la mayoría de las muestras, sobretodo para la zona de Portillo, tienen contenidos por debajo del límite de detección, esto es de 20 ppm para ambos elementos, en este sentido cabe mencionar que las muestras QP-1 y QP-2 presentan valores, para el Cr, de 120 y 100 ppm respectivamente.

En relación con el Sc (Figura III.14) se tiene una tendencia de correlación negativa para la zona de Portillo. Para la zona de Alicahue la muestra Omar-3 muestra un contenido de 15 ppm mientras que las demás muestras plotean en torno a los 7 ppm.

Para la Figura III.15, diagrama Harker para V, se tiene una correlación negativa para la zona de Portillo, mientras que para la zona de Alicahue la muestra Omar-3 presenta un valor de 150 ppm, el resto de las muestras plotean en torno a los 50 ppm.

Figura III.15. Diagrama Harker para V

Para la Figura III.16, diagrama Harker para Zn, se tiene una correlación negativa para la zona de Portillo, mientras que para la zona de Alicahue las muestras plotean en torno de los 70 ppm.

En resumen se tiene una tendencia de diferenciación de pendiente negativa para Sc, V y Zn en la zona de Portillo, mientras que para los elementos Cr y Ni no es posible interpretar algún comportamiento ya que la mayoría de las muestras tienen un contenido por debajo del límite de detección.

Elementos de Alto Potencial Iónico (HFSE o High Field Strenght Element) e Incompatibles

Los elementos que ingresan a esta sección corresponden a Th, Y, Zr, Hf, Nb y Ta. Estos se caracterizan por poseer un alto radio iónico y una alta carga lo que los hace altamente incompatibles en la mayoría de las fases minerales.

Para la Figura III.17, diagrama Harker para Th se tiene una correlación positiva para las muestras de la zona de Portillo, mientras que para la zona de Alicahue, Omar-3 presenta un contenido cercano a los 16 ppm, Omar-4 tiene un contenido de 4 ppm, las demás muestras bordean los 12 ppm. Omar-4 se considera una muestra alterada.

Figura III.17. Diagrama Harker para Th

En el caso del Y (Figura III.18) se tiene una correlación negativa para la zona de Portillo, mientras que para la zona de Alicahue Omar-3 y Omar-1 presentan contenidos de 25 ppm, las demás muestras plotean en torno a los 5 ppm.

Figura III.18. Diagrama Harker para Y

Para Hf (Figura III.19) se tiene una correlación positiva para la zona de Portillo mientras que para la zona de Alicahue la muestra Omar-3 presenta un valor cercano a 8 ppm, las demás plotean en torno a los 5 ppm a excepción de Omar-1 que presenta una singular cantidad (14 ppm), y que se debe a que es una muestra alterada.

En el caso del Zr (Figura III.20) se tiene una tendencia de diferenciación de pendiente positiva casi paralela para la zona de Portillo, en cambio para la zona de Alicahue se tiene un promedio de 200 ppm para las muestras a excepción de la muestra Omar-1 que plotea con un contenido sobre 600 ppm siendo una muestra alterada.

Figura III.20. Diagrama Harker para Zr

Para el elemento Nb (Figura III.21) se tiene una correlación positiva para la zona de Portillo sin grandes variaciones.Para la zona de Alicahue las muestras Omar-3 y Omar-1 presentan contenidos de 8 ppm mientras que las demás muestras plotean en torno a los 4,5 ppm.

Para el elemento traza Ta (Figura III.22) se tiene una correlación positiva para la zona de Portillo mientras que para la zona de Alicahue las muestras plotean en torno a 0,6 ppm a excepción de la muestra Omar-1 que muestra 1 ppm de contenido.

Figura III.22. Diagrama Harker para Ta

En resumen podemos decir que existe una correlación positiva para la zona de Portillo sin grandes observaciones tanto como para Th, Hf, Zr, Nb y Ta, no así para el Y, en el cual existen variaciones en torno a la línea de correlación. En el caso de la zona de Alicahue podemos decir que la muestra Omar-1 y Omar-3 presentan valores altos anómalos en comparación con el resto de las muestras, para Y, Hf y Nb, mientras que para Zr y Ta la muestra Omar-1 presenta valores altos en comparación con el resto de la zona.

Para Th en cambio las diferencias están dadas para la muestra Omar-4 empobrecida en este elemento y la muestra Omar-3 que se ubica por el contrario enriquecida con respecto al resto de las muestras.

De lo anterior podemos concluir que básicamente Omar-1, Omar-4 y Omar-3 presentan rasgos de alteración y a consecuencia se observan más grandes variaciones geoquímicas que en las otras muestras.

Elementos de Baja Carga y Gran Radio Iónico (LILE o Large Ion Lithofile Elements)

Los elementos que corresponden a esta sección son Ba, Rb y Sr. Estos se caracterizan por poseer un gran radio iónico y una baja carga por lo cual son comúnmente denominados como LILE o Large Ion Lithofile Elements. Estas características los hacen altamente móviles e incompatibles.

En la Figura III.23, diagrama Harker para Rb, se observa una tendencia de pendiente positiva para las muestras correspondientes a la zona de Portillo. En el caso de las muestras correspondientes a Alicahue estas plotean en el campo de promedio 100 ppm mientras que Omar-1 muestra un contenido de mas de 160 ppm, Omar-3 plotea cercano a los 140 ppm.

Figura III.23. Diagrama Harker para Rb.

Para la Figura III.24, diagrama Harker para Sr, se tiene una correlación negativa para la zona de Portillo con algunas variaciones respecto a la tendencia principal, mientras que para la zona de Alicahue la muestra Omar-4 presenta el mayor valor (sobre 600 ppm), la muestra Omar-3 presenta un contenido de 350 ppm y Omar-1 presenta el más bajo valor cercano a 150 ppm, las muestras QP-1 y QP-2 presentan un valor promedio de 400 ppm.

Para la Figura III.25, diagrama Harker para Ba, se tiene una correlación positiva para la zona de Portillo, mientras que para la zona de Alicahue, la muestra Omar-3 presenta la más baja concentración de 400 ppm, las demás muestras plotean en el campo promedio de 700 ppm.

Figura III.25. Diagrama Harker para Ba

III.3.4 Tierras Raras (REE)

Figura III.26. Diagrama REE para zona Portillo normalizado a condrito (Nakamura, 1974)

En la Figura III.26 se tiene el patrón de REE para la zona Portillo en la cual se muestra un patrón más o menos igual para todas las muestras pertenecientes a esta zona, la cual consiste en un enriquecimiento en tierras raras livianas (LREE) con una anomalía negativa de Eu para la muestra Port-2, que justificaría la asociación que se tiene con la zonación de plagioclasas y la presencia de microclina con macla de Carlsbald, en cambio se tiene una anomalía positiva de Eu para la muestra Port-1, esto estaría diciendo que también existe una ligera influencia por cristalización fraccionada con relación a piroxenos, hornblenda o granate (Rollinson, 1993) (Anexo A). Por otro lado un cambio en la actividad de oxigeno también podría provocar una anomalía positiva de Eu.

Las HREE se encuentran empobrecidas aunque existe una diferenciación del patrón de tendencia para las cuales las muestras Junc-1 y Port-1 son las más visiblemente afectadas, (es decir son las mas empobrecidas con respecto a las muestras Junc-2 y Port-2), esto podría estar indicando un proceso de alteración o un metamorfismo de bajo grado (Rollinson, 1993) (ver anexo A) o también una indicación de granate en la fuente.

En la Figura III.27 se tiene el patrón de REE para la zona Alicahue en la cual se muestra una gráfica dividida en dos subpatrones, uno está compuesto por las rocas Omar-3, QP-1 y QP-2 en la cual se tiene una alta pendiente con un enriquecimiento en tierras raras livianas(LREE) y un empobrecimiento en HREE y sin una anomalía de europio, mientras que en el segundo subpatrón, que lo componen las muestras Omar-1 y Omar-4 se tiene un enriquecimiento en tierras raras livianas(LREE) con una pendiente que se curva cada vez mas a una tendencia paralela, (es decir un enriquecimiento en HREE), además de una anomalía negativa de Eu muy marcada.

Figura III.27. Diagrama REE para zona Alicahue normalizado a Condrito (Nakamura, 1974)

De los gráficos anteriores se podría interpretar un grado de fusión parcial para las muestras analizadas (Rollinson, 1993), para las dos zonas, las cuales se ven afectadas por un enriquecimiento grande de LREE y un empobrecimiento leve para HREE.

III.4 Cristalización Fraccionada

Figura III.28. Diagrama Sr-Ba para identificación de grados de cristalización fraccionadan (Rollinson, 1993)

El diagrama de vectores minerales muestra una tendencia de cristalización fracionada en una fuente granítica que contiene para la zona de Portillo 500 ppm de Sr y 300 ppm de Ba mostrandose en la interseccion de las lineas de cristalización fraccionada para plagioclasa (CF Pg) y piroxenos (CF Px) como el contenido de la fuente misma. El gráfico coincide con el análisis petrográfico de microscopía en cuanto a que principalmente se observa una zonación de plagioclasas evidente en las muestras Port-1 y Port-2, se infiere a través del gráfico que también debe haber una componente de cristalización fraccionada en cuanto a lo que es piroxenos. Para la zona de Alicahue no es posible de aplicar el gráfico ya que son muestras de distintas edades.

IV. PETROGENESIS

IV.1 Discriminación Tectónica y Fuentes Magmáticas

Skewes y Stern (1996) proponen para la zona de estudio un decrecimiento progresivo del ángulo de subducción bajo el SVZ donde la actividad ígnea va migrando hacia el este.

Para esta zona se propone un engrosamiento cortical debido al acortamiento de los Andes (Skewes et al., 1991; Kurtz et al., 1997) y una contaminación cortical producida por la erosión por subducción del antearco (Kay et al., 2005).

En la Figura IV.1 se puede observar, para el contexto de las muestras estudiadas, un ploteo de las mismas pertenecientes a un arco volcánico, atribuible a la subducción entre la placa de Nazca-Farallon y la placa Sudamericana.

Para la determinación de la fuente se ocuparon diagramas multi-elementos normalizados al manto primordial, corteza inferior, MORB y E-MORB.

IV.1.1 Diagramas multielementos

En la Figura IV.2 para la zona Portillo se presentan las muestras normalizadas a manto primordial y en las que se observa un patrón de LILE-HFSE de un tipo de pendiente suave donde existen dos tendencias claras, una corresponde a las muestras Junc-1 y Junc-2, la cual no presenta mayores anomalías más que la correspondiente a Y, y que contiene las concentraciones más altas de Rb, Ba, Th en las muestras, comparando al manto primordial. Se puede decir que esta tendencia muestra una leve anomalía negativa en K, que coincide en la concentración de este elemento tanto para Junc-1 como para Junc-2, además se observa que existe una pequeña anomalía de Nd para luego presentar la caída de los HFSE desde el Zr hasta el Lu, mostrando concentraciones cercanas a la concentración del manto primordial. La segunda tendencia, que corresponde a las muestras Port-1 y Port-2, contiene una anomalía positiva de K, una anomalía fuerte de Y para la muestra Port-1, mientras que esta anomalía de Y no es tan fuerte para Port-2 en cuanto se acerca menos a la composición del manto primordial, esta tendencia tiene una pendiente LILE-HFSE más clara y con un empobrecimiento en HFSE más marcado.

Figura IV.2. Diagrama multielementos normalizado a manto primordial para zona de Portillo (Mc Donough & Sun, 1995).

En la Figura IV.3, para la zona de Alicahue, se tienen dos tendencias claras, una corresponde al conjunto de muestras compuestas por QP-1, QP-2, Omar -1 y Omar-4, las cuales presentan un enriquecimiento sustantivo en Rb, Ba, Th, Nb y Ta comparando al manto primordial con una anomalía positiva de K, luego existe una fuerte baja produciendo una pendiente LILE-HFSE sustancialmente fuerte, con anomalías positivas de Zr y anomalías negativas de Sr e Y. Para la muestra Omar-1 estas anomalías se presentan con más intensidad a excepción del Y, debido a que es la muestra más enriquecida, además de ser la muestra más antigua. Por otro lado la otra tendencia la hace Omar -3 la cual parece mostrar una forma irregular con anomalías negativas de Sr e Y y una anomalía positiva de Zr, se muestra enriquecida en Rb, Ba, Th, Nb y Ta (relativo al manto primordial) pero menos que las otras muestras.

Figura IV.3. Diagrama multielementos normalizados a manto primordial para la zona de Alicahue (Mc Donough & Sun, 1995)

En la Figura IV.4 correspondiente a la zona Portillo se tiene una tendencia única que corresponde claramente a una pendiente plana con anomalías positivas de Rb, K, Hf y una anomalía negativa de Zr, lo importante de este gráfico es la similitud de la composición de las rocas con las de un modelo de corteza inferior. Según Montecinos et al. (2008), el cual hizo un estudio, sobre la base de isótopos, admite que habría una contaminación cortical, pero que esta seria menor a medida que esta corteza fuera mas radiogénica, y según este autor tendría un valor de 0,704-0,705 de ⁸⁷Sr/⁸⁶Sr lo cual arrojaría una contaminación cortical inferior menor que el 5%.

Respecto a la anomalía de Rb tal cantidad podría ser asignada a una corteza superior asimilada, según Montecinos et al. (2008) existen muestras asociadas a una proveniencia de sedimentos del Pacifico.

Figura IV.4. Diagrama multielementos normalizados a corteza inferior para la zona de Portillo (Weaver y Tarney, 1984).

Por otro lado en la zona Alicahue se tiene, anulando las anomalías, una tendencia plana, con sus respectivas diferencias en los contenidos de HFSE finales donde las muestras QP-1 y QP-2 siguen una tendencia diferente a las de Omar-1, Omar-3 y Omar-4 pero en conjunto presentan anomalías positivas de Rb, K, Hf e Y, mientras que las anomalías negativas son de Ba, Nb, Sr y Zr (Figura IV.5), esto indica una componente de asimilación cortical posiblemente de corteza superior.

Figura IV.5.Diagrama multielementos normalizados a corteza inferior para la zona de Alicahue (Weaver y Tarney , 1984.)

Como se ve en la Figura IV.6 a modo general se tiene una pendiente LILE-HFSE fuerte en donde los LILE están enriquecidos con respecto a MORB mientras los HFSE tienen una estructura parecida a MORB.Se ve además en lo correspondiente a los valores de Th/U, los cuales son para la zona de Portillo (Th/U=5.6) relativamente más altos que los valores de MORB Pacífico (Th/U=3.7-3.8) mientras que para la zona de Alicahue son consistentemente más bajos (Th/U=3.7).

Figura IV.6. Diagrama multielementos normalizados a MORB para la zona de Portillo (Bevins et al., 1984)

Para la zona Alicahue (Figura IV.7) se tiene una pendiente LILE-HFSE de pendiente abrupta al igual que la zona Portillo esto indica la diferenciación con respecto a MORB donde los componentes HFSE se mantienen muy parecidos a esta signatura. En este caso se tienen anomalías significativas negativas de Sr e Y mientras que se tienen anomalías positivas para Hf y Zr donde Omar-1 presenta la más significante anomalía.

Para ambas zonas se tiene un enriquecimiento notable en lo que es Rb, Ba y K₂O.

Figura IV.7. Diagrama Multielementos normalizado a MORB para la zona de Alicahue (Bevins et al., 1984)

Para la Figura IV.8 ,diagrama multielementos normalizados a E-MORB para la zona de Portillo, se tiene un patrón de normalización de pendiente plana para las HFSE mientras que los LILE presentan anomalías significativas, ya sea negativas como lo es para Rb, Ti, Nb y Ta tanto como positivas como lo es para Th, U,La , Pb y Sr.

Esto indica la similitud de concentración para un modelo de MORB enriquecido ligeramente en LILE.

Figura IV.8. Diagrama multielementos normalizados a E-MORB para la zona de Portillo (Niu & O'Hara, 2003)

En la Figura IV.9 se tiene un patrón LILE-HFSE de pendiente pseudo-plana con anomalías positivas de Pb, U, Rb y Ba mientras que se tiene también anomalías negativas de Ti, Nb, Ta y en parte de Y.

Figura IV.9.Diagrama multielementos normalizado a E-MORB para la zona de Alicahue (Niu & O'Hara, 2003)

En resumen podemos decir que las muestras tanto para la zona de Portillo como para la zona de Alicahue siguen un patrón de MORB enriquecido, atribuible a una posible asimilación de corteza continental por la presencia de anomalías negativas de Nb.

IV.2 Engrosamiento Cortical y Análisis de Composición

En la Figura IV.10 se tiene un resumen de las composiciones de las distintas muestras analizadas en este estudio en las cuales las muestras correspondientes a Alicahue Omar-4, QP-2 y QP-1, y las correspondientes a la zona Portillo Junc-1 y Port-1, se asemejan en composición al NSVZ, mientras que las muestras Junc-2, Port-2, de la zona Portillo, y Omar-1, Omar-3 de la zona Alicahue se asemejan en composición al SSVZ.

Figura IV.10. Diagrama (La/Yb)n vs Yb para comparación entre sectores de SVZ (Geuna yLopez Martinez, 2000)

En la Figura IV.11 se presenta una estimación para el engrosamiento cortical promedio para la zona Portillo de 35-40 Km mientras que para la zona Alicahue se tiene un engrosamiento cortical de 45-50 Km. promedio(Geuna, Lopez Martinez, 2000), las muestras que presentan un espesor cortical menor según estas razones geoquímicas corresponden a Omar-1, Omar-3, Junc-2 y Port-2.

Figura IV.11. Diagrama La/Sm vs La/Yb para determinación de engrosamiento cortical (Geuna y Lopez Martinez, 2000)

En la Figura IV.12 se tiene un análisis de proveniencia de magmas, como se ve, no existe una tendencia fija por lo que podríamos estar en presencia de una mezcla de magmas entre una influencia sedimentaria y una influencia fluida.

Figura IV.12. Diagrama Ba/La vs La/Yb para discriminación de influencias magmáticas (Deckart, Godoy, 2003)

En la Figura IV.13 se presentan las muestras ploteadas en lo que respecta a un fundido de manto enriquecido que en conjunto con la figura anterior concluyen que existe una componente adicional al magma inicial, para este trabajo podrían ser manto litosferico enriquecido de sedimentos del antearco Paleozoico y corteza continental inferior.

Figura IV.13. Diagrama Ta /Yb vs Ba/Th para discriminación de fuentes magmaticas (Deckart, Godoy, 2003)

V.ADAKITAS

Adakita como término petrológico fue introducido por Defant y Drummont (1990) en las cuales caracteriza a estas rocas por $SiO_2 > 56$ % en peso, $Al_2O_3 > 15$ % en peso (raramente mas bajo), MgO<3 % en peso (raramente sobre 6 % en peso) bajos contenidos de Y (<18 ppm), HFSE (anomalías negativas de Nb) y HREE (Yb<1,9ppm) y altos contenidos de Sr (>400 ppm) y razones Sr/Y superior a 40.

	SiO _{2(% en peso)}	AI_2O_3 (% en peso)	MgO (% en pesol	Y (ppm)	Yb (ppm)	Sr (ppm)
JUNC-1	61,51	17,45	2,62	8	1,1	629
JUNC-2	55,77	18	3,33	14	1,8	555
PORT-1	66,22	16,11	1,67	5	0,9	414
PORT-2	66,17	16,27	1,74	13	1,7	403
QP-1	66,37	15,92	1,53	8	0,9	421
QP-2	68,43	16,01	1,4	6	0,8	407
OMAR-1	65,47	16,21	0,2	23	2,8	153
OMAR-3	58,43	16,45	3,04	25	2,6	349
OMAR-4	62,45	16,8	1,34	4	0,6	630

Tabla V.1. Contenidos de elementos para discriminar adakitas

Para la tabla V.1 se observa que las composiciones para todas las muestras cumplen con los requisitos para ser adakitas a excepción de las muestras Omar-1 y Omar-3 las cuales tienen contenidos de Sr menores a 400 ppm, Y mayor a 18 ppm e Yb>1,9 ppm.

Las adakitas han sido propuestas como una posible generación de magmas para esta zona (Reich et al., 2003; Kay et al., 2005).

Reich et al. (2003) comparan la composición química del pórfido Los Pelambres con sus contemporáneos estériles del plutón La Gloria donde el pórfido Los Pelambres muestra un enriquecimiento de Na₂O y Al₂O₃, junto con altas razones Sr/Y y La/Yb, lo que refleja una fuente muy profunda, de alta presión y fusión de granate.Estos autores determinan el patrón adakítico de este pórfido.

En la Tabla V.2 de (La/Yb)n vs Sr/Y se observan altas razones (La/Yb)n, en especial es muy importante de observar que OMAR-4 es la muestra con más altas razones de (La/Yb)n, y está ubicada en la misma zona en la que se encuentra el prospecto de Cu-Au AMOS intruyendo a Formación Farellones (ver Figura I.3) por lo que podría existir una relación entre las adakitas y mineralización.

	La/Yb(N)	Sr/Y
Junc-1	14,65	78,62
Junc-2	6,98	39,64
Port-1	11,66	82,8
Port-2	6,72	31
Qp-1	18,94	52,62
Qp-2	20,98	67,83
Omar-1	6,68	6,65
Omar-3	7,53	13,96
Omar-4	27,52	157,5

Tabla \	V.2.	Disci	rimina	ción	de	adakitas
---------	------	-------	--------	------	----	----------

El siguiente gráfico (Figura V.1) fue tomado de Zhang et al. (2006), en el cual se puede observar la característica de una fuente tipo adakita, arco volcánico y MORB con relación a su contenido respectivo de Y y su razón Sr/Y.Para la zona de Portillo las muestras (Junc-2, Port-2) plotean en la zona cercana a la conjunción de los dos campos, adakita y arco volcánico; Junc-1 y Port-1 plotean dentro del campo adakítico. Por otro lado, para la zona de Alicahue, las muestras Omar-1 y Omar-3 se acercan al campo MORB, mientras que las muestras QP-1, QP-2 y Omar-4 pertenecerían al campo adakítico, esta última mostraría la más alta razón Sr/Y siendo la muestra más cercana a la zona mineralizada AMOS y se caracteriza por un marcado grado adakítico.

Para las muestras de la zona Portillo, Junc-1, Junc-2, Port-1 y Port-2, respecto a la alteración, esta corresponde a una alteración clorita-epidota para la zona Portillo esencialmente y una alteración cloritica para la muestra Omar-4(zona Alicahue).

Con la información publicada se ha construido un gráfico que corresponde a la discriminación de adakitas en base a cristalización fraccionada y fusión parcial (Figura V.2).

Figura V.1. Diagrama Sr/Y vs Y para discriminación de adakitas. (Zhang et al., 2006).

Figura V.2. Diagrama La/Yb vs La (ppm) para discriminación de adakitas entre fusión parcial (FP) y cristalización fraccionada (CF) en adakitas (Zhang et al., 2006)

En la Figura V.2 se observan todas las muestras del estudio en la cual existe la discriminación para cristalización fraccionada y para fusión parcial. Las muestras pertenecientes a la zona de Portillo muestran un patrón con una tendencia a un proceso de cristalización fraccionada. Las muestras de la zona de Alicahue plotean cerca de la línea de CF a excepción de QP-1, QP-2 y Omar-4. Esta última muestra demuestra un patrón entre CF y FP. Según Zhang et al. (2006), generalmente las muestras mineralizadas plotean en la zona izquierda de la recta de fusión parcial lo cual para este estudio no fue posible demostrar incluyendo la muestra Omar-4. De todas maneras se necesitan más estudios para esta discusión.

VI. DISCUSIÓN Y CONCLUSIONES

Los datos geocronológicos de las unidades intrusivas Portezuelo del Azufre, Unidad Tambillos y la intrusión en Formación. Farellones son 17,6 +/- 0,2 Ma, 14,6 +/- 0,1 Ma y 8,9 +/- 0,1 Ma respectivamente, y que corresponden a las muestras Omar1, Qp1 y Omar-4.

De acuerdo con estas edades podemos decir, sobre la base de los grupos intrusivos diferenciados por Kurtz et al. (1997), que Portezuelo del Azufre (Omar-1) pertenece al grupo "Older Plutons", mientras que la intrusión en Formación Farellones (Omar-4) pertenece al grupo de 8Ma del "Teniente Plutonic Complex". Por su parte la Unidad Tambillos tiene una edad, la cual puede ser comparada con la Unidad del Teniente Volcanic Complex denominada Maqui Chico (Kurtz et al., 1997).

Para las dos zonas en cuestión se tiene un magma subalcalino-rico en K. Este magma corresponde tectónica y geoquímicamente a la de un arco volcánico lo que concuerda con la presencia del cinturón Oligo-Mioceno magmático. Se tiene además un marco geotectónico de subducción en la cual la placa de Nazca subduce a la Sudamericana en un régimen transpresivo en el periodo correspondiente a las rocas estudiadas.

A través de la geoquímica de tierras raras (REE) se obtuvo un patrón de comportamiento de enriquecimiento en tierras raras (LREE) livianas con un empobrecimiento inclinado en tierras raras pesadas (HREE), además se tiene anomalías negativas de Eu para las zonas de Portillo y Alicahue, lo que indica fraccionamiento de plagioclasa.

En los diagramas de multielementos con respecto a la corteza continental inferior se muestra que el patrón LILE-HFSE presenta una inclinación suave, además se tienen altas razones de U/Pb, esto es, 0,1 para la zona de Portillo y 0,3 para la zona de Alicahue; 0,07 corteza inferior (Taylor & Mc Lennan, 1985) que son prácticamente muy parecidos a los standard para corteza inferior (0,07). Esto indica que la fuente magmática podría estar en la corteza continental inferior, sin embargo en los diagramas mutielementos con respecto a MORB se tiene un patrón LILE-HFSE de pendiente alta lo que indica una diferenciación con respecto a este y además se tienen valores Th/U mayores (Alicahue: 3,7 y Portillo: 5,6) a los de MORB (Th/U=3.7-3.8).
Al existir anomalías negativas de Nb y enriquecimiento en Ba, Rb, Th se tiene una asimiliación de corteza continental superior, y características para una zona de arco volcánico calco-alcalino.

Lo que se propone como fuente magmática es un manto enriquecido por corteza continental inferior, sin embargo llama la atención la presencia de altos contenidos de Rb y K que pueden pertenecer a contaminación de corteza continental superior o simplemente a alteración hidrotermal principalmente para la zona de Portillo, o bien de un aporte de sedimentos terrígenos/pelágicos.

Esta contaminación no necesariamente tiene que ser de la corteza encima de la fuente magmática inmediata sino que también podría venir desde una posible contaminación sedimentaria atribuible a los grandes volúmenes de corteza continental de antearco que fueron agregados a la composición mantélica por erosión de subducción en presencia de un aumento abrupto en la tasa de convergencia durante el Mioceno (Kay et al., 2005). En las muestras analizadas por el método U/Pb sobre circones (Omar-4, QP-1 y Omar-1), se encontraron circones heredados de 300 Ma aproximadamente. Esta información puede indicar una contaminación a partir de rocas antiguas en los magmas generadores, y podrían venir desde los sedimentos ya antes mencionados.

Montecinos et al. (2008) propone una diferenciación de manto tipo MORB a corteza continental inferior de 2Ga además muestra a través de isótopos una proveniencia relativa a la corteza continental inferior, aunque existen muestras que plotean en los campos más cercanos a sedimentos pacíficos. Por lo demás en ese trabajo se insiste en que el porcentaje de contaminación de corteza inferior no sobrepasaría el 5 %. Una de las muestras antes mencionadas, cuyo contenido isotópico se acerca a los sedimentos del Pacifico, tiene una edad de 28Ma por lo que podría ser que los magmas de esa edad sean los que traigan los circones sedimentarios.

Respecto a la composición adakítica de las muestras, éstas están bien documentadas en cuanto a lo que en su composición respecta. Según la definición composicional de adakita dada por Defant y Drumont (1990) las muestras Omar-1 y Omar.3 no cumplirían con las condiciones excpuestas.Sin embargo el gráfico Sr/Y vs Y muestra un comportamiento

incierto en lo que se refiere a su tendencia hacia MORB ploteando en el campo de arco volcánico.

Para la figura La/Yb vs La, las mismas muestras se acercan a un comportamiento que se asemeja a cristalización fraccionada, las demás muestras plotean en un campo incierto.

Todo esto es sin considerar las evidentes anomalías negativas de Eu para las zonas en cuestión. Según esto las anomalías negativas de Eu no son carcterísticas en lo que se refiere a la definición de adakita.

Se podría inferir con la relación que existe entre los cuerpos mineralizados y las adakitas, que mientras mas "adakítica" sea la muestra (ej. Omar-4), esto referido a su composición geoquímica, más se podría esperar un cierto tipo de mineralización.

Para sostener esta idea se requiere una mayor cantidad de muestras geoquímicamente analizadas.

VII REFERENCIAS

Aguirre, L., 1960.Geología de Los Andes deChile Central, provincia de Hacho agua.Instituto de Investigaciones Geológicas, Santiago, Chile, Boletin Nº 9, 70p.

Baeza, O., 1999.Análisis de litofacies, evolución depositacional y análisis estructural de la Formación Abanico en el área comprendida entre los ríos Yeso y Volcan, Región Metropolitana.Memoria de Título.Departamento de Geología, Universidad de Chile, Santiago, 119p.

Baranzagi, M. & Isacks, B.L 1976.Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America.Geology, vol 4, p.686-692.

Barker, D. S., 2007.Endogenous and Exogenous plutons Influence of Emplacement Style on Contamination of Granitic Magma.The Canadian Mineralogist Vol 45.pp 63-70.

Bermudez, A, Delpino, D, Zencich, S, Bolatti, N 2000.Evolución Volcanológica y Petrológica del Sector Sur del Campo Volcánico Auca Mahuida, Provincia del Neuquén, Argentina.Actas IX Congreso Geologico Chileno.Vol 2 Sesion Tematica Nº6.p 1-5.

Cornejo Paula C & Mahood Gail A, 1997.Seeing past the effects of re-equilibration to reconstruct magmatic gradients in plutons: La Gloria Pluton, central Chilean Andes.Contribu Mineral Petrol 127:pp159-175.

Charrier R., Baeza O., Elgueta S., J.J Flynn, P. Gans, S.M.Kay, N.Muñoz, A.R. Wyss, E.Zurita 2002.Evidence for Cenozoic Extensional Basin development and tectonic inversión south of flat slab segments, southern Central Andes, 33-36°.

Deckart K, Godoy E, 2003.Barren Igneous intrusivesin the Central Andes:U/Pb Geochrology and Nd-Hf Isotope Geochemistry.

Deckart K, Clark A., Aguilar C., Vargas R., Bertens A., Mortensen J., Fanning M., 2005 Magmatic and Hydrothermal Chronology of the Giant Río Blanco Porphyry CopperDeposit, Central Chile:Implications of an Integrated U-Pb and ⁴⁰Ar/³⁹Ar Database.2005 Society of Economic Geologists Inc. Economic Geology, v. 100, pp905-934.

Espinoza 1996.Geoquímica y Geotermometria del Prospecto de Cu-Au AMOS, CHILE– ARGENTINA.Memoria de Título Departamento de Geología.Facultad de Ciencias Físicas y Matemáticas.Universidad de Chile.

Fock, A., 2005 Cronología y tectónica de la exhumación en el neógeno de los Andes de Chile Central entre los 33° y los 34° S.Tesis para optar al grado de magíster en Ciencias, mención Geología, Departamento de Geologia, Facultad de Ciencias Físicas y Matemáticas Universidad de Chile, Santiago, 235 p.

Fock, A., Charrier, R., Farías, M., Muñoz, M., 2006.Fallas de vergencia oeste en la Cordillera Principal de Chile Central: Inversión de la Cuenca de Abanico (33°-34°S). Publicación especial Asociación Geológica Argentina, n°6, p 48-55.

Fuentes F, Vergara M, Aguirre L, Feraud G, (2002).Relaciones de contacto de unidades volcánicas terciarias de los Andes de Chile Central (33°S): Una reinterpretación sobre la base de las dataciones Ar^{40}/Ar^{39} .Revista Geologica Chilena. Vol.29 No 2, p.151-165.

Gana, P., Wall, T., 1997.Evidencias Geocronológicas⁴⁰Ar/³⁹Ar y K-Ar de un hiatus Cretácico superior-Eoceno en Chile Central (33°-33°30`S).Revista Geologica de Chile, vol.24, p. 145-163.

Jerez, D., 2007Contribución a la geocronología y geoquímica de los intrusivos estero Yerba Loca y Batolito San Francisco, Cordillera de Chile Central (33°S).Memoria de Título Departamento de Geología.Facultad de Ciencias Físicas y Matemáticas.Universidad de Chile. Jordan, T.E., Allmendinger, R.W, Brewer, J.A., Ramos, V.A., Ando, C.J., 1983. Andean Tectonics related to geometry of subducted Nazca plate. Geological society of American Bulletin vol. 94, p 341-361.

Kay, S., Godoy, E., Kurtz, A., 2005 Episodic Arc Migration, crustal tickening, subduccion erosion & magmatism in the South Central Andes.Geological Society of America Bulletin, vol 117, nº1, p 67-88.

Kay y M.Podozis.Magmatism as a probe to the Neogene shallowing of the Nazca plate beneath the Modern Flat-Slab.2001

Klohn, C., 1960.Geología de la Cordillera de Los Andes de Chile Central.Provincias de Santiago, Colchagua y Curico.Instituto de Investigaciones Geologicas, Santiago, Boletín N°8.

Kurtz, A., Kay, S., Charrier, R., Farrar, E., 1997.Geochrology of Miocene plutons and exhumation history of the El Teniente region, Central Chile (34-35°S).Revista Geológica de Chile, vol. nº 24, nº 1, p 75-90.

Le Roux J.P., Gomez C., Olivares D., Middlefon H., 2005.Determining the Neogene behavior of the Nazca Plate by geohistory análisis.

Le Roux J.P, Olivares Danisa M., Sven N.Nielsen, Norman D Smith, Heather Middleton, Julianne Fenner, Scott E. Ishman.Bay Sedimentation as controlled by regional crustal behaviour, local tectonics and eustatic sea-level changes: Coquimbo Formation (Miocene-Pliocene), Bay of Tongoy,Central Chile.Sedimentary Geology 184 (2006) pp.133-153.

Maksaev V., Munizaga F., McWilliams M., Fanning M., Mathur R., Ruiz J., Zentilli M., 2004.New Chronology for El Teniente, Chilean Andes, from U-Pb, ⁴⁰Ar/³⁹Ar, Re-Os,and Fission-Track Dating: Implications for the Evolution of a Supergiant Porphyry Cu-Mo Deposit.Society of Economic Geologists Special Publication 11,pp. 0000-0000.

Montecinos P., Scharer U., Vergara M., Aguirre L., 2008 Lithospheric Origin of Oligocene-Miocene Magmatism in Central Chile: U-Pb Ages and Sr-Pb-Hf Isotope Composition of Minerals.Journal of Petrology, Volume 49, Number 3, Pages 555-580.

Moscoso et al., 1982 Hoja Los Andes- Portillo 1:250000 Carta Geologica de Chile Nº62 Instituto de Investigaciones Geologicas

Mpodozis, C., Ramos, V.A., 1989. The Andes of Chile and Argentina, In: Eriksen, G.E., Cañas, M.T. and Reintmund, J.A. (Editors). Geology of the Andes and its relation to hydrocarbon and energy resources; Circum-Pacific Council for Energy and Hydrothermal Resources, Earth Sciences Series, Houston, Texas, Vol. 11, pp 59-90.

Muñoz, M. 2005.Geoquímica, Metamorfismo y Petrogénesis de la Franja Oriental de la Formación Abanico en Chile Central, área de El Volcán, Cajón del Maipo (33°50'S, 70°12' - 70°05') Tesis para optar al grado de magíster en Ciencias, mención Geología, Departamento de Geología, Universidad de Chile, Santiago, 172p.

Oyarzun R, Marquez A, Lillo J., Lopez I., Rivera S., 2001 Giant versus small porphyry Coopper Deposite of Cenozoic age in northern Chile: adakític vs normal calc-alcaline magmatism Mineralum Deposita 36: 794-798.

Pardo, D Comte, T. Monfret.Seismotectonic and stress distribution in the central Chile subduction zone 2001.

Perez Dj., 2000.El Complejo volcanico de retroarco mioceno de la Cordillera de las Yaretas 34°S, Mendoza, a la latitud del complejo El Teniente.Acta Vol 2 Sesion Tematica N°6, Paginas 54-58.IX Congreso Geologico Chileno.

Rabbia O., Hernandez L., King R., Lopez-Escobar L., 2002.Discussion on "Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: adakitic versus normal calc-alkaline magmatism" by Oyarzun et al. (Mineralium Deposita 36:794–798, 2001)

Re.G.H, Geuna, S., E, Lopez Martinez, M, 2000.Geoquímica y Geocronología de los basaltos neogenos de la Region de Alumine Neuquén-Argentina.Actas Vol 2 .Sesión Tematica Nº6, Paginas 62-66.IX Congreso Geologica Chileno.

Reich, M., Parada, M.A., Palacios, C., Dietrich, A., Schultz, F., Lehmann, B., 2003.Adakitelike signature of Late Miocene Intrusions at Los Pelambres giant porphyry copper deposit in the Andes of central Chile: metallogenic implications.Mineralium Deposita,vol. 38, p. 876-885.

Rivano et al, (1993) Hoja Quillota-Portillo 1:250000 Carta Geologica nº 36.Instituto de Investigaciones Geologicas.

Rollinson H., 1993.Using Geochemical Data: Evaluation, Presentation, Interpretation.Longman Scientific and Technical, United States.

Skewes, A., Stern, C., Holmgren, C., Contreras, A., Godoy., I. Vela., Rivano, S., 1991.Evolución Magmática cerca del borde sur del segmento de bajo ángulo de subducción en Chile Central (32-34°S).Resumenes ampliados del 8° Congreso Geológico Chileno, pp. 146-148.

Taylor S.R. and McLennan S.M., 1985, The continental crust: its composition and evolution.Blacwell, Oxford.

Thiele, R., 1980. Hoja de Santiago. Carta Geológica de Chile N°39, Instituto de Investigaciones Geológicas, 21 p., 1 mapa.

Vergara, M., Drake, R., 1979.Edades K/Ar en secuencias volcanicas continentales postneocomianas de Chile Central; su depositación en cuencas intermontanas restringidas.Revista de la Asociación Geologica Argentina, Vol.34, p.42-52.

Yañez, G & Cembrano,J (2002) Tectonic Models for Ridge collision at a continental plate boundary: The case of Juan Fernandez Ridge and Chile Rise, Preliminary Results.Actas vol.2 Simposio Internacional N°2 Paginas 649-654 IX Congreso Geologico Chileno.

Zhang Lianchang, Wenjiao Xiao, Kezhang Qin, Qi Zhang, 2005. The adakite connection of the Tuwu-Yandong copper porphyry belt, eastern Tianshan, NW China: trace element and Sr-Nd-Pb isotope geochemistry. Miner Deposita, pp 188-200.

ANEXO A DESCRIPCIONES MICROSCOPICAS

CAL-1

Textura:	holocristalina, inequigranular, intersertal, intergranular y subofitica con cristales de cuarzo ,hiperstena y plagioclasa algunas alteradas a sericita
Minerales	plagioclasas 5% zonadas euhedrales de 1.5milimetros con macla de albita 50% subhedrales de 0.5milimetros con macla de albita rellenando parte de la matriz
	15% sericita reemplazando plagioclasas o como cúmulos
	entre plagioclasas
	20% Cuarzo anhedral de 0.3 a 0.5 milímetros de tamaño cubriendo la matriz
Nombre Roca:	Monzodiorita cuarcífera

CAL-2	
Textura:	holocristalina, inequigranular, consertal a microconsertal y granofirica con intercrecimiento de plagioclasas (algunas con alteración a sericita),
	biotitas y minerales opacos al parecer pirita.
Minerales:	 25% de plagioclasa subhedral con macla de albita de 0.75 milimetros de tamaño promedio y hasta de 1 milimetro de tamaño intercrecida con cuarzo consertal anhedral 70% cuarzo consertal anhedral y granofirico de 0.1 milimetros de tamaño promedio 2% biotita anhedral a subhedral de 0.3 milimetros promedio 2% sericita en plagioclasa 1% minerales opacos

Nombre Roca: Granitoide rico en cuarzo

 $0_{mm} 0.5_{mm} 1.0_{mm} 1.5_{mm} 2.0_{mm} 2.5_{mm}$

CAL-3

- Textura: holocristalina, inequigranular, glomeroporfirica con matriz microcristalina de cuarzo con intercrecimiento de plagioclasa algunos alterados a sericita
- Minerales : 40% plagioclasa con macla de carlsbald y de albita subhedrales a anhedrales de 2milimetros de tamaño en promedio (algunos fuertemente alterados a sericita)
 60% cuarzo microcristalino anhedral de 0.3 milimetros a 0.5 milimetros de tamaño en promedio como matriz cristalina rodeando a la plagioclasa (Presencia de un mineral extraño con alta birrefingencia con algo de pleocroismo de 0.1 mm posiblemente epidota)

Nombre Roca: Tonalita

2.0 2.5 0 0.5 1.0 1.5

CAL-4

Textura: holocristalina, equigranular, consertal de cuarzo anhedral con intercrecimiento de plagioclasa subhedral y ortopiroxenos
 Minerales: 15% plagioclasa euhedral a subhedral con macla de albita de 1.5mm de tamaño promedio
 78% cuarzo anhedrales desde 0.3milimetros a 2 milimetros 2% ortopiroxeno anhedral a subhedral de 0.5milimetros de tamaño promedio
 5% biotita subhedral de 1 milimetro de tamaño promedio

Nombre Roca: Granitoide rico en cuarzo

0.5 0 1.0 1.5 2.0 2.5

ACH-1

Nombre Roca: Diorita

OMAR-1

Textura: holocristalina, inequigranular, seriada con cristales de cuarzo y plagioclasa inmersos en una matriz cristalina-vítrea.
Minerales: 20% cuarzo anhedral de 2.5 milímetros granofírico y también de 1 milímetro Promedio 30% plagioclasa euhedrales de 1.2 milímetros, subhedrales de 2.5 milímetros y anhedrales de 0.7 milímetros alterados a sericita 49% matriz microcristalina de feldespatos y cuarzo que promedian un tamaño de 0.3 milímetros. 1% minerales opacos

Nombre Roca: Granodiorita Porfírica

$$0_{mn} 0.5_{mn} 1.0_{mn} 1.5_{mn} 2.0_{mn} 2.5_{mn}$$

- OMAR-2 (Dique cortando Formación Abanico)
- Textura: holocristalina, inequigranular ,glomeroporfírica , subofítica , intergranular con cristales de plagioclasa alterados a sericita rodeados por una masa fundamental de cuarzo microcristalino.
- Minerales:40% plagioclasa de 2 milímetros de tamaño
promedio subhedrales con macla de albita y macla de carlsbald
60% cuarzo intergranular microcristalino anhedral con tamaños de 0.05
milímetros a 0.1milimetros en promedio

Nombre Roca: Tonalita

0 0.5 1.0 1.5 2.0 2.5

OMAR-3 (Intrusivo emplazado en Formación Abanico)

Textura:	holocristalina, inequigranular, porfídica de plagioclasas inmersas en una matriz microcristalina de cuarzo principalmente
Minerales:	60% plagioclasa de 1.5 milimetros de tamaño promedio con macla de albita y algunas con macla de carlsbald subhedrales
	 10% biotita en cristales grandes de 2.5 milimetros subhedrales algunos alterados a epidota 5% Cuarzo anhedral aglomerado en una parte del corte con bordes bien redondeados de 1.5 milimetros promedio 25% matriz microcristalina de cuarzo primordialmente , restos de clinopiroxenos , plagioclasas todos subhedrales a anhedrales

Nombre Roca: Tonalita

OMAR-4

Textura:	seriada, inequigranular con masa fundamental de vidrio volcánico y microcristales de cuarzo
Minerales:	15% anfibolas de 2 milímetros de tamaño promedio subhedrales a euhedrales
	50% plagioclasas alteradas a sericita con macla de carlsbald y macla de albita
	euhedrales a subhedrales de tamaño de 2.5 milímetros
	5% cuarzo anhedral de 1 milimetro de tamaño promedio
	2% biotita subhedral de 1.5 milímetro de tamaño promedio
	3% de clinopiroxenos subhedrales de 0.5 milímetros de tamaño promedio
	25% de masa fundamental compuesta por vidrio volcánico y microcristales
	de cuarzo de entre 0.1 y 0.3 milímetros anhedrales

Nombre Roca: Diorita Porfírica

0.5_{mm} 1.0_{mm} 1.5_{mm} 2.0 2.5

ANEXO B DESCRIPCIONES MACROSCÒPICAS

CAL-1

Descripción: Holocristalina, equigranular, fanerítica, grano fino, hipidiomórfica, masiva, leucocrática.

Nombre Roca: Granito

CAL-2

Descripción: Holocristalina, equigranular, fanerítica, grano fino, alotromórfica, masiva, leucocrática.

Nombre Roca: Granito

CAL-3

Descripción: Holocristalina, Inequigranular, Porfírica, ojos de cuarzo inmersos en una matriz cristalina de grano fino además de cristales máficos, hipidiomórfica, masiva, leucocrática.

Nombre Roca: Monzodiorita cuarcifera

CAL-4

Descripción: Holocristalina, equigranular, fanerítica, grano fino, hipidiomórfica, masiva, leucocrática.

Nombre Roca: Granito

QP-1

Descripción: Holocristalina, Equigranular, Porfírica, Fanerítica, Masiva, leucocrática

Nombre de Roca: Granodiorita

QP-2

Descripción: Holocristalina, Equigranular, Porfírica, Fanerítica, Grano fino a medio, Hipidiomórfica, Masiva, Leucocrática.

Nombre Roca: Granodiorita

PORT-1

Descripción: Holocristalina, Fanerítica, Grano fino a medio, Hipidiomórfica, Leucocratica.

Nombre Roca: Granito

PORT-2

Descripción: Holocristalina, Fanerítica, Hipidiomórfica, Grano fino a medio, Leucocrática.

Nombre Roca: Granito

JUNC-1

Descripción: Holocristalina, Equigranular, Fanerítica, Grano fino, Hipidiomorfica, Leucocrática.

Nombre Roca: Diorita

JUNC-2

Descripción: Holocristalina, Equigranular, Fanerítica, Grano Fino, Mesocrática

Nombre Roca: Diorita

OMAR-1

Descripción: Hipocristalina, Inequigranular, Fanerítica, Porfírica, Grano fino a medio, Hipidiomórfica, Mesocrática.

Nombre Roca: Pórfido Dacítico

OMAR-3

Descripción: Hipocristalina, Inequigranular, Fanerítica, Porfírica con fenocristales de plagioclasa, Grano medio, Hipidiomórfica, Masiva, Mesocrática.

Nombre Roca: Tonalita

OMAR-4

Descripción: Hipocristalina, Inequigranular, Fanerítica, Porfírica con fenocristales de plagioclasa, Grano fino a medio, Hipidiomórfica, Mesocrática.

Nombre Roca: Pórfido andesítico

ANEXO C DATOS GEOQUIMICOS

Analyte	0.00	410.00	Fe2O3(0.0	NLOO	1/00	T :00	Door		T . (.)
Symbol	SI02	AI203	1)	MnO	MgO	CaO	Na2O	K20	102	P205	LOI	lotal
Unit Symbol Detection	%	%	%	%	%	%	%	%	%	%	%	%
Limit Analysis Method	0.01 FUS- ICP	0.01 FUS- ICP	0.01 FUS- ICP	0.001 FUS- ICP	0.01 FUS- ICP	0.01 FUS- ICP	0.01 FUS- ICP	0.01 FUS- ICP	0.001 FUS- ICP	0.01 FUS- ICP	FUS- ICP	0.01 FUS- ICP
JUNC-1	61,51	17,45	5,05	0,067	2,62	5,33	4,39	1,89	0,66	0,21	0,74	99,91
JUNC-2	55,77	18	7,21	0,143	3,33	6,57	4,29	1,56	0,908	0,24	1,55	99,58
PORT-1	66,22	16,11	4,62	0,045	1,67	3,51	4,1	3,06	0,499	0,15	0,55	100,5
PORT-2	66,17	16,27	4,41	0,054	1,74	3,2	4,34	3,08	0,506	0,16	0,81	100,8
QP-1	66,37	15,92	4,03	0,024	1,53	1,96	4,13	3,45	0,503	0,07	1,27	99,26
QP-2	68,43	16,01	3,73	0,023	1,4	1,86	3,83	4	0,473	0,05	1,12	100,9
OMAR-1	65,47	16,21	3,31	0,058	0,2	1,49	4,26	5,86	0,545	0,14	1,93	99,47
OMAR-3	58,43	16,45	6,28	0,096	3,04	4,97	4,14	2,9	1,103	0,31	0,58	98,3
OMAR-4	62,45	16,8	3,1	0,052	1,34	4,33	4,67	2,68	0,539	0,21	3,9	100,1

Analyte Symbol	Sc	Be	V	Cr	Co	Ni	Cu	Zn	Ga	Ge	As	Rb
Unit Symbol Detection	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Limit	1	1	5	20	1	20	10	30	1	1	5	2
Analysis Method	FUS- ICP	FUS-	FUS-	FUS- MS								
JUNC-1	11	2	117	30	10	< 20	60	40	20	1	7	65
JUNC-2	17	2	187	< 20	20	< 20	130	100	22	1	7	49
PORT-1	7	2	78	< 20	10	< 20	40	40	19	1	< 5	114
PORT-2	7	2	80	< 20	10	< 20	30	40	19	1	7	103
QP-1	5	2	78	120	8	60	270	70	21	1	7	106
QP-2	5	2	70	80	7	40	270	80	21	1	6	112
OMAR-1	9	2	24	< 20	3	< 20	40	60	20	1	14	167
OMAR-3	15	2	154	100	18	40	120	80	21	1	6	135
OMAR-4	5	2	79	20	7	< 20	20	80	22	1	10	94

Analyte Symbol	Sr	Y	Zr	Nb	Мо	Ag	In	Sn	Sb	Cs	Ва	La
Unit Symbol Detection	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Limit Analysis Method	2 FUS- ICP	2 FUS- ICP	4 FUS- ICP	1 FUS- MS	2 FUS- MS	0.5 FUS- MS	0.2 FUS- MS	1 FUS- MS	0.5 FUS- MS	0.5 FUS- MS	3 FUS- ICP	0.1 FUS- MS
JUNC-1	629	8	140	6	< 2	< 0.5	< 0.2	< 1	78,9	1,8	507	24,1
JUNC-2	555	14	125	4	< 2	< 0.5	< 0.2	< 1	29,8	2,5	355	18,8
PORT-1	414	5	213	5	< 2	< 0.5	< 0.2	< 1	28,2	0,9	596	15,7
PORT-2	403	13	183	7	< 2	< 0.5	< 0.2	1	26,4	1,2	641	17,1
QP-1	421	8	165	5	5	< 0.5	< 0.2	2	6	1,8	677	25,5
QP-2	407	6	179	4	5	< 0.5	< 0.2	2	23	1,6	732	25,1
OMAR-1	153	23	617	8	3	< 0.5	< 0.2	2	17,9	3,5	835	28
OMAR-3	349	25	298	8	3	< 0.5	< 0.2	2	12,5	7,2	427	29,3
OMAR-4	630	4	124	4	< 2	< 0.5	< 0.2	< 1	12,8	8	693	24,7

Analyte Symbol	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
Unit Symbol Detection	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Limit Analysis Method	0.1 FUS- MS	0.05 FUS- MS	0.1 FUS- MS	0.1 FUS- MS	0.05 FUS- MS	0.1 FUS- MS	0.1 FUS- MS	0.1 FUS- MS	0.1 FUS- MS	0.1 FUS- MS	0.05 FUS- MS	0.1 FUS- MS
JUNC-1	41,3	4,64	16,8	3,6	1,14	3	0,4	2,4	0,4	1,2	0,18	1,1
JUNC-2	35,2	4,38	17,9	4,2	1,28	3,7	0,6	3,4	0,7	1,9	0,27	1,8
PORT-1	26,4	2,9	10,6	2,1	0,79	1,8	0,3	1,6	0,3	0,9	0,14	0,9
PORT-2	31,5	3,82	15,3	3,5	0,89	2,9	0,5	2,9	0,6	1,8	0,26	1,7
QP-1	43,5	4,84	16,9	3,4	0,91	2,7	0,4	2	0,4	1	0,14	0,9
QP-2	43,2	4,84	17,3	3,5	0,91	2,6	0,4	1,9	0,3	0,9	0,13	0,8
OMAR-1	51,6	6,2	24,3	5,5	1,23	4,7	0,8	4,7	0,9	2,8	0,42	2,8
OMAR-3	56,8	7,01	28,2	6,4	1,24	5,3	0,8	4,9	1	2,8	0,42	2,6
OMAR-4	42,2	4,89	17,7	3,4	1,04	2,6	0,3	1,5	0,3	0,7	0,09	0,6

Analyte Symbol	Lu	Hf	Та	W	TI	Pb	Bi	Th	U
Unit Symbol	ppm								
Detection Limit	0.04	0.2	0.1	1	0.1	5	0.4	0.1	0.1
Analysis Method	FUS-MS								
JUNC-1	0,17	3,7	0,5	< 1	0,4	18	< 0.4	5,2	1,2
JUNC-2	0,28	3,8	0,4	< 1	0,2	19	< 0.4	4,2	1
PORT-1	0,15	6	0,7	< 1	0,3	13	< 0.4	10,5	1,2
PORT-2	0,26	5,2	0,6	< 1	0,2	10	< 0.4	9,6	1,9
QP-1	0,15	4,4	0,5	3	0,9	12	< 0.4	10,8	2,4
QP-2	0,13	5,6	0,7	2	1,2	37	< 0.4	11,8	2,7
OMAR-1	0,47	14	1	< 1	0,5	17	< 0.4	14,1	4,3
OMAR-3	0,4	8,8	0,7	1	0,4	11	< 0.4	16,9	5,1
OMAR-4	0,09	3,5	0,4	< 1	1,4	12	< 0.4	4,4	1,4

ANEXO D ANALISIS GEOCRONOLOGICOS

Sample Omar 1

		mmo		recte	d, Ma)		2080 (232-	
Analysis No) -~' Pb/-~P	(±20	: -~' Pb/-33	.±20	(⁻ "Pb/ ² "℃	. ± 2 ((-~~Pb/-~~T	±2(
OMR1-01	41	430	18	4	17,5	1	22	2
OMR1-02	1098	356	29	6	17,9	1,2	28	6
OMR1-03	953	468	27	8	17,9	1,2	18	4
OMR1-05	609	158	23	2	17,8	0,6	21,4	1,6
OMR1-06	606	352	23	4	17,9	0,8	22	2
OMR1-07	66	244	18	2	18	0,8	20	2
OMR1-08	23	94	17,9	1,2	17,9	0,6	19,2	1,2
OMR1-09	408	184	21	2	17,5	0,6	20	2
OMR1-12	86	298	18	4	18	0,8	19	2
OMR1-13	588	650	22	8	17,1	1,2	22	6
OMR1-11	712	462	24	6	17,8	1,2	20	4
OMR1-16	377	712	21	8	17,8	1,6	17	6
OMR1-33	62	110	18,1	1,4	17,7	0,6	18,6	1,2
OMR1-34	18	46	17,3	0,6	17,3	0,4	17,6	0,4
OMR1-35	36	298	18	4	17,4	0,8	18	2
OMR1-40	25	490	18	6	17,8	0,8	19	2
OMR1-41	282	328	19	4	17,4	1	22	4
OMR1-42	27	730	18	10	17,7	1,6	20	4
OMR1-43	38	492	18	6	17,9	1	18	2
OMR1-44	302	456	20	4	17,5	1	13	4
OMR1-45	325	642	19	6	17,1	1	23	4
OMR1-46	36	252	18	2	17,4	0,8	17	2
OMR1-47	34	118	18	1,6	17,8	0,6	18,2	1,2
OMR1-48	20	230	18	2	17,5	0,6	18,2	1,6
OMR1-50	24	334	18	4	17,5	0,8	17	2

Sample Omar 2

Analyzia Na		mmo	n-Pb cor	recte	d, Ma)	. 0	208 Jac /232	
Analysis NC		(±20	PD/ 1	. ± 2 (. ± 2 ((PD/ 11	± 2 (
OMR4-01	957	560	14	4	8,9	0,6	15	4
OMR4-02	791	226	12,5	1,8	8,8	0,4	11,9	1,2
OMR4-03	774	452	13	4	9	0,6	13	4
OMR4-04	41	508	9	2	9	0,6	12	2
OMR4-05	64	478	9	2	8,7	0,6	11	2
OMR4-06	356	644	10	4	8,8	0,8	13	4
OMR4-07	593	454	11	2	8,9	0,6	11	2
OMR4-08	792	240	12,7	1,8	9	0,4	10,9	1,6
OMR4-09	1156	360	15	4	8,6	0,6	14	2
OMR4-10	515	568	11	4	9	0,8	18	4
OMR4-11	691	312	12	2	8,9	0,4	10,5	1,6
OMR4-12	431	338	10,4	2	8,7	0,4	10,5	1,6
OMR4-15	815	206	12,6	1,6	8,8	0,4	12,3	1,2
OMR4-16	138	640	9	4	8,8	0,8	11	2
OMR4-19	1274	466	16	4	8,8	0,8	14	4
OMR4-22	636	248	11,7	1,8	8,9	0,4	11,1	1,2
OMR4-24	1042	256	14	2	9	0,6	10,7	1,6
OMR4-26	1299	328	16	4	8,8	0,6	12	2
OMR4-27	1042	1068	13	8	8,4	1,2	11	8
OMR4-28	312	28	301	8	300	8	311	14
OMR4-31	1497	280	18	4	8,8	0,6	13	2
OMR4-32	713	862	12	6	8,8	1	19	4
OMR4-33	1248	420	16	4	8,8	0,6	12	4
OMR4-34	426	288	10,7	1,8	8,9	0,4	10,5	1,2
OMR4-14	1060	384	14	4	8,8	0,6	14	2

Sample QP 1

	Ages (co	mmc	on-Pb cor	recte	d, Ma)		000 000	
Analysis No) ²⁰⁷ Pb/ ²⁰⁶ P	t ± 2 0	²⁰⁷ Pb/ ²³⁵ l	. ± 2 (206Pb/238	. ± 2 ((²⁰⁸ Pb/ ²³² T	±2(
QP1-01	309	448	16	4	14,1	0,6	14,1	1,6
QP1-02	373	306	17	4	14,9	0,8	13,7	1,6
QP1-03	16	526	14	4	14,5	0,6	15	2
QP1-04	22	412	15	4	14,6	0,6	13,9	1,6
QP1-05	277	458	16	4	14,2	1	17	2
QP1-06	28	500	15	4	14,7	0,8	18	2
QP1-07	62	386	15	4	14,6	0,6	14,5	1,6
QP1-08	31	258	15	2	14,7	0,6	15,8	1,2
QP1-09	28	436	14	4	14,1	0,6	14,3	1,6
QP1-10	19	318	14	2	14,2	0,6	14,7	1,2
QP1-12	31	590	15	6	14,6	0,8	18	4
QP1-13	483	1178	18	14	15	2	19	8
QP1-14	890	178	22	2	14,9	0,6	17,6	1,6
QP1-15	4509	280	174	64	15	6	95	46
QP1-16	18	98	14,4	1	14,4	0,4	16,2	1,2
QP1-17	78	344	15	2	14,6	0,6	16	1,6
QP1-18	1092	528	23	8	14,2	1,4	15	4
QP1-19	28	464	15	4	14,8	1	18	2
QP1-20	688	288	20	4	14,9	0,6	15,2	1,6
QP1-21	33	714	15	6	14,5	1	20	4
QP1-23	27	442	15	4	14,9	0,6	16	1,6
QP1-24	14	492	15	4	14,6	1	16	2
QP1-25	261	456	16	4	14,8	1	14	2
QP1-27	497	394	18	4	14,7	0,6	16	2
QP1-28	30	490	15	4	14,8	1	13	2

ANEXO E CIPW

Norm Calculation Program Pro		Program run:	11-03-2009			HELP	
Sample N	umber:	junc-1				-	
	Rock	Normalization		Normalized	Normative	Weight %	Volume %
	Analysis	Factors		Analysis	Minerals	Norm	Norm
SiO2	<mark>61,51</mark> %	Total=100%? Y/N	n	61,51	Quartz	10,56	10,92
TiO2	0,66 %	Fe3+/(Total Iron)	0,3	0,66	Plagioclase	59,25	60,78
AI2O3	17,45 %	· · · · · · · · · · · · · · · · · · ·		17,45	Orthoclase	11,60	12,42
Fe2O3	5,05 %	Total Fe as FeO	9,09	3,03	Nepheline		
FeO	4,54 %	Desired Fe2O3	3,03	6,36	Leucite		
MnO	0,07 %	Desired FeO	6,36	0,07	Kalsilite		
MgO	2,62 %	Weight corr. factor	1,000	2,62	Corundum		
CaO	5.33 %			5.33	Diopside	2.63	2.12
Na2O	4.39 %			4.39	Hypersthene	13.43	10.29
K20	1.89 %			1.89	Wollastonite	-, -	-, -
P205	0.21 %	Zero values not	shown	0.21	Olivine		
C02	%			-,	Larnite		
503	%				Acmite		
s	%				K2SiO3		
F	%	Norm calculation ch	ecks:		Na2SiO3		
	70 %	Norm sooms OK	ICCNS.		Butilo		
er	620 ppm	Norm Seems OK		0.07	Ilmonito	1.25	0.72
Bo	507 ppm			0,07	Magnotito	1,20	0,72
	20 ppm			0,00	Magnetite	4,39	2,31
	20 ppm				Anatite	0.40	0.40
Cr	30 ppm			0.00	Apatite	0,49	0,42
Zr	140 ppm			0,02	Zircon	0,03	0,02
Iotal	103,72			103,67	Perovskite		
					Chromite		
					Sphene		
					Pyrite		
					Halite		
					Fluorite		
					Anhydrite		
					Na2SO4		
					Calcite		
					Na2CO3		
					Total	103,63	100,00
				Fe3+/(Total Fe) ir	n rock	30,0	30,0
				Mg/(Mg+Total Fe) in rock	33,9	33,9
				Mg/(Mg+Fe2+) in	rock	42,3	42,3
				Mg/(Mg+Fe2+) in	silicates	51,1	51,1
				Ca/(Ca+Na) in roo	ck	40,2	40,2
				Ca/(Ca+Na) in pla	agioclase	35,9	35,9
				Differentiation In	dex	81,4	84,1
				Calculated densit	ty, g/cc	2,84	2,84
				Calculated liquid	density, g/cc	2,55	2,55
				Calculated visco	sity, dry, Pas	0,46	0,46
				Calculated visco	sity, wet, Pas	0,42	0,42
				Estimated liquidu	us temp., ℃	1042	1042
				Estimated H2O c	ontent, wt. %	1,40	1,40
This progr	am was written b	y Kurt Hollocher, Geolog	y Department, L	Inion College, Sche	enectady, NY, 1230	8, hollochk@uni	on.edu

Norm Cal	culation Program	n	Program run:	11-03-2009			HELP
Sample N	umber:	junc-2					
	Rock	Normalization		Normalized	Normative	Weight %	Volume %
I	Analysis	Factors		Analysis	Minerals	Norm	Norm
SiO2	55.77 %	Total=100%? Y/N	n	55.77	Quartz	2.22	2.36
TiO2	0.91 %	Fe3+/(Total Iron)	0.3	0.91	Plagioclase	61.41	64.50
AI2O3	18,00 %			18,00	Orthoclase	9,51	10,44
Fe2O3	7,21 %	Total Fe as FeO	12,98	4,33	Nepheline	,	,
FeO	6,487558 %	Desired Fe2O3	4,33	9,08	Leucite		
MnO	0,01 %	Desired FeO	9,08	0,01	Kalsilite		
MgO	<mark>3,33</mark> %	Weight corr. factor	1,000	3,33	Corundum		
CaO	<mark>6,57</mark> %			6,57	Diopside	5,11	4,23
Na2O	<mark>4,29</mark> %			4,29	Hypersthene	17,34	13,55
К2О	<mark>1,56</mark> %			1,56	Wollastonite		
P2O5	<mark>0,24</mark> %	Zero values not	shown	0,24	Olivine		
CO2	%				Larnite		
SO3	%				Acmite		
s	%				K2SiO3		
F	%	Norm calculation ch	ecks:		Na2SiO3		
СІ	%	Norm seems OK			Rutile		
Sr	555 ppm			0,07	Ilmenite	1,73	1,02
Ba	<mark>355</mark> ppm			0,04	Magnetite	6,28	3,39
Ni	20 ppm				Hematite		
Cr	20 ppm				Apatite	0,56	0,49
Zr	125 ppm			0,02	Zircon	0,03	0,02
Total	104,38			104,22	Perovskite		
					Chromite		
					Sphene		
					Pyrite		
					Halite		
					Fluorite		
					Anhydrite		
					Na2SO4		
					Calcite		
					Na2CO3	404.40	400.00
			r		lotal	104,19	100,00
				res+/(I otal re) If	1 FOCK	30,0	30,0
				Mg/(Mg+Iotal Fe	rock	31,4	31,4
				Mg/(Mg+Fe2+) IN	riucik ciliaataa	39,5	39,5
				Mg/(Mg+rez+) In	Silicates	40,4	40,4
				Ca/(Ca+Na) in Na		40,0	40,0
			-	Differentiation In	dox	73.1	39,3 77.3
				Calculated done	ty alco	2.03	2 93
				Calculated liquid	density alco	2,93	2,93
				Calculated visco	sity dry Dae	2,03	2,03
				Calculated visco	sity wet Pae	0,30	0,32
				Estimated liquid	is temp °C	1149	1149
				Estimated H20 o	ontent wt %	0.68	0.68
				Loumateu HZU C	Unicili, WL 70	0,00	0,00

This program was written by Kurt Hollocher, Geology Department, Union College, Schenectady, NY, 12308, hollochk@union.edu

Sample N	lumber:	port-1	11-03-2009			neur
1	Rock Analysis	Normalization Factors	Normalized Analysis	Normative Minerals	Weight % Norm	Volume % Norm
SiO2	66,22 %	Total=100%? Y/N n	66,22	Quartz	17,23	17,45
TiO2	<mark>0,50</mark> %	Fe3+/(Total Iron) 0,3	0,50	Plagioclase	50,95	51,34
AI2O3	<mark>16,11</mark> %		16,11	Orthoclase	18,59	19,49
Fe2O3	<mark>4,62</mark> %	Total Fe as FeO 8,31	2,77	Nepheline		
FeO	<mark>4,16</mark> %	Desired Fe2O3 2,77	5,82	Leucite		
MnO	0,05 %	Desired FeO 5,82	0,05	Kalsilite		
MgO	1,67 %	Weight corr. factor 1,000	1,67	Corundum		
CaO	3,51 %		3,51	Diopside	0,26	0,20
Na2O	4.10 %		4.10	Hypersthene	11.70	8.60
K20	3.06 %		3.06	Wollastonite	, -	-,
P205	0.15 %	Zero values not shown	0.15	Olivine		
CO2	%		0,10	Larnite		
502	%			Acmite		
303 e	70 9/2			K2SiO2		
5	70	Norm colouistion checks:		N-28:02		
	70 0/	Norm calculation checks:		Naz5iU3		
	70	Norm seems OK	0.05	Rutile	0.05	0.54
Sr	414 ppm		0,05	limenite	0,95	0,54
ва	596 ppm		0,07	Magnetite	4,02	2,07
NI	20 ppm			Hematite		
Cr	20 ppm			Apatite	0,35	0,29
Zr	213 ppm		0,03	Zircon	0,04	0,03
Total	104,14		104,11	Perovskite		
				Chromite		
				Sphene		
				Pyrite		
				Halite		
				Fluorite		
				Anhydrite		
				Na2SO4		
				Calcite		
				Na2CO3		
				Total	104.09	100.01
			Fe3+/(Total Fe) ir	n rock	30.0	30.0
			Mg/(Mg+Total Fe) in rock	26.4	26.4
			Ma/(Ma+Fe2+) in	rock	33.8	33.8
			Mg/(Mg+Fe2+) in	silicates	41.6	41.6
			Ca/(Ca+Na) in ro	shicates	32.1	32.1
			Ca/(Ca+Na) in ro		30.6	30.6
			Differentiation In	dox	30,0	30,0
			Coloulated data	ucz tv. g/oo	2 70	00,3
			Calculated densi	ly, y/cc	2,79	2,79
				density, g/cc	2,51	2,51
			Calculated visco	sity, dry, Pas	0,59	0,59
			Calculated visco	sity, wet, Pas	0,50	0,50
			Estimated liquid	us temp., °C	964	964
			Estimated H2O c	ontent, wt. %	2,10	2,10
This progr	ram was written b	v Kurt Hollocher, Geology Department, L	Jnion College, Sch	enectady, NY, 1230	hollochk@uni	on.edu

Program run:

Norm Calculation Program		Program run:	11-03-2009			HELP	
Sample Number: PORT-2							
	Rock	Normalization		Normalized	Normative	Weight %	Volume %
0:00	Analysis	Factors		Analysis	Minerals	Norm	Norm
5102	00,17 %	1 otal=100%? Y/N	n	66,17	Quartz	16,42	16,63
1102	0,51 %	Fe3+/(Total Iron)	0,3	0,51	Plaglociase	51,69	52,17
AIZU3	10,27 %	Total Co. oo CoO	7.04	10,27	Orthoclase	10,71	19,01
Fe2U3	4,41 %	Desired Ec2O2	7,94	2,00	Nephenne		
reo Mno	3,97 %	Desired Fe2O3	2,05	5,50	Kelcilite		
Mag	0,05 %	Maight corr factor	5,50	0,05	Corundum	0.22	0.15
Mg0	2 20 %	Weight Con. Tactor	1,000	1,74	Dianaida	0,22	0,15
Na2O	3,20 /0 4 34 %			3,20	Lunarathana	11 61	9 59
Nazu K20	2,09 %			4,54	Wollastonito	11,01	0,00
R20	0.16 %	Zero values not	shown	0.16	Olivino		
F205	0,10 %			0,10	Larnito		
602	/0 0/				Aomito		
303	/0 0/				Achine Kasioa		
5	/0 0/	Norm colouistion of	aaka		No26:02		
	/0 %	Norm sooms OK	IECKS.		Rutilo		
er .	403 ppm	Norm Seems OK		0.05	Ilmonito	0.07	0.55
Ba	641 ppm			0,03	Magnotito	0,97	1.08
	20 ppm			0,07	Homatito	5,04	1,50
Cr.	20 ppm				Apatito	0.37	0.31
7	183 ppm			0.02	Zircon	0,07	0,01
Total	103 Q0			103.87	Perovskite	0,00	0,02
Total	103,30			100,07	Chromite		
					Sphene		
					Dyrito		
					Halito		
					Fluorite		
					Anhydrite		
					Na2SO4		
					Calcite		
					Na2CO3		
					Total	103.86	100.00
				Fe3+/(Total Fe) in	rock	30.0	30.0
				Mg/(Mg+Total Fe) in rock	28.1	28.1
				Ma/(Ma+Fe2+) in	rock	35.8	35.8
				Mg/(Mg+Fe2+) in	silicates	43.9	43.9
				Ca/(Ca+Na) in roo	:k	28.9	28.9
				Ca/(Ca+Na) in pla	gioclase	27.7	27.7
				Differentiation Inc	dex	86.8	88.4
				Calculated densit	v. a/cc	2.79	2.79
				Calculated liquid	density, q/cc	2,50	2.50
				Calculated viscos	sity, dry, Pas	0.59	0.59
				Calculated viscos	sity, wet, Pas	0,50	0,50
				Estimated liquidu	is temp., °C	962	962
				Estimated H2O co	ontent, wt. %	2,11	2,11
This progr	am was written by	Kurt Hollocher, Geolog	v Department.	Inion College, Sche	enectady, NY, 1230	8. hollochk@uni	on.edu

Norm Cal	culation Program	n	Program run:	11-03-2009			HELP
Sample N	umber:	omar-1					
	Rock	Normalization		Normalized	Normative	Weight %	Volume %
1	Analysis	Factors		Analysis	Minerals	Norm	Norm
SiO2	65.47 %	Total=100%? Y/N	n	65.47	Quartz	12.27	12.51
TiO2	0.55 %	Fe3+/(Total Iron)	0.3	0.55	Plagioclase	42.58	43.58
AI2O3	16,21 %			16,21	Orthoclase	35,28	37,25
Fe2O3	3,31 %	Total Fe as FeO	5,96	1,99	Nepheline		
FeO	<mark>2,98</mark> %	Desired Fe2O3	1,99	4,17	Leucite		
MnO	0,06 %	Desired FeO	4,17	0,06	Kalsilite		
MgO	<mark>0,20</mark> %	Weight corr. factor	1,000	0,20	Corundum	0,35	0,23
CaO	<mark>1,49</mark> %		_	1,49	Diopside		
Na2O	<mark>4,26</mark> %			4,26	Hypersthene	5,71	3,98
K2O	<mark>5,86</mark> %			5,86	Wollastonite		
P2O5	<mark>0,14</mark> %	Zero values not	tshown	0,14	Olivine		
CO2	%				Larnite		
SO3	%				Acmite		
S	%				K2SiO3		
F	%	Norm calculation cl	necks:		Na2SiO3		
CI	%	Norm seems OK			Rutile		
Sr	153 ppm			0,02	Ilmenite	1,04	0,59
Ва	835 ppm			0,09	Magnetite	2,89	1,50
Ni	20 ppm				Hematite		
Cr	20 ppm				Apatite	0,32	0,27
Zr	617 ppm			0,08	Zircon	0,12	0,07
Total	100,52			100,59	Perovskite		
					Chromite		
					Spnene		
					Pyrite		
					Halite		
					Fluorite		
					Annyante		
					Naz504 Calcito		
					Na2CO2		
					Total	100.56	99 98
				Fe3+/(Total Fe) in	rock	30.0	30.0
				Mg/(Mg+Total Fe) in rock	5.6	5.6
				Ma/(Ma+Fe2+) in	rock	7.9	7.9
				Mg/(Mg+Fe2+) in	silicates	11,2	11,2
				Ca/(Ca+Na) in roo	:k	16,2	16,2
				Ca/(Ca+Na) in pla	gioclase	14,6	14,6
				Differentiation Inc	dex	90,1	93,3
				Calculated densit	ty, g/cc	2,72	2,72
				Calculated liquid	density, g/cc	2,45	2,45
				Calculated viscos	sity, dry, Pas	0,64	0,64
				Calculated viscos	sity, wet, Pas	0,54	0,54
				Estimated liquidu	is temp., ℃	937	937
				Estimated H2O co	ontent, wt. %	2,37	2,37
This progr	am was written by	Kurt Hollocher, Geolog	ov Department, L	Jnion College, Sche	enectady, NY, 1230	8. hollochk@uni	on.edu

Sample N	lumber:	omar-3	11 00 2003			11661
	Rock	Normalization	Normalized	Normative	Weight %	Volume %
I I	Analysis	Factors	Analysis	Minerals	Norm	Norm
SiO2	58.43 %	Total=100%? Y/N n	58.43	Quartz	5.28	5.57
TiO2	1,10 %	Fe3+/(Total Iron) 0.3	1,10	Plagioclase	52,59	55,10
AI2O3	16.45 %		16.45	Orthoclase	17.50	19.09
Fe2O3	6.28 %	Total Fe as FeO 11.30	3.77	Nepheline		
FeO	5.65 %	Desired Fe2O3 3.77	7.91	Leucite		
MnO	0.10 %	Desired FeO 7.91	0.10	Kalsilite		
MaO	3.04 %	Weight corr. factor 1.000	3.04	Corundum		
CaO	4.97 %		4 97	Diopside	4 33	3 56
Na2O	4 14 %		4 14	Hypersthene	15.20	11.85
K20	2 90 %		2 90	Wollastonite	.0,20	,
P205	0.31 %	Zero values not shown	0.31	Olivine		
C02	%		0,01	Larnite		
SO2	70 %			Acmito		
6	70 %			K2SiO2		
5	70 9/	Norm colouistion chooks		Na28i02		
	70	Norm calculation checks:		Naz5i03		
	240 220	Norm seems OK	0.04	Rutile	2.00	4.00
Sr	349 ppm		0,04	limenite	2,09	1,23
ва	427 ppm		0,05	Magnetite	5,47	2,94
NI	40 ppm		0,01	Hematite		
Cr	100 ppm		0,01	Apatite	0,72	0,63
Zr	298 ppm		0,04	Zircon	0,06	0,04
Total	103,37		103,27	Perovskite		
				Chromite	0,01	0,01
				Sphene		
				Pyrite		
				Halite		
				Fluorite		
				Anhydrite		
				Na2SO4		
				Calcite		
				Na2CO3		
				Total	103,25	100,02
			Fe3+/(Total Fe) in	n rock	30,0	30,0
			Mg/(Mg+Total Fe) in rock	32,4	32,4
			Mg/(Mg+Fe2+) in	rock	40,7	40,7
			Mg/(Mg+Fe2+) in	silicates	50,4	50,4
			Ca/(Ca+Na) in ro	ck	39,9	39,9
			Ca/(Ca+Na) in pla	agioclase	32,1	32,1
			Differentiation In	dex	75.4	79.8
			Calculated densi	ty, g/cc	2,88	2.88
			Calculated liquid	density, g/cc	2.58	2.58
			Calculated visco	sitv. drv. Pas	0.38	0.38
			Calculated visco	sitv. wet. Pas	0.35	0.35
			Estimated liquid	us temp., °C	1093	1093
			Estimated H2O c	ontent. wt. %	1.02	1.02
This progr	am was written by	v Kurt Hollocher, Geology Department	Union College Sch	enectady NY 1230	8 hollochk@uni	on edu

Norm Calculation Program		Program run:	11-03-2009			HELP	
Sample N	umber:	omar-4					
	Rock	Normalization		Normalized	Normative	Weight %	Volume %
0:00	Analysis	Factors		Analysis	Minerals	Norm	Norm
5102	62,45 %	Total=100%? Y/N	n	62,45	Quartz	12,45	13,09
1102	0,54 %	Fe3+/(I otal Iron)	0,3	0,54	Plaglociase	56,19	58,89
AI203	10,00 %	Total Ea ao EaO	E 50	10,60	Urthoclase	10,42	17,00
Fe2O3	3,10 %	Total Fe as FeO	5,58	1,86	Nepheline		
FeO	2,79 %	Desired Fe2O3	1,86	3,91	Leucite		
MINO	0,05 %	Desired FeO	3,91	0,05	Kaisilite		
MgO	1,34 %	weight corr. factor	1,000	1,34	Corundum	0.04	0.40
CaO	4,33 %			4,33	Diopside	3,04	2,49
Na2O	4,67 %			4,67	Hypersthene	6,66	5,15
K2O	2,68 %	Zara valuas na	t a h aum	2,68	Wollastonite		
P2O5	0,21 %	Zero values no	t shown	0,21	Olivine		
CO2	%				Larnite		
SO3	%				Acmite		
s	%				K2SiO3		
F	%	Norm calculation cl	hecks:		Na2SiO3		
CI	%	Norm seems OK			Rutile		
Sr	630 ppm			0,07	Ilmenite	1,03	0,60
Ва	693 ppm			0,08	Magnetite	2,70	1,45
Ni	20 ppm				Hematite		
Cr	20 ppm				Apatite	0,49	0,42
Zr	124 ppm			0,02	Zircon	0,03	0,02
Total	98,96			99,01	Perovskite		
					Chromite		
					Sphene		
					Pyrite		
					Halite		
					Fluorite		
					Anhydrite		
					Na2SO4		
					Calcite		
					Na2CO3		
					Total	99,01	99,99
				Fe3+/(Total Fe) ir	rock	30,0	30,0
				Ma/(Ma+Total Fe) in rock	30,0	30,0
				Ma/(Ma+Fe2+) in	rock	37.9	37.9
				Ma/(Ma+Fe2+) in	silicates	47.5	47.5
				Ca/(Ca+Na) in roo	:k	33.9	33.9
				Ca/(Ca+Na) in pla	gioclase	28.5	28.5
				Differentiation In	dex	85.1	89.9
				Calculated densit	ty a/cc	2 76	2 76
				Calculated liquid	density a/cc	2 49	2 49
				Calculated visco	sity dry Pae	0.58	0.58
				Calculated visco	sitv wet Pas	0.50	0,50
				Estimated liquid	is temp °C	974	974
				Estimated H2O of	ontent wt %	2.01	2 01
This progra	am was written b	v Kurt Hollocher, Geolog	ny Department	Inion College Sch	enectady NY 1230	8 hollochk@uni	on edu

Sample Numeer:	Norm Cal	culation Program	n	Program run:	11-03-2009		I	HELP
Rock Analysis Normalization Factors Normalized Analysis Normative Minerals Weight % Volume % SiO2 0.50 % Total=100% Y/N 0.51 Normalized Analysis Normative Norm Norm Norm SiO2 0.50 % Norm 0.53 Norm Norm 20.06 Fe0 3.63 % Total Feas Fe0 7.25 2.42 Norm Norm 1.84 1.27 CaO 1.63 % Desired FeO 5.08 Norm Norm 1.84 1.27 CaO 3.45 % Desired FeO 5.08 Norm 1.84 1.27 SO3 5 5 % Norm calculation checks: Norm seems OK 0.07 Norm Normative Normative Normative Norm Ni 60 ppm Cr 100 ppm Zr Norm calculation checks: Norm Norm <td>Sample N</td> <td>umber:</td> <td>db-1</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Sample N	umber:	db-1					
Analysis Minerals Norm SiO2 66,37 % TiO2 0,60 % 19,43 20,08 % Al203 15,92 % Fed 44,35 45,36 % FeO 3,63 % FeO 56,07 % 0.00 % 19,43 20,97 22,43 % FeO 3,63 % Desired FeO 5,68 % 0rthoclase 44,35 45,86 % Moo 0.22 % Mepheline Leucite 0.00 % 15,82 % 0.00 % 15,82 % 0.00 % 15,82 % 0.00 % 15,82 % 0.00 % 15,83 % 0.00 % 15,83 % 0.00 % 15,83 % 0.00 % 15,83 % 0.00 % 15,83 % 0.00 % 14,13 % 1,990 % 16,83 % 16,96 % 0.07 % 10,90 % 16,96 % 0.07 % 0.07 % 16,96 % 0.07 % 16,96 % 10,95 % 0.07 % 10,96 % 0.07 % 0.07 % 10,96 % 0.07 % 10,96 % 0.05 % 16,96 % 10,96 % 10,96 % 0.08 % 3,46 % <td< td=""><td></td><td>Rock</td><td>Normalization</td><td></td><td>Normalized</td><td>Normative</td><td>Weight %</td><td>Volume %</td></td<>		Rock	Normalization		Normalized	Normative	Weight %	Volume %
SiO2 66.37 Total=100%? Y/N n TiO2 0.50 % 1	1	Analysis	Factors		Analysis	Minerals	Norm	Norm
TiO2 0.50 % Al203 15.92 % Fe203 4.33 5.62 Al203 15.92 % Fe0 3.63 % Fe0 3.63 % Fe0 3.63 % MnO 0.02 % Mg0 1.53 Corundum 1.84 Desired Fe0 5.06 Leucite Kalsilite CaO 1.96 % Nazo 4.13 Nazo 4.13 % 1.96 Diopside P205 0.07 % Caro values not shown 0.07 Ci % % Norm calculation checks: 0.07 Sr 421 ppm % Norm seems OK 0.07 Ci % 0.07 % Norm seems OK 0.02 Total 101.61 % 0.02 Magnetite 0.03 Norm seems OK 0.02 Intentite 0.02 1.85 Magnetite 0.02 1.60 0.14 0.16 0.14 O	SiO2	66,37 %	Total=100%? Y/N	n	66,37	Quartz	19,43	20,08
Al2C03 15.92 % Fe2O3 4.03 % Fe2O3 4.03 % Fe2O3 3.63 % MnO 0.02 % MgO 1.53 % CaO 1.66 % NaZO 4.13 % K2O 3.45 % P2O5 0.07 % So3 % % S % % S % % S r 421 ppm Ba 677 ppm Ni 60 ppm Crotal 101.61 Norm calculation checks: Norm seems OK 0.07 0.02 101.63 Total 101.61 Noil 60 ppm 7.25 Catal 101.61 Total 101.61 Fe3.47(Total Fe) in rock 3.00 Mg/(Mg+Fe2+) in rock 3.00 Mg/(Mg+Fe2+) in rock 3.49 Mg/(Mg+Fe2+) in rock 3.49 <td>TiO2</td> <td>0,50 %</td> <td>Fe3+/(Total Iron)</td> <td>0,3</td> <td>0,50</td> <td>Plagioclase</td> <td>44,35</td> <td>45,86</td>	TiO2	0,50 %	Fe3+/(Total Iron)	0,3	0,50	Plagioclase	44,35	45,86
Fe203 4.03 % Pe0 Total Fe as Fe0 7.25 Desired Fe203 2.42 Desired Fe203 Nepheline Leuctite Ma0 0.02 % Mg0 1.58 % Desired Fe0 5.08 Weight corr. factor 1,000 1.86 Molestantite 1.84 1.27 Ca0 1.96 % Na20 4.13 % K20 3.45 % P205 Voirsthene 10,35 7,80 S03 % S % Cl Xerro values not shown 0.07 Acmite Acmite Acmite Acmite K2Si03 Rutile 10,35 0.55 So3 % S % Cl % Norm calculation checks: Norm seems OK 0.06 Na2Si03 Rutile 0.05 Na2Si03 Rutile 0.06 0.01 Apatite 0.06 0.01 0.02 Apatite 0.03 0.02 Total 101.61 101.61 F62+(Total Fe) in rock 30.0	AI2O3	<mark>15,92</mark> %			15,92	Orthoclase	20,97	22,43
FeO 3.63 % MnO Desired Fe2O3 2.42 Desired FeO 5.08 5.08 Meght corr. factor Leucite MacO 1.53 % CaO 1.96 % Neight corr. factor 0.00 Meght corr. factor 0.00 Meght corr. factor 1.00 Meght corr. factor 1.96 Molastonite Diopside NazO 4.13 % K2O 3.45 % S % S 1.96 Molastonite Diopside 0.03 Molastonite 7.80 Wollastonite CO2 % SO3 % S % S % S % S % S 0.07 Morm calculation checks: 0.07 Norm seems OK 0.07 Magnetite 0.35 Magnetite 7.80 Wollastonite Norm calculation checks: Norm seems OK 0.06 Magnetite 0.05 Magnetite 0.05 Magnetite 0.05 Magnetite 0.05 Magnetite 0.05 Magnetite 0.06 Magnetite 0.03 Mol 0.02 Mol 0.01 Magnetite 0.03 Mol 0.02 Mol 0.02 Mol Privite Mahuite 0.02 Mol Norm seems OK 0.03 Mol 0.02 Mol 0.02 Mol Magnetite 0.03 Mol 0.02 Mol 0.02 Mol Mol 0.02 Mol Mol M	Fe2O3	<mark>4,03</mark> %	Total Fe as FeO	7,25	2,42	Nepheline		
Mno 0.02 % MgO Lasifiered FeO 5.08 Weight corr. factor 0.001 1,000 Kalsifiere 2 Corundum 1,84 1,27 Na2O 4,13 % K2O 3,45 % 1,53 Diopside 1 Hypersthene 10,35 7,80 SO3 % S % F % Acmite Acmite 4 4 4 SO3 % S % Norm calculation checks: Norm seems OK 0.001 Na2SIO3 Rutile 1 1 4 1 1 6 0,001 Na2SIO3 0.002 Na2SIO3 0.003 0,002 Na2SIO3 0.001 Na2SIO3 0.001 Na2SIO3 0.001 Na2SIO3 0.001 0.002 Na2SIO3 0.002 Na2SIO3 0.002 Na2SIO3 0.001 0.002 Na2SIO3 0.003 0.002 Na2SIO3 0.011 Na2SIO3 0.021 Na2SIO3 0.021 Na2SIO3 0.011 Na2SIO3 0.011 Na2SIO3 0.021 Na2SIO3<	FeO	<mark>3,63</mark> %	Desired Fe2O3	2,42	5,08	Leucite		
Mg0 1.53 Caruadum 1,84 1,27 CaO 1,96 1,96 Diopside 198 M20 4,13 % 1,34 Diopside 199 P205 0.07 % 3,45 Wollschnite 1000 C02 % S % Norm calculation checks: 0,07 Norm calculation checks: Norm calculatid checks: Norm calculatichechecks: No	MnO	<mark>0,02</mark> %	Desired FeO	5,08	0,02	Kalsilite		
Ca0 1.96 %	MgO	<mark>1,53</mark> %	Weight corr. factor	1,000	1,53	Corundum	1,84	1,27
Na20 4,13 % K20 3,45 % P205 0,07 % S03 % % S % % C1 % % Sr 421 ppm % Ba 677 ppm % C1 % % Norm calculation checks: % Norm seems OK % Sr 421 ppm Ba 677 ppm Ni 60 ppm Cr 120 ppm Cr 120 ppm Cr 133 ppm Total 101.61 Voidal file % G2(Ca+Na) in prock 3.0,02 Sphene % Pyrite % Hallte % Fe3+/(Total Fe) in rock 30,0 Mg/(Mg+Fe2+) in rock 30,0 Mg/(Mg+Fe2+) in rock 33,4 Mg/(Mg+Fe2+) in rock 34,4 Calculated density, g/cc 2,78 Calculated density, g/cc 2,78	CaO	<mark>1,96</mark> %			1,96	Diopside		
K20 3,45 % 3,45 % P205 0,07 % 3,45 % S03 % 6 So3 % 8 Sr 421 ppm Ba 677 ppm Ni 60 ppm Cr 120 ppm Zr 183 ppm Total 101.61 Fe3+/(Total Fe) in rock 30.0 Mg/(Mg+Fe2+) in silicates 43.4 Mg/(Mg+Fe2+) in nock 30.0 Mg/(Mg+Fe2+) in nock 30.4 Agate 84.8 Calculated liquid density, g/cc 2.78 Calculated liquid viscosity, wer, Pas 0.54	Na2O	<mark>4,13</mark> %			4,13	Hypersthene	10,35	7,80
P205 0,07 % 2ero values nor snown 0,07 001/vine C02 % Armite Armite Armite S03 % Norm calculation checks: Na2Si03 Rutile Na2Si03 Sr 421 ppm Norm seems OK 0,05 Magnetite 3,51 1,85 Ni 60 ppm 0,06 0,06 0,01 0,02 Apatite 0,16 0,14 Cr 120 ppm Zircon 0,03 0,02 Perovskite Chromite 0,03 0,02 Total 101,61 F63+/(Total Fe) in rock 30,0 30,0 30,0 30,0 F63+/(Total Fe) in rock 34,9 3	к20	3,45 %	7	a haven	3,45	Wollastonite		
CO2 % SO3 % S % S % Cl % Sr 421 ppm Ba 677 ppm Ni 60 ppm Cr 120 ppm Zr 183 ppm Total 101,61 Fe3+/(Total Fe) in rock Anydrite 0.03 NazSO3 0.04 Hematite 0.05 0.05 0.06 Magnetite 3.51 101,61 0.02 Apatite 0.03 0.02 101,61 0.04 Fe3+/(Total Fe) in rock 0.03 0.02 Sphene 9/7/16 NazSO4 Calculated Ng/(Mg+Fe2+) in rock 3.00 Ng/(Mg+Fe2+) in rock 3.4, 4.3, 4.3, 4.3, 4.3, 4.3, 4.3, 4.3,	P2O5	0,07 %	Zero values not	snown	0,07	Olivine		
SO3 % S % S % F % CI % Sr 421 ppm Ba 677 ppm Ni 60 ppm Cr 120 ppm Cr 120 ppm Total 101,61 Norm calculation checks: Other calculate Q:101 Sphene Pyrite Halite Floorite Anhydrite Na2SO4 Calculated Nacoost Na2CO3 Total 101,62	CO2	%				Larnite		
S 4% F % CI % Sr 421 ppm Ba 677 ppm Cr 120 ppm Cr 120 ppm Total 101,61 Point of the second of	SO3	%				Acmite		
F Morm calculation checks: Sr Mazsio3 421 ppm Ba Mazsio3 60 ppm Cr Mazsio3 1,55 Ni 60 ppm Cr 120 ppm Total Ni 0,00 Magnetite 3,51 1,85 0,02 Apatite 0,16 0,14 0,02 Apatite 0,16 0,14 Zr 183 ppm Total 101,61 Norm seems OK 0,02 Apatite 0,16 0,14 Bit 101,61 Norm seems OK 0,02 Apatite 0,16 0,14 Zr 183 ppm Total 101,61 Norm seems OK 0,02 Sphene 0,02 Sphene Pyrite Halite Fluorite 0,03 0,02 Sphene Pyrite Halite Fluorite Anhydrite Na2SO3 Fe3+/(Total Fe) in rock 30,0 30,0 30,0 30,0 Mg/(Mg+Fe2+) in silicates 43,4 43,4 43,4 43,4 Mg/(Mg+Fe2+) in rock 20,8 20,8 20,8 20,8 20,8 Differentiation Index 84,8 84,6 24,6 Calculated liquid density, g/cc 2,78 2,78	s	%		. 1		K2SiO3		
Cl *	F	%	Norm calculation ch	necks:		Na2SiO3		
Sr 4.21 ppm 0.05 Illmenite 0.95 0.95 Ba 677 ppm 0.08 Magnetite 3.51 1.85 Ni 60 ppm 0.01 Hematite 0.02 Apatite 0,16 0,14 Zr 183 ppm 0.02 Zircon 0,03 0,02 Perovskite 0.02 Sphene Perovskite 0.02 Sphene Perovskite 0.02 Sphene Na2SO4 Calcite Na2SO4 Calcite Na2SO4 Calcite Na2SO4 Calcite Na2SO4 Calcite Na2C0.3 0.02.0 Mg/(Mg+Fe2+) in rock 3.4,9 34,9	CI	%	Norm seems OK		0.05	Rutile	0.05	0.55
Ba 077 ppm 0.08 Magnetite 3,51 1,65 Ni 60 ppm 0,01 Hematite 4 4 4 Cr 120 ppm 0,02 Apatite 0,03 0,02 Total 101,61 0.01 101,61 Chromite 0,03 0,02 Sphene Pyrite Halite Fluorite Anhydrite Na2SO4 Calcite Na2SO4 Calcite Na2CO3 Total 101,62 100,02 Mg(Mg+Fe2+) in rock 30,0 30,0 Mg(Mg+Fe2+) in rock 34,9 34,8 88,4 Calcu	Sr	421 ppm			0,05	limenite	0,95	0,55
Ni 60 ppm Cr 120 ppm 2100 ppm 2100 ppm 0,01 0,02 Hemattle 0,02 0,02 Apatite 0,16 0,14 Apatite 0,02 0,02 101,63 0,02 101,63 0,02 Total 101,61 101,63 101,63 0,02 Perovskite 0,03 0,02 Sphene Pyrite Halite Fluorite 0,03 0,02 Sphene Pyrite Halite Fluorite 0,03 0,02 Sphene Pyrite Halite Fluorite Na2SO4 Calcite Na2SO4 Calcite Na2SO4 Calcite Na2SO4 Calcite Na2GO3 Total 101,62 100,02 Mg/(Mg+F02+) in rock 34,9	ва	677 ppm			0,08	Magnetite	3,51	1,85
Cr 120 ppm] 0,02 Aparte 0,16 0,14 Zr 183 ppm 2ircon 0,03 0,02 101,61 101,61 Perovskite Chromite 0,03 0,02 Sphene Pyrite Halite Fluorite Anhydrite Na2S04 Calcite Na2C03 Total 101,62 100,02 Total 101,62 100,02 Fe3+/(Total Fe) in rock 30,0 30,0 30,0 Mg/(Mg+Fe2+) in rock 34,9 34,9 Mg/(Mg+Fe2+) in rock 34,9 34,9 Mg/(Mg+Fe2+) in rock 20,8 20,8 Calculated density, g/cc 2,78 2,78 Calculated density, g/cc 2,78 2,78 Calculated viscosity, wry, Pas 0,64 0,64 Calculated viscosity, wry, Pas 0,64 0,64 Calculated viscosity, wry, Pas 0,54 0,54 Estimated liquidus temp., °C 933 933		60 ppm			0,01	Hematite	0.40	0.14
Litch 0,02 0,03 0,02 101,61 101,61 0,03 0,02 101,61 101,63 Perovskite Chromite 0,03 0,02 Sphene Pyrite Halite Fluorite Anhydrite Na2SO4 Calcite Na2SO4 Calcite Na2SO4 Na2CO3 Total 101,62 100,02 Fe3+/(Total Fe) in rock 30,0 30,0 Mg/(Mg+Fo2+) in rock 34,9 34,9 Mg/(Mg+Fe2+) in silicates 43,4 43,4 Cal(Ca+Na) in rock 20,8 20,8 Calculated density, g/cc 2,78 2,78 Calculated density, g/cc 2,78 2,78 Calculated viscosity, wet, Pas 0,64 0,64 Calculated viscosity, wet, Pas 0,64 0,64 Calculated liquids temp., °C 933 933	Cr	120 ppm			0,02	Apatite	0,16	0,14
Total Tot,01 Perovsite Chromite 0,03 0,02 Sphene Pyrite Halite Fluorite Anhydrite Na2S04 Calcite Na2C03 Total Total 101,62 100,02 Fe3+/(Total Fe) in rock 30,0 30,0 Mg/(Mg+Total Fe) in rock 30,0 30,0 Mg/(Mg+Fe2+) in silicates 43,4 43,4 Ca/(Ca+Na) in rock 20,8 20,8 Ca/(Ca+Na) in plagioclase 20,2 20,2 Differentiation Index 84,8 88,4 Calculated density, g/cc 2,78 2,78 Calculated viscosity, dry, Pas 0,64 0,64 Calculated viscosity, dry, Pas 0,54 0,54 Calculated viscosity, wet, Pas 0,54 0,54 Calculated liquidus temp., °C 933 933	Zr	101.61			101.63	Borovskito	0,03	0,02
Chlome 0,03 0,02 Sphene Pyrite Halite Fluorite Anhydrite Na2S04 Calcite Na2C03 Total 101,62 100,02 Fe3+/(Total Fe) in rock 30,0 30,0 Mg/(Mg+Total Fe) in rock 30,0 30,0 Mg/(Mg+Fe2+) in rock 27,3 27,3 Mg/(Mg+Fe2+) in silicates 43,4 43,4 Cal(Ca+Na) in plagioclase 20,2 20,2 Differentiation Index 84,8 88,4 Calculated density, g/cc 2,78 2,78 Calculated viscosity, dry, Pas 0,64 0,64 Calculated viscosity, wet, Pas 0,54 0,54 Estimated liquidus temp., °C 933 933	TOLAI	101,01			101,03	Chromito	0.03	0.02
Pyrite Pyrite Halite Fluorite Anhydrite Na2SO4 Calcite Na2CO3 Total 101,62 101,62 100,02 Fe3+/(Total Fe) in rock 30,0 Mg/(Mg+Total Fe) in rock 27,3 Mg/(Mg+Fe2+) in silicates 43,4 Mg/(Mg+Fe2+) in silicates 43,4 Mg/(Mg+Fe2+) in silicates 20,8 Ca/(Ca+Na) in plagioclase 20,2 Differentiation Index 84,8 Calculated density, g/cc 2,48 Calculated dusty, g/cc 2,48 Calculated viscosity, dry, Pas 0,64 Calculated viscosity, wet, Pas 0,54 O,54 0,54						Sphene	0,03	0,02
Halite Halite Fluorite Anhydrite Na2SO4 Calcite Na2CO3 Total 101,62 Total 101,62 101,62 100,02 Fe3+/(Total Fe) in rock 30,0 Mg/(Mg+Total Fe) in rock 27,3 Mg/(Mg+Fe2+) in rock 34,9 Mg/(Mg+Fe2+) in silicates 43,4 Ca/(Ca+Na) in rock 20,8 Ca/(Ca+Na) in rock 20,2 Differentiation Index 84,8 Calculated density, g/cc 2,78 Calculated density, g/cc 2,48 Calculated viscosity, dry, Pas 0,64 Calculated viscosity, wet, Pas 0,54 Calculated viscosity, wet, Pas 0,54 Estimated liquidus temp., °C 933						Pyrite		
Fluorite Anhydrite Na2SO4 Calcite Na2CO3 Total 101,62 Total 101,62 101,62 100,02 Fe3+/(Total Fe) in rock 30,0 Mg/(Mg+Total Fe) in rock 27,3 Mg/(Mg+Fe2+) in rock 34,9 Mg/(Mg+Fe2+) in silicates 43,4 Ca/(Ca+Na) in rock 20,8 Calculated density, g/cc 2,78 Differentiation Index 84,8 Calculated density, g/cc 2,78 Calculated liquid density, g/cc 2,48 Calculated viscosity, dry, Pas 0,64 Calculated viscosity, wet, Pas 0,54 Satisticated liquidus temp., °C 933						Halite		
Anhydrite Na2S04 Calcite Na2C03 Total 101,62 100,02 Fe3+/(Total Fe) in rock 30,0 30,0 Mg/(Mg+Total Fe) in rock 27,3 27,3 Mg/(Mg+Fe2+) in rock 34,9 34,9 Mg/(Mg+Fe2+) in rock 20,8 20,8 Ca/(Ca+Na) in rock 20,2 20,2 Differentiation Index 84,8 88,4 Calculated density, g/cc 2,78 2,78 Calculated viscosity, dry, Pas 0,64 0,64 Calculated viscosity, wet, Pas 0,54 0,54 Estimated liquidus temp., °C 933 933						Fluorite		
Na2SO4 Calcite Na2CO3 Total 101,62 Total 101,62 101,62 100,02 Fe3+/(Total Fe) in rock 30,0 Mg/(Mg+Total Fe) in rock 27,3 Mg/(Mg+Fe2+) in rock 34,9 Mg/(Mg+Fe2+) in silicates 43,4 Ca/(Ca+Na) in rock 20,8 Ca/(Ca+Na) in plagioclase 20,2 Differentiation Index 84,8 Calculated density, g/cc 2,78 Calculated liquid density, g/cc 2,48 Calculated viscosity, dry, Pas 0,64 Calculated viscosity, wet, Pas 0,54 Estimated liquidus temp., °C 933 933						Anhydrite		
Calcite Na2C03 Total 101,62 100,02 Fe3+/(Total Fe) in rock 30,0 30,0 Mg/(Mg+Total Fe) in rock 27,3 27,3 Mg/(Mg+Fe2+) in rock 34,9 34,9 Mg/(Mg+Fe2+) in silicates 43,4 43,4 Cal(Ca+Na) in rock 20,8 20,8 Cal(Ca+Na) in plagioclase 20,2 20,2 Differentiation Index 84,8 88,4 Calculated density, g/cc 2,78 2,78 Calculated viscosity, dry, Pas 0,64 0,64 Calculated viscosity, wet, Pas 0,54 0,54 Estimated liquidus temp., °C 933 933						Na2SO4		
Na2CO3 Total 101,62 100,02 Fe3+/(Total Fe) in rock 30,0 30,0 Mg/(Mg+Total Fe) in rock 27,3 27,3 Mg/(Mg+Fe2+) in rock 34,9 34,9 Mg/(Mg+Fe2+) in silicates 43,4 43,4 Ca/(Ca+Na) in rock 20,8 20,8 Differentiation Index 84,8 88,4 Calculated density, g/cc 2,78 2,78 Calculated liquid density, g/cc 2,48 2,48 Calculated viscosity, dry, Pas 0,64 0,64 Calculated viscosity, wet, Pas 0,54 0,54 Estimated liquidus temp., °C 933 933						Calcite		
Total 101,62 100,02 Fe3+/(Total Fe) in rock 30,0 30,0 Mg/(Mg+Total Fe) in rock 27,3 27,3 Mg/(Mg+Fe2+) in rock 34,9 34,9 Mg/(Mg+Fe2+) in silicates 43,4 43,4 Ca/(Ca+Na) in rock 20,8 20,8 Differentiation Index 84,8 88,4 Calculated density, g/cc 2,78 2,78 Calculated liquid density, g/cc 2,78 2,78 Calculated viscosity, dry, Pas 0,64 0,64 Calculated viscosity, wet, Pas 0,54 0,54 Estimated liquidus temp., °C 933 933						Na2CO3		
Fe3+/(Total Fe) in rock 30,0 30,0 Mg/(Mg+Total Fe) in rock 27,3 27,3 Mg/(Mg+Fe2+) in rock 34,9 34,9 Mg/(Mg+Fe2+) in silicates 43,4 43,4 Ca/(Ca+Na) in rock 20,8 20,8 Differentiation Index 84,8 84,4 Calculated density, g/cc 2,78 2,78 Calculated liquid density, g/cc 2,48 2,48 Calculated viscosity, dry, Pas 0,64 0,64 Calculated viscosity, wet, Pas 0,54 0,54 Estimated liquidus temp., °C 933 933						Total	101,62	100,02
Mg/(Mg+Total Fe) in rock 27,3 27,3 Mg/(Mg+Fo2+) in rock 34,9 34,9 Mg/(Mg+Fe2+) in silicates 43,4 43,4 Ca/(Ca+Na) in rock 20,8 20,8 Ca/(Ca+Na) in plagioclase 20,2 20,2 Differentiation Index 84,8 88,4 Calculated density, g/cc 2,78 2,78 Calculated liquid density, g/cc 2,48 2,48 Calculated viscosity, dry, Pas 0,64 0,64 Estimated liquidus temp., °C 933 933					Fe3+/(Total Fe) in	rock	30,0	30,0
Mg/(Mg+Fe2+) in rock 34,9 34,9 Mg/(Mg+Fe2+) in silicates 43,4 43,4 Ca/(Ca+Na) in rock 20,8 20,8 Ca/(Ca+Na) in plagioclase 20,2 20,2 Differentiation Index 84,8 88,4 Calculated density, g/cc 2,78 2,78 Calculated liquid density, g/cc 2,48 2,48 Calculated viscosity, dry, Pas 0,64 0,64 Estimated liquidus temp., °C 933 933					Mg/(Mg+Total Fe) in rock	27,3	27,3
Mg/(Mg+Fe2+) in silicates43,443,4Ca/(Ca+Na) in rock20,820,8Ca/(Ca+Na) in plagioclase20,220,2Differentiation Index84,888,4Calculated density, g/cc2,782,78Calculated liquid density, g/cc2,482,48Calculated viscosity, dry, Pas0,640,64Calculated viscosity, wet, Pas0,540,54Estimated liquidus temp., °C933933					Mg/(Mg+Fe2+) in	rock	34,9	34,9
Ca/(Ca+Na) in rock20,820,8Ca/(Ca+Na) in plagioclase20,220,2Differentiation Index84,888,4Calculated density, g/cc2,782,78Calculated liquid density, g/cc2,482,48Calculated viscosity, dry, Pas0,640,64Calculated viscosity, wet, Pas0,540,54Estimated liquidus temp., °C933933					Mg/(Mg+Fe2+) in	silicates	43,4	43,4
Ca/(Ca+Na) in plagioclase20,220,2Differentiation Index84,888,4Calculated density, g/cc2,782,78Calculated liquid density, g/cc2,482,48Calculated viscosity, dry, Pas0,640,64Calculated viscosity, wet, Pas0,540,54Estimated liquidus temp., °C933933					Ca/(Ca+Na) in roo	ck 🛛	20,8	20,8
Differentiation Index84,888,4Calculated density, g/cc2,782,78Calculated liquid density, g/cc2,482,48Calculated viscosity, dry, Pas0,640,64Calculated viscosity, wet, Pas0,540,54Estimated liquidus temp., °C933933					Ca/(Ca+Na) in pla	gioclase	20,2	20,2
Calculated density, g/cc2,782,78Calculated liquid density, g/cc2,482,48Calculated viscosity, dry, Pas0,640,64Calculated viscosity, wet, Pas0,540,54Estimated liquidus temp., °C933933					Differentiation Inc	dex	84,8	88,4
Calculated liquid density, g/cc2,482,48Calculated viscosity, dry, Pas0,640,64Calculated viscosity, wet, Pas0,540,54Estimated liquidus temp., °C933933					Calculated densit	ty, g/cc	2,78	2,78
Calculated viscosity, dry, Pas0,640,64Calculated viscosity, wet, Pas0,540,54Estimated liquidus temp., °C933933					Calculated liquid	density, g/cc	2,48	2,48
Calculated viscosity, wet, Pas 0,54 0,54 Estimated liquidus temp., °C 933 933					Calculated viscos	sity, dry, Pas	0,64	0,64
Estimated liquidus temp., °C 933 933					Calculated viscos	sity, wet, Pas	0,54	0,54
					Estimated liquidu	is temp., ℃	933	933
Estimated H2O content, wt. % 2,41 2,41	This are			Desertes i	Estimated H2O co	ontent, wt. %	2,41	2,41

Sample N	lumber:	qp-2				
	D l	Marca Partice	No	News	M/-1-1-0/	Mal
	Rock	Normalization	Normalized	Normative	Weight %	Volume %
0:00	Analysis	Factors	Analysis	Minerals	Norm	Norm
5102	68,43 %	l otal=100%? Y/N	68,43	Quartz	21,70	21,98
1102	0,47 %	Fe3+/(Total Iron) 0,3	0,47	Plagioclase	41,44	41,98
AI2O3	16,01 %		16,01	Orthoclase	24,22	25,39
Fe2O3	3,73 %	Total Fe as FeO 6,71	2,24	Nepheline		
FeO	3,36 %	Desired Fe2O3 2,24	4,70	Leucite		
MnO	<mark>0,02</mark> %	Desired FeO 4,70	0,02	Kalsilite		
MgO	<mark>1,40</mark> %	Weight corr. factor 1,000	1,40	Corundum	1,96	1,32
CaO	<mark>1,86</mark> %		1,86	Diopside		
Na2O	<mark>3,83</mark> %		3,83	Hypersthene	9,54	7,04
K2O	<mark>4,00</mark> %		4,00	Wollastonite		
P2O5	0,05 %	Zero values not shown	0,05	Olivine		
CO2	%			Larnite		
SO3	%			Acmite		
s	%			K2SiO3		
F	%	Norm calculation checks:	1	Na2SiO3		
CI	%	Norm seems OK		Rutile		
Sr	407 ppm		0.05	Ilmenite	0.89	0.50
Ba	732 ppm		0,00	Magnotito	3 25	1.68
Da Ni	40 ppm		0,00	Homotito	0,20	1,00
	40 ppm		0,01	Anotito	0.12	0.10
	470 ppm		0,01	Apatite	0,12	0,10
Zr	179 ppm		0,02	Zircon	0,03	0,02
Total	103,16		103,18	Perovskite		
				Chromite	0,01	0,01
				Sphene		
				Pyrite		
				Halite		
				Fluorite		
				Anhydrite		
				Na2SO4		
				Calcite		
				Na2CO3		
				Total	103,16	100,02
			Fe3+/(Total Fe) in	n rock	30,0	30,0
			Mg/(Mg+Total Fe	e) in rock	27,1	27,1
			Mg/(Mg+Fe2+) in	rock	34,7	34,7
			Mg/(Mg+Fe2+) in	silicates	43,1	43,1
			Ca/(Ca+Na) in ro	ck	21,2	21,2
			Ca/(Ca+Na) in pla	agioclase	20,8	20,8
			Differentiation In	dex	87.4	89.4
			Calculated densi	ity, q/cc	2,77	2,77
			Calculated liquid	density, a/cc	2.47	2.47
			Calculated visco	sity, dry, Pas	0.68	0.68
			Calculated visco	sity, wet. Pas	0.56	0.56
			Estimated liquid	us temn °C	914	Q14
			Estimated H2O c	content wt %	2.60	2 60
This progr	am was written by	v Kurt Hollocher, Geology Departmen	t Union College Sch	enectady NY 1230	8 hollochk@uni	on edu

Program run: