

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE GEOLOGÍA

APROXIMACIÓN A LA DIRECCIÓN DE FLUJO MAGMÁTICO Y VARIACIONES COMPOSICIONALES, MINERALÓGICAS Y TEXTURALES DE DIQUES MÁFICOS DEL COMPLEJO PLUTÓNICO ILLAPEL

MEMORIA PARA OPTAR AL TÍTULO DE GEÓLOGA

CLAUDIA BEATRIZ HIDALGO PAVEZ

PROFESOR GUÍA DIEGO ANTONIO MORATA CÉSPEDES

MIEMBROS DE LA COMISIÓN MIGUEL ÁNGEL PARADA REYES CHRISTIAN ERWIN CREIXELL TORRES

SANTIAGO DE CHILE

NOVIEMBRE DE 2011

A quienes me acompañan desde arriba ...

Carito y tía Paty

AGRADECIMIENTOS

En estas escasas líneas quiero agradecer a toda la gente que me ha apoyado incondicionalmente, a mi familia, a mis amigos y a todos quiénes de alguna manera me han alentado siempre a seguir adelante, con perseverancia y sin miedo.

En primer lugar, quiero agradecer a mi profesor guía, Diego Morata, por su infinita paciencia y preocupación y a los integrantes de mi comisión, Christian Creixell y Miguel Ángel Parada por su excelente disposición.

Es importante mencionar mis agradecimientos al Proyecto Fondecyt Nº1080468, a cargo de Diego Morata, que financió este trabajo y al Fondap Nº15090013, CEGA, Sistemas Magmáticos.

Quiero agradecer a Diego Morata y a Rodolfo Ferrando por su valiosa ayuda en terreno. Además, quiero dar las gracias a Rodolfo y a César Arriagada por su importante colaboración en el Laboratorio de Paleomagnetismo del Departamento de Geología de la Universidad de Chile y a María Isabel Varas por su buena disposición y ayuda.

De manera especial, quiero agradecer a mis padres y a mi hermano pues siempre han confiado en mí incluso en los momentos en los que he perdido la motivación. De mi familia he aprendido uno de los principios más importantes que rigen mi vida, el salir adelante sin importar la adversidad y sin esperar la ayuda de nadie, pues los medios para triunfar no se encuentran en el exterior, sino que dentro de nosotros mismos.

Me es imposible no recordar a María Rosa, por su paciencia y ayuda incondicional durante muchos años de estudio y de igual manera a Blanca por su inmensa disposición. Recordar a tantas otras personas del Departamento de Geología de la Universidad de Chile que sin lugar a dudas hicieron que el camino hacia la meta fuese más llevadero.

A mis amigas del alma, a quienes elegí y me eligieron para vivir juntas los buenos y malos momentos de la vida, no puedo dejar de mencionarlas: María José Garrido, Paula Cortés, Carla Morán y Débora Cárdenas, porque una a una hemos ido pasando etapas y ahora que es mi turno quiero darles las gracias por seguir estando aquí y ahora, comprendiendo mis tiempos, respetando mis espacios y acompañándome en sus pensamientos y en sus buenos deseos.

Quiero agradecer a mi familia paterna, quienes desde siempre han tenido mucha fe en mí y han estado al tanto de todos mis avances, entregándome su apoyo incondicional y sus palabras de aliento en los malos momentos. En especial, quiero recordar a mi tía Patricia y a mi prima Carolina, que a pesar de que ya no están físicamente entre nosotros, se que siempre desearon y desearán lo mejor para mí. Estoy segura de que estarían aquí apoyándome en el último paso de esta etapa, porque así lo hicieron durante todo el proceso.

Finalmente, quiero agradecer a toda la gente con la que me he topado en el camino y que me ha tendido la mano desinteresadamente sin siquiera conocerme, a todos aquéllos que algún día me entregaron palabras con buenos deseos, a toda la gente con la que me he encontrado en los distintos trabajos, y a los estudiantes de Chile y a quienes apoyan las demandas estudiantiles por una educación más justa y de calidad, por jugárselas por un mejor país.

TABLA DE CONTENIDOS

AG	RADE	CIMIE	ENTOS	iii
ΤA	BLA D		NTENIDOS	v
INI	DICE D	E TAI	BLAS Y FIGURAS	vii
RE	SUME	N		x
١.	INT	RODU	JCCIÓN GENERAL	1
	I.1.	Obje	etivos	2
	I.1.1		Objetivo general	2
	I.1.2	2.	Objetivos específicos	2
	1.2.	Hipo	ótesis de trabajo	3
	1.3.	Ubio	cación y accesos	3
	1.4.	Mar	co teórico referencial	4
	1.5.	Met	odologías	12
	1.5.1		Mapeo de superficie	12
	1.5.2	2.	Muestreo	12
	1.5.3	3.	Análisis de anisotropía de susceptibilidad magnética (ASM)	14
	1.5.4	ŀ.	Petrografía	14
	1.5.5	5.	Análisis de microfotografías	15
	1.5.6	.	Geoquímica	25
١١.	MA	RCO (GEOLÓGICO	27
	II.1.	Con 27	texto geotectónico durante el Cretácico en el margen suroccidental de Gonc	lwana
	11.2.	Plut	onismo Cretácico Inferior y el Complejo Plutónico Illapel (CPI)	30
III.	L	DS DI	QUES MÁFICOS DEL COMPLEJO PLUTÓNICO ILLAPEL	38
	III.1.	Obs	ervaciones de afloramiento	42
	III.2.	Obs	ervaciones microscópicas generales	47
	III.3.	Min	eralogía opaca y propiedades magnéticas	49
	111.4.	Vari	aciones mineralógicas y texturales	54

111.5.	III.5. Variaciones composicionales						
III.6.	Res	umen del capítulo	59				
IV.	DIREC	CIÓN DE FLUJO MAGMÁTICO EN LOS DIQUES	62				
IV.1.	. Aná	lisis de anisotropía de susceptibilidad magnética (ASM)	62				
IV	'.1.1.	Propiedades magnéticas y sus variaciones	62				
IV	.1.2.	Parámetros direccionales de ASM	64				
IV	.1.3.	Dirección de flujo magmático en base a imbricación de foliaciones magnétic	as 67				
IV.2.	. Orie	entación de cristales de plagioclasa	69				
IV	.2.1.	Orientaciones preferenciales de cristales de plagioclasa y petrofábricas	69				
IV	.2.2.	Estimación del vector de flujo en base a la orientación de cristales de plagio 73	clasa				
V DI			70				
v. Di	ISCUSIC	JNES T CUNCLUSIONES	76				
V. D.	Eva	uación de la metodología para el conteo de minerales opacos	76 76				
V.1. V.2.	Eva Var	uación de la metodología para el conteo de minerales opacos aciones composiciones, mineralógicas, texturales y magnéticas	76 76 77				
V.1. V.2. V.3.	Eva Var Esti 80	luación de la metodología para el conteo de minerales opacos aciones composiciones, mineralógicas, texturales y magnéticas mación de la dirección de flujo basada en la orientación de cristales de plagio	76 76 77 clasa				
V.1. V.1. V.2. V.3. V.4.	Eva Var Esti 80 Esti	luación de la metodología para el conteo de minerales opacos aciones composiciones, mineralógicas, texturales y magnéticas mación de la dirección de flujo basada en la orientación de cristales de plagio mación del sentido de flujo en base a observaciones de terreno	76 76 77 clasa 82				
V.1. V.2. V.3. V.4. V.5.	Eva Var Esti 80 Esti Mo	luación de la metodología para el conteo de minerales opacos aciones composiciones, mineralógicas, texturales y magnéticas mación de la dirección de flujo basada en la orientación de cristales de plagio mación del sentido de flujo en base a observaciones de terreno do de emplazamiento	76 76 77 clasa 82 85				
V.1. V.2. V.3. V.4. V.5. V.6.	Eva Var Esti 80 Esti Mo Dire	luación de la metodología para el conteo de minerales opacos aciones composiciones, mineralógicas, texturales y magnéticas mación de la dirección de flujo basada en la orientación de cristales de plagio mación del sentido de flujo en base a observaciones de terreno do de emplazamiento	76 76 77 clasa 82 85 87				
V.1. V.2. V.3. V.4. V.5. V.6. V.7.	Eva Var Esti 80 Esti Mo Dire Con	luación de la metodología para el conteo de minerales opacos aciones composiciones, mineralógicas, texturales y magnéticas mación de la dirección de flujo basada en la orientación de cristales de plagio mación del sentido de flujo en base a observaciones de terreno do de emplazamiento cción de flujo basada en el análisis de ASM	76 76 77 clasa 82 85 87 88				
V.1. V.2. V.3. V.4. V.5. V.6. V.7. V.8.	Eva Var Esti 80 Esti Mo Dire Con	luación de la metodología para el conteo de minerales opacos laciones composiciones, mineralógicas, texturales y magnéticas mación de la dirección de flujo basada en la orientación de cristales de plagio mación del sentido de flujo en base a observaciones de terreno do de emplazamiento ección de flujo basada en el análisis de ASM paración de las estimaciones de dirección de flujo magmático	76 76 clasa 82 85 87 88 90				

ANEXO I. Ubicación relativa de las muestras	I
ANEXO II. Anisotropía de susceptibilidad magnética (AMS)	IV
ANEXO III. Caracterización microscópica de los diques D, E, G, H, I y L	VIII
ANEXO IV. Conteo de minerales opacos	XV
ANEXO V. Orientación de cristales de plagioclasa	XVIII
ANEXO VI. Geoquímica de los diques G y H	XXXVIII

INDICE DE TABLAS Y FIGURAS

Figura I. 1. Ubicación y accesos a la zona de estudio	4
Figura I. 2. Estructura interna de un dique	5
Figura I. 3. Fábricas internas de un dique. a) Petrofábricas y b) Fábricas magnéticas	8
Figura I. 4. Estimación del vector de flujo	9
Figura I. 5. Elipsoide de ASM y los ejes principales de susceptibilidad magnética	10
Figura I. 6. Ubicación relativa de las muestras del sitio MR40	12
Figura I. 7. Ubicación relativa de las muestras del sitio MR41	13
Figura I. 8. Orientación de las secciones transparentes	15
Figura I. 9. Procedimiento para escalar la microfotografía	17
Figura I. 10. Procedimiento para la conversión de la imagen a escala de grises	18
Figura I. 11. Procedimiento para el ajuste del umbral de la imagen	19
Figura I. 12. Procedimiento para la selección de los parámetros a medir	20
Figura I. 13. Utilidad del ROI Manager	21
Figura I. 14. Presentación de los resultados	21
Figura I. 15. Medición de ángulos con el software ImageJ	22
Figura I. 16. Procedimiento para rotar la microfotografía	23
Figura I. 17. Procedimiento para la selección de los parámetros a medir	24
Figura I. 18. Presentación de los resultados	25
	•••
Figura II. 1. Contexto paleodinamico en el margen suroccidental de Sudamerica	28
Figura II. 2. Transición de un régimen extensional a uno compresional	29
Figura II. 3. Mapa geologico simplificado del area de estudio	30
Figura II. 4. Isotopia y clasificación de los intrusivos del Cretácico Interior	31
Figura II. 5. Edades radiométricas (U/Pb) del Complejo Plutónico Illapel	34
Figura II. 6. Mapa geológico del Complejo Plutónico Illapel	36
Figura III. 1. Mapas geológicos del área de estudio y su ubicación	38
Figura III. 2. Mapa Geológico I del área de estudio	39
Figura III. 3. Mapa Geológico II del área de estudio	40
Figura III. 4. Fotografía de terreno en la que se observa el margen enfriado en el digue E	42
Figura III. 5. Fotografía de terreno que muestra una ramificación del dique F	43
Figura III. 6. Fotografías de terreno que muestran epidositas en los diques G y H	43
Figura III. 7. Fotografía de terreno que muestra la geometría del dique L	44
Figura III. 8. Fotografía de terreno que muestra una dislocación dextral del dique H	45
Figura III. 9. Fotografía de terreno que muestra xenolitos en los diques B e I	45

Figura III. 10. Fotografía de terreno que muestra contacto difuso y neto del dique B	. 46
Figura III. 11. Fotografía de terreno que muestra los contactos por intrusión del dique C	. 46
Figura III. 12. Microfotografías de texturas microporfírica y afanítica	. 48
Figura III. 13. Microfotografías del dique K que muestra cloritización de fenocristales	. 48
Figura III. 14. Microfotografías de una epidosita de la muestra MR4002 del dique G	. 49
Figura III. 15. Microfotografías que muestran minerales opacos	. 50
Figura III. 16. Perfiles de proporción de minerales opacos y Km para los dique G y H	. 51
Figura III. 17. Distribución de tamaño de los minerales opacos del dique G	. 52
Figura III. 18. Distribución de tamaño de los minerales opacos del dique H	. 53
Figura III. 19. Microfotografías del dique E	. 54
Figura III. 20. Microfotografías del dique I	. 55
Figura III. 21. Microfotografías del dique D	. 55
Figura III. 22. Perfiles de abundancia de minerales normativos en los diques G y H	. 56
Figura III. 23. Perfiles transversales de elementos mayores en los diques G y H	. 57
Figura III. 24. Perfiles transversales de los principales índices composicionales	. 58
Figura III. 25. Perfiles transversales de elementos traza de los diques G y H	. 59
Figura IV. 1. Distribución de K _m y el factor de forma (T) versus porcentaje de anisotropía	. 63
Figura IV. 2. Variaciones de propiedades magnéticas de muestras de los sitios CH01 y CH02	. 63
Figura IV. 3. Fábricas magnéticas del dique B	. 65
Figura IV. 4. Fábricas magnéticas de los diques D y E	. 65
Figura IV. 5. Fábricas magnéticas de los diques I y K	. 66
Figura IV. 6. Fábricas magnéticas del dique G	. 66
Figura IV. 7. Fábricas magnéticas del dique H	. 67
Figura IV. 8. Dirección de flujo magmático basada en la metodología de Geoffroy <i>et al</i> . (2002))68
Figura IV. 9. Orientaciones de cristales de plagioclasa en el dique D	. 69
Figura IV. 10. Orientaciones de cristales de plagioclasa en el dique E	. 70
Figura IV. 11. Orientaciones de cristales de plagioclasa en el dique I	. 71
Figura IV. 12. Orientaciones de cristales de plagioclasa en el dique K	. 72
Figura IV. 13. Dirección global de flujo asociado a la generación de los diques D y E	. 73
Figura IV. 14. Dirección global de flujo asociado a la generación de los diques I y K	. 74
Figure V. 1. Estructures indicatives de contide de fluie	02
Figura V. 1. Estructuras indicativas de sentido de nujo	. 83
Figura V. 2. Fotografia de terreno que muestra ramificaciones del dique E	. 84 96
Figura V. 3. Esquema de la dilatación o apertura de la roca de caja	. 80
Figura V. 4. Geoffietria de un dique	. 00
Figura V. S. Dirección de dilatación de un dique del Enjambre de Dique de Etive	. 8/
Figura v. b. vector de fiujo basado en las distintas metodologías aplicadas sobre cada dique	. 89
Tabla I. 1. Ubicación geográfica de los sitios de muestreo	. 14
· · · · · · · · · · · · · · · · · · ·	

viii

Tabla II. 1. Edades U/Pb en circones e isotopía de las unidades del CPI	35
Tabla III. 1. Detalle de los sitios de muestreo, diques y nomenclatura de las muestras	41
Tabla III. 2. Detalle del uso de las muestras de cada dique	41
Tabla III. 3. Resumen de observaciones de afloramiento de los diques estudiados	60
Tabla III. 4. Resumen de observaciones microscópicas.	61
Tabla IV. 1. Orientación del vector de flujo magmático	68
Tabla IV. 2. Dirección del vector de flujo	74

RESUMEN

El presente trabajo comprende el estudio de un enjambre de diques máficos, para los cuales se presume un origen común, localizados en el extremo oriental del Complejo Plutónico Illapel (CPI, 31°25' – 32°30'S), con el objetivo de determinar si las texturas y estructuras internas de éstos permiten definir la existencia de un flujo magmático. Como este fue el caso, se planteó la posibilidad de estimar la dirección del vector que domina dicho flujo como un nuevo objetivo. Adicionalmente, se estudiaron las variaciones composicionales, texturales y mineralógicas en secciones transversales de un subconjunto de los diques con el objetivo de interpretar algunos de los procesos involucrados en su construcción. Para estos fines se han planteado una serie de metodologías, entre las cuales se cuenta el análisis digital de microfotografías mediante el uso del software de procesamiento de imágenes *ImageJ* para: (i) la estimación de la dirección del eje mayor de cristales de plagioclasa con el propósito de definir estadísticamente una lineación que responda a la dirección del transporte magmático y que por consiguiente, pueda representar un vector de flujo.

La primera de dichas metodologías permite facilitar la tarea de estimar proporción y distribución de tamaño de minerales opacos, reduciendo el error humano asociado a otros métodos y el tiempo de análisis hasta la obtención de los resultados, convirtiéndose en una herramienta útil en lo que se refiere a estudios paleomagnéticos. La segunda, se ha evaluado a través de la comparación con resultados obtenidos en base a otras metodologías estudiadas previamente por otros autores: (i) Imbricación de las foliaciones magnéticas (Geoffroy *et al.*, 2002); (ii) Flujo siguiendo la dirección del eje principal menor de susceptibilidad magnética (K₁); y (iii) Sentido de flujo en base a observaciones de afloramiento (Correa-Gómes *et al.*, 2001) y se ha llegado a la conclusión de que al menos para dos de los diques estudiados la orientación de cristales de plagioclasa determinada puede corresponder a la realidad denotando un flujo magmático subvertical. Sin embargo, para mejorar los resultados se hace necesario establecer un plano adecuado para la medición de la orientación de los cristales, el cual puede ser el plano perpendicular al eje principal mayor de susceptibilidad magnética (K₃).

Algunos de los diques estudiados tienen un origen sinplutónico y otros, postplutónico. Entre estos últimos, existe un par que se habría formado por una dilatación de sus paredes en una dirección oblicua a su rumbo. Por otra parte, las texturas observadas en todos los diques son de origen ígneo y algunas de ellas dejan en evidencia un flujo magmático que habría generado diferenciación (efecto Bagnold) concentrando los fenocristales en la región central y aumentando la proporción de SiO₂ y Al₂O₃ desde los márgenes hacia el centro en al menos uno de los diques.

I. INTRODUCCIÓN GENERAL

Los enjambres de diques máficos ocurren en todo tipo de contexto tectónico y representan el principal mecanismo de ascenso magmático hacia niveles someros de la corteza (Clemens, 1998; Llambías, 2001; Creixell, 2007). Éstos permiten dilucidar la ubicación de cámaras magmáticas y la orientación de los esfuerzos principales en el momento de su emplazamiento, y en base a su orientación y la de sus fábricas es posible aproximarse a la dirección del flujo magmático que los constituyó (Delaney *et al.*, 1986; Emerman y Marrett, 1990; Mége y Korme, 2004; Féménias *et al.*, 2004; Creixell, 2007).

Este estudio, financiado por el Proyecto Fondecyt 1080468 a cargo del Dr. Diego Morata, pretende establecer una aproximación a la dirección del flujo magmático que dio origen a una serie de diques máficos del Complejo Plutónico Illapel (CPI) y determinar algunos de los mecanismos involucrados en su emplazamiento.

Para estos fines se ha seleccionado un set de siete diques muy bien expuestos en un afloramiento horizontal localizado en Quebrada Frutillar, en las cercanías de Petorca, Provincia de Petorca, V Región de Valparaíso (32°10'S-71°03'W aprox.). Cabe destacar que algunos de estos diques fueron previamente estudiados por Rodolfo Ferrando para su tesis de Magíster por lo cual se dispone de datos de anisotropía de susceptibilidad magnética (ASM) de algunas de sus muestras.

La estimación de la dirección de flujo se basará en el estudio de fábricas magnéticas, mediante el análisis de ASM, y de petrofábricas, que serán definidas en base a la orientación preferencial de cristales de plagioclasa.

Para la determinación de la orientación de cristales de plagioclasa se desarrolló e implementó una metodología basada en la medición de ángulos entre el eje mayor de este tipo de cristales y una dirección previamente definida, mediante el uso del software *ImageJ* (http://rsbweb.nih.gov/ij) sobre 2 microfotografías tomadas en dos

planos perpendiculares entre sí de cada una de las muestras seleccionadas para estos fines.

Se intentará un acercamiento a los mecanismos involucrados en el crecimiento de estos diques, los cuales serán determinados en base a un análisis de las variaciones composicionales, mineralógicas y texturales de una serie de muestras distribuidas a lo ancho de un par de diques, los cuales han sido previamente sometidos a análisis de ASM. Esta información ha sido complementada con análisis geoquímicos, microscópicos y la implementación de una nueva metodología basada en el tratamiento de microfotografías mediante *ImageJ*, la cual permitió calcular la proporción y distribución de tamaño de los granos minerales opacos (en 2D) de cada una de las muestras.

I.1. Objetivos

I.1.1.Objetivo general

El objetivo general del presente estudio es determinar algunos de los mecanismos involucrados en la construcción y emplazamiento de los diques en base a perfiles composicionales y mineralógicos transversales a éstos y definir si su construcción responde a flujo magmático o se encuentra asociada a deformación tectónica. Si la construcción de los diques en estudio está asociada a flujo magmático, entonces determinar su dirección y sentido.

I.1.2. Objetivos específicos

Los objetivos específicos asociados a este proyecto son:

- 1. Caracterizar a escala de afloramiento los diques, sus relaciones de contacto y estructuras asociadas.
- 2. Determinar sus variaciones composicionales, mineralógicas y texturales en secciones transversales.
- Identificar petrofábricas y fábricas magnéticas en base a la orientación de cristales inequidimensionales y al análisis de Anisotropía de Susceptibilidad Magnética (ASM).

I.2. Hipótesis de trabajo

Las hipótesis de trabajo asociadas a este proyecto son las siguientes:

- 1) Los siete diques seleccionados para este estudio tienen un origen común.
- 2) El emplazamiento de los diques ocurrió a través de flujos magmáticos subverticales, subhorizontales o algún término intermedio entre ambos extremos.
- Es posible identificar distintos procesos involucrados en el emplazamiento de los diques máficos del CPI a partir de sus variaciones texturales, composicionales y mineralógicas en secciones transversales.
- 4) En base a la orientación de cristales de plagioclasa dentro de los diques y análisis de ASM es posible definir fábricas internas que permitan identificar la dirección del flujo asociado a la generación de los diques.
- 5) Las variaciones composicionales a lo ancho de los diques podrían deberse, entre otras cosas, a cambios temporales en la composición del magma afluente, al crecimiento acumulado de cristales en torno a las paredes de los diques, a la diferenciación asociada al flujo del magma afluente y/o a alteración producto de fluidos asociados o no al emplazamiento de otros diques.

I.3. Ubicación y accesos

El área de estudio se ubica aproximadamente 240 km al norte de la ciudad de Santiago, en la Provincia de Petorca, V Región de Valparaíso y unos 20 km al norte de la capital provincial.

Las vías de acceso a la zona son la Ruta 5 Norte (o Panamericana Norte) desde Santiago hasta la ciudad de la Ligua. Desde la Ligua el camino pavimentado E-35 que conduce a la ciudad de Cabildo. Finalmente, desde Cabildo la ruta pavimentada E-325 para continuar por el camino de ripio E-315. La zona de estudio se encuentra a un costado de dicho camino (Figura I.1).

Figura I. 1. Ubicación y accesos a la zona de estudio. En el mapa de la izquierda se indica en un recuadro verde la zona de estudio. Fuente: Red e infraestructura vial, Dirección de Vialidad 2010.

I.4. Marco teórico referencial

a) Ascenso magmático mediante diques y la estructura interna de éstos

El ascenso magmático mediante diques puede producirse fundamentalmente de dos formas: (i) aprovechando fracturas preexistentes para ascender si es que la

presión ejercida por el magma es superior a la resistencia viscosa a su flujo e inferior al esfuerzo normal a las fracturas; o bien, (ii) mediante el fracturamiento hidráulico, a través del cual el magma es capaz de fracturar la roca generando grietas que puede rellenar mientras avanza y propaga el fracturamiento (Delaney *et al.*, 1986).

El emplazamiento de diques basado en este último proceso debe cumplir con cuatro condiciones: (i) el trabajo necesario para fracturar la roca debe ser inferior al que requiere el magma para ascender y rellenar una grieta; (ii) el esfuerzo en el extremo de la grieta debe ser suficiente para propagarla; (iii) el espesor del dique debe ser superior a un espesor crítico; y (iv) la velocidad de ascenso magmático debe ser alta (Best, 2003).

b) Zonaciones internas en diques

Cuando el emplazamiento de diques está asociado a la propagación de sistemas de fracturas pueden definirse tres zonas: (i) una exterior que controla y define su geometría, (ii) una intermedia que comprende las etapas iniciales de la intrusión, y (iii) un núcleo que involucra el flujo magmático principal (Correa-Gómes *et al.*, 2001).

Figura I. 2. Estructura interna de un dique. Borde de grano fino o margen enfriado, contacto con la roca de caja y núcleo o centro del dique. Este esquema fue inspirado en los trabajos de Llambías (2001) y Thorpe et al. (1990).

Según Llambías (2001), la primera de estas zonas correspondería al contacto con la roca de caja, el cual suele representar una superficie de menor cohesividad producto

del contraste reológico entre ambas unidades, y la segunda, correspondería a un borde externo de grano fino (Figura I.2).

El borde externo de grano fino se conoce comúnmente como margen enfriado (Thorpe *et al.*, 1990; Huppert y Sparks, 1989; Latypov *et al.*, 2007). En general, es de composición menos silícea y más ferromagnesiana que el resto del dique (Llambías, 2001) y es indicativo de que la intrusión se emplazó dentro de un medio relativamente más frío (Thorpe *et al.*, 1990; Latypov, 2003a).

La ocurrencia de márgenes enfriados ha sido explicada de muchas maneras. Una de ellas hace referencia a la segregación viscosa durante el flujo, la cual permitiría que la porción menos silícea del magma se concentre contra el contacto intrusivo. En este caso el borde de grano fino actuaría como lubricante facilitando el flujo del magma por la zona central del conducto (Llambías, 2001; Carrigan y Eichelberg, 1990).

Durante el transporte magmático se produce un cizalle cuya dirección es paralela al plano de flujo y tiene un sentido opuesto en ambos bordes de un mismo dique (Correa-Gómes *et al.*, 2001). Este cizalle es máximo en el margen enfriado y el contacto entre éste y el centro del dique suele ser prácticamente nítido, lo que sugiere la existencia de una superficie de despegue entre ellos (Llambías, 2001). El cizalle se hace menos intenso hacia el centro del dique generando una zona donde este factor se torna mínimo permitiendo al magma fluir con su máxima velocidad (Correa-Gómes *et al.*, 2001; Llambías, 2001).

Numerosos estudios han constatado la ocurrencia de variaciones de abundancia modal y tamaño de cristales en secciones transversales de diques (Chistyakova y Latypov, 2008; 2009a y 2009b) las cuales pueden asociarse a la segregación mecánica de cristales durante el flujo magmático (Figura 1.2). Este fraccionamiento ha sido descrito como el "efecto Bagnold" y contribuye a que dentro de un dique los cristales sean empujados desde los márgenes hacia el centro con una eficiencia directamente proporcional al tamaño de dichos cristales y a la tasa de cizalle (Llambías, 2001). La diferencia de densidad entre la fase sólida y la líquida, el tamaño de los cristales y la viscosidad del magma, entre otros factores, controlarían dicho fraccionamiento que

6

suele ser llamado también "diferenciación por flujo" (Brouxel, 1991; Yamato *et al.*, 2011; Latypov, 2003a y 2003b).

Adicionalmente, estas variaciones pueden ser el resultado de que el lapso de tiempo favorable para la cristalización sea mayor en el centro de los diques que en sus márgenes y por consiguiente, la magnitud de estas variaciones dependerá de la tasa de enfriamiento de los diques que es función inversa de su espesor (Nkono *et al.*, 2006).

Por otra parte, se han documentado variaciones composicionales a lo ancho de diques (Chistyakova y Latypov, 2008; 2009a y 2009b) las cuales no siempre se ven reflejadas en cambios texturales observables en escala meso y/o microscópica. En dicho caso, se puede hablar de zonaciones crípticas que se manifiestan con la redistribución de especies químicas dentro de un dique o incluso dentro de las fases minerales que lo componen. Cuando esta redistribución es la respuesta a un gradiente de temperatura, surge el "efecto Soret" como el principal responsable. Este mecanismo implica la difusión de especies más pesadas hacia el extremo más frío y de las especies más livianas hacia el extremo más caliente (Walker y Delong, 1982).

Según Chistyakova y Latypov (2009b), los diques pueden presentar tres patrones distintos de fraccionamiento: (i) trend normal, (ii) trend inverso y (iii) ausencia de un trend. Los autores caracterizan el trend de fraccionamiento normal, entre otras cosas, por un descenso del número de Mg (#Mg) desde los márgenes hacia el centro de un dique, lo cual puede ser interpretado como el clásico proceso de separación entre la fase sólida y la líquida. Un trend inverso es mucho más complejo de interpretar y según Chistyakova y Latypov (2009b) podría ser el resultado de algunos de los siguientes procesos: (i) contaminación del magma in situ por el contacto con la roca de caja; (ii) inyección prolongada o múltiple de magma con una composición progresivamente más primitiva; (iii) efecto Soret o difusión termal; (iv) diferenciación por flujo o efecto Bagnold; entre otros.

A través de los diques también pueden presentarse variaciones en la susceptibilidad magnética que podrían estar relacionadas a factores que controlan las petrofábricas como por ejemplo, el enfriamiento rápido del magma por el contacto con una roca de caja más fría o por alteración posterior (Aifa y Lefort, 2000; de Wall *et al.*, 2004).

c) Fábricas internas como indicadores de flujo

Las texturas al interior de los diques suelen ser dominadas por el flujo magmático y se manifiestan de manera más marcada cerca de los márgenes de éstos debido a la mayor tasa de cizalle que afecta a dicha zona (Llambías, 2001). Este cizalle produce rotaciones en las partículas sólidas (cristales) acarreadas por el magma, las cuales se alinean, por lo general, de manera paralela a subparalela respecto a la dirección de transporte pudiendo ser identificadas como marcadores de flujo en caso de presentar algún grado de anisotropía ya sea magnética o de forma (Figura I.3).

Figura I. 3. Fábricas internas de un dique. a) Petrofábricas y b) Fábricas magnéticas al interior de un dique. Las petrofábricas pueden definirse en base a la orientación de cristales inequidimensionales (por ejemplo, plagioclasas) y las fábricas magnéticas pueden ser definidas a partir de la forma de los elipsoides de susceptibilidad magnética.

Es común que cerca de los márgenes se formen ángulos de entre 10 y 30° entre los marcadores y el plano de simetría del dique y que lo agudo de estos ángulos apunte en dirección opuesta a la fuente magmática (Blanchard *et al.*, 1979; Blumenfield y Bouchez, 1988; Benn y Allard, 1989; Rickwood, 1990; Baer, 1995; Correa-Gómes *et al.*, 2001). Sin embargo, existen importantes excepciones descritas por Blumenfield y Bouchez (1988), Benn y Allard (1989) y Fernández y Laporte (1991), entre otros, en las

cuales la deformación es tan importante durante el emplazamiento de los diques que las foliaciones debidas al flujo magmático han sido rotadas.

Las orientaciones preferenciales de granos minerales con importantes anisotropías de forma, es decir, con razones de aspecto relativamente altas, constituyen marcadores de flujo y pueden definir petrofábricas (Figura I.3a). Éstas son controladas por el contraste de viscosidad entre los cristales y la masa fundamental, la razón de aspecto de éstos, su distribución y concentración inicial y la historia de deformación o flujo del magma (Gay, 1968; Fernández y Laporte; 1991; Ildefonse *et al.*, 1992; Correa-Gómes *et al.*, 2001).

Figura I. 4. Estimación del vector de flujo basada en la imbricación de la foliación magnética respecto a los márgenes del dique. Figura modificada de Geoffroy *et al.* (2002).

Los estudios de fábricas en diques que se basan en dichas orientaciones pueden ser complementados por medio del método de ASM el cual puede detectar fábricas bastante sutiles en flujos con pequeños porcentajes de anisotropía (Hrouda, 1988; Llambías, 2001; Geoffroy *et al.*, 2002; Féménias *et al.*, 2004). En particular, Geoffroy *et al.* (2002) presentan una metodología en la cual se estima el vector de flujo magmático

como la dirección perpendicular a la línea de intersección entre el plano que define un dique y el plano de foliación magnética determinado en base a ASM (Figura I.4).

Como en rocas ígneas máficas la fábrica magnética se encuentra controlada por minerales de Fe y éstos son los últimos en cristalizar, su orientación imitaría la orientación de forma de cristales de plagioclasa. Las fábricas magnéticas permitirían incluso la distinción de pulsos magmáticos que dieron origen a un mismo dique (Llambías, 2001; de Wall *et al.*, 2004).

d) Anisotropía de susceptibilidad magnética (ASM)

Los resultados de mediciones de ASM se expresan en tres valores K_1 , K_2 y K_3 ($K_1 > K_2 > K_3$) que corresponden a las susceptibilidades magnéticas principales asociadas a tres direcciones perpendiculares entre sí (Figura I.5). Estas direcciones y las respectivas susceptibilidades magnéticas definen un tensor de segundo orden que puede ser representado como un elipsoide de susceptibilidad (Jelinek, 1981; Figura I.3b).

Figura I. 5. Elipsoide de ASM y los ejes principales de susceptibilidad magnética.

En base a los valores K_1 , K_2 y K_3 , Jelinek (1981) define los parámetros de lineación (*L*) y foliación (*F*) magnética, grado de anisotropía (*P'*) y factor de forma (*T*) (Jelinek, 1981). Estos parámetros pueden expresarse de la siguiente manera:

$$L = \frac{K_1}{K_2} \quad F = \frac{K_2}{K_3}$$
$$P' = exp \sqrt{2\left[\left(ln\frac{K_1}{K_m}\right)^2 + \left(ln\frac{K_2}{K_m}\right)^2 + \left(ln\frac{K_3}{K_m}\right)^2\right]}$$
$$T = \frac{2(lnK_2 - lnK_3)}{lnK_1 - lnK_3} - 1$$

El parámetro *T* representa la forma del elipsoide de ASM. Este puede ser oblato $(0 < T \le 1)$, prolato $(-1 \le T < 0)$ o triaxial (T = 0). Los primeros dos casos indican que la anisotropía se manifiesta fundamentalmente como foliación o lineación, respectivamente.

Cuando la magnitud de la susceptibilidad magnética ($K_m = (K_1 + K_2 + K_3)/3$) es superior a $10^{-3}SI$, los principales portadores de esta susceptibilidad corresponden a minerales ferromagnéticos como los pertenecientes a la solución sólida magnetitailmenita (Aubourg *et al.*, 2008). En este caso K_m es proporcional a la concentración de este tipo de cristales (Rochette *et al.*, 1991).

Numerosos estudios de ASM aplicados a diques indican que la lineación magnética representada por el eje K₁ del tensor de susceptibilidad es una buena aproximación de la dirección de flujo magmático (Bartolomeu y Ernesto, 1995; Callot *et al.*, 2001; Herrero-Bervera *et al.*, 2001; Archanjo y Araújo, 2002; Callot y Guichet, 2003; de Wall *et al.*, 2004; Féménias *et al.*, 2004; Gil-Imaz *et al.*, 2006; Nkono *et al.*, 2006; Aubourg *et al.*, 2008; Curtis *et al.*, 2008; Bolle *et al.*, 2010). Sin embargo, se ha demostrado que no siempre se verifica que la orientación de dicho eje represente la dirección de flujo (Rochette *et al.*, 1991, Callot *et al.*, 2001, Geoffroy *et al.*, 2002) aunque en dichos casos, ésta correspondería aproximadamente a la orientación promedio de las foliaciones imbricadas a lo largo de las paredes del dique (Geoffroy *et al.*, 2002).

I.5. Metodologías

I.5.1.Mapeo de superficie

Con motivos de este estudio se realizó una campaña de terreno de tres días en los cuales se construyeron dos mapas en escala 1:50. Uno de los mapas cubrió un área de 15 x 12 m. y el otro un área de 12 x 12 m. En ellos se plasmaron de manera detallada los contactos entre los diques y su roca caja, márgenes enfriados, ramificaciones, dislocaciones, enclaves en la roca caja, xenolitos y estructuras de alteración (por ejemplo, epidositas).

I.5.2. Muestreo

El muestreo se realizó en dos etapas. La primera la llevó a cabo Rodolfo Ferrando para su Tesis de Magíster. En esa etapa se tomaron 20 muestras cilíndricas de dos de los diques en estudio, correspondientes a los sitios MR40 y MR41 (Figura I.6 y Figura I.7). A 16 de dichas muestras se les realizaron estudios geoquímicos, análisis de anisotropía de susceptibilidad magnética y cortes transparentes perpendiculares al eje del cilindro cuyo objetivo fue tomar microfotografías que posteriormente se analizaron con un software de procesamiento de imágenes.

Figura I. 6. Ubicación relativa de las muestras del sitio MR40. Las muestras ennegrecidas en el esquema de la izquierda no serán consideradas en este trabajo. Regla de 30 cm como escala.

La segunda etapa, se completó durante la campaña de terreno realizada para este trabajo, en mayo del presente año, y contó con la importante colaboración de Diego

Morata y Rodolfo Ferrando. En esta oportunidad se muestrearon dos diques múltiples correspondientes a los sitios CH01 y CH02 (Tabla I.1). Para todas estas muestras cilíndricas se realizaron análisis de ASM y cortes transparentes perpendiculares y paralelos al eje del cilindro con el objetivo de tomar microfotografías orientadas que se analizaron con posterioridad con un software de procesamiento de imágenes.

Figura I. 7. Ubicación relativa de las muestras del sitio MR41. La muestra MR4101 no aparece en la fotografía de la derecha pero se ubica más al norte de ésta.

Sitio	Latitud	Longitud
MR40	32°10'22.0434" S	71°3'39.2400" W
MR41	32°10'21.5760" S	71°3'39.2400" W
CH01	32°10'15.6972" S	71°3'17.2368" W
CH02	32°10'15.7404" S	71°3'18.5688" W

Tabla I. 1. Ubicación geográfica de los sitios de muestreo. Los datos se encuentran en coordenadas geográficas.

Todas las muestras fueron obtenidas mediante una perforadora con motor alimentado por bencina. Posteriormente, fueron orientadas mediante un compás solar y una brújula magnética. La posición de cada una de ellas se escogió de modo de representar una sección transversal a cada uno de los diques y en el caso de los sitios MR40 y MR41 fue obtenida con precisión y a escala con el objetivo de realizar perfiles composicionales y mineralógicos de los diques a los que corresponden dichas muestras (Figura I.6 y Figura I.7). La ubicación relativa de las muestras de los sitios CH01 y CH02 se especifica en el Anexo I.

I.5.3. Análisis de anisotropía de susceptibilidad magnética (ASM)

Se cuenta con datos de ASM de 25 muestras distribuidas a lo ancho de 5 diques, los cuales corresponden a los sitios de muestreo CH01 y CH02 y de 16 de las muestras correspondientes a los sitios MR40 y MR41. Dichos datos fueron medidos por Rodolfo Ferrando quién, para este propósito, utilizó un equipo Kappabridge CLY-3S de alta precisión del Laboratorio de Paleomagnetismo del Departamento de Geología de la Universidad de Chile sobre las muestras cilíndricas antes mencionadas.

Estos datos comprenden la orientación de los ejes del elipsoide de susceptibilidad magnética, el porcentaje de anisotropía, el factor de forma, la magnitud de la foliación y lineación, y la susceptibilidad magnética de cada muestra. Todos estos datos han sido tabulados y se muestran en el Anexo II.

I.5.4. Petrografía

La petrografía de las muestras se basó en la observación microscópica de secciones transparentes elaboradas a partir de las muestras cilíndricas de roca obtenidas con anterioridad. Este estudio se llevó a cabo en el Laboratorio de

Microscopía del Departamento de Geología de la Universidad de Chile. Las principales características microscópicas de los diques estudiados se muestran en el Anexo III.

I.5.5. Análisis de microfotografías

Para estimar la proporción y tamaño promedio de minerales opacos y determinar la orientación espacial de cristales de plagioclasa se desarrollaron dos metodologías. Estas metodologías se basan en el análisis digital de microfotografías tomadas a cortes transparentes de cada una de las muestras de los diques que son objeto de este estudio.

Los objetivos de determinar estos parámetros son aportar en la definición de variaciones texturales y mineralógicas en secciones transversales de los diques y apoyar en el establecimiento de la dirección y sentido de flujo magmático, si es que la construcción de los diques estuviese asociada a un flujo.

Figura I. 8. Orientación de las secciones transparentes obtenidas para la determinación de la orientación de cristales de plagioclasa. A la izquierda se observa el testigo obtenido durante el muestreo y se indica la dirección del eje de dicho testigo como conocida. Las secciones transparentes fueron obtenidas a partir de las secciones grises de la izquierda y de la derecha. La sección de la izquierda corresponde al plano perpendicular al eje del testigo y la de la derecha, al plano vertical que pasa por el eje del testigo y cuyo azimuth coincide con el de éste. En ambos cortes se marcó una flecha respecto a la cual se midió la orientación de cristales de plagioclasa.

Se fabricaron cortes transparentes perpendiculares al eje de los testigos correspondientes a cada una de las muestras de los sitios MR40 y MR41. Cada una de estas secciones fue fotografiada 16 veces en distintos puntos y con dos magnificaciones, 4x y 10x.

A partir de cada una de 18 de las muestras cilíndricas, correspondientes a 4 diques, de los sitios CH01 y CH02 se construyeron dos cortes transparentes. Una sección corresponde al plano vertical de rumbo equivalente al azimuth del eje del cilindro (pasando por éste) y la otra corresponde al plano perpendicular a dicho eje (Figura I.8). Cada una de las secciones fue fotografiada 4 veces a nicoles cruzados con una magnificación de 10x.

Todas las microfotografías fueron tomadas con la iluminación al máximo mediante una cámara Canon modelo Power Shot A460 anexada a un microscopio polarizador Olympus del Laboratorio de Microscopía del Departamento de Geología de la Universidad de Chile. Posteriormente, todas las imágenes fueron analizadas mediante el software de distribución gratuita *ImageJ* (<u>http://rsbweb.nih.gov/ij</u>) siguiendo los procedimientos que se describen a continuación.

a) Proporción y distribución de tamaño de minerales opacos

La estimación de la proporción de de minerales opacos se basó en el cálculo de la fracción del área que ocupa este tipo de minerales en 16 microfotografías (de cada una de las 18 muestras dispuestas para este propósito) tomadas con luz polarizada plana. Para calcular dicha fracción, primero se ajustó cada fotografía de modo de obtener una imagen que mostrase en negro los minerales opacos y en blanco, el resto de los minerales. Para estos fines se tomaron 4 microfotografías de 18 muestras correspondientes a los sitios de muestreo MR40 y MR41 (Figura I.6 y Figura I.7). El software entrega también el tamaño medio de este tipo de cristales.

A continuación se detallan los pasos a seguir en ImageJ con cada microfotografía:

- Ejecutar el software y abrir la imagen (microfotografía a nicoles paralelos). Para esto en la barra de menú ir a File, luego Open y seleccionar la microfotografía a nicoles paralelos con la que se desea trabajar.
- 2. Fijar la escala de la imagen dibujando una línea recta horizontal que abarque toda la microfotografía con la herramienta Straight (Figura I.9). Ir al menú Analyze y cliquear en Set Scale, en la ventana emergente cambiar los parámetros Known Distance por el ancho de la fotografía en mm (dato conocido a partir de la magnificación del microscopio) y Unit of Lenght por mm (Figura I.9). Al cliquear en Ok, el resultado es la imagen escalada y todos los resultados de mediciones que se realicen sobre la imagen se encontrarán en la escala real.

Figura I. 9. Procedimiento para escalar la microfotografía.

 Convertir la imagen a una de 8 bits en el menú Image→Type→8-bit. La imagen obtenida a partir de este proceso es una en escala de grises (Figura I.10).

Figura I. 10. Procedimiento para la conversión de la imagen a escala de grises.

4. Ajustar el umbral de la imagen en el menú Image→Adjust→Threshold. En la ventana emergente se modifica el rango de valor en escala de grises que se desea seleccionar utilizando las barras horizontales. La idea es considerar los pixeles negros o con valores muy cercanos al negro con el objetivo de destacar únicamente los minerales opacos. Para esto es necesario tener abierta la fotografía original (en colores) e ir ajustando las barras horizontales superior e inferior de la ventana Threshold, hasta que el resultado sea lo más cercano posible a la realidad. Para todos los casos se ha fijado un valor mínimo en 0, correspondiente al negro (en la barra superior), y un valor máximo en torno a 30, que representa un gris muy cercano al negro (en la barra inferior). Al seleccionar Default y B&W, en la misma ventana, el resultado es una imagen con los minerales opacos en negro y el resto de los minerales, vidrio y masa fundamental, en blanco, en la cual ya se puede medir la proporción y tamaño promedio de minerales opacos. Cliquear en Apply (Figura I.11).

Figura I. 11. Procedimiento para el ajuste del umbral de la imagen

5. Seleccionar en el menú Analyze→Set Measurements los parámetros que se desea medir en la imagen (en este caso Area, Area Fraction y Fit Ellipse). La función Fit Ellipse aproxima la forma de un mineral opaco por una elipse y entrega los valores de los ejes mayor y menor de ésta. Area y Area Fraction corresponden a la superficie de la fotografía que ocupan cada grano mineral opaco en mm y en porcentaje respecto al área total de la imagen, respectivamente (Figura I.12).

Figura I. 12. Procedimiento para la selección de los parámetros a medir.

- 6. Finalmente, realizar las mediciones cliqueando en Analyze y luego en Analyse Particles. En la ventana emergente seleccionar Summarize, Add to Manager y Display Results y cliquear en Ok (Figura I.12). Este proceso mostrará la imagen con todos los objetos negros que el programa ha detectado en la imagen con su contorno delineado y abrirá dos ventanas, una llamada ROI Manager (Figura I.13), en la cual se pueden visualizar todos los objetos enumerados y otra llamada Summary (Figura I.14), en la cual se resumen los resultados entregando proporción y tamaño promedio de minerales opacos. El ROI Manager entrega una serie de opciones entre las que se cuentan Flatten (Figura I.13), que permite una mejor visualización de los objetos negros de menor tamaño y la opción Delete, para eliminar un objeto previamente seleccionado en la lista (Figura I.13).
- 7. Con la ayuda de la imagen original en colores eliminar todos los objetos negros reconocidos por el software que no corresponden a minerales opacos, ya sea por la mala iluminación al momento de obtener la microfotografía o porque constituyen otro tipo de mineral muy oscuro a nicoles paralelos.

Figura I. 13. Utilidad del ROI Manager.

 Realizar nuevamente las mediciones cliqueando en Measure de la ventana ROI Manager.

🛓 Re	esults					
File	Edit Font					File Edit Image Process Analyze Plugins Window Help
	Label	Area	Major	Minor	Angle	
1	PruebaOpacos-1.png:0603-0005	142	17.459	10.356	175.032	
2	PruebaOpacos-1.png:0604-0001	10	4.562	2.791	0	
з	PruebaOpacos-1.png:0605-0004	107	14.981	9.094	7.093	
4	PruebaOpacos-1.png:0606-0014	622	32.099	24.672	177.957	🛓 PruebaOpacos.png (33.3%)
5	PruebaOpacos-1.png:0607-0017	1232	63.333	24.768	170.155	1706x1714 pixels; 8-bit (inverting LUT); 2.8MB
6	PruebaOpacos-1.png:0608-0022	500	38.656	16.469	82.430	Summary
7	PruebaOpacos-1.png:0609-0018	8	4.037	2.523	123.690	File Edit Font
8	PruebaOpacos-1.png:0610-0022	8	4.514	2.257	90.000	Slice Count Total Area Average Size Area Fraction Major Minor Angle
9	PruebaOpacos-1.png:0611-0021	4	2.257	2.257	0	PruebaOnacos ppg 602 185120 000 307 508 6.3 16 804 10 051 80 830
10	PruebaOpacos-1.png:0612-0031	304	23.316	16.601	117.704	
11	PruebaOpacos-1.png:0613-0021	2	2.257	1.128	90.000	
12	PruebaOpacos-1.png:0614-0021	4	2.257	2.257	0	
13	PruebaOpacos-1.png:0615-0035	527	30.082	22.306	16.602	4 ROI Manager 168 166 150 162 162 162
14	PruebaOpacos-1.png:0616-0038	445	25.240	22.448	41.550	0603-0005 • Add [t] a119208 202 204 205 and 20
15	PruebaOpacos-1.png:0617-0027	4	2.257	2.257	0	0604-0001 Update 13 230 230 231 222 22702 232 232
16	PruebaOpacos-1.png:0618-0049	278	20.444	17.314	107.802	0606-0014 Delete 240 240 260 260
17	PruebaOpacos-1.png:0619-0048	166	15.304	13.811	50.279	0607-0017 Bename 8771 882
18	PruebaOpacos-1.png:0620-0043	12	4.729	3.231	135.000	
19	PruebaOpacos-1.png:0621-0071	244	24.343	12.762	104.613	
20	PruebaOpacos-1.png:0622-0080	932	51.215	23.170	31.657	0611-0021 Deselect 344 ar
21	PruebaOpacos-1.png:0623-0074	237	21.415	14.091	89.290	0613-0021 Properties 900 and 9000 055
22	PruebaOpacos-1.png:0624-0088	496	34.487	18.312	100.346	0614-0021 Flatten [F] 87 600 88865 873 971 68
23	PruebaOpacos-1.png:0625-0086	417	27.247	19.486	115.988	0616-0035 More » 992
24	PruebaOpacos-1.png:0626-0083	386	23.196	21.188	51.721	0617-0027 🔽 Show All 403 92098 (387) 403 999 400301 404104
25	PruebaOpacos-1.png:0627-0081	4	2.257	2.257	0	0618-0049 - C Edit Mode 418 421 4435 441
26	PruebaOpacos-1.png:0628-0090	179	17.033	13.380	166.672	
27	PruebaOpacos-1.png:0629-0084	4	2.257	2.257	0	450 450 450 450 450 450 450 450 450 450
28	PruebaOpacos-1.png:0630-0097	359	25.165	18.164	24.185	478 48170 482 480 480 4947 484
29	PruebaOpacos-1.png:0631-0096	338	22.019	19.545	38.307	602 603 403 607 404 409 605 cm 608 60 ⁴⁰² 601 406 407 603
30	PruebaOpacos-1.png:0632-0096	198	19.495	12.932	106.935	617 619 41518 615 65822 609 623 623 63 4707210 cm
31	PruebaOpacos-1.png:0633-0092	8	4.514	2.257	0	650 650 650 650 650 650 650 650 650 650
32	PruebaOpacos-1.png:0634-0104	152	23.691	8.169	91.184	
33	PruebaOpacos-1.png:0635-0111	400	30.574	16.658	50.524	- AD 600 AD 600 AD 600 AD

Figura I. 14. Presentación de los resultados.

Los resultados para cada muestra que entrega la ventana Summary fueron tabulados en planillas Excel y se muestran en el Anexo IV.

b) Determinación de la orientación de cristales de plagioclasa

La orientación de cristales de plagioclasa se obtuvo calculando el ángulo entre el eje mayor de 25 de estos cristales y una dirección conocida y marcada en cada microfotografía (Figura I.15). Todas las fotografías fueron previamente rotadas de modo de hacer coincidir la dirección marcada en éstas con la vertical. En resumen, se determinó la orientación de 200 cristales de plagioclasa para cada una de las 18 muestras que se analizaron con este objetivo. En total se midió la orientación de 3600 cristales de plagioclasa.

Figura I. 15. Medición de ángulos con el software *ImageJ*. En el esquema se representan todos los casos posibles. El ángulo es medido en sentido horario desde la flecha marcada en cada sección transparente. En a) se observa la sección transparente perpendicular al eje del testigo y en b), aquélla de disposición vertical y que pasa por el eje de éste.

Los pasos que se siguieron para obtener la orientación de los cristales de plagioclasa, usando el Software *ImageJ*, fueron los siguientes:

- 1. Ejecutar los pasos 1 y 2 para el conteo de opacos. Considerando que la imagen debe ser una microfotografía a nicoles cruzados y tiene que tener marcada una dirección (Figura I.16).
- Rotar la imagen para que la dirección marcada en ella coincida con la vertical. Para esto ir al menú Image→Transform→Rotate y en el campo Angle (degrees) de la ventana emergente indicar el ángulo, en grados, que se desea rotar la imagen (Figura I.16).

Figura I. 16. Procedimiento para rotar la microfotografía

- 3. Escoger los parámetros a medir en Analyze→Set Measurements. En este caso se seleccionará solamente Fit Ellipse (Figura I.17).
- 4. Con la herramienta Polygons selections marcar el contorno de un cristal de plagioclasa y aplicar el comando Ctrl+t que permite la selección de un nuevo polígono y abre una ventana llamada ROI Manager, la cual lleva el control de los polígonos seleccionados (Figura I.18).
- 5. Seleccionar **Show all** en la ventana de **ROI Manager** para visualizar en la imagen todos los cristales de plagioclasa ya contorneados (Figura I.18).

Figura I. 17. Procedimiento para la selección de los parámetros a medir.

d	Results				d Image)	23
Fi	e Edit Font				File Edit Image Process Analyze Plugins Window Help	
	Label	Major	Minor	Angle		-
1	PruebaPlagioclasa.png:0424-0740	185.156	64.516	59.184		
2	PruebaPlagioclasa.png:0126-1536	334.394	104.724	149.125	Measure: 0.0020 seconds	
3	PruebaPlagioclasa.png:1212-1976	300.201	52.482	163.686		
					PruebaPlagioclasa.png (25%)	
					ROI Manager V424-0740 0126-1538 1212-1976 Vpdate Rename Measured Poperties Fiatten [F] More a V Show All V Edit Mode	

Figura I. 18. Presentación de los resultados. Notar que se ha seleccionado en celeste el contorno de una plagioclasa.

6. Cliquear en Measure al terminar la selección de los cristales de plagioclasa. Esta acción abre una nueva ventana en la que se entrega por defecto el largo del eje mayor y menor de la elipse asociada a la forma del cristal y el ángulo entre el eje mayor y la dirección marcada en la microfotografía. En este caso se seleccionaron 25 cristales por fotografía (Figura I.18).

Los datos obtenidos fueron tabulados en una planilla Excel y en el Anexo V se presenta un resumen de éstos.

I.5.6. Geoquímica

Las muestras correspondientes a los sitios MR40 y MR41 fueron sometidas a análisis de elementos mayores (SiO₂, Al₂O₃, Fe₂O₃, FeO, TiO₂, Na₂O, K₂O, CaO, P₂O₅, MnO, MgO), elementos traza (Zn, Co, Ni, Ba, Cr, Cu, V, Zr, Y, Sc) y tierras raras (La, Ce, Nd, Sm, Eu, Gd, Dy, Ho, Er, Yb, Lu) en el Laboratorio de Geoquímica del Departamento de Geología de la Universidad de Chile. Los resultados de estos análisis se presentan en el Anexo VI.

La abundancia de elementos mayores y traza se determinó mediante un Espectrómetro de Emisión por Plasma (ICP óptico) cuyo modelo es OPTIMA 7400V CYCLONIC de la marca Perkin Elmer.

El objetivo de estos análisis es construir perfiles composicionales a lo ancho de los diques representados por los sitios de muestreo MR40 y MR41, de modo de interpretar los procesos involucrados en su emplazamiento en base a las variaciones detectadas.
II. MARCO GEOLÓGICO

En este capítulo se describirán el contexto geotectónico en el margen suroccidental de Gondwana durante el Cretácico, el magmatismo Cretácico Inferior al cual corresponden el Complejo Plutónico Illapel (CPI) y sus diques máficos (algunos de los cuales son objeto de este estudio), y las rocas volcánicas y sedimentarias que constituyen la caja del CPI.

II.1. Contexto geotectónico durante el Cretácico en el margen suroccidental de Gondwana

Tras una etapa de engrosamiento cortical correspondiente a la Orogenia Gondwánica (Carbonífero-Pérmico Superior) y en un contexto de margen en subducción, se da inicio a una extensión de la corteza, probablemente asociada a una lenta generación de suelo oceánico (Larson y Pitman, 1972), que se hace muy importante durante el Triásico y que concluye a mediados del Cretácico de manera contemporánea con la fragmentación de Gondwana-Pangea (Mpodozis y Ramos, 1989; Mpodozis y Allmendinger, 1993; Mpodozis y Ramos, 2008; Ramos, 2010; Figura II.1).

En particular, en Chile central, el Cretácico Inferior se desarrolla en un contexto de extensión cortical y una subducción del tipo "Mariana" en respuesta a un retroceso de la fosa (Pankhurst *et al.*, 1988; Aguirre *et al.*, 1989), y comprende un abundante volcanismo y plutonismo calcoalcalino asociados a cuencas extensionales volcanosedimentarias de intra-arco, adelgazamiento cortical y subsidencia de las cuencas (Aguirre *et al.*, 1989; Mpodozis y Allmendinger, 1992 y 1993; Scheuber *et al.*, 1994; Arancibia, 2004; Figura II.2).

De manera simultánea, se produce un metamorfismo no deformativo de bajo a muy bajo grado que alcanza la facies prehnita-pumpellyita en su peak metamórfico (Aguirre *et al.*, 1989; Féraud *et al.*, 1998; Aguirre *et al.*, 1999; Fuentes *et al.*, 2005) y que algunos autores interpretan como de enterramiento (*e.g.*, Aguirre *et al.*, 1999). Este

evento ha sido datado por el método Ar-Ar en 93-94 Ma (Féraud *et al.*, 1998; Aguirre *et al.*, 1999) y 97-100 Ma (Fuentes *et al.*, 2001), y se ha estimado un gradiente termal asociado a él, de 20 a 30°C/Km (Vergara *et al.*, 1995).

Figura II. 1. Contexto paleodinámico en el margen suroccidental de Sudamérica durante el intervalo Jurásico-Cretácico Temprano. Modificado de Scheuber y González (1999).

Al finalizar el Cretácico Inferior, un episodio de deformación de carácter compresivo que ha sido relacionado con la reorganización de las placas tectónicas y la convergencia oblicua dextral entre las placas Sudamericana y Oceánica (Scheuber *et al.* 1994; Scheuber y González, 1999; Figura II.1) y que se conoce como la Fase Peruana generó plegamiento, alzamiento y erosión de las unidades previas (Charrier y Vicente, 1972; Vicente *et al.*, 1973; Mpodozis y Ramos, 1989; Reutter, 2001; Arancibia, 2004).

En el intervalo comprendido entre 106 y 90 Ma se produjo un importante evento de exhumación que afectó a rocas desde el Paleozoico tardío hasta los granitoides del Cretácico Inferior del Batolito Costero. Esta exhumación fue más importante a lo largo de la actual Cordillera de la Costa y ha sido reconocido mediante edades obtenidas a partir de trazas de fisión en apatito (Gana y Zentilli, 2000, Parada *et al.*, 2005a). Estas edades son parcialmente coincidentes con el evento de deformación compresiva en torno a los 32°S (Arancibia, 2004) por lo que se ha atribuido al cambio desde una condición tectónica distensiva a una condición más cercana a lo compresivo (Figura II.2).

Figura II. 2. Transición de un régimen extensional a uno compresional en los Andes centrales. (a) Extensión intra-arco durante el intervalo Jurásico-Cretácico Temprano; (b) Estado estacionario sin contracción entre el Aptiano y Albiano. Los perfiles corresponden a la sección inmediatamente al norte de la ciudad de Santiago. Figura modificada de Ramos (2010).

Adicionalmente, la alta tasa de erosión y exhumación durante este período ha sido documentada por la presencia de depósitos de grano grueso del Cretácico Tardío cuyo origen correspondería a la erosión rápida de las unidades volcanosedimentarias del intervalo Jurásico-Cretácico que fueron alzadas durante este evento (*e.g.* Arancibia, 2004).

II.2. Plutonismo Cretácico Inferior y el Complejo Plutónico Illapel (CPI)

En la Cordillera de la Costa de Chile, entre los 23°S y 38°S aflora un cuerpo elongado de unos 50 km de ancho conocido como el Batolito Costero. En el segmento correspondiente a Chile Central, entre los 33°S y 34°S, se han definido al menos tres cinturones plutónicos de disposición N-S cuya edad disminuye hacia el E, desde el Paleozoico Superior al Cretácico Inferior (Levi, 1973; Vergara *et al.*, 1995; Parada *et al.*, 1999; Figura II.3).

Figura II. 3. Mapa geológico simplificado del área de estudio. Figura modificada de Arancibia (2004).

El cinturón correspondiente al Cretácico Inferior está constituido principalmente por tonalitas de hornblenda, trondhjemitas y granodioritas, que se han emplazado en condiciones de baja presión (1.5-3kbar) en cuencas de intra-arco y que en conjunto constituyen una configuración del tipo TTG (Parada et al., 1999; Figura II.4c).

En particular, el plutonismo Cretácico Inferior se encuentra estrechamente relacionado con el adelgazamiento cortical producto de la extensión ocurrida en el margen suroccidental de Gondwana entre el Triásico y el Cretácico Inferior, y se deriva de una de las fuentes más empobrecidas isotópicamente en los Andes chilenos (Parada *et al.*, 1999; Parada *et al.*, 2005b; Figura II.4a). Parada *et al.* (1999) han determinado que los granitoides de este período se originaron por diferenciación de magmas mantélicos pues no se han detectado evidencias de participación cortical en su origen.

Figura II. 4. Isotopía y clasificación de los intrusivos del Cretácico Inferior. a) εNd vs. 87Sr/86Sr inicial para los granitoides, gabros y enclaves máficos del Batolito Costero; b) εNd vs. 87Sr/86Sr inicial comparativo para N-Morb del Pacífico, los granitoides del Plutón Caleu, las rocas de la Formación Veta Negra, rocas volcánicas del Jurásico, granitoides del Paleozoico Tardío y granitoides Jurásico; c) Diagrama de Ab-An-Or normativos para la clasificación de los granitoides del Complejo Plutónico Illapel. Las figuras a) y c) han sido modificadas de Parada et al. (1999), mientras que la figura b) ha sido modificada de Parada et al. (2005a).

Unos 40 km al noroeste de Santiago aflora, en un área que abarca cerca de 340 km², el Plutón Caleu (Parada *et al.*, 2002). Este plutón se emplaza dentro de una potente secuencia Cretácico Temprana de origen volcanosedimentario que se depositó en una cuenca en subsidencia (Vergara *et al.*, 1995) y éste, constituye el intrusivo más empobrecido isotópicamente dentro del plutonismo Cretácico Inferior (Figura II.4b), lo cual hace presumir que se habría formado cuando la extensión cortical que dominó este periodo alcanzó su máximo (Parada *et al.*, 2005a).

Limitando al sur con el plutón Caleu y como parte del cinturón más oriental del Batolito Costero, correspondiente al Cretácico Inferior, aflora un conjunto de rocas intrusivas que inicialmente fueron definidas como la Superunidad Illapel, constituida por las tonalitas y cuarzodioritas de la Unidad Chalinga y las leucodioritas y trondhjemitas de la Unidad Limahuida (Rivano *et al.*, 1985). Posteriormente, todas estas rocas, en su conjunto, pasaron a conocerse como el Complejo Plutónico Illapel (CPI), en el cual se describieron además, enclaves máficos milimétricos a métricos y pequeños diques máficos sinmagmáticos (Parada *et al.*, 1999; Varas, 2011).

El CPI constituye un cuerpo elongado en dirección N-S que aflora entre los 31°25' y 32°30'S abarcando una amplia gama de litologías que siguen un trend subalcalino entre las cuales pueden distinguirse dos grupos. Un primer grupo cuyas rocas presentan una razón K/Na inferior a 0.4 y que corresponden a la Unidad Limahuida y un segundo grupo, constituido por rocas con razón K/Na entre 0.4 y 1, y que representan a la Unidad Chalinga (Parada *et al.*, 1999).

La roca de caja del CPI está constituida por rocas volcánicas continentales depositadas en condiciones subaéreas en la cuenca de intra-arco Lo Prado durante el intervalo Hauteriviano-Barremiano, correspondientes a la **Formación Veta Negra**, (Levi y Aguirre, 1981; Åberg *et al.*, 1984; Levi *et al.*, 1988; Vergara *et al.*, 1995; Parada *et al.*, 2005a; Figura II.4b) y por otras rocas de origen volcanosedimentario depositadas durante el Albiano, correspondientes a la **Formación Las Chilcas** (Parada *et al.*, 2005a).

La Formación Veta Negra es una secuencia de espesor variable de basaltos y andesitas basálticas con una afinidad calcoalcalina de alto K a shoshonítica (Levi y Aguirre, 1981; Åberg *et al.*, 1984; Levi *et al.* 1988; Vergara *et al.*, 1995). Estas lavas presentan texturas porfíricas con fenocristales de plagioclasa y masa fundamental compuesta por augita, titanomagnetita y una pequeña proporción de olivino alterado (Levi y Aguirre, 1981; Åberg *et al.*, 1984; Levi *et al.*, 1988; Vergara *et al.*, 1995; Parada *et al.*, 2005a) y morfológicamente, según Åberg *et al.* (1984) corresponderían a *flood basalts.* Esta unidad ha sido datada en la sección de Cerro Bustamante (al W de Santiago) y en el Cordón de Chacana (al N del río Aconcagua) mediante el método Ar-Ar en plagioclasas primarias obteniéndose edades entre 118.7±0.6 Ma y 119±2.4 Ma (Aguirre *et al.*, 1999; Fuentes *et al.*, 2005). Las rocas de esta Formación han sido afectadas por el metamorfismo no deformativo del Cretácico Inferior (Aguirre *et al.*, 1999).

La Formación Las Chilcas comprende depósitos continentales gruesos, calizas, brechas volcanosedimentarias, conglomerados con fragmentos volcánicos gruesos y en menor proporción andesitas e intercalaciones de tobas riolíticas (Parada *et al.*, 2005a y 2005b). Wall *et al.* (1999) realizaron dataciones U/Pb en circones correspondientes a lavas ácidas de la sección inferior de esta unidad y K/Ar en roca total y plagioclasa para rocas volcánicas ácidas de la sección superior, obteniendo intervalos de 109±0.2 a 106.5±0.4 Ma y 101±3 y 95±3 Ma, respectivamente (Parada *et al.*, 2005a) y se obtuvo una edad de 105 Ma en base a un microfósil marino planctónico encontrado en rocas de la sección inferior de esta unidad (Martínez-Pardo *et al.*, 1994), permitiendo asignarla al Albiano.

Estudios petrográficos, edades radiométricas U-Pb en circones, y datos de anisotropía de susceptibilidad magnética (ASM) permiten subdividir el CPI en cuatro unidades: **Unidad Máfica** (UM), **Unidad Trondhjemítica** (UT), **Unidad Tonalítica Principal** (UTP) y **Unidad Granodiorítica** (UG) (Figura II.5, Tabla II.1 y Figura II.6). En los bordes de estas unidades los diques sinmagmáticos félsicos y máficos se hacen más abundantes, mientras que los enclaves máficos microgranulares se distribuyen ampliamente en todo el CPI siendo especialmente frecuentes en la región más austral de éste y aumentando su concentración desde los extremos del cuerpo plutónico hacia su interior (Varas, 2011). Estas unidades representan distintos pulsos en el emplazamiento del CPI.

Figura II. 5. Edades radiométricas (U/Pb) de las distintas unidades en las que se ha dividido el Complejo Plutónico Illapel (CPI). I: Unidad Máfica; II: Unidad Trondhjemítica; III: Unidad Tonalítica Principal; y IV: Unidad Granodiorítica. Figura tomada de Morata *et al.* (2010).

La UM comprende gabros y dioritas con tonalitas subordinadas que afloran en la parte norte y en el borde occidental del CPI. Esta unidad correspondería al evento magmático más antiguo y habría ocurrido durante el Aptiano.

La UT corresponde a un cinturón de disposición aproximadamente N-S que aflora en la parte central del CPI y comprende trondhjemitas y leucogranitos. Representa el segundo pulso magmático de este complejo el cual habría ocurrido durante el Albiano.

La UTP es la unidad más ampliamente distribuida y comprende tonalitas con enclaves máficos y granodioritas subordinadas que afloran como una franja N-S en la parte austral del CPI y representa un tercer pulso magmático que tuvo lugar a fines del Albiano y comienzos del Cenomaniano. Como antecedente adicional, esta unidad presenta una foliación ASM subvertical (Ferrando *et al.*, 2009) y su signatura isotópica es homogénea para todas las litologías que la conforman.

En el borde oriental del CPI afloran las granodioritas de la UG del CPI. Existe escasa información respecto de esta unidad. Sin embargo, una muestra proveniente de ésta ha sido datada en 86.9±1.2 Ma mediante el método U-Pb en circones (Morata *et al.*, 2010 y 2011) lo que permitiría, en primera instancia, asignar la ocurrencia de un cuarto pulso magmático al Coniaciano.

Unidad	Ubicación dentro del CPI	Litología	Razón inicial ⁸⁷ Sr/ ⁸⁶ Sr	εNd	T _{DM} [Ga]	Edad U/Pb en circones [Ma]
Unidad Máfica	Extremo norte y borde occidental	Gabros Dioritas Tonalitas subordinadas	0.70335	+4.2	0.87	118.0±1.9-115.7±2
Unidad Trondhjemítica	Centro	Trondhjemitas Leucogranitos	0.70369	+5	0.36	110.4±1.8-109.7±1.5
Unidad Tonalítica Principal	Borde Austral	Tonalitas con enclaves máficos Granodioritas subordinadas Enclaves máficos	0.70325- 0.70361 0.70332- 0.70362	+5.6- +4.7 +5.1- +4.7	0.43-0.35 0.56-0.54	102.4±1.5-98.8±1.3
Unidad Granodiorítica	Borde oriental	Granodioritas	١	lo hay datos	3	86.9±1.2

Tabla II. 1. Edades U/Pb en circones y características isotópicas de cada una de las unidades del CPI. Los datos fueron tomados de Morata *et al.* (2010 y 2011).

La ocurrencia de estos cuatro pulsos magmáticos puede interpretarse como la migración hacia el E del magmatismo durante el Cretácico y podría estar asociado al cambio de un régimen extensional a uno compresional (Morata *et al.*, 2010 y 2011).

Un estudio estadístico de los enclaves máficos microgranulares presentes en el CPI (Varas, 2011) permite explicar el origen de su amplia gama de litologías (granitoides y rocas máficas) como un resultado de procesos de mixing y mingling a partir de magmas coetáneos. Los contrastes de viscosidad y reología revelados en la morfología, relaciones de contacto y desarrollo de coronas de reacción de los enclaves máficos microgranulares permiten asegurar la existencia de estos magmas y explicar

que los enclaves fueron globos de magma máfico que se enfrió cerca de uno relativamente más frio y félsico.

Figura II. 6. Mapa geológico del Complejo Plutónico Illapel (CPI), Chile central (31°30'-32°30'S). UM: Unidad Máfica; UT: Unidad Trondhjemítica; UTP: Unidad Tonalítica Principal; UG: Unidad Granodiorítica. Figura basada en los trabajos de Morata *et al.* (2006), Ferrando *et al.* (2009), Varas (2011) y Morata *et al.* (2010 y 2011). Se indica con una estrella la ubicación de la zona de estudio.

Varas (2011) explica la presencia de enclaves máficos microgranulares en la región sur del CPI (Unidad Tonalítica Principal) como un producto de la inyección simultánea de magma máfico en la base de los diques mediante los cuales ascendió y se emplazó el magma félsico en dicho lugar. Estos enclaves habrían actuado como objetos rígidos y se habrían orientado de acuerdo a la dirección del flujo magmático presente en el momento que según los datos de orientación correspondería a un flujo vertical a subvertical.

III. LOS DIQUES MÁFICOS DEL COMPLEJO PLUTÓNICO ILLAPEL

El presente trabajo comprende el estudio de un conjunto de diques máficos expuestos en afloramientos horizontales localizados en la región austral del Complejo Plutónico Illapel (CPI), en el sector conocido como Quebrada Frutillar en las cercanías de la localidad de Petorca. La roca de caja de estos diques es una granodiorita de grano fino que forma parte de la Unidad Tonalítica Principal (UTP) del CPI (Ferrando *et al.*, 2009; Figura II.6 y Figura III.1).

Figura III. 1. Mapas geológicos del área de estudio y su ubicación en el mapa geológico de escala regional del CPI (Figura II.6).

Las observaciones de afloramiento de estos diques se plasmaron en dos mapas geológicos en escala 1:50, que representan áreas de 15x12 m (Mapa I) y 15x15 m (Mapa II) (Figura III.1, Figura III.2 y Figura III.3).

Figura III. 2. Mapa Geológico I del área de estudio. Ver Figura III.2 para su ubicación geográfica.

Figura III. 3. Mapa Geológico II del área de estudio. Ver Figura III.1 para su ubicación geográfica.

Los diques expuestos en los mapas han sido nombrados con las letras mayúsculas desde la A hasta la N y para este estudio, se han muestreado los diques B, C, D, E, G, H, I y K en los sitios CH01, CH02, MR40 y MR41 como se describe en la Tabla III.1 y Anexo I. La ubicación geográfica de los sitios de muestreo se muestra en la Tabla I.1 y

en la Figura II.6 y la cantidad y nomenclatura de las muestras se presentan en la Tabla III.1.

Sitios de muestreo	Dique	Nº de muestras	Muestras				
	В	9	01, 02, 03, 04, 09, 10, 17, 18, 19				
CH01	D	4	05 , 06, 07, 08				
	Е	6	11 , 12, 13, 14, 15, 16				
MR40	G	7	01 , 03, 04, 05, 06, 07, 08				
MR41	Н	9	01 , 02, 03, 04, 05, 06, 07, 08, 09				
CLIO2	I	5	01 , 02, 03, 07, 08				
CHUZ	К	3	04 , 05, 06				

Tabla III. 1. Detalle de los sitios de muestreo, diques y nomenclatura de las muestras. Se destacan en negrita las muestras consideradas como marginales. Para el dique B, no se destacan muestras marginales, debido a su compleja geometría.

Los objetivos del muestreo de cada dique fueron variados y entre ellos se cuentan la observación microscópica, el cálculo de la proporción y tamaño medio de minerales opacos, la determinación de la orientación de cristales de plagioclasa, el análisis geoquímico para definir las variaciones composicionales, la determinación de las propiedades magnéticas y el análisis de ASM. En la Tabla III.2 se detallan los análisis aplicados a las muestras de cada dique.

Dique	Observación microscópica	Mineralogía opaca	Orientación de plagioclasas	Geoquímica	Propiedades magnéticas	ASM
В	SI				SI	SI
D	SI		SI		SI	SI
Е	SI		SI		SI	SI
G	SI	SI		SI	SI	
Н	SI	SI		SI	SI	
I.	SI		SI		SI	SI
К	SI		SI		SI	SI

Tabla III. 2. Detalle del uso de las muestras de cada dique.

Estos diques son principalmente máficos, de orientación subvertical con rumbo NNW y espesores decimétricos a métricos. Gran parte de ellos presenta márgenes enfriados (Figura III.4 y Tabla III.3) y texturas microporfíricas definidas por fenocristales de plagioclasa en masas fundamentales afaníticas constituidas por plagioclasa, piroxeno, minerales opacos y vidrio, y muchos de ellos exhiben texturas intergranulares y fábricas orientadas.

III.1.Observaciones de afloramiento

Los diques en estudio se encuentran expuestos en afloramientos horizontales con pequeñas variaciones de nivel (<2 m) y corresponden en su totalidad a pequeños diques máficos que intruyen a una granodiorita de grano fino en la región austral del CPI dentro de la UTP.

Figura III. 4. Fotografía de terreno en una vista horizontal en la que se observa el margen enfriado desarrollado en el dique E por su intrusión dentro del dique B. Regla de 30 cm de longitud como escala.

Todos los diques registrados en los mapas presentan una orientación subvertical de rumbo entre N10W y N30W, exceptuando el dique A cuyo rumbo aproximado es N10E (Figura III.2, Figura III.3 y Tabla III.3). Todos ellos, excepto el dique B, tienen un espesor que se encuentra entre 10 y 200 cm. Sin embargo, el espesor de los diques B, E, F, G, I, K y L, es difícil de estimar dada su compleja geometría (Figura III.2 y Figura III.3), por lo que para los diques H y L se estimó un espesor mínimo, para los diques E,

F, K y M se estimó un promedio considerando la sección mapeada y para el dique B sencillamente no se estimó el espesor (Tabla III.3).

Figura III. 5. Fotografía de terreno en vista horizontal que muestra una ramificación hacia el sur desde el margen occidental del dique F. Regla de 30 cm como escala.

Gran parte de los diques (A, B, E, G, H, I y L) presenta márgenes enfriados de hasta 15 cm de espesor (Figura III.4 y Tabla III.3), mientras que los márgenes occidentales de los diques E y F, presentan ramificaciones decimétricas a métricas hacia el sur (Figura III.2, Figura III.3, Figura III.5 y Tabla III.3).

Figura III. 6. Fotografías de terreno en vista horizontal que muestran epidositas centimétricas en los diques G (a la izquierda) y H (a la derecha). Regla de 30 cm como escala.

Se han detectado abundantes epidositas en la granodiorita de grano fino en franjas paralelas y muy cercanas a los bordes de los diques B y H. Epidositas de formas esféricas y de diámetro centimétrico se distribuyen en el interior de los diques F, G, H, I y N y otras de formas alargadas de al menos 50 cm de longitud y 5 cm de ancho se presentan en el dique G dispuestas desde el margen occidental de éste y de manera oblicua a su eje. El rumbo de estas estructuras se encuentra entre N55W y N60W (Figura III.6).

Figura III. 7. Fotografía de terreno en vista horizontal que muestra la geometría del dique L con una pequeña ramificación hacia el sur desde su extremo occidental. Regla de 30 cm como escala.

Los diques H y L presentan geometrías particulares en las que dos ramas de distinto espesor se unen en un punto y posteriormente se separan (Figura III.7). Estos mismos diques exhiben dislocaciones dextrales con direcciones N40E y N60E (Figura III.8), respectivamente. Por otra parte, el dique B presenta contactos semirectangulares con la roca de caja (Figura III.2 y Figura III.10).

Figura III. 8. Fotografía de terreno en vista horizontal que muestra una dislocación dextral del dique H. Regla de 30 cm como escala.

En un xenolito de dimensiones métricas incorporado dentro del dique B (Figura III.2), se observan enclaves máficos cuya composición se presume muy similar a la de dicho dique, por la cercanía con éste y por presentar el mismo color y textura. El mismo dique presenta xenolitos elipsoidales en uno de sus márgenes occidentales (Figura III.9a.) y el dique I, un xenolito rectangular en su margen oriental (Figura III.9b.), todos ellos centimétricos e incorporados dentro del margen enfriado.

Figura III. 9. Fotografía de terreno en vista horizontal que muestra xenolitos dentro de los márgenes enfriados de los diques B (a) e I (b). Regla de 30 cm como escala.

Figura III. 10. Fotografía de terreno en vista horizontal que muestra contacto difuso y neto del dique B con la granodiorita de grano fino. Regla de 30 cm como escala.

Los contactos entre los diques B, D y K (en algunos sectores) y, F y J con la granodiorita de grano fino que constituye su roca de caja son difusos (Figura III.10), al igual que el contacto por la intrusión del dique C dentro del dique B (Figura III.11). Los contactos restantes son netos (Tabla III.3).

Figura III. 11. Fotografía de terreno en vista horizontal que muestra los contactos por intrusión del dique C con la roca de caja y con el dique B, éste último resaltado con una línea discontinua. Regla de 30 cm de longitud como escala.

En base a las relaciones de contacto entre los distintos diques y la roca de caja (Figura III.2, Figura III.3 y Tabla III.3) es posible establecer una temporalidad relativa para la ocurrencia de algunos de éstos pudiendo afirmarse que:

- 1. Los diques C, D y E se emplazaron de manera posterior a los diques A y B.
- 2. El emplazamiento del dique B ocurrió después que el dique A.
- 3. El dique I se emplazó previamente a los diques J y K.

De manera adicional, el contacto difuso (Figura III.10) entre el dique B y la roca de caja responden a un emplazamiento dentro de una roca en estado plástico. En otras palabras B, y por consiguiente, el dique A se emplazaron de manera sinmagmática con respecto a su roca de caja.

III.2. Observaciones microscópicas generales

Como se muestra en la Tabla III.2 se han seleccionado 7 diques para su observación microscópica, los diques B, D, E, G, H, I y K. En este apartado se detallan las características de escala microscópica determinadas durante la observación de las secciones transparentes obtenidas en base a las muestras de dichos diques.

En términos generales, los diques que son objeto de este estudio corresponden a basaltos con texturas afaníticas y porfíricas microcristalinas, con fenocristales de plagioclasa y escasa anfíbola en una masa fundamental intergranular-intersectal compuesta por pequeños cristales de plagioclasa con clinopiroxeno, minerales opacos y vidrio rellenando los intersticios (Figura III.12). En el Anexo III se detallan las características microscópicas más relevantes para cada uno de los diques.

Figura III. 12. Microfotografías a nicoles cruzados de texturas microporfírica y afanítica. a) Textura microporfírica con fenocristales de plagioclasa orientados en una dirección (muestra CH0105, dique D); b) Textura afanítica pilotaxítica-hialopilítica definida por cristales de plagioclasa orientados con minerales opacos y vidrio en los intersticios (muestra CH0111, Dique E). El ancho de cada fotografía en 2 mm.

Figura III. 13. Microfotografías del dique K que muestra la cloritización de fenocristales máficos y del vidrio de la masa fundamental de la muestra CH0205. A la izquierda, a nicoles cruzados y a la derecha, a nicoles paralelos. El ancho de cada fotografía es de 1 mm.

Adicionalmente, se observan texturas pilotaxíticas-hialopilíticas (Figura III.12a) definidas por la distribución de cristales de plagioclasa (microlitos y/o fenocristales) con sus ejes mayores paralelos a sub-paralelos, siguiendo una o dos direcciones. Estas texturas definen fábricas internas dentro de los diques, las cuales, considerando que

no se han detectado evidencias de deformación en estado sólido en el interior de los digues, pueden asociarse a un origen (gneo, definiendo petrofábricas.

Figura III. 14. Microfotografías de una epidosita de la muestra MR4002 del dique G. Se observa un cúmulo de cristales de epidota, rodeado por minerales opacos inequidimensionales inmerso en una masa fundamental de microlitos de plagioclasa y pequeños minerales opacos. Izq.: nicoles paralelos; Der.: nicoles paralelos. Ambas imágenes miden 2 mm por lado.

Todos los diques presentan signos de alteración propilítica manifestada por la cloritización de inosilicatos y de la masa fundamental y por la presencia de epidositas y escasas vetillas de epidota. Además, hay evidencias de reemplazo de feldespatos y vidrio de la masa fundamental, por arcillas (Figura III.13).

III.3. Mineralogía opaca y propiedades magnéticas

En primer lugar, en base a una estimación visual (al microscopio petrográfico) de la proporción de minerales opacos en todas las muestras de los diques, es posible definir dos familias. Una familia constituida por los diques B e I, en los cuales la presencia de este tipo de minerales es escasa a nula (Figura III.15a) y otra, conformada por los diques D, E, G, H y K, que presentan una importante proporción de este tipo de cristales. Por otra parte, en las muestras de los diques D, G, H y K es posible distinguir dos poblaciones de tamaño de los minerales opacos (Figura III.15b).

Figura III. 15. Microfotografías a nicoles paralelos que muestran la escasez de minerales opacos (muestra CH0201, dique I) (a) y la presencia de dos poblaciones de tamaño de este tipo de cristales (b). Ambas imágenes representan secciones de 2 mm por lado.

Como se muestra en la Tabla III.2 se han seleccionado los diques G y H para estimar la proporción y distribución de tamaño de los minerales opacos presentes en cada una de sus muestras. Adicionalmente, se tienen datos de la susceptibilidad magnética de estos diques. Se han construido perfiles que permiten representar las variaciones de todos estos parámetros en secciones transversales a los diques.

La proporción de minerales opacos, medida como la fracción en superficie que ocupan éstos, disminuye de manera considerable hacia el centro del dique G. Es importante notar que las muestras que presentan mayor cantidad de minerales opacos en este dique corresponden a aquéllas tomadas desde su margen enfriado (Figura III.16).

Figura III. 16. Perfiles transversales de proporción de minerales opacos y susceptibilidad magnética promedio para los dique G y H. En la figura se indican los extremos oriental (E) y occidental (W) de ambos diques.

La susceptibilidad magnética del dique G es bastante coherente con la variación en la abundancia de minerales opacos a lo ancho de éste, disminuyendo hacia el centro. Por otra parte, en el dique H, la susceptibilidad magnética y la abundancia en superficie de éstos presentan patrones de variación en zig-zag, lo cual no puede ser interpretado directamente y que será discutido con posterioridad.

Se han construido histogramas para el tamaño de grano de los minerales opacos medidos en cada una de las muestras de los diques G y H en base al análisis digital de microfotografías con el software *ImageJ* como se plantea en las metodologías (Figura III.17 y Figura III.18). En el dique G se observa que el espectro de variación del tamaño de grano de este tipo de minerales es más amplio en las muestras centrales que en las muestras marginales (Figura III.17). La moda del tamaño de estos granos minerales en los diques G y H se sitúa entre 10^{-5} y 10^{-4} mm² (Figura III.17 y Figura III.18).

Figura III. 17. Distribución de tamaño de los minerales opacos medidos en las siete muestras del dique G. Se indica el número de objetos reconocidos como minerales opacos medidos (n) y la ubicación relativa de las muestras.

Figura III. 18. Distribución de tamaño de los minerales opacos medidos en las nueve muestras del dique H. Se indica el número de objetos reconocidos como minerales opacos medidos (n) y la ubicación relativa de las muestras.

III.4. Variaciones mineralógicas y texturales

Las texturas de los diques fueron descritas en dos dominios, márgenes y centro (Anexo III). La descripción de los márgenes comprende las dos muestras de cada dique más cercanas al contacto con la roca de caja (una de cada extremo) y las muestras restantes fueron consideradas en la descripción del centro del dique. En particular, las muestras marginales de los diques G y H se han obtenido desde los márgenes enfriados de éstos.

Figura III. 19. Microfotografías a nicoles cruzados del dique E. A la izquierda, la muestra marginal CH0116 con una textura microporfírica con escasos fenocristales y microlitos de plagioclasa orientados con sus ejes mayores de manera subparalela dando lugar a una textura pilotaxítica-hialopilítica. A la derecha, la muestra central CH0114 en la que se observa una textura afanítica con los cristales de plagioclasa orientados de manera subparalela. Ambas imágenes miden 2 mm por lado. Notar la diferencia del tamaño de grano.

Las principales variaciones texturales detectadas en los diques estudiados comprenden el aumento del tamaño de grano y la proporción de fenocristales desde los márgenes hacia el centro (Figura III.19, Figura III.20 y Figura III.21) e inclusive, en los diques E y G se hace evidente un cambio de una textura afanítica en las muestras marginales a una textura microporfírica en las muestras centrales.

Con respecto a la orientación de cristales de plagioclasa con sus ejes mayores dispuestos de manera subparalela, dando origen a texturas pilotaxíticas-hialopilíticas, en los diques D y G es más evidente en las muestras marginales, mientras que en el dique K lo es en las muestras centrales. En particular, el dique D presenta un

importante aumento en la proporción de cristales hacia el centro del dique, es decir, una disminución en la fracción de vidrio.

Figura III. 20. Microfotografías a nicoles cruzados del dique I. A la izquierda, la muestra marginal CH0208 en la que se observa una textura microporfírica en la que los fenocristales de plagioclasa se orientan de manera subparalela. A la derecha, la muestra central CH0202 en la que no es tan evidente la orientación de los cristales. Ambas fotografías miden 2 mm por lado. Notar la diferencia de tamaño de grano.

Figura III. 21. Microfotografías a nicoles cruzados del dique D. A la izquierda, la muestra marginal CH0105 que presenta una textura microporfírica con abundante vidrio en la masa fundamental y con fenocristales orientados con sus ejes mayores de manera subparalela. A la derecha, la muestra central CH0107 que exhibe una textura microporfírica en la que la orientación subparalela de los cristales es menos evidente. Ambas imágenes miden 2 mm por lado. Notar la diferencia de tamaño de grano.

III.5.Variaciones composicionales

Como se muestra en la Tabla III. 2, se realizaron análisis geoquímicos de las muestras de los diques G y H. En base a los resultados de dichos análisis se construyeron perfiles transversales a los diques para evaluar las variaciones de los siguientes parámetros:

- 1. Proporción de los minerales normativos principales: feldespatos (plagioclasa y ortoclasa) y piroxenos (clinopiroxeno y ortopiroxeno)(Figura III.22).
- Abundancia de elementos mayores: Al₂O₃, CaO, K₂O, MgO, Na₂O, P₂O₅, SiO₂ y TiO₂ (Figura III.23).
- Índices composicionales: número de magnesio (#Mg), hierro total (FeO*) y pérdida por calcinación (L.O.I.) (Figura III.24).

4. Abundancia de elementos en traza: Ba, Sr, Y y Zr (Figura III.25).

Figura III. 22. Perfiles transversales de la abundancia de los principales minerales normativos presentes en los diques G y H. En la figura se indican los extremos oriental (E) y occidental (W) de ambos diques.

La mineralogía normativa promedio de las muestras de los diques se compone fundamentalmente de plagioclasa, hiperstena y magnetita. Adicionalmente, las muestras del dique G presentan cerca de un 5% de cuarzo normativo, en promedio, mientras que para el dique H dicha cantidad es inferior al 1% (Figura III.22; Anexo VI).

La variación de elementos mayores en el dique H no presenta ningún patrón claro y definido, sin embargo, se repite un peak en los datos de la muestra MR4109 para los elementos Al₂O₃, CaO, MgO, Na₂O y SiO₂. En cuanto al dique G se observa un amento desde los márgenes hacia el centro en Al₂O₃, MgO y TiO₂ (Figura III.23; Anexo VI).

Figura III. 23. Perfiles transversales de la abundancia de elementos mayores en los diques G y H. En la figura se indican los extremos oriental (E) y occidental (W) de ambos diques.

La pérdida por calcinación (L.O.I.) presenta patrones de variación en zig-zag a lo ancho de los diques G y H. En cuando al #Mg en el dique G se observa un aumento desde los márgenes hacia su centro. Estos parámetros varían de manera más compleja en el dique H lo que lleva a definir dos zonas en ellos, una que comprende los márgenes en donde dichos parámetros disminuyen al aproximarse al centro del dique y otra zona central en la que ambos parámetros aumentan. Algo similar ocurre con los parámetros FeO* y L.O.I., sin embargo podría definirse una zona más en estos casos (Figura III.24; Anexo VI).

Figura III. 24. Perfiles transversales de los principales índices composicionales. FeO*= FeO+Fe2O3; #Mg=MgO/(MgO+FeO*); L.O.I.=pérdida por calcinación. En la figura se indican los extremos occidental (W) y oriental (E) de los diques.

Con respecto a los elementos en traza, el Ba, Zr e Y aumentan desde los márgenes hacia el centro del dique G y en general, para el dique H, el Y y el Zr disminuyen desde los márgenes hacia el centro (Figura III.25; Anexo VI).

Figura III. 25. Perfiles transversales de elementos traza de los diques G y H. En la figura se indican los extremos oriental (E) y occidental (W) de los diques.

III.6.Resumen del capítulo

En este apartado se resumen las principales características tanto de afloramiento (Tabla III. 3), como en escala microscópica (Tabla III. 4), de los diques estudiados. Adicionalmente, se comentan los patrones de variación de los parámetros analizados en perfiles transversales a algunos de los diques.

	Dique	Sitios de muestreo	*Edad relativa	Espesor medio[cm]	Orientación (rumbo/manteo)	Margen enfriado	Dislocaciones	Ramificaciones	**Contacto
	А	_	1	85	N7E-N10E/75E	SI			Neto
	В	CH01	2	no det.	variable	SI			Variable
	С	_	3	10	N25W/77W				Neto
Mapa I	D	CH01	3	45	N5W-N30W/85W				Variable
	Е	CH01	3	130	NS-N25W/~90	SI		SI	Neto
	F	_	no det.	30	NS-N20W/~90			SI	Difuso
Mapa II	G	MR40	no det.	100	N25W/85W	SI			Neto
	Н	MR41	no det.	<77	N15W/~90	SI	SI	SI	Neto
	I	CH02	1	<145	N10W/70E- N20W/80E-85W	SI		SI	Neto
	J	_	2	45	N20W- N40W/~90				Difuso
	K	CH02	2	25	N35W/~90				Variable
	L	-	no det.	<65	N12W- N29W/~90	SI	SI	SI	Neto
	М	_	no det.	25	N25W/~90				Neto
	Ν	_	no det.	110	N25W/~90				Neto

Tabla III. 3. Resumen de observaciones de afloramiento de los diques estudiados. *La columna de edad relativa corresponde a un orden relativo de intrusión de los diques del Mapa I y del Mapa II, por separado. A menor número, más temprana es su intrusión. Hay diques para los cuales no puede determinarse (no det.) su edad relativa. **El contacto con la granodiorita de grano fino puede ser difuso, neto o en algunas partes difuso y en otras neto (variable).

	Dique	Composición mineralógica	Fenocristales		O.P. d	O.P. de plg*		Tamaño minerales	Texturas y microestructuras
Mapa I	В	Plagioclasa 25-85%, clinopiroxeno 5-60%, minerales opacos ~10%.	Margen	Centro SI	Margen S	Centro	Escasa	opacos	Cúmulos de fenocristales, fracturas y vesículas
	D	Plagioclasa 60-80%, anfíbola <5%, minerales opacos 5-10%, vidrio 5- 20%.	SI	SI	SI	NO	Abundante	Bimodal	Cúmulos de fenocristales
	E	Plagioclasa ~80%, minerales opacos 5-10%, clinopiroxeno 0-8%, anfíbola <5%, vidrio ~5%.	SI	SI	SI	SI	Abundante		Cúmulos de fenocristales y vetillas
Mapa II	G	Plagioclasa 80-85%, vidrio <5%, clinopiroxeno 1-10%, minerales opacos ~5%, anfíbola ~1% .	NO	SI	SI	NO	Abundante	Bimodal	Cúmulos de fenocristales, fracturas y vetillas
	Н	Plagioclasa clinopiroxeno vidrio ~5%. 80-90%, 5-10%,	SI	SI	SI	SI	Abundante	Bimodal	Amígdalas, cúmulos de fenocristales y vetillas
	I	Clinopiroxeno 40-80%, plagioclasa 20-60%, minerales opacos ~10%, vidrio 5-10%.	SI	NO	SI	SI	Escasa		Vetillas
	к	Plagioclasa 75-85%, minerales opacos <5%, clinopiroxeno 5%, vidrio 5-15%, anfíbola ~1%.	SI	SI	NO	SI	Abundante	Bimodal	Vesículas y vetillas

Tabla III. 4. Resumen de observaciones microscópicas relevantes de los diques B, D, E, G, H, I y K. El dique B no ha sido descrito en dos dominios (margen y centro) como el resto de los diques debido a su compleja geometría. (*) Orientación preferencial de cristales de plagioclasa.

IV. DIRECCIÓN DE FLUJO MAGMÁTICO EN LOS DIQUES

Este capítulo tiene como propósito estimar o establecer una aproximación a la dirección de flujo magmático asociada a la generación de los diques en estudio. Para cumplir este objetivo, se evaluarán fábricas magnéticas y petrofábricas que pudiesen asociarse a un flujo.

Las petrofábricas se estimarán utilizando la orientación espacial de cristales de plagioclasa, mientras que las fábricas de origen magnético se obtendrán en base a un análisis de ASM.

IV.1. Análisis de anisotropía de susceptibilidad magnética (ASM)

Como se muestra en la Tabla III.2, se aplicaron análisis de ASM a los diques B, D, E, I y K. Para estos fines se cuenta con el tensor de susceptibilidad magnética de cada una de las muestras tomadas desde estos diques (excepto la muestra CH0111, correspondiente al dique E).

IV.1.1. Propiedades magnéticas y sus variaciones

La susceptibilidad magnética de las muestras de los diques B, D, E, G, H, I y K varía entre 1 y 9020 [10^{-6} SI]. En particular, los diques D, G, H y K presentan comportamiento ferromagnético (K_m >500*10⁻⁶SI) al igual que 4 de las 5 muestras medidas del dique E. Todas éstas presentan un mayor porcentaje de anisotropía que los diques B e I, los cuales tienen un comportamiento paramagnético (K_m <500*10⁻⁶SI), al igual que una de las muestras del dique E (Figura IV.1 y Anexo II).

Figura IV. 1. Distribución de la susceptibilidad magnética media $K_m(=(K_1+K_2+K_3)/3)$ y el factor de forma (T) con respecto al porcentaje de anisotropía de las muestras de los diques B, D, E, I y K.

Los porcentajes de anisotropía, lineación y foliación de las muestras estudiadas varían entre 0.1% y 9.4%, 0.1% y 2.2%, y 0.1% y 6.7%, respectivamente. En general, las muestras de los diques B e I, presentan los menores valores para dichos parámetros (Figura IV.2 y Anexo II).

Figura IV. 2. Variaciones de las propiedades magnéticas de las muestras de los sitios CH01 y CH02. En la figura se indica a qué dique corresponde cada una de las muestras y los extremos oriental (E) y occidental (W) de cada sitio de muestreo. La figura no se encuentra a escala.

Los elipsoides ASM de todas las muestras estudiadas presentan formas muy diversas. Sin embargo, en el caso de las muestras del dique K todos los elipsoides son oblatos indicando que la anisotropía se manifiesta fundamentalmente como una foliación. Algunas de las muestras de los diques B, D y E, tienen elipsoides ASM oblatos, y otras, prolatos. En el dique I existe una tendencia a que los elipsoides sean más oblatos, a pesar de que una de sus muestras exhibe un elipsoide prolato (Figura IV.1).

En términos generales, se advierte que las muestras marginales de los diques D, E y K presentan menores susceptibilidades magnéticas, porcentajes de anisotropía, lineación y foliación que aquéllas centrales (Figura IV.2). Existe una excepción en el caso del porcentaje de lineación del dique D cuyo valor aumenta desde las muestras centrales hacia aquéllas marginales.

IV.1.2. Parámetros direccionales de ASM

Las muestras del dique B presentan en su mayoría un plano de foliación que mantea fuertemente hacia el ENE, de manera subparalela al dique. Sin embargo, dos de las muestras de este dique que se encuentran más cercanas al dique D (CH0104 y CH0119) mantean fuertemente hacia el SSE. En cuanto a la lineación, ésta es bastante uniforme en las muestras del extremo oriental (CH0101 y CH0102) y occidental (CH0117 y CH0119) buzando, en ambos casos, moderadamente hacia el SE. La lineación de las tres muestras más cercanas al dique D buza suavemente hacia el NE (Figura IV.3).

El dique D presenta una foliación que mantea hacia el NE en todas sus muestras. En cambio, la lineación de estas muestras es bastante heterogénea a pesar de que en todos los casos el buzamiento es más bien suave (Figura IV.4).

Figura IV. 3. Fábricas magnéticas del dique B. a) Planos de foliación tomados como el plano perpendicular a K_3 . B) Lineaciones tomadas como K_1 (Según el Marco Teórico Referencial presentado en el Capítulo I).

El dique E presenta foliación y lineación magnética que es bastante heterogénea en todas sus muestras (Figura IV.4).

Figura IV. 4. Fábricas magnéticas de los diques D y E. a) Planos de foliación tomados como el plano perpendicular a K_3 . B) Lineaciones tomadas como K_1 (Según el Marco Teórico Referencial presentado en el Capítulo I).

Las muestras extremas del dique I (CH0201, CH0202, CH0207 y CH0208) presentan una foliación que mantea fuertemente hacia el WSW o bien se dispone de manera vertical. La lineación de las tres muestras occidentales de este dique es bastante heterogénea, en cambio en el extremo oriental, la lineación de ambas muestras buza fuertemente hacia el NNW (Figura IV.5).

Figura IV. 5. Fábricas magnéticas de los diques I y K. a) Planos de foliación tomados como el plano perpendicular a K_3 . B) Lineaciones tomadas como K_1 (Según el Marco Teórico Referencial presentado en el Capítulo I).

En todas las muestras del dique G, la foliación magnética mantea fuertemente hacia el E, mientras que la lineación magnética de éstas es más bien heterogénea (Figura IV.6).

Figura IV. 6. Fábricas magnéticas del dique G. a) Planos de foliación tomados como el plano perpendicular a K_3 . B) Lineaciones tomadas como K_1 (Según el Marco Teórico Referencial presentado en el Capítulo I).

Las muestras del dique H exhiben foliación magnética que mantea fuertemente hacia el W, y la lineación de dichas muestras buza, en su mayoría hacia el norte (Figura IV.7).

Figura IV. 7. Fábricas magnéticas del dique H. a) Planos de foliación tomados como el plano perpendicular a K_3 . B) Lineaciones tomadas como K_1 (Según el Marco Teórico Referencial presentado en el Capítulo I).

IV.1.3. Dirección de flujo magmático en base a imbricación de foliaciones

magnéticas

Se ha determinado la dirección del vector de flujo magmático como la perpendicular a la línea de intersección entre el plano que representa a la pared de cada dique (ver Capítulo III) y la foliación ASM de cada una de sus muestras. Se ha calculado dicho vector para cada uno de los datos de foliación ASM obtenidos.

Los resultados indican que los diques E, G, I y K habrían sido rellenados por flujos subhorizontales a subverticales dirigidos hacia el sur (Figura IV.8). Por otra parte, los diques D y H, habrían registrado flujos dirigidos hacia el norte (Figura IV.8).

Figura IV. 8. Dirección de flujo magmático basada en la metodología de Geoffroy *et al.* (2002). Se indica con una estrella la dirección del vector de flujo promedio estimada aplicando esta metodología a cada una de las muestras de los distintos diques.

En base a los resultados, es posible definir dos familias de diques, aquéllos asociados a flujos que estarían dirigidos hacia el norte (diques E, G, I y K) y aquéllos asociados a flujos que estarían dirigidos hacia el sur (diques D y H)(Tabla IV.1).

Dique	Azimuth	Buzamiento
D	178	34
E	342	82
G	332	30
н	165	48
I	344	4
К	325	68

Tabla IV. 1. Orientación del vector de flujo magmático obtenido a partir de la metodología de Geoffroy *et al.* (2002).

IV.2. Orientación de cristales de plagioclasa

IV.2.1. Orientaciones preferenciales de cristales de plagioclasa y petrofábricas

La orientación espacial del eje mayor de 200 cristales de plagioclasa de cada una de las muestras de los diques D, E, I y K fue ploteada en distintas redes esteográficas de modo de definir orientaciones preferenciales de este tipo de cristales.

La orientación de forma de cristales de plagioclasa en las muestras del dique D permite definir al menos tres orientaciones preferenciales con una concentración mínima del 6% de los cristales medidos.

Figura IV. 9. Orientaciones preferenciales de cristales de plagioclasa en las muestras del dique D. En la figura se han ploteado planos que representan foliaciones definidas por lineaciones con concentraciones superiores al 6% de las plagioclasas medidas.

En base a estas orientaciones preferenciales es posible definir un plano de foliación común a todas las muestras de este dique. Esta foliación corresponde al plano que contiene dos o más orientaciones preferenciales con al menos el 6% de concentración de los datos. Este plano de foliación tiene un rumbo entre N20E y N51E y un manteo

Margen occidental Margen oriental 41/327 12/327 Centro centro occidental Centro centro oriental Fishe Conce % of total per 1.0 % area 0.00 ~ 2.00 2.00 ~ 4.00 9 4.00 ~ 6.00 9 6.00 ~ 8.00 % 8.00 ~ 10.00 9 >10.00 % 56/214 No Bias Correction Max. Conc. = 10.3612% 451281 Equal Angle Centro Centro occidenta oriental 69/355 40/328 66/174 64/203 90/56 63/60 70/293 54/293 66/83

que varía entre 54 y 61° hacia el NW y es evidentemente oblicuo a la pared del dique, cuya orientación es subvertical y de rumbo entre N5W y N30W (Figura IV.9).

Figura IV. 10. Orientaciones preferenciales de cristales de plagioclasa en las muestras del dique E. En la figura se han ploteado planos que representan foliaciones definidas por lineaciones con concentraciones superiores al 6% de las plagioclasas medidas.

Adicionalmente se advierte la presencia de una foliación muy marcada en las muestras marginales del dique D, cuyo rumbo varía entre N5W y N12W, con un manteo entre 67 y 70° hacia el ENE (Figura IV.9).

Las muestras del dique E exhiben al menos dos orientaciones preferenciales de cristales de plagioclasa con concentraciones de al menos el 6% de éstos. Las muestras marginales presentan un importante plano de foliación de rumbo N57E y manteo variable entre 41 y 42° hacia el NW. Este plano de foliación es oblicuo a las paredes del dique, cuyo rumbo varía entre NS y N25W con un manteo principalmente subvertical. Los planos de foliación que se pueden definir en base a la orientación de forma de cristales de plagioclasa en las muestras centrales de este dique son bastante heterogéneos (Figura IV.10).

Figura IV. 11. Orientaciones preferenciales de cristales de plagioclasa en las muestras del dique I. En la figura se han ploteado planos que representan foliaciones definidas por lineaciones con concentraciones superiores al 6% de las plagioclasas medidas.

En el dique I, sus muestras exhiben al menos tres orientaciones con un mínimo del 6% de los datos y en base a estas orientaciones se pueden definir planos de foliación bastante heterogéneo en las muestras marginales del dique. Sin embargo, en las muestras centrales de este mismo dique se puede definir un plano de foliación de rumbo variable entre N68E y N79W con un manteo de 45 a 62° hacia el S, el cual es oblicuo también a las paredes del dique (Figura IV.11).

Figura IV. 12. Orientaciones preferenciales de cristales de plagioclasa en las muestras del dique K. En la figura se han ploteado planos que representan foliaciones definidas por lineaciones con concentraciones superiores al 6% de las plagioclasas medidas.

Las tres muestras del dique K presentan, principalmente, tres orientaciones preferenciales con concentración superior al 6% de los datos. En base a estas orientaciones es posible definir tres planos de foliación que tienen una orientación similar en cada una de las muestras de este dique. Uno de los planos tiene rumbo entre NS y N29E con un manteo variable entre 61 y 64° hacia W. Otro de los planos tienes tiene rumbo entre N26W y N40W, con un manteo entre 64 y 77° hacia el E. El último

plano de foliación tiene rumbo entre N70E y N80E con un manteo hacia el sur que varía entre 47 y 59° (Figura IV.12).

IV.2.2. Estimación del vector de flujo en base a la orientación de cristales de plagioclasa

Un manejo estadístico de los datos de orientación de cristales de plagioclasa en cada una de las muestras de los diques permite establecer una orientación que es la más frecuente y que podría representar el vector de flujo de cada uno de los diques (Figura IV.13 y Figura IV.14).

Figura IV. 13. Dirección global de flujo asociado a la generación de los diques D y E. Esta dirección ha sido estimada a partir de un promedio de la orientación de todas las plagioclasas medidas para todas las muestras de cada uno de los diques.

Figura IV. 14. Dirección global de flujo asociado a la generación de los diques I y K. Esta dirección ha sido estimada a partir de un promedio de la orientación de todas las plagioclasas medidas para todas las muestras de cada uno de los diques.

Dique	Azimuth	Buzamiento
D	324	70
E	321	62
I	187	67
К	211	73

Tabla IV. 2. Dirección del vector de flujo estimado como la dirección más frecuente de orientación de forma de cristales de plagioclasa.

Basado en la metodología de la orientación cristales de plagioclasa, la generación de los diques D y E podría asociarse a flujos subverticales dirigidos hacia el NW que habrían acomodado estos cristales en dicha dirección. En cambio, los diques I y K, se asociarían a flujos subverticales dirigidos hacia el S o SW que habrían reorganizado los cristales de plagioclasa. Sin embargo, la dispersión de los datos de orientación de cristales de plagioclasa en estos dos últimos diques es muy alta por lo que podría estar cometiéndose un gran error al interpretar flujos con esa orientación.

V. DISCUSIONES Y CONCLUSIONES

Las discusiones de este trabajo se han planteado en dos etapas. La primera de ellas pretende evaluar las metodologías utilizadas y la segunda, los resultados obtenidos en base a ellas y eventualmente dar lugar a una comparación entre los resultados obtenidos en base a los distintos métodos.

V.1. Evaluación de la metodología para el conteo de minerales opacos

La determinación de la proporción de minerales al microscopio petrográfico es una tarea bastante compleja y que puede llevar a importantes errores si se realiza en base a la observación, con o sin la ayuda de diagramas de porcentajes. Por otra parte, el conteo modal de minerales es un método que toma mucho tiempo al ser aplicado en una única muestra, por lo tanto, cuando la cantidad de muestras es amplia, se hace prácticamente insostenible su aplicación. En particular, si lo que se requiere es estimar las variaciones de proporciones minerales en una serie de muestras, la tarea se complica más aún pues la precisión de los resultados podría no ser la adecuada e inducir a un gran error al momento de interpretarlos.

Por todo lo anterior, la estimación de la proporción de minerales de una manera que no requiera directamente la observación humana y que permita aplicar el método en exactamente las mismas condiciones a todas las muestras, se hace muy necesario.

Es por eso que en este estudio se ha planteado una nueva metodología que permite obtener la proporción y la distribución de tamaño de minerales opacos, en base al tratamiento de imágenes mediante el software *ImageJ*, lo cual permite la automatización del proceso y elimina el error humano asociado a la estimación.

Adicionalmente, cuando los minerales opacos corresponden a granos ferromagnéticos, este método aplicado luego de un muestreo apropiado podría permitir determinar de manera indirecta las variaciones de susceptibilidad magnética promedio lo cual puede ser de gran utilidad en técnicas de paleomagnetismo. En efecto, en la Figura III.16 se puede apreciar que existe una muy buena correlación entre este parámetro y la proporción de minerales opacos obtenida por este medio.

Conocer la distribución de tamaño de minerales opacos puede, también, ser de mucha ayuda en la aplicación de técnicas de paleomagnetismo.

Las debilidades de este método radican en la dificultad de estimar el valor de *Threshold* (Figura I.11) apropiado para cada muestra, el cual va a depender de la iluminación con la que se tomó la microfotografía, de la escala de ésta y del grado de alteración de la muestra, entre otras variables. Para sortear esta dificultad se recomienda aplicar el método utilizando la microfotografía original a modo de guía.

V.2. Variaciones composiciones, mineralógicas, texturales y magnéticas

Perfiles composicionales transversales a diques han sido utilizados por diversos autores (*e.g.*, Chistyakova y Latypov, 2008, 2009a y 2009b) para dilucidar los procesos involucrados en su emplazamiento. Sin embargo, para lograr buenos resultados la densidad de muestras tomadas ha sido mucho más alta de lo que se ha conseguido en este trabajo.

En este estudio se han analizado las variaciones composicionales, mineralógicas y texturales de los diques G, de 62 cm de espesor, y H, de 60 cm de espesor. A pesar de que estos análisis se han basado en 7 muestras del dique G y 9 muestras del dique H, estas variaciones son mucho más marcadas en el primero de ellos, lo cual puede deberse fundamentalmente a la forma cómo se tomaron las muestras. En el caso del dique G, la variación longitudinal de la ubicación de las muestras fue mínima. En cambio, en el dique H, existe una distancia longitudinal superior a 1 m entre la muestra más occidental y la muestra más oriental (Figura I.6 y Figura I.7).

a) Variaciones composicionales

En el dique G, se observa un claro aumento desde los márgenes hacia el centro de la abundancia de Al_2O_3 (Figura III.23), lo cual puede explicarse en el aumento de

fenocristales de plagioclasa y de su tamaño en el mismo sentido dado que este tipo de minerales contiene una importante proporción de este óxido en su estructura.

Por otra parte, una variación similar ocurre con el TiO₂ (Figura III.23). Sin embargo, la explicación para el comportamiento de este parámetro puede tener que ver con la presencia de titanomagnetita como mineral opaco. Si este fuese el caso, existen tres posibilidades para explicar este perfil de variación:

- 1. Aumento de la proporción de Ti en la solución sólida que representa a las titanomagnetitas desde los márgenes hacia el centro del dique.
- 2. Aumento de la proporción de titanomagnetitas desde los márgenes hacia el centro del dique.
- 3. Una combinación de las dos situaciones anteriores.

De este modo, a pesar de observar una disminución de minerales opacos hacia el centro del dique (Figura III.16), el resultado podría ser el patrón observado (Figura III.23).

En el dique H, las variaciones transversales no presentan patrones claramente definidos. Sin embargo, los peaks observados en la muestra MR4103 para los parámetros Al₂O₃ y CaO (Figura III.23) pueden ser explicados por la presencia abundante de epidota en dicha muestra, la cual contiene una epidosita centimétrica. Por este motivo, la geoquímica de esta muestra se encuentra dominada por la alteración y no representa la geoquímica primaria.

Con respecto al #Mg, se observa un leve aumento desde las muestras marginales hacia el centro del dique G, lo cual para Chistyakova y Latypov (2009b) es una condición necesaria para la definición de un trend de fraccionamiento inverso. Si este fuese el caso, las variaciones de este parámetro podrían ser explicadas por:

- 1. La contaminación del magma *in situ* al entrar en contacto con la roca de caja.
- 2. Una inyección prolongada o múltiple de magma con una composición progresivamente más primitiva.
- 3. La acción del "efecto Soret" o difusión termal.

- 4. La diferenciación por flujo o "efecto Bagnold".
- b) Variaciones mineralógicas y texturales

Una alta tasa de cizalle en la zona más cercana al contacto del dique con su roca de caja permite explicar el desarrollo de un margen enfriado de grano más fino y por consiguiente, el aumento del tamaño de grano y de la proporción de fenocristales hacia el centro del dique. El "efecto Bagnold" o diferenciación por flujo puede ser el responsable de dichas variaciones pues comprende una segregación mecánica de fenocristales hacia el centro del dique, permitiendo su concentración (Bhattacharji, 1967; Komar, 1972a, 1972b y 1976; Gibb, 1972; Barriere, 1976; Brouxel, 1991; Yamato et al., 2011; Latypov, 2003a y 2003b), mientras que la alta tasa de cizalle hace posible que la orientación del eje mayor de cristales anisométricos, en este caso plagioclasas, se haga más evidente en las muestras marginales.

c) Variaciones magnéticas

La disminución de la susceptibilidad magnética desde los márgenes hacia el centro del dique G es completamente coherente con la variación de la proporción de minerales opacos determinada en base al análisis de imágenes con el software *ImageJ* en cada una de las muestras del dique.

d) Procesos que definen las variaciones transversales de los diques

Con todos estos antecedentes y considerando que el dique G exhibe un aumento en la proporción de sílice desde los márgenes hacia su centro, es posible interpretar que el proceso más idóneo para explicar los patrones de variación antes descritos en este dique corresponderían a diferenciación por flujo, la cual permite la variación de una composición más básica a una félsica del magma que rellenó los diques y además contribuye a que los cristales sean empujados desde los márgenes hacia el centro observándose un aumento de fenocristales en dicha dirección como lo planteó Llambías (2011) y la alta tasa de cizalle sería la responsable de la orientación de los cristales de plagioclasa con sus ejes mayores dispuestos de manera paralela a subparalela.

- V.3. Estimación de la dirección de flujo basada en la orientación de cristales de plagioclasa
- a) Evaluación de la metodología para estimar la orientación de cristales de plagioclasa

Este trabajo ha propuesto una nueva metodología para determinar la orientación de cristales de plagioclasa que se basa en el tratamiento de microfotografías con el software *ImageJ*. Esta metodología permite orientar en el espacio el eje mayor de cristales de plagioclasa o cualquier otro cristal anisométrico en base a secciones transparentes orientadas.

Callot *et al.* (2001) y Geoffroy *et al.* (2002) han medido la orientación del eje mayor de cristales de plagioclasa en base a análisis digitales de microfotografías usando el software de procesamiento de imágenes de Launeau y Robin (1996) obteniendo resultados bastante buenos.

La metodología planteada en este estudio viene a ser una competencia de la propuesta por Launeau y Robin (1996). La ventaja de ambas metodologías radica en la posibilidad de medir con exactitud la orientación del eje mayor de cristales de plagioclasa microscópicos, lo cual permite definir microfábricas que podrían indicar flujo magmático.

Las desventajas de este método radican en que es necesario establecer un plano apropiado para la preparación de las secciones delgadas, es decir, el plano en el que se observe el eje mayor de los cristales de plagioclasa. Si esto no se cumple, entonces los resultados no pueden ser interpretados como microfábricas.

 b) Evaluación de la orientación de cristales de plagioclasa como indicador de la dirección de flujo

En este trabajo se han definido fábricas minerales o petrofábricas basadas en la orientación del eje mayor de cristales de plagioclasa. A pesar de que la mayoría de los estudios realizados para la obtención del vector de flujo magmático en base a la

orientación de forma de cristales tabulares utiliza únicamente fenocristales, aquí no se ha hecho discriminación alguna entre fenocristales y microlitos de plagioclasa. Esta decisión se puede defender pues una acuciosa observación microscópica indica que en una misma muestra, tanto fenocristales como microlitos de plagioclasa tienden a orientarse ambos en una misma dirección.

Geoffroy *et al.* (2002), definen una lineación magmática como el alineamiento estadístico de los ejes mayores de fenocristales. En este estudio se han ploteado todas las orientaciones de los ejes mayores de 200 cristales de plagioclasa, y estadísticamente se ha determinado la dirección más común para éstos. Sin embargo, la importante dispersión de los datos obtenidos, especialmente en los casos de los diques I y K, impide realizar una interpretación al respecto.

Como los diques estudiados son de composición más bien basáltica, es de esperar que su principal mineralogía magnética corresponda a magnetita y/o titanomagnetita. Estos granos minerales cristalizan de manera tardía dentro de un fundido que tiene incorporados feldespatos ya cristalizados, pudiendo darse el caso de que la cristalización de estos óxidos de hierro ocurra en los bordes de otros cristales anisométricos previamente orientados por flujo (*e.g.*, Hargraves et al., 1991). Si este fuere el caso, entonces, un buen plano para estimar la orientación de cristales de plagioclasa, y por consiguiente, la petrofábrica asociada debiese corresponder al plano de foliación magnética definido como la orientación de forma planar de las fases magnéticas (Elwood, 1978), es decir, un plano perpendicular al eje de susceptibilidad magnética menor (K₃) que es lo que hicieron Callot *et al.* (2001) y Geoffroy *et al.* (2002).

Por otra parte, si la determinación de la orientación del eje mayor de los cristales de plagioclasa se basa en un plano que no coincide con el plano perpendicular a K₃, entonces es posible que el plano seleccionado no corresponda a aquél en el cual se aprecia el eje más largo de los cristales de plagioclasa. Desafortunadamente, este es el caso de los diques estudiados. Los planos seleccionados para la determinación de la orientación de cristales de plagioclasa no coinciden con el plano de foliación y por esto, lo que se mide en realidad es la orientación de un eje que no corresponde

81

necesariamente al eje mayor de este tipo de cristales lo cual puede explicar la importante dispersión en los datos, sobre todo aquéllos obtenidos para los diques I y K.

Los planos seleccionados para la determinación de la orientación de cristales de plagioclasa corresponden a un plano vertical de orientación similar a las paredes de los diques y uno perpendicular al primero y también al eje del testigo desde el cual se han obtenido los datos de anisotropía de susceptibilidad magnética (Figura I.8). Este último plano dista enormemente de la foliación magnética estimada por ASM en cada una de las muestras de los diques. Sin embargo, el primer plano al que se hace mención se acerca un poco más al de foliación magnética, en la mayoría de los casos, permitiendo que la orientación del eje mayor de cristales de plagioclasa determinada en base a dicho plano sea más cercana a la real. Aún así, no se tiene certeza de que el eje mayor observable en cada sección transparente corresponda efectivamente al eje mayor de los cristales tabulares de plagioclasa (efecto 3D), por lo que si se encontrase una dirección preferente de orientación de cristales de plagioclasa esta no correspondería necesariamente a un vector de flujo magmático.

Es importante destacar que en cada uno de los planos seleccionados para la determinación de la orientación del eje mayor de los cristales de plagioclasa se apreciaron al menos dos lineaciones fuertes (con concentraciones superiores al 6% de los cristales de plagioclasa medidos) y por otro lado, sobre el plano perpendicular al eje del testigo (Figura I.8) ambas lineaciones resultaron ser casi simétricas respecto al plano del dique D. Este caso particular, permite hablar de la imbricación de los cristales de plagioclasa en torno al plano del dique y establecer un sentido de flujo magmático que podría ser hacia el SE.

V.4. Estimación del sentido de flujo en base a observaciones de terreno

Una serie de estructuras apreciables en escala de afloramiento han sido comparadas con indicadores de flujo definidos por Correa-Gómes *et al.* (2001) (Figura V.1) con el objetivo de determinar el sentido del flujo magmático que dio origen a los diques en estudio.

Figura V. 1. Estructuras indicativas de sentido de flujo. a) Pliegue de arrastre; b) Enclaves dentro y fuera del margen enfriado; c) Ramificación. El sentido de flujo correspondiente a todos estos casos es hacia arriba. Modificado de Correa-Gómes *et al.* (2001).

La presencia de xenolitos dentro de los márgenes enfriados occidental y oriental de los diques B e I (Figura III.9), dispuestos de manera oblicua a sus paredes puede ser comparada con la situación presentada en la Figura V.1 lo cual indicaría un flujo dirigido hacia el sur.

Por otro lado, se han detectado ramificaciones hacia el sur de los diques E (Figura V.2), F (Figura III.5) y L (Figura III.7) y ramificaciones hacia el norte desde el margen oriental del dique E (Figura III.2), entre otras. Todas estas ramificaciones podrían ser comparadas con la que se observa en la Figura V.1c. Sin embargo, al existir ramificaciones tanto hacia el sur como hacia el norte no es posible entregar una interpretación directa.

Figura V. 2. Fotografía de terreno en vista horizontal que muestra ramificaciones hacia el sur a partir del margen occidental del dique E.

Las posibilidades para el sentido de flujo son amplias, es decir, se puede hablar de flujos dirigidos hacia el norte o hacia el sur, es decir con alguna inclinación desde la horizontal e incluso completamente verticales. Es importante notar, que la escala de observación influye bastante en la imposibilidad de la determinación del sentido de flujo con los antecedentes recopilados en terreno, puesto que el vector de flujo podría tener variaciones las cuales podrían hacerse evidentes en una escala de tanto detalle como en la que se ha trabajado. De este modo, podría ocurrir que en puntos separados por pocos metros la dirección de flujo sea distinta.

Adicionalmente, la presencia de ramificaciones tanto hacia el sur como hacia el norte en una distancia de menos de 1 m (Figura III.2) podría denotar un flujo vertical puesto que el extremo de este tipo de estructuras suele indicar un punto de propagación de un dique (Morris *et al.*, 2008) y si el dique se propaga en ambos sentidos la única solución es que el flujo en un punto intermedio a ambas ramificaciones haya sido vertical y subvertical en su vecindad.

Es importante discutir también que no todos los diques tienen el mismo origen, lo cual queda de manifiesto en el tipo de contacto que desarrollan frente a la intrusión dentro de la granodiorita de grano fino.

Los diques B, D, F, J y K presentan contactos difusos o variables entre netos y difusos por lo que se interpreta para ellos un emplazamiento sinplutónico. Además, en base a las relaciones de contacto, los diques A e I, también tendrían un origen sinmagmático.

El resto de los diques se habrían emplazado en un medio más frágil por lo cual habrían desarrollado superficies de despegue en el contacto con la granodiorita de grano fino generando contactos netos.

V.5. Modo de emplazamiento

La disposición NNW subvertical de todos los diques, excepto el dique A, permite pensar en un origen común para todos ellos y asociarlo, en primera instancia, al emplazamiento de magmas favorecido por una extensión cortical perpendicular al rumbo de éstos, es decir, con un esfuerzo principal menor de orientación ENE (Zoback y Zoback, 1980; Babiker y Gudmunsson, 2004; Morris et al., 2008). Sin embargo, el hecho de que no sean coetáneos, pues ya se ha discriminado entre diques sinmagmáticos o postmagmáticos, permite ampliar las posibilidades para la génesis de los diques.

Por otra parte, las dislocaciones oblicuas al rumbo de los diques H y L (Figura III.3 y Figura III.8) dan cuenta de una apertura o dilatación de éstos, que no correspondería con la dirección estimada para el esfuerzo principal menor y que se orientaría de manera oblicua a ésta como lo indican Glazner et al. (1999) (Figura V.III).

Como puede apreciarse en las Figura III.3 y Figura III.7, los diques H y L presentan una morfología bastante compleja con ramificaciones a partir de un puente. Una geometría similar fue estudiada por Nicholson y Pollard (1985) y posteriormente recordada y comparada por Morris *et al.* (2008) (Figura V.4) con un nuevo caso de estudio en el Enjambre de Diques Etive, Escocia. Para los autores, el emplazamiento de diques con esta morfología debió producirse mientras dominaba un campo de esfuerzos lejano y donde el esfuerzo principal menor siempre estuvo orientado de manera perpendicular al rumbo de los diques.

85

Figura V. 3. Esquema de la dilatación o apertura de la roca de caja. Figura modificada de Glazner et al. (1999)

Figura V. 4. Geometría de un dique emplazado en un contexto en el que dominaba un campo de esfuerzos lejano y donde el esfuerzo principal menor siempre estuvo orientado de manera perpendicular al rumbo de los diques. Modificado de Morris *et al.* (2008) quiénes lo adaptaron de Nicholson y Pollard (1985).

Sin embargo, Morris *et al.* (2008), determinaron que la apertura o dilatación de las paredes de la roca de caja en contacto con el magma afluente se producía en la dirección de la conexión entre las ramificaciones (puente) del mismo dique, la cual no es necesariamente perpendicular al rumbo de éste (Figura V.5).

Figura V. 5. Dirección de dilatación de un dique del Enjambre de Dique de Etive. Se indica con un círculo un punto de propagación abortado. Modificado de Morris et al. 2009.

Las observaciones de Glazner *et al.* (1999) y Morris *et al.* (2009) son coherentes con las observaciones de afloramiento de los diques H y L, y permiten hablar de una dilatación o apertura de la roca caja en una dirección oblicua al rumbo de ambos diques.

Estos antecedentes, junto con el desarrollo de contactos nítidos de los diques H y L con la roca de caja permiten interpretar que el emplazamiento de estos diques ocurrió en un estado frágil.

V.6. Dirección de flujo basada en el análisis de ASM

La dispersión de los parámetros direccionales de ASM no permite estimar con claridad la dirección del flujo magmático que dio origen a los diques en estudio. Esta dispersión puede deberse a una o más de las siguientes razones:

 Alteración importante producto de la intrusión de nuevos diques que puede modificar los ejes principales de anisotropía de susceptibilidad magnética. El dique B, por ejemplo, ha sido intruído por al menos dos diques (D y E) y las muestras más cercanas a su contacto con el dique B presentan anisotropías magnéticas que discrepan bastante de aquéllas situadas más alejadas de los márgenes del dique o de los contactos de éste con los otros diques.

- Comportamiento magnético débil de las muestras de roca. Las muestras de los diques B e I no son ferromagnéticas, sino más bien, son diamagnéticas por lo que la anisotropía de ellas es bastante baja y sus fábricas internas pueden estar rotadas.
- Presencia de titano-magnetita en dominio simple. Esto implica que el eje mayor de los granos magnéticos sea perpendicular al K₁ (y no paralelo) y/o que exista una permutación entre los ejes de anisotropía de susceptibilidad magnética.

Asimismo, se estimó una dirección de flujo magmático considerando la metodología de Geoffroy *et al.* (2002) con las siguientes limitaciones:

- Se consideraron muestras de todo el dique, no únicamente aquéllas correspondientes a los márgenes. La metodología de Geoffroy *et al.* (2002) trabaja sólo con muestras marginales.
- Sólo dos de las muestras medidas para cada dique corresponden a sus márgenes. Geoffroy *et al.* (2002) trabajaron con más de 3 muestras marginales por dique.
- 3. No se dispone de la orientación exacta de las paredes de los diques justo en el punto en el que se tomaron las muestras para el análisis de ASM. En efecto, los datos de rumbo y manteo de los diques fueron tomados en regiones muy distantes a los sitios de muestreo (Figura III.2 y Figura III.3).

Con todas estas limitaciones, es probable que las estimaciones de la dirección de flujo magmático no sean las más apropiadas.

V.7. Comparación de las estimaciones de dirección de flujo magmático

En primer lugar, es importante destacar que ninguna de las metodologías aplicadas para la estimación del vector de flujo magmático es completamente satisfactoria.

Para los diques D, G, H e I, no existe ninguna relación entre los resultados de la estimación del vector de flujo mediante los distintos métodos (Figura V.6). Lo cual puede explicarse en las limitaciones con respecto al muestreo y selección del plano para la medición de la orientación de cristales de plagioclasa planteadas en la evaluación de las metodologías.

Por otra parte, en los diques E y K se aprecia una coherencia entre el vector de flujo estimado en base a la metodología de la orientación de cristales de plagioclasa presentada en este trabajo y la desarrollada por Geoffroy *et al.* (2002) pero aplicada con las limitaciones que se detallaron con anterioridad (Figura V.6). Los resultados en estos casos indican flujos subverticales, lo cual podría ser apoyado por las observaciones de afloramiento que en particular, para el dique E, permitirían hablar de flujos subverticales al menos en la escala de observación.

Figura V. 6. Orientación del vector de flujo basado en las distintas metodologías aplicadas sobre cada dique.

V.8. Conclusiones

- Una de las metodologías desarrolladas en este trabajo permite facilitar la tarea de estimación de proporción de minerales opacos y su distribución de tamaño; reducir el error asociado a la estimación mediante observación microscópica con o sin la ayuda de diagramas de porcentajes; y obtener los resultados en menor tiempo que lo requerido para el análisis del conteo modal de este tipo de minerales.
- 2. El análisis de microfotografías mediante el software *ImageJ* para la determinación de la orientación de cristales de plagioclasa es una excelente herramienta para la determinación de petrofábricas que puedan asociarse a un flujo magmático. Sin embargo, es necesario realizar un muestreo adecuado y poner especial atención en la selección del plano en el cual se realizarán las mediciones, siendo el más apropiado en la mayoría de los casos aquel perpendicular al eje principal menor de susceptibilidad magnética K₃.
- Dentro de los diques estudiados hay algunos de origen sinplutónico y otros, de origen postplutónico. Dentro de los diques postplutónicos existe un par para los cuales puede afirmarse que se formaron por medio de una dilatación o apertura de sus paredes de manera oblicua a su rumbo.
- Uno de los procesos que permite explicar las variaciones composicionales, texturales y mineralógicas detectadas en los diques estudiados corresponde al "efecto Bagnold".
- 5. Las texturas de los diques estudiados son principalmente de origen ígneo y revelan un flujo magmático.
- 6. El flujo magmático que dio origen a los diques E y K muy probablemente fue de orientación subvertical.

VI. REFERENCIAS

- Åberg, G., Aguirre, L., Levi, B., Nyström, J.O. 1984. Spreading subsidence and generation of ensialic marginal basins: an example from the Early Cretaceous of Central Chile. In: Volcanic and Associated Sedimentary and Tectonic Processes in Modern and Ancient Marginal Basins (Kokellar, B.P. Howells, M.F., eds.). Geological Society of London, Special Publication, 16. pp. 185-193.
- Aguirre, L., Levi., Nyström, J.O. 1989. The link between metamorphism, volcanism and geotectonic setting during the evolution of the Andes. In: Evolution of metamorphic belts (Daly, J.S., Cliff, R.A., Yardley, B.W.D., eds.). Geological Society of London Special Publication 43, 223-232.
- Aguirre, L., Féraud, G., Morata, D., Vergara, M., Robinson, D. 1999. Time interval between volcanism and burial metamorphism and rate of basin subsidence in a Cretaceous Andean extensional setting. Tectonophysics 313, 433-447.
- Aifa, T., Lefort, J. 2000. Recording of Miocene regional stress under dry climate at the edge of a Carboniferous doleritic dyke in Brittany (France). Anisotropy of magnetic susceptibility and palaeomagnetic evidence. Comptes Rendus Academie des Sciences de Paris 330, 15-22.
- Arancibia, G. 2004. Mid-cretaceous crustal shortening: evidence from a regional-scale ductile shear zone in the Coastal Range of central Chile (32° S). Journal of South American Sciences 17, 209-226.
- Archanjo, C. J., Araújo, M. 2002. Fabric of the Rio Ceará-Mirim mafic dike swarm (northeastern Brazil) determined by anisotropy of magnetic susceptibility and image analysis. Journal of Geophysical Research 107, B3.
- Aubourg, C., Tshoso, G., Le Gall, B., Bertrand, H., Tiercelin, J-J., Kampunzu, A.B., Dyment, J., Modisi, M. 2008. Magma flow revealed by magmatic fabric in the Okavango giant dyke swarm, Karoo igneous province, northern Botswana. Journal of Volcanology and Geothermal Research 170, 247-261.
- Babiker, M., Gudmunsson, A. 2004. Geometry, structure and emplacement of mafic dykes in the Red Sea Hills, Sudan. Journal of African Earth Sciences 38, 279-292.

- Baer, G. 1995. Fracture propagation and magma flow in segmented dykes: field evidence and fabric analyses, Makhtesh Ramon, Israel. In: Baer. G., Heimann, M. (Eds.), Physics and Chemistry of Dykes. Makhtesh Ramon, Israel, pp. 125-140.
- Barriere, M. 1976. Flowage differentiation: Limitation of the "Bagnold effect" to the narrow intrusions. Contributions to Mineralogy and Petrology 55, 139-145.
- Bartolomeu, M., Ernesto, M. 1995. Anisotropy of magnetic susceptibility in the Ponta Grossa dyke swarm (Brazil) and its relationship with magma flow direction. Physics of the Earth and Planetary Interiors 87, 183-196.
- Benn, K., Allard, B., 1989. Preferred mineral orientatiosns related to magmatic flow in ophiolite layered gabros. Journal of Petrology 30, 925-946.
- Best, Myron G. Igneous and Metamorphic Petrology. Turín, Blackwell Science Ltd, 2003. 729p.
- Bhattacharji, S, 1967. Mechanics of flow differentiation in ultramafic and mafic sills. Journal of Geology 75, 101-112.
- Blanchard, J.P., Boyer, P., Gagny, C., 1979. Un nouveau critère de sens de mise en place dans une caisse filonienne: le "pincement" des mineráux aux éponte. Tectonophysics 53, 1-25.
- Blumenfeld, P., Bouchez, J.-L., 1988. Shear criteria in granite and migmatite deformed in the magmatic and solid states. Journal of Structural Geology 10, 361-372.
- Bolle, O., Besse, M., Diot, H. 2010. Magma flow and feeder chamber location inferred from magnetic fabrics in jotunitic dykes (Rogaland anorthosite province, SW Norway). Tectonophysics 493, 42-57.
- Brouxel, M. 1991. Geochemical consequences of flow differentiation in a multiple injection dike (Trinity ofhioluete, N. California). Lithos 26, 245-252.
- Callot, J.P., Geoffroy, L., Auburg, C., Pozzi, J.P., Mege, D. 2001. Magma flow directions of shallow dykes from the East Greenland volcanic margin inferred from magnetic fabric studies. Tectonophysics 335, 313-329.
- Callot, J.P., Guichet, X. 2003. Rock texture and magnetic lineation in dykes: a simple analytical model. Tectonophysics 366, 207-222.
- Carrigan, C., Eichelberg, J. 1990. Zoning of magma by viscosity in volcanic conduicts. Nature 343, 248-251.

- Charrier, R., Vicente, J.-C. 1972. Liminary and geosyncline Andes: major orogenic phases and synchronical evolutions of the central and Magellan sectors of the Argentine-Chilean Andes: Solid Earth Problems Conference, Upper Mantle Project, Buenos Aires (1970) 2, 451-470.
- Chistyakova, S. y Latypov, R. 2008. Fine-scale chemical zonation in small mafic dykes, Kestiö Island, SW Finland. Geological Magazine 146 (4), 485-496.
- Chistyakova, S. y Latypov, R. 2009a. On the development of internal chemical zonation in small mafic dykes. Geological Magazine 147 (1), 1-12.
- Chistyakova, S. y Latypov, R. 2009b. Two independent processes responsable for compositional zonation in mafic dykes of the Åland Åboland Dyke Swarm, Kestiö Island, SW Finland. Lithos 12, 382-396.
- Clemens, J. 1998. Observations on the origins and ascent mechanisms of granitic magmas. Journal of the Geological Society of London 155, 843-851.
- Correa-Gómes, L.C., Souza Filho, C.R., Martins, C.J.F.N., Oliveira, E.P. 2001. Development of symmetrical and asymmetrical fabrics in sheet-like igneous bodies: the role of magma flow and wall-rock displacements in theoretical and natural cases. Journal of Structural Geology 23, 1415-1428.
- Creixell, C. 2007. Petrogénesis y emplazamiento de enjambres de diques máficos mesozoicos de Chile central (30°-33°45'S): Implicancias tectónicas en el desarrollo del arco Jurásico-Cretácico temprano. Tesis para optar al grado de doctor en ciencias mención Geología.
- Curtis, M., Riley, T., Owens, W., Leat, P., Duncan, R. 2008. The form, distribution and anisotropy of magnetic susceptibility of Jurassic dykes in H.U. Sverdrupfjella, Dronning Maud Land, Antarctica. Implications for dyke swarm emplacement. Journal of Structural Geology 30, 1429-1447.
- de Wall, H., Kontny, A., Vahle, C., 2004. Magnetic susceptibility zonation of the melilitic Riedheim dyke (Hegau volcanic field, Germany): evidence for multiple magma pulses?. Journal of Volcanology and Geothermal Research, 131, 143-163.
- Delaney, P., Pollard, D., McKee, E. 1986. Field relations between dikes and joints: emplacement processes and paleostress analysis. Journal of Geophysical Research 91, 4920-4938.

- Elwood, B.B. 1978. Flow and emplacement direction determined for selected basaltic bodies using magnetic susceptibility anisotropy measurements. Earth Planetary Science Letters 41, 254-264.
- Emerman, S., Marrett, R. 1990. Why dikes?. Geology 18, 231-233.
- Féménias, O., Diot, H., Berza, T., Gauffriau, A., Demaiffe, D. 2004. Asymmetrical to symmetrical magnetic fabric of dikes. Paleo-flow orientations and Paleo-stresses recorded on feederbodies from the Motru Dike Swarm (Romania). Journal of Structural Geology 26, 1401-1418.
- Féraud, G., Aguirre, L., Vergara, M., Morata, D., Robinson, D. 1998. 40Ar-39Ar data on primary and secondary minerals of a volcanic series affected by burial metamorphism: example of a Cretaceous Andean extensional basin. Mineralogical Magazine 62, 444-445.
- Fernández, A., Laporte, D. 1991. Significance of low simmetry fabrics in magmatic rocks. Journal of Structural Geology 13, 337-347.
- Ferrando, R., Arriagada, C., Morata, D., Córdova, L., Varas, M. 2009. Fábricas petro-magnéticas en el Complejo Plutónico Illapel: implicancias en el mecanismo de emplazamiento de plutones. En XII Congreso Geológico Chileno, Noviembre 2009, Santiago, Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas.
- Fuentes, F., Féraud, G., Aguirre, L., Morata, D. 2001. Convergent strategy to date metamorphic minerals in sub-greenschist facies metabasites by the 40Ar-39Ar method Abstracts III Simposium on Isotope Geology, Pucón (Chile), 34-36.
- Fuentes, F. Féraud, G., Aguirre, L., Morata, D. 2005. ⁴⁰Ar/³⁹Ar dating of volcanism and subsequent very low-grade metamorphism in a subsiding basin: example of the Cretaceous lava series from central Chile. Chemical Geology 214, 157-177.
- Gana, P., Zentillu, M. 2000. Historia termal y exhumación de intrusivos de la Cordillera de la Costa de Chile central. Actas IX Congreso Geológico Chileno.Puerto Varas 2, 664-668.
- Gay, N.G. 1968. Pure shear and simple shear deformation of inhomogeneous viscous fluid. I. Theory. Tectonophysics 5, 211-234.
- Geoffroy, L., Callot, J.P., Auburg, C., Moreira, M. 2002. Magnetic and plagioclase linear fabric discrepancy in dykes: a new way to define the flow vector using magnetic foliation. Terra Nova 14, 183-190.

- Gil-Imaz, A., Pocoví, A., Lago, M., Galé, C., Arranz, E., Rillo, C., Guerrero, E. 2006. Magma flow and termal contraction fabric in tabular intrusions inferred from AMS analysis. A case study in a late-Variscan folded sill of the Albarracín Massif (southern Iberian Chain, Spain). Journal of Structural Geology 28, 641-653.
- Glazner, A. F., Bartley, J. M., Carl, B.S. 1999. Oblique opening and noncoaxial emplacement of the Jurassic Independence dike swarm, California. Journal of Structural Geology 21, 1275-1283.
- Hargraves, R.B., Johnson, D., Chan, C.Y. 1991. Distribution anisotropy: the cause of AMS in igneous rocks?. Geophysical Research Letters 18, 2193-2196.
- Herrero-Bervera, W., Walker, G.P.L., Cañón-Tapia, E., Garcia, M.O. 2001. Magnetic fabric and inferred flow direction of dikes, conesheets and sill swarms, Isle of Skye, Scontland. Journal of Volcanology and Geothermal Research 106, 195-210.
- Hrouda, F. 1988. Mathematical model relationship between the paramagnetic anisotropy and strain in slates-reply. Tectonophysics 156, 315.
- Huppert, H., Sparks, R. 1989. Chilled margins in igneous rocks. Earth and Planetary Science Letters 92, 397-405.
- Ildefonse, B., Launeau, P., Bouchez, J-L., Fernandez, A. 1992. Effect of mechanical interactions on the development of shape preferred orientacions: a two-dimensional experimental approach. Journal of Structural Geology 14, 73-83.
- Jelinek, V. 1981. Characterization of the magnetic fabric of the rocks. Tectonophysics 79, 63-67.
- Komar, P.D. 1972a. Mechanical interactions of phenocrysts and the flow differentiation of igneous dikes and sills. Geological Society of America Bulletin 83, 973-988.
- Komar, P.D. 1972b. Flow differentiation in igneous dikes and sills: Profile of velocity and phenocrysts concentration: Geological Society of America Bulletin 83, 3443-3448.
- Komar, P.D. 1976. Phenocrysts interactions and the velocity profile of magma flowing through dikes or sills. Geological Society of America Bulletin 87, 1336-1342.
- Llambías, E. 2001. Geología de los cuerpos ígneos. Serie correlación Geológica 15. Instituto Superiori de Correlación Geológica INSUGEO, 232 p., Tucumán.

- Larson, R. I., Pitman, W. C. 1972. World-wide correlation of Mesozoic magnetic anomalies, and its applications: Geological Society of America Bulletin 83, 3645-3661.
- Latypov, R. 2003a The origin of marginal compositional reversals in Basic-Ultrabasic Sills and Layered Intrusions by Soret Fractionation. Journal of Petrology 44 (9), 1579-1618.
- Latypov, R. 2003b. The origin basic-ultrabasic sills wirh S-, D-, and I-shaped compositional profiles by in situ crystallization of a single input of phenocryst-poor parental magma. Journal of Petrology 44 (9), 1619-1656.
- Latypov, R., Chistyakova, S., Alapeti, T. 2007. Revisiting problema of chilled margins associated with marginal reversals in mafic-ultramafic intrusive bodies. Lithos 99, 178-206.
- Launeau, P., Robin, P. 1996. Fabric analyses using the intercept methop. Tectonophysics 267, 91-119.
- Levi, B. 1973. Eastwards shift of Mesozoic and Early Tertiary volcanic centers in the Coast Range of Central Chile. Geological Society of America, Bulletin 84, 3901-3910.
- Levi, B., Aguirre, L. 1981. Ensialic spreading-subsidence in the Mesozoic and Paleogene Andes of Central Chile. Journal of the Geological Society 138, 75-81.
- Levi, B., Nyström, J. O., Thiele, R., Åberg, G. 1988. Facies de alteración regional en las secuencias volcánicas mesozoicas y cenozoicas de Chile central. Revista Geológica de Chile 15, 83-88.
- Martínez-Pardo, R., Gallego, A., Martínez-Guzmán, R. 1994. Middle Albian marine planktonic microfossils from the Santiago basin, central Chile: their depositional and paleogeographic meaning. Revista Geológica de Chile 21, 173-187.
- Mège, D., Korme, T. 2004. Dyke-swarm emplacement in the Ethiopian Large Igneous Province: not only a matter of stress. Journal of Volcanology and Geothermal Research 132, 283-310.
- Morata, D., Féraud, G., Schärer, U., Aguirre, L., Belmar, M., Cosca, M. 2006. A new geochronological framework for Lower Cretaceous magmatism in the Coastal Range of central Chile. En Congreso Geológico Chile, Nº11, vol. 2, 509-512, Antofagasta (Chile).
- Morata, D., Varas, M.I., Higgins, M.D., Valencia, V., Verhoort, J.D. 2010, Episodic emplacement of the Illapel Plutonic Complex (Coastal Cordillera, central Chile): Sr and Nd isotopic, and

zircon UPb geochronological constraints. In VII SSAGI South American Symposium on Isotope Geology, Brasília.

- Morata, D., Varas, M. I., Higgins, M., Valencia, V., Verhoort, J. D., Schärer, U. 2011. Episodic emplacement of the Illapel Plutonic Complex (Coastal Cordillera, central Chile): U-Pb geochronology and Sr and Nd isotopic constraints.
- Morris, G., Kamada, M., Martinez, V. 2008. Emplacement of the Etive Dyke Swarm, Scotland: implications of dyke morphology and AMS data. En Structure and Emplacement of Hightlevel Magmatic Systems. Geological Society
- Mpodozis, C., Ramos, V. 1989. The Andes of Chile and Argentina: Circum Pacific Council for Energy and Mineral Resources. Earth Science Series 11, 59-91.
- Mpodozis, C., Allmendinger, R. 1992. Extensión cretácica a gran escala en el Norte de Chile (Puquios-Sierra Fraga, 27°S): significado para la evolución tectónica de los Andes. Revista Geológica de Chile 19 (2), 167-197.
- Mpodozis, C., Allmendinger, R. W. 1993. Extensional tectonics, Cretaceous Andes, northern Chile (27°S): Geological Society of America Bulletin 105, 1462-1477.
- Mpodozis, C., Ramos, V. 2008. Tectónica Jurásica en Argentina y Chile: extensión, subducción oblicua, rifting, deriva y colisiones?. Revista de la Asociación Geológica Argentina, 63 (4), 481-497.
- Nicholson, R., Pollard, D. 1985. Dilation and linkage of echelon cracks. Journal of Structural Geology 7, 583-590.
- Nkono, C., Féménias, O., Diori, H., Berza, T., Demaiffe, D. 2006. Flowage differentiation in an andesitic dyke of the Motru Dyke Swarm (Southern Carpathians, Romania) inferred from AMS, CSD and geochemistry. Journal of Volcanology and Geothermal Research 154, 202-221.
- Pankhurst, R. J., Hole, M. J., Brook, M. 1988. Isotope evidence for the origin of Andean granites. Transaction of the Royal Society of Edinburgh Earth Sciences 79, 123-133.
- Parada, M. A., Nyström, J. O., Levi, B. 1999. Multiple sources for the Coastal Batholith of central Chile (31-34°S): geochemical and Sr-Nd isotopic evidence and tectonic implications. Lithos 46, 505-521.

- Parada, M. A., Larrondo, P., Guiresse, C., Roperch, P. 2002. Magmatic Gradients in the Cretaceous Caleu Pluton (Central Chile): Injections of Pulses from Stratified Magma Reservoir. Gondwana Research 5 (2), 307-324.
- Parada, M.A., Féraud, G., Fuentes, F., Aguirre, L., Morata, D., Larrondo, P. 2005a. Ages and cooling history of the Early Cretaceous Caleu pluton: testimony of a switch from a rifted to a compressional continental margin in central Chile. Journal of the Geological Society, London 162 (205), 273-287.
- Parada, M.A., Roperch, P., Guiresse, C., Ramírez, E. 2005b. Magnetic fabrics and compositional evidence for the construction of the Caleu pluton by multiple injections, Coastal Range of central Chile. Tectonophysics 299, 399.420.
- Ramos, V. 2010. The tectonic regime along the Andes: Present-day and Mesozoic regimes. Geological Journal, 45, 2-25.
- Reutter, K. J. 2001. Le Ande centrale: elementi di un`orogenesi di margine continentale attivo. Acta Naturalia de LÀteneo Parmense 37, 5-37.
- Rickwood, P.C. 1990. The anatomy of a dyke and the determination of propagation and magma flow. En: Parker, A.J., Rickwood, P.C., Tucker, D.H. (Eds.). Mafic Dykes and Emplacements Mechanisms., pp.81-100.
- Rivano, S., Sepúlveda, P., Hervé, M., Puig, A. 1985. Geocronología K-Ar de las rocas intrusivas entre los 31°-32° latitud sur, Chile. Revista Geológica de Chile (12) 1, 63-74.
- Rochette, P., Jenatton, L., Dupuy, C., Boudier, F., Reuber, I., 1991. Diabase dykes emplacements in Oman ophiolite: a magnetic fabric study with reference to the geochemistry. En: i.P. (Ed.), Ophiolite génesis and Evolution of the Oceanic litosphere. Kluwer, Dordrecht, pp. 55-82.
- Scheuber, E., Bogdanic, T., Jensen, A., Reutter, K.-K. 1994. Tectonic development of the north chilean Andes in relation to plate convergence and magmatismo since the Jurassic. En Reutter, K.-J., Scheuber, E., Wigger, P.J. (eds.) Tectonics of the Southern Central Andes, Structure and evolution of an active continental margin, 121-139, Springer-Verlag.
- Scheuber, E., Gonzalez, G. 1999. Tectonics of the Jurassic-Early Cretaceous magmatic arc of the north Chilean Coastal Cordillera (22°-26°S): A story of cristal deformation along a convergent plate boundary. Tectonics 18 (5): 895-910.
- Thorpe, R. y Brown, G. 1990. The Field Description of Igneous Rocks. Open University Press, 1985. Reprinted 1986, 1990.
- Varas, M. 2011. Naturaleza. Distribución especial e implicaciones petrogenéticas de los enclaves máficos microgranulares del Complejo Plutónico Illapel, Cordillera de la Costa, Chile Central. Tesis para optar al grado de Magíster en Ciencias, mención Geología.
- Vergara, M., Levi, B., Nyström, J.O., Cancino, A. 1995. Jurassic and Early Cretaceous island arc volcanism, extension, and subsidence in the Coast Range of central Chile. Geological Society of America Bulletin 107, 1427-1440.
- Vicente, J.-C., Charrier, R., Davidson, J., Mpodozis, A. C., Rivano, S. 1973. La orogénesis subhercínica: fase mayor de la evolución paleogeográfica y estructural de los Andes argenito-chilenos centrales. V Congreso Geológico Argentino, Actas 5, 81-98.
- Wall, R., Sellés, D., Gana, P. 1999. Area Til-Til-Santiago, región Metropolitana. Escala 1:100.000. Servicio Nacional de Geología y Minería, Chile.
- Walker, D., Delong, S. 1982. Soret separation of mid-ocean ridge basalt magma. Contributions to Mineralogy and Petrology 79, 231-240.
- Yamato, P., Tartèse, R., Duretz, T., May, D.A. 2011. Numerical modeling of magma transport in dykes. Tectonophysics, En prensa.
- Zoback, M., Zoback, M. 1980. State of stress in the conterminous United States. Journal of Geophysical Research 85, 6113-6156.

ANEXO I. Ubicación relativa de las muestras

Figura A.I.1. Mapa Geológico I con la ubicación relativa de las muestras correspondientes al sitio de muestreo CH01. Este sitio de muestreo comprende los diques B, D y E.

Figura A.I.2. Mapa Geológico I con la ubicación relativa de las muestras correspondientes al sitio de muestreo CH01. Este sitio de muestreo comprende los diques B, D y E.

ANEXO II. Anisotropía de susceptibilidad magnética (AMS)

Muestra $K_{\rm m}$ (10 ⁻⁶ SI)		D'	т	K	1	K ₂	2	Ka		1	F
widestia	K _m (10 31)	r	I	dec	inc	dec	inc	dec	inc	L	1
CH0101	29	1.016	0.743	129	28	17	34	248	43	1.002	1.013
CH0102	40	1.010	0.011	133	39	355	43	242	22	1.005	1.005
CH0103	31	1.004	-0.068	327	30	147	60	57	0	1.002	1.002
CH0104	38	1.003	0.161	60	23	240	67	150	0	1.001	1.002
CH0105	5530	1.015	-0.373	328	11	80	62	232	25	1.010	1.004
CH0106	8060	1.010	-0.580	145	3	325	87	55	0	1.007	1.002
CH0107	7510	1.010	0.110	95	27	341	39	209	39	1.004	1.005
CH0108	5230	1.022	0.244	110	30	338	49	215	25	1.008	1.014
CH0109	46	1.009	-0.124	47	8	169	76	315	12	1.005	1.004
CH0110	35	1.003	-0.323	359	17	179	73	89	0	1.002	1.001
CH0112	173	1.012	-0.535	215	16	306	4	48	74	1.009	1.003
CH0113	1070	1.005	-0.567	90	68	270	22	180	0	1.004	1.001
CH0114	2600	1.023	0.385	11	64	143	18	239	18	1.007	1.015
CH0115	8930	1.094	0.494	187	79	328	9	59	7	1.022	1.067
CH0116	6680	1.060	0.565	144	76	327	14	237	1	1.012	1.045
CH0117	44	1.007	-0.701	111	28	291	62	21	0	1.006	1.001
CH0118	41	1.013	0.719	110	28	358	35	229	42	1.002	1.010
CH0119	38	1.005	-0.214	60	36	328	3	234	54	1.003	1.002

Tabla A.II.1.	. Datos de an	isotropía de s	usceptibilidad	magnética de	las muestras	del sitio CH01	que comprende	los diques B,	DyE.

Muestra K (10 ⁻⁶		D'	т	K	K1		K ₂		3	1	F
widestia	κ _m (10 31)	r		dec	inc	dec	inc	dec	inc	L	1
CH0201	42	1.003	0.100	133	4	313	86	43	0	1.001	1.001
CH0202	46	1.004	-0.029	355	16	175	74	85	0	1.002	1.002
CH0203	1	1.001	-0.138	0	0	90	0	0	90	1.001	1.001
CH0204	6550	1.031	0.562	180	51	317	31	61	22	1.006	1.023
CH0205	4870	1.016	0.605	137	22	286	65	43	12	1.003	1.012
CH0206	9020	1.016	0.355	303	2	205	75	34	15	1.005	1.011
CH0207	47	1.005	0.468	325	72	159	18	68	4	1.001	1.004
CH0208	31	1.011	0.140	341	65	159	26	250	1	1.005	1.006

Tabla A.II.2. Datos de anisotropía de susceptibilidad magnética de las muestras del sitio CH02 que comprenden los dique l y K.

Muestra	K (10 ⁻⁶ SI)	P'	Р' Т	K	1	K	2	K	3	1	F
WIGCSTIG	R _m (10 51)	I	I	dec	inc	dec	inc	dec	inc	L	I
MR4001A	6970	1,035	0,162	357	49	167	41	262	5	1,015	1,020
MR4003A	3690	1,014	0,739	158	54	6	33	268	14	1,002	1,011
MR4004A	4140	1,021	0,718	18	36	152	44	268	25	1,003	1,017
MR4005A	2600	1,010	0,616	8	70	187	20	277	0	1,002	1,008
MR4006B	2980	1,013	0,887	219	82	356	6	86	5	1,001	1,011
MR4007A	5340	1,020	0,767	174	26	9	63	267	6	1,002	1,016
MR4008A	6880	1,060	0,318	28	45	171	39	277	19	1,020	1,038

Tabla A.II.3. Datos de anisotropía de susceptibilidad magnética de las muestras del sitio MR40 que corresponden al dique G.

Muestra K (10 ⁻⁶ SI)		D'	т	K	1	K	2	K	3	1	F
Muestia	κ _m (10 31)		ľ	dec	inc	dec	inc	dec	inc	L	
MR4101A	229	1,018	0,209	215	51	339	24	83	28	1,007	1,011
MR4102A	8420	1,028	0,754	356	49	192	40	95	8	1,003	1,022
MR4103B	8200	1,034	0,704	350	54	187	35	91	8	1,005	1,027
MR4104A	3830	1,022	0,363	284	47	25	10	124	42	1,007	1,015
MR4105A	3660	1,025	0,436	319	39	223	7	124	50	1,007	1,017
MR4106B	7510	1,029	0,753	326	47	193	33	86	25	1,003	1,023
MR4107A	4880	1,037	0,890	289	69	179	7	87	19	1,002	1,031
MR4108B	2940	1,022	0,264	357	49	185	41	92	4	1,008	1,013
MR4109A	1240	1,011	0,764	351	15	229	64	87	21	1,001	1,009

Tabla A.II.4. Datos de anisotropía de susceptibilidad magnética de las muestras del sitio MR41 que corresponde al dique H.

ANEXO III. Caracterización microscópica de los diques D, E, G, H, I y L

		Dique D	
Mine Prir	ralogía maria	Plagioclasa 60-80%, anfíbola <5%, minerales opacos 5-10%, vidrio 5- 20%.	
Texturas Ígneas	Centro	Microporfíricaintergranular-intersectal:Fenocristalesdeplagioclasaeuhedralyanfíbolaanhedralinmersosenunamasafundamentalconstituidaporpequeñoscristalesdeplagioclasaconvidrio,anfíbolaymineralesopacosenlosinterticiosLocalmenteseapreciantexturasglomeroporfíricasconstituidaporfenocristales(Figura D.1).en	r
	Márgenes	Microporfírica pilotaxítica- hialopilítica: Fenocristales de plagioclasa orientados en una dirección preferencial y de anfíbola (cloritizados) inmersos en una masa fundamental afanítica de microlitos de plagioclasa con minerales opacos y abundante vidrio en los intersticios (Figura D.2).	r
Alteración		Alteración propilítica pervasiva representada principalmente por cloritización de la masa fundamental y epidositas microscópicas subcirculares (Figura D.3). Reemplazo de vidrio y fenocristales de feldespatos por arcillas (Figura D.4).	r
Observaciones		La proporción de fenocristales y el tamaño de todo tipo de cristales aumenta hacia el centro del dique. La mineralogía opaca se presenta en una distribución de tamaño bimodal (Figura D.4).	

Figura D.1. Microfotografía tomada a nicoles cruzados a la muestra CH0106

Figura D.2. Microfotografía tomada a nicoles cruzados a la muestra CH0105

Figura D.3. Microfotografía tomada a nicoles cruzados a la muestra CH0107

Figura D.4. Microfotografía tomada a nicoles paralelos a la muestra CH0107

Tabla A.III.1. Descripción microscópica del dique D. Las microfotografías miden 3 mm de ancho.Las microfotografías tienen 3 mm de ancho.

		Dique E	A Comparison
Mine Prir	ralogía maria	Plagioclasa ~80%, minerales opacos 5-10%, clinopiroxeno 0-8%, anfíbola <5%, vidrio ~5%.	
Centro Texturas Ígneas		Microporfírica intergranular- intersectal a pilotaxítica-hialopilítica: Escasos fenocristales de plagioclasa y anfíbola inmersos en una masa fundamental de grano más fino con abundantes plagioclasas con clinopiroxeno, minerales opacos y algo de vidrio en elos intersticios (Figura E.1). Localmente se aprecian texturas glomeroporfíricas constituidas por fenocristales de plagioclasa.	Figura E.1. Microfotografía tomada a nicoles cruzados a la muestra CH0104
	Márgenes	Afanítica a microporfírica pilotaxítica- hialopilítica: Escasos fenocristales de plagioclasa inmersos en una masa fundamental de grano muy fino con plagioclasa esqueletal orientada en una o dos direcciones preferenciales, clinopiroxeno, vidrio y minerales	Figura E.2. Microfotografía tomada a nicoles cruzados a la muestra CH0116
		opacos en los intersticios (Figura E.2 y E.3).	and the set of the
Alteración		Escasas arcillas reemplazando parcialmente minerales de la masa fundamental y algunos fenocristales inmersos en ella. Alteración propilítica correspondiente a la cloritización y epidotización y epidotización parcial de la masa fundamental y de los inosilicatos (Figura E.4). Además, se observan epidositas microscópicas (Figura E.1).	Figura E.3. Microfotografía tomada a nicoles cruzados a la muestra CH0111
Observaciones		Se observan vetillas de espesor inferior a 0.2 mm. El tamaño de los cristales de plagioclasa, el tamaño de minerales opacos y la proporción de clinopiroxeno aumenta hacia el centro del dique. La orientación preferencial de los cristales de plagioclasa se hace más abundante en las muestras marginales del dique.	Figura E.4. Microfotografia tomada a nicoles paralelos a la muestra CH0114

Tabla A.III.2. Caracterización microscópica del dique E. Las microfotografías miden 3 mm de ancho.

	Dique G							
Mine Prir	ralogía maria	Plagioclasa 80-85%, vidrio <5%, clinopiroxeno 110%, minerales opacos ~5%, anfíbola ~1%.	S. MAR					
Texturas Ígneas	Centro	Microporfírica intergranular- intersectal: Escasos fenocristales de plagioclasa euhedrales a subhedrales y de anfíbola en una masa fundamental constituida por cristales de plagioclasa esqueletales con clinopiroxeno, minerales opacos y vidrio rellenando los intersticios (Figura G.1).	Fig nicol					
	Márgenes	Afanítica pilotaxítica-hialopilítica: Cristales de plagioclasa orientados en una o dos direcciones preferenciales con clinopiroxeno, minerales opacos y vidrio en los intersticios (Figura G.2).	Eig					
Alter	ación	Alteración propilític a que se manifiesta en epidositas microscópicas subcirculares (Figura G.3) y en la cloritización de los inosilicatos. Reemplazo parcial de feldespatos por arcillas (Figura G.4).	nicol					
Estru	cturas	Fracturas rellenas parcialmente de óxidos, epidota y en algunos casos polimorfos de sílice. Vetillas de epidota con espesor promedio de 0.2 mm.	Fig					
Observaciones		La mineralogía opaca presenta una distribución de tamaño bimodal, en particular en las muestras marginales (Figura G.4). Se observan texturas glomeroporfíricas definidas por cúmulos de fenocristales y texturas de reabsorción en algunos de los fenocristales. El tamaño de los cristales de plagioclasa y de los minerales opacos aumenta hacia el centro del dique.	Fig					

Figura G.1. Microfotografía tomada a nicoles cruzados a la muestra MR4004

Figura G.2. Microfotografía tomada a nicoles cruzados a la muestra MR4008

Figura G.3. Microfotografía tomada a nicoles cruzados a la muestra MR4003

Figura G.4. Microfotografía tomada a nicoles paralelos a la muestra MR4001

Tabla A.III.3. Caracterización microscópica del dique G. Las microfotografías miden 1.5 mm de ancho.

		Dique H	
Miner Prin	ralogía n aria	Plagioclasa 80-90%, clinopiroxeno 5- 10%, vidrio ~5%. Adicionalmente se detectó un par de cristales de anfíbola cloritizados.	
Texturas Ígneas	Centro	Microporfírica intergranular- intersectal a pilotaxítica-hialopilítica: Fenocristales de plagioclasa en una masa fundamental afanítica de microlitos esqueletales de plagioclasa orientados en dos direcciones preferenciales en algunas de las muestras con minerales opacos y clinopiroxeno en los intersticios (Figura H.1).	Figura H nicoles cru
	Márgenes	Microporfírica intergranular- intersectal a pilotaxítica-hialopilítica: lo mismo que en el centro. Sin embargo, se observa una textura glomeroporfírica constituida por fenocristales obliterados (Figura H.2).	Figura H nicoles cru
Alteración		Alteración propilítica que se hace presente como la cloritización de la masa fundamental y de cristales de clinopiroxeno y anfíbolas y a modo de epidositas microscópicas a centimétricas (Figura H.3). Reemplazo por arcillas de la masa fundamental vítrea, cristales de plagioclasa y fenocristales, algunos de los cuales han sido obliterados (Figura H.4).	Figura H nicoles crit
Estructuras		Se observan vetillas de óxidos de hierro. En el extremo oriental del dique se encuentran amígdalas rellenas de clorita, epidota y polimorfos de sílice.	
Observ	vaciones	La mineralogía opaca presenta una distribución de tamaño bimodal, en particular en las muestras marginales.	Figura H nicoles pa

Figura H.2. Microfotografía tomada a nicoles cruzados a la muestra MR4101

Figura H.3. Microfotografía tomada a nicoles cruzados a la muestra MR4108

Figura H.4. Microfotografía tomada a nicoles paralelos a la muestra MR4105

Tabla A.III.4. Caracterización microscópica del dique H. Las microfotografías miden 1.5 mm de ancho.

		Dique I	
Mine Prir	ralogía maria	Clinopiroxeno 40-80%, plagioclasa 20- 60%, minerales opacos ~10%, vidrio 5-10%.	
Ce Texturas Ígneas — Ma	Centro	Afanítica microcristalina pilotaxítica- hialopilítica: Cristales de plagioclasa esqueletales orientados en una o dos direcciones preferenciales con clinopiroxeno, minerales opacos y vidrio en los intersticios. De manera muy local la textura se vuelve microporfírica por la escasa presencia de fenocristales de plagioclasa (Figura I.1).	Figura I.1. Microfotografía tomada a nicoles cruzados a la muestra CH0202
	Márgenes	Afanítica a microporfirica pilotaxítica- hialopilítica: Escasos fenocristales inmersos en una masa fundamental de grano muy fino con microlitos de plagioclasa orientados en una o dos direcciones preferenciales con clinopiroxeno, minerales opacos y vidrio en los intersticios (Figura I.2 y I.3).	Figura 1.2. Microfotografía tomada a nicoles cruzados a la muestra CH0201
Alter	ración	Alteración propilítica manifestada por una cloritización de la masa fundamental vítrea y de algunos cristales de clinopiroxeno, por la presencia de epidositas y por epidota alterando la masa fundamental o en estructuras como vetillas (Figura I.1, I.2 y I.3). Reemplazo parcial de la masa fundamental y cristales de plagioclasa por arcillas (Figura I.4).	Figura 1.3. Microfotografía tomada a nicoles cruzados a la muestra CH0208
Estructuras		Vetillas de epidota de espesor medio de 0.2 mm (Figura I.3).	
Observaciones		El tamaño de los cristales de plagioclasa aumenta desde los márgenes hacia el centro del dique.	Figura I.4. Microfotografía tomada a nicolas paralelos a la muestra CH0202

Tabla A.III.5. Caracterización microscópica del dique I. Las microfotografías tienen 3 mm de ancho.

		Dique K	
Mine Prir	ralogía maria	Plagioclasa 75-85%, minerales opacos <5%, clinopiroxeno 5%, vidrio 5-15%, anfibola ~1%.	
Texturas Ígneas	Centro	Microporfírica pilotaxítica- hialopilítica: Escasos fenocristales de plagioclasa algunos con texturas de reabsorción y otros esqueletales y anfíbolas inmersos en una masa fundamental afanítica constituida por cristales esqueletales de plagioclasa con vidrio, escasos minerales opacos y clinopiroxeno en los intersticios. Los cristales de plagioclasa se encuentran orientados en una o dos direcciones preferenciales (Figura K.1).	Figura K.1. Microfotografia tomada a nicoles cruzados a la muestra CH0205
	Márgenes	Microporfírica intersectal- intergranular y vesicular: Fenocristales de plagioclasa y escasas anfíbolas inmersas en una masa fundamental contituida por microlitos de plagioclasa con minerales opacos y abundante vidrio en los intersticios. Se observa una gran cantidad de vesículas de contornos irregulares (Figura K.2).	Figura K.2. Microfotografia tomada a nicoles cruzados a la muestra CH0204
Alteración		Alteración propilítica correspondiente a la cloritización de la masa fundamental y a la presencia de epidositas microscópicas y centimétricas (Figura K.3). Reemplazo de la masa fundamental y algunos fenocristales por arcillas (Figura K.4).	Figura K.3. Microfotografia tomada a nicoles cruzados a la muestra CH0209
Estru	icturas	Vetillas de epidota con un espesor máximo de 0.2 mm.	
Obser	vaciones	Los minerales opacos presentan una distribución bimodal de tamaño (Figura K.4).	Figura K.4. Microfotografía tomada a nicoles paralelos a la muestra CH0206

Tabla A.III.6. Caracterización microscópica del dique K. Las microfotografías miden 3 mm de ancho.Las microfotografías tienen 3 mm de ancho.

ANEXO IV. Conteo de minerales opacos

				Area fra	ction [%]			
IN°F0IO	MR4001	MR4003	MR4004	MR4005	MR4006	MR4007	MR4008	MR4101
1	8.5	5.3	4.7	7.1	5.7	7.1	5.4	0.1
2	9.2	5.0	6.3	4.8	4.7	4.0	4.1	1.8
3	8.9	4.8	2.0	3.2	2.7	8.7	4.4	1.3
4	8.2	3.7	3.0	4.1	7.8	6.4	10.2	0.1
5	6.8	3.7	3.5	5.3	5.1	5.8	4.7	0.1
6	3.2	2.4	4.2	5.9	4.0	4.8	5.5	0.6
7	4.2	2.8	4.3	4.5	4.7	5.5	5.8	0.5
8	4.4	4.1	4.1	3.1	2.8	6.3	5.1	0.7
9	9.3	16.8	5.0	5.7	4.6	6.2	6.3	1.7
10	9.9	5.3	7.0	6.2	5.2	3.1	5.1	2.5
11	8.3	4.8	2.4	5.6	4.5	8.1	5.5	1.8
12	6.7	3.1	3.2	3.5	5.6	5.5	6.2	0.3
13	3.2	4.1	2.8	6.2	2.4	4.8	3.3	0.2
14	4.9	2.9	3.4	4.1	4.0	3.7	4.0	0.2
15	4.6	3.3	1.8	2.8	3.1	5.3	4.5	3.0
16	7.1	1.9	2.8	2.2	3.9	4.3	8.2	1.6
Promedio	6.7	4.6	3.8	4.6	4.4	5.6	5.5	1.0
NºEoto		1	1	Area fra	ction [%]	1	1	
	MR4102	MR4103	MR4104	MR4105	MR4106	MR4107	MR4108	MR4109
1	8.2	1.9	3.0	2.5	3.8	5.1	7.3	7.2
2	3.8	2.7	5.8	3.3	6.7	6.7	6.3	6.8
3	6.6	4.5	2.0	1.0	7.1	5.8	8.5	5.6
4	1.8	3.8	3.6	3.7	3.3	6.1	4.5	7.7
5	3.7	4.9	7.2	2.0	6.8	3.0	5.7	7.5
6	4.3	4.5	6.7	2.7	5.6	5.4	7.3	7.4
7	1.6	2.0	5.6	2.4	4.8	5.5	6.7	4.5
8	6.2	3.5	6.6	2.9	3.7	4.3	5.9	4.0
9	7.2	1.5	1.2	2.4	3.3	4.1	6.9	6.5
10	3.3	2.1	4.8	3.2	6.0	5.7	6.2	5.6
11	5.8	4.0	1.6	0.8	6.0	4.8	8.3	4.7
12	6.2	3.7	3.1	3.4	2.6	5.1	4.2	6.5
13	4.6	4.2	6.3	2.5	5.8	4.3	5.2	6.4
14	5.7	3.7	5.9	3.4	4.9	4.3	6.8	4.7
15	2.4	1.2	4.8	3.5	3.8	3.4	7.0	3.6
16	7.3	3.7	5.7	4.0	5.1	3.4	5.1	3.1
Promedio	49	32	46	27	50	48	64	57

 Tabla A.IV.1. Porcentaje de minerales medido en 16 microfotografías de cada una de las muestras de los sitios MR40 y MR41.

			Та	amaño [mm	1 ²]			
Muestra	MR4001	MR4003	MR4004	MR4005	MR4006	MR4007	MR4008	MR4101
n*	43051	14069	14421	19030	17672	24515	33387	11058
Moda	2.04E-06	2.04E-06	2.04E-06	2.04E-06	2.04E-06	2.63E-06	2.04E-06	1.01E-06
Mediana	4.08E-06	4.08E-06	4.08E-06	4.08E-06	4.08E-06	5.25E-06	4.08E-06	2.01E-06
Mínimo	5.95E-07	1.52E-06	0.00E+00	5.95E-07	0.00E+00	1.01E-06	5.95E-07	1.01E-06
Máximo	4.00E-02	3.23E-01	3.00E-02	1.23E-01	5.99E-01	9.40E-02	2.90E-02	5.00E-03
Muestra	MR4102	MR4103	MR4104	MR4105	MR4106	MR4107	MR4108	MR4109
n*	27864	13037	23430	21015	23504	27903	20123	24047
Moda	2.38E-06	2.38E-06	2.38E-06	2.38E-06	2.38E-06	2.38E-06	2.38E-06	2.38E-06
Mediana	4.76E-06	4.76E-06	4.76E-06	4.76E-06	4.76E-06	4.76E-06	4.76E-06	4.76E-06
Mínimo	0.00E+00	4.82E-07	4.82E-07	0.00E+00	0.00E+00	1.82E-06	2.38E-06	4.82E-07
Máximo	8.20E-02	6.30E-02	3.00E-02	1.60E-02	3.50E-02	6.70E-02	5.00E-02	4.50E-02

Tabla A.IV.2. Resumen de las mediciones de tamaño de minerales opacos en cada una de las muestras de los sitios MR40 y MR41. (*) Número de objetos correspondientes a minerales opacos detectados en cada una de las muestras.

ANEXO V. Orientación de cristales de plagioclasa

			Secc	ión per	pendic	ular a	al eje c	lel testi	go						Se	ección	paralel	a al e	eje del	testigo			
	Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz
1	7	31	26	338	48	51	358	38	76	19	19	1	124	59	26	304	78	51	124	50	76	124	47
2	17	21	27	24	13	52	306	53	77	242	32	2	124	37	27	124	83	52	304	33	77	304	89
3	7	31	28	16	22	53	327	51	78	251	39	3	304	73	28	304	57	53	304	60	78	124	20
4	18	21	29	29	7	54	20	18	79	240	30	4	304	47	29	124	36	54	304	72	79	304	64
5	280	50	30	352	41	55	360	37	80	17	21	5	124	40	30	304	67	55	124	39	80	124	62
6	339	48	31	339	47	56	358	38	81	283	51	6	304	60	31	304	69	56	124	68	81	124	39
7	14	24	32	262	44	57	221	9	82	17	22	7	124	29	32	304	49	57	124	24	82	124	20
8	6	32	33	6	32	58	4	33	83	17	22	8	304	66	33	124	77	58	304	17	83	124	44
9	333	49	34	341	47	59	9	30	84	11	28	9	124	77	34	124	53	59	124	55	84	124	66
10	27	10	35	240	31	60	334	49	85	249	37	10	304	63	35	304	52	60	124	59	85	124	72
11	357	39	36	273	49	61	1	36	86	351	42	11	124	56	36	304	71	61	124	73	86	124	68
12	284	51	37	24	13	62	348	44	87	347	44	12	124	48	37	124	75	62	304	70	87	124	55
13	13	25	38	287	52	63	224	13	88	6	32	13	304	64	38	304	62	63	124	52	88	304	48
14	4	34	39	3	34	64	270	48	89	260	44	14	304	44	39	124	22	64	124	28	89	304	76
15	19	19	40	4	34	65	271	48	90	17	22	15	124	85	40	124	66	65	124	44	90	124	34
16	25	12	41	354	40	66	12	27	91	343	46	16	124	75	41	304	30	66	304	3	91	304	76
17	22	15	42	356	39	67	344	46	92	343	46	17	304	84	42	124	90	67	304	42	92	124	72
18	353	41	43	8	30	68	11	27	93	4	33	18	304	69	43	304	68	68	124	26	93	124	58
19	319	52	44	338	48	69	261	44	94	17	22	19	304	21	44	124	47	69 70	124	49	94	124	1
20	282	51	45	16	22	70	6	32	95	27	9	20	304	68	45	124	6	70	304	38	95	124	72
21	349	43	40	286	52	71	24	13	96	307	53	21	124	55	40	304	67	71	124	49	96	124	26
22	300	31 51	4/	2/0	50	72	2	35 40	97	19	19	22	124	4/	4/	124	5/ 74	72	124	3	97	304	∠3 40
23	282		40	201	44 50	/3 74	330	4ð 40	98	1	31 20	23	124	90	40	124	/4 65	13	124	14	90	304	40 61
24	203	40	49	218	50	74	352	42	99	240	30	24	124	30 47	49	124	00 70	74	124	47	99	124	01
25	334	49	50	277	50	15	242	32	100	285	51	25	124	47	50	124	27	15	304	63	100	124	68

Tabla A.V.1. Orientación de 200 cristales de plagioclasa tomados de la muestra CH0105 correspondiente al dique D.

			Seco	ión per	pendic	ular	al eje d	el testi	go						Se	ección	paralel	a al e	eje del i	testigo			
	Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz
1	357	37	26	4	31	51	350	43	76	304	56	1	118	52	26	298	23	51	298	67	76	298	1
2	333	51	27	6	29	52	11	24	77	347	44	2	118	53	27	298	71	52	298	49	77	298	18
3	354	39	28	25	5	53	339	48	78	13	21	3	298	16	28	118	24	53	298	76	78	298	75
4	336	49	29	339	48	54	359	35	79	356	38	4	298	85	29	118	7	54	298	36	79	298	30
5	333	50	30	332	51	55	342	47	80	350	43	5	118	44	30	118	12	55	298	39	80	118	36
6	264	51	31	350	42	56	329	52	81	317	54	6	118	61	31	118	8	56	298	71	81	118	51
7	25	4	32	316	55	57	342	47	82	244	41	7	298	63	32	118	83	57	118	4	82	118	24
8	240	38	33	13	20	58	10	25	83	240	38	8	118	31	33	118	25	58	298	88	83	298	51
9	337	49	34	249	44	59	252	46	84	273	53	9	118	19	34	298	85	59	298	72	84	298	68
10	352	41	35	339	48	60	229	28	85	243	40	10	298	39	35	298	31	60	298	66	85	118	57
11	7	28	36	351	42	61	244	41	86	342	47	11	118	68	36	298	8	61	118	28	86	118	36
12	4	31	37	341	47	62	345	45	87	250	45	12	118	43	37	298	38	62	298	86	87	118	64
13	348	44	38	8	27	63	318	54	88	298	56	13	298	34	38	298	56	63	298	65	88	298	11
14	338	49	39	4	31	64	334	50	89	276	54	14	298	35	39	298	42	64	118	71	89	298	0
15	346	45	40	350	42	65	272	53	90	259	49	15	298	53	40	298	58	65	298	82	90	298	23
16	230	30	41	241	39	66	342	47	91	351	42	16	298	55	41	298	29	66	298	57	91	298	73
17	4	32	42	256	48	67	0	34	92	317	55	17	118	76	42	298	66	67	118	57	92	298	84
18	261	50	43	261	50	68	354	39	93	19	13	18	118	50	43	298	59	68	298	64	93	298	71
19	210	3	44	18	15	69	246	42	94	275	54	19	298	0	44	298	20	69	298	64	94	298	47
20	9	26	45	340	48	70	272	53	95	16	17	20	298	24	45	298	57	70	118	11	95	118	6
21	265	51	46	297	56	71	255	48	96	14	19	21	298	56	46	298	72	71	118	4	96	298	79
22	255	47	47	11	24	72	254	47	97	260	50	22	118	51	47	298	50	72	298	43	97	298	0
23	298	56	48	246	42	73	331	51	98	279	54	23	298	68	48	298	59	73	298	79	98	118	66
24	1	34	49	342	47	74	238	37	99	252	46	24	298	83	49	298	60	74	298	85	99	298	71
25	9	25	50	17	15	75	281	55	100	322	54	25	298	78	50	298	29	75	118	41	100	118	29

Tabla A.V.2. Orientación de 200 cristales de plagioclasas tomados de la muestra CH0106 correspondiente al dique D.

			Seco	ción per	pendic	ular	al eje d	el testi	go						Se	ección	paralel	a al e	eje del i	testigo			
	Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz
1	259	49	26	349	37	51	239	40	76	354	33	1	292	52	26	112	30	51	112	26	76	292	47
2	249	45	27	329	48	52	237	38	77	8	18	2	112	44	27	292	42	52	112	26	77	292	26
3	272	52	28	3	25	53	226	29	78	238	39	3	112	37	28	292	37	53	112	49	78	292	60
4	349	37	29	222	25	54	348	38	79	4	23	4	112	34	29	292	52	54	292	58	79	292	62
5	343	41	30	279	53	55	347	38	80	267	51	5	292	81	30	112	59	55	112	72	80	112	49
6	343	41	31	239	40	56	17	7	81	251	46	6	292	58	31	292	63	56	112	48	81	292	52
7	333	46	32	232	35	57	19	4	82	205	4	7	112	36	32	292	84	57	112	44	82	112	29
8	354	33	33	335	45	58	341	42	83	7	20	8	112	26	33	292	46	58	112	16	83	112	64
9	236	37	34	348	37	59	236	37	84	352	35	9	292	53	34	292	56	59	292	52	84	112	50
10	323	50	35	261	50	60	244	42	85	342	41	10	292	42	35	292	67	60	292	45	85	292	43
11	17	6	36	3	25	61	342	42	86	359	28	11	112	33	36	112	26	61	292	46	86	292	37
12	244	43	37	346	39	62	221	24	87	249	45	12	112	51	37	292	41	62	112	65	87	112	37
13	250	46	38	233	35	63	239	40	88	244	43	13	292	51	38	292	56	63	292	55	88	292	60
14	241	41	39	296	54	64	339	43	89	309	53	14	292	36	39	112	41	64	292	57	89	292	47
15	241	41	40	253	47	65	12	14	90	239	40	15	292	49	40	292	31	65	112	37	90	292	30
16	261	50	41	340	42	66	352	35	91	202	0	16	112	48	41	112	51	66	112	37	91	292	37
17	281	53	42	345	40	67	260	49	92	22	0	17	112	59	42	112	46	67	292	32	92	292	54
18	356	31	43	280	53	68	234	36	93	317	51	18	112	56	43	112	45	68	292	54	93	292	80
19	325	49	44	7	20	69	243	42	94	240	40	19	112	52	44	112	34	69	292	30	94	112	44
20	295	54	45	242	42	70	273	52	95	243	42	20	112	61	45	112	33	70	292	46	95	112	24
21	303	53	46	343	41	71	282	54	96	340	42	21	292	70	46	112	36	71	112	54	96	112	33
22	254	47	47	352	35	72	252	46	97	238	39	22	112	53	47	292	47	72	112	14	97	112	63
23	206	5	48	339	43	73	253	47	98	15	9	23	112	76	48	292	58	73	112	28	98	112	49
24	357	30	49	273	52	74	250	46	99	264	51	24	292	29	49	292	48	74	292	29	99	112	60
25	257	48	50	244	43	75	305	53	100	277	53	25	292	37	50	292	61	75	292	54	100	112	55

Tabla A.V.3. Orientación de 200 cristales de plagioclasas tomados de la muestra CH0107 correspondiente al dique D.

			Seco	ión per	pendic	ular	al eje d	el testi	go						Se	ección	paralel	a al e	eje del	testigo			
	Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz
1	10	46	26	16	43	51	234	5	76	38	20	1	141	0	26	141	31	51	141	57	76	321	46
2	19	41	27	248	25	52	268	44	77	7	48	2	141	63	27	141	59	52	141	64	77	321	20
3	237	9	28	259	37	53	276	49	78	24	36	3	141	64	28	141	57	53	321	42	78	321	69
4	283	52	29	351	54	54	22	38	79	278	49	4	321	65	29	321	74	54	321	59	79	141	45
5	297	56	30	33	26	55	272	47	80	14	44	5	321	52	30	321	63	55	321	33	80	141	26
6	259	37	31	327	58	56	14	44	81	11	46	6	321	51	31	321	45	56	321	77	81	321	68
7	287	53	32	277	49	57	22	37	82	286	53	7	321	51	32	321	46	57	141	53	82	321	21
8	30	30	33	7	48	58	1	51	83	259	37	8	321	44	33	141	57	58	141	70	83	321	14
9	351	54	34	36	22	59	253	31	84	22	38	9	141	47	34	141	17	59	321	64	84	141	54
10	285	52	35	16	42	60	251	29	85	278	49	10	141	26	35	141	64	60	321	35	85	321	51
11	29	31	36	282	51	61	267	43	86	305	57	11	141	56	36	141	6	61	321	81	86	321	48
12	45	10	37	302	57	62	29	31	87	38	20	12	321	72	37	321	22	62	141	79	87	321	31
13	26	34	38	280	50	63	280	50	88	19	40	13	321	20	38	141	61	63	141	68	88	321	54
14	4	50	39	359	52	64	261	39	89	277	49	14	141	33	39	321	66	64	321	55	89	321	72
15	332	58	40	301	56	65	351	54	90	4	49	15	141	64	40	321	71	65	141	75	90	321	38
16	271	46	41	307	57	66	266	43	91	288	53	16	141	42	41	321	70	66	321	88	91	321	31
17	262	40	42	7	48	67	351	54	92	323	58	17	321	67	42	321	65	67	321	80	92	321	55
18	338	57	43	16	43	68	30	30	93	33	26	18	321	17	43	321	23	68	321	41	93	141	48
19	328	58	44	292	55	69	246	23	94	284	52	19	321	42	44	321	43	69	321	65	94	141	67
20	318	58	45	304	57	70	12	45	95	265	42	20	321	64	45	141	42	70	321	36	95	321	51
21	281	51	46	21	39	71	268	44	96	298	56	21	321	7	46	321	60	71	321	9	96	321	32
22	259	37	47	357	52	72	266	42	97	307	57	22	321	48	47	141	18	72	141	56	97	321	52
23	337	57	48	254	32	13	29	31	98	292	54	23	141	49	48	141	59	73	321	5/	98	141	6/
24	280	50	49	18	41	74	16	43	99	257	35	24	141	32	49	141	58	74	141	28	99	321	35
25	296	55	50	290	54	15	25	35	100	270	45	25	321	51	50	141	53	75	321	52	100	321	58

Tabla A.V.4. Orientación de 200 cristales de plagioclasas tomados de la muestra CH0108 correspondiente al dique D.

			Seco	ión per	pendic	ular	al eje d	el testi	go						Se	ección	paralel	a al e	eje del i	testigo			
	Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz
1	272	26	26	20	26	51	302	37	76	289	34	1	326	44	26	326	31	51	326	34	76	146	31
2	267	24	27	275	28	52	287	33	77	283	32	2	326	45	27	326	51	52	326	39	77	326	50
3	279	30	28	29	21	53	279	30	78	21	26	3	146	53	28	326	43	53	326	38	78	146	42
4	309	39	29	287	33	54	272	26	79	259	18	4	326	58	29	146	52	54	326	53	79	146	52
5	277	29	30	262	20	55	300	37	80	277	29	5	326	63	30	326	50	55	326	26	80	326	35
6	275	28	31	269	25	56	286	33	81	27	22	6	326	45	31	326	65	56	326	44	81	326	47
7	18	27	32	270	25	57	285	32	82	32	19	7	326	26	32	326	18	57	326	38	82	326	28
8	284	32	33	21	26	58	22	25	83	262	20	8	326	25	33	326	26	58	326	20	83	326	43
9	283	31	34	272	26	59	11	31	84	266	23	9	326	50	34	146	21	59	326	33	84	146	49
10	19	27	35	271	26	60	261	20	85	16	29	10	326	13	35	326	29	60	326	74	85	326	4
11	285	32	36	271	26	61	271	26	86	5	33	11	326	37	36	326	40	61	326	55	86	326	37
12	279	30	37	279	30	62	302	37	87	274	27	12	326	46	37	326	26	62	326	73	87	326	54
13	278	30	38	266	23	63	282	31	88	270	25	13	326	51	38	326	57	63	326	60	88	326	18
14	272	26	39	280	30	64	277	29	89	37	15	14	146	47	39	146	40	64	326	53	89	326	36
15	300	37	40	29	21	65	268	24	90	296	36	15	326	39	40	146	1	65	326	10	90	326	15
16	282	31	41	264	22	66	262	20	91	274	27	16	326	54	41	326	42	66	326	39	91	326	45
17	281	31	42	43	11	67	24	24	92	41	12	17	326	21	42	326	47	67	326	28	92	326	28
18	262	20	43	268	24	68	301	37	93	25	23	18	326	40	43	326	22	68	326	10	93	326	43
19	267	24	44	283	31	69	291	35	94	269	24	19	326	42	44	326	30	69	326	2	94	326	46
20	282	31	45	291	34	70	46	9	95	242	5	20	326	24	45	326	38	70	326	1	95	326	53
21	268	24	46	257	17	71	286	33	96	268	24	21	326	50	46	326	8	71	326	39	96	326	65
22	250	12	47	290	34	72	277	29	97	36	16	22	326	37	47	326	32	72	326	54	97	326	42
23	274	27	48	7	32	73	273	27	98	280	30	23	326	40	48	146	38	73	326	35	98	326	49
24	287	33	49	272	26	74	53	2	99	268	24	24	326	52	49	326	38	74	326	69	99	146	21
25	279	30	50	288	33	75	297	36	100	282	31	25	326	29	50	326	49	75	326	46	100	146	26

Tabla A.V.5.Orientación de 200 cristales de plagioclasas tomados de la muestra CH0111 correspondiente al dique E.

			Seco	ión per	pendic	ular	al eje d	el testi	go						Se	ección	paralel	a al e	eje del i	testigo			
	Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz
1	250	10	26	270	24	51	35	18	76	313	39	1	327	81	26	327	61	51	147	40	76	327	78
2	14	30	27	13	30	52	35	18	77	288	33	2	147	37	27	327	66	52	147	66	77	147	51
3	277	28	28	260	18	53	293	35	78	23	25	3	147	34	28	327	72	53	147	60	78	147	45
4	283	31	29	17	28	54	244	6	79	303	38	4	327	54	29	327	52	54	147	83	79	147	47
5	273	26	30	11	31	55	25	24	80	274	27	5	327	77	30	327	62	55	327	43	80	327	68
6	282	31	31	7	33	56	5	34	81	279	29	6	147	57	31	327	11	56	147	62	81	327	76
7	316	40	32	289	34	57	280	30	82	275	27	7	327	63	32	327	80	57	147	49	82	327	71
8	280	30	33	313	39	58	296	36	83	242	4	8	327	0	33	327	58	58	147	30	83	327	57
9	290	34	34	277	28	59	305	38	84	280	30	9	147	28	34	327	52	59	147	26	84	147	53
10	279	29	35	28	22	60	272	26	85	55	2	10	327	70	35	147	3	60	327	58	85	327	44
11	281	30	36	291	34	61	255	15	86	291	34	11	147	50	36	327	85	61	327	53	86	147	44
12	299	37	37	291	34	62	6	33	87	295	35	12	327	26	37	327	32	62	147	58	87	147	43
13	317	40	38	278	29	63	29	22	88	288	33	13	147	47	38	327	72	63	147	44	88	147	36
14	290	34	39	1	35	64	22	26	89	15	30	14	147	65	39	147	45	64	147	32	89	327	84
15	262	20	40	328	40	65	15	30	90	291	34	15	327	73	40	147	58	65	327	64	90	147	28
16	268	24	41	39	14	66	43	11	91	319	40	16	327	38	41	147	53	66	147	56	91	147	47
17	281	30	42	265	22	67	275	27	92	8	32	17	327	68	42	327	65	67	327	61	92	147	82
18	263	20	43	272	26	68	352	37	93	33	19	18	327	77	43	147	53	68	147	38	93	327	70
19	29	22	44	3	34	69	33	19	94	277	28	19	147	48	44	147	81	69	147	39	94	327	64
20	29	22	45	275	27	70	275	27	95	289	33	20	147	49	45	147	59	70	147	37	95	147	45
21	10	32	46	274	27	71	294	35	96	299	36	21	327	61	46	147	72	71	147	28	96	327	50
22	11	31	47	295	35	72	272	26	97	271	25	22	147	78	47	147	36	72	327	63	97	327	48
23	273	26	48	277	28	73	275	27	98	5	34	23	327	86	48	147	57	73	327	74	98	147	52
24	278	29	49	307	38	74	7	33	99	283	31	24	327	69	49	147	37	74	147	41	99	327	29
25	272	26	50	278	29	75	290	34	100	283	31	25	147	2	50	147	43	75	147	54	100	147	3

Tabla A.V.6. Orientación de 200 cristales de plagioclasas tomados de la muestra CH0112 correspondiente al dique E.

		,	Seco	ión per	pendic	ular	al eje d	el testi	go						Se	ección	paralel	a al e	eje del i	testigo			
	Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz
1	24	24	26	308	36	51	282	28	76	281	28	1	148	6	26	148	20	51	148	23	76	148	58
2	24	23	27	41	13	52	271	23	77	279	27	2	148	22	27	148	73	52	328	43	77	148	64
3	283	29	28	290	32	53	29	21	78	262	18	3	148	21	28	328	31	53	328	30	78	328	41
4	33	18	29	17	27	54	273	24	79	41	13	4	148	28	29	328	35	54	148	36	79	148	39
5	275	25	30	306	36	55	15	28	80	281	28	5	148	33	30	328	67	55	328	35	80	148	23
6	264	19	31	302	35	56	266	20	81	37	15	6	148	36	31	148	43	56	148	21	81	148	22
7	38	15	32	329	38	57	37	16	82	275	25	7	328	64	32	148	36	57	148	46	82	148	33
8	296	34	33	268	22	58	23	24	83	276	26	8	148	55	33	148	35	58	148	35	83	148	45
9	277	26	34	254	12	59	49	7	84	278	27	9	148	37	34	148	34	59	148	43	84	148	43
10	296	34	35	274	25	60	273	24	85	283	29	10	148	44	35	148	55	60	328	58	85	328	49
11	34	17	36	40	14	61	34	18	86	35	17	11	328	46	36	328	21	61	328	28	86	328	34
12	34	18	37	307	36	62	24	24	87	292	32	12	148	18	37	148	16	62	148	17	87	148	33
13	354	35	38	6	32	63	49	7	88	274	25	13	148	45	38	328	52	63	148	41	88	148	45
14	17	27	39	258	15	64	277	26	89	17	27	14	328	49	39	328	46	64	328	53	89	148	40
15	2/1	23	40	26	22	65	276	26	90	276	26	15	328	41	40	328	68	65	328	50	90	328	24
10	288	31	41	285	30	60 67	2//	26	91	258	15	10	148	36	41	148	20	60 67	148	44	91	148	36
10	40	14	42	281	28	60	52	5	92	16	28	17	148	33	42	148	25	60	148	15	92	148	41
10	201	1/	43	23	24	60	290	32 25	93	207	21	10	148	28	43	328	27	60	148	50 27	93	148	58
20	299	54 16	44	270	2	70	2/4	25	9 4 05	200	30 20	20	140	27	45	528 140	0 1 E	70	328	57	9 4 05	528 140	0/ 47
20	50 27	10 22	46	2/9	27	70	207	21	96	201	20 10	20	140	22 57	46	140	22	70	520 140	29	96	140 270	47 24
22	27	22	47	204	29	72	270	25	97	201	73	22	140 170	54 15	47	140 1/Q	52 72	72	270	22	97	520 1/10	54 11
23	290	55 21	48	300	15	73	31	17	98	294	33	23	1/10	4J 20	48	1/10	25 15	73	1/18	23 //1	98	1/10	44 57
24	200	21 29	49	258	15	74	о Р	1/ 31	99	315	37	24	378	20 41	49	140	45 27	74	378	37	99	140	64
25	9	31	50	298	34	75	287	31	100	297	34	25	328	50	50	328	40	75	148	50	100	328	54

Tabla A.V.7. Orientación de 200 cristales de plagioclasas tomados de la muestra CH0113 correspondiente al dique E.

			Seco	ión per	pendic	ular	al eje d	el testi	go						Se	ección	paralel	a al e	eje del i	testigo			
	Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz
1	315	39	26	236	40	51	332	29	76	277	47	1	94	35	26	274	29	51	274	43	76	274	47
2	352	13	27	355	9	52	324	35	77	324	34	2	94	49	27	274	32	52	94	20	77	274	40
3	347	17	28	239	41	53	303	43	78	335	28	3	94	10	28	274	25	53	274	49	78	274	50
4	323	35	29	315	39	54	320	36	79	309	41	4	274	56	29	274	21	54	274	49	79	274	54
5	341	23	30	315	39	55	346	19	80	305	42	5	274	48	30	274	41	55	274	44	80	274	46
6	226	35	31	314	39	56	342	22	81	258	46	6	274	52	31	274	11	56	274	28	81	274	75
7	315	39	32	317	38	57	200	16	82	308	42	7	94	32	32	274	27	57	274	37	82	274	45
8	325	34	33	221	33	58	308	42	83	350	14	8	274	52	33	274	32	58	274	62	83	94	44
9	315	39	34	228	37	59	329	32	84	300	44	9	274	51	34	274	41	59	274	49	84	94	46
10	301	44	35	345	20	60	267	47	85	248	44	10	94	50	35	274	38	60	274	59	85	274	26
11	313	40	36	332	29	61	344	21	86	356	9	11	94	2	36	274	42	61	274	38	86	94	34
12	317	38	37	348	16	62	358	6	87	316	38	12	274	38	37	274	48	62	274	38	87	274	36
13	334	28	38	334	28	63	323	35	88	350	15	13	94	15	38	274	50	63	274	44	88	94	9
14	341	23	39	226	35	64	329	32	89	318	37	14	94	45	39	274	41	64	274	43	89	274	48
15	342	22	40	318	38	65	315	39	90	222	34	15	274	44	40	274	52	65	94	50	90	274	56
16	333	29	41	232	39	66	325	34	91	355	10	16	94	5	41	274	45	66	274	37	91	274	34
17	335	27	42	332	29	67	299	44	92	236	40	17	94	23	42	274	50	67	94	56	92	274	51
18	257	46	43	329	32	68	353	12	93	326	33	18	94	43	43	274	26	68	274	38	93	274	53
19	324	35	44	302	43	69	310	41	94	359	6	19	274	36	44	274	50	69	274	47	94	274	57
20	330	31	45	296	45	70	340	23	95	338	25	20	274	51	45	274	39	70	274	35	95	274	46
21	325	34	46	329	32	71	312	40	96	258	46	21	94	47	46	274	39	71	274	44	96	94	45
22	324	34	47	319	37	72	308	42	97	334	28	22	94	42	47	274	47	72	274	32	97	94	29
23	316	38	48	308	42	73	319	37	98	339	24	23	94	61	48	274	43	73	274	54	98	94	27
24	314	39	49	311	41	74	323	35	99	326	33	24	94	35	49	94	48	74	274	30	99	274	54
25	305	43	50	313	40	75	301	44	100	315	39	25	94	41	50	274	25	75	274	27	100	274	22

Tabla A.V.8. Orientación de 200 cristales de plagioclasas tomados de la muestra CH0114 correspondiente al dique E.

			Seco	ión per	pendic	ular	al eje d	el testi	go						Se	ección	paralel	a al e	eje del i	testigo			
	Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz
1	1	27	26	4	24	51	335	45	76	359	29	1	114	51	26	114	42	51	114	52	76	114	66
2	19	7	27	237	36	52	270	50	77	331	46	2	114	47	27	114	40	52	114	68	77	114	55
3	11	17	28	335	45	53	242	39	78	239	37	3	114	44	28	294	44	53	114	75	78	114	46
4	224	24	29	237	36	54	345	40	79	220	20	4	114	51	29	114	66	54	294	45	79	114	59
5	331	47	30	357	31	55	317	51	80	225	26	5	114	25	30	114	52	55	114	47	80	114	53
6	5	23	31	339	43	56	248	43	81	356	32	6	294	21	31	114	41	56	114	41	81	114	37
7	250	44	32	338	44	57	2	26	82	2	26	7	114	57	32	114	41	57	114	51	82	114	40
8	9	19	33	2	27	58	356	32	83	229	29	8	114	68	33	114	80	58	114	40	83	114	75
9	273	51	34	350	36	59	1	27	84	276	52	9	114	68	34	114	50	59	114	52	84	114	66
10	343	41	35	265	49	60	262	48	85	10	18	10	114	41	35	114	49	60	114	55	85	114	63
11	257	47	36	214	13	61	265	49	86	15	12	11	114	41	36	114	28	61	114	42	86	114	62
12	243	40	37	15	12	62	235	34	87	243	40	12	114	58	37	114	64	62	114	48	87	114	40
13	237	36	38	241	39	63	257	47	88	265	49	13	114	56	38	114	55	63	114	48	88	114	37
14	2	26	39	347	38	64	11	16	89	348	38	14	114	33	39	114	56	64	294	49	89	114	44
15	341	42	40	13	14	65	23	2	90	342	41	15	114	67	40	114	39	65	294	38	90	114	40
16	257	47	41	265	49	66	355	33	91	357	31	16	114	55	41	114	48	66	114	47	91	114	74
17	8	20	42	255	46	67	356	32	92	207	4	17	114	52	42	114	39	67	114	24	92	114	35
18	7	22	43	346	39	68	7	21	93	349	37	18	114	72	43	114	52	68	114	68	93	114	40
19	357	31	44	348	38	69	18	8	94	238	37	19	114	33	44	294	34	69	294	89	94	114	43
20	336	45	45	264	49	70	341	42	95	341	42	20	114	61	45	114	36	70	114	58	95	114	43
21	354	34	46	247	42	71	247	42	96	338	44	21	114	50	46	114	41	71	114	63	96	114	72
22	238	36	47	252	45	72	358	30	97	249	43	22	114	41	47	294	79	72	114	46	97	114	27
23	245	41	48	336	45	73	328	48	98	333	46	23	114	42	48	114	52	73	114	48	98	294	62
24	354	34	49	233	33	74	356	32	99	235	35	24	114	47	49	114	57	74	114	60	99	114	44
25	274	51	50	246	42	75	336	45	100	356	32	25	114	61	50	114	54	75	114	40	100	114	72

Tabla A.V.9. Orientación de 200 cristales de plagioclasas tomados de la muestra CH0115 correspondiente al dique E.

			Seco	ión per	pendic	ular	al eje d	el testi	go						Se	ección	paralel	a al e	eje del i	testigo			
	Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz
1	284	31	26	54	4	51	42	15	76	35	20	1	329	36	26	329	53	51	329	24	76	149	57
2	7	34	27	260	18	52	240	0	77	19	29	2	329	38	27	329	52	52	329	69	77	329	24
3	284	32	28	298	37	53	304	38	78	36	19	3	149	27	28	149	53	53	329	30	78	329	52
4	32	22	29	258	16	54	305	38	79	281	30	4	329	29	29	149	33	54	329	56	79	329	47
5	34	20	30	45	12	55	27	25	80	314	40	5	329	59	30	329	48	55	329	49	80	329	30
6	30	23	31	286	33	56	21	28	81	30	23	6	329	43	31	329	43	56	329	29	81	149	43
7	53	5	32	18	30	57	25	26	82	18	30	7	329	43	32	329	23	57	329	27	82	329	29
8	34	20	33	21	28	58	23	27	83	45	12	8	329	72	33	329	7	58	329	64	83	329	56
9	22	28	34	288	33	59	23	27	84	17	30	9	329	41	34	149	24	59	329	35	84	329	28
10	272	25	35	40	16	60	26	25	85	315	40	10	329	45	35	149	36	60	329	31	85	329	57
11	25	26	36	303	38	61	266	21	86	348	39	11	329	42	36	329	36	61	329	43	86	329	46
12	309	39	37	32	21	62	44	13	87	29	23	12	149	43	37	149	12	62	329	11	87	329	16
13	297	36	38	355	38	63	287	33	88	28	24	13	329	27	38	329	53	63	329	35	88	329	53
14	36	19	39	288	33	64	29	23	89	284	32	14	149	88	39	329	50	64	329	27	89	329	63
15	27	25	40	46	11	65	28	24	90	11	33	15	329	36	40	329	39	65	329	69	90	149	26
10	19	29	41	4	35	67	287	33	91	25	26	10	329	50	41	329	39	67	329	64 22	91	329	37
10	31	12	42	301	3/	69	37	18	92	317	40	11	329	50	42	149	53	69	329	23	92	329	44
10	45 201	12 22	43	270	20 10	60	39 11	22	93 04	287	55 21	10	149	48 27	43	329	43 20	60	329	39	93 04	329	45 20
20	204 201	20 20	45	21	70 10	70	11 277	22 20	95	258	21 27	20	220	22	45	220	59 12	70	220	20 67	95	220	20 40
21	201	26	46	21	20	71	277	20 37	96	20	57 22	21	329	55	46	1/10	42 10	71	329	12	96	329	40 30
22	24	20	47	305	20 21	72	20	20	97	23	23 21	22	329	72 78	47	220	49 Q	72	329	42 63	97	329	30
23	15	30	48	43	21 13	73	36	29 19	98	20	21 29	23	329	20	48	329	37	73	329	13	98	329	40
24	45	11	49	58	1	74	239	0	99	10	22	24	329	35	49	329	26	74	329	24	99	149	5
25	14	31	50	52	6	75	30	23	100	21	28	25	329	21	50	329	50	75	329	18	100	329	58

Tabla A.V.10. Orientación de 200 cristales de plagioclasas tomados de la muestra CH0116 correspondiente al dique E.

			Seco	ión per	pendic	ular	al eje d	el testi	go						Se	ección	paralel	a al e	eje del t	testigo			
	Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz
1	158	22	26	130	8	51	160	23	76	162	24	1	206	40	26	26	52	51	26	28	76	26	57
2	160	23	27	153	20	52	169	26	77	175	27	2	26	52	27	26	47	52	206	32	77	26	61
3	153	20	28	261	19	53	164	24	78	270	15	3	206	79	28	26	24	53	26	55	78	26	45
4	152	20	29	161	23	54	158	22	79	164	24	4	26	45	29	26	51	54	206	66	79	206	53
5	160	22	30	160	23	55	258	20	80	161	23	5	26	57	30	206	51	55	26	63	80	26	55
6	163	24	31	262	19	56	142	15	81	157	22	6	26	52	31	206	62	56	26	60	81	206	66
7	201	31	32	105	7	57	245	25	82	186	29	7	26	40	32	26	57	57	26	44	82	26	31
8	184	29	33	159	22	58	258	20	83	170	26	8	26	46	33	26	43	58	206	68	83	206	63
9	255	22	34	159	22	59	191	30	84	95	12	9	26	42	34	206	70	59	206	64	84	26	63
10	178	28	35	179	28	60	158	22	85	173	27	10	206	48	35	26	43	60	26	47	85	26	52
11	263	18	36	242	26	61	175	27	86	182	29	11	206	52	36	26	62	61	206	44	86	26	51
12	151	19	37	168	25	62	146	17	87	183	29	12	26	84	37	26	60	62	26	43	87	206	67
13	236	28	38	262	19	63	175	27	88	145	16	13	26	46	38	26	63	63	26	21	88	206	40
14	250	23	39	253	22	64	162	23	89	177	28	14	26	65	39	26	68	64	26	36	89	26	68
15	159	22	40	256	21	65	184	29	90	157	21	15	26	36	40	26	27	65	26	58	90	206	73
16	161	23	41	151	19	66	237	27	91	106	6	16	26	54	41	26	71	66	26	46	91	206	44
17	159	22	42	180	28	67	164	24	92	174	27	17	26	51	42	206	69	67	206	75	92	26	64
18	160	23	43	154	20	68	206	31	93	182	29	18	26	58	43	206	77	68	26	70	93	26	60
19	162	24	44	220	30	69	161	23	94	259	20	19	26	51	44	26	63	69	206	63	94	206	39
20	154	20	45	259	20	70	244	25	95	248	24	20	206	50	45	26	50	70	206	80	95	206	56
21	187	30	46	176	28	71	152	19	96	181	29	21	26	59	46	206	45	71	206	67	96	26	46
22	253	22	47	179	28	72	244	25	97	103	8	22	26	56	47	26	66	72	26	51	97	26	70
23	267	16	48	242	26	73	160	23	98	270	15	23	26	47	48	26	72	73	26	69	98	26	65
24	247	24	49	194	30	74	104	7	99	163	24	24	26	47	49	206	24	74	26	55	99	26	47
25	176	27	50	180	28	75	260	20	100	157	22	25	206	53	50	26	45	75	26	23	100	26	41

Tabla A.V.11. Orientación de 200 cristales de plagioclasas tomados de la muestra CH0201 correspondiente al dique I.

	Sección perpendicular al eje del testigo											Sección paralela al eje del testigo											
	Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz
1	236	35	26	136	30	51	252	26	76	90	11	1	11	14	26	191	30	51	191	29	76	191	41
2	164	42	27	257	22	52	135	29	77	93	8	2	191	37	27	191	66	52	191	36	77	191	20
3	165	42	28	140	32	53	92	9	78	261	19	3	191	44	28	191	27	53	191	25	78	191	34
4	251	27	29	139	32	54	170	43	79	225	40	4	11	13	29	11	89	54	191	51	79	11	29
5	224	40	30	161	41	55	254	25	80	157	40	5	191	27	30	191	31	55	191	61	80	11	33
6	255	24	31	258	22	56	249	28	81	156	39	6	191	23	31	191	48	56	191	60	81	191	20
7	237	35	32	254	24	57	264	16	82	261	19	7	11	20	32	191	43	57	191	51	82	11	23
8	234	36	33	256	23	58	239	34	83	178	44	8	11	12	33	191	35	58	191	52	83	191	46
9	163	42	34	128	24	59	156	39	84	93	7	9	191	22	34	11	55	59	191	16	84	11	67
10	260	20	35	170	43	60	263	18	85	225	40	10	191	46	35	11	23	60	191	46	85	191	54
11	101	0	36	147	36	61	158	40	86	247	29	11	191	22	36	11	4	61	191	21	86	191	57
12	267	14	37	255	24	62	134	29	87	246	30	12	11	27	37	191	27	62	11	30	87	191	43
13	148	36	38	148	36	63	246	30	88	261	19	13	191	36	38	191	48	63	191	53	88	191	59
14	144	34	39	183	45	64	254	25	89	265	16	14	11	49	39	11	50	64	191	38	89	191	12
15	139	31	40	240	33	65	152	38	90	251	27	15	191	49	40	191	50	65	11	30	90	11	24
16	159	40	41	252	26	66	153	38	91	261	19	16	11	40	41	11	29	66	11	35	91	191	37
17	132	27	42	239	34	67	269	12	92	138	31	17	191	36	42	191	40	67	11	9	92	11	41
18	244	31	43	261	19	68	235	36	93	136	30	18	11	44	43	191	21	68	191	71	93	191	24
19	98	3	44	265	15	69	251	27	94	255	24	19	191	23	44	191	32	69	191	31	94	11	44
20	238	34	45	164	42	70	137	31	95	163	41	20	191	40	45	191	68	70	191	37	95	191	27
21	230	38	46	141	33	71	240	33	96	165	42	21	191	59	46	191	53	71	191	41	96	11	34
22	95	6	47	147	36	72	163	41	97	133	28	22	191	34	47	191	64	72	11	5	97	191	10
23	105	4	48	132	27	73	251	26	98	124	21	23	191	59	48	191	38	73	191	28	98	11	62
24	132	27	49	238	34	74	91	10	99	248	28	24	191	35	49	191	18	74	191	36	99	11	57
25	237	35	50	235	36	75	223	40	100	254	24	25	191	36	50	11	61	75	11	38	100	191	29

Tabla A.V.12. Orientación de 200 cristales de plagioclasas tomados de la muestra CH0202 correspondiente al dique I.

	Sección perpendicular al eje del testigo											Sección paralela al eje del testigo											
	Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz
1	129	51	26	259	23	51	221	58	76	232	52	1	1	52	26	181	47	51	1	49	76	181	42
2	137	56	27	141	58	52	132	53	77	143	58	2	181	65	27	1	55	52	181	70	77	181	71
3	118	43	28	243	44	53	262	18	78	166	63	3	181	53	28	181	51	53	181	81	78	181	47
4	240	47	29	127	50	54	250	37	79	213	60	4	1	63	29	181	56	54	181	51	79	181	46
5	142	58	30	134	54	55	250	36	80	148	60	5	1	38	30	1	40	55	181	53	80	1	49
6	143	58	31	154	61	56	137	56	81	150	60	6	1	50	31	181	77	56	1	32	81	181	36
7	122	46	32	138	56	57	254	30	82	244	43	7	181	29	32	181	40	57	181	81	82	181	44
8	112	37	33	241	46	58	239	47	83	216	59	8	181	61	33	181	67	58	1	59	83	181	57
9	239	47	34	138	56	59	124	48	84	140	57	9	1	69	34	181	68	59	181	65	84	181	49
10	209	61	35	150	60	60	269	5	85	270	3	10	1	55	35	181	49	60	181	58	85	1	4
11	124	48	36	209	61	61	209	61	86	153	61	11	181	30	36	1	72	61	181	38	86	1	43
12	240	47	37	123	47	62	260	21	87	121	46	12	1	58	37	1	27	62	1	61	87	1	60
13	248	39	38	240	47	63	255	29	88	211	61	13	181	61	38	181	40	63	181	34	88	1	90
14	248	39	39	155	62	64	245	42	89	150	60	14	181	69	39	181	51	64	181	45	89	181	44
15	149	60	40	159	62	60	132	54	90	256	28	15	181	52	40	1	58	60	1	60 50	90	181	46
10	1//	64 50	41	131	53	67	245	42	91	138	56	10	1	47	41	1	56	67	181	53	91	181	62 50
10	141	58	42	234	51	69	229	54 -	92	169	63	11	1	64 20	42	101	34	69	181	70	92	101	59
10	01	28 1	43	230	50 22	60	208 140	5	93 04	148	00 20	10	1	39 76	43	101	52 E0	60	101	70	93 04	101	44 E 2
20	91 127	т Е6	45	200	50	70	140 251	25	95	122	20 57	20	1	70 61	45	1	20	70	101	21	95	101	22 96
21	251	25	46	1/10	59	71	100	53 62	96	1/2	54 50	21	1Q1	72	46	1Q1	49 54	70	101	03 52	96	101	80 80
22	125	70	47	228	55	72	150	61	97	264	12	22	101	56	47	101	J4 //1	72	101	55 72	97	101	53
23	250	36	48	220	57	73	148	60	98	126	13 19	23	181	46	48	1	41 62	73	1	72 46	98	181	Δ7
24	117	42	49	127	51	74	266	11	99	120	46	24	1		49	181	85	74	181	-0 61	99	181	' 59
25	153	61	50	240	46	75	130	52	100	138	56	25	1	63	50	181	80	75	1	38	100	1	32

Tabla A.V.13. Orientación de 200 cristales de plagioclasas tomados de la muestra CH0203 correspondiente al dique I.

	Sección perpendicular al eje del testigo											Sección paralela al eje del testigo											
	Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz
1	128	58	26	211	49	51	112	53	76	223	38	1	338	38	26	158	43	51	158	41	76	158	16
2	213	47	27	220	42	52	115	54	77	120	56	2	338	32	27	338	29	52	338	81	77	338	34
3	227	34	28	115	54	53	111	52	78	202	54	3	338	12	28	338	39	53	158	43	78	158	26
4	214	46	29	196	56	54	108	50	79	133	60	4	338	26	29	338	42	54	338	34	79	338	42
5	191	58	30	203	53	55	207	51	80	112	52	5	338	25	30	158	29	55	158	20	80	338	50
6	209	50	31	200	54	56	234	24	81	187	59	6	338	37	31	158	23	56	158	23	81	338	40
7	142	61	32	211	49	57	213	47	82	121	56	7	338	57	32	338	21	57	158	82	82	158	47
8	203	53	33	103	47	58	195	56	83	218	43	8	158	36	33	338	4	58	338	32	83	338	19
9	234	24	34	143	61	59	214	46	84	222	39	9	158	18	34	338	32	59	338	39	84	338	13
10	211	48	35	216	45	60	244	7	85	190	58	10	338	69	35	338	25	60	158	4	85	338	38
11	218	43	36	225	36	61	246	3	86	133	60	11	158	41	36	338	45	61	338	68	86	158	42
12	111	52	37	209	50	62	211	49	87	215	46	12	338	26	37	338	33	62	158	17	87	338	31
13	224	37	38	187	59	63	98	43	88	103	47	13	338	86	38	158	22	63	338	59	88	338	39
14	114	54	39	208	50	64	191	58	89	120	56	14	338	48	39	158	29	64	158	1	89	338	31
15	127	58	40	238	18	65	118	55	90	209	50	15	338	42	40	338	23	65	338	78	90	338	29
16	194	57	41	220	41	66	112	52	91	102	47	16	338	28	41	158	19	66	338	13	91	338	29
17	216	45	42	217	44	67	210	49	92	229	32	17	338	41	42	158	16	67	158	3	92	158	31
18	108	51	43	130	59	68	225	37	93	210	49	18	158	30	43	158	20	68	338	42	93	338	37
19	202	54	44	207	51	69 70	216	45	94 05	203	53	19	338	45	44	338	52	69 70	338	10	94 05	338	40
20	206	52	45	123	57	70	214	46	95	194	57	20	338	41	45	338	38	70	338	22	95	158	40
21	216	45	40	197	56	71	211	48	96	212	48	21	158	88	40	338	45	71	338	19	96	338	53
22	235	24	47	203	53	72	237	20	97	197	56	22	338	11	47	158	53	72	338	83	97	338	46
23	227	34	40	123	57	13	118	55	90	192	57	23	158	29	40	338	36	73	158	33 20	90	338	44
24	243	10	49	214	46	74	213	4/	39	221	41	24	338	/	49	338	43	74	338	36	39	338	23
25	213	47	50	222	40	15	208	50	100	155	62	25	338	25	50	338	57	15	158	38	100	338	53

Tabla A.V.14. Orientación de 200 cristales de plagioclasas tomados de la muestra CH0207 correspondiente al dique I.

	Sección perpendicular al eje del testigo											Sección paralela al eje del testigo											
	Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz
1	269	32	26	200	26	51	104	39	76	172	40	1	139	51	26	139	44	51	139	64	76	319	69
2	186	34	27	106	40	52	182	36	77	99	37	2	319	37	27	139	49	52	319	64	77	139	46
3	196	29	28	102	38	53	188	33	78	189	33	3	139	59	28	139	32	53	139	29	78	139	46
4	175	39	29	192	31	54	205	22	79	266	31	4	319	58	29	139	61	54	319	68	79	139	56
5	180	37	30	157	44	55	180	37	80	187	34	5	139	47	30	139	42	55	319	65	80	139	24
6	267	31	31	248	18	56	218	10	81	98	37	6	139	35	31	139	56	56	139	42	81	139	63
7	100	38	32	216	13	57	193	31	82	211	17	7	139	71	32	139	46	57	139	65	82	139	44
8	270	33	33	202	24	58	173	40	83	170	41	8	139	30	33	139	33	58	139	56	83	139	35
9	99	37	34	188	33	59	189	33	84	191	32	9	139	27	34	139	28	59	139	35	84	139	26
10	199	26	35	177	38	60	198	27	85	90	33	10	139	43	35	139	67	60	139	66	85	139	35
11	264	30	36	91	34	61	93	35	86	185	35	11	139	53	36	139	60	61	319	27	86	139	31
12	97	37	37	93	35	62	258	26	87	204	23	12	139	41	37	139	50	62	139	53	87	319	62
13	192	31	38	201	25	63	187	34	88	122	44	13	319	10	38	139	47	63	319	36	88	139	46
14	202	24	39	166	42	64	199	27	89	194	30	14	319	46	39	139	59	64	139	69	89	319	39
15	264	30	40	190	32	65	106	40	90	208	20	15	139	36	40	139	48	65	139	69	90	139	67
16	125	44	41	95	36	66	259	27	91	197	28	16	139	57	41	139	35	66	319	62	91	139	42
17	191	32	42	266	31	67	123	44	92	107	40	17	139	36	42	139	40	67	319	48	92	319	52
18	236	7	43	101	38	68	107	40	93	112	42	18	139	50	43	139	44	68	139	48	93	139	41
19	174	39	44	202	24	69	208	20	94	169	41	19	319	54	44	319	25	69	139	44	94	139	66
20	168	41	45	248	18	70	185	35	95	252	22	20	319	32	45	139	10	70	139	54	95	139	48
21	173	40	46	168	41	71	265	30	96	265	31	21	139	41	46	139	49	71	139	49	96	139	52
22	117	43	47	266	31	72	98	37	97	175	39	22	139	75	47	139	37	72	319	65	97	319	67
23	129	45	48	186	34	73	195	29	98	194	30	23	319	50	48	319	32	73	139	54	98	139	52
24	193	30	49	182	36	74	191	32	99	108	40	24	139	32	49	139	58	74	319	66	99	139	74
25	208	20	50	148	45	75	94	35	100	109	41	25	319	47	50	139	55	75	139	67	100	139	62

Tabla A.V.15. Orientación de 200 cristales de plagioclasas tomados de la muestra CH0208 correspondiente al dique I.

	Sección perpendicular al eje del testigo											Sección paralela al eje del testigo											
	Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz
1	111	39	26	237	32	51	243	24	76	244	24	1	170	54	26	350	66	51	170	35	76	350	55
2	234	35	27	93	19	52	239	30	77	232	37	2	350	80	27	350	18	52	350	60	77	350	29
3	142	55	28	220	46	53	227	41	78	93	20	3	350	75	28	350	28	53	350	43	78	350	56
4	123	48	29	158	57	54	253	11	79	139	54	4	170	59	29	350	4	54	170	60	79	350	66
5	188	57	30	228	40	55	251	14	80	112	41	5	170	43	30	170	35	55	350	38	80	350	38
6	222	45	31	122	47	56	219	46	81	219	46	6	350	63	31	350	50	56	350	10	81	170	43
7	238	31	32	244	24	57	134	52	82	229	40	7	170	64	32	350	34	57	350	55	82	350	37
8	223	44	33	230	39	58	117	44	83	228	41	8	350	18	33	350	51	58	350	38	83	350	51
9	237	32	34	109	38	59	242	26	84	233	36	9	350	76	34	350	45	59	350	38	84	350	38
10	234	35	35	139	54	60	224	44	85	244	24	10	350	31	35	170	77	60	170	40	85	350	45
11	149	56	36	232	37	61	159	57	86	231	37	11	350	28	36	350	87	61	170	71	86	350	37
12	121	46	37	146	56	62	252	13	87	209	51	12	170	45	37	350	19	62	350	74	87	170	33
13	154	57	38	218	47	63	133	52	88	239	30	13	350	44	38	350	38	63	170	72	88	350	44
14	233	36	39	132	51	64	127	50	89	149	56	14	350	53	39	350	63	64	350	67	89	350	69
15	143	55	40	104	33	65	228	40	90	215	48	15	170	88	40	350	30	65	350	62	90	170	34
16	130	51	41	117	44	66	206	52	91	237	32	16	350	60	41	350	27	66	350	55	91	170	55
17	149	56	42	221	45	67	149	56	92	233	36	17	350	36	42	350	68	67	350	33	92	350	59
18	240	29	43	224	43	68	131	51	93	202	54	18	350	37	43	170	56	68	170	54	93	350	61
19	244	24	44	239	30	69	116	43	94	136	53	19	170	24	44	170	49	69	350	41	94	350	75
20	241	27	45	149	56	70	141	55	95	129	51	20	350	64	45	170	34	70	350	60	95	350	57
21	244	23	46	241	28	71	208	51	96	219	47	21	350	67	46	350	59	71	350	50	96	170	1
22	121	46	47	267	11	72	227	41	97	251	14	22	350	49	47	170	84	72	350	49	97	350	25
23	215	48	48	128	50	73	110	38	98	250	15	23	170	42	48	350	71	73	170	67	98	350	44
24	233	36	49	236	33	74	126	49	99	103	32	24	350	32	49	170	63	74	350	62	99	350	47
25	147	56	50	248	18	75	150	56	100	149	56	25	350	49	50	350	51	75	170	75	100	350	39

Tabla A.V.16. Orientación de 200 cristales de plagioclasas tomados de la muestra CH0204 correspondiente al dique K.

	Sección perpendicular al eje del testigo											Sección paralela al eje del testigo											
	Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz
1	215	35	26	109	28	51	208	38	76	201	41	1	348	33	26	168	66	51	168	58	76	348	52
2	240	18	27	225	30	52	223	31	77	224	30	2	348	60	27	168	66	52	348	22	77	348	56
3	256	2	28	203	40	53	118	34	78	218	33	3	168	71	28	348	48	53	348	45	78	348	65
4	249	9	29	134	40	54	221	32	79	145	44	4	348	42	29	348	42	54	348	37	79	348	25
5	235	22	30	224	30	55	212	37	80	118	34	5	348	49	30	168	27	55	348	55	80	168	54
6	239	19	31	259	1	56	95	17	81	141	43	6	168	34	31	168	58	56	168	59	81	348	47
7	192	43	32	128	38	57	114	31	82	234	23	7	348	46	32	348	54	57	168	34	82	348	45
8	187	44	33	228	27	58	199	41	83	125	37	8	168	74	33	348	38	58	348	25	83	168	57
9	166	46	34	196	43	59	201	41	84	124	37	9	168	36	34	168	45	59	348	35	84	168	8
10	169	46	35	239	19	60	101	22	85	137	41	10	168	69	35	348	40	60	348	19	85	168	54
11	142	43	36	268	10	61	238	19	86	220	32	11	348	58	36	168	18	61	168	50	86	348	37
12	120	35	37	232	24	62	201	41	87	131	40	12	348	53	37	348	38	62	348	7	87	348	37
13	201	41	38	220	33	63	123	36	88	223	31	13	348	47	38	168	31	63	168	36	88	348	29
14	121	35	39	238	19	64	122	36	89	118	34	14	348	43	39	348	55	64	168	59	89	168	23
15	225	29	40	97	18	65	125	37	90	104	25	15	348	47	40	168	45	65	348	49	90	348	54
16	247	11	41	233	24	66	229	27	91	199	42	16	348	45	41	348	43	66	348	39	91	168	25
17	217	34	42	115	32	67	179	45	92	145	44	17	348	31	42	168	20	67	348	43	92	168	46
18	220	33	43	260	2	68	251	7	93	227	28	18	168	12	43	348	41	68	348	32	93	168	42
19	109	28	44	104	24	69	214	36	94	208	38	19	348	89	44	168	45	69	348	58	94	348	72
20	213	36	45	115	32	70	144	44	95	137	42	20	348	42	45	168	19	70	348	38	95	348	23
21	236	22	46	190	44	71	222	31	96	208	38	21	348	43	46	348	60	71	348	33	96	348	23
22	218	34	47	112	30	72	233	24	97	224	30	22	348	29	4/	348	45	72	348	54	97	168	63
23	262	4	48	262	5	13	142	43	98	218	33	23	168	/2	48	348	27	13	348	16	98	348	53
24	199	42	49	267	9	74	135	41	99	145	44	24	168	47	49	348	49	74	348	23	99	348	39
25	217	34	50	222	31	15	263	5	100	109	28	25	348	45	50	168	87	75	348	31	100	348	43

Tabla A.V.17. Orientación de 200 cristales de plagioclasas tomados de la muestra CH0205 correspondiente al dique K.
			Seco	ión per	pendic	ular	al eje d	el testi	go						Se	ección	paralel	a al e	eje del i	testigo			
	Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz		Az	Buz
1	247	4	26	213	38	51	268	22	76	261	14	1	160	51	26	160	20	51	160	58	76	160	14
2	187	50	27	113	42	52	239	15	77	219	35	2	340	44	27	340	29	52	340	19	77	160	30
3	218	35	28	182	51	53	229	26	78	128	49	3	160	51	28	160	32	53	340	53	78	160	21
4	269	23	29	267	21	54	96	30	79	137	51	4	160	47	29	160	36	54	340	8	79	160	3
5	101	35	30	147	52	55	206	43	80	197	47	5	340	26	30	160	45	55	340	45	80	160	35
6	110	41	31	203	44	56	238	16	81	195	48	6	160	11	31	340	34	56	340	32	81	160	23
7	210	40	32	115	43	57	135	50	82	215	37	7	160	51	32	340	34	57	340	82	82	160	41
8	108	39	33	213	38	58	233	22	83	131	49	8	340	4	33	160	10	58	160	56	83	160	24
9	115	43	34	231	24	59	200	45	84	218	35	9	160	33	34	160	15	59	340	49	84	340	45
10	209	41	35	230	25	60	148	52	85	113	42	10	340	57	35	340	54	60	160	74	85	160	14
11	92	26	36	122	46	61	254	5	86	148	52	11	340	28	36	160	18	61	340	35	86	160	29
12	133	50	37	249	2	62	212	39	87	208	42	12	340	53	37	340	17	62	340	30	87	160	27
13	160	53	38	246	5	63	218	35	88	98	32	13	160	26	38	160	40	63	340	32	88	160	17
14	235	19	39	224	30	64	172	52	89	229	25	14	160	20	39	340	61	64	340	65	89	340	20
15	123	47	40	188	50	65	215	37	90	234	21	15	160	52	40	340	45	65	340	65	90	340	66
16	213	39	41	256	7	66	221	33	91	127	48	16	160	27	41	160	46	66	160	2	91	160	38
17	194	48	42	198	46	67	219	34	92	190	49	17	160	11	42	340	40	67	160	19	92	160	47
18	256	7	43	92	26	68	254	5	93	215	37	18	340	23	43	340	43	68	340	31	93	340	35
19	249	1	44	268	23	69	226	28	94	206	42	19	340	11	44	160	8	69	160	9	94	340	45
20	116	44	45	249	2	70	182	51	95	107	39	20	340	63	45	340	42	70	340	19	95	340	54
21	227	28	46	219	34	71	209	41	96	123	47	21	160	39	46	340	27	71	160	25	96	160	24
22	117	44	47	192	48	72	112	42	97	190	49	22	340	28	47	340	56	72	160	41	97	160	15
23	254	5	48	228	26	73	186	50	98	216	36	23	340	40	48	340	42	73	340	43	98	160	24
24	215	37	49	195	47	74	188	49	99	112	42	24	340	27	49	340	47	74	340	19	99	340	87
25	201	45	50	133	50	75	194	48	100	198	46	25	340	23	50	160	38	75	340	35	100	160	52

Tabla A.V.18. Orientación de 200 cristales de plagioclasas tomados de la muestra CH0206 correspondiente al dique K

Diaura	Mussia	Eje	testigo
Dique	Muestra	Azimuth	Buzamiento
D	CH0105	124	37
D	CH0106	118	34
D	CH0107	112	36
D	CH0108	141	32
E	CH0111	146	50
E	CH0112	147	50
E	CH0113	148	52
E	CH0114	94	43
E	CH0115	114	37
E	CH0116	149	49
I	CH0201	26	59
I	CH0202	11	45
I	CH0203	1	26
I	CH0207	338	28
I	CH0208	319	45
К	CH0204	350	32
К	CH0205	348	44
К	CH0206	340	37

Tabla A.V.19. Orientación del eje del testigo de cada una de las muestras de las cuales se obtuvo la orientación de cristales de plagioclasa usando el software ImageJ.

•

ANEXO VI. Geoquímica de los diques G y H

Las siguientes tablas corresponden a los datos geoquímicos de 16 muestras correspondientes a los diques G y H. En todas las tablas aparece una fila "Distancia [cm]". Los datos de esta fila corresponden a la distancia entre el centro del cilindro hueco que se obtiene al retirar la muestra de roca tomada con la perforadora manual, la cual se ha medido desde el margen occidental de cada dique y de manera perpendicular al rumbo de éste.

Los índices composicionales han sido calculados de la siguiente manera:

- 1. FeO*=Fe₂O₃+FeO
- 2. #Mg=MgO/(MgO+FeO*)
- 3. [Mg]=MgO/(MgO+FeO)

La mineralogía normativa se calculó en base a la geoquímica de elementos mayores de las muestras (Tabla A.VI.1) siguiendo la norma CIPW.

			Sit	tio MR4	40			Sitio MR41								
Muestras	MR 4001A	MR 4003C	MR 4004A	MR 4005A	MR 4006b	MR 4007A	MR 4008A	MR 4101A	MR 4102A	MR 4103C	MR 4104	MR 4105A	MR 4106b	MR 4109A	MR 4107A	MR 4108b
Distancia [cm] *	45	230	290	340	400	490	535	35	140	170	215	310	400	450	480	560
SiO₂ [wt %]	57.43	54.12	57.12	54.78	54.48	53.80	54.78	55.25	51.38	50.42	50.54	51.35	54.10	42.56	51.66	51.87
TiO₂ [wt %]	0.85	0.90	0.91	0.90	0.89	0.91	0.83	1.06	0.96	0.99	0.95	1.00	0.86	0.85	0.95	0.98
Al ₂ O ₃ [wt %]	15.54	16.51	16.50	16.39	16.50	16.21	15.51	17.65	16.34	15.95	16.03	15.59	14.58	18.79	16.39	16.54
Fe₂O₃ [wt %]	7.26	6.95	6.21	6.42	6.29	6.46	6.34	1.86	4.88	5.27	4.13	3.68	4.06	11.35	5.49	4.34
FeO [wt %]	3.28	3.56	4.40	4.00	4.16	4.84	4.92	4.04	6.44	6.64	6.48	6.60	6.56	2.96	5.84	5.68
MnO [wt %]	0.04	0.06	0.05	0.05	0.05	0.06	0.06	0.04	0.05	0.05	0.07	0.05	0.05	0.05	0.06	0.07
MgO [wt %]	2.51	4.31	4.69	4.50	4.57	5.14	4.64	6.43	6.6	7.12	7.73	8.30	6.13	3.21	6.62	6.97
CaO [wt %]	3.27	3.52	3.30	3.53	3.58	2.60	2.84	2.71	3.68	4.34	4.47	4.44	4.60	14.41	3.63	3.50
Na₂O [wt %]	6.96	6.35	6.18	6.28	6.37	6.41	6.45	6.47	5.55	5.02	4.58	4.83	4.96	2.49	5.50	5.33
K₂O [wt %]	0.11	0.10	0.08	0.08	0.08	0.08	0.08	0.20	0.19	0.16	0.53	0.18	0.15	0.11	0.12	0.17
P₂O₅ [wt %]	0.19	0.20	0.20	0.24	0.23	0.18	0.26	0.22	0.22	0.19	0.19	0.20	0.21	0.17	0.18	0.23
LOI [wt %]	2.09	2.94	2.61	2.72	2.66	3.14	2.78	3.64	3.25	3.58	3.85	3.48	3.54	2.74	3.52	3.92
FeO* [wt %]	10.54	10.51	10.61	10.42	10.45	11.30	11.26	5.90	11.32	11.91	10.61	10.28	10.62	14.31	11.33	10.02
#Mg	0.19	0.29	0.31	0.30	0.30	0.31	0.29	0.52	0.37	0.37	0.42	0.45	0.37	0.18	0.37	0.41
[Mg]	0.43	0.55	0.52	0.53	0.52	0.52	0.49	0.61	0.51	0.52	0.54	0.56	0.48	0.52	0.53	0.55

Tabla A.VI.1. Elementos mayores expresados como porcentaje en peso de las muestras de los sitios MR40 y MR41 correspondientes a los dique G y H, respectivamente

Muestras Distancia [cm] * Y [ppm] Sc [ppm] Zn [ppm] Co [ppm] Ni [ppm] Ba [ppm] Cr [ppm] V [ppm] Cu [ppm]			Sit	tio MR	40			Sitio MR41								
Muestras	MR 4001A	MR 4003C	MR 4004A	MR 4005A	MR 4006b	MR 4007A	MR 4008A	MR 4101A	MR 4102A	MR 4103C	MR 4104	MR 4105A	MR 4106b	MR 4109A	MR 4107A	MR 4108b
Distancia [cm] *	45	230	290	340	400	490	535	35	140	170	215	310	400	450	480	560
Y [ppm]	18	20	18	19	19	18	18	20	19	20	15	15	18	24	19	21
Sc [ppm]	27	26	27	27	28	28	26	32	36	38	40	43	36	34	34	36
Zn [ppm]	27	26	23	27	27	32	32	26	20	21	29	21	27	19	24	29
Co [ppm]	27	22	20	23	20	23	25	24	22	19	16	18	18	13	30	22
Ni [ppm]	18	19	19	20	18	21	19	42	43	43	45	51	45	29	45	52
Ba [ppm]	84	39	10	8	9	14	51	9	33	20	76	16	14	2	13	44
Cr [ppm]	14	21	23	24	22	18	18	86	107	153	165	188	155	127	118	120
V [ppm]	253	262	253	264	267	266	278	197	266	278	257	239	258	350	240	253
Cu [ppm]	58	274	304	354	420	388	408	441	451	326	342	156	382	543	570	232
Sr [ppm]	180	180	173	200	215	155	152	145	285	280	320	210	253	1200	169	281
Zr [ppm]	99	102	102	101	89	101	98	108	98	79	78	80	80	80	85	84

Tabla A.VI.2. Elementos traza en ppm de las muestras de los sitios MR40 y MR41 correspondientes a los diques G y H, respectivamente.

Muestras Distancia [cm] * La [ppm] Ce [ppm] Nd [ppm] Sm [ppm] Eu [ppm] Gd [ppm] Ho [ppm]			Sit	tio MR4	40			Sitio MR41								
Muestras	MR 4001A	MR 4003C	MR 4004A	MR 4005A	MR 4006b	MR 4007A	MR 4008A	MR 4101A	MR 4102A	MR 4103C	MR 4104	MR 4105A	MR 4106b	MR 4109A	MR 4107A	MR 4108b
Distancia [cm] *	45	230	290	340	400	490	535	35	140	170	215	310	400	450	480	560
La [ppm]	17	17	20	16	19	18	4	3	10	13	6	6	11	19	12	5
Ce [ppm]	42	42	47	39	45	42	17	13	23	32	19	18	28	47	28	18
Nd [ppm]	23	22	25	21	24	22	13	10	16	21	12	13	18	27	20	13
Sm [ppm]	3.56	3.81	4.17	3.73	4.01	3.89	2.69	2.37	2.87	3.78	2.37	2.13	3.25	4.79	3.60	2.70
Eu [ppm]	1.04	1.15	1.31	1.13	1.28	1.18	0.99	0.69	0.97	1.22	0.77	0.68	1.04	1.33	1.16	0.75
Gd [ppm]	3.00	3.90	4.20	3.78	4.15	3.68	3.00	2.82	3.20	3.88	2.66	2.28	3.60	4.51	3.79	3.29
Dy [ppm]	2.41	3.10	3.30	3.01	3.27	2.90	2.65	2.93	2.84	3.27	2.72	2.14	2.97	3.72	3.14	3.18
Ho [ppm]	0.42	0.60	0.62	0.60	0.64	0.58	0.57	0.60	0.57	0.61	0.60	0.44	0.62	0.70	0.62	0.68
Er [ppm]	0.92	1.72	1.71	1.60	1.72	1.50	1.56	1.30	1.63	1.62	1.60	0.82	1.63	1.83	1.60	1.75
Yb [ppm]	0.86	1.60	1.63	1.51	1.69	1.45	1.51	1.12	1.57	1.50	1.54	0.70	1.56	1.79	1.54	1.66
Lu [ppm]	0.13	0.25	0.25	0.24	0.27	0.23	0.25	0.15	0.23	0.22	0.24	0.09	0.25	0.27	0.25	0.24

Tabla A.VI.3. Abundancia en ppm de tierras raras de las muestras de los sitios MR40 y MR41 correspondientes a los diques G y H, respectivamente.

Muestras	MR 4001A	MR 4003C	MR 4004A	MR 4005A	MR 4006B	MR 4007A	MR 4008A
Distancia [cm] *	45	230	290	340	400	490	535
Quartz [vol %]	7.89	3.82	7.25	4.51	3.12	2.81	3.87
Plagioclase [vol %]	77.12	78.44	73.58	77.14	78.24	75.13	75.78
Orthoclase [vol %]	0.80	0.66	0.53	0.53	0.53	0.54	0.62
Corundum [vol %]	0.00	0.03	0.51	0.09	0.00	0.96	0.17
Diopside [vol %]	2.99	0.00	0.00	0.00	0.07	0.00	0.00
Hypersthene [vol %]	4.29	9.95	11.65	10.83	11.27	13.64	12.71
Ilmenite [vol %]	0.99	1.07	1.05	1.07	1.06	1.09	0.99
Magnetite [vol %]	4.62	5.18	5.01	5.29	5.19	5.42	5.28
Hematite [vol %]	0.88	0.40	0.00	0.00	0.00	0.00	0.00
Apatite [vol %]	0.39	0.44	0.42	0.52	0.50	0.40	0.57
Zircon [vol %]	0.01	0.01	0.01	0.01	0.01	0.01	0.01

Tabla	A.VI.4.	Mineralogía	normativa	У	su	abundancia	para	las	muestras	del	sitio	MR40	las	cuales
corres	ponden	al dique G.												

Muestras	MR 4101A	MR 4102A	MR 4103C	MR 4104	MR 4105A	MR 4106B	MR 4109A	MR 4107A	MR 4108B
Distancia [cm] *	35	140	170	215	310	400	450	480	560
Quartz [vol %]	0.14	0.00	0.00	0.00	0.00	4.38	0.00	0.00	0.47
Plagioclase [vol %]	75.29	73.29	72.40	68.85	70.21	67.60	67.51	72.85	70.65
Orthoclase [vol %]	1.39	1.36	1.16	3.82	1.29	1.08	0.77	0.82	1.31
Nepheline [vol %]	0.00	0.00	0.00	0.00	0.00	0.00	1.41	0.00	0.00
Corundum [vol %]	1.78	0.62	0.04	0.16	0.00	0.00	0.00	0.80	1.32
Diopside [vol %]	0.00	0.00	0.00	0.00	0.36	3.32	16.69	0.00	0.00
Hypersthene [vol %]	18.09	15.17	16.36	17.49	18.45	18.63	0.00	19.09	20.81
Wollastonite [vol %]	0.00	0.00	0.00	0.00	0.00	0.00	4.02	0.00	0.00
Olivine [vol %]	0.00	3.73	3.85	4.52	4.85	0.00	0.00	0.19	0.00
Ilmenite [vol %]	1.26	1.17	1.22	1.16	1.22	1.04	1.07	1.15	1.20
Magnetite [vol %]	1.55	4.14	4.51	3.54	3.14	3.44	4.32	4.67	3.71
Hematite [vol %]	0.00	0.00	0.00	0.00	0.00	0.00	3.80	0.00	0.00
Apatite [vol %]	0.48	0.49	0.43	0.43	0.45	0.47	0.39	0.41	0.51
Zircon [vol %]	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Chromite [vol %]	0.01	0.02	0.02	0.03	0.03	0.02	0.02	0.02	0.02

Tabla A.VI.5. Mineralogía normativa y su abundancia para las muestras del sitio MR41 las cuales corresponden al dique H.