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ANÁLISIS DE ESTABILIDAD DE LAS CLASIFICACIONES DE RIESGO CREDITICIO 

DE CDOS SINTÉTICOS. 

El objetivo de este trabajo es analizar la estabilidad de las calificaciones de riesgo 
crediticio (ratings) de un tipo de derivados de crédito conocido como synthetic 
Collateralized Debt Obligations (CDO sintéticos).  

Durante la crisis subprime gatillada el 2007, la mayoría de los derivados de crédito tipo 
CDO tuvo un muy mal desempeño. Debido a que cada CDO poseía una calificación de 
riesgo crediticio, este mal desempeño evidenció la falta de precisión de los ratings de 
las agencias calificadoras. En este contexto, este trabajo se enfoca en los CDO 
sintéticos, por dos motivos. Primero, pues ellos tuvieron un rol protagónico en la crisis 
subprime al transformarse en uno de los instrumentos favoritos de los especuladores 
para hacer “apuestas unidireccionales”. Y segundo, dado que los CDO sintéticos se 
transaban en un mercado secundario no regulado, y poco transparente, esto los hace 
más interesantes como objetos de estudio. 

Tradicionalmente, los ratings de las calificadoras de riesgo se han basado en un único 
estimador, sin considerar el error asociado con éste. Por ello, este trabajo analiza la 
estabilidad de las calificaciones de riesgo, mediante la estimación de intervalos de 
confianza y análisis de sensibilidad en función de los distintos parámetros 
considerados. Este trabajo utiliza la metodología de calificación de Moody’s, una de las 
calificadoras de mayor participación de mercado, que emplea el concepto de pérdida 
esperada. En el desarrollo de los análisis, se consideró la información a la cual un 
inversionista habría tenido acceso previo a la crisis subprime. Los casos de estudio 
seleccionados corresponden a CDO sintéticos representativos del mercado global de 
riesgo de crédito.  

Este trabajo concluye que el empleo de un solo valor como medida de riesgo de crédito 
para los CDO sintéticos es inadecuado. Los intervalos de confianza estimados para la 
perdida esperada contienen consistentemente más de un rating, es decir, contienen un 
margen de error significativo. Además, este trabajo revela que la información disponible 
previa a la crisis subprime habría permitido a inversionistas sofisticados haber 
detectado el peligroso margen de error asociado a los ratings. Por último, este trabajo 
pone de manifiesto la importancia de reconsiderar la estructura de los marcos 
regulatorios financieros que en la mayoría de los países se basan en ratings emitidos 
por calificadoras de riesgo, y por lo tanto, son inherentemente inestables.  

Considerando la importancia de las conclusiones de este trabajo, sería interesante 
extender esta investigación a otras metodologías de calificación de riesgo y a otros 
tipos de derivados de crédito.  
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1. INTRODUCTION 

The subprime crisis has been widely regarded as the most important financial 
disruption since the Great Depression. Chiefly, this crisis occurred because the U.S. 
housing prices experienced significant growth, which created a speculative bubble in 
the real estate market. This bubble burst in early 2007 causing a market meltdown 
which lasted until 2008 and beyond. This burst caused huge losses and even 
bankruptcies that affected many investors and financial institutions1. What were the 
factors that triggered this crisis? So far, among all of the possible causes that experts 
have identified, there seems to be consensus that two that played a key role were the 
Credit Rating Agencies (CRAs), and certain class of credit derivatives known as 
synthetic Collateralized Debt Obligations (CDOs). 

1.1 The Subprime Crisis 

The origins of the subprime crisis are to be found in the American residential real 
estate market. The residential real estate prices had a long period of low volatility but 
experienced a steady increasing trend starting in 2000’s (see Figure 1). As Taylor 
(2007) argues, this increase in price was due to the fact that during the early 1980’s 
there was an active monetary policy by the U.S. Federal Reserve (FED), which focused 
on two main goals: achieving inflation targets and stimulating the growth of the 
American economy. Nevertheless, starting around the 2000’s the FED changed the 
policy rule, by lowering the interest rate compared to previous levels. Therefore, 
mortgage financing became cheaper which caused an increase in real estate loans 
demand. 

Figure 1: Case-Shiller Home Price Index and Federal Fund Reserve Rate 

 

 

 

 

 

 

 

 

 

 

 

Source: Standard & Poor’s, Federal Reserve Bank of New York 

                                            
1 See Appendix 1 for further details in bank losses. 
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Cheap funding was extended not only to the prime but also to the subprime 
segment that could now afford a mortgage. This, in turn, attracted numerous mortgage 
lenders, increasing loans demand and resulting in an upward price spiral. Prices grew 
more than 20% per year in certain parts of the country during that period. All this led to 
a house-price boom. 

With housing demand expanding, investors and banks tried to make a profit from 
this boom. On the one hand, mortgage lenders needed to create space in their balance 
sheet to continue lending. To accomplish this goal, mortgage lenders packaged and 
removed all sort of mortgage credits from their balance sheets, and offered them to 
investors through different kinds of credit derivative products. On the other hand, 
institutional investors were attracted to these products, because they offered higher 
returns compared to securities with a “similar” risk profile. This fueled a vicious circle of 
lending and repackaging which resembled a snowball. For instance, the issuance of 
CDOs, one of the most popular credit derivatives, grew tremendously while the house 
financing conditions remained favorable (see Figure 2). 

Figure 2: Global CDO Issuance and Case Shiller Composite 10 Index 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Standard & Poor’s, Federal Reserve Bank of New York 

However, when the FED started increasing interest rates back to its normal levels 
in late 2006, demand for houses fell quickly and so did the house prices. In this new 
scenario, homeowners with variable interest rate mortgages faced increasing monthly 
payments, while the prices of their houses were going down. Therefore, foreclosures 
and delinquency rates rose critically leaving many mortgages unpaid. Consequently, the 
cashflows linked to mortgages were interrupted, leaving many CDO investors exposed 
to losses. Finally, these mortgage-related losses, especially those arising from the 
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subprime market, were spread out among many financial institutions by the CDOs, 
exacerbating a market meltdown2. 

1.2 The Role of the CRAs and the Synthetic CDOs 

Throughout the subprime crisis the CRAs and synthetic CDOs played an important 
role. CRAs participated in most CDO transactions. In order to issue CDOs, mortgage 
lenders needed a rating and therefore the approval of the CRAs. The steady growth of 
the real estate market, in addition to the complexity of this credit derivative made 
investors relied blindly on the CRAs opinions to make investment decisions. However, 
the subprime crisis painfully exposed how unstable these ratings were as the CDO 
experienced substantial losses.  

A synthetic CDO is a particular type of CDO structured with Credit Default Swaps 
(CDSs). CDSs behave essentially as insurance agreements. The difference between a 
CDS and a synthetic CDO is that the CDS references a single asset, whereas a 
synthetic CDO refers to a basket of securities. These instruments will be explained in 
more detail in Chapter 2.  

Two important considerations regarding these credit derivatives are worth 
mentioning. First, CDSs and synthetic CDOs are normally traded over the counter 
(OTC), which means they lack the transparency that is typical of products traded in 
regulated exchanges. And second, since they are not subject to short selling 
restrictions3, they afford an investor the opportunity to take a long or short position 
regarding the market. In summary, these instruments allow speculators to take one-way 
bets regarding the real estate market. 

Figures 3 and 4 show the tremendous growth of both the CDS and the synthetic 
CDO markets. This growth was partly fueled by the need of banks to manage risk and 
partly by the desire of some investors to take speculative positions. 

To sum up, a thorough understanding of the stability of synthetic CDO ratings 
issued by CRAs can shed light on one of the factors that triggered the subprime crisis. 
Moreover, getting a better grasp of the methodology behind these ratings can help to 
identify some critical weaknesses. This could be useful not only for future investors but 
also for financial regulators, central bankers and government agencies. 

 

 

 

 

 

 

 

                                            
2 Regarding to this, Warren Buffet a fairly well known American investor stated: “Derivatives are financial 
weapons of mass destruction”. 
3 Securities Act together with the Exchange Act encompass the definitions of security and short sale. By 
2007, none of these definitions included neither the synthetic CDO nor the CDS. For further explanations, 
see Lufrano and Pekarek (2011) 
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Figure 3: Growth of CDO Issuance by Type 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Bank of International Settlements 

Figure 4: Notional CDS Outstanding 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Bank of International Settlements 
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2. CREDIT DERIVATIVES: BASIC CONCEPTS 

2.1 Credit Risk 

 Credit risk is the likelihood that a borrower will fail to meet on time his debt 
obligations with his counterparty, the lender. At the root of this concept is the ability or 
willingness of the borrower to meet his obligations. The borrower can experience 
financial stress, or deterioration of his solvency or liquidity profile. Alternatively, he can 
start a legal dispute about the contract or simply lack the willingness to pay. All this 
factors are collectively encompassed under the concept of credit risk. 

The case in which the borrower fails to meet his debt obligation is called a default. 
The likelihood that this could happen is known as default probability. Under this 
scenario, the lender will experience a loss whose severity will depend on the 
percentage of debt that is recovered. The percentage of recovered amount is called 
recovery rate.  

In order to better manage their credit risk firms can enter into contracts known as 
credit derivatives. Credit derivatives exchange credit risk between parties with a payoff 
from the seller of protection to the buyer of protection. This payoff depends on the 
creditworthiness of the securities that are referenced by the contract. As a result, 
companies are able to trade credit risk in the same way they trade market risk, but 
generally OTC. The remaining of the chapter describes in more details the most 
important credit derivatives products relevant to this study.  

2.2 Credit Default Swap 

A Credit Default Swap (CDS) is a type of credit derivative in which a protection 
buyer pays a protection fee (premium or spread) to a protection seller during a certain 
period of time. The CDS makes reference to specific security. If during the life of the 
CDS the referenced security defaults, the protection seller compensates the protection 
buyer. This compensation is normally proportional to the loss experienced by the 
reference security.  

Unlike an insurance contract, the protection buyer is not required to own the 
referenced security in the CDS contract. This situation is known as a naked CDS 
position. Normally these contracts are traded OTC. The fee paid by the protection buyer 
is calculated as a number of basis points (bps) per annum times a specified notional 
amount. Figure 5 shows how the CDS works. 

Figure 5: Diagram of the Credit Default Swap Model 

Source: Own Elaboration 
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As an example, consider a CDS contract that references a specific security with a 
notional amount equal to a $100. The premium is 500 bps per annum. Therefore the 
annual protection premium paid by the protection buyer will be $100 x 500bps = $5. In 
case there is a credit event4 (a default of the referenced security) the protection seller 
will compensate the protection buyer. Assume that the defaulted security is traded at 55 
cents on the dollar. Then, the protection buyer will receive a payment equal to $100 x 
(100% - 55%) = $45. 

2.3 Cash CDO 

CDOs, in general, are a type of credit derivatives that link a pool of repackaged 
securities with several investors. Each one of these investors has a different seniority 
(priority) to receive the cashflows from the pool of securities. As the seniority of the 
investor increases, his risk profile becomes more conservative. On the other hand, as 
the seniority decreases, the risk profile of the investor becomes more speculative. 

The mechanics of a basic cash CDO will be explained using Figures 6, 7, 8 and 9. 
First, a diversified pool of assets is placed in a special purpose vehicle (SPV). In 
principle, the assets in the SPV could be any debt securities. High-yield bonds and bank 
loans are the most commonly used securities. In reality, at the start of the transaction 
the SPV purchases the pool with the proceeds from issuing several notes. These notes 
have different seniorities depending on the priority to receive the cashflows from the 
SPV (see Figure 6). 

Figure 6: Securitization Diagram  

Source: Own Elaboration 

Figures 7 and 8 show the distribution of cashflows. Principal and interest 
payments originated from the assets in the pool, go first to pay principal and interest to 
the most senior investors and then sequentially to the subordinated investors. This pay-
down schedule is known as waterfall or priority of payments. 

Different investors are grouped into different tranches, according to their risk 
profile. The safest tranche is normally referred to as the senior tranche. The most risky 
position is referred to as the equity tranche. And the positions in the middle are known 
as mezzanine tranches. 
                                            
4 Appendix 2 explains in more detail the most common credit events used by the standard CDS 
agreements. 
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The risk of different tranches not only depends on the seniority, but also in the size 
of the tranches. As bigger the tranches below a given tranche, the safer it is. However, 
each one of these tranches can have a different size as long as the sum of their sizes is 
backed by the notional value of the underlying pool of securities. 

Figure 7: After Securitization Diagram 

 

 

 

 

 

 

 

 

 

Source: Own Elaboration 

Figure 8: Diagram of Payments in the Cash CDO Model 

 

 

 

 

 

 

 

 

 

Source: Own Elaboration 

In case the pool of assets experience defaults, the pay-down priority schedule 
applies. First, the senior tranche is paid. Then, the mezzanine tranches and finally, the 
equity. In other words, if the cashflows are impaired, the equity tranche will be the first 
to experience a loss. If the impairment of the cashflows is more severe, it could reach 
the mezzanine investors, and so on. In summary, the losses are applied in reverse 
order of priority (see Figure 9). 

Broadly speaking, the process of repackaging securities, placing them in an SPV, 
and then issuing securities supported by the cashflows generated by SPV is known as 
securitization. The rationale for the securitization process is to redistribute the risk of the 
collateral pool according to the risk appetite of the risk investors. The senior investors 
take the least amount of risk, whereas the equity investors take the most risk. However, 
the total amount of risk remains the same. In addition, the securitization permits, in the 
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case of placing illiquid and non-tradable securities into the SPV, the creation of more 
tradable and liquid securities. Finally, the SPV is bankruptcy remote. This means that if 
the originator of the assets were to file for bankruptcy, it cannot reclaim the assets that 
have been sold (true sale) to the SPV. Similarly, if the assets in the SPV default, the 
note holders do not have any claim against the originator. 

From the point of view of the originator of the assets, the motivation for doing the 
securitization is to create space in his balance sheet and presumably, decrease the cost 
of capital or perhaps increase the lending capacity. 

Figure 9: Diagram of Losses in the Cash CDO Model 

 

 

 

 

 

 

 

 

 

Source: Own Elaboration 

2.4 Synthetic CDO 

The synthetic CDO is used to transfer the credit risk in a similar way than a CDS 
contract, but it incorporates a sequential payment mechanism similar to that of a cash 
CDO. However, unlike a cash CDO that securitizes debt instruments by placing them 
into a SPV, the synthetic CDO is structured using an array of many CDS agreements 
without using a SPV. In this case, no notes are issued. Figures 10 and 11 show the 
mechanics of a synthetic CDO.  

In a synthetic CDO, the protection sellers (investors) receive a fee according to 
their seniority. The lowest fee goes to the most senior investor. Besides, instead of 
referencing one security, the synthetic CDO references a diversified pool of securities. 

If a default occurs in the pool, the losses (payment to the protection buyer) are 
assigned in reverse order of priority. In other words, when the first credit event occurs, 
the equity investor will compensate the protection buyer. As the number of defaults 
increases, eventually, the payment capacity of the equity will be exhausted and the 
mezzanine investor will start making payments. Finally, under an extreme scenario, the 
senior investor will have to compensate the protection buyers. 

To sum up, at the root of the mechanics of the synthetic CDO, there are two 
potential sources of losses for the investor. First, he might be forced to compensate the 
protection buyer in the case of an event of default. And secondly, his premium will be 
decreased as a result of a reduction in the notional amount of the reference portfolio. 
This amount will be equal to the severity of the loss. 
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Figure 10: Mechanics of the Synthetic CDO in a No Credit Event Scenario 

 

 

 

 

 

 

 

 

 

 

Source: Own Elaboration 

Figure 11: Mechanics of the Synthetic CDO in a Credit Event Scenario 

 

 

 

 

 

 

 

 

 

 

Source: Own Elaboration 

Finally, there are two types of synthetic CDOs, funded and unfunded. In a funded 
synthetic CDO, initially the investors make a payment equal to the notional amount of 
the notional securities. This payment, in turn, is used to buy a portfolio of risk free 
securities. The returns of these securities together with the premium fee paid by the 
protection seller go to the investor. If there is an event of default, a portion of the risk 
free securities is liquidated and the proceeds are used to compensate the protection 
buyer. On the other hand, in the unfunded case there is no initial payment. Thus, in 
case of a credit event, the protection seller compensates the protection buyer directly. 
Consequently, the protection buyer - at least in principle – is exposed to the credit risk 
of the protection seller. 
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2.5 Synthetic CDO-Squared 

In principle, there are two types of CDO-squared: cash and synthetic. For the 
purpose of this study, we will concentrate on the synthetic CDO-squared.  

A synthetic CDO-Squared works very much like a conventional synthetic CDO 
except for one difference: the reference portfolio consists of a pool of mezzanine 
tranches from previous synthetic (unfunded) CDOs. Figure 12, 13 and 14 show a CDO-
Squared example. Very much, like a regular synthetic CDO, once the referenced 
mezzanine tranches experience credit events, the losses to the investor will be 
assigned in reverse seniority order. In turn, the losses experienced by the mezzanine 
tranches will be dictated by the losses in the underlying reference portfolios of the “first 
order” synthetic CDOs. 

Figure 12: Mechanics of the Synthetic CDO-Squared  in a No Credit Event Scenario 

 

 

 

 

 

 

 

 

 

Source: Own Elaboration 

Figure 13: Mechanics of the Synthetic CDO-Squared in a Credit Event Scenario 

 

Source: Own Elaboration 
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An important feature of this type of CDO is the degree of overlap among the 
underlying pools referenced by the mezzanine tranches. If the degree of overlap is very 
high, the risk will be more concentrated and one default has the potential to affect many 
mezzanine tranches. In other words, the effect of a default in such a security could be 
magnified. This feature is displayed in Figure 14. Alternatively, an asset that is only 
present in one referenced pool will have a more reduced effect on the integrity of the 
CDO-squared. 

In general, the number of mezzanine tranches referred to in a CDO-squared is 
much smaller than in a conventional synthetic CDO. Typically, in a conventional 
synthetic CDO the number of referenced securities will be between fifty and one 
hundred approximately. In a synthetic CDO-squared, the number of referenced 
mezzanine tranches is between five and ten. 

Figure 14: Case of Overlap among the Underlying Pools Referenced by the Mezzanine 
Tranches. 

 
 
 
 

 

 

 

 

 

 

 

 

Source: Own Elaboration 
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3. CREDIT RATING AGENCIES AND THEIR RATINGS 

The CRAs are private firms that publish credit risk assessments of debt 
instruments issued in the fixed income market. The assessments of the CRAs are 
known as credit ratings and are based on the creditworthiness of the debt issuer.  

In order to issue a rating, a CRA performs a qualitative and quantitative analysis. 
The qualitative analysis consists of a due diligence process that focuses on the issuer. 
This involves looking into several factors such as: management structure and 
experience of the issuer, operational risk, position within the market place, legal and 
environmental risk, among others. The outcome of this analysis might influence some of 
the input values to be employed in the quantitative analysis.  

The quantitative analysis involves deciding which model to use along with the 
value of the key parameters and assumptions. Typically, the model is employed to 
analyze several scenarios under a variety of “stressful” conditions (stress tests). Finally, 
the rating is determined by some meaningful metric resulting from running the model. In 
general, the capacity of the debt to withstand stressful scenarios is proportional to the 
quality of the rating. 

For all practical purposes, there are only three rating agencies: Moody’s, Standard 
& Poor’s (S&P) and Fitch. All three rating agencies employ 20 categories designated 
with different alphanumeric symbols (see Appendix 4). The top ten categories are 
referred to as investment grade, whereas the bottoms ten are known as speculative or 
non-investment grade. 

The different CRAs assess the credit risk using a different focus and different 
methodologies. While Moody’s credit ratings measure the expected loss of a debt 
obligation, both S&P and Fitch assess the probability of default. Regardless of the 
different approach, investors and financial institutions usually consider the ratings by the 
different CRAs somewhat equivalent. However, in the context of synthetic CDOs, some 
authors argue that the rating of synthetic CDOs cannot be mapped onto another rating 
done by a different CRA. This is mostly due to the different rating methodologies. See 
Tavakoli (2008) and Lucas, Goodman, Fabozzi & Manning (2007). Figure 15 shows the 
different expected loss target that Moody’s uses for different ratings. 

In the case of a CDO, the credit risk is different for different tranches. The senior 
tranche being the safest tranche offers the lowest yield and receives the highest rating 
among the CDO tranches. The equity tranche, in turn, being the riskiest tranche offers 
the highest yield and receives the lowest rating. In general, tranches at the top of the 
waterfall usually receive an investment grade rating, whereas those tranches at the 
bottom usually receive non-investment grade rating. During the life of the transaction, 
the CRAs normally upgrade or downgrade the rating of a given tranche depending on 
the evolution of the credit characteristics of the underlying pool. 
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Figure 15: Expected Loss Targets for Moody’s Credit Ratings 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Moody’s 

 

3.1 A Brief History of the CRAs and the Ratings Market 

The first CRAs were created in 1850s to provide investors with information on the 
financial status of the railroad industry. In early 1900’s, they rated a bond for the first 
time. And since then, CRAs have rated a wide variety of debt instruments.  

In 1975, the SEC created the designation of Nationally Recognized Statistical 
Rating Organization (NRSRO). The rationale for this was to afford more credibility to the 
CRAs. In addition, rating started being used for regulatory purposes. However, no 
specific standards were specified. That came later in 2006, when the U.S. Congress 
passed the Rating Agency Act, that specifically spell out the requirements to become an 
NRSRO. Unfortunately, this piece of legislation established very high barriers to entry 
which has resulted in very few players in the credit rating market. At the time of the 
crisis, the ratings market was dominated by Moody’s, S&P and Fitch5 (see Figure 16 
and 17). 

As the Figure 17 shows, not only Moody’s but also S&P has a significant 
participation in the rating market. Indeed, these two CRAs have almost the same 
participation in the CDO market. This is because issuers usually required two 
independent rating for regulatory purposes. 

 

 

                                            
5By 2007, the others CRAs designated as NRSRO were: A.M. Best Company, Japan Credit Rating 
Agency, and Rating and Investment Information. 
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Figure 16: Global Market Ratings Participation 2007 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: M.C. Rom, 2009 

Figure 17: Market Share in CDO Ratings 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: A.K. Barnett, 2009 

3.2 The Stability of CDO Ratings 

CDO ratings proved to be extremely unstable during the financial crisis. For 
example, see Figure 18.This figure shows that the number of upgrades/downgrades 
was reasonable stable between late 1999 and early 2007. However, at the beginning of 
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2007, the average number of downgrade notches increased dramatically. By 2008, this 
number has reached the value of twelve. Figure 19 shows, that roughly speaking, half of 
the ratings were changed. And the changes were overwhelmingly downgrades. 

Figure 18: Average Number of Notches Upgraded and Downgraded 

 
Source: Moody’s Structured Finance Rating Transitions: 1983-2008. 

Figure 19: Cumulative Upgraded and Downgraded Rates by Rating 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Moody’s Structured Finance Rating Transitions: 1983-2008. 

The lack of stability of the CDO ratings amounts essentially to a failure of 
accuracy. According to Rom (2009), this failure, from a qualitative point of view, could 
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be explained by several factors: misalignment of interest between CRAs and investors, 
lack of historic data and overworked rating analysts. 

First of all, the business model of the rating agencies has incentives problems. 
The firms who are looking to have their debt rated, they themselves pay the CRAs. In 
short, it is an “issuer pays” compensation model where conflicts of interest arise. In the 
case of CDOs, these deals were highly profitable for CRAs. For this reason, the CRAs 
were encouraged to give the issuer the rating he was looking for. In case the CRAs 
made the deal harder to rate, they risked losing a lucrative client: twelve underwriters 
accounted for eighty percent of the transactions in the CDO market (according to the 
SEC). In essence, upsetting anyone of these twelve underwriters would translate into a 
significant market share loss. Figure 20 shows Moody’s rating revenues composition 
and share price of the firm. 

Figure 20: Moody’s Rating Revenues & Share Price 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Moody’s Corporation Annual Reports: 2000-2009. 

The second problem was the ignorance of the raters regarding the subprime 
market. Specifically, the CRAs did not have historical data regarding the performance of 
this segment. Furthermore, since the CDO market was growing very fast the CRAs did 
not have the time to perform a careful due diligence to verify the information provided by 
the issuers. 

Finally, the CRAs were overwhelmed by the rapid growing of the CDO market. The 
agencies were understaffed and their employees overworked. The SEC issued a detail 
report recognizing this staffing problem. The revenue grew faster than the number of 
issues rated, but rating staff did not. Figure 21 shows that while the number of deals 
and revenues grew substantially, the number of analyst did not exhibit the same pattern. 
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Figure 21: Comparison of Growth Among CDO Revenues, CDO Rated Deals and 
CDO Staff 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: M.C. Rom, 2009. 
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4. RELATED LITERATURE 

Since 2007, many studies have tried to explain the subprime crisis. Some of 
these studies have focused in the role of the credit ratings applied in the context of 
synthetic CDOs and the validity of the models used by the CRAs. Within the framework 
of this study, the following papers offer some interesting considerations. 

  Cifuentes & Katsaros (2007) criticize the one-factor Gaussian copula method. 
Their study shows a conceptual flaw in the model which is manifested as a correlation 
smile. In principle, if one starts with the rating of a CDO tranche as an input variable, 
one can, through the application of the Gaussian copula model, estimate the correlation 
of the underlying pool of assets. The problem arises because when starting with 
different tranches, one obtains different estimates of the correlation of the underlying 
pool. On the other hand, the authors recognize another difficulty with the Gaussian 
copula: the implied default correlation of the assets depends on the default probability. 
In theory, this should not be the case.  

Coval, Jurek & Strafford (2007) study the sensitivity of the expected loss of a 
CDO tranche and a CDO-Squared tranche as a function of the parameters of the 
underlying portfolio. The study concludes that among the CDO structures analyzed by 
them, the CDO-Squared tranches were more sensitive than the CDO tranches to both 
the correlation and the default probability. In addition, the study shows that tranches 
with lower seniority were more sensitive than more senior tranches. However, their 
study did not address the influence of the recovery rate in the results. 

Lucas, Fabozzi, Goodman & Manning (2008), compared S&P’s and Moody’s 
synthetic CDO ratings on portfolios comprised of credits in the major CDS indices. The 
authors found that on portfolios equally rated by both CRAs, Moody’s ratings tend to be 
higher. However, since Moody’s usually rates underlying assets lower than S&P, 
Moody’s ratings tend to be lower. 

Meng & Sengupta (2010) perform an analytical study of the one factor Gaussian 
copula, considering the sensitivities of CDO tranches supported by an homogeneous 
portfolio. The authors derive an explicit formula for the tranche sensitivities to some 
parameters under certain simplifying assumptions. By considering the losses of the 
tranches, the resulting formula demonstrates how the losses of the equity tranches 
decrease as the correlation increases. Conversely, the model shows that the losses of 
the tranches above the equity, taken as a whole, behave in the opposite fashion. 

 Hull & White (2010) study the risk profile of tranches created from mortgages. 
Using several variations of the Gaussian copula model, they concluded that the ratings 
were estimated more accurately for senior tranches. However, the accuracy 
deteriorated significantly for the mezzanine tranches. Moreover, this conclusion was 
also valid for different subordination levels. In addition, the authors compare the 
expected loss criteria and the probability of loss criteria when specifying a credit rating. 
The expected loss criteria resulted in more conservative rating in the case of tranches 
with less seniority, but it was more results in more to be more conservative with 
tranches with less seniority, but more forgiving in the case of the most senior tranches. 
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5. METHODOLOGY 

5.1 Introduction 

The main purpose of this study is to analyze the stability of synthetic CDO ratings 
using the Moody’s methodology as the framework of reference. The main reason for this 
choice is that Moody’s is a very important CRA and its CDO rating methodology is the 
most well-known6. Indeed, considering Moody’s market share of the CDO rating market 
- about 90% - this choice makes sense. In addition, the Moody’s methodology, whatever 
its shortcoming, is very transparent and easy to replicate. 

The methodology employed to analyze the stability of Moody’s credit ratings for a 
synthetic CDO is divided in two parts. First, the effect of errors in the parameters that 
describe the assets is studied in a deterministic fashion. The purpose of this approach is 
to understand how errors in the assets parameters could result in a poor estimate of the 
synthetic CDOs ratings. The more sensitive the model to errors in the input parameters, 
the more accuracy is required to describe the underlying reference portfolio the 
synthetic CDO. 

Secondly, the effect on the ratings of the uncertainty in the model parameters is 
studied with a stochastic approach. For a better understanding of this, the confidence 
interval of the output quantity that defines the ratings is estimated. Thus, a range of 
more likely scenarios for synthetic CDO ratings is obtained. Using this approach, it is 
possible to get a sense for the magnitude of the variation of the expected loss (in short, 
a range of the variability of possible upgrades and downgrades until the maturity of the 
CDO). 

To sum up, both analysis shed light on Moody’s synthetic CDO rating 
methodology. The approach followed in this study will help investors and financial 
institutions to get a better understanding of Moody’s rating methodology. Furthermore, it 
will highlight what a skeptical investor could have done in order to check the robustness 
of Moody’s ratings.  

This chapter is organized as follows. The next section explains Moody’s rating 
approach. The following section explains the approach taken to analyze the stability of 
synthetic CDO ratings. The final section, provide a detail explanation of the Moody’s 
credit rating model. It also discusses the deterministic and stochastic approach 
undertaken to investigate the stability of the ratings.  

5.2 Moody’s Credit Rating Model 

The Moody’s credit rating model applied to synthetic CDOs is based on the 
expected loss concept. The expected loss is expressed as a percentage in reference to 
the notional amount of the tranche under study. Once the expected loss is estimated, a 
credit rating can be assigned to the tranche under consideration, using as a reference a 
benchmark table of expected losses for different time horizons7.  

                                            
6 Fender & Kiff (2004) 
7 The complete table of idealized expected loss for each rating and each time horizon is in the Appendix F 
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In the case of synthetic CDOs tranches, as well a synthetic CDO-Squared 
tranches, the determination of the expected loss requires the determination of all the 
potential losses under all possible default scenarios of the underlying assets of the 
reference portfolio. In addition, this requires estimating the likelihood that each default 
scenario could occur.  

In order to do this, the model takes into account both the characteristics of the 
underlying pool and the structure of the synthetic CDO. The pool characteristics are 
defined by the following parameters:  

i. Average default probability of the assets 
ii. Average recovery rate of the assets 
iii. Average default correlation of the assets 

The synthetic CDO structure is defined by the following parameters: 

i. Number of assets in the portfolio 
ii. Number of tranches 
iii. Size of the tranches 
iv. Maturity of the CDO. 

The default probability, obviously, refers to the likelihood that an asset will default. 
The recovery rate, express as percentage, reflects the value of an assets once it has 
defaulted. Finally, the default correlation captures the tendency of the assets to default 
together. A more detailed description of these parameters is found later in this chapter. 

In what follows, the default probability, the recovery rate, the correlation, and the 
number of assets in the reference portfolio will be denoted as	,ࡼ	ࢻ ,࣋ and ࡺ 
respectively. As can be seen, even though the assets pool in general could be 
heterogeneous in nature, for the purpose of Moody’s analysis, is treated as an 
homogeneous pool represented by its average characteristics. 

The following sections explain the procedure used to estimate the probability of 
each default scenario as well as the loss for the tranche under consideration for each 
default scenario. 

5.3 Synthetic CDO 

5.3.1 Determination of the Probability of Each Default Scenario 

Given ࡺ securities in the portfolio, let ࢐ be the number of securities that default 
࢐ ൌ ૙, ૚, ૛, …  ሻ (. The probability of occurrence of each default scenario, is denoted asࡺ,
࢐ where ,࢐࢖ ൌ ૙, ૚, ૛, …   .ࡺ,

In order to estimate ࢐࢖, Moody’s relies on the one-factor Gaussian copula 
approach. The one-factor Gaussian copula approach is a numerical algorithm to 
generate samples of normally distributed random variables that have a given pair-wise 
correlation. According to Mackenzie (2008), the approach is known as ‘one-factor’ due 
to the fact that there is only one common factor that attempts to capture the common 
element to all the securities in the pool. This factor could be interpreted as the health of 
the economy and its breadth, in some sense, captures the way these assets could 
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“default together”. ‘Gaussian’ refers to the use of a multi-dimensional normal standard 
distribution, and ‘copula’ means the model of how default risks occur together. 

The one-factor Gaussian copula algorithm consists of the following steps: 

a) Let ࢿ૚, ,૛ࢿ … ,  independent and identically distributed (i.i.d.) standard normal ࡺ be	ࡺࢿ
random variables. Therefore, ࢏ࢿ represents the independent factor corresponding to 
asset ࢏, that is: 

,ሺ૙ࡺ~࢏ࢿ ૚ሻ 

with ࢏ ൌ ૚, ૛, . . . ,  .ࡺ

b) Define ࢏ࢄ as	
(Equation 1)   	࢏ࢄ ൌ ඥ࣋ࢆ ൅ ඥ૚࢏ࢿ െ ࣋ 

where ࢆ follows a ࡺሺ૙, ૚ሻ but it is independent of all ࢏ࢿ, with ࢏ ൌ ૚, ૛, . . . ,  In .ࡺ
Equation 1, ࢆ represents the common factor of the portfolio. The default correlation 
࣋ intents to capture the average pair-wise default correlation which is defined as: 

(Equation 2)   	࣋࢐࢏ ൌ ,࢏ࢄ൫࢘࢘࢕࡯ ࢐൯ࢄ ൌ ,࢏∀			࢐൯ࢄ࢏ࢄ൫ࡱ ࢐ ൌ ૚, ૛,…  ࡺ,

In the case of an homogeneous portfolio (all assets have the same notional amount), 
࣋ is defined as: 

(Equation 3)    ࣋ ൌ
૚

ࡺሺࡺ െ ૚ሻ
෍ ෍ ࢐࢏࣋

ࡺ

࢐ୀ૚,࢐ஷ࢏

ࡺ

ୀ૚࢏

 

c) Define the index variable ࢏ࡵ as	

(Equation 4)     ࢏ࡵ ൌ ൜
૚, ሻ࢏ࢄሺࢶ ൑ 		ࡼ
૙, ሻ࢏ࢄሺࢶ ൐ 		ࡼ

 

where ࢶሺ࢏ࢄሻ is the standard normal cumulative distribution function8 with zero mean 

and variance equals to one, with ࢏ ൌ ૚, ૛, . . . ,  Equation 4 denotes a default with .ࡺ

the value of 1 and a no default with a value of 0. In essence, we have	ࡺ Bernoulli 
trials linked with a common correlation equals to ࣋. In summary, the number of 
defaults in the portfolio follows a correlated Binomial distribution. 

d) Performing a Monte Carlo simulation by repeating steps a), b) and c) many times, 
we can estimate the probability ࢐࢖ of each one of the default scenarios. More 

                                            

8 The normal cumulative function is defined as: ࡲሺ࢞ ൑ ሻࢄ ൌ ׬	
૚

ඥ૛࣊࣌૛
ࢋ
షሺࢠషࣆሻ૛

૛࣌૛	 ,ࢠࢊࢠ ∀࢞ ∈ ሺെ∞,൅∞ሿ
࢞
ିஶ  
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precisely, defining ࡿ as the number of simulations and ࢙࢐ the number of scenarios 

where ࢐ securities default, ࢐࢖ can be estimated as follows:	

(Equation 5)   	࢐࢖ ൌ ࢏ࡵ൭෍࢈࢕࢘ࡼ ൌ ࢐

ࡺ

ୀ૙࢏

൱ ൎ
࢙࢐
ࡿ

 

with ࢐ ൌ ૙, ૚, ૛, …  :and where ,ࡺ,

(Equation 6)   	෍࢙࢐

ࡺ

࢐ୀ૙

ൌ  ࡿ

5.3.2 Computational Issues Regarding Moody’s Approach 

The estimation of the values of ࢐࢖ requires Monte Carlo simulations. The difficulty 
of this approach relies in the necessity to generate a big number of values for the 
different random variables involved in the one-factor Gaussian copula approach.  

The following example clarifies this issue. Considering ࡺ securities in the reference 
portfolio, this means that there are ࡺ൅ ૚ values of random variables to be generated in 
each trial: ࡺ values for ࢏ࢿ	࢏∀ ൌ ૚, ૛, . . . ,  A synthetic CDO usually .ࢆ and one value for ࡺ
has one hundred assets approximately. The typical number of simulations needed for a 
good estimate of the expected loss of a synthetic CDO tranche, is of the order of 105. 
Thus, 105 trials of one hundred and one assets simulated equals one hundred million 
one hundred thousand (~107) values of random numbers to be generated.  

In order to do this, it is important to use an adequate random number generator. 
This random number generator needs to satisfy not only the i.i.d. condition of the 
random variables but also the tests of randomness. Considering these criteria, Ranq1 is 
an appropriate choice. The implementation of the Ranq1 in C++9 is obtained from 
Press, Teukolsky, Vetterling & Flannery (2007). According to the authors, Ranq1 is one 
of the fastest random generators satisfying the tests of randomness.  

4.3.3 Determination of the Expected Loss 

Let ࢜ the notional amount of each security in the pool and recall that ࢻ represents 
the recovery rate of those securities. The following expressions will be used to 
determine the expected loss of the different tranches under consideration. 

 
Let ࢋ denote the equity tranche, let ࢋࡹ be the size of the equity tranche and let 

 ࢐ be the loss (expressed as a percentage) experienced by the equity tranche when	ሺ࢐ሻࢋ࢒
assets default. Then, ࢋ࢒ሺ࢐ሻ is defined as: 

(Equation 7)   	ࢋ࢒ሺ࢐ሻ ൌ ቆ࢔࢏ࡹ	
ሺ૚ െ ሻࢻ ൈ ࢜ ൈ 	࢐

ࢋࡹ
, ૚૙૙%ቇ 

with ࢐ ൌ ૙, ૚, ૛, …  .ࡺ,

                                            
9 C++ is an object oriented programming language, flexible and practical enough to implement 
computation routines for finance 
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Let ࢓ and ࢙ denote the mezzanine and senior tranches. Let ࢓ࡹ and ࢙ࡹ be the 
size of the tranches. Let ࡹ෩࢓ and ࡹ෩ ࢙ be sum of the notional amount of the tranches 
below ࢓ and ࢙ respectively. This sum is known as the subordination level of the 
tranche. Let ࢀ࢒ሺ࢐ሻ	be the loss (expressed as a percentage) experienced by the tranche ࢀ 
ࢀ) ൌ  :is defined as	ሺ࢐ሻࢀ࢒ ,assets default. Thus ࢐ or ࢙) when ࢓

 

(Equation 8)    ࢀ࢒ሺ࢐ሻ ൌ ,ቆ૙࢞ࢇࡹቆ࢔࢏ࡹ
ሺ૚ െ ሻࢻ ൈ ࢜ ൈ ࢐ െࡹ෩ 	ࢀ

ࢀࡹ
ቇ , ૚૙૙%ቇ	 

with ࢐ ൌ ૙, ૚, ૛, … ,  and ࢙, are ࢓ denoted as ࢀ with , ࢀ෩ࡹ and where the values of ,ࡺ
defined as: 

(Equation 9)    ࡹ෩࢓ ൌ  ࢋࡹ

(Equation 10)    ࡹ෩ ࢙ ൌ ࢓ࡹ ൅ࢋࡹ 

As an example, Figure 22 compares the values of ࢋ࢒ሺ࢐ሻ, ࢓࢒ሺ࢐ሻ and ࢙࢒ሺ࢐ሻ under 
different number of defaults in the reference portfolio. For the purpose of this example 
was considered a synthetic CDO of three tranches: Equity, Mezzanine and Senior. The 
values of the parameters in this example are: 25=࢓ࡹ ,10=ࢋࡹ ,1=࢜ ,%40=ࢻ and 60=࢙ࡹ. 

 

Figure 22: Example of Losses for Different Tranches 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: Own Elaboration 
 
Finally, the expected loss for any given tranche of the synthetic CDO is estimated 

as: 
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(Equation 11)    ࡱሺࢀ࢒ሻ ൌ 		෍࢐࢖ ൈ ሺ࢐ሻࢀ࢒
	ࡺ

࢐ୀ૙

 

Notice that in Equation 9, ࢀ could denote ࢓ ,ࢋ or ࢙. Now that the value of the 
expected loss has been estimated, the rating is obtained using the benchmark table 
provided by Moody’s10. 

5.3.3 The Gauss-Hermite Quadrature Alternative 

The Gauss-Hermite quadrature is an alternative to improve the time performance 
of the Monte Carlo simulation when using the one-factor Gaussian copula. This is a 
numerical integration formula, useful to approximate integrals of the form: 

න ࢞ିࢋ
૛
࢞ࢊሺ࢞ሻࢌ

ାஶ

ିஶ

ൎ෍ࢌ࢏࡭ሺ࢞࢏ሻ

࢔

ୀ૚࢏

 

where ࢌሺ࢞ሻ	is a smooth function, and both ࢞࢏ and ࢏࡭ are the set of ࢔ abcissas and 
coefficients and determined by the quadrature11. Thus, the Gauss-Hermite quadrature 
can approximate the value of ࢐࢖ as follows:  

a) The asset ࢏ in the portfolio will default when: 
 

ሻ࢏ࢄሺࢶ ൑ ࢏∀	ࡼ ൌ ૚, ૛,…  ࡺ,

thus: 

࢏ࢄ ൑  	ሻࡼ૚ሺିࢶ

⇒ ඥ࣋ࢆ			 ൅ ඥ૚࢏ࢿ െ ࣋ ൑  ሻࡼ૚ሺିࢶ	

⇒			 ࢏ࢿ ൑ 	
ሻࡼ૚ሺିࢶ െ ඥ࣋ࢆ

ඥ૚ െ ࣋
 

b) For a given value of ࢆ, the likelihood of default for the asset ࢏ is ࢗሺࢠሻ, which is 
defined as: 

ሻࢠሺࢗ ≡ ࢏ࢄሺ࢈࢕࢘ࡼ ൑ ࢆ	/	ࢉ ൌ ሻࢠ ൌ ඥ࣋ࢆ൫࢈࢕࢘ࡼ ൅ ඥ૚࢏ࢿ െ ࣋ ൑ ࢆ	/ሻࡼ૚ሺିࢶ	 ൌ  ൯ࢠ

⇒ ሻࢠሺࢗ	 ൌ ࢏ࢿ	ቆ࢈࢕࢘ࡼ ൑
ሻࡼ૚ሺିࢶ െ ඥ࣋ࢆ

ඥ૚ െ ࣋
ࢆ ൌ ൗࢠ ቇ 

                                            
10 See Appendix 5. 
11 For a more detailed explanation of the Gauss-Hermite Quadrature, see Appendix 6. 
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(Equation 12)   ࢗሺࢠሻ ൌ 	ࢶ ቆ
ሻࡼ૚ሺିࢶ െ ඥ࣋ࢆ

ඥ૚ െ ࣋
ࢆ ൌ ൗࢠ ቇ 

With this definition, the variable ࢏ࡵnow can be expressed as a function of ࢆ as: 

(Equation 13)   ࢏ࡵሺࢠሻ ൌ ൜
૚, 		ሻࢠሺࢗ		ܡܜܑܔܑ܊܉܊ܗܚܘ	ܐܜܑܟ
૙, ૚		ܡܜܑܔܑ܊܉܊ܗܚܘ	ܐܜܑܟ െ 		ሻࢠሺࢗ ࢏∀ ൌ ૚, ૛,…  ࡺ,

c) Then, the value of ࢐࢖ with ࢐ ൌ ૙, ૚, ૛, . . . ,  :becomes ,ࡺ

࢐࢖ ൌ ࢏ࡵ൭෍࢈࢕࢘ࡼ	 ൌ ࢐

ࡺ

ୀ૙࢏

൱ ൌ න ሻࢆሺ࢏ࡵ෍			൭࢈࢕࢘ࡼ ൌ ࢐

ࡺ

ୀ૙࢏

ࢆ ൌ ൘ࢠ ൱

ାஶ

ିஶ

ࣘሺࢠሻࢠࢊ		 

 
with ࣘሺࢠሻ being the probability density function of the standard normal 
distribution. Thus, considering that the sum of ࢏ࡵ is the sum of Bernoulli trials, this 
summation is distributed as a Binomial of ࡺ trials and probability ࢗሺࢠሻ, hence: 

 

ሻࢆሺ࢏ࡵ෍			൭࢈࢕࢘ࡼ ൌ ࢐

ࡺ

ୀ૙࢏

ࢆ ൌ ൘ࢠ ൱ ൌ ൬
ࡺ
࢐
൰ࢗሺࢠሻ࢐൫૚ െ ሻ൯ࢠሺࢗ

࢐ିࡺ
 

 
which leads to: 

࢐࢖ ൌ න ൬
ࡺ
࢐
൰

ାஶ

ିஶ

ሻ࢐൫૚ࢠሺࢗ െ ሻ൯ࢠሺࢗ
࢐ିࡺ

ࣘሺࢠሻࢠࢊ 

ൌ න ൬
ࡺ
࢐
൰

ାஶ

ିஶ

ሻ࢐൫૚ࢠሺࢗ െ ሻ൯ࢠሺࢗ
࢐ିࡺ ૚

√૛࣊
ࢋ
૛ࢠି
૛	  ࢠࢊ

d) Changing the variable ࢠ૛ for ૛࢟૛, ࢐࢖ can be rewritten as:  

࢐࢖ ൌ න ൬
ࡺ
࢐
൰

ାஶ

ିஶ

ሺ૛࢟ሻ࢐൫૚ࢗ െ ሺ૛࢟ሻ൯ࢗ
࢐ିࡺ ૚

√࣊
࢟ିࢋ

૛
 ࢟ࢊ

Define ࢌሺ࢟ሻ as: 
 

ሺ࢟ሻࢌ ൌ 	 ൬
ࡺ
࢐
൰ ሺ૛࢟ሻ࢐൫૚ࢗ െ ሺ૛࢟ሻ൯ࢗ

࢐ିࡺ ૚

√࣊
࢟ିࢋ

૛
 

the expression for ࢐࢖ can be finally rewritten as: 
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(Equation 14)   ࢐࢖ ൌ න ࢟ିࢋሺ࢟ሻࢌ
૛
࢟ࢊ

ାஶ

ିஶ

 

Therefore, the Gauss-Hermite quadrature can be used directly to obtain an 
estimate of the value of ࢐࢖. 

 
The advantage of this method compared to the Monte Carlo simulation approach 

utilized by Moody’s is that it requires less computation time. This becomes especially 
important when trying to estimate the values for the expected loss for the most senior 
tranches. The senior tranches, since they are exposed to much lower credit risk, require 
a much bigger number of Monte Carlo simulations to generate enough loss scenarios 
for the senior tranches. This topic is treated in detailed in Appendix 7. 

5.4 Synthetic CDO-Squared 

In the case of a synthetic CDO-Squared the value of the expected loss is 
obtained in a different way in comparison with the synthetic CDO. As explained in 
Chapter 2, the synthetic CDO-Squared references a portfolio of mezzanine tranches 
from different synthetic CDOs. Therefore, the procedure to estimate the expected loss 
should consider the possible overlap among the underlying securities referenced by the 
mezzanine tranches.  

In contrast with the case of the synthetic CDO, the estimation procedure to obtain 
the probabilities for each default scenario in the synthetic CDO-Squared will use Monte 
Carlo simulations. The reason for this choice is that the Gauss-Hermite quadrature 
implementation for the synthetic CDO-Squared is computationally very intensive. 

The following sections explain the procedure used to estimate the probability of 
each default scenario for a synthetic CDO-Squared, as well as the loss for the tranche 
under consideration for each default scenario.  

5.4.1 Overlap Characterization 

The overlap characterization will be explained in reference to the synthetic CDO-
Squared example shown in Figure 23. 

Consider a set of ࡷ mezzanine tranches in the reference portfolio of a synthetic 
CDO-Squared. This means that there are ࡷ synthetic CDOs referencing ࡷ different 
portfolios. Let ࡺ be the total number of different securities contained in the ࡷ aggregate 
reference portfolios. Let ࢑ࡺ be the number of securities referenced by the synthetic 
CDO ࢑, with ࢑ ൌ ૚, ૛,…  In the case of the synthetic CDO-Squared shown in Figure .ࡷ,
ࡷ ,23 ൌ ૜, ࡺ ൌ ૚૛ and ࢑ࡺ ൌ ૡ, with ࢑ ൌ ૚, ૛, ૜. 

Because these ۹ portfolios can exhibit some degree of overlapping, a default of 
an underlying security can manifest itself in several of the ࡷ reference portfolios. For 
instance, consider the case of securities 1, 4 and 10 in Figure 23. Security 1 belongs 
only to the first underlying portfolio. Both, securities 4 and 10, belong to several 
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portfolios. For instance, security 4 belongs to the underlying portfolio supporting 
synthetic CDO 1 and 2; whereas security 10 belongs to all three portfolios. 

Figure 23: Diagram of Overlapping for a Synthetic CDO-Squared 

Source: Own Elaboration 

In order to take into account the overlap, define the index matrix ࢅ ൌ  to ࡷൈࡺ࢑൧,࢔࢟ൣ

indicate into which reference portfolio(s) each security belongs. Then, ࢅ and ࢟࢑,࢔ are 
defined as: 

(Equation 15)   ࢅ ൌ ൥
࢟૚,૚ ⋯ ࢟૚,ࡷ
⋮ ⋱ ⋮

	૚,ࡺ࢟ ⋯ ࡷ,ࡺ࢟
൩ 

(Equation 16)   ࢟࢑,࢔ ൌ ൜
૚, ࢑	ܗܑܔܗ܎ܜܚܗܘ	ܗܜ	ܛ܏ܖܗܔ܍܊	࢔	ܜ܍ܛܛ܉	܎ܑ

૙, ܍ܛܑܟܚ܍ܐܜܗ
 

with ࢔ ൌ ૚, ૛, . . , ࢑ and	ࡺ ൌ ૚, ૛, . . . ,  assets in ࢑ࡺ Due to the fact that there are .ࡷ
the reference portfolio of the synthetic CDO ࢑, it follows that: 

(Equation 17)   ࢑ࡺ ൌ ෍࢟࢑,࢔

ࡺ

ୀ૚࢔

 

with ࢑ ൌ ૚, ૛, . . . ,  .ࡷ

In the case shown in Figure 23, ࢅ will be a matrix of twelve rows and three 
columns with the following values: 
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ࢅ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
૚ ૙ ૙
૙ ૚ ૙
૙ ૙ ૚
૚ ૚ ૙
૚ ૚ ૙
૚ ૙ ૚
૚ ૙ ૚
૙ ૚ ૚
૙ ૚ ૚
૚ ૚ ૚
૚ ૚ ૚
૚ ૚ ૚ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Consider the case of securities 1, 4 and 10 in Figure 23: 

 For security 1, ࢟૚,૚ ൌ ૚ and ࢟૚,૛ ൌ ࢟૚,૜ ൌ ૙ since security 1 belongs only to 
the first reference portfolio.  

 For security 4, ࢟૝,૚ ൌ ࢟૝,૛ ൌ ૚ and࢟૝,૜ ൌ ૙ since security 4 belongs to both 
the first and second reference portfolios.  

 For security 10, ࢟૚૙,૚ ൌ ࢟૚૙,૛ ൌ ࢟૚૙,૜ ൌ ૚ since security 10 belongs to all 
three reference portfolios.  

Define ࡯ as the power set of the	ࡷ portfolios. This means that ۱ is the collection 
of all the possible subsets of different portfolios from the set of ࡷ portfolios. The number 
of possible subsets in ࡯ is equal to ૛ࡷ െ ૚. Let ࢈,ࢇࢉ denote a subset of ۱. The subindex 
,ࢇ  With .܊,܉܋ are the only portfolios included in subset ࢈ and ࢇ means that portfolios ࢈
reference to Figure 23, the seven following subsets are in ࡯: 

࡯ ൌ ൛ࢉ૚, ,૛ࢉ ,૜ࢉ ,૚,૛ࢉ ,૚,૜ࢉ ,૛,૜ࢉ  ૚,૛,૜ൟࢉ

 Define the index matrix ࢄ ൌ  ࢈,ࢇࢉ ૚ሻ to indicate into which subsetିࡷൈሺ૛ࡺ൧࢈,ࢇࢉ,࢔࢞ൣ

each security ࢔ belongs. Thus, ࢄ and ࢞࢈,ࢇࢉ,࢔ are defined as: 

(Equation 18)  ࢄ ൌ ቎

࢞૚,ࢉ૚ ⋯ ࢞૚,ࢉ૚,૛,..,ࡷ
⋮ ⋱ ⋮

	૚ࢉ,ࡺ࢞ ⋯ ࡷ,..,૚,૛ࢉ,ࡺ࢞
቏ 

(Equation 19)  ࢞࢈,ࢇࢉ,࢔ ൌ ൜
૚, ࢑,࢔࢟	ࢌ࢏ ൌ ૚		and	࢟࢐,࢔ ൌ ૙	∀࢑ ൌ ,ࢇ ࢐	and	,࢈ ് ࢑

૙, otherwise
 

with ࢔ ൌ ૚, ૛, . . ,  can ࢈,ࢇࢉ,࢔࢞ Similarly, the definition of .࡯ any subset of ࢈,ࢇࢉ and	ࡺ
be rewritten as: 

(Equation 20)  ࢞࢈,ࢇࢉ,࢔ ൌෑ࢟࢑,࢔
࢑
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With ࢑ ൌ ,ࢇ ࢔ and ࢈ ൌ ૚, ૛, . . ,  From this definition is .࡯ any subset of ࢈,ࢇࢉ and	ࡺ
easy to see that ࢞࢈,ࢇࢉ,࢔ ൌ ૚ means that asset ࢔ belongs only to portfolios ࢇ and ࢈. 

In the case of Figure 23, the matrix ࢄ takes the following values: 

ࢄ ൌ ቎

࢞૚,ࢉ૚ ࢞૚,ࢉ૛ ࢞૚,ࢉ૜ ࢞૚,ࢉ૚,૛ ࢞૚,ࢉ૚,૜ ࢞૚,ࢉ૛,૜ ࢞૚,ࢉ૚,૛,૜
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

࢞૚૛,ࢉ૚ ࢞૚૛,ࢉ૛ ࢞૚૛,ࢉ૜ ࢞૚૛,ࢉ૚,૛ ࢞૚૛,ࢉ૚,૜ ࢞૚૛,ࢉ૛,૜ ࢞૚૛,ࢉ૚,૛,૜
቏

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
૚ ૙ ૙ ૙ ૙ ૙ ૙
૙ ૚ ૙ ૙ ૙ ૙ ૙
૙ ૙ ૚ ૙ ૙ ૙ ૙
૙ ૙ ૙ ૚ ૙ ૙ ૙
૙ ૙ ૙ ૚ ૙ ૙ ૙
૙ ૙ ૙ ૙ ૚ ૙ ૙
૙ ૙ ૙ ૙ ૚ ૙ ૙
૙ ૙ ૙ ૙ ૙ ૚ ૙
૙ ૙ ૙ ૙ ૙ ૚ ૙
૙ ૙ ૙ ૙ ૙ ૙ ૚
૙ ૙ ૙ ૙ ૙ ૙ ૚
૙ ૙ ૙ ૙ ૙ ૙ ૚ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

For instance, consider the case of securities 1, 4 and 10: 

 Security 1 belongs only to the first reference portfolio. Specifically it is only 
contained in the portfolios of the subset ܋૚. Thus, ࢞૚,ࢉ૚ ൌ ૚ and ࢞૚,ࢉ૛ ൌ
࢞૚,ࢉ૜ ൌ ࢞૚,ࢉ૚,૛ ൌ ࢞૚,ࢉ૚,૜ ൌ ࢞૚,ࢉ૛,૜ ൌ ࢞૚,ࢉ૚,૛,૜ ൌ ૙. 

 Security 4 belongs to both the first and second portfolios. Specifically it is 
only contained in the portfolios of the subset ࢉ૚,૛. Thus, ࢞૝,ࢉ૚,૛ ൌ ૚ and 
࢞૝,ࢉ૚ ൌ ࢞૝,ࢉ૛ ൌ ࢞૝,ࢉ૜ ൌ ࢞૝,ࢉ૚,૜ ൌ ࢞૝,ࢉ૛,૜ ൌ ࢞૝,ࢉ૚,૛,૜ ൌ ૙. 

 Security 10 belongs to all three reference portfolios. Specifically it is only 
contained in the portfolios of the subset ࢉ૚,૛,૜. Thus, ܠ૚૙,܋૚,૛,૜ ൌ ૚ and 
࢞૚૙,ࢉ૚ ൌ ࢞૚૙,ࢉ૛ ൌ ࢞૚૙,ࢉ૜ ൌ ࢞૚૙,ࢉ૚,૛ ൌ ࢞૚૙,ࢉ૚,૜ ൌ ࢞૚૙,ࢉ૛,૜ ൌ ૙. 

Let the index variable࢔ࢠ  identify whether asset ࢔ defaults. Then, ࢔ࢠ is defined as: 

(Equation 21)  ࢔ࢠ ൌ ൜
૚, ܛܜܔܝ܉܎܍܌	࢔	ܜ܍ܛܛ܉	܎ܑ
૙, ܍ܛܑܟܚ܍ܐܜܗ  

with ࢔ ൌ ૚, ૛, . . ,   .ࡺ

Let ࢐࢑ be the number of defaults in the reference portfolio of the synthetic CDO ࢑. 
Then, ࢐࢑ is defined as: 

(Equation 22)  ࢐࢑ ൌ ෍ ෍ ࢔ࢠ ൈ 	࢈,ࢇࢉ,࢔࢞
࡯∋࢈,ࢇࢉ

ࡺ

ୀ૚࢔
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with ࢑ ൌ ૚, ૛, . . ,  allows one to see the link between a ࢐࢑ This definition of .ࡷ
defaulted security and its impact on the portfolios behind each synthetic CDO.  

From the definition of ࢐࢑ it is obvious that a specific default scenario for the 
synthetic CDO-Squared will depend on the value of ࢐࢑ for all the synthetic CDOs, with 
࢑ ൌ ૚, ૛, . . ,  Therefore, let ଚ̂ be a vector that specifies the number of defaults in each .ࡷ
one of the ࡷ underlying portfolios. Then, ଚ̂ is defined by a particular set of value for ࢐࢑, 
with ࢑ ൌ ૚, ૛, . . ,   :Hence .ࡷ

ଚ̂ ൌ ሼ࢐૚, ࢐૛, ࢐૜, … , ,૚ିࡷ࢐  ሽࡷ࢐

Finally, let ࡶ be the set of all possible ଚ̂’s. 

Consider the example shown in Figure 23 and assume that only securities 1, 4 
and 10 default. Thus, only ࢠ૚, ,࢐૚ ૚૙ are equal to 1. Then, the values ofࢠ ૝ andࢠ ࢐૛ and ࢐૜ 
will be: 

	࢐૚ ൌ ૚ࢠ ൈ ࢞૚,ࢉ૚ ൅ ૝ࢠ ൈ ࢞૝,ࢉ૚,૛ ൅ ૚૙ࢠ ൈ ࢞૚૙,ࢉ૚,૛,૜ ൌ ૚ ൈ ૚ ൅ ૚ ൈ ૚ ൅ ૚ ൈ ૚ ൌ ૜ 

࢐૛ ൌ ૝ࢠ ൈ ࢞૝,ࢉ૚,૛ ൅ ૚૙ࢠ ൈ ࢞૚૙,ࢉ૚,૛,૜ ൌ ૚ ൈ ૚ ൅ ૚ ൈ ૚ ൌ ૛ 

࢐૜ ൌ ૚૙ࢠ ൈ ࢞૚૙,ࢉ૚,૛,૜ ൌ ૚ ൈ ૚ ൌ ૚ 

Then, this set of values of ࢐૚, ࢐૛ and ࢐૜ define one possible default scenario for ଎̂. 

5.4.2 The Probability of Each Default Scenario 

From the definition of ଚ̂ it is possible to estimate the probability of each default 
scenario. Define ࢖ଚ̂ as the probability of a specific default scenario ଚ̂. A possible 

approach to estimate ࢖ଚ̂ is by taking advantage of the definition of the subsets ࢈,ࢇࢉ; 

notice that the “building blocks” supporting the reference portfolios of the synthetic 
CDOs are all disjoint. See Figure 23. This makes the application of the Gauss-Hermite 
quadrature straightforward.  

However, although this approach is theoretically feasible, from a practical 
standpoint is computationally very intensive.  

To highlight this difficulty of the Gauss-Hermite quadrature, define ࢖ଚ̂ as: 

ଚ̂࢖ ൌ ,ሺ࢐૚࢈࢕࢘ࡼ ࢐૛, ࢐૜, … , ,૚ିࡷ࢐  ሻࡷ࢐

This means that the estimation of ࢖ଚ̂ requires the estimation of the conjoint 

probability	࢈࢕࢘ࡼሺ࢐૚, ࢐૛, ࢐૜, … , ,૚ିࡷ࢐ ,࢐૚ ሻ for scenariosࡷ࢐ ࢐૛, ࢐૜, … ,  This conjoint .ࡷ࢐ ૚ andିࡷ࢐
probability depends on which securities default in each subset ࢈,ࢇࢉ. Thus, the Gauss-
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Hermite quadrature approach requires the estimation of all the possible default 
combinations among the “building blocks”.  

Let us clarify this concept in reference to the example shown in Figure 23. Each 
scenario of default ଚ̂ requires values for ࢐૚, ࢐૛ and ࢐૜. Thus, the possible scenarios for ଚ̂ 
are obtained from all the possible default combinations among all the “building blocks”. 
In the example, the total number of combinations can be determined as follows:  

 The “building blocks” linked to subsets ࢉ૚, ࢉ૛ and ࢉ૜ have one security 
each one. Therefore, each “building block” can experience two default 
scenarios: 0 or 1. Thus, there ૛૜ possible scenarios. 

 The “building blocks” linked to subsets ࢉ૚,૛, ࢉ૚,૜ and ࢉ૛,૜ have two 
securities each one. Therefore, each “building block” can experience three 
default scenarios: 0, 1 or 2 defaults. Thus, there are ૜૜ possible scenarios. 

 The “building block” linked to subset ࢉ૚,૛,૜ has three securities. Therefore, 
each “building block” can experience four default scenarios: 0, 1, 2 or 3 
defaults. Thus, there are ૝ possible scenarios.  

 Finally, the total number of combinations is ૛૜ ൈ ૜૜ ൈ ૝ ൌ ૡ૟૝. 

This number of combinations might not be computationally intensive since the 
example is simple and not very realistic. However, in the case of an actual synthetic 
CDO-Squared, ࡺ is in the order of ૚૙૛ and ࡷ could be between 5 and 10. Obviously, 
the number of possible combinations makes the problem computationally untracktable 
with the Gauss-Hermite quadrature. 

For this reason, a conventional Monte Carlo simulation will be used to estimate 
 simulations, the focus is on the occurrence of each ଚ̂ ࡿ ଚ̂. The difference is that, after࢖
specific default scenario. Defining ࢙ଚ̂ as the number of times the ଚ̂ scenario occurs, we 
have that ࢖ଚ̂ can be estimated as: 

(Equation 23)  ࢖ଚ̂ ൎ
࢙ଚ̂
ࡿ
				∀࢐̂ ∈  ࡶ

where: 

(Equation 24)  ෍࢙ଚ̂
ࡶ∋࢐̂

ൌ  ࡿ

5.4.3 The Expected Loss 

Denote ࢑࢓ be the mezzanine tranche of synthetic CDO ࢑ in the reference 
portfolio of the synthetic CDO-Squared. Similarly, as before, let ࢓ࡹ andࡹ෩࢓  be the size 
and subordination of tranche ࢑࢓ respectively. The loss experienced by tranche ࢑࢓, 
when ࢐࢑ assets default, is determined by: 

(Equation 25)  ࢒ሚ࢑࢓
ሺ࢐࢑ሻ ൌ ,൫૙࢞ࢇࡹ൫࢔࢏ࡹ	 ሺ૚ െ ሻࢻ ൈ ࢜ ൈ ࢐࢑ െࡹ෩࢓൯,࢓ࡹ൯		 



 

32 
 

with ࢐࢑ ൌ ૙, ૚, ૛, … ࢑ and ࢑ࡺ, ൌ ૚, ૛,…  .ࡷ,

For the equity tranche of the synthetic CDO-Squared (denoted as ࢋ૛), let ࢋࡹ૛	be 
size of the tranche. Define ࢋ࢒૛ሺଚ̂ሻ as the loss experienced by the equity tranche for a 
specific scenario of defaults ଚ̂. Hence: 

(Equation 26)  ࢋ࢒૛ሺଚ̂ሻ ൌ ቌ࢔࢏ࡹ	
૚
૛ࢋࡹ

෍෍࢒ሚ࢑࢓
ሺ࢐࢑ሻ

࢐࢑∈ଚ̂

ࡷ

࢑ୀ૙	

, ૚૙૙%ቍ	 

For the mezzanine and senior tranches of the synthetic CDO-Squared (denoted 
as ࢓૛ and ࢙૛ respectively), let ܕۻ૛ and ࢙ࡹ૛ be the size of the tranches ࢓ and ࢙ 
respectively. Let ࡹ෩࢓૛ and ࡹ෩ ࢙૛ be the subordinations of tranches ࢓ and ࢙ respectively. 
Let ࢓࢒૛ሺଚ̂ሻ and ࢙࢒૛ሺଚ̂ሻ be the loss experienced by tranches ࢓ and ࢙ for a specific 
scenario of defaults ଚ̂. Therefore: 

(Equation 27)  ࢀ࢒ሺଚ̂ሻ ൌ ,%ቐ૙࢞ࢇࡹቌ࢔࢏ࡹ	
૚
ࢀࡹ

ቌ෍෍࢒ሚ࢑࢓
ሺ࢐࢑ሻ

࢐࢑∈ଚ̂

ࡷ

࢑ୀ૙

െࡹ෩ ቍቑࢀ , ૚૙૙%ቍ 

 

with	࢐ ൌ ૙, ૚, ૛, . . . ,  . ૛ or ࢙૛࢓ equals ࢀ and ࡺ

Finally the expected loss for a given tranche is estimated as: 

(Equation 28)  ࡱሺࢀ࢒ሻ ൌ 	෍࢖ଚ̂ ൈ ሺଚ̂ሻࢀ࢒
ଚ̂∈ࡶ

 

with ࢀ equals to ࢋ૛, ࢓૛ or ࢙૛. 

5.5 Moody’s Values for the Pool Characteristics 

As previously stated, the Moody’s analysis is based on the average value of the 
pool characteristics. The purpose of this section is to explain the rationale behind the 
Moody’s approach to estimate these values, rather than passing judgment on the 
validity of these choices. 

5.5.1 Default Probability	

The values for the default probability of the assets in the pool are obtained from 
Cantor, Hamilton & Tennant (2007). The authors estimated confidence intervals for 
corporate default rates by rating category and time horizon. For this purpose, the 
authors used Moody’s default data for corporate bonds covering the period from 1970 
until 2006.  

The authors employed a bootstrapping method to estimate the mean and 
standard deviation of an asset default probability, as a function of its rating and time to 
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maturity. In addition, the authors assumed that the default rates followed a normal 
distribution, based on some empirical evidence provided by Cantor & Falkenstein 
(2001) and Stein (2006).  

Table 1 and 2 show the relevant data. Notice that the table shows the cumulative 
default probability (not the marginal default probability) for a given time horizon and 
rating.  

Table 1: Mean Values of Cumulative Default Probability for Different Ratings and 
Time Horizon 

Time Horizon (Years) 
  1 2 3 4 5 6 7 8 9 10 

R
at

in
g

s 

Aaa 0.00% 0.00% 0.00% 0.03% 0.10% 0.17% 0.25% 0.33% 0.42% 0.52% 

Aa 0.01% 0.02% 0.04% 0.11% 0.18% 0.26% 0.34% 0.42% 0.46% 0.52% 

A 0.02% 0.10% 0.22% 0.34% 0.47% 0.61% 0.76% 0.93% 1.11% 1.29% 

Baa 0.18% 0.51% 0.93% 1.43% 1.94% 2.45% 2.96% 3.45% 4.01% 4.63% 

Ba 1.20% 3.22% 5.57% 7.95% 10.21% 12.23% 13.99% 15.69% 17.37% 19.10%

B 5.24% 11.30% 17.04% 22.05% 26.79% 30.98% 34.76% 37.97% 40.91% 43.32%

Caa-C 19.47% 30.51% 39.73% 46.94% 52.66% 56.84% 59.97% 63.29% 66.36% 69.25%
Source: Cantor, Hamilton & Tennant (2007) 

 

Table 2: Standard Deviation Values of Cumulative Default Probability for Different 
Ratings and Time Horizon 

Time Horizon (Years) 
1 2 3 4 5 6 7 8 9 10 

R
at

in
g

s 

Aaa n/a n/a n/a 0.03% 0.07% 0.10% 0.15% 0.21% 0.27% 0.34% 

Aa 0.01% 0.01% 0.02% 0.04% 0.06% 0.08% 0.11% 0.14% 0.16% 0.18% 

A 0.01% 0.02% 0.04% 0.06% 0.08% 0.11% 0.13% 0.16% 0.18% 0.21% 

Baa 0.03% 0.06% 0.10% 0.15% 0.19% 0.24% 0.29% 0.34% 0.40% 0.46% 

Ba 0.08% 0.19% 0.30% 0.42% 0.53% 0.64% 0.73% 0.83% 0.94% 1.04% 

B 0.18% 0.38% 0.56% 0.73% 0.90% 1.07% 1.24% 1.41% 1.60% 1.79% 

Caa-C 0.75% 1.18% 1.59% 1.96% 2.33% 2.69% 3.04% 3.50% 3.85% 4.62% 
Source: Cantor, Hamilton & Tennant (2007) 

The determination of the confidence intervals, once the mean and the standard 
deviation are known, coupled with the normality assumption, is straightforward. In 
addition, the time dimension effect is taken into account implicitly, as a result of working 
with cumulative default probabilities. 

5.5.2 Recovery Rate	

For the purpose of modeling the recovery rate, Moody’s relies on a Beta 
distribution. The use of the Beta distribution is supported by both Moody’s CDOROM 
and Moody’s Loss-Given-Default (LGD). The CDOROM is the software tool provided by 
Moody’s to investors, in order to calculate the expected loss of tranches of synthetic 
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CDOs. On the other hand, Moody’s LGD refers to the forecasts of the losses 
experienced by investors at the resolution of the default event.  

Obviously, the choice of a Beta distribution function will automatically limit the 
value of the recoveries to the interval 0 and 1. Besides, the Beta distribution affords 
enough modeling flexibility since one can generate different shapes by controlling the 
value of the mean and standard deviation. 

The probability density function for the Beta distribution is defined as: 

,ሺ࢞ࢌ ,ࢻ ሻࢼ ൌ 	
૚ሺ૚ିࢻ࢞ െ ࢞ሻିࢼ૚

׬ ૚ିࢻ࢛
૚
૙ ሺ૚ െ ࢛ሻିࢼ૚࢛ࢊ

 

where: 

ࢻ ൌ ൬ࣆ
ሺ૚ࣆ െ ሻࣆ

࣌૛
െ ૚൰ ࢼ																											 ൌ ሺ૚ െ ሻࣆ ൬

ሺ૚ࣆ െ ሻࣆ
࣌૛

െ ૚൰ 

with ࣆ defined as the mean and ࣌૛ refers to the variance of the Beta distribution. 

The values used by Moody’s for ࣆ and	࣌, are 50% and 26% respectively in the 
case bonds and loans. These values are obtained from Moody’s Ultimate Recovery 
Database12 for corporate family recovery rates13 for the period since 1987 until 2006. 
This database includes the recovery values received by creditors at the resolution of 
default, which is consistent with Moody’s LGD. The probability density function of the 
Beta distribution is shown in Figure 24. 

 
The use of the Beta distribution to model the recovery rate has also been 

endorsed by a number of studies (see Appendix 8). 
 
In addition, in the context of this study a second approach to estimate the value 

of the recovery rate will be used. This approach relies on a log-linear relationship14 
between the recovery rate and the default probability. The motivation behind this 
alternative approach is that the empirical data support the view that high probabilities of 
the default are normally associated with lower recovery rates. 

This relationship between the recovery rate and the default probability is also 
supported by the studies of Emery, Cantor, Keisman & Ou (2007). The following 
expression captures this idea: 

(Equation 29) ࢻ ൌ	െ૙. ૚૚ ൈ ࢖࢔࢒ ൅ ૙. ૚ૢ 

                                            
12 Emery, Cantor, Keisman & Ou (2007)  
13 The corporate family recovery rate is a measure of the value of an enterprise to be distributed among 
creditors due to a default resolution 
14 Emery, Cantor, Keisman & Ou (2007) 
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Although, the predictive power of this formula is not very high (ࡾ૛ ൌ ૙. ૝૝), it has 
the advantage that somehow, unlike the Beta, it captures the relationship observed 
between the recovery rate and the default probability (see Figure 25). 

Figure 24: Density Probability Distribution of the Recovery Rate 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: Own Elaboration 

Figure 25: Relation between Probability Distribution and Recovery Rate (Equation 29) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: Own Elaboration 
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5.5.3 Default Correlation	

The default correlation is notoriously difficult to estimate in comparison with the 
recovery rate and the default probability. Part of the difficulty is due to the fact that there 
is not enough data regarding default correlation values. The articles by Zhang, Zhu & 
Lee (2008) and Cifuentes & Katsaros (2007) support this view. This is chiefly because 
defaults do not happen that often. A second complication arises from the observation 
that default correlations are very time dependent. In addition to this difficulty, it should 
also be noticed that correlation values have perhaps received less attention since they 
are not part of any specific regulatory framework, such as Basel II.  

Due to these difficulties, in general, practitioners rely on asset correlation values 
as a proxy for default correlation values. 

The values of default correlation employed by Moody’s are taken from the study 
by Zhang, Zhu & Lee (2008). The authors used data for U.S. public firms for the period 
between 1981 until 2006. Depending on the type of industry, these values fluctuate 
between 5% and 30%. Table 3 compares the values obtained by other previous studies. 

Table 3: Comparison of Default Correlation from Other Studies 

Study Data Source Default-Implied Asset 

Gordy  (2000) Standard and Poor's 1.5%~12.5% 

Cespedes  (2000) Moody’s’ Investor Service 0.1 

Hamerle et al  (2003) Standard and Poor’s 1982-1999 0.4%~6.04% 

Frey et al (2001) UBS 2.6%, 3.8%, 9.21% 

Frey & McNeil  (2003) Standard and Poor’s 1981-2000 3.4%–6.4% 

Dietsch & Petey (2004) Coface 1994–2001; Allgemeine Kredit 1997-2001 0.12%–10.72% 

Jobst & de Servigny (2004) Standard and Poor’s 1981-2003 Intra 14.6%, inter 4.7% 

Duellmann & Scheule (2003) Deutsche Bundesbank 1987-2000 0.5%–6.4% 

Jakubik  (2006) Bank of Finland 1988-2003 5.70% 

 
Source: Zhang, Zhu & Lee (2008) 
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6. CASES TO BE ANALYZED 

The analysis focuses on seven synthetic CDO structures that are interesting 
and/or representative of the U.S. market. The first one is the ABACUS transaction from 
Goldman Sachs. The next two synthetic CDOs are two synthetic CDS indices. The 
fourth one is a CDO-Squared called MIDGARD. And finally, theoretical synthetic CDO-
Squared based on different synthetic CDS indices will be analyzed. 

In what follows, the structures of these transactions are explained in detail. 

6.1 Case #1: ABACUS 

The ABACUS is a $2 billion synthetic CDO referencing mid-prime and subprime 
bonds backed by residential mortgages. ABACUS was structured by Goldman Sachs 
and issued in early 2007. This transaction did not receive media attention until 2010 
when the SEC sued Goldman Sachs for fraud. 

The SEC accusation was based on the fact that Goldman Sachs offered 
ABACUS to investors hiding the participation of Paulson & Co. in structuring the deal. 
Paulson & Co., an American hedge fund, not only participated in the selection of the 
ABACUS referenced securities but also took a short position against them through a 
series of CDS contracts. Therefore, Goldman Sachs was aware of Paulson & Co.’s 
pessimistic prescience about the referenced securities. However, Goldman Sachs did 
not inform investors in the deal of Paulson & Co. involvement.  

By early 2008, almost the entire ABACUS reference portfolio had defaulted. This 
left Paulson & Co. and Goldman Sachs with $1.1 billion in profit and $15 million 
structuration fees respectively. However, the two main investors, ABN AMRO and IKB15, 
lost together almost $1 billion. A brief description of the chain of events behind this 
transaction can be found in Appendix 9. 

The structure of the ABACUS synthetic CDO is detailed in Table 4. 

Table 4: ABACUS Transaction Details 

Index 
Name 

Time 
Horizon (in 

Years) 

# of 
Corporate 

Names 

Total 
Notional 
Amount 

Tranche Structure 

Tranche 
Name 

Attachment/ 
Detachment Point 

Moody's 
Ratings 

ABACUS 4.2 90 
US $2 
billion 

Super Senior 45% - 100% N/A 

Class A 21% - 45% Aaa 

Class B 18% - 21% Aa2 

Class C 13% - 18% Aa3 

Class D 10% - 13% A2 

First Loss 0% - 10% N/A 

Source: ABACUS Pitch Book 

                                            
15 ABN AMRO is Dutch private and commercial bank; IKB is a German commercial bank. 
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The study will focus on Class A and Class D tranches of ABACUS. 

6.2 Cases #2 and #3: CDX Indices 

 The CDX indices are a part of the family of CDS indices released by Markit16. A 
CDS index is referred to the exchange of credit risk between the protection buyers of a 
basket of liquid CDS contracts and protection sellers. In general, a CDS index is a 
collection of CDS contracts that offers the opportunity to sell or buy protection on the 
reference portfolio of each index. In particular, CDS index tranches, such as the CDX 
indices, give investors the opportunity to take exposure to specific segments of the CDS 
index default distribution.  

The growth of the CDS indices market was fueled by three main reasons. First, 
because CDS indices provide a diversified credit risk exposure in one single 
transaction. Second, CDS indices are traded as OTC products. This feature facilitates 
the trading of credit risk among investors, and the implementation of investment 
strategies. And finally, because CDS indices help the credit market to become more 
liquid, efficient and transparent.  

Figures 25, 26 and 27 describe the growth of the CDS indices market. Figure 25 
shows the market participation of CDS Indices. Figure 26 shows the issuance of CDS 
index tranches in the market shows the participation of the CDS indices in the credit 
derivative market. Figure 27 shows the notional amount of outstanding CDS indices in 
the market. 

Figure 26: CDS Indices Credit Derivative Market Participation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: Bank for International Settlements 

                                            
16 Markit is a private firm that values CDS contracts and creates CDS information products. This firm has 
been releasing synthetic credit indices since its foundation in 2001. 
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Figure 27: Notional Amount Outstanding of CDS Indices and Single-Name CDS 

 

 

 

 

 

 

 

 

 

 
Source: Fitch Ratings and Bank for International Settlements 

Figure 28: Issuance of CDS Index Tranches 

 

 

 

 

 

 

 

 

 

 

 
Source: Creditflux and Bank for International Settlements 

In particular, the CDX indices are characterized by two main features. On the one 
hand, the securities in the reference portfolios are corporate names in North America or 
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Emerging Markets. On the other hand, the credit events that trigger the defaults are 
bankruptcy and failure to pay. 

The CDX indices considered for the purpose of this study are two: the CDX North 
America Investment Grade (CDX.NA.IG, Case #2) and the CDX North America High 
Yield (CDX.NA.HY, Case #3).  

The mechanics of the credit protection offered by the CDX indices works as an 
unfunded synthetic CDO, but adds some index features. In contrast with common 
synthetic CDO issues, the tranches of a CDX index are very liquid and are traded from 
a dealer’s trading desk instead of being offered one to one to the investors. The reason 
for this is the high level of trading activity of the credits in the reference portfolio.  

Another feature of the CDX indices is in the management of their reference 
portfolios. The reference portfolios are composed by different CDS contracts with a 
fixed premium. These CDS contracts are renewed every six months17. In case that the 
renovation changes the price of the credits in the portfolio, a compensation premium is 
exchanged between the buyers and sellers of protection in the indices. Due to this 
reason, the CDX indices are attractive for short-term trading and hedging. For a long-
term investment in corporate credit risk, synthetic CDOs in the market are preferred. 
Table 5 summarizes the characteristics of these indices18. 

Table 5: CDX Indices Structures 

Index Name  Assets Class 
Time 

Horizon 
(Years)

# of 
Corporate 

Names 

Tranche Structure 

Tranche 
Name 

Attachment/Detachment 
Point 

CDX.NA.IG 

North America 
Investment 

Grade 

1,2,3,5,7 
and10 

125 

Super Senior 30%-100% 

Senior 1  15%-30% 

Senior 2 10-15% 
Mezzanine 1 7%-10% 
Mezzanine 2 3%-7% 

Equity 0%-3% 

CDX.NA.HY 
North America 

High Yield 
5 100 

Super Senior 35%-100% 
Senior 1 25%-35% 
Senior 2 15%-25% 

Mezzanine 10%-15% 
Equity 0-10% 

Source: Markit 

The study will consider the CDX.NA.IG index with 2, 5 and 10 years horizon. This 
study will focus on Senior 1 and Mezzanine 2 tranches. In the case of the CDX.NA.HY, 
This study will focus on the Senior 1 and Mezzanine tranches. 

                                            
17 These renovations are exchanged every 20th of March, June, September and December 
18 For a detailed composition of both indices, see Appendix 10 
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6.3 Case #4: MIDGARD 

MIDGARD is a $50 million synthetic CDO-Squared referencing a portfolio of 
mezzanine tranches of other synthetic CDOs. Those synthetic CDOs and are backed by 
corporate names. The MIDGARD was managed by Henderson Global Investors 
Limited. CALYON was the CDS counterparty on this transaction. 

MIDGARD is an interesting structure to analyze since the credit rating of the 
mezzanine tranche was downgraded dramatically from Aaa (the original rating in 2005) 
to Baa3 (February of 2009). The chief reason for the downgrade was an “update” in the 
value of the parameters assumptions used in the synthetic CDO rating model. 
MIDGARD defaulted by March of 2009. 

The structure of the MIDGARD transaction is detailed in Tables 6 and 7. Figure 
28 shows diagram with the structure of the transaction. This study will focus on Super 
Senior and Class III tranches. 

Table 6: MIDGARD Synthetic CDOs Portfolio Structure 

Synthetic 
CDO-

Squared 

# of 
Different 

Securities

# of 
Synthetic 

CDOs 

# of 
Assets 

per 
Synthetic 

CDO 

Synthetic CDO 
Mezzanine Tranches 

Tranche 
Name 

Attachment-
Detachment 

Point 

MIDGARD 259 7 80 

Senior 10.1%-100%

Mezzanine 7.1%-10.1%

Equity 0%-7.1% 

Source: MIDGARD Moody’s Issue Report, 2005. 
Table 7: MIDGARD Synthetic CDO-Squared Structure 

Synthetic 
CDO-

Squared 

Synthetic CDO-Squared Tranche 
Structure 

Tranche 
Name 

Attachment-
Detachment Point

Rating 

MIDGARD 

Super Senior 32%-100% Aaa 

Class III 22%-32% Aaa 

Subordination 0%-22% N/A 

Source: MIDGARD Moody’s Issue Report, 2005. 



 

42 
 

Figure 29: MIDGARD Structure Diagram 

 

 

 

 

 

 
 
 
 
 
 

Source: MIDGARD Issue Report, 2005. 

The overlap of securities in the MIDGARD structure is described by the following 
conditions: 

 The average overlap between synthetic CDO pools is on average 26%. 
 The number of overlapped entities between any two synthetic CDOs is less 

than 30%. 
 None of the securities underlying the synthetic CDOs is present in more than 

4 reference portfolios. 

As can be seen, the overlap among reference portfolios is not completely 
defined. For this reason, this study will rely on a particular structure that satisfies the 
above mentioned overlap conditions. This structure was determined by solving a linear 
optimization problem that includes the above mentioned overlap conditions as 
restrictions. This linear optimization problem is fully detailed in Appendix 11.  

6.4 Cases #5 and #6: Theoretical CDO-Squared 

Two theoretical synthetic CDO-Squared are considered. These two structures are 
based on both mentioned CDX indices and are intended to study the effect of the 
overlap in the rating stability. The theoretical structures are used because there is not a 
CDS index with a synthetic CDO-Squared structure. 

The motivation behind the design of these three structures is based on the liquidity 
of the CDS market. Consider a group of ࡺ investors interested on betting against the 
price of ࡺ mezzanine tranches. Given the high liquidity of the CDS market, it could be 
possible for the ࡺ	investors to somehow replicate the structure of the CDX indices in ࡺ 
different synthetic CDOs. Thus, the ࡺ investors obtain ࡺ identical mezzanine tranches 
with some degree of overlap. Then, these ࡺ mezzanine tranches can be referenced by 
the portfolio of a synthetic CDO-Squared. 
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There are two possible theoretical synthetic CDO-Squared to consider from both 
CDX indices. In the CDX.NA.IG and CDX.NA.HY indices there are two and one 
mezzanine tranches to consider respectively. The theoretical structures based on the 
CDX.NA.IG index, will be denoted as T.CDX.NA.IG. The theoretical structure based on 
the CDX.NA.HY will be denoted as T.CDX.NA.HY. Since the usual number of 
mezzanine tranches referenced by a synthetic CDO-Squared is between 5 and 10, the 
study will consider 7 tranches. The structure of the two theoretical structures is 
summarized in Tables 8,9,10 and 11. Figures 29 and 30 show a diagram of the 
structure involved for both theoretical structures. 

Table 8: T.CDX.NA.IG Synthetic CDOs Portfolio Structure 

Synthetic 
CDO-

Squared 

CDX Index 
Considered 

# of 
Synthetic 

CDOs  

Mezzanine 
Tranches 
Included 

Synthetic CDO Tranche Structure 

Tranche 
Name 

Attachment/Detachment 
Point 

T.CDX.NA.IG  CDX.NA.IG 7 Mezzanine 2

Super Senior 30%-100% 
Senior 1 15%-30% 
Senior 2 10-15% 

Mezzanine 1 7%-10% 
Mezzanine 2 3%-7% 

Equity 0%-3% 

Source: Own Elaboration 

Table 9: T.CDX.NA.IG Synthetic CDO-Squared Structure 

Synthetic 
CDO-

Squared 

Synthetic CDO-Squared Tranche Structure 

Tranche Name Attachment/Detachment Point

T.CDX.NA.IG 

Super Senior 30%-100% 
Senior 1 15%-30% 
Senior 2 10-15% 

Mezzanine 1 7%-10% 
Mezzanine 2 3%-7% 

Equity 0%-3% 

Source: Own Elaboration 
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Figure 30: T.CDX.NA.IG Structure Diagram 

 

 

 

 

 
 

 

 

 

Source: Own Elaboration 

Table 10:T.CDX.NA.HY Synthetic CDOs Portfolio Structure 

Synthetic 
CDO-

Squared 

CDX Index 
Considered 

# of 
Synthetic 

CDOs  

Mezzanine 
Tranches 
Included 

Synthetic CDO Tranche Structure 

Tranche 
Name 

Attachment/Detachment 
Point 

T.CDX.NA.HY CDX.NA.HY 7 Mezzanine

Super Senior 35%-100% 
Senior 1 25%-35% 
Senior 2 15%-25% 

Mezzanine 10%-15% 
Equity 0-10% 

Source: Own Elaboration 

Table 11: T.CDX.NA.HY Synthetic CDO-Squared Structure 

Synthetic 
CDO-

Squared 

Synthetic CDO-Squared Tranche 
Structure 

Tranche Name
Attachment/Detachment 

Point 

T.CDX.NA.HY 

Super Senior 35%-100% 
Senior 1 25%-35% 
Senior 2 15%-25% 

Mezzanine 10%-15% 
Equity 0-10% 

Source: Own Elaboration 



 

45 
 

Figure 31: T.CDX.NA.HY Structure Diagram 

 

 

 

 

 

 

 

 

Source: Own Elaboration 

The effect of the degree of overlapping in the structure is analyzed with the following 
model. Each one of the synthetic CDOs will reference a pool of securities. A portion 
equals to 100 - ࢞% of the pool of securities are exclusively referenced by the synthetic 
CDO, whereas ࢞% are referenced by all of the synthetic CDOs. Similar to other 
synthetic CDO-Squared transactions, the maximum degree of overlapping consider in 
this study will be 30%. Figure 31 illustrates the above mentioned overlapping. 

Figure 32: Overlap Diagram 

 

 

 

 

 

 

 

 

Source: Own Elaboration 
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7. RESULTS 

This chapter shows the results of the analysis of the different cases studied. For 
each case, there is an explanation regarding the specifics for the particular analysis 
undertaken19. 

7.1 Case #1: ABACUS 

7.1.1 Confidence Intervals	

In the beginning the ABACUS transaction was marketed with a set of credit ratings 
provided by Moody’s. These ratings described the risk profile of ach one of the different 
tranches and were based, among other things, on the characteristics of the underlying 
portfolio. Using this information it is possible to estimate the values for the asset 
parameters that let one obtain the ratings of the ABACUS tranches. 

The assets in the underlying portfolio were rated, on average, Baa. The average 
maturity was 4.2 years. Therefore, the default probability of the pool can be described 
using a normal distribution with a mean equals to 1.53% and a standard deviation 
equals to 0.16%20.  

By taking the value of the default probability equal to the mean of the distribution, 
one can estimate the pairwise values for default correlation and recovery rate that 
match the rating of the ABACUS tranches using the expected loss criteria. Figure 32 
shows the different possible combinations of default correlation and recovery rate that 
were obtained.  

There are 44 different pairs of default correlation and recovery rate values. These 
pairs cover the range from 23% to 55% for the default correlation, and from 37% to 74% 
for the recovery rate. The trend across the pairs is very clear: the higher the default 
correlation, the higher the recovery rate. This is because, in general, a higher default 
correlation increases the expected loss of the tranches. Thus, a higher recovery rate is 
required to decrease the expected loss. 

For each one of the 44 pairs described in Figure 33, it is possible to estimate with a 
95% confidence, an interval for the expected loss of a given tranche, using the 
probabilistic behavior of the default probability. Figures 34 and 35 show the confidence 
intervals obtained for two tranches: Class A and Class D respectively. 

As can be seen, the confidence intervals are very stable for both tranches. In the 
case of the Class A tranche, the different confidence intervals are completely contained 
within the Aaa rating region. In the case of the Class D tranche, almost all the 
confidence intervals (except for the last one) contain three possible credit ratings: A1, 
A2 and A3. Therefore, with a 95% certainty, it can be stated that the rating of the Class 
A should have been Aaa, no matter what combination of default correlation/recovery 

                                            
19 In Appendix 13 are detailed the confidence intervals explained in this chapter. 
20 These values were obtained by a cubic spline interpolation of the values for the mean and standard 
deviation for different time horizons and ratings, from Cantor, Hamilton & Tennant (2007). 
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rate is used. On the other hand, for the Class D tranche for almost all combinations of 
default correlation/recovery rate the confidence interval spans the complete A region. 

Figure 33: Combinations of Default Correlation and Recovery Rate that Match the 
ABACUS Tranches Ratings  

 

 

 

 

 

 

 

 

 

Source: Own Elaboration 

Figure 34: ABACUS Class A Tranche Confidence Intervals for the Pairwise Default 
Correlation and Recovery Rate. 

 

 

 

 

 

 

 

 

 

Source: Own Elaboration 
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Figure 35: ABACUS Class D Tranche Confidence Intervals for the Pairwise Default 
Correlation and Recovery Rate. 

 

 

 

 

 

 

 

 

 

Source: Own Elaboration 

A more refined analysis can be performed using different alternative to characterize 
the recovery rate. The first possibility is to assume that the recovery rate follows a Beta 
distribution (with a mean equals to 50% and a standard deviation equals to 26%)21. 
Alternatively one can assume a recovery rate inversely proportional to the default 
probability according to Equation 29 from Chapter 5. Finally, the idea is to estimate a 
95% confidence interval for the expected loss for both tranches. Figures 36 and 37 
show the results for the Class A tranche. Figure 36 assumes a Beta distribution and 
Figure 37 uses Equation 29 from Chapter 5. 

Figure 36: ABACUS Class A Tranche Confidence Intervals (Beta Distribution) 

 

 

 

 

 

 

 

 

Source: Own Elaboration 

                                            
21 According to Emery, Cantor, Keisman & Ou (2007) 
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Figure 37: ABACUS Class A Tranche Confidence Intervals (Chapter 5, Equation 29). 

 

 

 

 

 

 

 

 

 

Source: Own Elaboration 

Figures 36 and 37 show two clear trends. First, as expected, the simulation using a 
Beta distribution shows more variability in terms of the expected loss. And second, 
increasing the default correlation value results in more uncertainty regarding the 
expected loss. The reason is that higher values for the default correlation make the 
effect of each default more onerous. Finally, Figure 38 shows that for a default 
correlation of 30% (the value used by Moody’s) the rating of the Class A tranche falls 
within the range Aaa /Aa3 (four notches).  

Figures 38 and 39 display the same results for Class D tranche. 

Figure 38: ABACUS Class D Tranche Confidence Intervals (Beta Distribution) 

 

 

 

 

 

 

 

 

 

Source: Own Elaboration 
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Figure 39: ABACUS Class D Tranche Confidence Intervals (Chapter 5, Equation 29). 

 

 

 

 

 

 

 

 

Source: Own Elaboration 

These two figures show the same trends show for the Class A tranche. The only 
difference is that the same tendencies appear more exacerbated. More to the point, the 
95 % confidence interval for the rating of Class D is much wider, covering a range from 
Aaa/Baa2 (nine notches) in the case of a 30% of default correlation. 

Comparing both approaches, the use of a Beta distribution for the recovery rate 
creates confidence intervals much more onerous. However, both approaches show 
some degree of instability for the credit rating of the ABACUS tranches.  

To summarize, for default correlation values higher than 15%-20% (the most likely 
values for a realistic point of view) there is an increasing uncertainty regarding the 
expected loss. 

The uncertainty regarding the ratings uncovered by this analysis seems to be in tune 
with the empirical evidence. Initially Moody’s rated the Class A tranche as Aaa. 
However, within six months of the closing date, in an embarrassing admission of 
inaccuracy Moody’s was forced to downgrade the Aaa rating to Baa2. Four months 
later, the Baa2 became Caa. 

7.1.2 Sensitivity Analysis to Errors in the Asset Parameters	

The degree of sensitivity of the expected loss of the Class A and Class D tranche to 
errors in the asset parameters is also analyzed. For this analysis a recovery rate equals 
to 50% is considered (this is the value typically used by Moody’s for synthetic CDO 
tranches and used as the mean of the Beta distribution for the recovery rate). The 
corresponding value of the correlation is 30%. The sensitivity of the expected loss is 
explored by keeping two parameters constant while allowing the third to vary. Figures 
40 and 41 display the sensitivity of the expected loss for Class A and Class D tranches 
respectively.  
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Figure 40: ABACUS Class A Tranche Parameter Sensitivity 

 

 

 

 

 

 

 

 

Source: Own Elaboration 

Figure 41: ABACUS Class D Tranche Parameter Sensitivity 

 

 

 

 

 

 

 

 

Source: Own Elaboration 

Figures 40 and 41 are self-explanatory. They both show that an error in the recovery 
rate has the most influence in the expected loss when such error is negative. For 
positive errors, the default correlation becomes the most influential parameter. In 
addition, underestimating the recovery rate implies a positive error in the expected loss. 
On the other hand, a positive error in the recovery it leads to underestimate the 
expected loss. Both trends are intuitively correct. Errors in estimating the correlation 
parameters show a reverse trend compare to the recovery rate. This also makes sense 
intuitively. 
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Figures 42 and 43 are analogous to Figures 40 and 41, except for the fact that the 
recovery rate is assumed to be determined by Equation 29 from Chapter 5. Therefore, 
only two sensitivity curves are included (with respect to an error in the default probability 
and in the default correlation). 

Figure 42: ABACUS Class A Tranche Parameter Sensitivity (Chapter 5, Equation 29) 

 

 

 

 

 

 

 

 

Source: Own Elaboration 

Figure 43: ABACUS Class D Tranche Parameter Sensitivity (Chapter 5, Equation 29) 

 

 

 

 

 

 

 

 

Source: Own Elaboration 

The trends seem to be consistent with the behavior displayed in the previous two 
cases.  

7.2 Cases #2 and #3: CDX Indices 

7.2.1 Confidence Intervals for the CDX.NA.IG Index	

The analysis of the CDX indices is similar to that of the ABACUS transaction. The 
main difference with the ABACUS transaction is that the tranches that compose these 
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indices do not have a formal credit rating. Nevertheless, a rating can be estimated 
simply by estimating the expected loss associated with the tranche under consideration. 

In the case of the CDX.NA.IG, the expected loss for the two tranches considered, 
and using a 95% confidence interval is estimated. Figures 44, 45 and 46 show the 
expected loss for the Senior 1 tranche, assuming the recovery rate follows a Beta 
distribution. For the different maturities (2, 5 and 10 years), the default probability of the 
pool rated on average Baa, can be described using a normal distribution with the 
respective different mean (0.51%, 1.94% and 1.63%) and standard deviation (0.03%, 
0.19% and 0.46%).  

Figures 44, 45 and 46: CDX.NA.IG Senior 1 Tranche Confidence Intervals (Beta 
Distribution), for 2, 5 and 10 Years Horizon Respectively 

2 Years     5 Years 

10 Years 

 

 

 

 

 

 

 

 

Source: Own Elaboration 

The behavior shown by these figures is consistent with the trends detected for the 
ABACUS transaction. Namely, increasing values of the correlation are associated with 
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increasing uncertainty in the ratings. Specifically, for default correlation values within the 
25%-30% range (realistic values for most portfolios) the ratings can vary as much as ten 
notches (Aaa/Ba1). As expected, more variability in the ratings is associated with longer 
maturity horizons. 

Figures 47, 48 and 49 show the case for the Senior 1 tranche with the recovery rate 
following Equation 29 from Chapter 5.  

Figures 47, 48 and 49: CDX.NA.IG Senior 1 Tranche Confidence Intervals (Chapter 5, 
Equation 29), for 2, 5 and 10 Years Horizon Respectively 

2 Years     5 Years 

10 Years 

 

 

 

 

 

 

 

Source: Own Elaboration 

These figures are very much in agreement with the trends displayed in the previous 
case (Figures 45, 46 and 47) except that the variability is much more bounded. 
However, even under these conditions there is a considerable variability in terms of the 
ratings (three notches for the 10 years maturity). 

Figures 50, 51 and 52 show the case of the Mezzanine 2 tranche with the recovery 
rate distributed as a Beta. 
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Figures 50, 51 and 52: CDX.NA.IG Mezzanine 2 Tranche Confidence Intervals (Beta 
Distribution), for 2, 5 and 10 Years Horizon Respectively 

2 Years     5 Years 

10 Years 

 

 

 

 

 

 

 

Source: Own Elaboration 

Again, and broadly speaking, the trends displayed by these figures are in agreement 
with the previous findings. There is however one significant difference. The upper bound 
of the expected loss interval (blue line) becomes “inverted” for a ten year maturity. In 
essence, for longer horizons which in turn correspond to higher default probabilities, a 
higher default correlation benefits the tranche. A different way to look at this is to think 
that for longer horizons the behavior of the mezzanine tranche tends to resemble the 
behavior of an equity tranche. The fact that equity tranches improve their expected loss 
behavior for higher correlations has been well established by Meng & Sengupta (2009). 

Figures 53, 54 and 55 show the case of the Mezzanine 2 tranche with the recovery 
rate following Equation 29 from Chapter 5. 
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Figures 53, 54 and 55: CDX.NA.IG Mezzanine 2 Tranche Confidence Intervals (Chapter 5, 
Equation 29), for 2, 5 and 10 Years Horizon Respectively 

2 Years     5 Years 

10 Years 

 

 

 

 

 

 

 

Source: Own Elaboration 

The behavior shown in these figures is similar to that of Figures 50, 51 and 52 with 
the caveat that the benefits of high correlation values for longer horizons becomes less 
pronounced. The reason is straightforward: the longer the horizon, the higher the default 
probability, which in turn results in a low recovery value (more onerous for the 
mezzanine tranche) unlike the previous case. 

7.2.2 Sensitivity Analysis to Errors in the Asset Parameters for the CDX.NA.IG Index	

Finally, Figures 56 and 57 show the sensitivity of the expected loss for the Senior 1 
and Mezzanine 2 tranches to errors in the asset parameters. In these cases, a 5 years 
maturity is considered, assuming the recovery rate is 50%, the default correlation is 
30% and the default probability equals 1.94%. 
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Figure 56: CDX.NA.IG Senior 1 Tranche Sensitivity 

 

 

 

 

 

 

 

 

Source: Own Elaboration 

Figure 57: CDX.NA.IG Mezzanine 2 Tranche Sensitivity 

 

 

 

 

 

 

 

Source: Own Elaboration 

Generally speaking, these figures are consistent with those of the ABACUS case. 
The fact that the default probability plays a more important role when one goes down in 
the capital structure is at least intuitively reasonable since lower seniority tranches are 
impacted by defaults much faster than more senior tranches. 

Figures 58 and 59 show a similar sensitivity analysis but assuming now that 
recovery rate is given by Equation 29 from Chapter 5. 

The results are analogous of Figures 42 and 43 in ABACUS, except that the 
Mezzanine 2 tranche is more sensitive to errors in the default probability.  
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Figure 58: CDX.NA.IG Senior 1 Tranche Sensitivity (Chapter 5, Equation 29) 

 

 

 

 

 

 

 

 

Source: Own Elaboration 

Figure 59: CDX.NA.IG Mezzanine 2 Tranche Sensitivity (Chapter 5, Equation 29) 

 

 

 

 

 

 

 

 

Source: Own Elaboration 

7.2.3 Confidence Intervals for the CDX.NA.HY Index	

In the case of the CDX.NA.HY there is only one maturity (five years). Figures 60 and 
61 show the expected loss for Senior 1 and Mezzanine tranches for 5 years maturity, 
assuming that the recovery rate follows a Beta distribution. The default probability of the 
pool rated on average Ba, can be described using a normal distribution with a mean 
equals to 10.21% and standard deviation equals to 0.53%. 

For correlation values around 15%, the confidence interval for the rating of the 
Senior tranche is fairly wide Aaa/Baa3 (nine notches). In the case of the Mezzanine 
tranche the rating could be anything between Aaa/Caa.  
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Figure 60: CDX.NA.HY Senior 1 Tranche Confidence Intervals (Beta Distribution) 

 

 

 

 

 

 

 

Source: Own Elaboration 

Figure 61: CDX.NA.HY Mezzanine Tranche Confidence Intervals (Beta Distribution) 

 

 

 

 

 

 

 

Source: Own Elaboration 

Figures 62 and 63 show the expected loss for the Senior 1 and Mezzanine tranche 
with the recovery rate following Equation 29 from Chapter 5.  

The behavior displayed in these figures is similar to the previous case except that it 
shows less variability. 
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Figure 62: CDX.NA.HY Senior 1 Tranche Confidence Intervals (Chapter 5, Equation 29) 

 

 

 

 

 

 

 

Source: Own Elaboration 

Figure 63: CDX.NA.HY Mezzanine Tranche Confidence Intervals (Chapter 5, Equation 29) 

 

 

 

 

 

 

 

Source: Own Elaboration 

7.2.4 Sensitivity Analysis to Errors in the Asset Parameters for the CDX.NA.HY Index	

Figures 64 and 65 show the sensitivity of the expected loss for Senior 1 and 
Mezzanine tranches, assuming that the recovery rate recovery rate equals to 50% and 
a default. The default correlation is equal to 30% and the default probability is 10.21%. 

These figures are consistent with the findings explained in the context of the 
CDX.NA.IG.  
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Figure 64: CDX.NA.HY Senior 1 Tranche Sensitivity 

 

 

 

 

 

 

 

Source: Own Elaboration 

Figure 65: CDX.NA.HY Mezzanine Tranche Sensitivity 

 

 

 

 

 

 

 

Source: Own Elaboration 

Figures 66 and 67 show the sensitivity of the expected loss for the Senior 1 and 
Mezzanine tranches, assuming that the recovery rate is given by Equation 29 from 
Chapter 5. 

Again, and as expected, the tendencies are the same shown in the previous figures 
albeit less variability. 
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Figure 66: CDX.NA.HY Senior 1 Tranche Sensitivity (Chapter 5, Equation 29) 

 

 

 

 

 

 

 

 

Source: Own Elaboration 

Figure 67: CDX.NA.HY Mezzanine Tranche Sensitivity (Chapter 5, Equation 29) 

 

 

 

 

 

 

 

 

Source: Own Elaboration 

7.3 Case #4: MIDGARD 

7.3.1 Confidence Intervals	

Initially the Super Senior and the Class III (Mezzanine) tranches of the MIDGARD 
transaction were both rated Aaa by Moody’s. Based on this information, it is possible to 
estimate the values for the asset parameters that let one obtain the ratings of the 
above-mentioned tranches. 

The assets in the underlying portfolio were rated Baa2 with an average maturity 
equal to 5 years. Thus, considering the normal distribution assumptions, the default 
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probability can be characterized using a mean equals to 1.94% and a standard 
deviation equals to 0.19%. 

By setting the value of the default probability equal to the mean, one can estimate 
the pairwise values of the default correlation and the recovery rate that match the 
expected loss associated to the given ratings. The set of pairs that satisfy this criterion 
is shown in Figure 68 (black points).  

Figure 68: Combinations of Default Correlation and Recovery Rate that Match the 
MIDGARD Tranches Ratings  

 

 

 

 

 

 

 

Source: Own Elaboration 

It can be seen from the Figure 68 that higher correlation values are associated with 
higher recovery rates. This is analogous to the situation already described in the context 
of the ABACUS transaction. It might seem strange at first sight that the pair of feasible 
points is a region instead of curve. One reason is due to the fact that there are only two 
rated tranches (the size of the tranches is bigger than in a transaction with many 
tranches) and therefore, there is more amplitude to find the pair of values that 
accommodate the rating. Additionally, the fact that the two tranches have the same 
rating and a similar maturity contribute to increase the number of feasible combinations 
of default correlation and recovery rate. 

Figures 69 and 70 show a subset of the pairs in Figure 68 that have the widest 
confidence intervals for the expected loss of the MIDGARD tranches. Figure 69 
corresponds to the Super Senior tranche whereas Figure 70 corresponds to the 
Mezzanine tranche. 

Regarding the Super Senior tranche, it can be safely said that it is comfortably 
contained within the Aaa region. In the case of the Mezzanine tranche is similar but the 
confidence intervals are more close to include more than one notch. 
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Figure 69: MIDGARD Super Senior Tranche Confidence Intervals for the Pairwise 
Default Correlation and Recovery Rate. 

 

 

 

 

 

 

 

 

Source: Own Elaboration 

Figure 70: MIDGARD Mezzanine Tranche Confidence Intervals for the Pairwise Default 
Correlation and Recovery Rate 

 

 

 

 

 

 

 

Source: Own Elaboration 

Figures 71 and 72 show the upper and lower bound with a 95% confidence 
interval for the expected loss in the case of the Super Senior tranche for different default 
correlation values. Figure 71 assumes that the recovery rate follows a Beta distribution. 
And in Figure 72, the recovery rate is given by Equation 29 from Chapter 5. 
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Figure 71: MIDGARD Super Senior Tranche Confidence Intervals (Beta Distribution) 

 

 

 

 

 

 

 

Source: Own Elaboration 

Figure 72: MIDGARD Super Senior Tranche Confidence Intervals (Chapter 5, Equation 29) 

 

 

 

 

 

 

 

Source: Own Elaboration 

Since correlation values are typically within the 15%-25% range, it is worth noting 
that the rating of this tranche could have been as low as Baa3 according to Figure 71... 
Moreover, even based on the center of the interval, the Aaa rating seems unwarranted 
for correlation values higher than 10%. Notice also that the Aaa rating even assuming 
that the recovery rate follows the behavior described by the Equation 29 from Chapter 5 
seems undeserved, for default correlations higher than 15%. 

Figures 73 and 74 show the upper and lower bound for the 95% confidence interval 
for the expected loss in the case of the Mezzanine tranche for different default 
correlation values. Figure 73 assumes that the recovery rate follows a Beta distribution. 
And in Figure 74, the recovery rate is given by Equation 29 from Chapter 5. 
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Figure 73: MIDGARD Mezzanine Tranche Confidence Intervals (Beta Distribution) 

 

 

 

 

 

 

 

Source: Own Elaboration 

Figure 74: MIDGARD Mezzanine Tranche Confidence Intervals (Chapter 5, Equation 29) 

 

 

 

 

 

 

 

Source: Own Elaboration 

Generally speaking, the same observations applied to the case of the Super Senior 
are valid here. However, the weakness of the Aaa rating becomes more salient.  

The results presented in the previous figures call into question pretty much the entire 
Moody’s analysis. More to the point, even using the Moody’s methodology it seems 
impossible to conclude comfortably that these tranches (especially the Mezzanine 
tranche) deserved an Aaa rating. One may speculate that the Moody’s analysis was 
performed based on the oversimplifying assumption that MIDGARD was a regular CDO 
supported by seven assets (each one representing one mezzanine tranche of the 
synthetic CDOs).  
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7.3.2 Sensitivity Analysis to Errors in the Asset Parameters	

Finally, Figure 75 and 76 show the sensitivity of the expected loss for the Super 
Senior and Mezzanine tranches assuming a mean recovery rate of 50% and a default 
correlation of 30%. The value for the default probability is 1.94%. 

Broadly speaking, these figures are consistent with those of the ABACUS and CDX 
indices cases. The fact that the default probability plays a more important role when one 
goes down in the capital structure is at least intuitively reasonable since lower seniority 
tranches are impacted by defaults much faster than more senior tranches. However, 
compared with previous cases, the role of the default correlation is diminished. 

Figure 75: MIDGARD Super Senior Tranche Sensitivity 

 

 

 

 

 

 

 

Source: Own Elaboration 

Figure 76: MIDGARD Mezzanine Tranche Sensitivity 

 

 

 

 

 

 

 

Source: Own Elaboration 
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Figures 77 and 78 show the sensitivity of the expected loss for the Super Senior and 
Mezzanine tranches, assuming that the recovery rate is given by Equation 29 from 
Chapter 5. 

Again, and as expected, the tendencies are the same shown in the previous Figures 
77 and 78. However, the variability is less manifest. 

Figure 77: MIDGARD Super Senior Tranche Sensitivity (Chapter 5, Equation 29) 

 

 

 

 

 

 

 

Source: Own Elaboration 

Figure 78: MIDGARD Mezzanine Tranche Sensitivity (Chapter 5, Equation 29) 
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7.4 Cases #5 and #6: Theoretical CDO-Squared 

The analysis of the theoretical synthetic CDO-Squared is similar to that of the 
indices. The main difference is in the incorporation of the degree of overlapping as 
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another factor in the analysis. The effect of the overlap is studied by considering three 
levels: 0%, 15% and 30%. 

7.4.1 Confidence Intervals for the T-CDX.NA.IG	

In the case of T-CDX.NA.IG, a 95% confidence interval for the expected loss of the 
two tranches considered is estimated. Figures 79, 80 and 81 show the expected loss for 
the Senior 1 tranche, assuming that the recovery rate follows a Beta distribution, for a 5 
years maturity and the three levels of overlap previously mentioned. The parameters for 
the default probability are identical to the case of the CDX.NA.IG. 

Figure 79, 80 and 81: T-CDX.NA.IG Senior 1 Tranche Confidence Intervals (Beta 
Distribution) With 0%, 15% and 30% of Overlap Respectively 

Overlap = 0%     Overlap=15%  

Overlap = 30% 

 

 

 

 

 

 

 

Source: Own Elaboration 

The behavior shown by these figures is consistent with the trends detected for the 
CDX.NA.IG index. Namely, increasing values of the correlation are associated with 
increasing uncertainty in the ratings. Specifically, for default correlation values within the 
15%-30% range (realistic values for most portfolios) the ratings can vary as much as 
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fifteen notches (Aaa/B2). As expected, the squared nature of the T-CDX.NA.IG brings 
more variability to the resulting confidence intervals. 

Additionally, in Figures 79, 80 and 81 it can be seen that an increment in the degree 
of overlapping has neither an important effect in the resulting confidence intervals nor 
on the average value. The reason for this effect is that the degree of diversification, 
even when is a 30% of overlap, is high enough to achieve all the benefits of 
diversification.  

In a common synthetic CDO, the diversification of the pool of assets is dependent 
not only on the number of referenced securities but also on the default correlation. This 
means that when the default correlation is close to one, the pool of assets behaves like 
a one single asset (no diversification). On the other hand, a default correlation close to 
zero makes the diversification to be dependent only on the number of referenced 
securities. 

 In the case of a synthetic CDO-Squared, the degree of overlap among the securities 
referenced by the pool of mezzanine tranches is a new dimension of diversification. 
Namely, a 100% of overlap forces the pool of tranches to behave like one single 
tranche, whereas a 0% of overlap the pool of tranches behaves highly diversified. 
However, this new diversification dimension is limited by the number of different assets 
referenced by the mezzanine tranches. Over certain number of assets, the impact of the 
overlap among referenced securities in the expected loss is meaningless.22 

Figures 82, 83 and 84 show the same case for the Senior 1 tranche but with the 
recovery rate following Equation 29 from Chapter 5.  

Figure 82, 83 and 84: T-CDX.NA.IG Senior 1 Tranche Confidence Intervals (Chapter 5, 

Equation 29) With 0%, 15% and 30% of Overlap Respectively. 

Overlap = 0%     Overlap=15% 

 
 

                                            
22 See Appendix 12 for a brief example of this situation. 
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Overlap = 30% 

 

 

 

 

 

 

 

Source: Own Elaboration 

These figures are very much in agreement with the trends displayed in the previous 
case (Figures 79, 80 and 81) except that the variability is much more bounded. 
However, even under these conditions there is a considerable variability in terms of the 
ratings (three notches). 

Figures 85, 86 and 87 show the case of the Mezzanine 2 tranche with the recovery 
rate distributed as a Beta. 

Again, and broadly speaking, the trends displayed by these figures are in agreement 
with the previous findings. Across all of the confidence intervals estimated, the ratings 
can vary as much as 17 notches. There is however one significant difference. The 
upper bound of the expected loss interval (blue line) becomes “inverted” for a default 
correlation over the 5%. This means that the mezzanine tranche resembles the 
behavior of the equity tranche.  

Figure 85, 86 and 87: T-CDX.NA.IG Mezzanine 2 Tranche Confidence Intervals (Beta 
Distribution) With 0%, 15% and 30% of Overlap Respectively. 

Overlap = 0%     Overlap=15% 
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Overlap = 30% 
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Figures 88, 89 and 90 show the case of the Mezzanine 2 tranche with the recovery 
rate following Equation 29 from Chapter 5.  

The behavior shown in these figures is similar to that of Figures 88, 89 and 90, with 
the caveat that there is no benefit for a higher level of default correlation. However, the 
ratings do not vary more than three notches. 

Figures 88, 89 and 90: T-CDX.NA.IG Mezzanine 2 Tranche Confidence Intervals (Chapter 
5, Equation 29) with 0%, 15% and 30% of Overlap Respectively. 

Overlap = 0%     Overlap=15% 
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Overlap = 30% 
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7.4.2 Sensitivity Analysis to Errors in the Asset Parameters for the T-CDX.NA.IG	

Figures 91 and 92 show the sensitivity of the expected loss for the Senior 1 and 
Mezzanine 2 tranches assuming a constant recovery rate equal to 50%, a default 
correlation equals to 30% and a default probability equals to 1.94%. 

Figure 91: T-CDX.NA.IG Senior 1 Tranche Sensitivity 

 

 

 

 

 

 

 

Source: Own Elaboration 

 

 

 

 



 

74 
 

Figure 92: T-CDX.NA.IG Mezzanine 2 Tranche Sensitivity 
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The sensitivity of the expected loss is consistent with the previous cases of study. 
The lower the seniority of the tranche, the more important is the role played by the 
default probability. However, there is an important difference. Both tranches experience 
the same order of sensitivity to parameters in terms of underestimating and 
overestimating the expected loss errors. This type of behavior is consistent with certain 
characteristics that market participants have already detected in CDO-Squared 
structures, namely, the “speed” at which a tranche deteriorates, as a function of the 
number of defaults, is much faster in the CDO-Squared structures.  

Figures 93 and 94 show the sensitivity of the expected loss for the Senior 1 and 
Mezzanine tranches, assuming that the recovery rate is given by Equation 29 from 
Chapter 5. 

Figure 93: T-CDX.NA.IG Senior 1 Tranche Sensitivity (Chapter 5, Equation 29) 
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Figure 94: T-CDX.NA.IG Mezzanine 2 Tranche Sensitivity (Chapter 5, Equation 29) 

  

 

 

 

 

 

 

 

 

Source: Own Elaboration 

Again, and as expected, the tendencies are the same shown in the previous figures 
albeit with more variability. The expected loss is more sensitive to errors in the default 
probability than in the default correlation. 

7.4.3 Confidence Intervals for the T-CDX.NA.HY	

In the case of the T-CDX.NA.HY the conclusions are similar to the T-CDX.NA.IG. 
Figures 95, 96 and 97 show the expected loss for the Senior 1 tranche, assuming the 
recovery rate follows a Beta distribution, for a 5 years maturity and the three levels of 
overlap previously mentioned. The parameters for the default probability are identical to 
the case of the CDX.NA.HY. 

Figures 95, 96 and 97: T-CDX.NA.HY Senior 1 Tranche Confidence Intervals (Beta 
Distribution) With 0%, 15% and 30% of Overlap Respectively. 

Overlap = 0%     Overlap=15% 
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Overlap = 30% 
 

 

 

 

 

 

 

 

Source: Own Elaboration 

Once again, the trends displayed by these figures are consistent with the previous 
findings. The effects of the overlap are not relevant. Across all of the possible 
correlation values, the rating exhibits a high degree of variability (up to 18 notches).  

Figures 98, 99 and 100 show the case of the Senior 1 tranche with the recovery rate 
following Equation 29 from Chapter 5.  

These figures are very much in agreement with the trends displayed in the previous 
case (Figures 95, 96 and 97) except that the variability is much more bounded. 
However, even under these conditions there is a considerable variability in terms of the 
ratings (three notches). 

Figures 98, 99 and 100: T-CDX.NA.HY Senior 1 Tranche Confidence Intervals (Chapter 5, 
Equation 29) with 0%, 15% and 30% of Overlap Respectively. 

Overlap = 0%     Overlap=15% 
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Source: Own Elaboration 

Figures 101, 102 and 103 show the case of the Mezzanine tranche with the recovery 
rate distributed as a Beta. 

Again, and broadly speaking, the trends displayed by these figures are in agreement 
with the previous findings. Across all of the confidence intervals estimated, the ratings 
can vary as much as 18 notches. There is, however, one significant difference. The 
upper bound of the expected loss interval is decreasing in the default correlation. This 
means that the mezzanine tranche behaves very much like an equity tranche.  

Figures 101, 102 and 103: T-CDX.NA.HY Mezzanine Tranche Confidence Intervals (Beta 
Distribution) with 0%, 15% and 30% of Overlap Respectively. 

Overlap = 0%     Overlap=15% 
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Overlap = 30% 

 

 

 

 

 

 

 

 

Source: Own Elaboration 

Figures 104, 105 and 106 show the case of the Mezzanine tranche with the recovery 
rate following Equation 29 from Chapter 5.  

The behavior shown in these figures is similar to that of Figures 101, 102, 103 with 
the caveat that there is no benefit for a higher level of default correlation. However, the 
ratings do not vary more than three notches. 

Figures 104, 105 and 106: T-CDX.NA.HY Mezzanine Tranche Confidence Intervals 
(Chapter 5, Equation 29) with 0%, 15% and 30% of Overlap Respectively. 

Overlap = 0%     Overlap=15% 
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Overlap = 30% 

 

 

 

 

 

 

Source: Own Elaboration 

7.4.4 Sensitivity Analysis to Errors in the Asset Parameters for the T-CDX.NA.HY	

Figures 107 and 108 show the sensitivity of the expected loss for the Senior 1 and 
Mezzanine 2 tranches assuming a constant recovery rate equal to 50%, a default 
correlation equal to 30% and a default probability equal to 10.21%. 

Figure 107: T-CDX.NA.HY Senior 1 Tranche Sensitivity 

 

 

 

 

 

 

 

 

Source: Own Elaboration 
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Figure 108: T-CDX.NA.HY Mezzanine Tranche Sensitivity 

 

 

 

 

 

 

 

Source: Own Elaboration 

These figures are consistent with the findings presented in the context of the T-
CDX.NA.HY. However, in this case, the expected loss seems to be more sensitive to 
errors in the default probability than in the default correlation. 

Figures 109 and 110 show the sensitivity of the expected loss for the Senior 1 and 
Mezzanine tranches, assuming that the recovery rate is given by Equation 29 from 
Chapter 5. 

Figure 109: T-CDX.NA.HY Senior 1 Tranche Sensitivity (Chapter 5, Equation 29) 

 

 

 

 

 

 

 

Source: Own Elaboration 
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Figure 110: T-CDX.NA.HY Mezzanine Tranche Sensitivity (Chapter 5, Equation 29) 

 

 

 

 

 

 

 

Source: Own Elaboration 

Again, and as expected, the tendencies are the same shown in the previous figures 
albeit with more variability. The expected loss shows relatively the same sensitivity to 
both the default probability and default correlation. 
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8. CONCLUSIONS 
 

The conclusions of this study can be summarized as follows: 
1) The amplitude exhibited by the confidence intervals for the expected loss of the 

different synthetic CDO tranches is significant. In fact, in many cases the 
intervals cover several rating notches. This shows that single-point estimators as 
a proxy for credit quality are very misleading. A better credit risk metric should 
include at least an assessment of the error in the single-point estimate of the 
rating. 

2) The study shows that the lower the seniority of a synthetic CDO tranche, the 
higher the degree of instability of the credit ratings. This result is consistent with 
the risk nature of the different tranches as well as the priority of payments 
structure. The study also shows that for mezzanine tranches the ratings could 
vary by as much as 4 to 9 notches; whereas for senior tranches the variations 
were less significant, in the 2 to 4 notches range. This variations is even more for 
the case of synthetic CDO-Squared.  

3) Even in the cases in which the recovery rate is assumed to be deterministic, the 
stochastic behavior of the probability of default is enough to bring significant 
variability to the expected loss computation and thus the ratings themselves.  

4) Contrary to what is generally believed, namely that the degree of overlapping in a 
synthetic CDO-Squared has a major significance in the performance of the 
tranches of such CDO, this study has proved that this is not the case. More 
precisely, for overlapping levels less than 30% (the most typical cases), variation 
in the expected loss are minimal. The main reason for this is that, in general, the 
underlying portfolios are already highly diversified due to the high number of 
securities involved.  

5) The study shows that the expected loss is much more sensitive to errors in the 
recovery rate. Whether the expected loss is more sensitive to the default 
probability than the default correlation will depend on the tranche structure of the 
synthetic CDO. In the case of a synthetic CDO-Squared, the expected loss is 
more sensitive to the default probability. In this sense, the focus of many 
regulatory frameworks which are specified in terms of the recovery rate and 
default probability seems to be reasonable for synthetic CDOs. 

6) The study shows that it was possible for cautious investors to be skeptical about 
synthetic CDO tranches deals even before 2007. Since only sophisticated 
investors participated in synthetic CDO deals, one can expect them to have 
performed a risk analysis before entering into any these transactions. For 
example, the analysis shows that using public information available from the 
marketing material of the ABACUS and MIDGARD transactions was sufficient to 
detect the sensitivity of the ratings to the modeling assumptions. This effect was 
much more pronounced in the ABACUS case. These two transactions, as it is 
known already, resulted in major losses for most investors.  



 

83 
 

7) The instability of synthetic CDO credit ratings should be of interest to institutional 
investors. Normally, their portfolios credit risk exposure is subject to limits 
according to some benchmarks determined by ratings. Thus, surpassing these 
limits could be very costly: whenever a security is downgraded below certain 
level, these institutions are forced to sell. For these reasons, institutional 
investors should be very sensitive to the likelihood that their holdings could be 
downgraded. 

It is important that future regulation based on credit ratings (at least in the case of 
synthetic CDOs) should move beyond the single-point estimators. Ideally, regulatory 
rules related to reserves percentages of holdings, margin accounts, collateral posting, 
etc., should somehow incorporate a measure of ratings stability. 

Some suggestions for future studies are the following. The present study was largely 
based on Moody’s methodology; it should be useful to carry out a similar effort based on 
the S&P and Fitch methodologies. Additionally, the extension of this study to cashflow 
CDOs could be very useful. More broadly, ratings stability studies should be extended 
to the entire gamut of structured products (securitization of student loans, credit card 
receivables, future flows, etc.) and other debt instruments that use ratings, such as 
bonds.  

Finally, regulators should be able to identify ex-ante a level of accuracy for ratings 
such that no one ex-post should be surprised with the performance, bad or good, of a 
synthetic CDO. Will it be possible to meet this challenge? Only time will tell. 
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10. APPENDIX 

Appendix 1: How Much Did Banks and Insurance Companies Lose During 
the Subprime Crisis? 

One of the major consequences of the subprime crisis was that many financial 
institutions experienced substantial losses. In some extreme cases, these institutions 
disappeared altogether (filed for bankruptcy). That was the case, for example, with 
Lehman Brothers and Bear Sterns. Others were merged with stronger institutions. For 
example, Merrill Lynch was absorbed by Bank of America. A third group was kept alive 
with significant help from the government (for example Citigroup, Fannie Mae and AIG).  

Finally, several monolines (like MBIA, Ambac and FGIC) either went out of 
business or were intervened by insurance regulators.  

Figure A.10.1 shows the distribution of write-downs during the subprime crisis. 
Figure A.10.2 is a more detailed version of Figure A.10.1, which shows the losses 
suffered by the most important institutions. 

 

Figure A.1.1: Distribution of Write-Downs 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: Creditflux 
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Figure A.1.2: Detailed Distribution of Write-Downs 

Source: Creditflux 
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Appendix 2: Credit Event Definitions 

CDS contracts are structured with standard swap agreements provided by the 
International Swaps and Derivatives Association (ISDA). Under the ISDA agreement, 
the most commonly used credit events in the case regular CDS are: failure to pay, 
bankruptcy, restructuring or repudiation. When the CDS refers to a mezzanine tranche, 
like in the case of a synthetic CDO-Squared, the most typical credit events are: Failure 
to pay, principal write-down and rating downgrade. The table below describes in more 
detail these credit events. 

Credit Event  Description 

Failure to Pay 
The failure of the reference entity to make 
payments due on any obligation before the 
expiration of any applicable grace period. 

Bankruptcy 

The dissolution or insolvency of a reference 
entity, the inability to pay debts, or the shift 
of control to a secured party, custodian, or 

receiver. 

Restructuring 

The reference entity or governmental 
authority changes an obligation by reducing 

the interest rate or the principal amount, 
postponing the payment of interest or 

principal, lowering the payment priority of 
the obligation, or changing the currency to 

one that is not permitted 

Repudiation 

The validity of an obligation is rejected 
either by the reference entity or a 

government authority. This event is mostly 
applicable to sovereign credits. 

Principal Write-down  
(Loss Event) 

Whenever any amount of principal with 
respect to any write-down reference 

obligation is permanently reduced due to 
the (loss event) allocation of losses, write-
offs, charge-offs, defaults, or liquidations.  

Rating Downgrade 

The assignment of a below-CCC rating in 
combination with downgrade the 

postponement of interest for two or more 
periods. 

Source: Handbook of Fixed Income Securities. Chapter 31: "Synthetic CDOs" 
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Appendix 3: Comparison between Cash and Synthetic CDOs. 

Cash and synthetic CDO differ slightly in terms of both their mechanics and their 
purpose. The table below details some of these differences. 

Characteristic Typical Cash CDO Typical Synthetic CDO 

Collateral Pool 
High-yield corporate bonds, leveraged 

loans, trust-preferred securities, 
emerging market debt and ABS 

Credit default swap linked to a 
pool of balance-sheet assets 
(loans, senior or mezzanine 
structured finance) or to a 

reference pool of corporate 
credits (usually investment 

grade)  

 Size US$200 million- US$600 million $1 billion plus 

Collateral Quality 
Investment-grade or below investment-

grade and even distressed collateral 
Primarily investment-grade 

Management Typically managed Typically static 

Moral Hazard 
Possible through the purchase of 

collateral designed to benefit one class 
of investors over others 

Generally no due static nature 
of these transactions 

Payment 
Frequency 

Quarterly o semiannually Quarterly 

Legal final 
Generally 12 years for transactions 

tied to corporate credits but as long as 
30 years for transactions tied to ABS 

For balance-sheet or arbitrage 
transactions linked to 

corporate debts, 4-6 years. 
For structured finance deals, 

10-30 years 

Expected 
Maturities 

Generally 7-12 years for transactions 
tied to corporate debt credits 

depending on the payment priority of 
the investment 

For arbitrage and balance-
sheet transactions linked to 
corporates, 3-5 years. For 
structured finance deals, 

approximately eight years for 
senior debt and 15 years for 

subordinate debt 

Ramp-Up Period 0-6 months 

Generally, immediate to 1 
month although arbitrage 

structured finance CDOs may 
have periods as long as a year

Prepayment  
Risk 

Yes Generally, no 

Reinvestment  
Risk 

Yes, for transactions with reinvestment 
periods 

Generally no due to static 
nature of these transactions 

Source: Handbook of Fixed Income Securities. Chapter 31: "Synthetic CDOs" 
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Appendix 4: Credit Ratings Description. 

The CRAs ratings use different symbols to denote their ratings. The table below 
lists the symbols used by Moody’s, S&P and Fitch. As can be seen, rated debt 
instruments can be broadly divided into two different categories: investment grade and 
high-yield. 

Ratings  Description 
Moody's  S&P  Fitch 
Aaa  AAA  AAA 

Investment Grade 

Aa1  AA+  AA+ 
Aa2  AA  AA 
Aa3  AA‐  AA‐ 
A1  A+  A+ 
A2  A  A 

A3  A‐  A‐ 
Baa1  BBB+  BBB+ 
Baa2  BBB  BBB 
Baa3  BBB‐  BBB‐ 
Ba1  BB+  BB+ 

Non‐Investment 
Grade (High‐Yield) 

Ba2  BB  BB 
Ba3  BB‐  BB‐ 
B1  B+  B+ 
B2  B  B 
B3  B‐  B‐ 
Caa  CCC+ 

CCC Ca  CCC 
C  CCC‐ 
‐ 

D 
DDD 

‐  DD 
‐  D 

Source: Moody’S, S&P and Fitch. 

 

  



 

93 
 

Appendix 5: Moody’s Expected Loss. 

The following table lists the different values of Moody’s expected loss, for 
different time horizons and credit rating. 

Time Horizon (Years) 

Rating  1  2  3  4  5  6  7  8  9  10 

Aaa  0.0000%  0.0001%  0.0004%  0.0010%  0.0016%  0.0022%  0.0029%  0.0036%  0.0045%  0.0055% 

Aa1  0.0003%  0.0017%  0.0055%  0.0116%  0.0171%  0.0231%  0.0297%  0.0369%  0.0451%  0.0550% 

Aa2  0.0007%  0.0044%  0.0143%  0.0259%  0.0374%  0.0490%  0.0611%  0.0743%  0.0902%  0.1100% 

Aa3  0.0017%  0.0105%  0.0325%  0.0556%  0.0781%  0.1007%  0.1249%  0.1496%  0.1799%  0.2200% 

A1  0.0032%  0.0204%  0.0644%  0.1040%  0.1436%  0.1815%  0.2233%  0.2640%  0.3152%  0.3850% 

A2  0.0060%  0.0385%  0.1221%  0.1898%  0.2569%  0.3207%  0.3905%  0.4560%  0.5401%  0.6600% 

A3  0.0214%  0.0825%  0.1980%  0.2970%  0.4015%  0.5005%  0.6105%  0.7150%  0.8360%  0.9900% 

Baa1  0.0495%  0.1540%  0.3080%  0.4565%  0.6050%  0.7535%  0.9185%  1.0835%  1.2485%  1.4300% 

Baa2  0.0935%  0.2585%  0.4565%  0.6600%  0.8690%  1.0835%  1.3255%  1.5675%  1.7820%  1.9800% 

Baa3  0.2310%  0.5775%  0.9405%  1.3090%  1.6775%  2.0350%  2.3815%  2.7335%  3.0635%  3.3550% 

Ba1  0.4785%  1.1110%  1.7215%  2.3100%  2.9040%  3.4375%  3.8830%  4.3395%  4.7795%  5.1700% 

Ba2  0.8580%  1.9085%  2.8490%  3.7400%  4.6255%  5.3735%  5.8850%  6.4130%  6.9575%  7.4250% 

Ba3  1.5455%  3.0305%  4.3285%  5.3845%  6.5230%  7.4195%  8.0410%  8.6405%  9.1905%  9.7130% 

B1  2.5740%  4.6090%  6.3690%  7.6175%  8.8660%  9.8395%  10.5215%  11.1265%  11.6820%  12.2100% 

B2  3.9380%  6.4185%  8.5525%  9.9715%  11.3905%  12.4575%  13.2055%  13.8325%  14.4210%  14.9600% 

B3  6.3910%  9.1355%  11.5665%  13.2220%  14.8775%  16.0600%  17.0500%  17.9190%  18.5790%  19.1950% 

Caa1  9.5599%  12.7788%  15.7512%  17.8634%  19.9726%  21.4317%  22.7620%  24.0113%  25.1195%  26.2350% 

Caa2  14.3000%  17.8750%  21.4500%  24.1340%  26.8125%  28.6000%  30.3875%  32.1750%  33.9625%  35.7500% 

Caa3  28.0446%  31.3548%  34.3475%  36.4331%  38.4017%  39.6611%  40.8817%  42.0669%  43.2196%  44.3850% 

Source: Moody’s 
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Appendix 6: The Gauss-Hermite Quadrature 

The numerical integration is used whenever is not analytically possible to obtain 
the value of a definite integral. In this context, the Gauss-Hermite quadrature is a 
numerical integration formula, useful to approximate integrals of the form: 

න ࢞ିࢋ
૛
࢞ࢊሺ࢞ሻࢌ

ାஶ

ିஶ

ൎ෍ࢌ࢏࡭ሺ࢞࢏ሻ

࢔

ୀ૚࢏

 

where ࢌሺ࢞ሻ	is a smooth function, and both ࢞࢏ and ࢏࡭ are a set of ࢔ abscissas and 
coefficients and determined by the quadrature.  

The numerical integration is the computation of the value of a definite integral. 
The numerical integration is useful when is not possible to obtain an analytical solution 
for a definite integral.  

There are two groups of methods for numerical integration, the Newton-Cotes 
formulas and the Gaussian quadratures. The first ones, separate the interval of 
integration in a given number of equally spaced abscissas. Then, the area under the 
curve of the function is estimated in each interval. On the other hand, Gaussian 
quadratures locate the abscissas in determined positions to find the best possible 
accuracy for a given number of points to consider. The main difference between 
Newton-Cotes formulas and Gaussian quadratures is that the last group requires fewer 
evaluations of the function and can hand integrable singularities. 

The Gauss-Hermite quadrature is a numerical integration method which is useful 
to estimate integrals of the form: 

න ࢞ିࢋ
૛
࢞ࢊሺ࢞ሻࢌ

ାஶ

ିஶ

 

where ࢌሺ࢞ሻ is a smooth function. Considering ܖ abscissas, the integral is estimated by: 

න ࢞ିࢋ
૛
࢞ࢊሺ࢞ሻࢌ

ାஶ

ିஶ

ൎ෍ࢌ࢏࡭ሺ࢞࢏ሻ

࢔

ୀ૚࢏

 

where ࢌሺ࢞ሻ	is a smooth function, and both ࢞࢏ and ࢏࡭ are a set of ࢔ abcissas and 
coefficients and determined by the quadrature. The abscissas are calculated as the 

zeros of the orthogonal polynomials ࣐࢔ሺ࢞ሻ with respect to ࢞ࢋ
૛
, defined as:  
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න ࢞ିࢋ
૛
࢞ࢊሺ࢞ሻ࢓ሺ࢞ሻ࣐࢔࣐

ାஶ

ିஶ

࢓	 ്  ࢔

where ࣐࢔ሺ࢞ሻ is defined with the following recurrence: 

ା૚ሺ࢞ሻ࢔࣐࢔ࢇ ൌ ሺ࢔࢈ ൅ ሺ࢞ሻ࢔ሻ࣐࢞࢔ࢉ െ  ૚ሺ࢞ሻି࢔࣐࢔ࢊ

with:  

࣐૙ሺ࢞ሻ ൌ ૚;	࣐૚ሺ࢞ሻ ൌ ૛࢞; ࢔ࢇ ൌ ૚; ࢔࢈ ൌ ૙; ࢔ࢉ ൌ ૛; ࢔ࢊ ൌ ૛ 

The coefficients࢏࡭ are obtained by: 

࢏࡭ ൌ
૛࢔ା૚࢔! √࣊
ሾ࢔ࡴ

ᇱ ሺ࢞࢏ሻሿ૛
 

where ࢔ࡴ
ᇱ ሺ࢞ሻ is defined as: 

࢔ࡴ
ᇱ ሺ࢞ሻ ൌ ૛࢔ሺെ૚ሻ࢞ࢋ࢔

૛ ࢔ࢊ

࢔࢞ࢊ
ሺ࢞ିࢋ

૛
ሻ 
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Appendix 7: Comparison between Monte Carlo Simulation and Gauss-
Hermite Quadrature for a Synthetic CDO. 

This section explains why the Gauss-Hermite quadrature outperforms the Monte 
Carlo simulation in the estimation of ࢐࢖ for a synthetic CDO. The reason for this is that 
for a given level of accuracy, Gauss-Hermite quadrature is less computationally 
intensive than the Monte Carlo simulation. 

i. Estimation of ࢐࢖ 

The first step is to compare whether the Gauss-Hermite quadrature and Monte 
Carlo simulation can give similar results for ࢐࢖.  

In order to check the goodness of fit taking the result of the Monte Carlo as the 
reference values, there are two alternatives. 

 The most common statistical method is the Chi-Square Goodness-Fit-Test, 
which allows the use of discrete and continuous probability distributions. Given 
expected values for a specified distribution, this method check whether the 
observed data fit the specified distribution. In order to do this, the method tests 
null hypothesis that the observed data fit the specified distribution, with an error 
of ࢻ%. The null hypothesis could be accepted or rejected under a ૚ െ  level %ࢻ
of confidence depending on the value of the following statistic: 

࣑࢑ି૚
૛ ൌ෍

ሺ࢏ࡻ െ ሻ૛࢏ࡱ

࢏ࡱ

࢑

ୀ૚࢏

 

where ࢑ is the number of events, ࢏ࡻ	is the observed frequency of event ࢏ and 
 For the purpose of this study, one .࢏ is the expected frequency of event	࢏ࡱ
might consider the values of ࢐࢖ obtained from a Monte Carlo and the Gauss-
Hermite quadrature as the estimated and observed frequencies respectively. 

 

The problem with this method is that the estimated values for ࢐࢖ can be very 
close to zero. For a given set of pool characteristics, there are many default 
scenarios whose value of ࢐࢖ is very close to zero. Due to this fact, the 
estimation of ૏࢑ି૚

૛  can lead to floating point errors. For this reason the Chi-
Square Goodness-Fit-Test is not ideal. 
 

 Another alternative is the use of a linear regression to compare the estimation 
of ࢐࢖ by both the Gauss-Hermite quadrature and the Monte Carlo simulation. 
The rationale behind the use of a linear regression is the following. 
It is well known that the use of a Monte Carlo simulation leads to an accurate 
estimation of the values of ࢐࢖. Therefore, the estimation of ࢐࢖ by the Gauss-
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Hermite quadrature should explain this value substantially. Consider the 
following expression: 

ࢅ ൌ ૙ࢼ ൅  ࢄ૚ࢼ

where: 

ࢅ ൌ The value of ࢐࢖ estimated by using Monte Carlo simulation, for 
࢐ ൌ ૙, ૚, ૛, …  .ࡺ,

ࢄ ൌ The value of ࢐࢖ estimated by using the Gauss-Hermite 
quadrature, for ࢐ ൌ ૙, ૚, ૛, …  .ࡺ,

૙ࢼ ൌ The intercept term, which is expected to be very close to 0 

૚ࢼ ൌ The regression coefficient, which is expected to be very close 
to ૚. 

 

In order to check whether ࢼ૙ ൌ ૙ and ࢼ૚ ൌ ૚, tests of linear restrictions can be 
used. 

The use of linear regression to compare both approaches requires to estimate ࢐࢖ for 
different values of ࡼ and ࣋. For this purpose, consider the following synthetic CDO: 

 The reference pool consists of 100 assets. Because this analysis focuses on ࢐࢖, 
neither the value of ࢻ nor the synthetic CDO tranche structure is required. 

 For the securities in the reference portfolio, the study considers all the possible 
pairwise combinations of ࡼ and ࣋ from Tables 7.1 and 7.2. 

Tables A.7.1 and A.7.2: Considered Values for Default Probability and Default Correlation 

Default Probability ( ࡼ )% 

0.00001  0.0001  0.001  0.01  0.1  1  10  20 

30  40  50  60  70  80  90  100 

 

Default Correlation ( ࣋ ) % 

0  10  20  30  40  50  60  70  80  90  100 

 

 The result of this analysis is that both hypothesis of ࢼ૙ ൌ ૙ and ࢼ૚ ൌ ૚ are never 
rejected in any of the cases. The case of ࡼ and	࣋ equal to ૞૙% is the only case that 
could not be checked with the linear regression. In this particular case the linear 
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regression did not work since all of the ࢐࢖ take the same value. Figures A.7.1, A.7.2 and 
A.7.3 show this situation more clearly. 

Figures A.7.1, A.7.2 and A.7.3: Considered Values for Default Probability and Default 

Correlation 

 

 

 

 

 

 

 

 

Source: Own Elaboration 

The reason for this particular case is explained by the following analytical 
demonstration: 

 Let ࡼ ൌ ૙. ૞ and ࣋ ൌ ૙. ૞. Therefore, the value of ࢗሺࢠሻ becomes: 

ሻࢠሺࢗ ൌ ࢏ࢿ	ቆ࢈࢕࢘ࡼ ൑
ሻࡼ૚ሺିࢶ െ ඥ࣋ࢆ

ඥ૚ െ ࣋
ࢆ ൌ ൗࢠ ቇ ൌ ࢈࢕࢘ࡼ	 ቆ	࢏ࢿ ൑

૙ െ .૙√ࢆ ૞

√૚ െ ૙. ૞
ࢆ ൌ ൗࢠ ቇ 

ൌ ࢏ࢿ	ሺ࢈࢕࢘ࡼ ൑ ࢆ ࢆ ൌ ⁄ࢠ ሻ ൌ  ሻࢠሺࢶ

Because of this, ࢐࢖ can be rewritten as: 

࢐࢖ ൌ න ൬
ࡺ
࢐
൰

ାஶ

ିஶ

ሻ࢐൫૚ࢠሺࢗ െ ሻ൯ࢠሺࢗ
࢐ିࡺ

ࣘሺࢠሻࢠࢊ ൌ න ൬
ࡺ
࢐
൰

ାஶ

ିஶ

ሻ࢐൫૚ࢠሺࢶ െ ሻ൯ࢠሺࢶ
࢐ିࡺ

ࣘሺࢠሻࢠࢊ 
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 Due to the fact that ࢶሺࢠሻ have values in the interval ሾ૙, ૚ሿ,	ࢶሺࢠሻ can be replaced 
by a variable	࢛ with values in the same interval. Thus: 

ሻࢠሺࢶ ൌ ࢛	with 	࢛ ∈ ሾ૙, ૚ሿ 
 

⇒ 	ࣘሺࢠሻࢠࢊ ൌ  ࢛ࢊ
 

then,  

࢐࢖ ൌ න ൬
ࡺ
࢐
൰

ାஶ

ିஶ

ሻ࢐൫૚ࢠሺࢗ െ ሻ൯ࢠሺࢗ
࢐ିࡺ

ࣘሺࢠሻࢠࢊ ൌ න൬
ࡺ
࢐
൰

૚

૙

࢛࢐ሺ૚ െ ࢛ሻ࢛ࢊ࢐ିࡺ 

 Considering the definition of the Gamma function for integer numbers as: 

ሻ࢔ሺࢣ ൌ ሺ࢔ െ ૚ሻ!		 

then, 

࢐࢖ ൌ න
!ࡺ

࢐! ሺࡺ െ ࢐ሻ!
࢛࢐ሺ૚ െ ࢛ሻ࢛ࢊ࢐ିࡺ

૚

૙

ൌ න
ࡺሺࢣ ൅ ૚ሻ

ሺ࢐ࢣ ൅ ૚ሻࢣሺࡺ െ ࢐ ൅ ૚ሻ
࢛࢐ሺ૚ െ ࢛ሻ࢛ࢊ࢐ିࡺ

૚

૙

 

ൌ
ሺ࢐ሻࢣ

ሺ࢐ࢣ ൅ ૚ሻ
න࢛	

ࡺሺࢣ ൅ ૚ሻ
ࡺሺࢣሺ࢐ሻࢣ െ ࢐ ൅ ૚ሻ

࢛࢐ି૚ሺ૚ െ ࢛ሻ࢛ࢊ࢐ିࡺ

૚

૙

 

 Finally, the integral equals the mean of a Beta distribution of parameters ࢐ and 
െࡺ ࢐ ൅ ૚, so: 

࢐࢖ ൌ
ሺ࢐ሻࢣ

ሺ࢐ࢣ ൅ ૚ሻ
	

࢐
ሺࡺ െ ࢐ ൅ ૚ሻ ൅ ࢐

ൌ
૚
࢐
	

࢐
ࡺ ൅ ૚

 

 

࢐࢖⇒ ൌ
૚

ࡺ ൅ ૚
	∀࢐ ൌ ૙, ૚, ૛, …  ࡺ,

 This result means that, when	ࡼ ൌ ૙. ૞ and ࣋ ൌ ૙. ૞, all of the default scenarios 
are equiprobable. This result is consistent with the numerical results obtained with the 
Monte Carlo simulation.  

ii. Time Computation of ࢐࢖ 

Although both approaches yield similar estimates of ࢐࢖, the Gauss-Hermite 
quadrature outperforms the Monte Carlo simulation in terms of time. The following table 
compares the computation time required for both approaches. 
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Monte Carlo  Gauss‐Hermite 

# of Simulations  # of Abcissas 

10000  20000  100  150 

1800  4200  20  30 

Time in milliseconds 
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Appendix 8: The Beta Distribution for the Recovery Rate 

The use of the Beta distribution for the recovery rate is supported by several 
studies. The Basel Committee on Banking Supervision (BCBS), for example, endorses 
this of using a model for the recovery rate, rather than practice of choosing one fixed 
value. Ideally, the model should take into account downturn economic conditions. With 
this approach banks are supposed to be less likely to underestimate the economic 
capital they require. In this sense, the BCBS express skepticism that the recovery rate 
cannot be obtained from historical data. The reason is that historical data can be 
unreliable when credit losses become higher. 

Many studies have tried to explain the behavior of the recovery rates using 
different credit risk models. (Morozovskiy, 2004) categorizes these approaches in three 
groups: 

 The first group consists of structural models. They consider the accounting 
concepts of assets and liabilities to check whether the firm defaults or not. In 
these models the dependence of the recovery rate on the default probability does 
not follow a Beta distribution. 

 The second group is called the reduced form models. These models are based 
on the Poisson distribution. The recovery rate and the default probability are 
modeled independently.  

 The third big group is known as the credit portfolio models. These models are 
based on the Value at Risk methodology to describe the default probability of the 
firm portfolio.  

None of the mentioned groups leads to a Beta distribution to model the recovery 
rate. Supporting the use of a Beta distribution (Morozovskiy, 2004) develops a 
theoretical model that explains the Beta distribution for the recovery rate. The author 
considers a demand and supply framework where the remaining assets of a defaulted 
firm can be traded in the secondary market. The author concludes that in general, his 
model leads to quasi-Beta distributions. However, a Beta distribution can be obtained 
under certain parameters for the models he uses. 

Other studies have used the Beta distribution for the recovery rate. For instance, 
both Unal & Madan (1998) and Gaspar & Slinko (2008) have used it when studying the 
pricing of risk in debt securities and credit risk models respectively. (Uhrig-Homburg & 
Schläfer, 2010) analyze the recovery rate behavior in CDS contracts with the Beta 
distribution. Finally, Gupton & Stein (2002) also use a Beta distribution in Moody’s 
model for predicting the loss given default. 
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Appendix 9: The Chain of Events in Relation with the ABACUS Deal 

Paulson & Co., one of the largest hedge fund in the world by early 2007, 
approached Goldman Sachs and express interest in taking a short position in a 
synthetic CDO agreement referencing a certain group of mortgage bonds. In order to do 
this, Paulson & Co. needed to buy protection on some reference portfolio.  

To structure the deal, Paulson & Co. chose 123 subprime residential mortgage 
backed securities. These securities were rated as Baa2 by Moody’s. The portfolio 
concentrated in adjustable rate mortgages with relative low borrower credit scores. The 
geographic distribution of those residential mortgages was highly concentrated in the 
states of Arizona, California, Florida and Nevada. The performance of the home price in 
these states can be seen in Figure A.9.1.  

Figure A.9.1: Comparison of Home Prices in the States of California, Florida and Nevada 
With Respect to the Composite 10 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: Standard & Poor’s 

Next, a third party was brought into the ABACUS transaction. ACA Management, 
a collateral manager of CDOs, was asked by Goldman Sachs to make the final 
selection of the reference portfolios based on the initial names determined by Paulson & 
Co. According to SEC filings, ACA Management was misled to think that Paulson & Co. 
was interested in investing in the equity tranche of the ABACUS at issuance. 

After several meeting among executives of the three involved firms, they mutually 
agreed on 92 residential mortgage backed securities to be included in the reference 
portfolio. Then, Goldman Sachs marketed ABACUS among investors without making 
any reference to the participation of Paulson & Co. in the portfolio selection. The initial 
participation of the different investors can be seen in Figure A.9.2. 



 

103 
 

Figure A.9.2: Initial Participation of Different investors in the ABACUS Transaction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Source: Business Insider 

ACA Capital, a parent company of ACA Management, together with IKB, a 
German commercial bank, agreed to sell credit protection on the ABACUS reference 
portfolio. ACA invested US$42 million in the Class A notes and another US$ 900 million 
in the Super Senior tranche. IKB invested US $150 million in the Class A notes. A 
remaining 5% of the Class A Notes was acquired by Goldman Sachs. 

On the opposite side of the deal, Paulson & Co. was the big participant. Instead 
of investing in the equity tranche of the ABACUS, Paulson &Co. bought credit protection 
on the reference portfolio. 

Lately, the Dutch bank ABN AMRO got involved in the transaction. Through a 
series of CDS contracts, ABN assumed the credit risk of Goldman Sachs and ACA 
Capital.  

Finally, Paulson & Co. view of the collateral turned out to be right. By early 2008, 
almost the entire reference portfolio had defaulted. Therefore, the ABACUS tranches 
experienced heavy losses. IKB lost US$150 million and ABN other US$840 million. On 
the other hand, Paulson & Co. profited US$ 1.1 billion and Goldman Sachs pocketed 
US$ 15 million in structuration fees.  

The SEC did not sue Goldman Sachs until 2010. After many sessions in court, the 
SEC and Goldman Sachs reached an agreement. Goldman Sachs paid a total amount 
of US$ 550 million in settlement charges. IKB and ABN received US$150 and US$100 
million respectively in compensations. The remaining US$ 300 million were paid to the 
U.S. Treasury. In addition, Goldman Sachs acknowledged that not disclosing the name 
of Paulson & Co. in the marketing material had been a mistake. 
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Appendix 10: CDX Indices Composition 

Since the inception of the two CDX indices in late 2004, the portfolio composition 
among industries has been very stable through time. The following figures show the 
composition of the CDX.NA.IG and CDX.NA.HY indices respectively. 

Figure A.10.1: Composition of CDX.NA.IG 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

Source: Own Elaboration, Based on Longstaff and Myers 2009.  

Figure A.10.2: Composition of CDX.NA.HY 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Source: Own Elaboration, Based on Longstaff and Myers 2009. 
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Appendix 11: Linear Programming Solution for the MIDGARD 
Overlapping 
 
 To find out the actual structure of the MIDGARD CDO-Squared, based on the 
constraints described in the issue report of the transaction, the following linear 
optimization problem can be solved. 

Sets 

࢏ ൌ ૚, . . , ૞૟૙; 			࢐ ൌ ૚, . . , ૠ;	࢑࢐ ൌ ሼ	ଚ̂ ൐ ࢐		\	ଚ̂ ൌ ࢐ ൅ ૚, ࢐ ൅ ૛, . . , ૠሽ		 

Decision Variables 

࢐,࢏࢞ ൌ ൜
	૚,	if asset	࢏	belongs to CDO	࢐

૙,	otherwise
,࢏∀						 ࢐ 

࢐,࢏࢟ ൌ ൜
	૚,	if asset	࢏	belongs to	࢐	CDOs

૙,	otherwise
,࢏∀						 ࢐ 

࢐,࢑࢐,࢏ࢠ ൌ ൜
	૚,	if asset	࢏	belongs to both CDOs	࢐	and	࢑࢐	

૙,	otherwise
,࢏∀						 ࢐, ࢑࢐ 

Restrictions 

The total number of assets per CDO should be equal to 80	 ⇒෍࢞࢐,࢏

૞૟૙

ୀ૚࢏

ൌ ૡ૙	∀࢐ 

Overlap of the asset ࢏ among ࢐ CDOs  ⇒෍࢐ ൈ ࢐,࢏࢟

ૠ

࢐ୀ૚

ൌ෍࢞࢐,࢏

ૠ

࢐ୀ૚

 ࢏∀	

The total number of independent referenced assets equals 259 	 ⇒ 	෍࢟࢐,࢏

૝

࢐ୀ૚

ൌ ૛૞ૢ	∀࢏ 

No asset ࢏	belongs to more than 4 CDOs  ⇒  ෍࢟࢐,࢏

ૠ

࢐ୀ૞

ൌ ૙	∀࢏ 

Overlapped asset ࢏	between a pair of CDOs ⇒૛ ൈ ࢐,࢑࢐,࢏ࢠ ൑ ࢐,࢏࢞ ൅ ,࢏∀	࢑࢐,࢏࢞ ࢐ 

The overlapped between any pair of synthetic CDOs is less or equal than 30% 

⇒ 	෍࢐,࢑࢐,࢏ࢠ

૞૟૙

ୀ૚࢏

൑ ૜૙% ൈ ૡ૙			∀࢐, ࢑࢐ 
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The average degree of overlapping among the seven synthetic CDOs is 26%: 
This condition was translated by the following two conditions: 

Average overlapped assets should be greater or equal to 25.5%×80	 

⇒
૚
૛૚

෍෍ ෍ ࢐,࢑࢐,࢏ࢠ ൒ ૛૞. ૞% ൈ ૡ૙

ૠ

࢑࢐ୀ࢐ା૚

૟

࢐ୀ૚

૞૟૙

ୀ૚࢏

 

Average overlapped assets should be less or equal to 26.5%×80 

 ⇒ 	
૚
૛૚

෍෍ ෍ ࢐,࢑࢐,࢏ࢠ ൑ ૛૟. ૞% ൈ ૡ૙

ૠ

࢑࢐ୀ࢐ା૚

૟

࢐ୀ૚

૞૟૙

ୀ૚࢏

 

Objective Function 

	ሻ࢔࢏࢓	࢘࢕ሺ	࢞ࢇ࢓	
࢐,࢑࢐,࢏ࢠ,࢐,࢏࢟,࢐,࢏࢞

෍෍ ෍ ࢐,࢑࢐,࢏ࢠ

ૠ

࢑࢐ୀ࢐ା૚

૟

࢐ୀ૚

૞૟૙

ୀ૚࢏

 

In this study it was considered the maximization of the objective function. 
However, there are no big differences in the results when using any of both objective 
functions. 
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Appendix 12: The Diversification Effect due to the Number of Securities 
in the Pool. 

In a common synthetic CDO, the diversification of the pool of assets is dependent 
not only on the number of referenced securities but also on the default correlation. This 
means that when the default correlation is close to one, the pool of assets behaves like 
a one single asset (no diversification). On the other hand, a default correlation close to 
zero makes the diversification to be dependent only on the number of referenced 
securities. 

To make this clear, consider the estimation of the expected loss of a synthetic CDO 
with the tranche structure indicated in the table below. 

Tranche Name Tranche Width

Senior 100% - X% 
Mezzanine X% 

Equity 5% 

In addition, for the asset parameters consider a default correlation equals to zero, a 
default probability equals to 20% and a recovery rate equals to 60%. Besides, consider 
values for the size of the Mezzanine from 10 % to 50%. Besides, consider the number 
of pooled securities to take values from 10 to 200. 

Figure A.12.1 shows the diversification effect in the expected loss of the Mezzanine 
tranche due to the number of referenced securities. The trend is clear: no matter the 
width of the Mezzanine tranche, the diversification due to an increase in the number of 
securities is bounded over a certain number of referenced securities. 

Figure A.12.1: Expected Loss of a Mezzanine Tranche for Different Width and 
Different Number of Securities. 

 

 

: 

  

 

 

 

 

Source: Own Elaboration 
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Appendix 13: Detailed Confidence Intervals for the Cases of Study 

 

ABACUS Recovery Rate Following a Beta Distribution 

Tranche 
Name 

Default 
Correlation 

95% Confidence Interval 

Expected Loss Rating Notches 

Upper 
Bound 

Average 
Lower 
Bound 

Upper 
Bound 

Average 
Lower 
Bound 

+ - 

Super 
Senior 

0% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

5% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

10% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

15% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

20% 0.000007% 0.000001% 0.000000% Aaa Aaa Aaa 0 0 

25% 0.000076% 0.000008% 0.000000% Aaa Aaa Aaa 0 0 

30% 0.000415% 0.000047% 0.000000% Aaa Aaa Aaa 0 0 

Class A 

0% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

5% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

10% 0.000043% 0.000005% 0.000000% Aaa Aaa Aaa 0 0 

15% 0.000993% 0.000142% 0.000000% Aaa Aaa Aaa 0 0 

20% 0.006165% 0.001029% 0.000000% Aaa Aaa Aaa 0 0 

25% 0.020633% 0.003895% 0.000000% Aa2 Aaa Aaa 2 0 

30% 0.049048% 0.010260% 0.000000% Aa3 Aa1 Aaa 2 1 

Class B 

0% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

5% 0.000004% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

10% 0.001135% 0.000146% 0.000000% Aaa Aaa Aaa 0 0 

15% 0.013822% 0.002264% 0.000000% Aa1 Aaa Aaa 1 0 

20% 0.056593% 0.011073% 0.000000% Aa3 Aa1 Aaa 2 1 

25% 0.139667% 0.031497% 0.000000% A1 Aa2 Aaa 2 2 

30% 0.261342% 0.066376% 0.000000% A3 Aa3 Aaa 3 3 

Class C 

0% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

5% 0.000211% 0.000023% 0.000000% Aaa Aaa Aaa 0 0 

10% 0.009954% 0.001540% 0.000000% Aa1 Aaa Aaa 1 0 

15% 0.061109% 0.011853% 0.000000% Aa3 Aa1 Aaa 2 1 

20% 0.174571% 0.039984% 0.000000% A2 Aa2 Aaa 3 2 

25% 0.344858% 0.090130% 0.000000% A3 A1 Aaa 2 4 

30% 0.554390% 0.161668% 0.000000% Baa1 A2 Aaa 2 5 

Class D 

0% 0.000003% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

5% 0.005092% 0.000641% 0.000000% Aaa Aaa Aaa 0 0 

10% 0.070776% 0.012694% 0.000000% Aa3 Aa1 Aaa 2 1 

15% 0.253077% 0.056803% 0.000000% A2 Aa3 Aaa 2 3 

20% 0.531799% 0.140381% 0.000000% Baa1 A1 Aaa 3 4 

25% 0.860923% 0.257891% 0.000000% Baa2 A2 Aaa 3 5 

30% 1.202065% 0.399461% 0.000000% Baa3 A3 Aaa 3 6 

First 
Loss 

0% 11.466080% 6.938786% 0.812440% B2 B1 Baa2 1 5 

5% 11.464605% 6.938583% 0.812440% B2 B1 Baa2 1 5 

10% 11.441203% 6.934153% 0.812440% B2 B1 Baa2 1 5 

15% 11.357738% 6.914799% 0.812440% B2 B1 Baa2 1 5 

20% 11.195236% 6.870886% 0.812440% B2 B1 Baa2 1 5 

25% 10.957096% 6.797513% 0.812440% B2 B1 Baa2 1 5 

30% 10.647910% 6.693318% 0.812440% B2 Ba3 Baa2 2 4 
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ABACUS 
Recovery Rate Following  Depending on Default Probability  

(Equation 29 from Chapter 5) 

Tranche 
Name 

Default 
Correlation 

95% Confidence Interval 

Expected Loss Rating Notches

Upper 
Bound 

Average 
Lower 
Bound 

Upper 
Bound 

Average 
Lower 
Bound 

+ - 

Super 
Senior 

0% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

5% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

10% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

15% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

20% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

25% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

30% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

Class A 

0% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

5% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

10% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

15% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

20% 0.000004% 0.000001% 0.000000% Aaa Aaa Aaa 0 0 

25% 0.000050% 0.000015% 0.000001% Aaa Aaa Aaa 0 0 

30% 0.000297% 0.000104% 0.000014% Aaa Aaa Aaa 0 0 

Class B 

0% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

5% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

10% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

15% 0.000008% 0.000002% 0.000000% Aaa Aaa Aaa 0 0 

20% 0.000199% 0.000059% 0.000005% Aaa Aaa Aaa 0 0 

25% 0.001578% 0.000562% 0.000082% Aaa Aaa Aaa 0 0 

30% 0.006650% 0.002716% 0.000557% Aaa Aaa Aaa 0 0 

Class C 

0% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

5% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

10% 0.000004% 0.000001% 0.000000% Aaa Aaa Aaa 0 0 

15% 0.000259% 0.000076% 0.000007% Aaa Aaa Aaa 0 0 

20% 0.002697% 0.000982% 0.000155% Aaa Aaa Aaa 0 0 

25% 0.012207% 0.005162% 0.001178% Aa1 Aaa Aaa 0 0 

30% 0.035164% 0.016637% 0.004864% Aa2 Aa1 Aaa 0 0 

Class D 

0% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

5% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

10% 0.000174% 0.000045% 0.000003% Aaa Aaa Aaa 0 0 

15% 0.003839% 0.001328% 0.000184% Aaa Aaa Aaa 0 0 

20% 0.021905% 0.009154% 0.002044% Aa2 Aa1 Aaa 1 1 

25% 0.067045% 0.031972% 0.009551% Aa3 Aa2 Aa1 1 1 

30% 0.146233% 0.076857% 0.027966% A1 Aa3 Aa2 1 1 

First Loss 

0% 6.815370% 5.364225% 3.924648% B1 Ba3 Ba2 1 1 

5% 6.815369% 5.364225% 3.924648% B1 Ba3 Ba2 1 1 

10% 6.815315% 5.364211% 3.924648% B1 Ba3 Ba2 1 1 

15% 6.814086% 5.363788% 3.924590% B1 Ba3 Ba2 1 1 

20% 6.807381% 5.360968% 3.923956% B1 Ba3 Ba2 1 1 

25% 6.788560% 5.351847% 3.921166% B1 Ba3 Ba2 1 1 

30% 6.751211% 5.331785% 3.913626% B1 Ba3 Ba2 1 1 
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CDX.NA.IG  
5  Years Horizon 

Recovery Rate Following a Beta Distribution 

Tranche 
Name 

Default 
Correlation 

95% Confidence Interval 

Expected Loss Rating Notches

Upper 
Bound 

Average 
Lower 
Bound 

Upper 
Bound 

Average 
Lower 
Bound 

+ - 

Super 
Senior 

0% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

5% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

10% 0.000003% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

15% 0.000130% 0.000013% 0.000000% Aaa Aaa Aaa 0 0 

20% 0.001167% 0.000128% 0.000000% Aaa Aaa Aaa 0 0 

25% 0.004843% 0.000600% 0.000000% Aaa Aaa Aaa 0 0 

30% 0.013361% 0.001830% 0.000000% Aa1 Aaa Aaa 1 0 

Senior 1 

0% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

5% 0.000137% 0.000012% 0.000000% Aaa Aaa Aaa 0 0 

10% 0.008698% 0.000957% 0.000000% Aaa Aaa Aaa 0 0 

15% 0.055904% 0.007537% 0.000000% Aa2 Aaa Aaa 2 0 

20% 0.164645% 0.026078% 0.000000% A1 Aa1 Aaa 3 1 

25% 0.334522% 0.060574% 0.000000% A3 Aa3 Aaa 3 3 

30% 0.553424% 0.112120% 0.000000% Baa1 A1 Aaa 3 4 

Senior 2 

0% 0.000003% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

5% 0.022226% 0.002236% 0.000000% Aa1 Aaa Aaa 1 0 

10% 0.232606% 0.031402% 0.000000% A2 Aa2 Aaa 3 2 

15% 0.673281% 0.114092% 0.000000% Baa1 A1 Aaa 3 4 

20% 1.232483% 0.247957% 0.000000% Baa2 A2 Aaa 3 5 

25% 1.814056% 0.418221% 0.000000% Baa3 A3 Aaa 3 6 

30% 2.368860% 0.609936% 0.000000% Ba1 Baa1 Aaa 3 7 

Mezzanine 
1 

0% 0.005302% 0.000449% 0.000000% Aaa Aaa Aaa 0 0 

5% 0.383039% 0.046010% 0.000000% A3 Aa2 Aaa 4 2 

10% 1.386030% 0.228844% 0.000000% Baa3 A2 Aaa 4 5 

15% 2.524910% 0.517141% 0.000000% Ba1 Baa1 Aaa 3 7 

20% 3.539335% 0.850894% 0.000000% Ba1 Baa2 Aaa 2 8 

25% 4.364929% 1.191098% 0.000000% Ba2 Baa2 Aaa 3 8 

30% 5.016553% 1.516433% 0.000000% Ba2 Baa3 Aaa 2 9 

Mezzanine 
2 

0% 3.371988% 0.476665% 0.000000% Ba1 A3 Aaa 4 6 

5% 6.734140% 1.325091% 0.000000% Ba3 Baa3 Aaa 3 9 

10% 8.984532% 2.194044% 0.000000% B1 Baa3 Aaa 4 9 

15% 10.301811% 2.940518% 0.000000% B2 Ba1 Aaa 4 10 

20% 11.064686% 3.546847% 0.000000% B2 Ba1 Aaa 4 10 

25% 11.476732% 4.026054% 0.000002% B2 Ba2 Aaa 3 11 

30% 11.606860% 4.395887% 0.000023% B2 Ba2 Aaa 3 11 

Equity 

0% 59.293904% 30.456460% 2.800050% Caa3 Caa2 Ba1 1 7 

5% 54.400032% 29.275876% 2.800050% Caa3 Caa2 Ba1 1 7 

10% 50.106263% 27.881100% 2.800050% Caa3 Caa2 Ba1 1 7 

15% 46.211125% 26.426499% 2.800050% Caa3 Caa2 Ba1 1 7 

20% 42.685908% 24.965793% 2.800050% Caa3 Caa2 Ba1 1 7 

25% 39.433897% 23.519399% 2.800034% Caa3 Caa2 Ba1 1 7 

30% 36.411680% 22.094983% 2.799927% Caa3 Caa1 Ba1 2 6 
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CDX.NA.IG  
5 Years Horizon 

Recovery Rate Following  Depending on Default Probability  
(Equation 29 from Chapter 5) 

Tranche 
Name 

Default 
Correlation 

95% Confidence Interval 

Expected Loss Rating Notches

Upper 
Bound 

Average 
Lower 
Bound 

Upper 
Bound 

Average 
Lower 
Bound 

+ - 

Super 
Senior 

0% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

5% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

10% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

15% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

20% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

25% 0.000004% 0.000001% 0.000000% Aaa Aaa Aaa 0 0 

30% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

Senior 1 

0% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

5% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

10% 0.000001% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

15% 0.000098% 0.000029% 0.000003% Aaa Aaa Aaa 0 0 

20% 0.001131% 0.000416% 0.000075% Aaa Aaa Aaa 0 0 

25% 0.016902% 0.008003% 0.002510% Aa1 Aaa Aaa 1 0 

30% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

Senior 2 

0% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

5% 0.000001% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

10% 0.000535% 0.000151% 0.000013% Aaa Aaa Aaa 0 0 

15% 0.008911% 0.003341% 0.000636% Aaa Aaa Aaa 0 0 

20% 0.042897% 0.019225% 0.005412% Aa2 Aa1 Aaa 1 1 

25% 0.237742% 0.131638% 0.055429% A2 A1 Aa2 1 2 

30% 0.000101% 0.000019% 0.000000% Aaa Aaa Aaa 0 0 

Mezzanine 
1 

0% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

5% 0.000236% 0.000052% 0.000002% Aaa Aaa Aaa 0 0 

10% 0.016673% 0.005790% 0.000890% Aa1 Aaa Aaa 1 0 

15% 0.104610% 0.046263% 0.012487% Aa3 Aa2 Aa1 1 1 

20% 0.292239% 0.149866% 0.054412% A2 A1 Aa2 1 2 

25% 0.887063% 0.540434% 0.267054% Baa2 Baa1 A2 1 2 

30% 0.001860% 0.000456% 0.000010% Aaa Aaa Aaa 0 0 

Mezzanine 
2 

0% 0.004615% 0.000886% 0.000019% Aaa Aaa Aaa 0 0 

5% 0.225714% 0.084290% 0.015770% A2 Aa3 Aa1 2 2 

10% 0.826223% 0.403016% 0.133792% Baa2 A3 A1 2 2 

15% 1.596084% 0.896387% 0.386300% Baa3 Baa2 A3 1 2 

20% 2.371475% 1.455589% 0.730387% Ba1 Baa3 Baa1 1 2 

25% 3.685579% 2.518230% 1.501565% Ba1 Ba1 Baa3 0 1 

30% 0.051231% 0.017590% 0.001649% Aa2 Aa1 Aaa 1 1 

Equity 

0% 30.542897% 24.388926% 18.417944% Caa2 Caa2 Caa1 0 1 

5% 30.247861% 24.277668% 18.396942% Caa2 Caa2 Caa1 0 1 

10% 29.429850% 23.846711% 18.238669% Caa2 Caa2 Caa1 0 1 

15% 28.300989% 23.142948% 17.889341% Caa2 Caa1 Caa1 1 0 

20% 27.017693% 22.265334% 17.380313% Caa2 Caa1 B3 1 1 

25% 24.267038% 20.232599% 16.043895% Caa2 Caa1 B3 1 1 

30% 5.211722% 3.459687% 1.826898% Ba2 Ba1 Baa3 1 1 
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CDX.NA.HY Recovery Rate Following a Beta Distribution 

Tranche 
Name 

Default 
Correlation 

95% Confidence Interval 

Expected Loss Rating Notches

Upper 
Bound 

Average 
Lower 
Bound 

Upper 
Bound 

Average 
Lower 
Bound 

+ - 

Super 
Senior 

0% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

5% 0.000134% 0.000010% 0.000000% Aaa Aaa Aaa 0 0 

10% 0.007487% 0.000740% 0.000000% Aaa Aaa Aaa 0 0 

15% 0.044323% 0.005282% 0.000000% Aa2 Aaa Aaa 2 0 

20% 0.125892% 0.017220% 0.000000% A1 Aa1 Aaa 3 1 

25% 0.254924% 0.038846% 0.000000% A2 Aa2 Aaa 3 2 

30% 0.428450% 0.071302% 0.000000% A3 Aa3 Aaa 3 3 

Senior 1 

0% 0.000002% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

5% 0.069963% 0.006859% 0.000000% Aa3 Aaa Aaa 3 0 

10% 0.597468% 0.080163% 0.000000% Baa1 Aa3 Aaa 4 3 

15% 1.551462% 0.256279% 0.000000% Baa3 A2 Aaa 4 5 

20% 2.675431% 0.516601% 0.000000% Ba1 Baa1 Aaa 3 7 

25% 3.812223% 0.833986% 0.000000% Ba2 Baa2 Aaa 3 8 

30% 4.885342% 1.187249% 0.000000% Ba2 Baa2 Aaa 3 8 

Senior 2 

0% 0.177721% 0.015449% 0.000000% A1 Aa1 Aaa 3 1 

5% 2.689502% 0.415819% 0.000000% Ba1 A3 Aaa 4 6 

10% 5.627772% 1.139807% 0.000000% Ba3 Baa2 Aaa 4 8 

15% 8.003049% 1.930632% 0.000000% B1 Baa3 Aaa 4 9 

20% 9.816756% 2.696662% 0.000000% B1 Ba1 Aaa 3 10 

25% 11.201099% 3.410250% 0.000000% B2 Ba1 Aaa 4 10 

30% 12.250474% 4.065471% 0.000000% B2 Ba2 Aaa 3 11 

Mezzanine 

0% 11.021221% 1.582565% 0.000000% B2 Baa3 Aaa 5 9 

5% 19.198764% 4.387833% 0.000000% Caa1 Ba2 Aaa 5 11 

10% 22.171907% 6.321886% 0.000000% Caa1 Ba3 Aaa 4 12 

15% 23.481062% 7.713374% 0.000000% Caa2 B1 Aaa 4 13 

20% 24.022386% 8.759801% 0.000000% Caa2 B1 Aaa 4 13 

25% 24.182623% 9.569022% 0.000000% Caa2 B1 Aaa 4 13 

30% 24.095763% 10.204935% 0.000000% Caa2 B2 Aaa 3 14 

Equity 

0% 80.736939% 46.900314% 4.960956% Caa3 Caa3 Ba2 0 7 

5% 74.074204% 45.090386% 4.960956% Caa3 Caa3 Ba2 0 7 

10% 69.070287% 43.321322% 4.960956% Caa3 Caa3 Ba2 0 7 

15% 64.854239% 41.629119% 4.960956% Caa3 Caa3 Ba2 0 7 

20% 61.103978% 40.001951% 4.960956% Caa3 Caa3 Ba2 0 7 

25% 57.671744% 38.425799% 4.960956% Caa3 Caa3 Ba2 0 7 

30% 54.469307% 36.888398% 4.960956% Caa3 Caa3 Ba2 0 7 
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CDX.NA.HY 
Recovery Rate Following  Depending on Default Probability  

(Equation 29 from Chapter 5) 

Tranche 
Name 

Default 
Correlation 

95% Confidence Interval 

Expected Loss Rating Notches

Upper 
Bound 

Average 
Lower 
Bound 

Upper 
Bound 

Average 
Lower 
Bound 

+ - 

Super 
Senior 

0% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

5% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

10% 0.000013% 0.000005% 0.000001% Aaa Aaa Aaa 0 0 

15% 0.000438% 0.000198% 0.000061% Aaa Aaa Aaa 0 0 

20% 0.003163% 0.001658% 0.000672% Aaa Aaa Aaa 0 0 

25% 0.011577% 0.006711% 0.003213% Aa1 Aaa Aaa 1 0 

30% 0.029378% 0.018296% 0.009806% Aa2 Aa1 Aa1 1 0 

Senior 1 

0% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

5% 0.000191% 0.000060% 0.000008% Aaa Aaa Aaa 0 0 

10% 0.017043% 0.007927% 0.002588% Aa1 Aaa Aaa 1 0 

15% 0.119156% 0.066771% 0.030249% A1 Aa3 Aa2 1 1 

20% 0.362409% 0.226840% 0.122430% A3 A2 A1 1 1 

25% 0.751090% 0.506302% 0.305133% Baa2 Baa1 A2 1 2 

30% 1.261016% 0.896729% 0.583403% Baa2 Baa2 Baa1 0 1 

Senior 2 

0% 0.000070% 0.000013% 0.000000% Aaa Aaa Aaa 0 0 

5% 0.181293% 0.084769% 0.027786% A1 Aa3 Aa2 1 1 

10% 0.979267% 0.585355% 0.293509% Baa2 Baa1 A2 1 2 

15% 2.160162% 1.450450% 0.868129% Baa3 Baa3 Baa2 0 1 

20% 3.450444% 2.483862% 1.642482% Ba1 Ba1 Baa3 0 1 

25% 4.711950% 3.554903% 2.507953% Ba2 Ba1 Ba1 1 0 

30% 5.887007% 4.595017% 3.393459% Ba3 Ba2 Ba1 1 1 

Mezzanine 

0% 0.471832% 0.158810% 0.024759% A3 A1 Aa1 2 3 

5% 4.846613% 2.888830% 1.423118% Ba2 Ba1 Baa3 1 1 

10% 8.753595% 6.109013% 3.837333% B1 Ba3 Ba2 1 1 

15% 11.499090% 8.656679% 6.059463% B2 B1 Ba3 1 1 

20% 13.433396% 10.579610% 7.879355% B3 B2 B1 1 1 

25% 14.821411% 12.031010% 9.331037% B3 B2 B1 1 1 

30% 15.827754% 13.131366% 10.481583% B3 B2 B2 1 0 

Equity 

0% 63.753841% 56.993851% 50.030081% Caa3 Caa3 Caa3 0 0 

5% 61.385037% 55.544025% 49.303107% Caa3 Caa3 Caa3 0 0 

10% 58.616633% 53.425450% 47.827691% Caa3 Caa3 Caa3 0 0 

15% 55.958117% 51.226423% 46.113954% Caa3 Caa3 Caa3 0 0 

20% 53.439715% 49.061982% 44.333502% Caa3 Caa3 Caa3 0 0 

25% 51.040828% 46.952940% 42.542969% Caa3 Caa3 Caa3 0 0 

30% 48.736973% 44.896917% 40.761067% Caa3 Caa3 Caa3 0 0 
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MIDGARD Recovery Rate Following a Beta Distribution 

Tranche 
Name 

Default 
Correlation 

95% Confidence Interval 

Expected Loss Rating Notches

Upper 
Bound 

Average 
Lower 
Bound 

Upper 
Bound 

Average 
Lower 
Bound 

+ - 

Super 
Senior 

0% 0.000359% 0.000024% 0.000000% Aaa Aaa Aaa 0 0 

5% 0.142519% 0.017981% 0.000000% A1 Aa1 Aaa 3 1 

10% 0.661303% 0.120841% 0.000000% Baa1 A1 Aaa 3 4 

15% 1.382707% 0.313766% 0.000000% Baa3 A2 Aaa 4 5 

20% 2.036863% 0.545848% 0.000000% Baa3 Baa1 Aaa 2 7 

25% 2.690088% 0.808114% 0.000000% Ba1 Baa2 Aaa 2 8 

30% 3.267598% 1.073854% 0.000000% Ba1 Baa2 Aaa 2 8 

Class III 

0% 0.007075% 0.000670% 0.000000% Aaa Aaa Aaa 0 0 

5% 0.710550% 0.097302% 0.000000% Aa3 Aa3 Aaa 4 3 

10% 2.064699% 0.402881% 0.000000% A3 A3 Aaa 3 6 

15% 3.371427% 0.818373% 0.000000% Baa2 Baa2 Aaa 2 8 

20% 4.500868% 1.240864% 0.000000% Baa2 Baa2 Aaa 3 8 

25% 5.463193% 1.673561% 0.000000% Baa3 Baa3 Aaa 2 9 

30% 6.165759% 2.076893% 0.000000% Baa3 Baa3 Aaa 3 9 

Equity 

0% 0.241095% 0.025677% 0.000000% A2 Aa1 Aaa 4 1 

5% 2.025706% 0.327425% 0.000000% Baa3 A2 Aaa 4 5 

10% 4.034473% 0.858067% 0.000000% Ba2 Baa2 Aaa 3 8 

15% 5.607443% 1.430560% 0.000000% Ba3 Baa3 Aaa 3 9 

20% 6.808133% 1.961423% 0.000000% Ba3 Baa3 Aaa 3 9 

25% 7.632246% 2.450423% 0.000000% Ba3 Ba1 Aaa 2 10 

30% 8.150596% 2.874937% 0.000000% B1 Ba1 Aaa 3 10 
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MIDGARD 
Recovery Rate Following  Depending on Default Probability  

(Equation 29 from Chapter 5) 

Tranche 
Name 

Default 
Correlation 

95% Confidence Interval 

Expected Loss Rating Notches

Upper 
Bound 

Average 
Lower 
Bound 

Upper 
Bound 

Average 
Lower 
Bound 

+ - 

Super 
Senior 

0% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

5% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

10% 0.007901% 0.003262% 0.001117% Aaa Aaa Aaa 0 0 

15% 0.048454% 0.019336% 0.007002% Aa2 Aa1 Aaa 1 1 

20% 0.157850% 0.074961% 0.029098% A1 Aa3 Aa2 1 1 

25% 0.323581% 0.174884% 0.080764% A2 A1 Aa3 1 1 

30% 0.546924% 0.318742% 0.159245% Baa1 A2 A1 2 1 

Class III 

0% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

5% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

10% 0.027873% 0.009072% 0.002240% Aa2 Aaa Aaa 2 0 

15% 0.154259% 0.055039% 0.019738% A1 Aa2 Aa1 2 1 

20% 0.381211% 0.194851% 0.071292% A3 A1 Aa3 2 1 

25% 0.712314% 0.386194% 0.189445% Baa1 A3 A1 1 2 

30% 1.105902% 0.638814% 0.333572% Baa2 Baa1 A3 1 1 

Equity 

0% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

5% 0.003963% 0.000369% 0.000000% Aaa Aaa Aaa 0 0 

10% 0.079510% 0.026208% 0.007881% Aa3 Aa1 Aaa 2 1 

15% 0.318339% 0.144268% 0.044780% A2 A1 Aa2 1 2 

20% 0.682041% 0.354710% 0.151032% Baa1 A3 A1 1 2 

25% 1.155987% 0.641977% 0.313774% Baa2 Baa1 A2 1 2 

30% 1.639664% 0.993311% 0.520289% Baa3 Baa2 Baa1 1 1 
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T-CDX.NA.IG 
Overlap = 15% 

Recovery Rate Following a Beta Distribution 

Tranche 
Default 

Correlation 

95% Confidence Interval 

Expected Loss Rating Notches

Upper 
Bound 

Average 
Lower 
Bound 

Upper 
Bound 

Average 
Lower 
Bound 

+ - 

Super 
Senior 

0% 0.027024% 0.002203% 0.000000% Aa1 Aaa Aaa 1 0 

5% 1.642464% 0.274960% 0.000000% Baa3 A2 Aaa 4 5 

10% 3.887151% 0.913200% 0.000000% Ba2 Baa2 Aaa 3 8 

15% 5.605142% 1.608116% 0.000000% Ba3 Baa3 Aaa 3 9 

20% 6.809556% 2.237859% 0.000000% Ba3 Baa3 Aaa 3 9 

25% 7.626360% 2.783571% 0.000000% Ba3 Ba1 Aaa 2 10 

30% 8.155263% 3.239709% 0.000000% B1 Ba1 Aaa 3 10 

Senior 1 

0% 1.068403% 0.101871% 0.000000% Baa2 Aa3 Aaa 5 3 

5% 9.035142% 1.777416% 0.000000% B1 Baa3 Aaa 4 9 

10% 12.797468% 3.415784% 0.000000% B2 Ba1 Aaa 4 10 

15% 14.375370% 4.594593% 0.000000% B3 Ba2 Aaa 4 11 

20% 14.978112% 5.416676% 0.000000% B3 Ba2 Aaa 4 11 

25% 15.095483% 5.990401% 0.000000% B3 Ba3 Aaa 3 12 

30% 14.956371% 6.387542% 0.000000% B3 Ba3 Aaa 3 12 

Senior 2 

0% 5.206642% 0.548648% 0.000000% Ba2 Baa1 Aaa 4 7 

5% 16.076121% 3.447177% 0.000000% B3 Ba1 Aaa 5 10 

10% 18.884447% 5.354719% 0.000000% Caa1 Ba2 Aaa 5 11 

15% 19.592840% 6.534451% 0.000000% Caa1 Ba3 Aaa 4 12 

20% 19.463171% 7.263989% 0.000000% Caa1 Ba3 Aaa 4 12 

25% 18.995706% 7.721397% 0.000000% Caa1 B1 Aaa 3 13 

30% 18.341710% 7.992136% 0.000000% Caa1 B1 Aaa 3 13 

Mezzanine 
1 

0% 11.394720% 1.353511% 0.000000% B2 Baa3 Aaa 5 9 

5% 21.399961% 4.893894% 0.000000% Caa1 Ba2 Aaa 5 11 

10% 22.943966% 6.803695% 0.000000% Caa1 Ba3 Aaa 4 12 

15% 22.852486% 7.889667% 0.000000% Caa1 B1 Aaa 3 13 

20% 22.259781% 8.516296% 0.000000% Caa1 B1 Aaa 3 13 

25% 21.380532% 8.865924% 0.000000% Caa1 B1 Aaa 3 13 

30% 20.360323% 9.032550% 0.000000% Caa1 B1 Aaa 3 13 

Mezzanine 
2 

0% 22.725228% 3.493395% 0.000000% Caa1 Ba1 Aaa 6 10 

5% 28.465653% 7.302783% 0.000000% Caa2 Ba3 Aaa 5 12 

10% 28.095817% 8.993519% 0.000000% Caa2 B1 Aaa 4 13 

15% 27.053290% 9.863077% 0.000000% Caa2 B1 Aaa 4 13 

20% 25.709773% 10.291226% 0.000000% Caa2 B2 Aaa 3 14 

25% 24.305498% 10.455733% 0.000000% Caa2 B2 Aaa 3 14 

30% 22.915767% 10.459085% 0.000000% Caa1 B2 Aaa 2 14 

Equity 

0% 48.000992% 9.587291% 0.000000% Caa3 B1 Aaa 5 13 

5% 42.544079% 12.423675% 0.000000% Caa3 B2 Aaa 4 14 

10% 38.342252% 13.334949% 0.000000% Caa3 B3 Aaa 3 15 

15% 35.186348% 13.643940% 0.000000% Caa3 B3 Aaa 3 15 

20% 32.512138% 13.625975% 0.000000% Caa2 B3 Aaa 2 15 

25% 30.139237% 13.414820% 0.000000% Caa2 B3 Aaa 2 15 

30% 27.873922% 13.086515% 0.000694% Caa2 B2 Aaa 3 14 
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T-CDX.NA.IG 
Overlap = 15% 

Recovery Rate Following  Depending on Default Probability  
(Equation 29 from Chapter 5) 

Tranche 
Default 

Correlation 

95% Confidence Interval 

Expected Loss Rating Notches

Upper 
Bound 

Average 
Lower 
Bound 

Upper 
Bound 

Average 
Lower 
Bound 

+ - 

Super 
Senior 

0% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

5% 0.011251% 0.002227% 0.000027% Aa1 Aaa Aaa 1 0 

10% 0.191312% 0.070206% 0.020452% A1 Aa3 Aa1 1 2 

15% 0.623475% 0.300986% 0.116133% Baa1 A2 A1 2 1 

20% 1.197194% 0.666179% 0.309977% Baa2 Baa1 A2 1 2 

25% 1.804745% 1.097090% 0.577742% Baa3 Baa2 Baa1 1 1 

30% 2.392149% 1.550018% 0.878839% Ba1 Baa3 Baa2 1 1 

Senior 1 

0% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

5% 0.134424% 0.032451% 0.004755% A1 Aa2 Aaa 2 2 

10% 1.055325% 0.443678% 0.135929% Baa2 A3 A1 2 2 

15% 2.275176% 1.212722% 0.522800% Baa3 Baa2 Baa1 1 1 

20% 3.431958% 2.064496% 1.052844% Ba1 Baa3 Baa2 1 1 

25% 4.362662% 2.859450% 1.610647% Ba2 Ba1 Baa3 1 1 

30% 5.054675% 3.514993% 2.172276% Ba2 Ba1 Baa3 1 1 

Senior 2 

0% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

5% 0.370510% 0.094029% 0.019932% A3 Aa3 Aa1 3 2 

10% 1.906253% 0.842188% 0.292969% Baa3 Baa2 A2 1 3 

15% 3.519584% 1.932545% 0.883437% Ba1 Baa3 Baa2 1 1 

20% 4.791753% 2.985050% 1.592498% Ba2 Ba1 Baa3 1 1 

25% 5.768975% 3.868801% 2.278376% Ba3 Ba2 Baa3 1 2 

30% 6.501377% 4.537687% 2.888958% Ba3 Ba2 Ba1 1 1 

Mezzanine 
1 

0% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

5% 0.654923% 0.184349% 0.032675% Baa1 A1 Aa2 3 2 

10% 2.602532% 1.206720% 0.435397% Ba1 Baa2 A3 2 2 

15% 4.411740% 2.519736% 1.172740% Ba2 Ba1 Baa2 1 2 

20% 5.764947% 3.641828% 1.986936% Ba3 Ba1 Baa3 2 1 

25% 6.738409% 4.524399% 2.719985% Ba3 Ba2 Ba1 1 1 

30% 7.415654% 5.202814% 3.347699% Ba3 Ba2 Ba1 1 1 

Mezzanine 
2 

0% 0.003190% 0.000066% 0.000000% Aaa Aaa Aaa 0 0 

5% 1.294393% 0.394259% 0.086668% Baa3 A3 Aa3 3 3 

10% 3.812102% 1.856113% 0.704604% Ba2 Baa3 Baa1 2 2 

15% 5.821654% 3.380212% 1.662951% Ba3 Ba1 Baa3 2 1 

20% 7.173463% 4.628235% 2.604780% Ba3 Ba2 Ba1 1 1 

25% 8.114726% 5.513690% 3.385017% B1 Ba2 Ba1 2 1 

30% 8.698559% 6.180231% 4.024002% B1 Ba3 Ba2 1 1 

Equity 

0% 0.149221% 0.011426% 0.000878% A1 Aa1 Aaa 3 1 

5% 3.573227% 1.310222% 0.360762% Ba1 Baa3 A3 1 3 

10% 6.959689% 3.574067% 1.565295% Ba3 Ba1 Baa3 2 1 

15% 9.056215% 5.419339% 2.878645% B1 Ba2 Ba1 2 1 

20% 10.261601% 6.736136% 3.978403% B2 Ba3 Ba2 2 1 

25% 10.952092% 7.576994% 4.830256% B2 Ba3 Ba2 2 1 

30% 11.312673% 8.137817% 5.452659% B2 B1 Ba2 1 2 
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T-CDX.NA.HY 
Recovery Rate Following a Beta Distribution 

Overlap = 15% 

Tranche 
Default 

Correlation 

95% Confidence Interval 

Expected Loss Rating Notches

Upper 
Bound 

Average 
Lower 
Bound 

Upper 
Bound 

Average 
Lower 
Bound 

+ - 

Super 
Senior 

0% 0.969604% 0.065144% 0.000000% Baa2 Aa3 Aaa 5 3 

5% 14.515791% 2.611196% 0.000000% B3 Ba1 Aaa 5 10 

10% 19.149683% 4.688493% 0.000000% Caa1 Ba2 Aaa 5 11 

15% 21.316058% 6.240957% 0.000000% Caa1 Ba3 Aaa 4 12 

20% 22.421762% 7.431312% 0.000000% Caa1 Ba3 Aaa 4 12 

25% 22.986881% 8.380203% 0.000000% Caa1 B1 Aaa 3 13 

30% 23.217650% 9.142488% 0.000000% Caa1 B1 Aaa 3 13 

Senior 1 

0% 18.156613% 1.364228% 0.000000% Caa1 Baa3 Aaa 7 9 

5% 34.576961% 7.214274% 0.000000% Caa3 Ba3 Aaa 6 12 

10% 35.145525% 9.635254% 0.000000% Caa3 B1 Aaa 5 13 

15% 34.665900% 11.116741% 0.000000% Caa3 B2 Aaa 4 14 

20% 33.840671% 12.112002% 0.000000% Caa3 B2 Aaa 4 14 

25% 32.936953% 12.823432% 0.000000% Caa3 B2 Aaa 4 14 

30% 31.923290% 13.340288% 0.000000% Caa2 B3 Aaa 2 15 

Senior 2 

0% 45.041408% 4.239222% 0.000000% Caa3 Ba2 Aaa 7 11 

5% 43.475625% 9.806184% 0.000000% Caa3 B1 Aaa 5 13 

10% 41.325146% 11.932866% 0.000000% Caa3 B2 Aaa 4 14 

15% 39.528500% 13.185343% 0.000000% Caa3 B3 Aaa 3 15 

20% 37.932680% 13.997972% 0.000000% Caa3 B3 Aaa 3 15 

25% 36.436688% 14.550161% 0.000000% Caa3 B3 Aaa 3 15 

30% 35.016822% 14.923642% 0.000000% Caa3 B3 Aaa 3 15 

Mezzanine 

0% 70.763477% 8.654814% 0.000000% Caa3 B1 Aaa 5 13 

5% 52.562539% 12.771883% 0.000000% Caa3 B2 Aaa 4 14 

10% 47.710293% 14.435209% 0.000000% Caa3 B3 Aaa 3 15 

15% 44.689177% 15.389409% 0.000000% Caa3 B3 Aaa 3 15 

20% 42.184795% 15.976891% 0.000000% Caa3 B3 Aaa 3 15 

25% 40.080667% 16.335181% 0.000000% Caa3 B3 Aaa 3 15 

30% 38.183519% 16.553490% 0.000000% Caa3 B3 Aaa 3 15 

Equity 

0% 90.407560% 17.271014% 0.000000% Caa3 B3 Aaa 3 15 

5% 65.047558% 18.391343% 0.000000% Caa3 Caa1 Aaa 2 16 

10% 57.199359% 19.062757% 0.000000% Caa3 Caa1 Aaa 2 16 

15% 52.364850% 19.401941% 0.000000% Caa3 Caa1 Aaa 2 16 

20% 48.722373% 19.532034% 0.000000% Caa3 Caa1 Aaa 2 16 

25% 45.808229% 19.528907% 0.000000% Caa3 Caa1 Aaa 2 16 

30% 43.208851% 19.441972% 0.000000% Caa3 Caa1 Aaa 2 16 
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T-CDX.NA.HY Recovery Rate Following  Depending on Default Probability  
(Equation 29 from Chapter 5) Overlap = 15% 

Tranche 
Default 

Correlation 

95% Confidence Interval 

Expected Loss Rating Notches

Upper 
Bound 

Average 
Lower 
Bound 

Upper 
Bound 

Average 
Lower 
Bound 

+ - 

Super 
Senior 

0% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

5% 1.365100% 0.632672% 0.250781% Baa3 Baa1 A2 2 2 

10% 4.553025% 2.882483% 1.673916% Ba2 Ba1 Baa3 1 1 

15% 7.343726% 5.214469% 3.503536% Ba3 Ba2 Ba1 1 1 

20% 9.538171% 7.202821% 5.203344% B1 Ba3 Ba2 1 1 

25% 11.225422% 8.834524% 6.683691% B2 B1 Ba3 1 1 

30% 12.531969% 10.159278% 7.948646% B2 B2 B1 0 1 

Senior 1 

0% 0.000000% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

5% 5.063332% 2.620842% 1.171207% Ba2 Ba1 Baa2 1 2 

10% 10.667224% 7.109207% 4.488533% B2 Ba3 Ba2 2 1 

15% 14.047012% 10.404674% 7.281291% B3 B2 Ba3 1 2 

20% 16.161663% 12.674614% 9.470888% B3 B2 B1 1 1 

25% 17.485736% 14.230865% 11.110665% Caa1 B3 B2 1 1 

30% 18.368816% 15.329583% 12.342348% Caa1 B3 B2 1 1 

Senior 2 

0% 0.002404% 0.000000% 0.000000% Aaa Aaa Aaa 0 0 

5% 7.948381% 4.368967% 2.086286% B1 Ba2 Baa3 2 2 

10% 13.906382% 9.584067% 6.132381% B3 B1 Ba3 2 1 

15% 17.039459% 12.902616% 9.220293% B3 B2 B1 1 1 

20% 18.798975% 14.996304% 11.432225% Caa1 B3 B2 1 1 

25% 19.891676% 16.363501% 12.971436% Caa1 B3 B2 1 1 

30% 20.571068% 17.247324% 14.084871% Caa1 B3 B3 1 0 

Mezzanine 

0% 0.093461% 0.007560% 0.000416% Aa3 Aaa Aaa 3 0 

5% 11.804842% 6.742978% 3.476081% B2 Ba3 Ba1 2 2 

10% 17.556942% 12.449709% 8.190960% Caa1 B2 B1 2 1 

15% 20.199224% 15.585058% 11.410920% Caa1 B3 B2 1 1 

20% 21.672094% 17.399221% 13.488882% Caa1 B3 B3 1 0 

25% 22.460265% 18.543509% 14.937662% Caa1 Caa1 B3 0 1 

30% 22.881158% 19.249903% 15.863439% Caa1 Caa1 B3 0 1 

Equity 

0% 4.854923% 1.357657% 0.290676% Ba2 Baa3 A2 2 4 

5% 20.855676% 13.435316% 7.807576% Caa1 B3 B1 1 2 

10% 24.852140% 18.558978% 13.050985% Caa2 Caa1 B2 1 2 

15% 26.334527% 20.913712% 15.920215% Caa2 Caa1 B3 1 1 

20% 26.920490% 22.104997% 17.597605% Caa2 Caa1 Caa1 1 0 

25% 27.063706% 22.706620% 18.585520% Caa2 Caa1 Caa1 1 0 

30% 26.927483% 22.985234% 19.166473% Caa2 Caa1 Caa1 1 0 

 


