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DESIGN AND IMPLEMENTATION OF A METHOD FOR PLAGIARISM DETECTION 
 IN DIGITAL DOCUMENTS 

 
With plagiarism one incur in an ethic fault as the original author gets no credit. In the case of written 
documents, one can commit this action including fragments without the proper citation, using the same 
ideas or copying the entire text. 
 
Now, with the information technologies, such as Internet, a vast amount of easy to access information 
exist, therefore the plagiarism becomes a more viable and tempting option to students: to copy and paste 
a work one has to do for educational and investigational purposes becomes more recurrent. 
 
The detection of said cases of plagiarism is complex, because of the infinite possible sources available. 
Then, automated plagiarism detection tools designed for lots of documents becomes more important. 
These tools are based in common pattern detection, information retrieval techniques and in the 
information theory. 
 
One possible solution is the automated detection of verbatim plagiarism. Although other types of 
plagiarism exist, such as semantic plagiarism, as a premise we consider that textual copy represents a 
large proportion of the problem, and automated detection is possible and reliable. 
 
The main objective of this thesis is to develop a method for automated plagiarism detection and 
implement it on a prototype. This method should include state of the art technologies and innovative tools 
to achieve its goal. Also, the system is going to be evaluated in an international workshop and competition 
in order to determine its effectiveness and to test its characteristics. 
 
In this work we propose the design and an implementation of a method for automated detection of 
verbatim plagiarism. This method will then be used by DOCODE, project in which we develop a 
commercial product to be sold, which success depends in the efficacy and efficiency of the method here 
introduced. 
 
The results indicates that an exhaustive search within a pair of documents can achieve the best results 
overall. But this exhaustive comparison has it's disadvantages; it is more expensive in terms of 
computation resources. The proposed method achieved acceptable results; it's F-measure is 0.8 in the 
dataset used, compared to 0.9 in the case of the exhaustive comparison, but it works requiring 
considerably less running time (25 percent the time the exhaustive approach required). 
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DISEÑO E IMPLEMENTACIÓN DE UNA TÉCNICA PARA LA DETECCIÓN DE PLAGIO EN 

DOCUMENTOS DIGITALES   
 

Copiar o plagiar es cometer una falta ética al restar crédito al autor del trabajo original. En el caso de 
documentos escritos, se puede incurrir en copia mediante la inclusión de fragmentos sin citar la fuente 
original, plagiando ideas o mediante la copia completa del texto. 
 
Con el uso de tecnologías de información, como Internet, existe una gran cantidad de información de fácil 
acceso, por lo que el plagio es una opción de gran tentación para los estudiantes: el acto de copiar y 
pegar durante la realización de informes o trabajos en el ámbito educativo y de investigación es un tema 
cada vez más recurrente. 
 
La detección de dichos casos de copia es compleja, debido a la infinidad de fuentes disponibles. Debido 
a esto, herramientas de detección automática de plagio, diseñadas para grandes volúmenes de 
documentos, cobran mayor importancia. Estas herramientas se basan en la detección de patrones en 
común, en diferentes técnicas de recuperación de información y en la teoría de la información. 
 
Una posible solución es la detección automatizada de copia textual. Como hipótesis, se postula que si 
bien existen otros tipos de copia, por ejemplo la copia semántica, la copia textual representa una porción 
importante de lo plagiado, y su detección automatizada es posible y precisa. 
 
El objetivo principal de esta tesis es el desarrollar un método para la detección automatizada de plagio en 
documentos digitales, e implementar un prototipo para comprobar su efectividad. Este método debiese 
contar con tecnologías y conceptos de última generación para cumplir con su objetivo. Además, el 
sistema será evaluado mediante la participación en un taller y competencia internacional en detección de 
plagio. 
 
En este trabajo, se plantea el diseño e implementación de un método de detección automático de plagio 
textual, basado en el lenguaje de programación java. Este método se acoplará posteriormente al sistema 
DOCODE (de ahora en adelante arquitectura DOCODE) proyecto en el cual se desarrolla un producto a 
comercializar, cuyo éxito de ventas depende, en parte, de la eficacia y rendimiento de la estrategia de 
detección aquí propuesta.  
 
Los resultados indican que una búsqueda exhaustiva de plagio en un par de documentos puede obtener 
los mejores resultados en comparación a otros métodos. Pero este método tiene una desventaja; 
requiere el mayor tiempo computacional de todos los algoritmos probados. El método propuesto utiliza 
una aproximación y obtiene resultados aceptables; su  F-measure es de 0.8 sobre los datos utilizados, 
comparado con 0.9 que el algoritmo exhaustivo obtiene, pero requiere considerablemente menos 
recursos computacionales (25 por ciento del tiempo total utilizado por el algoritmo exhaustivo). 
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Chapter 1

Introduction

Plagiarism exists since the born of mankind and basically consists in to take other’s work and label
it as one’s own. In the case of text plagiarism, the copy is defined as the action of literally copy
and paste someone else work without the proper citation [15].

Particularly, one can consider three cases of plagiarism: verbatim copy, to paraphrase and
ideas copy, and self copy. In the first place, verbatim copy is when someone utilizes the text as is
and provides no citation. To paraphrase is to use the idea changing the words. And finally self copy
is to use self’s work without citation.

Because there is a vast amount of easily to access information, thanks to information tech-
nologies such as Internet, the copy and paste phenomena has become more popular and easy to incur
into. A few years before, the only possibility to detect such cases was to manually examine each
document, a generally slow process. In this context, the entity Departamento de Ingenieŕıa Civil
Industrial of Universidad de Chile has postulated to a project, named Document Copy Detector
(DOCODE from now on) and whose architecture is shown on Figure 1.1, to Fondo de Fomento de
Desarrollo Cient́ıfico y Tecnológico (FONDEF from now on). This project objectives are to design
and to develop a system, capable of helping with the copy detection task. This system should use
information technologies to do automated detection of textual plagiarism.

In Figure 1.1 a diagram of the system design is shown. One can see the different components;
the databases, the algorithms for plagiarism detection, the ”metasearch” engine, the interface, and
others.
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Figure 1.1: Architecture of DOCODE system.

1.1 Motivation

Given the large volume of documents and information sources that exist today, originality exami-
nation and plagiarism detection are complex tasks. Without doubt, this is an important issue for
educational purposes, because plagiarism could affect the learning process of a student [26], and
teachers often don’t have the necessary time for exhaustive revision.

In [13] the authors conclude that “looking at the extend of the problem, it is quite obvious
that academia requires tools to automate and enhance plagiarism detection”. In accordance with
[12] “plagiarism detection tools are programs that compare document with possible sources in order
to identify similarity and so discover submissions that might be plagiarized”.
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Therefore, this work proposes a methodology for automated textual plagiarism detection,
considering lot’s of documents. This methodology is going to be used for the implementation of the
plagiarism detection algorithm to be used by the DOCODE system, FONDEF project D08I-1015.
This component will detect verbatim copy in document that come in majority from educational
institutions. For example one kind of documents possible is student’s homework.

DOCODE will be afterwards sold as a system able to support the plagiarism detection task.

1.2 Objectives

1.2.1 General Objective

To design and implement a technique for automated textual plagiarism detection considering lot’s
of documents, in the context of the FONDEF D08I-1015 project.

1.2.2 Specific Objectives

1. To document the state of the art in automated plagiarism detection in digital documents.

2. To design and to implement a methodology to extract, clean and process digital documents.

3. To design and to implement a technique for automated textual plagiarism detection.

4. To evaluate the developed algorithm efficiency and efficacy.

5. To integrate the methodology to DOCODE system.

1.3 Methodology

The methodology used to the development of this thesis, is structured in the following steps:

1. To define the problem to be solved.

In this point general information is given and then the problem is defined.

2. To document the state of the art in the plagiarism detection task.

The state of the art will be documented using publications and books as reference, to be able
to build a Conceptual Framework chapter. In this chapter automated plagiarism detection
will be discussed and plagiarism search space concept will be introduced. Specific objective
number 1 is to be achieved.

3



3. To use extraction, cleaning and processing techniques in digital documents.

Different techniques for documents preprocessing will be used, as recovering information within
the documents, remove the stopwords and remove non alphanumeric characters. This pro-
cess can be useful for large numbers of documents, for example the corpus of International
Workshop on Plagiarism Analysis, Authorship Identification, and Near-Duplicate Detection
(PAN), which contains thousands of texts of different sizes [30]. Specific objective number 2
is to be achieved.

4. Design and implement a strategy for automated detection of plagiarism.

An automated detection strategy based on word n-grams will be designed. Afterwards an
implementation in java programming language will be implemented. Specific objective number
3 is to be achieved.

5. Continuous strategy evaluation and updates according to experiments results.

Using iterative development ensures improving reliability and efficiency of the strategy. Spe-
cific objective number 4 is to be achieved.

6. Integration with DOCODE system.

At this point the efforts will be oriented to integrate the methodology in DOCODE. A com-
munication protocol will be established in order for the implementation to communicate with
other components of the system. Specific objective number 5 is to be achieved.

Using this methodology and by achieving each specific objective, the main objective is to be
completed.

1.4 Thesis Scope

The scope of this work is to develop a technique and a prototype of a external plagiarism detection
system. The system should be able to detect verbatim plagiarism between a pair of documents.
This detection should only indicate if the text pair should be manually read in order to confirm the
plagiarism.

1.5 Thesis Hypothesis

By using word n-grams a efficient technique for automated verbatim plagiarism detection can be
developed. This technique should work on digital documents written in English.
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1.6 Thesis Contribution

The main contribution of this thesis will be a technique and a procedure for automated textual
plagiarism detection. This procedure will be used in the development of the DOCODE system.
Also, the prototype developed from the proposed technique will participate in the international
Workshop and Competition on automated plagiarism detection, PAN 2010 [30].

1.7 Thesis Structure

On the following chapter, the bibliographic review is presented where the state of the art in auto-
mated plagiarism detection and search space reduction techniques are reviewed.

On chapter 3, the main contribution of this thesis is presented, where the problem definition
and the plagiarism detection strategy are described.

Then, on chapter 4, an experiment design is presented along with benchmark algorithms for
comparison purposes. Next, the experiment is conducted in order to determine accurate settings
for the technique and for further evaluation.

Afterwards, on chapter 5, the results for the algorithm and proposed technique are discussed.

Finally, on chapter 6 the main conclusions are presented, where the main findings and con-
tributions are highlighted, as well as the future work and lines for research are discussed.
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Chapter 2

Conceptual Framework

In this chapter, a conceptual framework and different topics about plagiarism detection are intro-
duced.
In this context, it is necessary to differentiate the task of plagiarism detection from author recogni-
tion. The latter is mainly done by investigating facts around the work itself in order to determine
the actual Author, and by identifying style markers that could lead to identify differences in writing
style. The former is about whether or not a work has been copied, following one of the plagiarism
forms, described in section 1. In plagiarism detection two main topics can be described: on the one
hand, intrinsic plagiarism detection, task aimed at discovering plagiarism examining only the work
or document in question. On the other hand, external plagiarism detection, where the suspicious
documents are compared against a set of possible references.

2.1 Plagiarism

First, definitions about plagiarism are introduced. Then, implications of plagiarism in academia and
it’s current status are reviewed. Finally, some reasons about why plagiarism could be considered as
a positive practice within academia [16] are discussed.

2.1.1 What is Plagiarism?

According to the Collins Dictionary of the English Language [15], plagiarism is the act of plagiaris-
ing, which means “to appropriate (ideas, passages, etc) from (another work or author)”. Plagiarism
involves literary theft, stealing (by copying) the words or ideas of someone else and passing them
off as one’s own without crediting the source.
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Also, in [28] other definitions are given, such as:

The term plagiarism is usually used to refer to the theft of words or ideas, beyond what
would normally be regarded as general knowledge. This is the spirit of the definition of
plagiarism adopted by the Association of American Historians, who describe it as “the
misuse of the writings of another author...including the limited borrowing, without at-
tribution, of another’s distinctive and significant research findings, hypotheses, theories
[...] or interpretations” [13].

It is clear that plagiarism refers to a complex topic, that usually involves first analyzing the
context and choosing a proper definition.

2.1.2 Plagiarism in academia

Plagiarism in academia is rising and multiple authors have worked to describe this phenomena [16,
17, 28]. As commented by Hunt [16], “Internet Plagiarism” is referred sometimes as a cataclysmic
consequence of the “information technology revolution”, as it proves to be a big problem in academia.
In [28], plagiarism is analyzed from various perspectives and considered as a problem that is growing
bigger over time. In [17] the author analyzes different statistical data and the implications of the
“IT age”. He then discusses the significant number of students engaged in inappropriate academic
practices. As listed in [16], main plagiarism forms, in the case of students, can be described as:

1. Stealing material from another source and passing it off as their own, e.g.

(a) buying a paper from a research service, essay bank or term paper mill (either pre-written
or specially written),

(b) copying a whole paper from a source text without proper acknowledgement,

(c) submitting another student’s work, with or without that student’s knowledge (e.g. by
copying a computer disk).

2. Submitting a paper written by someone else (e.g. a peer or relative) and passing it off as their
own.

3. Copying sections of material from one or more source texts, supplying proper documentation
(including the full reference) but leaving out quotation marks, thus giving the impression that
the material has been paraphrased rather than directly quoted.

4. Paraphrasing material from one or more source texts without supplying appropriate docu-
mentation and references.

To tackle this problem, one approach is to try to detect plagiarism. Different methods
involving computer aided plagiarism detection have been under research [9, 10, 14, 19, 23, 36, 37],
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from which different system for automatic plagiarism detection have been developed.
However, different ways for neutralizing such detection systems have been presented. Such methods
usually involve modifying the text in such way that the presentation of the document remains the
same, but the underlying code is different and normally this differentiation render the detection
systems useless. For example, as presented in [27], one can substitute a Latin ’o’ for a Russian
’o’. In terms of presentation it reads the same. But the ASCII code, the code that the detection
program reads, is different.

This form of ethic fault is being exploited for example using a software called “Anti Plagiat
Killer”, as mentioned in [27]. The steps for accomplishing this, would be; first a student gets the
instructions. Then, he writes the document. Next, by using one of these softwares, for example “Anti
Plagiat Killer”, he gets the document processed with the real text “hidden”. Finally he submits
the resulting work, confusing the automated plagiarism detection system thus getting undetected.
For these cases, the automatic plagiarism detection system should try to detect these modifications
in order to correctly operate.

2.1.3 Discussion: why plagiarism could be a good thing?

As discussed in [16], plagiarism could be good on certain things. The arguments and ideas behind
this perspective are as follow:

The institutional rhetorical writing environment (the “research paper,” the “literary essay,”
the “term paper”) is challenged by plagiarism, and that’s a good thing. This is because the idea
of measuring a students learning by evaluating it’s capacity on writing is questionable, so it’s
necessary to rethink which environment variables teachers should consider at this evaluation.
Also, the institutional structures around grades and certification are challenged by plagiarism too,
and that’s a good thing. The pressure around students to get better grades often diminish the
importance of the task being done, motivating students focus on the goal rather than working hard
and honestly.
And this is also related to the model of knowledge held by almost all students, and by many faculty
– the tacit assumption that knowledge is stored information and that skills are isolated, asocial
faculties. Plagiarism put in question this idea as it correct to assume the learning process and the
writing of students are conditioned by situations or expectations, and it is hard to accept those
could be reproduce in a educational institution.

The author [16] emphasizes the reason plagiarism could be good is that it opens questions
that could lead to the better understanding of today’s teachings methods and how the knowledge
is constructed. So certainly this discussion is not simple and often conducts to opposing ideas, but
this different perspective brings a new way to understand plagiarism and it’s implications.

8



2.2 Automated Plagiarism Detection

Nowadays with a large set of possible sources for plagiarism such as the Web, it is important to use
the technology available to aid in it’s detection. So, different techniques are used for automated
plagiarism detection. First, the documents needs to be characterized in order to be able to get it’s
information and to determine if a plagiarism case exist. A set of characteristics can be used from a
text in order to proceed with a detection method [12]:

1. Uses of vocabulary. The used vocabulary is compared against other texts written by the same
author. The difference of the two sets of words used can be helpful to determine if the author
incurs in some kind of plagiarism.

2. Changes of vocabulary. The changes in the vocabulary used within a single text is analyzed,
as it is expected that different students use words in different ways.

3. Incoherent text. The document is analyzed in order to determine whether it contains inco-
herent passages or not.

4. Punctuation. It is unlikely two different authors use the exact same punctuation style, such
as the use of periods.

5. Common spelling mistakes. It is unlikely different authors will make the same mistakes.

6. Distribution of words. It is unlikely the same words distribution, the frequency words are
used within a single text, are equal amongst independent texts.

7. Syntactic structure of the text. If two texts share exactly the same syntactic structure, it may
be due to plagiarism.

8. Long sequences of common text. Word sequences comparison can be used to determine pla-
giarism.

9. Order of similarity between texts. If a large set of common words or sentences are found to
be common, a high probability of plagiarism can be assumed.

10. Frequency of words. The frequency of words can be analyzed in order to determine plagiarism
possibility.

11. Preference for the use of short or long sentences. The preference of the author to use whether
short or long sentences can be helpful to analyze plagiarism cases.

12. Readability of written text. Different indicators of legibility, such as the number of complex
words, can be used to help determine plagiarism.

13. Dangling references. If there are errors in the citation or in the reference section, it is necessary
to check further for a possible plagiarism case.
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These characteristics must be first understood before any method can be constructed around them.
For example, it is expected a student to widen it’s vocabulary over time, with the consequent
change of the uses of vocabulary. This consideration could be taken into account for a plagiarism
detection method development. The same can be said about punctuation, spelling mistakes and
other characteristics.

Furthermore, different methods for plagiarism detection can be categorized as follow [25]:

1. Exhaustive comparison between a suspicious document and a set of references.

2. To characterize a fragment of a document to be search over the Web.

3. To compare characteristic within a single text, using style properties.

The first category is known as external plagiarism detection [30], which will be considered
as the main focus in this research. In second category, a given suspicious document is chopped
into a set of queries for use with web search engines. The result set obtained is used as sources
candidates of the given suspicious document whose outcome can be considered as input for first
category algorithms. In [8] a tool for this task is proposed. Finally, the third category known as
intrinsic plagiarism detection [30] is described in the following subsection.

2.2.1 Intrinsic Plagiarism Detection

When comparing texts against a reference set of possible sources, comes the complication of choosing
the right set. And now more than ever, with the possibilities the Internet bring to plagiarists,
this task becomes more complicated to achieve. For this, it is possible to use intrinsic plagiarism
detection. This approach only analyzes the suspicious document, thus takes not into consideration
a set of references.

The writer style can be analyzed within the document and an examination for incongruities
can be done. As in [40], the complexity and style of each text is analyzed based on certain param-
eters. These parameters are:

1. Text statistics, such as the number of commas, question marks, word lengths, or any other
information which operate at the character level.

2. Syntactic features, such as sentence lengths and use of function words, which measure writing
style at the sentence level.

3. Part-of-speech features to quantify the use of word classes, such as the number of adjectives
or pronouns.
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4. Closed-class word sets to count special words, such as the number of stopwords, foreign words,
“difficult” words.

5. Structural features, such as paragraph lengths or chapter lengths, which reflect text organi-
zation.

Based on these features, intrinsic plagiarism detection methods are build in order to charac-
terize the writer’s style. Then, differences within the write’s style are analyzed in order to determine
if the style has changed enough to identify a possible case of plagiarism. This could be, for example,
the case when a student copy a paragraph from the Web. It is possible that the student’s writing
style does not match the style of the copied paragraph. By identifying this difference it is possible
to believe that the student had plagiarized.

Meyer zu Eissen et al [40] introduced a new feature for detecting style changes: Averaged
Word Frequency Class. This feature is calculated as shown in equation 2.1:

c(w) = blog2(f(w∗)/f(w))c (2.1)

where the Averaged Word Frequency Class is defined as c(w), f(w) being the frequency of a
word w, and w∗ denotes the most frequently used word.

According to the authors, a document’s averaged word frequency class is useful as a feature
to identify style complexity and the size of an author’s vocabulary, thus proving promising for the
construction for an automated intrinsic plagiarism detection method.

Stamatatos [38] presented a new method for intrinsic plagiarism detection. As described
by it’s author, this approach attempts to quantify the style variation within a document using
character n-gram profiles and a style change function based on an appropriate dissimilarity measure
originally proposed for author identification. Style profiles are first constructed, using a sliding
window. For the construction of those profiles the author proposed the use of character n-grams.
These n-grams are used for getting information on the writer’s style. The method then analyzes
changes on the profiles to determine if a change is significative enough to indicate another’s author
style. Stamatatos’ approach prove to be the best amongst the four approaches presented in PAN
Workshop and Competition’09 [30] at detecting intrinsic plagiarism.

Seaward and Matwin [34] introduce Kolmogorov Complexity measures as a way of extracting
structural information from texts for Intrinsic Plagiarism Detection. They experiment with com-
plexity features based on the Lempel-Ziv compression algorithm for detecting style shifts within
a single document, thus revealing possible plagiarized passages. They also participated on PAN
Workshop and Competition’09 [30], and their results can be compared against other approaches on
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the competition web site 1.

Intrinsic plagiarism detection is becoming more important as to define the possible sources,
to utilize external plagiarism detection methods, is becoming more difficult. Now, part of the PAN
Competition and Workshop [30] is dedicated to promote the research in this particular area.

It is important to note that by the use of an intrinsic method for plagiarism discovery, it is
not demonstrated that a paragraph or a part of the document is being copied, because there is no
reference to compare to. Therefore, this kind of plagiarism detection category is only indicative and
should be used in conjunction with human supervision. Nevertheless, intrinsic plagiarism is useful
when trying to discover originality or authorship of a document.

2.2.2 External Plagiarism Detection

When comparing a suspicious document against a collection of possible sources, it is tried to identify
the sentences, paragraph or ideas that have been copied. This is called external plagiarism detection
[30], and multiple efforts are being oriented in this area.

Before the comparison between each possible source and the suspicious document can be
computed, an important obstacle must be resolved. This task consists in defining and gathering
the possible sources, and this is becoming more and more complex as the technology becomes more
available. In [8], the suspicious document is chopped into queries and web search engines are used
to obtain a set of candidates sources. This approach helps tackle this problem but, as the authors
in [8] conclude, more work is needed.

Another issue to be considered, is when the collection of possible sources become too large.
In fact, these could be thousands of documents. In [30], PAN Competition and Workshop 2009, the
external part of the competition, and now merged with the training corpus, consider a set of 14.428
possible sources. To tackle this problem, it is possible to reduce the search space using different data
mining techniques. A generic process for automatic detection techniques is illustrated in Figure 2.1.
Next, different methods for comparing documents are reviewed.

Seo and Croft [35] introduced in their work an approach for local text reuse detection.
They propose DCT fingerprinting ; a sequence of hash values of words can be considered as and
transformed into a discrete time domain signal sequence. With this, they showed that fingerprinting
using this approach a more robust data reduction of the document, for it’s later comparison, can
be achieved.

In [9] an automated system for copy detection was introduced, named COPS after Copy
Protection System. The system detects document overlap based on sentence and string matching
but it cannot find partial sentence copy. Then, in [36] another system was introduced. SCAM, for

1http://www.uni-weimar.de/medien/webis/research/workshopseries/pan-09/competition.html#results
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Stanford Copy Analysis Method, uses a Relative Frequency Model (RFM) to find subset copies.
RFM is the first asymmetric model, which implies that the model takes into consideration the
suspicious document as suspicious, and the source as the reference.

In [37] a mechanism to detect overlap fragments based on information retrieval techniques is
introduced. This system is called CHECK, and builds an index called structural characteristic to
perform the detection. The system takes into consideration that documents from different topics
should not be compared, thus probing more scalable on the number of documents to compare.

Another approach is presented in [24], where the use of word n-grams for plagiarism detection
is explored. The use of n-grams give some flexibility to the detection, as reworded fragments could
still be detected. In particular, in [2] the tri-gram structure is found to be the most effective in
this task. This method is possible because the common word n-grams between two documents are
usually a low percentage of the total number of n-grams of both text, as shown in Table 2.1. Due
to this, n-grams could probe promissory for plagiarism detection techniques.

In [23], Lyon et al extended their work and the Ferret system was implemented, which uses
this approximation to detect plagiarism. A distance is calculated between the documents, based on
the word n-grams found in common. The results indicate that this structure is useful and provides
flexibility at detecting plagiarism with modifications of words.

Table 2.1: Statistics from a TV news corpus, the Federalist papers and the Wall Street Journal
corpora, showing the predominance of unique trigrams. From [24].

Source Corpus size Distinct trigrams Singleton trigrams % of trigrams that
in words are singletons

TV News 985,316 718,953 614,172 85%

Federalist Papers 183,372 135,83 118,842 87%

WSJ 972,868 648,482 556,185 86%

4,513,716 2,420,168 1,990,507 82%

38, 532,517 14,096,109 10,907,373 77%

Table 2.1 shows statistical data from different documents remarking the high percentage of
unique tri-grams found between them. Therefore, a distance based on these word tri-grams could
be computed to construct an indicator for plagiarism.

In [19] another system is introduced, PPChecker. The system analyzes the sentences of a
suspicious document to determine plagiarism. To tackle the problem of rewording, PPChecker uses
Wordnet 2 for synonym recognition. With this approach the system not only use the vocabulary of
each text: it also consider the synonyms found to detect one of the following copy cases:

1. Exact copy.

2http://wordnet.princeton.edu/
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2. Copy with word insertion.

3. Copy with word extraction.

4. The use of synonyms.

Bao et al. in [18] and then in [1], proposed to use a Semantic Sequence Kernel (SSK)([33]),
and then using it into a traditional Support Vector Machines (SVMs) formulation based on the
Structural Risk Minimization (SRM) [7, 39] principle from statistical learning theory, where the
general objective is finding out the optimal classification hyperplane for the binary classification
problem (plagiarized, not plagiarized). Likewise, other approaches solve the same classification
problem by using Self Organizing Feature Maps (SOFM) [21], with promising results in the classi-
fication performance.

In [10] a method using Singular Value Decomposition (SVD) [6] is proposed. This approach,
as noted by the author, uses the denominated Latent Semantic Analysis (LSA) [6], a technique
to infer the latent semantic associations and subsequently determine the document similarity. In
the process, LSA uses SVD, factorizing the matrixes containing the weighted occurrences of the
phrases of each document. The author found this approach overcomes other methods at detecting
plagiarism cases.

In [14] a new general method for automatic external plagiarism detection is proposed. It
consists of two main phases: the first one aim to reduce the search space. For a suspicious document,
only the source documents selected in this phase are marked for further investigation. On the second
one, each pair of documents are exhaustively investigated for plagiarized passages, by comparing
16 bit strings. This way a matrix is constructed, indicating each match between those strings.
Then a contiguity distance is computed in order to determine the size of the plagiarism cases.
“Encoplot”, as they named the method, had them won the external plagiarism detection task of
the PAN Workshop and Competition of 2009.

Kasprzak et al. in [20] used word n-grams, with the value of n ranging from 4 to 6, to
find similarities within documents, combined with inverted indexes to accelerate the computation.
Their approach resulted in a fast algorithm capable of determining which pair of documents should
be classified as plagiarized and also capable of finding the passages. Their work showed promising
results in PAN Workshop and Competition of 2009 at the task of discovering monolingual plagiarism
with different obfuscation levels.

Basile et al. [5] also participated in the named competition. Their proposed approach is
divided in three steps: the first aimed at reducing the search space, the second aimed at finding
matches of features between text, and finally the step where the matches found are interpreted and
rectified in order to indicate the plagiarized passages. For the first step, they recoded the word
segments into a sequence of numbers; each word was represented with it’s character length. Then
a distance is calculated based on 8-grams of these representations. The first ten source documents,
ranked by this distance, are selected. For the second step, a T9 like representation is used for coding
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the words. By looking for matches of sequences of these word representations, the third step tries
to interpret the results and indicate the plagiarized passages found. This approach took third place
on the PAN Workshop and Competition of 2009 [30].

2.2.3 Cross-Lingual Plagiarism Detection

Another topic of discussion is plagiarism when translation from different language is involved.
Cross-lingual plagiarism detection considers suspicious documents and source documents, similar
to external plagiarism detection, but in this case the fingerprints need to be worked around the
language difference.

Pouliquen et al [31] analyzes an approach considering the EUROVOC3 thesaurus. EU-
ROVOC is a multilingual and multidisciplinary thesaurus the European Union maintains with
terminology mainly focused on parliamentary affairs. The authors used the thesaurus to map each
document in a language independent form, and then calculate cosine similarity measure between the
texts vectors. Experimenting with English, French and Spanish, their approach showed encouraging
results [31].

In [3] discussion and analysis on cross-lingual plagiarism detection is presented. They based
the analysis on a statistical bilingual dictionary, created on the basis of a parallel corpus which
contains original fragments written in one language and plagiarized versions of these fragments
written in another language.

Another approach is presented by Ceska et al. in [11]. Their method, called “MLPlag”
for multilingual plagiarism detection, is based on word position analysis. They first utilize the
EuroWordNet thesaurus for transforming the words into language independent forms, and then
proceed with examination in search for plagiarism.

Potthast et al. [29] introduce and analyze different methods for uncovering this kind of pla-
giarism. They reviewed heuristic multilingual retrieval of potential source candidates for plagiarism
from the Web, and methods for comparing documents across languages. The methods for comparing
the documents are based on cross-language character n-gram (CL-CNG), on cross language explicit
semantic analysis (CL-ESA) and on cross-language alignment based similarity analysis (CL-ASA).
They experiment on a large-scale comparative evaluation, reporting their findings.

2.3 Reducing Search Space

One of the issues to be resolved in external plagiarism analysis and detection is the number of source
document candidates. When the task is to detect plagiarism between a small set of suspicious against

3http://eurovoc.europa.eu/
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a small set of source documents, it could be simply achieved by comparing every suspicious against
every source. The problem appears when the universe of possible sources is not well defined, or
the set of documents is too large, so performing an exhaustive comparison amongst all documents
could require a substantial amount of time. In this case the approach needs to be modified, and
those changes usually consists in adding a step in the process of plagiarism discovery: the search
space reduction.

The aim of this step is to effectively and efficiently identify which texts are possible sources of
plagiarism, if any. Usually multiple statistical tools are used in order to reduce the computational
time required for computing a large corpus of documents while trying to maintain accuracy at
determining which sources need to be discarded. Figure 2.1 shows the complete process.

Figure 2.1: Generic retrieval process for external plagiarism detection [30].

In the process Figure 2.1 shows, a Reference collection D is considered. When a suspicious
document needs to be analyzed, an heuristical retrieval is conducted to determine which texts
from D are promising candidates. Then, a detailed analysis is conducted between the suspicious
document and the promising sources. Finally the results are post-processed and archived.

Different concepts regarding this increasingly important task are described next.

2.3.1 Vector Space Model and Cosine Similarity Measure

Before any method can be used to establish some kind of similarity or distance measure between
documents, the texts need to be characterized in some way. In [32] a method is introduced. It
consists in characterizing a text in a vector. It’s values are constructed based on term frequency
and then this value is weighted by a factor denominated inverted document frequency. TF-IDF, as
is known, takes into account the number of occurrences of the words in the text (TF), and then
it uses information from the whole set of documents to be compared, specifically the number of
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documents that contain said term (IDF).

tfi,j =
ni,j∑
k nk,j

(2.2)

Term frequency refers to the number of times the ti term appears in the document dj . In
Equation 2.2, ni,j refers to this count, whereas

∑
k nk,j refers to the total number of terms in the

document.

idfi = log
|D|

|d : ti ∈ d|
(2.3)

The Inverse Document Frequency refers to the importance of a certain term considering it’s
appearances in the whole set of documents. So, a term that appears in all documents, probably has
little information to difference the text, whereas a term only appearing in a few documents can be
of interest. In Equation 2.3 |D| refers to the total number of documents. |d : ti ∈ d| indicates the
number of documents where the term ti appears at least once.

(tf − idf)i,j = tfi,j ∗ idfi (2.4)

Finally, in Equation 2.4 the term frequency - inverse document frequency is calculated. With
these values a matrix can be constructed, representing each term importance for each document.

Once the text has been characterized and the matrix containing the values have been com-
puted, the distance or similarity measure based on the cosine between the vectors can be calculated.
The formula is shown next:

cos](xA,xB) =
xA · xB

‖xA‖ ‖xB‖
(2.5)

In Equation 2.5, two vectors, xA and xB, are used to calculate their similarity. In this case,
each vector represents a document, with it’s values being, for example, the ones given by 2.4. So, the
document vector is constructed using TF-IDF, and the cosine similarity measure is used to compare
two documents. Given that the values from In Equation 2.4 cannot be negatives, the resulting value
for the cosine will range between 0 and 1; values close to 1 indicating similarity and the ones close
to 0 indicating difference. It is important to note, that while the resulting values from TF-IDF are
not normalized, the cosine distance does not take into account the magnitude of the vectors, thus
this information is lost.
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2.3.2 Kullback-Leibler distance

In [4] a different distance is calculated. This distance is named Kullback-Leibler divergence [22],
and is calculated as shown in Eq. 2.6:

KLd(P ||Q) =
∑
x∈X

(x) log
P (x)

Q(x)
(2.6)

In Eq. 2.6, x represents a feature vector, whereas P and Q are the probability distributions
of the two documents. These distributions could be, for example, TF-IDF vectors for such docu-
ments, or TF vectors. If TF-IDF is selected, the Equation 2.4 is first computed. Each probability
distribution, namely P, D in this case, is constructed based on the top terms from the resulting
vector of TF-IDF. The idea is that the list of selected terms represents each document information.

In [4] an investigation is conducted to determine how to represent those probability distribu-
tions. They found the best results are obtained using TF-IDF. This investigation where conducted
to find the best choice for representing a document, in the context of automated plagiarism detec-
tion.

2.4 Free and Commercial Tools and Systems for Plagiarism De-
tection

Currently, there are several tools and systems for automated plagiarism detection. A few of them,
as Turnitin, are offered as a service, whereas others, like SIM, can be downloaded and run on a
computer. A short description of a few of them is given.

• Turnitin
http : //www.turnitin.com/ Turnitin is a commercial company that offers services for plagia-
rism detection. It check student’s work against continuously updated databases. It currently
has more than hundred million students papers, over twelve millions crawled web pages and
access to magazines and newspapers.

• CopyTracker
http : //copytracker.ec − lille.fr/ CopyTracker is a free software for home use that checks
document for plagiarism passages. It compares the suspicious document against possible
source documents provided by the user and also search over the Web looking for potential
sources.

• EVE2
http : //www.canexus.com/ EVE2 is a commercial tool that search over the Web for possible
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sources of a suspicious student paper. It returns the URLs it finds, and also a full report to
the teacher is also provided.

• PlagiarismDetect.com
http : //www.plagiarismdetect.com/ PlagiarismDetect.com is a commercial tool that search
over the Web for possible sources. Work similar to EVE2.

• Glatt Plagiarism Services
http : //www.plagiarism.com/ Glatt Plagiarism Services offers three softwares; the first is a
Tutorial Program for help educating students about what is plagiarism and how to avoid it,
the second one is a Screening Program to detect plagiarism in documents, whereas the third
is also a Screening Program for detection of inadvertent instances of plagiarism.

From a functional perspective, Turnitin has three important characteristics. The first is that when
comparing suspicious documents, it uses all the previously submitted papers for comparison pur-
poses. This is important because it has a growing database of sources, that grows as more detections
are conducted. The second characteristic is that it considers possible sources from the Web. It crawls
webpages to feed the database, therefore when comparing documents it can detect plagiarism from
the Web. Finally, Turnitin is a established company with trusted algorithms for plagiarism de-
tection. This makes it as the company of choice for getting plagiarism detection services, as the
algorithms work in an effective manner.

Considering these functional characteristics, Turnitin is the model to follow. The proposed
method for plagiarism detection has taken into consideration these important functions. It is de-
signed to handle large amounts of documents, it can computed texts retrieved from the Web, and
it is tested to be reliable and effective.

2.5 Chapter Summary

In this chapter a general review and state of the art algorithms about plagiarism and plagiarism
detection has been presented. Plagiarism is an important problem worldwide, and it could be
tackled with the help of technology. In the field of automated plagiarism detection, specifically in
text plagiarism, different methods have been developed. Promising results have been achieved with
the use of word n-grams for finding plagiarized passages. Also, different services from companys,
such as Turnitin, have been briefly presented, and important functions of these services highlighted.
The proposal of this thesis takes into account the use of word n-grams and the characteristics
described for these services.
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Chapter 3

Plagiarism Detection Strategy
Proposal

In this chapter the designed detection strategy is proposed. This strategy is based in the com-
parison of word n-grams [2, 24] and is aimed to detect verbatim plagiarism. The method removes
“stopwords” and for speed purposes, it considers approximation on selecting samples within the
documents. The algorithm output is an indicator, whose interpretation classifies the pair of docu-
ment as to have plagiarism and should be further investigated, or as the pair does not shows signs
of plagiarism.

3.1 Technical Background

First, concepts used for the development of the proposed method are going to be described. In the
Technical Background the three main ideas are introduced, namely, the Word N-Grams, StopWords
and the used notation.

3.1.1 N-Grams

The proposed detection strategy uses word tri-grams and word two-grams as is basic element for
comparison. A word n-gram is a structure where consecutive words are grouped in a set of n,
maintaining the order. For example:

Gravitation is not responsible for people falling in love.
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would be chopped in seven different tri-grams:

1. Gravitation is not

2. is not responsible

3. not responsible for

4. responsible for people

5. for people falling

6. people falling in

7. falling in love.

These basic structure where studied and used in [24] and in [2] with results indicating their
effectiveness when building an algorithm based on them for plagiarism discovery.

3.1.2 StopWords

Second, the proposed method removes “stopwords” from the text as a preprocessing step. “Stop-
words” are words that are common amongst text and one can assume little information can be
retrieve by considering them. Examples of “stopwords” are prepositions and articles. In addition,
while plagiarizing one can think that it is easier for the guilty to change or modify these words
rather than modifying the words important for the topic.

The example above, before constructing the set of n-grams, could be processed as follow:

Before the removal:

Gravitation is not responsible for people falling in love.

After the removal:

Gravitation responsible people falling love.

3.1.3 Notation

In the following, let V be a vector of words that defines the vocabulary to be used. A word will
be represented as w, as a basic unit of discrete data, indexed by {1, ..., |V|}. A document d is a

21



sequence of S words (|d| = S) defined by w = (w1, ..., wS), where ws represents the sth word in the
message. Finally, a corpus is defined by a collection of D documents denoted by C = (w1, ...,w|D|).

The use of these ideas needs to be materialized in a concrete method. Chopping the text
into segments of a certain fixed length, l, and then calculating the number of common n-grams for
each pair of these segments between texts, it is how the proposed method works. If the number of
common n-grams in one pair of these segments, one from the first document and the second from
the other, is greater than a parameter k, then a similarity indicator is increased. When finishing
comparing every segment pair, the named indicator is given.

This method is aimed at trying to uncover verbatim plagiarism by indicating if the document
pair should be investigated further. In the next subsection the strategy is detailed.

3.2 Automated Plagiarism Detection Proposal

In this section the proposed method is introduced. For automated plagiarism detection, the method
needs to consider the complete process; from documents loading into memory, document information
retrieval, including preprocessing and fingerprinting, computing the comparison and reporting the
obtained results.

3.2.1 Detection strategy and interpretation

The general procedure of the strategy is shown in Figure 3.1.

Figure 3.1: General procedure for verbatim plagiarism uncovering.

• Data preprocessing
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In this step, the necessary preprocessing is done. This consist mainly in taking the words of the
document and considering them as “tokens”. Second, all characters are transformed to lowercase,
and stopwords are remove in order to consider only words that offer the most information and to
reduce the number of n-grams, and thus reducing the number of comparisons. Figure 3.2 shows the
steps described above.

Figure 3.2: Firsts steps: preprocessing of documents starts, taking a document and building it’s set
of word n-grams.

• Plagiarism detection

In this step, once the data to be processed is ready, the algorithm for determining a similarity
value begins. Algorithm 3.2.2 first evaluates an sMatch(ti, tj , s ≥ 1) algorithm which returns true
whether at least one n-gram from ti matches one n-gram from tj . Also a variation of previous
matching method is used within the segments of n-grams. Condition sMatch(κi, κj , s ≥ θ1) states
that at least θ1 n-grams must match in between all segments κi and κj . If this is hold, the next
condition sMatch(ti, tj , s ≥ θ2) is associated to find whether at least θ2 n-grams matches between
ti and tj . In general terms, this procedure helps on reducing the search space, and improving the
algorithm in both execution time and hardware requirements. By using these constraints, it is
possible now to go into a further algorithm for finding the needed offset and its length. Figure 3.3
shows the steps for computing the indicator.
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Figure 3.3: Performing the comparison: once the preprocessing is done, the comparison is computed.

3.2.2 Pseudo code

Figure 3.1, Figure 3.2 and Figure 3.3 show how the detection is being made; the underlying code
of those steps is presented next.

Algorithm 3.2.1: PreprocessDocument

Data: di, n, k,m
RemoveStopWords(di);1

ti ← GenerateNGrams(di, n) ;2

ki ← GenerateKNGrams(ti, k);3

k∗i ← Sort(ki,SortStrategy) ;4

κi ← SelectMLastNGrams(k∗i ,m) ;5

return (κi, ti);6

As presented in algorithm 3.2.1, new methods are introduced for the processing, such as the
GenerateNGrams function that takes a given document di and returns a set of n-grams with the
structure (wi, wi+1 . . . , wi+n),∀i ≥ 1, n ≤ S. Function GenerateKNGrams, generates groups of
length k using all n-grams. Then, a Sort algorithm is used within segments, with a specific sorting
strategy. In this research, an Alphabet sorting strategy and a Term Frequency sorting strategy
where used as a variation on the proposed algorithm. Finally, a SelectMLastNGrams function,
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as specified in its name definition, selects only the last m n-grams within the segment.

Algorithm 3.2.2: ApproximateComparison

Data: κi, κj , ti, tj , θ1, θ2
if sMatch(ti, tj , s ≥ 1) then1

if sMatch(κi, κj , s ≥ θ1) then2

if sMatch(ki,kj , s ≥ θ2) then3

return true ;4

end5

end6

end7

else8

return false;9

end10

Once documents di and dj are processed in n-grams and segments of n-grams, ti, tj and κi,
κj respectively, a set of conditions are evaluated in order to set the relation that document di has
with document dj , that is, if they are somehow related (algorithm 3.2.2 returns true), or if it is not
worthy to keep finding further relationships (algorithm 3.2.2 returns false). In this sense, this is
an approximated finding procedure that considers both n-grams and their k segments to decide if
there is enough information to classify as plagiarism or not.

3.3 Development

In this section a brief description of the developed classes and their methods will be given. Three
main classes were used, the first for loading the documents to be compared and to control the entire
process, the second an auxiliary class with useful methods for preprocessing, and the third receiving
the word n-grams for both documents and computing the plagiarism indicator.

3.3.1 Classes and Methods

• Dist
This class takes as inputs a list of suspicious documents and a list of possible sources. It loads
into RAM memory a vector representation for each document, containing all words maintain-
ing their original order. Then it invokes the main method of the Approximate Comparison
class, taking it’s output - the resulting indicators - and saving it to a XML file.

– Inputs
List of suspicious documents.
List of source documents.
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– Outputs
XML file. This file contains the results of the comparison for each suspicious document
against each possible source.

• Services
This class provides useful methods for the algorithm. The main methods are for constructing
the word n-grams of a given vector, for partitioning the vector, to remove stopwords, for
sorting the vector based on different sorting strategies and to obtain a sample of the partition.

– Methods

∗ RemoveStopwords
This method receives an indexed list of words, removes the stopwords and then
return the new list.

∗ GenerateNGrams
This method receives an indexed list of words and a parameter, N , and return the
list of corresponding N −Grams.
∗ GenerateKNGrams

This method receives an indexed list of N −Grams and a parameter, K, and does
a partitioning based on it. This partitioning returns a set of list, each representing
a partition.

∗ Sort
This method receives a list of indexed words and a parameter indicating the strategy
to be used. The methods sorts the list based on the selected strategy and then return
the new list.

∗ SelectMLastNGrams
This methods receives a list of N −Grams and a parameter, M , and return the last
m N − Grams of it. In conjunction with Sort this method takes “samples” of a
vector.

• Approximate Comparison
This class computes a pair of documents. First, it preprocess the data, removing stopwords,
constructing the word n-grams and partitioning them. Then, it uses a strategy for taking
“samples” of each segment and then computes the comparison, thus obtaining an indicator
that is finally returned.

– Inputs
Two vectors representing the documents to be compared.

– Outputs
A number representing the plagiarism indicator.
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Chapter 4

Experiments

In this Chapter a description of a conducted experiment is given. First, the general idea for the
experiment is presented. Then the data used is characterized; the documents are extracted from the
PAN Workshop and Competition 2009 corpora, [30]. This corpus contains suspicious documents
and possible references as well. The plagiarism cases included are mainly computed generated. A
more detailed explanation is given in Section 4.1. Next, the strategy implementation is described
and finally the experiment is conducted with others approaches for comparison purposes. There are
three algorithms implementation, and with each one of them, three variants are tested. In total,
the nine runs are compared, including as reference three algorithms based on levenshtein distance.

4.1 Experiment Corpus Characterization

PAN Workshop and Competition [30] corpora is chosen as the resource depot for suspicious and
source documents. The training corpora for 2010 PAN Competition consist of 14.428 suspicious
documents and 14.428 source documents. These numbers are for the external detection task, that
consist in determining if a suspicious document presents a plagiarism case from one or more reference
documents. Also, the annotation for each plagiarism case is given, therefore the participants can
tune and test their approaches. Statistics from the corpus are as follow:

1. 14.428 Source documents.

2. 14.428 Suspicious documents.

3. Plagiarism cases with different obfuscation levels: 33% none obfuscation, 33% with low ob-
fuscation and 33% with high levels of obfuscation.

4. 90% of the cases are monolingual English plagiarism, whereas the 10% remaining is cross-
lingual, from automatic translation from German and Spanish.
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5. 50% of the suspicious documents contains plagiarism cases from at least one reference docu-
ment.

For the experiment purpose, only a small subset from the entire corpus is used. Eighty
suspicious documents are chosen from the corpus. Such suspicious documents are known to have
plagiarized passages from five hundred sources. These plagiarism cases are only in English. The
documents are chosen based on the criterium that the distribution of the plagiarized cases where
as is the original corpus. Figure 4.1 illustrate the distribution of source documents plagiarized from
different suspicious documents in the case of the original corpus. Figure 4.2 illustrates the same
statistics for the small subset chosen. In both cases, there are documents with only one plagiarism
case, and others with as much as 30.

Figure 4.1: Distribution of number of sources plagiarized from suspicious documents, original DB.

Figure 4.2: Distribution of number of sources plagiarized from suspicious documents, experiment
sample.
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4.2 Experiment Design

The experiment consists on comparing each suspicious document against the five hundred possible
sources. The output of the algorithm and the runtime will be stored. Once all of the suspicious
have been verified, the results are going to be compared with those of the annotations given.

By contrasting the obtained results with the annotations the performance measures Accuracy,
Recall, Precision and F-Measure are going to be computed, along with the run time for each
algorithm. Each of the performance measures are detailed in section 4.4.

4.3 Algorithm Parameters and Benchmark Algorithms

The algorithms for experimental purposes are listed in Table 4.1. The parameters used are for
the gram structure size, the size of the window for comparing n-grams, the number of coincidence
required to increase the similarity indicator. Each of there parameters are configured and used to
look for plagiarized passages.

Four algorithms are used for experimental and testing purposes. Three of the selected algo-
rithms are based on the previous approach presented in section 3.2.1 and a variation of the unix

diff command used to detect changes between two documents was used as benchmark.

The first, named “SimParalell” is an iteration where the pair of documents is compared
exhaustively. The parameters used are n the parameter of the gram structure, m is the size of an
sliding window to be considered. Parameter K represents the minimum number of common n-grams
to increase a counter indicator. Finally, parameter C is the number of cores used in a parallelized
implementation of the algorithm.

The second algorithm, “SimTF”, is equivalent to algorithm 3.2.2, but the sorting strategy
is based on term frequency. In this case it is expected a faster running time than “SimParalell”,
at a cost of a possibly loss of recall because of the approximated nature of the approach. Then,
“SimAR” is the algorithm 3.2.2 whose pseudo-code is presented in section 3.2.1. In this case, as
well as “SimTF”, it is expected a faster running time than “SimParalell” at a cost of a possibly loss
of recall.

Finally, the “Diff” approach is a basic algorithm based on the unix command diff. This
approach is based on the move, delete and add characteristics presented by the command, where
each one of these outputs is used to determine the scoring function for plagiarism detection.

All of these algorithms outputs are considered as an approximation to the plagiarism detec-
tion problem, for which further analysis needs to be taken into consideration for a given pair of
documents. They do not offer the offset nor the length of the plagiarism passages, however they
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determine how close a pair of documents are.

Table 4.1: Algorithms and their parameters used for the conducted experiment.
Name Description Parameters

SimParalell0 CD Sim paralell original (n = 3,m = 5,K = 3, c = 16)
SimParalell1 CD Sim paralell modified 1 (n = 2,m = 6,K = 3, c = 16)
SimParalell2 CD Sim paralell modified 2 n = 4,m = 8,K = 3, c = 16

SimTF0 CD Sim TF original (n = 3,m = 5, θ1 = 7, θ2 = 2, k = 150)
SimTF1 CD Sim TF modified 1 (n = 2,m = 6, θ1 = 7, θ2 = 2, k = 50)
SimTF2 CD Sim TF modified 2 (n = 4,m = 8, θ1 = 7, θ2 = 2, k = 150)
SimVP0 CD Sim AR original (n = 3,m = 5, θ1 = 18, θ2 = 5, k = 250)
SimVP1 CD Sim AR modified 1 (n = 2,m = 6, θ1 = 18θ2 = 5, k = 250)
SimVP2 CD Sim AR modified 2 (n = 4,m = 8, θ1 = 18, θ2 = 5, k = 250)

Diff0 CD Diff original (Add = -1 , Move = 10 , Delete = -1)
Diff1 CD Diff modified 1 (Add = -10 , Move = 0 , Delete = -10)
Diff2 CD Diff modified 2 (Add = -5 , Move = 0 , Delete = -10 )

4.4 Evaluation Criteria

The resulting confusion matrix of this binary classification task can be described by using four possi-
ble outcomes: Correctly classified plagiarized documents or True Positives (TP), correctly classified
non plagiarized documents or True Negative (TN), wrong classified non plagiarized documents as
plagiarized or False Positive (FP), and wrong classified plagiarized documents as non-plagiarized or
False Negative (FN).

The evaluation criteria considered are common information retrieval measures, which are
constructed using the before mentioned classification outcomes. Also, the runtime for each algorithm
is included.

• Precision, that states the degree in which a pair of documents identified as a plagiarism
case have indeed copy between them, and Recall, that states the percentage of plagiarized
documents that the classifier manages to classify correctly. These measures can be interpreted
in conjunction as the classifier’s effectiveness. TP means “True Positive”; documents found to
be plagiarized, detection which is correct. FP means that a document that should have been
identified as plagiarized, was not. TN means that a document was classified as plagiarized,
which is incorrect. And finally, FN indicates a document that was not identified as plagiarized,
when the correct decision would have been the opposite.

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(4.1)
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• F-measure, the harmonic mean between the precision and recall, and Accuracy, the overall
percentage of correctly classified documents.

F-measure =
2 ∗ Precision ∗ Recall

Precision + Recall
, Accuracy =

TP + TN

TP + TN + FP + FN
(4.2)

• Runtime. For each algorithm, the time for performing the 80*500=40.000 pair-document
comparison will be annotated.
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Chapter 5

Results

The previous algorithms were tested using the evaluation criteria on the selected corpus from the
PAN’09 dataset. All results are presented in table 4.3, where the accuracy, precision, recall, F-
measure and the runtime are listed. The overall evaluation was performed for each plagiarized case,
where for a given suspicious document, the confusion matrix was determined and their performance
measures were calculated.

Table 5.1: Results for Accuracy, Precision, Recall, F-measure and runtime for each algorithm
presented in section 4.3

Copy Detector Accuracy Precision Recall F-measure runtime (s)

SimParalell0 0,998 0,895 0,914 0,904 20568

SimParalell1 0,990 0,616 0,958 0,750 21103

SimParalell2 0,961 0,882 0,916 0,899 29655

SinTF0 0,874 0,824 0,821 0,823 6959

SinTF1 0,923 0,766 0,800 0,783 7451

SinTF2 0,874 0,836 0,818 0,827 6615

SinAR0 0,887 0,865 0,856 0,861 5393

SinAR1 0,899 0,859 0,852 0,855 5596

SinAR2 0,849 0,828 0,868 0,847 5231

Diff0 0,584 0,005 0,348 0,010 6617

Diff1 0,007 0,007 1,000 0,013 6529

Diff2 0,584 0,005 0,348 0,010 6179

The results for the experiment are listed in Table 5.1. These results were computed on a
notebook computer, consisting of 1.86Ghz Intel CPU and 1GB of RAM.

As the numbers indicate, the best results in term of F-Measure are obtained with “Sim-
Paralell”. This comes to no surprise, as the algorithm exhaustively checks the documents. For
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“SimParalell” the results remain the best even when modifying the parameters.

Acceptable results are obtained with “SimTF”; the F-Measure is close to 0.8 in each case.
“SimTF” performs the search taking samples of word n-grams in each segment. The criterium for
selecting those n-grams is based on the term frequency. Therefore, given the considerably reduced
time it consumes while maintaining acceptable results, this approach is remarkable.

The main contribution, “SimAR”, takes a similar approach than “SimTF”, as it only consid-
ers samples of word n-grams for each segment. The difference is that it considers the alphabetical
order to rank the n-grams. In this case, the best results for runtime are obtained; close to “SimTF”
and to “Diff”, but considerably better than “SimParalell”. As for the F-Measure, in each case the
algorithm gets close to 0.8 value. This proves to be an excellent result.

Finally, “Diff” algorithm perform the worst. It consumes less time to perform the compar-
isons, but its basic approach, based exclusively on the diff command, does not take into account
several aspects for written plagiarism, thus obtaining the worst results of the group, close to 0.11
F-Measure.

It is important to note that the approximations used in “SimTF” and in “SimAR” reduce the
runtime in almost four times, compared to the runtime of “SimParalell”. Given that the F-Measure
in both cases remain acceptable, these proved excellent measures to tackle the dimensionality prob-
lem, which increases considerably the runtime when the number of documents to be compared
increases substantially.

Suspicious document i

Baseline FastDocode

Number of sources for each suspicious document

Figure 5.1: Results comparing the baseline sources for suspicious documents (blue line), and those
retrieved by FastDocode (green line).

In figure 5.1, results for the SimVP0 algorithm, where the expected curve for source-
suspicious relationship is presented together with the source-suspicious relationship that was re-
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trieved with the proposed algorithm. These results shows that in the overall evaluation of the
selected corpus, the proposal was robust in different number of sources for each suspicious evalu-
ated.
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Chapter 6

Conclusions and Future Work

Multiple efforts have been done in the topic of automated plagiarism detection and the main ap-
proaches have been described in this thesis. Some focus on intrinsic plagiarism, considering only the
suspicious document, whereas other algorithms focus on external plagiarism detection, considering
suspicious documents and possible sources.

In this work a method for uncovering external verbatim plagiarism cases have been proposed.
The strategy is based on word tri-grams and word bi-grams structures, and consist basically on two
phases. The first processes the document leaving it ready for examination, and the second is aimed
at approximately search a pair of document for plagiarism signs. This method is therefore designed
for comparing lot’s of documents.

First, before any document can be processed, it needs to be extracted and cleaned. This
step removes any character that is not from the a-z group. Then, all characters are modified to
be lowercase. This procedure proved to be important for further analyzing the documents, as it
reduces the noise of underlying code, which affects the detection procedure.

Second, to tackle the increasing runtime over size of the documents, this method uses a
statistical approach; removes stopwords and the segments to be compared are sampled based on
alphabetic order which helps reduce considerably the running time of the algorithm. This proved
to be empirically successful but further analysis must be taken into consideration.

Third, all algorithms parameters used were not selected using an extensive analysis on the
algorithms performance; due to the size of the corpus it was difficult to run an optimization or grid
search strategy over these parameters. However, they were approximated by iteratively experiment-
ing on the sample, thus obtaining acceptable results.

Fourth, although this approach provided acceptable results, more testing is needed, particu-
larly in plagiarism cases where rewording were used, or in other languages as the experiment only
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considered English cases.

The implementation of the proposed method will be integrated on a plagiarism detection
system, DOCODE. This system will be of help tackling the plagiarism problem in academia, given
the increasingly number of cases and the difficulty to check manually for plagiarism each student’s
work.

It is important to note, that while this method and it’s implementation could help in the
difficult task of plagiarism uncovering, it is a human that should decide whether or not a document
contain plagiarism. Specially at the task of author recognition, this approach is not aimed at
uncovering the guilty from the actual author.

Finally, more work is needed, specially at uncovering more complex plagiarism cases, where,
for example, rewording is used. Also, as technology could help at plagiarism detection, it could
also help to hide it. Trying to use certain software or techniques for avoiding automated plagiarism
detection could be a problem and future algorithms should take this into account. This work can
also be extended by doing research in the field of multi-lingual plagiarism detection and intrinsic
plagiarism detection.
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Appendix A

Algorithms

The algorithms developed for this work are attached below.

A.1 Approximate Comparison

// ALGORITHM FOR COMPARING SEGMENTS OF DOCUMENTS
// TAKES AS INPUTS 2 DOCUMENTS AS STRING ARRAYS
// IT ’ S OUTPUT INDICATES IF THE PAIR OF DOCUMENTS SHOULD BE FURTHER INVESTIGATED OR

NOT

import java . u t i l . ∗ ;
c l a s s APPROXCOMPARISON{

pub l i c s t a t i c double sim ( St r ing [ ] a , S t r ing [ ] b , i n t n , i n t tt1 , i n t tt2 , i n t t t3 )
throws Exception {

//go : s i z e o f the sample
//go2 : number o f common grams f a s t che ck needs to va l i d a t e in order to t r i g g e r

a n a l y s i s
//go3 : s i z e o f the segments
i n t go=tt1 ;
i n t go2=tt2 ;
i n t go3=tt3 ;

double t o ta l s im=0;

S t r ing [ ] [ ] aT=pa r t i t i o n (a , go3 , n) ;
S t r ing [ ] [ ] bT=pa r t i t i o n (b , go3 , n) ;

S t r ing [ ] [ ] aP=new St r ing [ aT . l ength ] [ ] ;
S t r ing [ ] [ ] bP=new St r ing [bT . l ength ] [ ] ;
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f o r ( i n t uu=0;uu<aT . l ength ; uu++) aP [ uu]=S2 . getbigrams (aT [ uu ] ) ;
f o r ( i n t uu=0;uu<bT. l ength ; uu++) bP [ uu]=S2 . getbigrams (bT [ uu ] ) ;

// sampling : get only the l a s t grams , ranked by a lphabe t i c order
f o r ( i n t uu=0;uu<aT . l ength ; uu++) aP [ uu]=S2 . g e t l a s t (aP [ uu ] , go ) ;
f o r ( i n t uu=0;uu<bT. l ength ; uu++) bP [ uu]=S2 . g e t l a s t (bP [ uu ] , go ) ;

// checks every segment−pa i r us ing the samples
// i f the check i nd i c a t e s , a more exhaust ive an a l y s i s i s conducted
f o r ( i n t e1=0;e1<aT . l ength ; e1++){

f o r ( i n t e2=0;e2<bT. l ength ; e2++){
i f ( f a s t che ck (aP [ e1 ] , bP [ e2 ] ) && 1==1){

t o ta l s im=to ta l s im+sim (aT [ e1 ] , bT [ e2 ] ) ;
}

}
}
re turn to ta l s im ;

}

s t a t i c pub l i c boolean f a s t che ck ( HashSet map, S t r ing [ ] aux2 ) {
i f (map . s i z e ( )<go2 | | aux2 . length<go2 ) re turn f a l s e ;
i n t count=0;
f o r ( i n t i =0; i<aux2 . l ength ; i++){

i f (map . conta in s ( aux2 [ i ] ) ) count++;
}
i f ( count>=go2 ) re turn true ;
e l s e re turn f a l s e ;

}

s t a t i c pub l i c double sim ( St r ing [ ] a , S t r ing [ ] b ) {
i f ( a . l ength==0 | | b . l ength==0) return 0 ;
S t r ing [ ] ngramas1=S2 . getbigrams ( a ) ;
S t r ing [ ] ngramas2=S2 . getbigrams (b) ;
i n t re=S2 . calculatecommons ( ngramas1 , ngramas2 ) ;
i f ( re>7) re turn 1 ;

re turn 0 ;
}

//used f o r p a r t i t i o n i n g a document in to segments
s t a t i c pub l i c S t r ing [ ] [ ] p a r t i t i o n ( S t r ing [ ] a , i n t go3 , i n t n) {

i n t ns=( i n t ) a . l ength /go3 ; i f ( ns==0) ns=1;
S t r ing [ ] [ ] aT=new St r ing [ ns ] [ ] ;
f o r ( i n t i =0; i<ns ; i++){

i n t ou=0;
i f ( i==0){

ou=a . l ength /ns ;
aT [ i ]=new St r ing [ ou ] ;
f o r ( i n t r=0; r<aT [ i ] . l ength ; r++) aT [ i ] [ r ]=a [ r ] ;

}
e l s e i f ( i<ns−1){

ou=(( i n t ) a . l ength /ns )+n−1;
aT [ i ]=new St r ing [ ou ] ;
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i n t au=(( i n t ) a . l ength /ns ) ∗ i ;
f o r ( i n t r=0; r<aT [ i ] . l ength ; r++) aT [ i ] [ r ]=a [ r+au−n+1] ;

}
e l s e {

ou=a . l ength+n−1−( i ) ∗ ( ( i n t ) a . l ength /ns ) ;
aT [ i ]=new St r ing [ ou ] ;
i n t au=i ∗ ( ( i n t ) a . l ength /ns ) ;
f o r ( i n t r=0; r<aT [ i ] . l ength ; r++) aT [ i ] [ r ]=a [ r+au−n+1] ;

}
}
re turn aT ;

}
}

A.2 In Deep Analysis

// ALGORITHM FOR UNCOVERING PLAGIARIZED PASSAGES
// TAKES AS INPUTS 2 DOCUMENTS AS STRING ARRAYS
// IT ’ S OUTPUT ARE THE FOUND PLAGIARIZED PASSAGES; OFFSETS AND LENGTHS FOR THE TWO

DOCUMENTS
import java . u t i l . ∗ ;
import java . i o . ∗ ;
c l a s s FINDOFFSETLENGTH{

s t a t i c long ko ;
s t a t i c i n t go ;
s t a t i c i n t go2 ;
s t a t i c ArrayList marcados1 ;
s t a t i c ArrayList marcados2 ;
s t a t i c S t r ing [ ] ind icesA ;
s t a t i c S t r ing [ ] ind i ce sB ;
pub l i c s t a t i c ArrayList s im i l i t u d ( St r ing [ ] a , S t r ing [ ] b , S t r ing nombresource , S t r ing

[ ] indicesAW , St r ing [ ] indicesBW , in t ob j e t ivo , ArrayList marc1 , ArrayList marc2 )
throws Exception {

marcados1=marc1 ;
marcados1=new ArrayList ( ) ;
marcados2=marc2 ;
marcados2=new ArrayList ( ) ;

ind icesA=indicesAW ;
ind i ce sB=indicesBW ;

ArrayList cop ia s4=new ArrayList ( ) ;

t ry {
St r ing [ ] ngramas1=S2 . obtenergramas (a , 2 ) ;
S t r ing [ ] ngramas2=S2 . obtenergramas (b , 2 ) ;
S t r ing [ ] ngramas13=S2 . obtenergramas (a , 3 ) ;
S t r ing [ ] ngramas23=S2 . obtenergramas (b , 3 ) ;
HashSet gramascomunes=S2 . r educ i r 66 ( ngramas13 , ngramas23 ) ;
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System . out . p r i n t l n (” gramas A: ”+ngramas1 . l ength+” gramas B: ”+ngramas2 . l ength
) ;

System . out . p r i n t l n ( gramascomunes . s i z e ( ) ) ;
HashMap conjunto1=new HashMap( ) ;
f o r ( i n t i =0; i<ngramas13 . l ength ; i++){

i f ( gramascomunes . conta in s ( ngramas13 [ i ] ) && ! conjunto1 . containsKey (
ngramas13 [ i ] ) ) {

I n t eg e r [ ] aux=new In t eg e r [ 1 ] ;
aux [0 ]= i ;
conjunto1 . put ( ngramas13 [ i ] , aux ) ;

}
e l s e i f ( gramascomunes . conta in s ( ngramas13 [ i ] ) && conjunto1 . containsKey

( ngramas13 [ i ] ) ) {
I n t eg e r [ ] aux=( In t eg e r [ ] ) conjunto1 . get ( ngramas13 [ i ] ) ;
I n t eg e r [ ] aux1=new In t eg e r [ aux . l ength +1] ;
f o r ( i n t r r =0; rr<aux . l ength ; r r++) aux1 [ r r ]=aux [ r r ] ;
aux1 [ aux . l ength ]= i ;
conjunto1 . put ( ngramas13 [ i ] , aux1 ) ;

}
}
HashMap conjunto2=new HashMap( ) ;
f o r ( i n t i =0; i<ngramas23 . l ength ; i++){

i f ( gramascomunes . conta in s ( ngramas23 [ i ] ) && ! conjunto2 . containsKey (
ngramas23 [ i ] ) ) {

I n t eg e r [ ] aux=new In t eg e r [ 1 ] ;
aux [0 ]= i ;
conjunto2 . put ( ngramas23 [ i ] , aux ) ;

}
e l s e i f ( gramascomunes . conta in s ( ngramas23 [ i ] ) && conjunto2 . containsKey

( ngramas23 [ i ] ) ) {
I n t eg e r [ ] aux=( In t eg e r [ ] ) conjunto2 . get ( ngramas23 [ i ] ) ;
I n t eg e r [ ] aux1=new In t eg e r [ aux . l ength +1] ;
f o r ( i n t r r =0; rr<aux . l ength ; r r++) aux1 [ r r ]=aux [ r r ] ;
aux1 [ aux . l ength ]= i ;
conjunto2 . put ( ngramas23 [ i ] , aux1 ) ;

}
}
System . out . p r i n t l n ( conjunto1 . s i z e ( ) ) ;
System . out . p r i n t l n ( conjunto2 . s i z e ( ) ) ;

ArrayList cop ia s=new ArrayList ( ) ;

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
//INTENTA PILLAR LAS COPIAS CON MODIFICACIONES
ArrayList cop ia s2=new ArrayList ( ) ;
i t 1 = conjunto1 . keySet ( ) . i t e r a t o r ( ) ;
whi l e ( i t 1 . hasNext ( ) ) {

St r ing aux1 = ( St r ing ) i t 1 . next ( ) ;
I n t eg e r [ ] i n d i c e s 1=( In t eg e r [ ] ) conjunto1 . get ( aux1 ) ;
I n t eg e r [ ] i n d i c e s 2=( In t eg e r [ ] ) conjunto2 . get ( aux1 ) ;
boolean indicesnomarcados ;
// I t e r o sobre l o s i n d i c e s de l a c o i n c i d en c i a .
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f o r ( i n t i =0; i<i n d i c e s 1 . l ength ; i++) f o r ( i n t j =0; j<i n d i c e s 2 . l ength ; j++) {
i n t i n i 1=i nd i c e s 1 [ i ] ;
i n t f i n 1=ind i c e s 1 [ i ] ;
i n t i n i 2=i nd i c e s 2 [ j ] ;
i n t f i n 2=ind i c e s 2 [ j ] ;

indicesnomarcados=r e v i s a r i n d i c e s ( in i 1 , f in1 , marcados1 , 1 ) ;
i f ( indicesnomarcados ) indicesnomarcados=r e v i s a r i n d i c e s ( in i 2 , f in2 ,

marcados2 , 2 ) ;

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
boolean desechar=f a l s e ;
i f ( indicesnomarcados && ! desechar ) {

i n t maximo=0; i n t puntero=0;
i f ( i n i 1 −25>=0 && in i2 −25>=0 && f i n 1+25<ngramas1 . l ength &&

f i n 2+25<ngramas2 . l ength ) {
i n t porcenta j e1=( i n t ) ( S2 . po r c en ta j e ( ngramas1 , in i 1 −25, f i n 1 +25,

ngramas2 , in i 2 −25, f i n 2 +25)∗100) ;
i f ( porcenta je1>maximo) { maximo=porcenta j e1 ; puntero=1;
}
}
i f ( i n i 1 −35>=0 && in i2 −25>=0 && f i n 1+15<ngramas1 . l ength &&

f i n 2+25<ngramas2 . l ength ) {
i n t porcenta j e1=( i n t ) ( S2 . po r c en ta j e ( ngramas1 , in i 1 −35, f i n 1 +15,

ngramas2 , in i 2 −25, f i n 2 +25)∗100) ;
i f ( porcenta je1>maximo) { maximo=porcenta j e1 ; puntero=2;
}
}
i f ( i n i 1 −15>=0 && in i2 −25>=0 && f i n 1+35<ngramas1 . l ength &&

f i n 2+25<ngramas2 . l ength ) {
i n t porcenta j e1=( i n t ) ( S2 . po r c en ta j e ( ngramas1 , in i 1 −15, f i n 1 +35,

ngramas2 , in i 2 −25, f i n 2 +25)∗100) ;
i f ( porcenta je1>maximo) { maximo=porcenta j e1 ; puntero=3;
}
}
i f ( puntero==1){
i n i 1=in i1 −25; f i n 1=f i n 1 +25;
i n i 2=in i2 −25; f i n 2=f i n 2 +25;
}
i f ( puntero==2){
i n i 1=in i1 −35; f i n 1=f i n 1 +15;
i n i 2=in i2 −25; f i n 2=f i n 2 +25;
}
i f ( puntero==3){
i n i 1=in i1 −15; f i n 1=f i n 1 +35;
i n i 2=in i2 −25; f i n 2=f i n 2 +25;
}
i f ( puntero==0 | | maximo<30) desechar=true ;

}
ind icesnomarcados=r e v i s a r i n d i c e s ( in i 1 , f in1 , marcados1 , 1 ) ;
i f ( indicesnomarcados ) indicesnomarcados=r e v i s a r i n d i c e s ( in i 2 , f in2 ,

marcados2 , 2 ) ;

indicesnomarcados=r e v i s a r i n d i c e s ( in i 1 , f in1 , marcados1 , 1 ) ;
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i f ( indicesnomarcados ) indicesnomarcados=r e v i s a r i n d i c e s ( in i 2 , f in2 ,
marcados2 , 2 ) ;

// comienza un loop de hacer c r e c e r y a j u s t a r i n d i c e s . . .
i n t ew=0;
whi l e ( ! desechar && indicesnomarcados && ew<1){
ew++;
i n t i n i 1 f i n a l=i n i 1 ;
i n t f i n 1 f i n a l=f i n 1 ;
i f ( indicesnomarcados && ! desechar ) {

whi le ( in i 1−1>=0 && in i2−1>=0 && ngramas13 [ in i 1 −1] . equa l s ( ngramas23 [
in i 2 −1])

&& r e v i s a r i n d i c e s ( in i 1 −1, f in1 , marcados1 , 1 ) &&
r e v i s a r i n d i c e s ( in i 2 −1, f in2 , marcados2 , 2 )

) {
i n i 1 −−;
i n i 2 −−;

}

whi le ( f i n 1+1<ngramas13 . l ength && f i n 2+1<ngramas23 . l ength && ngramas13
[ f i n 1 +1] . equa l s ( ngramas23 [ f i n 2 +1])

&& r e v i s a r i n d i c e s ( in i 1 , f i n 1 +1,marcados1 , 1 ) &&
r e v i s a r i n d i c e s ( in i 2 , f i n 2 +1,marcados2 , 2 ) ) {

f i n 1++;
f i n 2++;

}

boolean romper=f a l s e ;
i n t paso=100;
whi l e ( in i 1−paso>=0 && in i2−paso>=0 && ! romper
&& r e v i s a r i n d i c e s ( in i 1−paso , f in1 , marcados1 , 1 ) && r e v i s a r i n d i c e s (

in i 2−paso , f in2 , marcados2 , 2 ) ) {
St r ing [ ] grupo1=new St r ing [ paso ] ;
f o r ( i n t g=0;g<paso ; g++) grupo1 [ g]=ngramas1 [ in i 1−paso+g ] ;
S t r ing [ ] grupo2=new St r ing [ paso ] ;
f o r ( i n t g=0;g<paso ; g++) grupo2 [ g]=ngramas2 [ in i 2−paso+g ] ;
i f ( S2 . acuantoredujo ( grupo1 , grupo2 )>10){

i n i 1=in i1−paso ;
i n i 2=in i2−paso ;

}
e l s e romper=true ;

}
romper=f a l s e ;
paso=100;

whi l e ( f i n 1+paso<ngramas13 . l ength && f i n 2+paso<ngramas23 .
l ength && ! romper //&& indicesnomarcados

&& r e v i s a r i n d i c e s ( in i 1 , f i n 1+paso , marcados1 , 1 ) &&
r e v i s a r i n d i c e s ( in i 2 , f i n 2+paso , marcados2 , 2 )

) {
St r ing [ ] grupo1=new St r ing [ paso ] ;
f o r ( i n t g=0;g<paso ; g++) grupo1 [ g]=ngramas1 [ f i n 1+g ] ;
S t r ing [ ] grupo2=new St r ing [ paso ] ;
f o r ( i n t g=0;g<paso ; g++) grupo2 [ g]=ngramas2 [ f i n 2+g ] ;
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i f ( S2 . acuantoredujo ( grupo1 , grupo2 )>10){
f i n 1=f i n 1+paso ;
f i n 2=f i n 2+paso ;

}
e l s e romper=true ;

}
romper=f a l s e ;
paso=100;

whi l e ( f i n 1+paso<ngramas13 . l ength && f i n 2+paso<ngramas23 .
l ength && ! romper //&& indicesnomarcados

&& r e v i s a r i n d i c e s ( in i 1 , f i n 1+paso , marcados1 , 1 ) &&
r e v i s a r i n d i c e s ( in i 2 , f i n 2+paso , marcados2 , 2 ) ) {

i n t nporcenta j e=( i n t ) ( S2 . po r c en ta j e ( ngramas1 , in i 1 , f i n 1+paso ,
ngramas2 , in i 2 , f i n 2+paso ) ) ;

i f ( nporcentaje >30){
f i n 1=f i n 1+paso ;
f i n 2=f i n 2+paso ;

}
e l s e romper=true ;

}
romper=f a l s e ;
paso=100;
whi l e ( in i 1−paso>=0 && in i2−paso>=0 && ! romper //&& indicesnomarcados

&& r e v i s a r i n d i c e s ( in i 1−paso , f in1 , marcados1 , 1 ) &&
r e v i s a r i n d i c e s ( in i 2−paso , f in2 , marcados2 , 2 ) ) {

i n t nporcenta j e=( i n t ) ( S2 . po r c en ta j e ( ngramas1 , in i 1−paso , f in1 ,
ngramas2 , in i 2−paso , f i n 2 ) ) ;

i f ( nporcenta je >30){
i n i 1=in i1−paso ;
i n i 2=in i2−paso ;

}
e l s e romper=true ;

}
// i n t en t a r hacer c r e c e r pero cruzado . . . .

romper=f a l s e ;
paso=100;
whi l e ( in i 1−paso>=0 && f i n 2+paso<ngramas23 . l ength && ! romper &&

indicesnomarcados
&& r e v i s a r i n d i c e s ( in i 1−paso , f in1 , marcados1 , 1 ) &&

r e v i s a r i n d i c e s ( in i 2 , f i n 2+paso , marcados2 , 2 ) ) {
i n t nporcenta j e=( i n t ) ( S2 . po r c en ta j e ( ngramas1 , in i 1−paso , f in1 ,

ngramas2 , in i 2 , f i n 2+paso ) ) ;
i f ( nporcenta je >30 && r e v i s a r i n d i c e s ( in i 1−paso , f in1 , marcados1

, 1 ) && r e v i s a r i n d i c e s ( in i 2 , f i n 2+paso , marcados2 , 2 ) ) {
i n i 1=in i1−paso ;
f i n 2=f i n 2+paso ;

}
e l s e romper=true ;

}
// i n t en t a r hacer c r e c e r pero cruzado . . . .
romper=f a l s e ;
paso=100;
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whi le ( f i n 1+paso<ngramas13 . l ength && in i2−paso>=0 && ! romper &&
indicesnomarcados

&& r e v i s a r i n d i c e s ( in i 1 , f i n 1+paso , marcados1 , 1 ) &&
r e v i s a r i n d i c e s ( in i 2−paso , f in2 , marcados2 , 2 ) ) {

i n t nporcenta j e=( i n t ) ( S2 . po r c en ta j e ( ngramas1 , in i 1 , f i n 1+paso ,
ngramas2 , in i 2−paso , f i n 2 ) ) ;

i f ( nporcentaje >30 && r e v i s a r i n d i c e s ( in i 1 , f i n 1+paso , marcados1
, 1 ) && r e v i s a r i n d i c e s ( in i 2−paso , f in2 , marcados2 , 2 ) ) {

f i n 1=f i n 1+paso ;
i n i 2=in i2−paso ;

}
e l s e romper=true ;

}
// a j u s t a r i n i c i o y f i n
i f ( indicesnomarcados && 1==0){
i n t maximo=( i n t ) ( S2 . po r c en ta j e ( ngramas1 , in i 1 , f in1 , ngramas2 , in i 2 , f i n 2 )

∗100) ;
i n t puntero=0;
i f ( i n i 1 −25>=0 && in i2 −25>=0 && f i n 1+25<ngramas1 . l ength && f i n 2+25<

ngramas2 . l ength
&& r e v i s a r i n d i c e s ( in i 1 −25, f i n 1 +25,marcados1 , 1 )

&& r e v i s a r i n d i c e s ( in i 2 −25, f i n 2 +25,marcados2 , 2 ) ) {
i n t porcenta j e1=( i n t ) ( S2 . po r c en ta j e ( ngramas1 , in i 1 −25, f i n 1 +25,

ngramas2 , in i 2 −25, f i n 2 +25)∗100) ;
i f ( porcenta je1>maximo) { maximo=porcenta j e1 ; puntero=1;
}

}
i f ( i n i 1 −35>=0 && in i2 −25>=0 && f i n 1+15<ngramas1 . l ength && f i n 2+25<

ngramas2 . l ength
&& r e v i s a r i n d i c e s ( in i 1 −35, f i n 1 +15,marcados1 , 1 )

&& r e v i s a r i n d i c e s ( in i 2 −35, f i n 2 +15,marcados2 , 2 ) ) {
i n t porcenta j e1=( i n t ) ( S2 . po r c en ta j e ( ngramas1 , in i 1 −35, f i n 1 +15,

ngramas2 , in i 2 −25, f i n 2 +25)∗100) ;
i f ( porcenta je1>maximo) { maximo=porcenta j e1 ; puntero=2;
}

}
i f ( i n i 1 −15>=0 && in i2 −25>=0 && f i n 1+35<ngramas1 . l ength && f i n 2+25<

ngramas2 . l ength
&& r e v i s a r i n d i c e s ( in i 1 −15, f i n 1 +35,marcados1 , 1 ) &&

r e v i s a r i n d i c e s ( in i 2 −15, f i n 2 +35,marcados2 , 2 ) ) {
i n t porcenta j e1=( i n t ) ( S2 . po r c en ta j e ( ngramas1 , in i 1 −15, f i n 1 +35,

ngramas2 , in i 2 −25, f i n 2 +25)∗100) ;
i f ( porcenta je1>maximo) { maximo=porcenta j e1 ; puntero=3;
}

}
i f ( puntero==1){

i n i 1=in i1 −25; f i n 1=f i n 1 +25;
i n i 2=in i2 −25; f i n 2=f i n 2 +25;

}
i f ( puntero==2){

i n i 1=in i1 −35; f i n 1=f i n 1 +15;
i n i 2=in i2 −25; f i n 2=f i n 2 +25;

}
i f ( puntero==3){
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i n i 1=in i1 −15; f i n 1=f i n 1 +35;
i n i 2=in i2 −25; f i n 2=f i n 2 +25;

}
i f ( puntero==0 | | maximo<30) desechar=true ;
}
i f ( i n i 1 f i n a l==i n i 1 && f i n 1 f i n a l==f i n 1 ) desechar=true ;
}
}
// termina loop de hacer c r e c e r y a j u s t a r i n d i c e s . . .
i n t po r c en ta j e=( i n t ) ( S2 . po r c en ta j e ( ngramas1 , in i 1 , f in1 , ngramas2 , in i 2 ,

f i n 2 ) ∗100) ;

indicesnomarcados=r e v i s a r i n d i c e s ( in i 1 , f in1 , marcados1 , 1 ) ;
i f ( indicesnomarcados ) indicesnomarcados=r e v i s a r i n d i c e s ( in i 2 , f in2 ,

marcados2 , 2 ) ;

i f ( f in1−i n i 1 >50 && indicesnomarcados && porcenta je >10 && ! desechar ) {
i n t [ ] todos=new in t [ 5 ] ;
todos [0 ]= i n i 1 ;
todos [1 ]= f i n 1 ;
todos [2 ]= i n i 2 ;
todos [3 ]= f i n 2 ;
todos [ 4 ]=( i n t ) ( S2 . po r c en ta j e ( ngramas1 , in i 1 , f in1 , ngramas2 , in i 2 , f i n 2 )

∗100) ;
cop ia s2 . add ( todos ) ;
//marcar e l tramo de susp y e l tramo de source para que no se vuelvan

a ana l i z a r
i n t [ ] yo=new in t [ 2 ] ;
yo [0 ]=S2 . to In t ( ind icesA [ i n i 1 ] ) ;
yo [1 ]=S2 . to In t ( ind icesA [ f i n 1 ] ) ;
marcados1 . add ( yo ) ;
yo=new in t [ 2 ] ;
yo [0 ]=S2 . to In t ( ind i ce sB [ i n i 2 ] ) ;
yo [1 ]=S2 . to In t ( ind i ce sB [ f i n 2 ] ) ;
marcados2 . add ( yo ) ;

}

}

}

//TERMINA PILLAR LAS COPIAS CON MODIFICACIONES
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
System . out . p r i n t l n (” S i z e de cop ia s conjuntas : ”+cop ia s . s i z e ( )+” ”+cop ia s2 .

s i z e ( ) ) ;
System . out . p r i n t l n (” S i z e de ind marcados : ”+marcados1 . s i z e ( )+” ”+marcados2 .

s i z e ( ) ) ;

ArrayList cop ia s3=new ArrayList ( ) ;
cop ia s3=new ArrayList ( ) ;
f o r ( i n t w=0;w<cop ia s . s i z e ( ) ;w++) cop ia s3 . add ( cop ia s . get (w) ) ;
f o r ( i n t w=0;w<cop ia s2 . s i z e ( ) ;w++){

i n t [ ] todos=( i n t [ ] ) cop ia s2 . get (w) ;
i n t po r c enta j e=todos [ 4 ] ;
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i f ( porcenta je >20 ) cop ia s3 . add ( cop ia s2 . get (w) ) ;

}
cop ia s3=ordenar ( copias3 , 0 ) ;

f o r ( i n t w=0;w<cop ia s3 . s i z e ( ) ;w++){
i n t [ ] todos=( i n t [ ] ) cop ia s3 . get (w) ;
i n t i n i 1=todos [ 0 ] ; i n t f i n 1=todos [ 1 ] ;
i n t i n i 2=todos [ 2 ] ; i n t f i n 2=todos [ 3 ] ;
i n t po r c en ta j e=todos [ 4 ] ;

i n t s u s p o f f s e t=S2 . to In t ( ind icesA [ i n i 1 ] ) ;
i n t susp l ength=S2 . to In t ( ind icesA [ f i n 1 ] )−S2 . to In t ( ind icesA [ i n i 1 ] ) ;
i n t s o u r c e o f f s e t=S2 . to In t ( ind i ce sB [ i n i 2 ] ) ;
i n t sou r c e l eng th=S2 . to In t ( ind i ce sB [ f i n 2 ] )−S2 . to In t ( ind i ce sB [ i n i 2 ] ) ;
System . out . p r i n t l n (w+”\t”+porcenta j e+”\t Copia : s u s p o f f s e t : ” +

s u s p o f f s e t+”\t su sp l eng th : ”+susp length +” \ t s o u r c e o f f s e t : ”
+s o u r c e o f f s e t+”\t s ou r c e l eng th : ”+source l eng th ) ;

}
cop ia s3=ordenar ( copias3 , 0 ) ;

f o r ( i n t w=0;w<cop ia s3 . s i z e ( ) ;w++){
i n t [ ] todos=( i n t [ ] ) cop ia s3 . get (w) ;
i n t i n i 1=todos [ 0 ] ; i n t f i n 1=todos [ 1 ] ;
i n t i n i 2=todos [ 2 ] ; i n t f i n 2=todos [ 3 ] ;
i n t po r c en ta j e=todos [ 4 ] ;
i n t s u s p o f f s e t=S2 . to In t ( ind icesA [ i n i 1 ] ) ;
i n t susp l ength=S2 . to In t ( ind icesA [ f i n 1 ] )−S2 . to In t ( ind icesA [ i n i 1 ] ) ;
i n t s o u r c e o f f s e t=S2 . to In t ( ind i ce sB [ i n i 2 ] ) ;
i n t sou r c e l eng th=S2 . to In t ( ind i ce sB [ f i n 2 ] )−S2 . to In t ( ind i ce sB [ i n i 2 ] ) ;
Object [ ] au=new Object [ 6 ] ;
au [0 ]= s u s p o f f s e t ;
au [1 ]= susp length ;
au [2 ]= s o u r c e o f f s e t ;
au [3 ]= source l eng th ;
au [4 ]= porcenta j e ;
au [5 ]= nombresource ;

cop ia s4 . add ( au ) ;
}
}
catch ( Exception E) {System . out . p r i n t l n (” e r r o r ”) ; E . pr intStackTrace ( ) ;}

re turn cop ia s4 ;

}
// func ion que est ima e l i nd i c e de l t exto s i n niuna mod i f i c ac i on
s t a t i c pub l i c i n t contarchar ( i n t x1 , i n t x2 , S t r ing [ ] a ) {

i n t y=0;
f o r ( i n t i=x1 ; i<x2 ; i++) y=y+a [ i ] . l ength ( ) +1; //suma e l l a r go de cada palabra
i n t r=( i n t ) y /16 ; // est ima l o s c a r a c t e r e s de puntuacion y demases que podrian

haberse quitado en l a l imp i e za
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re turn y+r ;
}
s t a t i c pub l i c boolean r e v i s a r i n d i c e s ( i n t in iBruto , i n t f inBruto , ArrayList marcados ,

i n t o ) {
i f ( in iBruto<0 | | f inBruto <0) re turn f a l s e ;
i n t i n i ;
i n t f i n ;
i f ( o==1){

i n i=S2 . to In t ( ind icesA [ in iBruto ] ) ;
f i n=S2 . to In t ( ind icesA [ f inBruto ] ) ;

}
e l s e {

i n i=S2 . to In t ( ind i ce sB [ in iBruto ] ) ;
f i n=S2 . to In t ( ind i ce sB [ f inBruto ] ) ;

}
f o r ( i n t p=0;p<marcados . s i z e ( ) ; p++){

i n t [ ] rango=( i n t [ ] ) marcados . get (p) ;
i n t comienzo=rango [ 0 ] ;
i n t ult imo=rango [ 1 ] ;
i f ( i n i>=comienzo && in i<=ult imo ) re turn f a l s e ;
e l s e i f ( f i n>=comienzo && f in<=ult imo ) re turn f a l s e ;
e l s e i f ( i n i<=comienzo && f in>=ult imo ) re turn f a l s e ;
e l s e i f ( i n i>=comienzo && f in<=ult imo ) re turn f a l s e ;

}
re turn true ;

}
//un chekeo de i n d i c e s marcados para cuando se juntan tramos detec tados . . .
s t a t i c pub l i c boolean rangonousado ( i n t in iBruto , i n t f inBruto , ArrayList marcados ,

i n t o ) {
i n t i n i ;
i n t f i n ;
i f ( o==1){

i n i=S2 . to In t ( ind icesA [ in iBruto ] ) ;
f i n=S2 . to In t ( ind icesA [ f inBruto ] ) ;

}
e l s e {

i n i=S2 . to In t ( ind i ce sB [ in iBruto ] ) ;
f i n=S2 . to In t ( ind i ce sB [ f inBruto ] ) ;

}
i f ( f i n−i n i <=5) return true ;
f o r ( i n t p=0;p<marcados . s i z e ( ) ; p++){

i n t [ ] rango=( i n t [ ] ) marcados . get (p) ;
i n t comienzo=rango [ 0 ] ;
i n t ult imo=rango [ 1 ] ;
i f ( i n i>=comienzo && f in<=ult imo ) re turn f a l s e ;

}
re turn true ;

}
s t a t i c pub l i c ArrayList ordenar ( ArrayList copias , i n t i nd i c e ) {

i n t [ ] ordenar=new in t [ cop ia s . s i z e ( ) ] ;
f o r ( i n t w=0;w<cop ia s . s i z e ( ) ;w++){

i n t [ ] todos=( i n t [ ] ) cop ia s . get (w) ;
ordenar [w]= todos [ i nd i c e ] ;

}
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Arrays . s o r t ( ordenar ) ;
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
//INTENTA JUTAR LOS SEGMENTOS QUE CORRESPONDEN
ArrayList cop ia s2=new ArrayList ( ) ;
f o r ( i n t v=0;v<ordenar . l ength ; v++){
f o r ( i n t w=0;w<cop ia s . s i z e ( ) ;w++){
i n t [ ] todos=( i n t [ ] ) cop ia s . get (w) ;
i f ( todos [ i nd i c e ]==ordenar [ v ] ) {

i n t [ ] yo=new in t [ 5 ] ;
yo [0 ]= todos [ 0 ] ;
yo [1 ]= todos [ 1 ] ;
yo [2 ]= todos [ 2 ] ;
yo [3 ]= todos [ 3 ] ;
yo [4 ]= todos [ 4 ] ;
cop ia s2 . add ( yo ) ;

}}}
re turn cop ia s2 ;

}

s t a t i c pub l i c ArrayList armargrupos ( ArrayList copias2 , S t r ing [ ] indicesA , S t r ing [ ]
ind i ce sB ) {

cop ia s2=ordenar ( copias2 , 0 ) ;
ArrayList po s i b l e s g rupo s=new ArrayList ( ) ;
f o r ( i n t w=0;w<cop ia s2 . s i z e ( ) ;w++){

ArrayList paraagregar=new ArrayList ( ) ;
i n t [ ] todos=( i n t [ ] ) cop ia s2 . get (w) ;
paraagregar . add ( todos ) ;
i n t i n i 1=todos [ 0 ] ;
i n t f i n 1=todos [ 1 ] ;
i n t i n i 2=todos [ 2 ] ;
i n t f i n 2=todos [ 3 ] ;
i n t i n i 2 p r o v i s o r i o=i n i 2 ;
i n t f i n 2 p r o v i s o r i o=f i n 2 ;
i n t po r c enta j e=todos [ 4 ] ;
boolean parar=f a l s e ; i n t tope=w;
f o r ( i n t j=w+1; j<cop ia s2 . s i z e ( ) && ! parar ; j++){

i n t [ ] todosB=( in t [ ] ) cop ia s2 . get ( j ) ;
i n t in i1B=todosB [ 0 ] ;
i n t f in1B=todosB [ 1 ] ;
i n t in i2B=todosB [ 2 ] ;
i n t f in2B=todosB [ 3 ] ;
i n t porcentajeB=todos [ 4 ] ;
double d i f e r e n c i a=ini1B−f i n 1 ;
double d i f e r e n c i a 2=in i2−f in2B ;

i f (1==1 && Math . abs ( ini1B−f i n 1 )<4000 && rangonousado ( f in1 ,
ini1B , marcados1 , 1 ) ) {

f i n 1=fin1B ;
paraagregar . add ( todosB ) ;
w++;

}
e l s e {

parar=true ;
}
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}
po s i b l e s g rupo s . add ( paraagregar ) ;

}
re turn po s i b l e s g rupo s ;

}
s t a t i c pub l i c ArrayList r e s o l v e r g rupo s ( ArrayList pos ib l e sg rupos , S t r ing [ ] ngramas1 ,

S t r ing [ ] ngramas2 , S t r ing [ ] indicesA , S t r ing [ ] ind i ce sB ) {
ArrayList cop ia s4=new ArrayList ( ) ;
f o r ( i n t w=0;w<po s i b l e s g rupo s . s i z e ( ) ;w++)

{
ArrayList grupo=(ArrayList ) po s i b l e s g rupo s . get (w) ;
i n t i n i 1 f i n a l =0;
i n t f i n 1 f i n a l =0;
i n t i n i 2 f i n a l =0;
i n t f i n 2 f i n a l =0;
i f ( grupo . s i z e ( )==1) cop ia s4 . add ( ( ( i n t [ ] ) grupo . get (0 ) ) ) ;
e l s e {

i n t grande=0;
f o r ( i n t r2=0; r2<1; r2++){

grupo=ordenar ( grupo , 2 ) ;
grande=grupo . s i z e ( ) ;
ArrayList aux=new ArrayList ( ) ;

f o r ( i n t v=0;v<grupo . s i z e ( )&&1==1;v++){
i n t [ ] todos=( i n t [ ] ) grupo . get ( v ) ;
i n t i n i 1=todos [ 0 ] ;
i n t f i n 1=todos [ 1 ] ;
i n t i n i 2=todos [ 2 ] ;
i n t f i n 2=todos [ 3 ] ;
i n t i n i 1 p r o v i s o r i o=i n i 1 ;
i n t f i n 1 p r o v i s o r i o=f i n 1 ;
i n t po r c enta j e=todos [ 4 ] ;
boolean parar=f a l s e ; i n t tope=v ;
f o r ( i n t j=v+1; j<grupo . s i z e ( ) && ! parar&&1==1; j++)

{
i n t [ ] todosB=( in t [ ] ) grupo . get ( j ) ;
i n t in i1B=todosB [ 0 ] ;
i n t f in1B=todosB [ 1 ] ;
i n t in i2B=todosB [ 2 ] ;
i n t f in2B=todosB [ 3 ] ;
i n t porcentajeB=todos [ 4 ] ;
double d i f e r e n c i a=ini2B−f i n 2 ;
double d i f e r e n c i a 2=ini1B−f i n 1 ;
i f ( ini1B<f i n 1 ) d i f e r e n c i a 2=in i1−f in1B ;
i n t l a rgo1=S2 . to In t ( ind icesA [ f i n 1 ] )−S2 . to In t ( ind icesA [ i n i 1 ] ) ;
i n t l a rgo2=S2 . to In t ( ind icesA [ f in1B ] )−S2 . to In t ( ind icesA [ in i1B

] ) ;
i f (1==1 && Math . abs ( f in2−in i2B )<4000 && rangonousado ( f in2 ,

ini2B , marcados2 , 2 ) && Math . abs ( d i f e r e n c i a 2 )<5000){
i f ( ini1B<i n i 1 p r o v i s o r i o ) i n i 1 p r o v i s o r i o=ini1B ;
i f ( f i n 1p r o v i s o r i o<f in1B ) f i n 1 p r o v i s o r i o=fin1B ;
i n i 2=ini2B ;
f i n 2=fin2B ;
tope++;
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}
e l s e {

parar=true ;
}
}

i n t [ ] yo=new in t [ 5 ] ;
todos=( i n t [ ] ) grupo . get ( v ) ;
yo [2 ]= todos [ 2 ] ;
todos=( i n t [ ] ) grupo . get ( tope ) ;
yo [3 ]= todos [ 3 ] ;
yo [0 ]= i n i 1 p r o v i s o r i o ; yo [1 ]= f i n 1 p r o v i s o r i o ;

yo [4 ]=( i n t ) ( S2 . po r c en ta j e ( ngramas1 , yo [ 0 ] , yo [ 1 ] , ngramas2 , yo
[ 2 ] , yo [ 3 ] ) ∗100) ;

aux . add ( yo ) ;
v=tope ;

}
grupo=aux ;
}
f o r ( i n t v=0;v<grupo . s i z e ( )&&1==1;v++) cop ia s4 . add ( grupo . get ( v ) ) ;
}

}
re turn cop ia s4 ;

}
// chequea s i un tramo ch i co detectado como copia t ex tua l no sea parte de un tramo

grande con mod i f i c a c i one s
s t a t i c pub l i c boolean r e v i s a r b i e n ( i n t in i 1 , i n t f in1 , i n t in i 2 , i n t f in2 , S t r ing [ ]

ngramas1 , S t r ing [ ] ngramas2 ) {
// s i es de l a r go s u f i c i e n t e , e s improbable que corresponda a parte de una

cop ia con mod i f i c a c i on
i f ( f in1−i n i 1 >200) re turn true ;
// ver s i e s probable que e l tramo sea parte de una copia con mod i f i ca c i on . . .
i n t porcenta j e1 ;
i f ( i n i 1 −100>=0 && in i2 −100>=0){

porcenta j e1=( i n t ) ( S2 . po r c en ta j e ( ngramas1 , in i 1 −100 , in i 1 , ngramas2 , in i 2
−100 , i n i 2 ) ∗100) ;

i f ( porcenta je1 >5) re turn f a l s e ;
}
i f ( f i n 1+100<ngramas1 . l ength && f i n 2+100<ngramas2 . l ength ) {

porcenta j e1=( i n t ) ( S2 . po r c en ta j e ( ngramas1 , f in1 , f i n 1 +100 ,ngramas2 , f in2 ,
f i n 2 +100) ∗100) ;

i f ( porcenta je1 >5) re turn f a l s e ;
}
i n t s=100;
i f ( i n i 1−s>=0 && in i2−s>=0 && f i n 1+s<ngramas1 . l ength && f i n 2+s<ngramas2 . l ength

) {
porcenta j e1=( i n t ) ( S2 . po r c en ta j e ( ngramas1 , in i 1−s , f i n 1+s , ngramas2 , in i 2−

s , f i n 2+s ) ∗100) ;
i f ( porcenta je1 >5) re turn f a l s e ;

}
re turn true ;

}}
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Appendix B

Research Paper Based On This Work

Derived from this work is a publication, submitted and accepted in Conference on Multilingual and
Multimodal Information Access Evaluation, CLEF 1, 2010. The paper is attached starting on the
next page.

1http://clef2010.org/

56



FASTDOCODE: Finding Approximated Segments of N-Grams for
Document Copy Detection

Lab Report for PAN at CLEF 2010

Gabriel Oberreuter1 and Gaston L’Huillier1 and Sebastián A. Ríos1 and Juan D. Velásquez1

University of Chile, Department of Industrial Engineering, Santiago, Chile
goberreu@ing.uchile.cl, {glhuilli,srios,jvelasqu}@dii.uchile.cl

Abstract Nowadays, plagiarism has been presented as one of the main distresses that the information
technology revolution has lead into our society for which using pattern matching algorithms and intel-
ligent data analysis approaches, these practices could be identified. Furthermore, a fast document copy
detection algorithm could be used in large scale applications for plagiarism detection in academia, scien-
tific research, patents, knowledge management, among others. Notwithstanding the fact that plagiarism
detection has been tackled by exhaustive comparison of source and suspicious documents, approxi-
mated algorithms could lead to interesting results. In this paper, an approach for plagiarism detection
is presented. Results in a learning dataset of plagiarized documents from the PAN’09, and its further
evaluation in the PAN’10 plagiarism detection challenge, showed that the trade-off between speed and
performance could improve other plagiarism detection algorithms.

1 Introduction

Plagiarism in academia is rising and multiple authors have worked to describe this phenomena [11, 12, 20].
As commented by Hunt in [11], “Internet Plagiarism” is referred sometimes as a cataclysmic consequence
of the “Information Technology revolution”, as it proves to be a big problem in academia. In [20], plagiarism
is analyzed from various perspectives and considered as a problem that is growing bigger over time. In [12],
the author analyzes different statistical data and the implications of the “IT age”.

To tackle this problem, one approach is to try to detect plagiarism. Different methods involving computer
aided plagiarism detection have been under research [6, 8, 10, 14, 16, 24, 25], from which different system
for automatic plagiarism detection have been developed. However, different ways for neutralizing such
detection systems have been presented. Such methods usually involve modifying the text in such way that
the presentation of the document remains the same, but the underlying code is different and normally this
differentiation render the detection systems useless [19].

Plagiarism detection for document sources can be classified into several categories [7]. From exact
document copy, to paraphrasing, different levels of plagiarism techniques can been used in several contexts
[14, 28]. Likewise, pairs of documents can be described into different categories as unrelated, related, partly
overlapped, subset, and copied.

When comparing a suspicious document against a collection of possible sources, it is tried to identify the
sentences, paragraph or ideas that have been copied. This is called external plagiarism detection [22], and
multiple efforts are being oriented in this area. Another approach, is to determine within features extracted
from just one given document. However, this work is mainly focused on external plagiarism detection,
without considering elements from the intrinsic plagiarism detection case.

The main contribution of this work is a technique for plagiarism detection based on a two step evalua-
tion. First, a filter evaluation which considers a fast generation of segments of n-grams for an approximated
decision. And second, an obfuscation and exhaustive search process for the offset and length of the pla-
giarized extraction between two previously classified documents is performed. This two-step algorithm is
based on different document pre-processing strategies and decision thresholds which gives a large number
of parameters or degrees of freedom to be determined.

This paper is structured as follows: In Section 2 an overview of plagiarism detection algorithms and
related work is presented. Then, in Section 3 the proposed FAST Document Copy Detection (FASTDOCODE)
method is introduced. Afterwards, in Section 4, the experimental setup and evaluation performance criteria
are described. In Section 5 results are discussed. Finally, in Section 6 the main conclusions are presented.
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2 Related Work

According to Schleimer et al. [23], copy prevention and detection methods can be combined to reduce
plagiarism. While copy detection methods can only minimize it, prevention methods can fully eliminate it
and decrease it. Notwithstanding this fact, prevention methods need the whole society to take part, thus its
solution is non trivial. Copy or plagiarism detection methods tackle different levels, from simple manual
comparison to complex automatic algorithms [22]. Among these techniques, document similarity detection,
writing style detection, document content similarity, content translation, multi-site source plagiarism, and
multi-lingual plagiarism detection methods have been previously proposed [6, 7, 14, 18, 22, 23, 26].

2.1 Intrinsic Plagiarism Detection

When comparing texts against a reference set of possible sources, comes the complication of choosing the
right set. And now more than ever, with the possibilities the internet bring to plagiarists, this task becomes
more complicated to achieve. For this, intrinsic plagiarism detection algorithms have been developed [28].

The writer style can be analyzed within the document and an examination for incongruities can be done.
The complexity and style of each text can be analyzed based on certain parameters such as text statistics,
syntactic features, part-of-speech features, closed-class word sets, and structural features [28]. Whose main
idea is to define a criterium to determine if the style has changed enough to indicate plagiarism.

It is important to note that using intrinsic plagiarism detection for both, automated and manual, it is not
demonstrated that a paragraph or a part of the document is being copied, because there is no reference to
compare to. Therefore this kind of plagiarism detection category is only indicative and should be used in
conjunction with human supervision. Nevertheless, intrinsic plagiarism is useful when trying to discover
originality and authorship of a document.

2.2 External Plagiarism

Before the comparison between each possible source and the suspicious document can be executed, an
important obstacle is to be resolved. This task consist in defining and gathering the possible sources, and
this is becoming more and more complex as the technology becomes more available. In [5], the suspicious
document is chopped into queries and web search engines are used to obtain a set of candidates sources.
This approach helps tackle this problem but more work is needed.

Another issue to be considered, is when the collection of possible sources become too large. The size
of the set of possible sources can be thousands of documents. In [22], PAN Competition and Workshop,
the external part of the competition, and now merged with the training corpus, considers a set of sources
of 14,428 documents or possible sources. In this case solutions do exist, as reducing the search space using
different data mining techniques.

In [17], the use of n-grams for plagiarism detection is explored. The use of n-grams gives some flexibility
to the detection, as reworded fragments could still be detected. In particular, in [3] the tri-gram structure is
found to be the most effective in this task. This method is possible because the common n-grams between
two documents are usually a low percentage of the total number of n-grams of both text. Due to this, n-grams
could probe promissory for plagiarism detection techniques. Furthremore, in [16], Lyon et al. extended
their work and the Ferret system was implemented, which uses this approximation to detect plagiarism. A
distance is calculated between the documents, based on the n-grams found in common. The results indicate
that this structure is useful and provides flexibility at detecting plagiarism with modifications of words.

Other approaches focus on solving the plagiarism detection problem as a traditional classification prob-
lem from the machine learning community [1, 9, 13]. Bao et al. in [13] and then in [1], proposed to use
a Semantic Sequence Kernel (SSK), and then using it into a traditional Support Vector Machines (SVMs)
formulation based on the Structural Risk Minimization (SRM) [4, 27] principle from statistical learning
theory, where the general objective is finding out the optimal classification hyperplane for the binary clas-
sification problem (plagiarized, not plagiarized). Likewise, other approaches solves the same classification
problem by using Self Organizing Feature Maps (SOFM) [15], with promising results in the classification
performance.

An interesting issue is the multi-lingual and cross-language detection of plagiarism. This topic is cur-
rently under research [2, 21], where promising results for plagiarism and cross-lingual information retrieval
have been presented.
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2.3 Reducing Search Space

One of the issues to be resolved in external plagiarism analysis and detection is the number of source
document candidates. When the task is to detect plagiarism between a small set of suspicious against a
small set of source documents, it is simple to search for plagiarism in every pair of documents. The problem
is presented when the universe of possible sources is not well defined, or the set of documents is too large.
In this case the approach need to be modified, and those changes usually consists in adding a step in the
process of plagiarism discovery: the search space reduction.

The aim of this step is to effectively and efficiently identify which texts are possible sources of plagia-
rism, if any. Usually multiple statistical tools are used in order to reduce the computational time required
for computing a large corpus of documents while trying to maintain accuracy at determining which sources
need to be discarded.

3 Proposed Method

In this section, the main contribution of our work is described. In the first place, the overall FASTDOCODE
algorithm is presented in terms of previously introduced notation. Then, the two steps that defines FAST-
DOCODE, that is, the approximated segment finding algorithm and the exhaustive offset and length search,
are presented in subsections 3.2 and 3.3 respectively. In this section all algorithms are presented as pseudo-
code, together with a brief description on how different parameters could be used.

Let us introduce some concepts. In the following, let V a vector of words that defines the vocabulary to
be used. We will refer to a word w, as a basic unit of discrete data, indexed by {1, ..., |V|}. A document d
is a sequence of S words (|d| = S) defined by w = (w1, ..., wS), where ws represents the sth word in the
message. Finally, a corpus is defined by a collection of D documents denoted by C = (w1, ...,w|D|).

3.1 FASTDOCODE

Given a wide set of parameters Dsource,Dsuspicious, n, k,m, SORTSTRATEGY, θ1, θ2, τmin, St, Pe, the
algorithm tries to find for a corpus C = {Dsource,Dsuspicious} all plagiarized documents in the suspicious
partition, using as search space the source partition. This algorithm is based on external plagiarism detection,
and does not include intrinsic plagiarism nor multi-lingual evaluation. In general terms, the algorithm first
reduces the search space by using an approximated search of segments of n-grams, and then within selected
pairs of documents, using an exhaustive search algorithm, finds the offset and its length for both exact and
obfuscated copy.

Algorithm 3.1: FAST-DOCODE

Data: Dsource,Dsuspicious, n, k,m, SORTSTRATEGY, θ1, θ2, τmin, St, Pe

Result: Vector OL with all Offsets and their lengths for the complete corpus of documents
Initialize Vector pair ← {} and OffsetLenght← {};1

foreach di ∈ Dsuspicious do2

(κi, ti)← PREPROCESSDOCUMENT(di, n = 3, k,m);3

foreach dj ∈ Dsource do4

(κj , tj)← PREPROCESSDOCUMENT(dj , n = 3, k,m);5

if APPROXIMATECOMPARISON(κi, κj , ti, tj , θ1, θ2) then6

p(i, j)← (di,dj) ;7

pair.add(p);8

foreach p ∈ pair do9

ti ← PREPROCESSDOCUMENT(p.di, n = 2, k,m, SORTSTRATEGY);10

tj ← PREPROCESSDOCUMENT(p.dj , n = 2, k,m, SORTSTRATEGY);11

OL.add(FINDOFFSETLENGHT1(ti, tj , τmin, St, Pe));12

OL.add(FINDOFFSETLENGHT2(ti, tj , τmin, St, Pe));13

return OL ;14
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In algorithm 3.1, the general evaluation of a corpus is presented. In particular, different procedures
are used within the code which helps in the preprocessing of documents. The method PREPROCESSDOCU-
MENT, presented in algorithm 3.2, takes as input a given document, and returns a set of n-grams or segments
of n-grams given the case. If n = 2, only a set of bi-grams will be computed, and if n = 3 a process of
finding segments of n-grams will be performed. Segments of n-grams will be intensively used in the ap-
proximated search for reducing the search space, whether the bi-grams will be used in finding all offsets
and their lengths.

Algorithm 3.2: PREPROCESSDOCUMENT

Data: di, n, k,m
if n = 3 then1

REMOVESTOPWORDS(di);2

ti ← GENERATENGRAMS(di, n) ;3

ki ← GENERATEKNGRAMS(ti, k);4

k∗i ← SORT(ki, SORTSTRATEGY) ;5

κi ← SELECTMLASTNGRAMS(k∗i ,m) ;6

return (κi, ti);7

else8

ti ← GENERATENGRAMS(di, n) ;9

return ti;10

As presented in algorithm 3.2, new methods are introduced for the processing, such as the GENERATEN-
GRAMS function that takes a given document di and returns a set of n-grams with the structure
(wi, wi+1 . . . , wi+n),∀i ≥ 1, n ≤ S. Function GENERATEKNGRAMS, generates groups of length k us-
ing all n-grams. Then, a SORT algorithm is used within segments, with a specific sorting strategy. In this
research, an alphabet sorting strategy and a Term Frequency sorting strategy where used as a variation on
the proposed algorithm. Finally, a SELECTMLASTNGRAMS function, as specified in its name definition,
selects only the lastmn-grams within the segment. This approach can be considered as an analogy to a sam-
pling strategy for each segment, thus contributing to minimize the number of comparisons to be executed
and enhancing the runtime of the algorithm.

3.2 Finding Segments Approximation

Algorithm 3.3: APPROXIMATECOMPARISON

Data: κi, κj , ti, tj , θ1, θ2
if SMATCH(ti, tj , s ≥ 1) then1

if SMATCH(κi, κj , s ≥ θ1) then2

if SMATCH(ti, tj , s ≥ θ2) then3

return true ;4

end5

end6

end7

else8

return false;9

end10

Once documents di and dj are processed in n-grams and segments of n-grams, ti, tj and κi, κj re-
spectively, a set of conditions are evaluated in order to set the relation that document di has with document
dj , that is, if they are somehow related (algorithm 3.3 returns true), or if it is not worthy to keep finding
further relationships (algorithm 3.3 returns false). In this sense, this is an approximated finding procedure
that considers both n-grams and their k segments to decide if there is enough information to classify as
plagiarism or not.

Algorithm 3.3 first evaluates an SMATCH(ti, tj , s ≥ 1) algorithm which returns true whether at least
one n-gram from ti matches one n-gram from tj . Also a variation of previous matching method is used
within the segments of n-grams. Condition SMATCH(κi, κj , s ≥ θ1) states that at least θ1 n-grams must
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match in between segments κi and κj . If this is hold, the next condition SMATCH(ti, tj , s ≥ θ2) is associ-
ated to find whether at least θ2 n-grams matches between ti and tj . In general terms, this procedure helps on
reducing the search space, and improving the algorithm in both execution time and hardware requirements.
By using these constraints, it is possible now to go into a further algorithm for finding the needed offset and
its length.

3.3 Find the Offset and its Length

Algorithm 3.4 describes roughly how to find the offset and its length within two documents.

Algorithm 3.4: FINDOFFSETLENGTH

Data: di,dj , ti, tj , τmin, St, Pe
// Find obfuscated and textual copy within documents di and dj
foreach wi ∈ di do1

foreach wj ∈ dj do2

Initialize Vector bp(i)left ← {}, bp(j)right ← {}, bp(j)left ← {}, bp(i)right ← {};3

// Move the XMATCH in both ← and → sides of the document in
steps St and checking that Pe percentage of similar words
within the step

repeat4

bp(i)right.add(ti) and bp(j)right.add(tj)5

until !XMATCH(ti, tj , s = 1,←, St, Pe) ;6

repeat7

bp(i)left.add(ti) and bp(j)left.add(tj)8

until !XMATCH(ti, tj , s = 1,→, St, Pe) ;9

if max{|bp(i)left − bp(i)right|, |bp(j)left − bp(j)right|} > τmin then10

OffsetLength(i).add(bp(i)left, |bp(i)left − bp(i)right|) ;11

OffsetLength(j).add(bp(j)left, |bp(j)left − bp(j)right|) ;12

end13

// Remove all words inside break points for both di and dj
REMOVEINCLUDEDWORDS(ti, bp(i)

left, bp(i)right) ;14

REMOVEINCLUDEDWORDS(tj , bp(j)
left, bp(j)right) ;15

UPDATE(di);16

UPDATE(dj);17

end18

end19

return Offsetlenght ;20

Previous algorithm 3.4, finds obfuscated and textual copy within documents di and dj , then a match
strategy is moved both left and right side of the document, adding to the offset array the matching segments.
Finally, to avoid the search over detected plagiarism passages, the break points are saved and used to remove
them.

4 Experiments

In this section, the experimental setup and the evaluation criteria is presented. First, the selected partition
of a plagiarism detection corpus from the PAN’09 [22] is discussed together with some of the parameters
selected to evaluate different benchmark plagiarism detection algorithms. Then, the evaluation criteria and
performance measures used for the training step of the algorithm are presented.

4.1 Experimental Setup

The PAN’09 plagiarism detection corpus [22] was used as a seed to train different plagiarism detection
algorithms.
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Suspicious document i Suspicious document i

Number of sources for each suspicious document Number of sources for each suspicious document

Figure 1. Dataset distribution in terms of the construction of the number of source documents that each
suspicious document was originated from.

For the experiment, a small sample of the PAN’09 corpus is chosen. This sample considers only external
English plagiarism cases. It is constructed as Figure 1 suggests: maintaining the number of references per
suspicious document from the original corpus.

Four algorithms are used for experimental and testing purposes. Three of the selected algorithms are
based on the previous approach presented in section 3 and a variation of the unix diff command used
to detect changes between two documents was used as benchmark. Due to the lack of space, only a brief
description of each of the selected algorithms is presented. Further information was intentionally discarded
by authors.

The first, named “SimParalell” is an iteration where the pair of documents is compared exhaustively.
The parameters used are n the parameter of the gram structure, sw is the size of an n-gram sliding window
to be considered. Parameter K represents the minimum number of common n-grams to increase a counter
indicator. Finally, parameterC is the number of cores used in a parallelized implementation of the algorithm.

The second algorithm, “SimTF”, is equivalent to algorithm 3.3, but the sorting strategy is based on term
frequency. In this case it is expected a faster running time than the latter, at a cost of a possibly loss of recall
because of the approximated nature of the approach. Then, “SimVP” is the algorithm 3.3 whose pseudo-
code is presented in section 3. In this case, as well as “SimTF”, it is expected a faster running time than
“SimParalell” at a cost of a possibly loss of recall.

Finally, the “Diff” approach is a basic algorithm based on the unix command diff. This approach
is based on the move, delete and add characteristics presented by the command, where each one of these
outputs is used to determine the scoring function for plagiarism detection.

All of these algorithms outputs are considered as an approximation of the plagiarism detection problem,
for which further analysis needs to be taken into consideration for a given pair of documents. They do
not offer the offset nor the length of the plagiarism passages, however they determine how close a pair of
documents are.

4.2 Evaluation Criteria

The resulting confusion matrix of this binary classification task can be described using four possible out-
comes: Correctly classified plagiarized documents or True Positives (TP), correctly classified non plagia-
rized documents or True Negative (TN), wrong classified non plagiarized documents as plagiarized or False
Positive (FP), and wrong classified plagiarized documents as non-plagiarized or False Negative (FN).

The evaluation criteria considered are common information retrieval measures, which are constructed
using the before mentioned classification outcomes.

– Precision, that states the degree in which a pair of documents identified as a plagiarism case have indeed
copy between them, and Recall, that states the percentage of plagiarized documents that the classifier
manages to classify correctly. Can be interpreted as the classifier’s effectiveness.

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(1)
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Table 1. Algorithms and their parameters used for the conducted experiment.

Name Description Parameters
SimParalell0 CD Sim paralell original (n = 3, sw = 5,K = 3, c = 16)
SimParalell1 CD Sim paralell modified 1 (n = 2, sw = 6,K = 3, c = 16)
SimParalell2 CD Sim paralell modified 2 n = 4, sw = 8,K = 3, c = 16

SimTF0 CD Sim TF original (n = 3, sw = 5, θ1 = 7, θ2 = 2, k = 150)
SimTF1 CD Sim TF modified 1 (n = 2, sw = 6, θ1 = 7, θ2 = 2, k = 50)
SimTF2 CD Sim TF modified 2 (n = 4, sw = 8, θ1 = 7, θ2 = 2, k = 150)
SimVP0 CD Sim AR original (n = 3, sw = 5, θ1 = 18, θ2 = 5, k = 250)
SimVP1 CD Sim AR modified 1 (n = 2, sw = 6, θ1 = 18θ2 = 5, k = 250)
SimVP2 CD Sim AR modified 2 (n = 4, sw = 8, θ1 = 18, θ2 = 5, k = 250)

Diff0 CD Diff original (Add = -1 , Move = 10 , Delete = -1)
Diff1 CD Diff modified 1 (Add = -10 , Move = 0 , Delete = -10)
Diff2 CD Diff modified 2 (Add = -5 , Move = 0 , Delete = -10 )

– F-measure, the harmonic mean between the precision and recall, and Accuracy, the overall percentage
of correct classified documents.

F-measure =
2 ∗ Precision ∗ Recall

Precision + Recall
, Accuracy =

TP + TN

TP + TN + FP + FN
(2)

5 Results and Discussions

Previous algorithms were evaluated using the evaluation criteria on the selected corpus from the PAN’09
dataset. All results are presented in table 2, where the accuracy, precision, recall, F-measure and the evalu-
ation runtime are listed. The overall evaluation was performed for each plagiarized case, where for a given
suspicious document, the confusion matrix was determined and their performance measures were evalu-
ated. Then, after all suspicious documents were evaluated, the mean performance was recorded and listed
in table 2.

Table 2. Results for Accuracy, Precision, Recall, F-measure and runtime for each algorithm presented in
section 4

Copy Detector Accuracy Precision Recall F-measure runtime (s)
SimParalell0 0.999 0.895 0.914 0.904 20,568
SimParalell1 0.990 0.616 0.958 0.750 21103
SimParalell2 0.961 0.882 0.916 0.899 29,655

SimTF0 0.874 0.824 0.821 0.823 6,959
SimTF1 0.923 0.766 0.800 0.783 7,451
SimTF2 0.874 0.836 0.818 0.827 6,615
SimVP0 0.887 0.865 0.857 0.861 5,393
SimVP1 0.899 0.859 0.852 0.855 5,596
SimVP2 0.849 0.828 0.868 0.847 5,231

Diff0 0.584 0.005 0.349 0.010 6,617
Diff1 0.007 0.007 1.000 0.014 6,529
Diff2 0.584 0.005 0.349 0.010 6,179

The results for the experiment are listed in Table 2. As the numbers indicate, the best results in term of
F-measure are obtained with “SimParalell”. This comes to no surprise, as the algorithm exhaustively checks
the documents. The cost of such results, however, is the worst running time of the group. Alternatively, the
“SimTF” and “SimVP” both get acceptable results but much better running times than “SimParalell”. This
factor is important as the number of pair of documents to compare becomes increasingly high. The “Diff”
variant gets an overall worse result; based on the diff unix command entirely this approach does not take
into account different obfuscation levels.
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Suspicious document i

Baseline FastDocode

Number of sources for each suspicious document

Figure 2. Results comparing the baseline sources for suspicious documents (blue line), and those retrieved
by FASTDOCODE (green line).

In Figure 2, results for the SimVP0 algorithm, where the expected curve for source-suspicious rela-
tionship is presented together with the source-suspicious relationship that was retrieved with the proposed
algorithm. These results show that in the overall evaluation of the selected corpus, our proposal was robust
in different number of sources for each suspicious evaluated.

6 Conclusions

In this work we have presented a method for uncovering external plagiarism cases. The strategy proposed
is based on word tri-grams and word bi-grams, and consists basically on two phases. The first is aimed at
reducing the search space for possible sources, and the second is aimed at exhaustively search a pair of
document for plagiarized passages, where the offset and its length are computed.

While reducing the search space, we proposed a method that uses a statistical approach; removing
stopwords and selecting samples based on alphabetic order, which helps to reduce considerably the running
time of the algorithm. This proved to be empirically successful but further analysis must be taken into
consideration.

Second, all algorithms parameters used were not selected using an extensive analysis on the algorithms
performance; due to the size of the corpus it was difficult to run an optimization or grid search strategy over
these parameters. We did, however, approximate them by iterating and trying on our sample, thus obtaining
acceptable results.

As future work, it could be interesting to experiment the proposed approach with char n-grams instead
of word n-grams. This could help FASTDOCODE to include an intrinsic evaluation of a given document,
or help the algorithm to detect plagiarized passages with high obfuscation levels.
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