Índice general

Ín	Índice de tablas		
Índice de figuras		le figuras VI	III
1.	Intro	oducción	1
	1.1.	Objetivo General	2
	1.2.	Objetivos Específicos	2
2.	Ante	ecedentes	3
	2.1.	Naturaleza de los Molinos SAG	3
	2.2.	Naturaleza de los revestimientos	4
	2.3.	Desgaste abrasivo e influencia de la microestructura	5
	2.4.	Austenita y tamaño de grano	7
	2.5.	Bainita	8
		2.5.1. Microestructura	9
		2.5.2. Cinética de Transformación	12
		2.5.3. Propiedades Mecánicas	19
		2.5.4. Efecto del revenido	21
		2.5.5. Elementos aleantes	21

	2.6.	Martensita	22
		2.6.1. Microestructura	22
		2.6.2. Martensita revenida y propiedades mecánicas	23
	2.7.	Mezcla bainita-martensita	28
		2.7.1. Características metalográficas	29
		2.7.2. Propiedades mecánicas	29
	2.8.	Tenacidad en aceros revenidos de alta resistencia	32
	2.9.	Velocidad de enfriamiento	36
3.	Mete	odología	39
	3.1.	Diseño del método	39
		3.1.1. Constantes	39
		3.1.2. Variables	39
		3.1.3. Resultados	39
	3.2.	Método	40
	D	u da se	41
4.	Desa	ΑΓΓΟΠΟ	41
	4.1.	Software empleado	41
	4.2.	Relaciones dureza-fluencia	42
		4.2.1. Dureza-fluencia en aceros bainíticos	42
		4.2.2. Dureza-fluencia en aceros martensíticos	43
	4.3.	Desarrollo de la metodología	45
		4.3.1. Dureza en aceros martensíticos	45
		4.3.2. Dureza en aceros bainíticos	45

	5.3.5.4.5.5.	5.2.2.5.2.3.DefinioAnálisiLimita	Parámetros fijos	 77 77 82 94 96
	5.3. 5.4.	5.2.2. 5.2.3. Definic Análisi	Parámetros fijos	77 77 82 94
	5.3.	5.2.2. 5.2.3. Definio	Parámetros fijos	77 77 82
		5.2.2. 5.2.3.	Parámetros fijos	77 77
		5.2.2.	Parámetros fijos	77
		5.2.1.	Estrategia	76
	5.2.	Obtenc	zión de Aceros	76
	5.1.	Curva	de enfriamiento	74
5.	Rest	ıltados		74
		4.5.3.	Relación tenacidad	71
		4.5.2.	Relación resistencia a la fluencia y dureza	67
		4.5.1.	Método	65
	4.5.	Model marten	o final para obtener propiedades mecánicas en aceros revenidos mezcla bainita- sita	65
		4.4.4.	Microestructura en aceros bainíticos	60
		4.4.3.	Dureza martensita	57
		4.4.2.	Curvas TTT	50
		4.4.1.	Tamaño de grano austenítico	48
	4.4.	Validad	ciones	48

Bibliografía

A.	Cinética de la molienda SAG y su empleo en Chile	105
B.	Cargas y predicción de daño en lifters	107
C.	Aporte (AHV) en aceros martensíticos revenidos	111
D.	Diagramas TTT, Atlas Transformación Isotérmica [57]	117
E.	Diagramas TTT de los aceros definidos	121

100

Índice de tablas

2.1.	Comparación propiedades mecánicas de diversos aceros bainíticos y perlíticos (a)	
	bainíticos, (b) perlíticos [2]	6
2.2.	Composición química de los aceros experimentales empleados [19]	8
2.3.	Constantes empleadas para la obtención de V_B como función del tiempo $\ldots \ldots$	18
2.4.	Contribución del carbono y de cada elemento aleante según su composición en un acero revenido a 1000°F, (El valor por contribución por fósforo no aparece en la figura C.7, sin embargo si aparece en el trabajo original)	26
2.5.	Parámetros metalográficos de una estructura mixta compuesta por martensita y bainita inferior [58]	29
2.6.	Ecuaciones a emplear para la obtención de $\sigma_{0,2}^{Mix}$	32
4.1.	Valores máximos y mínimos empleados que pueden ser ingresados en el software .	42
4.2.	Relación entre dureza y fluencia en aceros bainíticos a partir de diferentes trabajos .	43
4.3.	Propiedades mecánicas de los aceros obtenidos por Lee y Su [47] a distintas tem- peraturas y tiempo de revenido	44
4.4.	Comparación de diversos tamaños de granos austeníticos obtenidos experimental- mente y predichos con el modelo	49
4.5.	Composición química del acero i	50
4.6.	Composición química del acero ii	51
4.7.	Composición química del acero iii	52

4.8.	Composición química del acero iv	53
4.9.	Composición química del acero v	54
4.10.	Composición química del acero vi	54
4.11.	Composición química del acero vii	55
4.12.	Composición química del acero empleado en el trabajo de Lee y Su [47]	57
4.13.	Comparación de los resultados para la dureza en el trabajo de Lee y Su obtenidos experimentalmente y según el método	58
4.14.	Composición química de los aceros empleados en el trabajo de Singh y Bhadeshia [32]	60
4.15.	Resultados obtenidos experimentalmente y mediante ecuación 2.5	60
4.16.	Fracciones volumétricas en distintos aceros a diferentes temperaturas de transfor- mación	61
4.17.	Variación de S_M con respecto a V_B en el experimento de [58]	68
4.18.	Valores estimados para cada contribución en σ_y^{Mix} con respecto a V_B	69
4.19.	Ecuaciones a emplear para la obtención de H_{mix}	71
4.20.	Valores estimados de S_M con respecto a V_B	72
5.1.	Propiedades y características de la placa de acero considerada para el análisis	75
5.2.	Composición química de los aceros definidos	83
5.3.	Características microestructurales de los aceros definidos, en la zona de la superficie	86
5.4.	Propiedades mecánicas de los aceros definidos, en la zona de la superficie	87
5.5.	Características microestructurales de los aceros definidos, en la zona del interior	87
5.6.	Propiedades mecánicas de los aceros definidos, en la zona del interior	87
5.7.	Composición química de los nuevos aceros definidos	88

5.8.	Características microestructurales de los nuevos aceros definidos, en la zona de la superficie	89
5.9.	Propiedades mecánicas de los nuevos aceros definidos, en la zona de la superficie .	89
5.10.	Características microestructurales de los nuevos aceros definidos, en la zona del interior	89
5.11.	Propiedades mecánicas de los nuevos aceros definidos, en la zona del interior	89
5.12.	Composición química de los nuevos aceros definidos	91
5.13.	Características microestructurales de los nuevos aceros definidos, en la zona de la superficie	91
5.14.	Propiedades mecánicas de los nuevos aceros definidos, en la zona de la superficie .	91
5.15.	Características microestructurales de los nuevos aceros definidos, en la zona del interior	91
5.16.	Propiedades mecánicas de los nuevos aceros definidos, en la zona del interior	92
5.17.	Valores máximos y mínimos empleados que pueden ser ingresados en el software .	96
A.1.	Molinos SAG empleados en Chile en las faenas mineras, con sus respectivas di- mensiones y capacidades	106
B.1.	Parámetros del Molino SAG simulado mediante DEM	107

Índice de figuras

2.1.	Molino SAG de 11 metros de diámetro por 4.6 metros de largo (Planta SAG, Codel-	
	co División Andina) [1]	3
2.2.	Distribución de los revestimientos al interior de los molinos [1]	4
2.3.	Revestimientos de los molinos SAG y sus componentes [1]	4
2.4.	Relación entre microestructura y resistencia al desgaste en aceros [6]	6
2.5.	Ilustración esquemática de la microestructura de la bainita superior e inferior [8]	9
2.6.	Evolución en el tiempo de una pluma bainítica [8]	10
2.7.	Micrografía por transmisión de electrones de una pluma bainítica; (a) microgfrafía óptica; (b,c) micrografía de campo claro de trasmisión de electrones; imagen de campo oscuro de austenita retenida; (d) montaje que muestra la estructura de una pluma (esta pluma se vería como una única placa oscura en microscopía óptica) [8]	10
2.8.	Ilustración de la construcción de la curva T'_0 [8]	13
2.9.	Ilustración del concepto de la expanción del volumen, dos partículas nuclean juntas y crecen a un volumen finito en un tiempo t. Nuevas regiones $c y d$ son formadas debido al crecimiento original de las partículas, pero $a y b$ son nuevas partículas de las cuales b no contribuye al incremento del volumen de la bainita [8]	15
2.10.	Típicos contribución por solución sólida por porcentaje peso de soluto en ferrita, el esfuerzo intrínseco del Fe está incluido [34]	20
2.11.	Efecto del contenido de carbono en M_S y la forma de la martensita en aceros al carbono [13]	22

2.12.	Tamaño de austenita v/s tamaño de las agujas de martensita obtenidas bajo diversos tratamientos térmicos [31]	23
2.13.	Efecto de la temperatura de revenido en las propiedades mecánicas de un acero del tipo 4340 [14]	24
2.14.	Efecto del carbono en la dureza de la martensita revenida a distintas temperat- uras en aceros Fe-C. Copia construida por el alumno del correspondiente gráfico obtenido en el trabajo de Grange et al. [43]	26
2.15.	Efecto de V_B en la resistencia	30
2.16.	Comparación de los valores experimentales de $\sigma_{0,2}^{Mix}$, con respecto a la ecueción 2.38 (eq(3) en el gráfico) y 2.39 (eq(4) en el gráfico)	31
2.17.	σ_f como función del tamaño de grano (en negro en el trabajo de Schino et al. [51], y en blanco en el trabajo de Brozzo [50]	34
2.18.	Energía absorbida en el impacto, esfuerzo de rotura en el impacto y deformación medidas a distintas temperaturas para un acero V_B de 25 y 100 %, según el trabajo de Tomita y Okabayashi [58]	35
2.19.	CVN (Energía de impacto en un ensayo Charpy) obtenida en el acero de Tomita y Okabayashi [58], con respecto a la fracción volumétrica de bainita	36
2.20.	Temperatura en la superficie como función del tiempo, para una placa de espesor 2L	37
2.21.	Distribución de temperaturas para diferentes Bi, a distintas distancias de la superficie	38
4.1.	Curvas C para la obtención de diagramas TTT. Elaboración propia empleando el software de Bhadeshia para un acero con una composición Fe-0.32 %C-1.45 %Si- 1.97 %Mn-0.264 %Mo-1.26 %Cr-0.1 %V	42
4.2.	dureza v/s fluencia según los datos de tabla 4.2	43
4.3.	dureza v/s S_{ys} obtenido en el trabajo de Lee y Su, después de la correspondiente conversión de dureza Vickers a Brinell [47]	44
4.4.	Modelo construido para la obtención de la dureza en aceros bainíticos a partir de diversas referencias bibliográficas	46

4.5.	Comparasión del tamaño de grano austenítico calculado con respecto al obtenido experimentalmente	48
4.6.	Comparación entre curvas TTT obtenidas mediante el modelo propuesto y según atlas de transformaciones isotérmicas [57] para acero i	50
4.7.	Comparación entre curvas TTT obtenidas mediante el modelo propuesto y según atlas de transformaciones isotérmicas [57] para acero ii	51
4.8.	Comparación entre curvas TTT obtenidas mediante el modelo propuesto y según atlas de transformaciones isotérmicas [57] para acero iii	52
4.9.	Comparación entre curvas TTT obtenidas mediante el modelo propuesto y según atlas de transformaciones isotérmicas [57] para acero iv	53
4.10.	Comparación entre curvas TTT obtenidas mediante el modelo propuesto y según atlas de transformaciones isotérmicas [57] para acero v	54
4.11.	Comparación entre curvas TTT obtenidas mediante el modelo propuesto y según atlas de transformaciones isotérmicas [57] para acero vi	55
4.12.	Comparación entre curvas TTT obtenidas mediante el modelo propuesto y según atlas de transformaciones isotérmicas [57] para acero vii	56
4.13.	Comparación de la dureza para un acero AISI 4340 obtenida experimentalmente [47] y mediante el método para un tiempo de revenido de 2 horas	58
4.14.	Comparación de la dureza para un acero AISI 4340 obtenida experimentalmente [47] y mediante el método para un tiempo de revenido de 48 horas	59
4.15.	Evolución en el tiempo de la fracción volumétrica de la bainita a diferentes tem- peraturas de transformación (expresadas en [K]) obtenidas experimentalmente [26]	62
4.16.	Evolución en el tiempo de la fracción volumétrica de la bainita a diferentes temper- aturas de transformación (expresadas en [°C]) obtenidas mediante el modelo (ver Sección 2.5.2)	62
4.17.	Evolución en el tiempo de la fracción volumétrica de la bainita a diferentes tem- peraturas de transformación obtenidas experimentalmente [32]	63

4.18.	Evolución en el tiempo de la fracción volumétrica de la bainita a diferentes temper- aturas de transformación (expresadas en [°C]) obtenidas mediante el modelo (ver	
	Sección 2.5.2)	63
4.19.	Diagrama de transformación isotérmica para un acero de composición $0,38$ %C- 1,29 %Si- $1,73$ %Mn, mediante elaboración propia en base a los métodos prop- uestos, la primera curva <i>C</i> representa la nucleación, hacia la derecha incrementos de 5 % hasta llegar a la curva para 50 %.	64
4.20.	Modelo corregido para la obtención de la dureza en aceros bainíticos-martensíticos	65
4.21.	Comparación de los resultados obtenidos en el trabajo de Tomita y Okabayashi, a la izquierda los resultados experimentales, a la derecha el obtenido mediante el presente modelo	67
4.22.	Variación de S_M con respecto a V_B en el trabajo de Tomita y Okabayashi	68
4.23.	Variación de σ_y^M (en [MPa]) con respecto a $S_M^{-1/2}$ (S_M en [μ m]) en el trabajo de Tomita y Okabayashi	70
4.24.	CVN obtenido mediante ecuación 4.8 con respecto a V_B	73
5.1.	Dimensiones empleadas en el modelo de enfriamiento de placa de desgaste, para estimar curva de enfriamiento en la superficie y en el interior	75
5.2.	Curvas de enfriamiento continuo por aire, de acuerdo a los parámetros dados en la tabla 5.1	76
5.3.	Efecto del Cr en la curvas de inicio de formación de las fases difusionales (ferrita- perlita) y adifusionales (bainita)	78
5.4.	Efecto del Mo en la curvas de inicio de formación de las fases difusionales (ferrita- perlita) y adifusionales (bainita)	79
5.5.	Efecto del Mn en la curvas de inicio de formación de las fases difusionales (ferrita- perlita) y adifusionales (bainita)	80
5.6.	Efecto del Ni en la curvas de inicio de formación de las fases difusionales (ferrita- perlita) y adifusionales (bainita)	81

5.7.	Efecto combinado del Cr y Mo en la curvas de inicio de formación de las fases difusionales (ferrita-perlita) y adifusionales (bainita)	82
5.8.	Curvas de inicio de las fases difusionales (ferrita-perlita) de los diferentes acers definidos	83
5.9.	Curva TTT enfocado en la transformación bainítica para Acero 1 y curvas de en- friamiento continuo	84
5.10.	Relación dureza-tenacidad obtenida para los aceros definidos en 5.2, en la zona de la superficie luego del revenido	88
5.11.	Relación dureza-tenacidad obtenida para los aceros indicados en el gráfico, en la zona de la superficie luego del revenido	90
5.12.	Relación dureza-tenacidad obtenida para los aceros indicados en el gráfico, en la zona de la superficie luego del revenido	92
5.13.	Relación dureza-tenacidad obtenida para los aceros indicados en el gráfico, en la zona de la superficie luego del revenido	93
5.14.	Relación dureza-tenacidad obtenida para los aceros indicados en el gráfico, en la zona del interior luego del revenido	93
A.1.	Características del movimiento de riñón de carga [1]	105
B.1.	Distribución de los esfuerzos normal (a) y de corte (b), daño por impacto (c) y por abrasión (d). En todos los casos el color rojo representa magnitudes altas, verde moderadas y azul baja	108
B.2.	Distribución del trabajo del esfuerzo en el sentido normal y predicción del daño por impacto, la primera separación muestra la cara frontal del lifter, la segunda la cara superior, la tercera la cara posterior y la ultima la base del liner (placa)	108
B.3.	Distribución del trabajo de corte y la predicción del daño por abrasión, la primera separación muestra la cara frontal del lifter, la segunda la cara superior, la tercera la cara posterior y la ultima la base del liner (placa)	109

C.1.	Efecto de los elementos en la dureza en la dureza de la martensita revenida a 400 [°F] por una hora
C.2.	Efecto de los elementos en la dureza en la dureza de la martensita revenida a 500 [°F] por una hora
C.3.	Efecto de los elementos en la dureza en la dureza de la martensita revenida a 600 [°F] por una hora
C.4.	Efecto de los elementos en la dureza en la dureza de la martensita revenida a 700 [°F] por una hora
C.5.	Efecto de los elementos en la dureza en la dureza de la martensita revenida a 800 [°F] por una hora
C.6.	Efecto de los elementos en la dureza en la dureza de la martensita revenida a 900 [°F] por una hora
C.7.	Efecto de los elementos en la dureza en la dureza de la martensita revenida a 1000 [°F] por una hora
C.8.	Efecto de los elementos en la dureza en la dureza de la martensita revenida a 1100 [°F] por una hora
C.9.	Efecto de los elementos en la dureza en la dureza de la martensita revenida a 1200 [°F] por una hora
C.10	.Efecto de los elementos en la dureza en la dureza de la martensita revenida a 1300 [°F] por una hora
D.1.	Diagrama TTT para acero i según [57]
D.2.	Diagrama TTT para acero ii según [57]
D.3.	Diagrama TTT para acero iii según [57]
D.4.	Diagrama TTT para acero iv según [57]
D.5.	Diagrama TTT para acero v según [57]
D.6.	Diagrama TTT para acero vi según [57]

D.7.	Diagrama TTT para acero vii según [57]	20
E.1.	Curva TTT enfocado en la transformación bainítica para Acero 1 y curvas de en- friamiento continuo	21
E.2.	Curva TTT enfocado en la transformación bainítica para Acero 2 y curvas de en- friamiento continuo	22
E.3.	Curva TTT enfocado en la transformación bainítica para Acero 3 y curvas de en- friamiento continuo	22
E.4.	Curva TTT enfocado en la transformación bainítica para Acero 4 y curvas de en- friamiento continuo	23
E.5.	Curva TTT enfocado en la transformación bainítica para Acero 5 y curvas de en- friamiento continuo	23
E.6.	Curva TTT enfocado en la transformación bainítica para Acero 6 y curvas de en- friamiento continuo	24
E.7.	Curva TTT enfocado en la transformación bainítica para Acero 7 y curvas de en- friamiento continuo	24
E.8.	Curva TTT enfocado en la transformación bainítica para Acero 8 y curvas de en- friamiento continuo	25
E.9.	Curva TTT enfocado en la transformación bainítica para Acero 9 y curvas de en- friamiento continuo	25
E.10.	Curva TTT enfocado en la transformación bainítica para Acero 10 y curvas de enfriamiento continuo	26
E.11.	Curva TTT enfocado en la transformación bainítica para Acero 11 y curvas de enfriamiento continuo	26
E.12.	Curva TTT enfocado en la transformación bainítica para Acero 12 y curvas de enfriamiento continuo	27
E.13.	Curva TTT enfocado en la transformación bainítica para Acero 13 y curvas de enfriamiento continuo	27

E.14. Curva	ГТТ	enfocado	en	la	tran	sfo	rma	ciór	ı ba	ainíti	ica	pa	ra	Ac	erc) 1	4	у	cu	rv	as	d	e	
enfriam	iento	o continuc)																					128