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CLOCK-GATING FOR LATCH BASED DESIGNS

Digital circuits, whose play a crucial role in everyday life, consume large amounts of power

which is undesirable as a general rule, and specially for battery power devices such as cellphones,

thus circuit designers and automatic synthesis tools aim to reduce power consumption of such

circuits using different techniques.

One of the most successful power reduction techniques is clock-gating used in Flip-Flop based

designs, which aims to reduce the power consumption caused by the transitions in the clk signal.

The power reduction is achieved by the insertion of clock-gating cells which keeps the clk signal of

reaching the Flip-Flops when they aren’t expected to modify their output signal.

Latch based designs being used less that Flip-Flop based design and with additional

complexities are still largely used for some benefits of the Latch timing restrictions, but no automatic

synthesis tool provides an automatic clock-gating insertion feature therefore Latch based design

circuit designers are forced to perform clock-gating by hand which is far from efficient.

The present work focus on clock-gating and the requirements to allow its use in Latch based

designs from the automatic synthesis tool perspective, while providing theoretical discussion on the

differences between Latches and Flip-Flops and how these differences force the requirements of a

clock-gating insertion engine

Considering the restrictions that should apply for an automatic clock-gating insertion engine

focused on Latch based designs and using the development environment provided by Synopsys as

well as the code base existent in the synthesis tool developed by them, a prototype of clock-gating

insertion for Latches is developed as part of Design Compiler R©

The prototype embedded in Design Compiler R© is tested against several small designs created

for this purpose, and a larger design provided by a Synopsys customer and used in actual circuit

development, which allows to test the tool robustness against large designs.
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CLOCK-GATING FOR LATCH BASED DESIGNS

Los circuitos digitales, que juegan un papel crucial en la vida cotidiana, consumen grandes

cantidades de potencia lo que es considerado como una situación no deseada, lo que es

particularmente cierto para equipos que dependen de bateŕıas como celulares, es por esto que los

diseñadores de circuitos aśı como las herramientas de śıntesis utilizan diferentes técnicas con el fin

de reducir su consumo de potencia.

Una de las técnicas de reducción de potencia mas exitosas es clock-gating cuyo objetivo es

reducir el consumo de potencia generado por las transiciones debidas a la señal de clk . La reducción

de potencia se logra mediante la inserción de clock-gating cells1 que impiden que la señal de clk

llegue a los Flip-Flop cuando el valor de la salida de estos no se espera que cambie.

Los diseños basados en Latch, que si bien no son tan utilizados como los diseños basados en

Flip-Flop debido a sus complejidades adicionales, todav́ıa son utilizados gracias a ciertos beneficios

que presentan las restricciones de timing2 de los Latch, sin embargo ninguna de las herramientas de

śıntesis existentes permite la inserción automática de clock-gates para diseños basados en Latches,

por lo que los diseñadores de circuitos se ven forzados a insertar las clock-gates de forma manual lo

que es ineficiente.

El presente trabajo se enfoca en los mecanismos de clock-gating y los requisitos que se deben

cumplir para permitir su uso en diseños basados en Latches desde la perspectiva de una herramienta

de śıntesis, al tiempo que provee de una discusión teórica sobre las diferencias entre Latches y

Flip-Flops y como estas diferencias fuerzan los requerimientos de una herramienta de inserción de

clock-gates

Considerando las restricciones que debieran aplicar para una herramienta de inserción de clock-

gates automática enfocada en Latches y utilizando el entorno de desarrollo provisto por Synopsys

aśı como el código existente en la herramienta de śıntesis desarrollada por ellos, se desarrolla un

prototipo de inserción de clock-gates para Latches como parte de Design Compiler R©

El prototipo una vez embebido en Design Compiler R© es probado en diversos diseños creados

con este propósito y un diseño de mayor envergadura provisto por uno de los clientes de Synopsys

y que es utilizado durante el desarrollo de circuitos reales, lo cual permite verificar la robustez de

la herramienta desarrollada en diseños grandes.

1celdas de clock-gating
2timing o sincronización
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Chapter 1

Introduction

1.1 Introduction

Digital circuits, a key element in modern life, embedded in almost any device nowadays, are

built using CMOS transistors for their speed, small power consumption and constantly shrinking

size. Usually those transistors are grouped in functional cells in order to take advantage of the

higher abstraction level in circuit designs; among those designs sequential circuits are of special

interest since they allow complex decision making and signal processing algorithms to be part of

the circuit which allow the fastest processing by keeping computations in the hardware instead of

using software. This allows the existence of ASIC 1 and microprocessors.

Sequential circuit are built using sequential cells which are divided in two mayor families Flip-

Flops and Latches. Flip-Flops are used in most circuit designs for their simpler timing properties

allowing more robust designs with less effort, while Latches are used in less designs since requires

more effort to ensure proper behavior, their less restraining timing characteristics allow faster

designs2.

Unfortunately as complexity and requirements of digital circuits their power consumption rise

accordingly thus most circuit designers have to make an additional effort in order to reduce power

consumption of digital circuits. Most synthesis tools have embedded power reduction techniques.

One of the most used power reduction techniques is clock-gating which currently is available only

for Flip-Flop based designs

The present work studies the possibility of allowing automatic clock-gating insertion in

Latch based designs using the Synopsys synthesis tool Design Compiler R© ; to do so this work

provide information about Flip-Flop and Latch based designs, discussed the differences between

the sequential elements and uses them to provide support for the clock-gating insertion for Latches.

1ASIC stands for Application specific integrated circuit
2Some Latch based designs are faster thanks to time-borrowing and usually Latches are used in other designs which

are inherently faster, which is briefly discussed in chapter 2
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Finally a prototype of clock-gating insertion for Latches is provided and the results of its application

in different designs is discussed.

1.2 Objectives

The present work was defined with specific goals which are now introduced.

1.2.1 General Objective

The general objective for this work is to provide a prototype of automatic clock-gating insertion

for Latch based designs during the synthesis process of the circuit using the Design Compiler R©

software developed by Synopsys .

1.2.2 Specific objectives

• Investigate tools and existent papers about the subject in order to insert clock-gates in Latch

based designs

• Understand the differences between Latches and Flip-Flops in order to provide a correct

solution for Latch based design clock-gating insertion

• Understand or develop theoretical support on the conditions for clock-gating insertion in Latch

based designs

• Analyze possible problems that might arise in a clock-gating insertion for Latches

• Analyze possible clock-gating insertion mechanisms available for Latch based designs

• Develop a prototype of clock-gating insertion for Latch based designs

1.3 Structure

The present work is divided in several chapters that should be read in sequence in order to better

understand it, as each chapter depends on the information provided by the former. Thus the

following is a short description of the contents of each chapter.

Literature Review: The literature review chapter, provides insight in the theoretical fundamental

and state of art of digital circuits and power reduction techniques. This chapter begins by

providing a short introduction to the digital circuits theory to refresh some key concepts

needed later, then the description of Flip-Flop and Latch based designs theory is visited as
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the understanding of the key differences between both sequential elements is crucial for the

prototype development. The power reduction techniques are discussed next, they provide

enough background on the power consumption of digital circuits and the different techniques

used to reduce it, here is the clock-gating technique introduced, to later be explained in further

detail showing the basic principle and why it’s one of the most used techniques to reduce power

consumption along with some advanced features available.

Tool Development: This chapter realize the description of the steps to develop a prototype

for clock-gating insertion for Latch based designs. The chapter starts by making a brief

introduction to the current implementation in Design Compiler R© for Flip-Flop clock-gating,

this is performed by making a rough deception of the algorithm used to insert CG cells,

and which parts of the code should be modified. Afterwards the description of the different

auxiliary tools developed is made and finally some details on the modifications performed to

the existent code are provided.

Analysis of results: This chapter performs the analysis of the results of running the prototype

tool in different designs, from small tests used for early verification to larger and more complex

designs, analyzing the quality of the obtained results. Also performs a brief description of

future work related to the tool and requirements for the prototype to enter to the Production

status

Conclusions: This is the final chapter of this work, provides the final round up for the different

concepts treated here and summarizes the strengths and weakness of this feature.
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Chapter 2

Literature Review

2.1 Digital circuits

Electronic circuits can be divided in 2 great families analog and digital circuits. The analog circuits

are based on continuous quantities 1; in this case these kind of circuits are based on voltage, and

current so they can be interpreted intuitively by people, this way in a given circuit if the input

voltage varies, then it’s expected that the current must vary in a related way.

On the other hand, digital circuits are based on discrete quantities so they can’t be interpreted

with the same degree of intuition as analog circuits, because there is a threshold that must be

surpassed in order to observe a difference in the behavior of the circuit given a change in the

operating conditions of the circuit, in the same way a light’s button must be pressed with a minimum

force in order to turn-on or turn-off the light.

From a strict electric point of view there are more important difference between analog and

digital circuits, as discussed by Roth on [1] and Floyd on [2]. Digital designs have several advantages

over analog designs, being information compression, codification and reliability of the transferred

information over a noisy channel, still analog circuits remain unbeaten in high fidelity audio systems

where any compression would degrade the received audio quality.

The information compression is an immediate consequence of the quantification of the measured

quantities and a sampling process, for example, in an analog temperature measurement scenario

the temperature is fully measured continuously, while in a discrete scenario only fractions of the

temperature are measured and at given intervals this way if the temperature were to be 35.342178

degrees, the analog circuit would measure the full temperature and a discrete would only measure

the 35.3 degrees.

The codification in a digital system allows different ways of transmitting the data; in the

temperature example the measured data could be transmitted as a voltage related proportionally

1 Common examples of continuous quantities are temperature or distance
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to the measured temperature (which is called a discrete circuit) or codify the data in a different

way, being one of the most common ways using a binary code transmitting a train of pulses directly

related to the temperature.

When choosing a binary representation of the discrete data in a quantified circuit it’s called a

digital circuit, therefore in the following only binary data representation is used whenever a circuit

is considered digital; in a digital circuit the following terms are used [3].

Logic level A voltage level that represents a defined digital state in an electronic circuit.

Logic HIGH (or Logic 1 ) The higher of two voltages in a digital system with two logic levels.

Logic LOW (or Logic 0 ) The lower of two voltages in a digital system with two logic levels.

Positive logic A system in which Logic LOW represents binary digit 0 and Logic HIGH

represents binary digit 1.

Negative logic A system in which Logic LOW represents binary digit 1 and Logic HIGH

represents binary digit 0.

The reliability is a consequence of the data codification, by choosing a binary codification where

a certain voltage represents the Logic HIGH and another the Logic LOW , there is a threshold

where any signal above a threshold can be interpreted as Logic HIGH and any signal below another

threshold represents the Logic LOW with no mistake implies high tolerance to noise during data

transmission, as shown in the figure 2.1

Figure 2.1: The figure illustrates the reliability of a digital circuit. For a given circuit the Logic

HIGH signal was defined as 5[V] with a threshold of 3[V], meaning that any voltage between 3[V]

and 5[V] is recognized as a Logic HIGH signal; similarly the Logic LOW signal is defined as 0[V]

with a threshold of 2[V] meaning that any voltage between 0[V] and 2[V] is recognized as Logic LOW

.With these thresholds, the analog signal in the upper part of the figure is correctly recognized as

the digital signal showed in the lower part of the image regardless of the associated noise in the

analog transmission providing the robustness of the digital representation.
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There is another advantage in digital circuits, also discussed in [4] is abstraction, which is

the key for designing complex systems because all digital systems are built over analog circuits, yet

digital circuits aren’t designed transistor by transistor but over more complex units like logic gates2.

The figure 2.2 [4]shows different levels of abstraction in a digital system design based on computer

hardware and software.

Figure 2.2: This figure illustrates different abstraction levels in digital design [4]

2.1.1 Digital circuit design advantages

From a design perspective, digital circuits have many advantages over analog circuits as discussed

on [5]

Reproducible results: For a given set of digital inputs, a digital circuit produces the same digital

results every time, in contrast to analog circuits where there is no way to guarantee the same

input3, and even if the exact same inputs are give, the result is not exactly the same because

it’s sensitive to different noise sources such as temperature

Programmable: Digital circuits can be designed using a programmable approach using HDLs4

therefore the circuits can be designed using a behavioral (or functional) description which is

later translated to the corresponding netlist. Also the netlist can be simulated so the behavior

of the circuit is verified prior actual implementation which is done automatically using special

hardware and software, while analog circuit design doesn’t have such features.

Flexibility and functionality: Digital circuits can be designed to perform specific with high

levels of complexity and perform such functions efficiently. Also the same circuit can perform

different tasks depending on the inputs; this is the case of programmable circuits like micro-

controllers and processors

2Logic gates are circuits built over transistors(typically) which operates on Logic levels like boolean functions (AND
, OR )

3Remember that in a analog circuit the input is sensitive to noise, while a digital circuit isn’t as sensitive
4HDL: Hardware description language
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Economy: Digital circuits can be easily mass-produced in integrated circuits once the circuit has

passed the prototype stage, making the mayor component of the circuit cost it’s design time

and prototyping. [6]

2.1.2 Timing analysis on digital circuits

Logic cells and wires composing a digital circuit are far from ideal from the timing perspective

because the time for a signal to traverse the circuit isn’t 0, in fact every wire and logic gate in the

signal path introduces finite delays to the data transmission, regardless of how small these delays

can be, they should be taken into consideration in digital designs as they can affect the outputs [1].

Wire related delays are usually neglected, in comparison to the delays introduced by logic gates in

timing analysis. 5

The best way to understand the timing of a simple design is using a timing diagram as the one

shown in figure 2.3

(a)

(b)

Figure 2.3: (a) Shows the schematic of a simple inverter. (b) Shows the timing diagram of the

inverter in (a) where the delay introduced by the inverter is shown as D

Timing hazards

Different timing delays through the datapath introduced by logic gates delays, causes dynamic

behavior through the circuit when the input changes as the signal is propagated. This dynamic

behavior may cause a difference between the expected result obtained by static analysis of the

circuit and the observed output which behaves dynamically thus producing momentary differences

5Currently as logic gates and transistors shrink, the delays of the logic gates becomes smaller closing the gap
between both delays
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between the expected result and the observer. This difference is known as glitch which corresponds

to a quick transition between 2(or more) different outputs states when the static analysis predicted

a different behavior. The timing hazards are divided in two categories [5].

Static Hazards: A static hazard is a pair of input combination that differ only in one variable

while both yield the same output signal, thus the output is expected to stay constant however

the output changes momentarily before stabilizing to the expected result. An example of this

is shown in figure 2.4

(a)

(b)

Figure 2.4: (a) Shows the schematic of a circuit susceptible to a static hazard. (b) Shows the timing

diagram of the circuit shown in (a) where the signal In1 stays in Logic 1 , while the signal In2

changes from Logic 0 to Logic 1 , thus the timing diagram shows the signal propagation across

the different logic stages in the circuit where the digital delays are illustrated as : InvD for the

delay introduced by the inverter, AndD for the delays introduced by the AND gated and OrD for

the delays introduced by the OR gates. The glitch is observed by the successive transitions in the

output signal compared to the static analysis which predicted no transition in the output.

Dynamic hazards: A dynamic hazard a the result of multiple transitions in the output signal as

result of a single input variable transition where the output was expected to change only once.

An example of this is shown in the figure 2.5
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(a)

(b)

Figure 2.5: (a) Shows the schematic of a circuit susceptible to a dynamic hazard. (b) Shows the

timing diagram of the circuit shown in (a) for the transition of the input signal In1 from Logic

0 to Logic 1 , while the signals In2 and In3 stay as Logic 0 ; the timing diagram illustrates the

propagation of the signal across the logic to the output signal where the delays of the different logic

gates are as follows: NorD is the delay of a NOR gate, OrD is the delay of a OR gate, NandD is

the delay of a NAND gate and AndD is the delay of an AND gate.The glitch is observed by the

successive transitions of the output signal while the static analysis predicts only the transition from

Logic 1 to Logic 0

Designing hazard free circuits requires the designer to include redundant logic to the minimized

design, as the inclusion of additional logic stabilizes the output signal for conflicting transitions.

This can be achieved using a Karnaugh map or even including the full list of redundant functions,

however this method is area expensive and such logic insertion should be avoided.

2.2 Sequential Circuits

Digital circuits are divided in 2 categories: combinational and sequential circuits as discussed by

Duek on [3] and Harris on [4].
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Combinational circuits: The main characteristic of combinational circuits it’s that its output

depends only of it’s current input, therefore they are effective in direct operation such as

real-time audio and video filtering and high-speed calculations.

Sequential circuits: The output of a sequential circuit can’t be analyzed by considering only its

current input, because the output depends on all the previous sequence of inputs which gives

them their name.

2.2.1 Finite State Machines

Digital circuits are widespread used mainly because of sequential circuits for they allow decision

making which enables the construction of finite states machines Finite State Machine ; a Finite

State Machine (as discussed in [7]) is a mathematical model composed of a finite number of states

for representing the dynamic behavior of a complex system according to their sequence of inputs,

where the definition of state is as follows. [5]

State : “The state of a sequential circuit is a collection of state variables whose values at any one

time contain all the information about the past necessary to account for the circuit’s future

behavior”

There are two different kind of Finite State Machine , as discussed by Wakerly on [5] used for

digital system modeling, the Mealy and Moore Finite State Machine .

Mealy Finite State Machine : The output of a Mealy machine like the one shown on figure

2.6(a) depends on the current state of the machine and it’s current inputs.

Moore Finite State Machine : The output of a Moore machine like the one shown on figure

2.6(b) depends only on the current state of the machine.
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(a) (b)

Figure 2.6: This figure shows the 2 mayor variants of Finite State Machine in digital system design.

(a) Shows a basic Mealy machine. (b) Shows a basic Moore machine

Both types of Finite State Machine represent different approaches to solve the same problem,

and both yield similar results, however a Moore machine is considered easier (and simpler) to

implement in designs while a Mealy machine is usually considered more complex, but provides

faster designs.

2.2.2 Sequential Cells

Sequential circuits are built using sequential elements and logic gates6; sequential elements are

special cells with a bistable behavior, which, as discussed by Wakerly on [5], has two possible stable

states and no other configuration is allowed, therefore if a bistable cell is in a given state, it can only

go to the other state, there are no intermediate states allowed and as long as the cell is powered

the cell won’t change its state by noise. One of the most simple examples of a bistable cell is a S-R

Latch shown in figure 2.7 [5]

6Logic gates is the name given to circuits that perform boolean operations over it’s circuits broken down to the
basic operations (like AND,OR,NAND,NOR,NOT,XOR)
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Figure 2.7: An S-R Latch as a collection of logic gates

There are two families of bistables in digital circuit designs, Latches and Flip-Flops, being the

output response to the change of data input the mayor difference between them. Even though there

are several kind of Latches and Flip-Flops, only ( Positive logic ) D Latches and D Flip-Flops shown

in Figure 2.8, are treated in this text, for they are the easiest to understand and model, therefore

the most used variant of either Latch or Flip-Flop in digital circuits design.

(a) (b)

Figure 2.8: This figure shows the most common representation of a D Latch and a D Flip-Flops

(a) Shows the typical representation of a D Latch. (b) Shows the typical representation of a D

Flip-Flop .

D Latch

The D Latch is a bi-stable element with 2 inputs ( usually named D and EN ) and typically 2

outputs (Q and Q n )7, the behavior of this component is dependent of the enable input (EN ) as

whenever this signal corresponds to a Logic 1 the output’s (Q ) value is exactly the same as the

input’s ( D ) value, while the Q n output is always the logic inverse of the Q output. However as

long as EN remains as a Logic 0 the outputs values won’t change regardless of the input value.

This behavior can be seen in the figure 2.9

7In the present document, for simplicity, the Q output will be used while the Q n output is ignored unless
necessary. Also some cells have only one of the outputs available from the D Latch cell in order to reduce the area of
the cell; the same goes for a D Flip-Flop
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Figure 2.9: Timing diagram of the D Latch. For for simplicity, the EN pin is fed with a clk signal

D Flip-Flop

The D Flip-Flop behavior is very similar to the D Latch, as both components have the same inputs

and outputs, but the main difference between them is the response of the element against the control

signal EN . The outputs only change in a Flip-Flop if the control signal experiments a transition

between a Logic 0 and a Logic 1 , keeping the stored value as long as there are no more transitions

as seen on figure 2.10

Figure 2.10: Timing diagram of the D Flip-Flop . For for simplicity, the EN pin is fed with a clk

signal

From now on, a D Latch will be referred unambiguously as Latch, while a D Flip-Flop will be

named as Flip-Flop or just flop for simplicity.

In most applications the control signal used for the sequential elements is an externally

generated periodic signal, a clock signal o clk .

2.3 Synchronous and Asynchronous Circuits

Sequential circuits can be further divide in synchronous and asynchronous circuits, depending on

how the sequential cell are connected. Most circuits can be designed as a synchronous circuit and

have a similar design performing the same task built as an asynchronous circuit. Each paradigm

has advantages and disadvantages and the decision over which type of design use is based on in

parameters like complexity, speed and robustness.

Asynchronous Circuits: Are circuits that are not controlled nor synchronized to an external

clk signal, even if such signal exists, therefore are called asynchronous since there is no

synchronization possible between the different state transitions of the circuit given the absence
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of the control signal. These circuits if fed a clk signal use it only as reference and not as a

control signal as the internal state-changes are controlled only by the logic and sequential cells

delay.

Synchronous Circuits: Are circuits controlled by an external clk signal and the outputs of

the circuit, along with all the internal state transitions, are synchronized with it, this is

accomplished by connecting every sequential cell to the clock signal source, however this is

not enough if the sequential cell is a Latch given the latch transparency window8

Asynchronous circuits might be considered faster than synchronous circuits, given that

synchronous circuits depend on the clock signal for state transition, however synchronous circuits

have several advantages over asynchronous circuits for they are simpler to design and more robust,

since synchronous circuits can be analyzed using the same models as asynchronous circuits, yet the

synchronizing clk signal simplifies the analysis while improving the design robustness, this has as

result that basically all digital designs are synchronous, however asynchronous circuit analysis is

still fundamental for analyzing interfaces between 2 different designs with different clock signal and

still having a working circuit. [4]

2.3.1 Synchronous Circuit advantages

Synchronous circuits are used because their timing analysis is simplified compared to the timing

analysis of an asynchronous circuit, as the timing analysis is reduced to the analysis between the

clk signal and the data signals, because the outputs and the internal states of the circuit are

synchronized to the clk signal.

The timing analysis of a synchronous circuit is further simplified by using only Flip-Flops

as sequential cells for their timing characteristics, previously discussed in 2.2.2, which allow the

analysis to consider only a specific edge of the control signal, which in this case is the clk , and

to compare it to the data arrival time, therefore as long as every the possible data signals arrive

to the Flip-Flop before the clk signal for a given period the circuit will behave properly, therefore

eliminating the need for analyzing the timing hazards of the circuits for most cases.

Since the timing analysis of a synchronous circuit is heavily simplified, circuits designers are able

to focus on the functionality of the circuit, rather than preventing timing hazards, thus simplifying

the design as the redundant logic needed to prevent the hazards is not necessary and leaving

the timing analysis to a posterior stage. However timing analysis must not be overlooked as the

maximum frequency of the circuit will be limited by the slowest logic path between 2 different

sequential cells, therefore careless design negatively impacts the speed of the circuit.

8The transparency window is the time where the input signal of the Latch is propagated to the output. This will
be discussed further in 2.4.3
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2.4 Timing parameters for timing analysis

In order to design an synchronous circuit, the synchronous behavior of the Flip-Flop regarding it’s

control signal makes it the easiest choice of sequential cell, however with careful design Latches can

also be used as sequential cell and still obtain a synchronous behavior. Even if Latches don’t have

the synchronous behavior that Flip-Flops have, their smaller size, thus requiring less area and power

than a Flip-Flop and better timing parameters, as discussed in [8] makes Latches an interesting

alternative to Flip-Flops when designing high performance circuits.

The timing analysis of the Flip-Flop or Latch datapath requires the understanding of the timing

parameters of the Latch, Flip-Flop and the clock parameters.

2.4.1 Clock parameters

Figure 2.11: The clock parameters as discussed in [9], where T represents the period, W represents

the duty cycle, J is the Jitter and S represents the clock-skew.

The clock signal used as reference in a synchronous design can be described using different

parameters shown in figure 2.11, which are defined as following:

Period: Is the time between 2 consecutive rising edge of the clk signal.

Duty cycle: Is the time between the rising edge and the falling edge during a single period of the

clk signal, also known as time window.

Jitter: Is the local deviation in the period of the clk signal as noise for the same location, therefore

is considered as random local noise since it’s different on every period and different for each

location in the circuit.

Clock skew: Is time difference in the clk signal measured at 2 different locations of the circuit,

therefore is considered a global noise and stable, since it depends on the circuit structure.

It becomes obvious that to describe an ideal clk signal is enough to define its period and duty

cycle.
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2.4.2 Flip-Flop timing parameters

Figure 2.12: Flip-Flop timing parameters as discussed in [9], where U represents the set-up time,

H represents the Hold time and Tcq represent the time clock-to-Q.

The Flip-Flop timing parameters as shown on figure 2.12 describe the behavior of the cell and its

internal delays which are defined as following:

Set-up time: Is the minimum time that the data signal must be stable before the end of the data

capture in order to the signal to be handled properly. In the case of the Flip-Flop the end of

the data capture corresponds to the rising edge of the clk signal.

Hold time: Is the minimum time that the data signal must be stable after the end of the data

capture of the cell in order to the signal to be handled properly. In the case of a Flip-Flop

the end of the data capture corresponds to the rising edge of the clock signal.

Time clk-Q: Or tcQ is the internal delay of the Flip-Flop which indicates the time it takes for the

input signal to be available at the output pin of the cell after the rising edge of the clk signal

2.4.3 Latch timing parameters

Figure 2.13: Latch timing parameters, as discussed in [9], where U represents the set-up time, H

represents the Hold time, TcQ represents the time clock-to-Q and TDQrepresents the time D-to-Q
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The Latch timing parameters as shown on figure 2.13 describe the behavior of the cell and its

internal delays regarding the control signal, which in this case is a clk for ease of comparison, which

are defined as following:

Set-up time: Just as defined in 2.4.2 represent the minimum time that the data input must be

stable before the end of the capture time, which in a Positive logic Latch is the falling edge

of the control signal.

Hold time: Is the time that the data signal must be stable after the cell has stopped to capture

data in order t handle it properly. The latch stops to capture data in the falling edge of the

control signal.

Time clk-Q: Is the time it takes to the data signal to be available at the output of the cell after

a rising edge of the control signal (in this case the clk ).

Time D-Q: Is the time it takes to the input signal to be available at the output of the cell after

a transition of the input signal while the control signal is in Logic 1 , which means that the

Latch is transparent.

From the timing parameters of the Latch and Flip-Flop, it becomes clear that as long as all

data signals are timed in such a way that every transition of the data inputs of the sequential cell

occurs only while the clk signal is in Logic 0 , then there is no difference between a design where

all the Flip-Flop cells are replaced with Latches as the Latches would behave as synchronously as

Flip-Flops would. However this analysis is too simple and doesn’t consider the timing differences

between Latches and Flip-Flops .

2.5 Timing equations of Latches and Flip-Flops

The timing parameters of the Latches and Flip-Flops impose restrictions on the data arrival to a

cell, therefore if the signal arrives after the set-up time of the cell, the cell is in a Set-up timing

Violation and if the data input of a signal isn’t stable during the Hold-time, then the cell is in a

Hold timing Violation.
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2.5.1 Flip-Flop set-up timing violation

Figure 2.14: Flip-Flop schematic used as reference in the analysis of the set-up timing violations

(2.1) TD2 = R1 + tDQ +DLM

For the timing analysis of a Flip-Flop datapath, the circuit shown in figure 2.14 is used as

reference, in the Set-up timing analysis, the data of the first Flip-Flop is assumed to have arrived

at a proper time so the time it takes the signal to travel from the first Flip-Flop in the figure to the

second is given for the equation 2.1 where :

Figure 2.15: Flip-Flop timing diagram used as reference for the set-up timing violation analysis.

This figure uses only one clk signal as reference for both Flip-Flops for simplicity, however in the

analysis each bank is suposed to be fed with a slightly different clk signal derived from the same

source.

TD2 Is the time of arrival of the signal from the first Flip-Flop to the second Flip-Flop in the

datapath

R1 Is the rising edge of the clk signal perceived by the first Flip-Flop

tcQ Is the Time clk-Q of the first Flip-Flop

DLM
Is the maximum logic delay from the output of the first Flip-Flop to the second Flip-Flop .
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And figure 2.15 is used to illustrate the scenario described.

(2.2) TD2 ≤ R2 − U

The data arrival to the second Flip-Flop must comply the set-up condition, shown in equation

2.2, where:

R2: Is the rising edge in the clk pin of the second Flip-Flop .

U : Is the set-up time of the second Flip-Flop

Therefore the timing restriction is obtained by using equations 2.1 and 2.2 obtaining the

equation 2.3.

(2.3) R1 + tcQ +DLM
≤ R2 − U

The equation 2.3 is not complete as the information of the rising edges, which are defined by

equations 2.4 and 2.5 where the value of “ n” is assigned to match the corresponding edge, is not

yet included in the equation.

R1 = n · T + tr(2.4)

R2 = n · T + tr(2.5)

By following a conservative approach for the rising edges defined by previous equations where

T is the period of the signal and tr is the uncertainty of the rising edge, equations 2.4 and 2.5

become 2.6 and 2.7 respectively, where TR is the worst rising edge uncertainty.

R1 = n · T + TR(2.6)

R2 = (n+ 1) · T − TR(2.7)

Finally by using the equations 2.6 and 2.7 on the equation 2.3 with simple algebraic

manipulation becomes the equation 2.8 which is the timing restriction of the Flip-Flop and the

period given by the set-up time.
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(2.8) T ≥ tcQ +DLM
+ U + 2TR

2.5.2 Flip-Flop hold timing violation

Figure 2.16: Flip-Flop schematic used as reference for the hold timing violations analysis. Shows a

explicit difference between a slow (or regular) datapath and a faster datapath.

Figure 2.17: Timing diagram for the Flip-Flops used as reference for the hold-timing violation

analysis. This figure uses only one clk signal as reference for both Flip-Flops for simplicity, however

in the analysis each bank is suposed to be fed with a slightly different clk signal derived from the

same source.

For the Flip-Flop hold timing violation analysis, the figure 2.16 is used as reference to better

illustrate the circuits condition, also the figure 2.17 is used to illustrate the timing conditions

analyzed.

(2.9) TD2−2 = R1 + TcQ +Dlm

From figure 2.17 the arrival of the problematic signal TD2−2 is given by the equation 2.9 where:

R1: Is the rising edge in the first Flip-Flop
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Dlm: Is the minimum logic delay given by the datapath between the first and second Flip-Flop

tcQ: Is the Time clk-Q of the first Flip-Flop

(2.10) TD2−2 ≥ R2 +H

However for the signal to comply the hold restriction, the time of arrival of the signal must

follow the restriction set by the equation 2.10 where:

F2: Is the rising edge of the clk signal received by the second Flip-Flop .

H: Is the hold time of the second Flip-Flop

(2.11) R1 + TcQ +Dlm ≥ R2 +H

From equations 2.9 and 2.10 the hold timing restriction for a Flip-Flop is given by the equation

2.11, where the rising and falling edge are given by the equation 2.4 and 2.5 respectively.

R1 = n · T − TR(2.12)

R2 = n · T + TR(2.13)

By considering the worst case scenario for the clk signals arriving each Flip-Flop, the rising

edge of the cells are given by the equations 2.12 for the rising edge of the first cell where the clock

arrived the earliest possible time and the equation 2.13 for the rising edge of the second cell where

the clk signal arrived at the latest possible time. Finally by combining equations 2.11, 2.12 and

2.13; using simple algebraic manipulation the restriction over the fastest logic in the design based

on the hold timing requirement of a Flip-Flop cell is represented by the equation 2.14.

(2.14) Dlm ≥ 2TR +H − tcQ
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2.5.3 Latch set-up timing violation

Figure 2.18: Latch schematic used as reference in the analysis for the set-up timing violations

Figure 2.18 shows the schematic of a circuit composed of 2 banks of latches which is used as reference

for the timing analysis of the set-up condition. Given the Latches timing characteristics, there are

2 possible scenarios for a set-up timing restriction.

Latch set-up timing: late clk signal

Figure 2.19: Timing diagram for the Latches used as reference for the set-up timing violation

analysis, in the case when the data in the first Latch arrives before the clk signal which arrives at

the latest possible time. This figure uses only one clk signal,for simplicity, as reference for both

Latches, however in the analysis each bank is suposed to be fed with a slightly different clk signal

derived from the same source.

(2.15) TD2 = R1 + tcQ +DLM

When the data of the first Latch arrives before the clk signal, as shown in the figure 2.19 the

data arrival to the second latch is given by the equation 2.15 where:

R1: Is the rising edge of the first Latch
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tcQ: Is the Time clk-Q of the first Latch

DLM
: Is the maximum logic delay of the circuit.

(2.16) TD2 ≥ F2 − U

However the set-up requirement given by the equation 2.16, where:

F2: Is the falling edge of the clk signal in the second Latch

U : Is the set-up time requirement of the Latch

(2.17) R1 + tcQ +DLM
≤ F2 − U

F2 = n · T +W + tf(2.18)

Now using the equations 2.15 and (2.16), the set-up timing restriction for the case when the

data arrives to the first Latch before the clk signal is represented by the equation 2.17, in which

the rising edge of the first Latch is given by the equation 2.4, meanwhile the falling edge of the

clk arriving the second latch is given by the equation 2.18, where the value of the parameter n is

determined accordingly to the case of analysis.

R1 = n · T + TR(2.19)

F2 = (n+ 1) · T +W − TF(2.20)

By using the worst-case scenario approach for the timing analysis in the scenario, the rising

and falling edge of the clk signal are given by the equations 2.19 and 2.20 where:

W : Is the nominal duty-cycle of the clk signal

TF : Is the worst clk uncertainty in the falling edge of the clk signal in the whole design.

Finally by combining using the equations 2.19 and 2.20 in the equation 2.16 and using simple

algebraic manipulations the set-up timing requirement of the Latch for the current scenario is given

by the equation 2.20



24

(2.21) T ≥ DLM
+ tcQ + TF + TR + U −W

Latch set-up timing: late data signal

Figure 2.20: Timing diagram for the Latches used as reference for the set-up timing violation

analysis in the case when the data signal on the first Latch arrives at the latest possible time. This

figure uses only one clk signal,for simplicity, as reference for both Latches, however in the analysis

each bank is suposed to be fed with a slightly different clk signal derived from the same source.

(2.22) TD2 = TD1 + tDQ +DLM

When the data signal in the first Latch arrives during the transparency window, as shown in

the figure 2.20, then the arrival of the data signal to the second Latch is given by the equation 2.22

where:

TD1: Is the arrival of the data signal to the first Latch .

tDQ: Is the time Time D-Q of the Latch

DLM
: Is the maximum delay of the circuit in the figure 2.18.

(2.23) TD1 + tDQ +DLM
≤ F2 − U

However the set-up timing requirement of the Latch is given by the equation 2.16, therefore by

using the equation 2.16 and 2.22 to get the equation 2.23 which represents the timing requirement

for the Latch in this scenario.
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(2.24) TD1 = R1 +W − U

(2.25) TD1 = n · T + TF +W − U

Now by using the worst-case scenario analysis for the falling edge of the Latch given by the

equation 2.20 and considering the latest possible time arrival of the data signal in the first Latch

given by the equation 2.24 where the rising edge of the clk signal received by the first Latch R1

given by the equation 2.19, which used in the equation 2.25 yields the worst possible data arrival

for the first Latch given by the equation 2.25.

(2.26) T ≥ tDQ +DLM

Finally by using the equations 2.23 and 2.25 by using simple algebraic manipulations the set-up

timing restriction of the Latch given by the latest possible data arrival is given by the equation 2.26.

The equations 2.21 and 2.26 represent the timing restrictions over the period given the

maximum logic delay of the circuit. Since the internal delays of the Latch are similar as discussed

in [9], in a first order analysis, they can be considered as equal, thus the timing restriction that

apply for most analysis is the most restrictive one, which is equation 2.21.

2.5.4 Latch hold timing violation

Figure 2.21: Latch schematic used as reference in the analysis for the hold timing violation

Figure 2.21 shows the schematic of a circuit composed of 2 banks of latches which is used as reference

for the timing analysis of the hold condition. Given the Latches timing characteristics, there are 2

possible scenarios for a set-up timing restriction.
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Latch hold timing: data after clk

Figure 2.22: Timing diagram for the Latches used as reference for the hold timing violation analysis

in the case when the data signal on the first Latch arrives at the latest possible time. This figure

uses only one clk signal,for simplicity, as reference for both Latches, however in the analysis each

bank is clk signal is slightly different.

The first scenario for the timing analysis is that the data arrival in the first Latch occurs after the

clk signal arrival, which is shown in figure 2.22.

(2.27) TD2−2 = TD1−2 + tDQ +Dlm

From figure 2.22 the arrival time of the signal in the second Latch is given by the equation 2.27

where:

TD1−2: Is the time of the second data arrival to the first Latch

tDQ: Is the time Time D-Q of the Latch

Dlm: Is the minimum delay between the banks of Latches

(2.28) TD2−2 ≥ F2 +H

Still the hold timing requirement of the latch is given by the equation 2.28 where:

F2: Is the falling time of the clk signal in the second Latch

H: Is the hold time of the second Latch
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(2.29) TD1−2 + tDQ +Dlm ≥ F2 +H

By using the equations 2.27 and 2.28 the restriction over the logic delays in the circuit can be

calculated as shown in equation 2.29.

(2.30) F2 = n · T + TF +W

Considering, for analysis purposes, the worst-case scenario for the falling edge in the second

Latch given by the equation 2.30 and using it on the equation 2.29, through simple algebraic

manipulations the timing requirement of the Latch over the minimum logic delay in the datapath

can be written as in the equation 2.31.

(2.31) Dlm ≥W + TF +H − tDQ − TD1−1

Latch hold timing: data before clk

Figure 2.23: Timing diagram for the Latches used as reference for the hold timing violation analysis

in the case when the data signal on the first Latch arrives before the clk signal which in turn arrives

at the latest possible time. This figure uses only one clk signal for simplicity as reference for both

Latches, however in the analysis each bank is clk signal is slightly different.

(2.32) TD2−2 = R2 + tDQ +Dlm

Figure 2.23 shows the timing diagram of figure 2.21 for the case in which the second data signal

to the first Latch arrives before the clk rising edge. In this scenario, the arrival time of the second

data signal to the second Latch is given by the equation 2.27 where:
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R2: Is the time of the second rising edge of the second Latch

tcQ: Is the time Time clk-Q of the Latch

Dlm: Is the minimum delay between the banks of Latches

(2.33) R1 + tcQ +Dlm ≥ F2 +H

The timing requirement of the datapath is given by the equation 2.28, therefore by using the

data arrival time given by the equation 2.27 over the equation 2.28 the restriction can be re-written

into equation 2.33.

(2.34) Dlm ≥W + TF + TR +H − tcQ

The worst-case scenario analysis implies the rising edge of the first Latch arrives at the earliest

possible time which is shown by equation 2.12, similarly the worst possible falling edge for the clk

signal in the second Latch is as late as possible which is shown in the equation 2.30. Therefore by

using equations 2.12 and 2.30 in equation 2.33 the timing requirement over the logic delay can be

written as shown in equation 2.34.

Further analysis is required regarding the hold timing condition for Latches, because equations

2.31 and 2.34 represent different race conditions not entirely compatible since equation 2.31 is

calculated over a specific arrival time for the data signal in the first Latch, therefore if the data

to the first Latch were to arrive before the time used as reference to calculate the hold condition,

then for that path, the data arrival to the second Latch wouldn’t comply the hold time restriction.

Thus in order to ensure no problems arise for the logic delay, the condition shown in 2.31 must be

calculated for the worst possible scenario which means that the earliest possible data arrival must

coincide with the earliest possible clk for that datapath.

(2.35) Dlm ≥W + TF +H − tDQ + TR

Using the previous analysis and by using the rising edge is given by the equation 2.12, which

applied to the equation 2.31 yields the equation 2.35, however the difference between equations 2.34

and 2.35 is the internal delay of the latch whose corresponds to the time Time clk-Q and time

Time D-Q , yet since the data for the data-after clk signal scenario must arrive at the exact same

time as the clk signal, the parameter triggered is the the time Time clk-Q and not the time Time

D-Q , therefore the only valid equation for the hold timing requirement is equation 2.34.
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2.6 Latch-based Designs

Section 2.4 argued that Latches were an interesting alternative to Flip-Flop based designs, now

thanks to the equations from section 2.5 it’s possible to analyze the effect of switching Latches and

Flip-Flops in a designs.

2.6.1 Replacing Flip-Flop with Latch

Consider a Flip-Flop based design, similar to the one used in the section 2.5.1, in this scenario

timing restriction over the period of the clk signal is given by the equation 2.8. If one were to

replace the Flip-Flops with Latches, the period restriction would be given by equation 2.14.

For analysis purposes, consider the maximum delay in the circuit isn’t affected by this

operation, also given the clk parameters aren’t related to sequential cells, thus it’s parameters

wouldn’t be affected. Finally the only parameters that are still different are the internal delays of

the sequential cells which for the analysis can be forced to be equal.

(2.36) Tff ≥ Tla + (TR − TF ) + U +W

So by choosing the equality in the equation 2.21 and by sorting the terms in the equation the a

relation between the period of a Flip-Flop and the period of a Latch which is shown by the equation

2.36 where:

Tff : Is the period of the Flip-Flop given by equation 2.8

Tla: Is the period of the Latch given by the equation 2.21 where the equality has been chosen.

TR: Is the worst uncertainty in the rising edge of the clk signal.

TF : Is the worst uncertainty in the falling edge of the clk signal.

U : Is the set-up timing requirement of either the Latch or Flip-Flop (given that they have been

supposed to be the same)

W : Is the duty-cycle of the clk signal.

Equation 2.36 can be used to conclude that given Latches and Flip-Flops with the exact same

parameters, the period requirement of the Flip-Flop is larger than the period requirement for the

Latch, thus the same design based with Latches can operate at a higher frequency than if it were

Flip-Flop based.
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2.6.2 Latch based design advantages

Flip-Flop based designs have the advantage of being easy to design thanks to their hold timing

condition. The Flip-Flop hold timing restriction imposes a minor restriction over the minimum

delay of the logic in the circuit compared to the restriction imposed by Latches, still Latch based

designs have definitive advantages over Flip-Flop as discussed previously in section 2.4.

Latches have less area

The number of transistor used to build a digital cell is directly related to it’s complexity, since the

number of transistors required to build a Latch are less than the number of transistors required

to build a Flip-Flop, a Latch cell requires less area than a Flip-Flop performing the same function

built using the same transistors [9]

Latches consumes less power

The power consumption of a circuit which will be discussed deeply later, like the area is directly

related to it’s complexity which means the number of transistors used to build the cell. Since Latches

are built using less transistors than Flip-Flops, they require less energy to keep each transistor

powered up. Also the state transitions of the circuit consume power therefore by having less

transistors Latches consumes less power than Flip-Flops in every state transistor, thus reducing

the total power consumption of the circuit.

Clock uncertainty absorption

Figure 2.24: Timing diagram showing clock uncertainty absorption for latch based design.

Thanks to the timing requirements of the Latch, there is a transparency window, illustrated in figure

2.24 as Tw, in which the arriving data signal will be propagated through the cell to its output. This

transparency window starts with the rising edge of the clk signal and ends a set-up time before the

falling edge of it.

Considering the clock uncertainties for each edge, still there is a completely deterministic time

frame during which the Latch is transparent, therefore by designing the logic of the circuit in such
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a way that every transition at the input of every Latch, the clock uncertainty won’t be relevant for

the analysis. [9]

Figure 2.24 shows the timing diagram of a latch based design in which the clock-uncertainty

absorption becomes clear.

Time borrowing

Time borrowing also known as Cycle stealing is a design technique in which some of the logic of

the circuit is allowed to be slower than the clk signal with the restriction that the slow logic is

compensated in further stages with fast logic, thus in this operation slow logic stages borrow time

from faster stages.

The theory behind time borrowing discussed in [9] states that there are 2 ways of achieving

time borrowing:

Static Time borrowing: Static time borrowing is achieved using a variation over a standard

clock-tree synthesis9 in which the clk signal for a specific group of sequential cells is delayed

using buffers in order to allow the slow logic to finish its evaluation, before the arrival of

the clock signal, while the next group of sequential cells is fed with the non-delayed clock.

Static time borrowing gives the path the same average clk signal while the slowest logic delay

is longer than the time period which is compensated borrowing time from the subsequent

stages. This situation is illustrated by figure 2.25.

9Clock tree synthesis is the process of creating the wiring of the clk signal in order to minimize the clock-skew
over the design. Since this process isn’t part of the focus of this work, no further information will be provided, still
the reader is free to search for further information in [5] near the clk skew discussion and [10]



32

(a)

(b)

Figure 2.25: Static time borrowing phenomena. (a) Shows the schematic of a datapath implementing

static time borrowing, the schematic shows an additional buffer for the clk signal of the second

group of cells, while the third group receives the same clk signal as the first group, thus allowing

the time borrowing. (b) Shows the timing diagram of figure (a) which shows the time borrowing

behavior by allowing the maximum delay being larger than the period of the reference clk signal.

The static time borrow technique depends on the modifications to the clk tree therefore can

be used with Flip-Flops and Latches .

Dynamic time borrowing: Dynamic time borrowing contrary to the static time borrowing can

only be achieved by using Latches in the design, this is possible thanks to the Latch set-up

timing restriction given by equation 2.21 which can be re-written as equation 2.37 where:

Deff : Is the total delay in path corrected by clk uncertainties

(2.37) T ≥ Deff −W

Thus from equation 2.37 can be deducted that for a given time window W it is possible for

the logic delay of the circuit to be longer than the clk period. Oklobdzija in [9] makes a full
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analysis over time borrowing over a datapath by modifying the set-up timing condition of a

group of Latches to take into consideration the time borrowing.

(a)

(b)

Figure 2.26: Dynamic time borrowing phenomena. (a) Shows the schematic of a datapath where

dynamic time borrowing is possible, in this schematic, the delay is characterized by the slow logic

between the first and second group of Latches. (b) Shows the timing diagram for the circuit in

figure (a), in this timing diagram is possible to observe that the delay between the rising edge of

the clk signal in the first group of Latches and the data arrival on the second group is longer than

the clk period, still the data si propagated correctly over the design because the delay between the

second and third group of cell is smaller.

Figure 2.26 shows the timing diagram of a circuit in which dynamic time borrowing is observed.

2.6.3 Domino circuits

Domino circuits are a special kind of digital circuits that uses Latches as sequential elements and

not Flip-Flops, used specially in high performance systems. To understand why Latches are used

in domino circuits, dynamic logic must be discussed first.

dynamic logic

Dynamic logic is a family of logic circuits that include in their input list the clk signal of the circuit,

this is because the dynamic logic is not designed in the same way as standard logic cell using the
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CMOS technology.

Figure 2.27: Cmos basic design principle

CMOS logic design uses complementary MOSFet transistors to realize the logic design. The

desired logic function is computed using N-channel transistors and connected to the dual version

of the desired logic, built using P-channel transistors, as shown in figure2.27.

Figure 2.28: Dynamic logic basic design principle

The problems with CMOS logic lies in the fact that doubles the number of required transistors

for a given logic function, however this is required for reliable functionality, also it’s slow as for

every transition the transistor must charge the signal (specially true for rising transitions) [11].

Also P-channel transistors are slower than N-channel [11].
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Figure 2.29: Dynamic inverter timing diagram

Dynamic circuits solve that problem by using only one kind of transistors for logic functions

and feeding them with the clk signal as shown in figure 2.28, so during the time while the clk signal

is in Logic 0 , the transistors are charged to Logic 1 so when the rising edge of the clk arrives

to the logic cells the signal is evaluated at the output effectively halving the number of transistors

this design strategy is shown in figure 2.29 which shows the timing diagram of a dynamic inverter.

Also given the fact that falling transitions are faster than rising transitions, the circuit is faster

than conventional CMOS circuits. However this strategy still requires P-channel transistors for the

signal to be propagated correctly through different stages of evaluation.

Figure 2.30: Domino Logic design principle

In order to avoid the use of P-channel transistors, an inverter logic cell is used between

consecutive stages allowing them to be based on N-channel transistors only which is known as

domino logic [12] and it’s illustrated in figure 2.30.
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Figure 2.31: Domino Logic stages using a Latch to avoid signal degradation

One of the problems that arise with the successive domino logic stages is the progressive

signal degradation [12], so in order to avoid this issue sequential cell are required, but given the

superior area and power characteristics of Latches added to the fact that signal evaluation is bound

to a common clk signal, which makes the strict synchronous timing behavior of a Flip-Flop cell

meaningless for the timing analysis, Latches are used in a domino logic design as shown in figure

2.31.

2.6.4 Pulsed Latch

Even using the analysis made in 2.6.1 circuit designers prefer using Flip-Flop over Latches, thanks

to the better hold timing characteristics of Flip-Flop allowing for correct behavior of the circuit with

little effort compared to a Latch design where the timing must be adjusted taking in consideration

the hold timing requirement. The major problem for circuits using Latches lies in the hold timing

requirement defined by equation 2.35 where the restriction over the fastest logic compared to the

Flip-Flop hold equation (2.14) is given by the time window during which the Latch is transparent

caused by the duty cycle of the clk signal.

In order to simplify the hold timing analysis of a Latch based design, the obvious path is to

reduce the duty cycle of the clk signal, from equation 2.35 there is no restriction over how much the

duty cycle of the clk signal can be reduced however the Latch set-up timing constraints also depend

on the time window, thus equation 2.21 and 2.26 yield the real constrain over the time window.

(2.38) tDQ +DLM
= DLM

+ tcQ + TF + TR + U −W

In order to determine the minimum allowable time window both set-up timing restriction must

be honored, thus to determine the minimum time window both restrictions are made equivalent, this

is because for this analysis, the timing restriction given by equation 2.21 can’t be less restrictive that

equation 2.26, in other words the minimum period given by the timing restriction from equation 2.21
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can’t be smaller than the smallest period given from equation 2.26, thus for the smallest possible

duty cycle both minimum periods are equal which yields equation 2.38

(2.39) Wmin = U + (tcQ − tDQ) + TF + TR

Finally by using simple algebraic manipulation over equation 2.38 the minimum time window is

given by equation 2.39, from which it can be easily concluded that the minimum duty cycle needed

as clk signal for a successful Latch based design is very small, because all the parameters in the

equation are small, which leads to the possibility of using a train of pulses instead of a simple 50%

duty cycle clk signal in a latch based design.

(2.40) Dlm ≥ U +H + (tcQ − 2 · tDQ) + 2 · (TF + TR)

The strategy of using a minimum duty cycle clk signal in a Latch based design is known as

pulsed Latch. . For a pulsed Latch the hold timing analysis becomes fairly similar to the hold timing

analysis of a Flip-Flop. When comparing the hold timing requirement for a Latch based design for

the minimum duty cycle shown in equation 2.40, it’s possible to observe that it has the same form

as the hold timing requirement for Flip-Flops given by equation 2.14; then the minimum logic delay

for pulsed Latches is about twice the minimum delay for Flip-Flops considering the set-up and hold

time of the cells being similar.

2.7 Power Consumption in CMOS circuits

The standard technology used in the integrated circuits are CMOS transistor, which is known for

having negligible losses in simple circuits, however when the transistor density increases inside an

integrated circuit this losses become relevant as they are the primary power consumption inside these

circuits heating the device and therefore decreasing their performance, reliability and lifetime [13].

It’s important to reduce the power consumption of a circuit, not only because it will reduce its

power demands, also because circuits with high power requirements might need ceramic casing

in order to allow a more efficient cooling which are much more expensive than plastic ones,

also currently many devices operate using battery so reducing the power consumption effectively

increases their battery life [14]. High power circuits such as computer microprocessors ( 50 W or

more) are harder to cool requiring active cooling systems (fans, liquid refrigeration) with no proper

power management would heat so much that is very likely that today’s home computers would be

either to slow (in order to allow standard cooling systems ) or necessarily require liquid refrigeration

in order to function [15].
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Figure 2.32: Power density increase through time [16]

Nowadays some of the most demanding circuits are microprocessors such as Intel or AMD

for desktop and server computers, this chips have been growing their power necessities regardless

of the advances in architecture and design techniques whose allow the decrease in the power

consumption surpassing the 100 W consumption and the advancements in the technology allowing

smaller transistors, thus enabling higher density inside the circuits increases significantly beyond

the power density of nuclear reactors as shown in the figure 2.32 [16].

The power consumption of the CMOS transistors comes from 2 main sources:

1. Dynamic power

2. Static leakage power

2.7.1 Dynamic power

Dynamic power consumption which account the largest portion of power consumption in a CMOS

based circuit, occurs at every input signal transition which means that there are losses for the rising

and falling transitions, but still these transitions don’t accurately account for the full dynamic power

consumption given that the transitions are never sharp enough there will always be a small current

for every intermediate voltage [14]
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Rising and falling transition power consumption

Figure 2.33: Rising edge transition currents, for simplicity of the diagram a simple Inverter i shown

Figure 2.33 shows the current flow inside a CMOS based gate during the rising transition and the

equivalent capacitor of the gate (and connected wires ). During the transition the capacitor must

be charged in order to complete the transition in the output signal which represents the effective

power consumption of the gate.

Figure 2.34: Falling edge transition currents, for simplicity of the diagram a simple inverter is shown

On the other hand figure 2.34 shows the flow of currents during a falling transition which shows

the discharge of the equivalent capacitor consolidating the power loss of the transistor array. [13]

(2.41) Etrans = CL · V 2
dd

Thus the energy consumption during a rising/falling transition cycle is given by equation 2.41

where:
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CL: Capacitive load of the transistors and wires

VDD: Supply voltage

(2.42) Ptrans = Ceff · V 2
dd · fclk

Still it’s necessary to address the power consumption of the gate during it’s normal operation

which can be expressed as equation 2.42 where:

fclk: clk signal frequency. This parameter assumes that the entire circuit is controlled by a clk

signal which is a good assumption in almost every scenario as discussed previously.

Ceff : Effective capacitance calculated as CL · α

α: Is the probability of an output transitions during a clock cycle

VDD: Supply voltage

Crowbar current effect

Figure 2.35: Crowbar-current during the transition, for simplicity of the diagram a simple inverter

is shown

Previously it was mentioned that there was an additional dynamic power consumption source for

a CMOS gate for an intermediate voltage known as the Crowbar current which is shown in figure

2.35.
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(2.43) Pcrow = tsc · Vdd · Ipeak · fclk

The Crowbar current occurs during rising and falling transition because the transition is not

instantaneous, thus there is a small time during which the all the transistors in the CMOS gate

are conducing which produces a short circuit current, producing a power consumption given by the

equation 2.43 where:

VDD: Supply voltage

tsc: Time duration of the short-circuit

Ipeak: Total current during the short circuit

fclk: clk signal frequency. This parameter assumes that the entire circuit is controlled by a clk

signal which is a good assumption in almost every scenario as discussed previously.

The Crowbar-current effect is considered negligible compared to the transition dynamic loss

since the short circuit time is short as the edges are expected to be sharp [13], also it’s possible

to designs transistors in order to fully prevent this effect by setting the transistor parameters

accordingly [17]
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2.7.2 Static Leakage Power

(a) (b)

Figure 2.36: Leakage currents flow where a simple inverter is used as example to simplify the

diagram, however the analysis is valid for any circuit. 2.36(a) Shows the leakage currents that

appear in the inverter for the static Logic 0 at the input while the output is static in Logic 1

2.36(b) Shows the leakage currents that appear in the inverter for the static Logic 1 at the input

while the output is static in Logic 0

When a CMOS gate is in a powered stable state there are small leakage currents considered negligible

as power consumption sources when compared to the dynamic losses, however these currents add

as the number of transistor increases in a single circuit and eventually lead to a significant portion

of the total power consumed by the circuit. These currents shown in figure 2.36 are [14]:

reverse bias p-n junction diode leakage: This leakage occurs in the reverse-bias p-n junction

inside the CMOS pair, this loss is equivalent to the losses in a diode in the same condition

which usually is small. In a CMOS pair there are 2 junctions affected.

1. n-type drain in the NMOS to the grounded p-mos sustrate

2. n-well (VDD) to the p-type drian in the PMOS transistor

(2.44) Isub−threshold ≈ µ · Cox · W
L

· V 2
th · e

Vgs − Vt
n · Vth

Sub-threshold leakage: When a transistor is held in “off” state, but still powered, there is a small

current which flows from source to drain terminal which can be approximated by equation

2.44 where:
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µ: Electron mobility.

Cox: Oxide capacitance by area.

Vth: Thermal voltage 10

Vgs: Voltage between the gate and source of the transistor. (Tied to the VDD)

Vt: Threshold voltage

W : Depth of the channel

L: Length of the channel

Gate leakage: The gate leakage current comes from the tunnel effect of the electrons through the

insulating layers. This effect is more relevant with new technologies where the transistors are

smaller leading to smaller isolation layers between the gate and drain increasing the possibility

of the quantum current [14]

2.8 Low-Power design techniques for Integrated Circuits

Taking in consideration the necessity of reducing the power consumption of an integrated circuit

and the mayor sources of the losses, there are several strategies to reduce the power consumed by a

circuit at RTL11 and gate-level with different levels of complexity and success rates using different

automation tools [14]

2.8.1 Supply Voltage Reduction

Perhaps the most direct way to reduce the power consumption in CMOS devices is to reduce the

supply voltage since the dynamic losses which can be explained mainly by the transition losses given

by the equation 2.42 where the dependency over the voltage is clearly quadratic, thus reducing the

supply voltage is highly effective to reduce the power consumption.

(2.45) Ids ≈ µ · Cox ·
W

L
· (Vgs − Vt)

2

The mayor issue when lowering the supply voltage of the cell is that it forces the output current

to a smaller value which impacts the overall speed of the circuit, since the output current IDS can

be written approximately as shown in equation 2.45 , and since the Vgs voltage is tightly tied to

the input voltage the output current is lowered significantly. In order to keep the overall circuit

speed the silicon designers can lower the threshold voltage, which in turn increases the static power

consumption of the circuit, which wasn’t an issue for the first transistors but now the static power

consumption is becoming more important [13]

10The thermal voltage is given by Vth = kT
q

≈ 25.9mV at room temperature
11Register Transfer Level
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2.8.2 Clock-gating

(a) (b)

Figure 2.37: Basic clock-gating transformation. (a) Shows a Flip-Flop with enable pin candidate

for clock-gating insertion (b) Shows the same Flip-Flop as figure (a) after the clock-gating insertion;

clock-gating insertion doesn’t modify the output of the cell greatly reducing it’s power consumption

with a minor impact on the timing of the affected cell.

Clock-gating is the primary method discussed in this work whose aim is to reduce the dynamic

losses by disabling the clock input to the sequential element 12 when their input values wouldn’t

change or when the sequential cell activity depend on a certain enable signal which activates the cell

when is set to Logic 1 . 13 The cell dependent of the EN signal is allowed to modify it’s output as

long as the EN signal stays at Logic 1 ; similarly the cell will not be allowed to modify it’s output

if the EN signal is Logic 0 . Clock-gating strategies use the enable signal associated to the register

in order to insert clock-gating cells, like the one shown in figure 2.37, in order to capture the clk

signal an keep it constant as long as the enable signal is in the inactive state reducing the power

consumption of the cell affected by clock-gating

Figure 2.38: A simple clock gate design

12Clock-gating is usually performed over Flip-Flops, but other sequential elements may be used like Latches where
the designer must perform the clock-gating insertion manually

13Although certain cells can be made in order to be active when the enable signal is set to Logic 0
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With the insertion of the clock gate many unnecessary transitions in the clock signal applied

to the Flip-Flop that would force dynamic losses in the cell yet it wouldn’t modify it’s output thus

wasting power. Figure 2.38 shows the most common design of a clock-gate for a positive logic

triggered Flip-Flop. Naturally the power reduction achieved with the clock-gating strategy scales

with more cells gated by the clock-gating cell.

2.8.3 Multivoltage design

Figure 2.39: Multivoltage design principle

Since lower supply cell consume less power, but are slower than cells which are feed with higher

supply voltage, a compromise between performance and low power is achieved using multivoltage

designs where inside a single chip blocks with different supplies levels like the one shown in the figure

2.39. This way higher performance cells work located in the high supply voltage power domain14

at full speed while the lower voltage power domain hosts the lower performance circuits dropping

the entire circuit power requirements.

14Power Domain: In a multivoltage design the sub-circuit with a specific voltage level is called power domain
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Figure 2.40: Low to high level-shifter [13]

The main disadvantage of the multivoltage design comes when signals travel between different

power domains the signal must be adapted to protect the lower voltage circuits and to allow proper

behavior in the higher voltage domain, to achieve this a special block is used called level-shifter [13].

These level-shifters can be inserted automatically since they don’t alter the logic behavior, however

the Low to high level-shifter like the one shown in the figure 2.40 introduces delays that should be

taken into account

2.8.4 Multiple-Vt library cells

Some CMOS devices can be manufactured with different threshold voltages allowing multiple Vt

libraries for the automatic synthesis tool to choose according to the design requirements allowing

minimum losses and functional correctness without the intervention of the circuit designer. Different

Vt cells have different uses since low Vt cell have high speed and low delays, but they have higher

sub-threshold voltage thus making them undesirable when designing low power devices, while a high

Vt cell is significantly slower, has lower sub-threshold losses making them ideal when there are no

critical path involved in a low power environment.

2.8.5 Power Switching

The power switching technique is performed by shutting of portions of the circuit save power,

effectively reducing dynamic and static power consumption of the subcircuits that are not being

used. Thanks to this power switching greatly reduce power consumption of the circuit with low
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impact on the performance of it.

Power switching techniques require power gates to isolate the target block, a set of specific

register to store the data from the circuit at the shut down moment to restore the data in the

circuit when the block is turned on and allow the rest of the chip to operate regardless of the power

state of the target block.

Figure 2.41: Power switching design principle

The power switching design principle shown in figure 2.41, as discussed by Keating on [13] and

also treated in [14] keeps the power consumption of an entire block to 0 assuming the area cost that

is required to introduce the additional cell which allow the rest of the circuit to keep functioning

while the block is turned off. The power switching technique can be applied to a high level of

granularity as far as a few cells each time turned off, but to a high area cost. [14]

2.8.6 Dynamic Voltage and frequency scaling

The dynamic voltage and frequency scaling expands the multivoltage approach allowing the supply

voltage and the clock frequency of a single power domain to adapt during the operation of the device

to match the workload needed from the chip saving power when not needed without sacrificing the

maximum performance when required.

Obviously this technique requires the design of a variable frequency clock and a multivoltage

supply to match the different workload levels, but the most difficult part it’s the proper design

and verification for every voltage and frequency combination available since some might change the

timing and the behavior of the circuit

Finally it must be noted that all the power reduction techniques described here can be applied

simultaneously to a given circuit in order to reduce it’s power consumption to the minimum, as long
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as the circuit designer is prepared to accept the area or speed cost of such techniques.

2.9 Clock-gating for Flip-Flop based designs

Clock-gating which was briefly introduced in 2.8.2, is one of the most widely used techniques to

reduce dynamic power consumption since it has only a minor impact on the timing of the circuit [13],

it’s simple by concept, can be implemented with minor impact on the rest of the circuit and can

be easily automated, thus performed by software, while leaving the circuit designers free to develop

the circuit without worrying about the clock-gating insertion.

2.9.1 Types of clock-gating cell

Previously 2.9 showed one of the most frequently used clock-gating (CG ) cell for positive clock-edge

triggered Flip-Flop, however the same CG cell can’t be used with a negative edge triggered Flip-

Flop as it would lead to incorrect behavior of the circuit. Also it’s possible to define clock-gating

cell without a latch which yields to a total of 4 basic clock-gating types of cells, all of which consider

a Logic 1 as the active EN signal, as another possibility can be easily adjusted using inverters.

Latch-based positive edge triggered

Figure 2.42: Latch based positive edge triggered clock-gating cell

Latch based clock-gating cell are the most common type of CG used by circuit designers, these

cells are built using a single AND logic gate coupled with a Latch and an inverter gate as shown in

figure 2.42, this configuration protects the rising edge of the clk signal which means that anytime

that the EN signal is active the clk signal received by the Flip-Flop from the CG cell it’s the same

rising edge as it would see if there is no clock-gating cell, this behavior is shown in figure 2.43
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Figure 2.43: Timing diagram for a latch based positive edge clock-gating cell

It’s important to note that given the presence of a Latch in the CG cell the enable signal must

comply the set-up and hold conditions for the Latch .

Latch-based negative edge triggered

Figure 2.44: Latch based negative edge triggered clock-gating cell

For negative edge triggered Flip-Flops the clock-gating cell used is similar to the one shown in figure

2.44 where the OR gate allows the protection of the falling edge transition of the clk signal against

violation in the set-up restriction on the Latch in the CG cell.

Figure 2.45: Timing diagram for a latch based negative edge clock-gating cell

The latch-based CG cell for negative edge triggered Flip-Flops timing diagram is shown in

figure 2.45 which shows how the configuration of Latch and OR gate keep the falling edges of the

clk signal while the EN signal is at Logic 1 , regardless of how unstable is the enable signal and

thus reducing the number of transitions in the clock pin of the gated registers.
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Latch-free positive edge triggered

Figure 2.46: Latch free positive edge triggered clock-gating cell

The latch-free clock-gate for positive edge triggered Flip-Flop shown in figure 2.46, carries an

inherent risk for the circuit behavior given the lack of the Latch cell since now many transitions in

the EN signal will go to the clk signal of the gated Flip-Flop therefore an additional condition is

imposed on the enable signal timing when a latch-free CG is requested. This restriction imposes

that no transition of the enable signal must occur as long as the clk signal is in Logic 1 therefore

the transitions of the enable signal can only occur while the clk signal is at Logic 0 .

Figure 2.47: Timing diagram for a Latch free positive edge clock-gating cell

The timing diagram of the CG cell shown in figure 2.47, illustrates the effect of the transitions

of the enable signal while the clk signal is at Logic 1 and how that produces incorrect activation

of the gated cells, however if the restriction imposed is honored the rising edge transitions of the

clk signal are correctly available in the output of the clock-gating cell.

Still it must be answered if such a rigid restriction is imposed over the enable signal, why is the

OR gate used instead of an AND gate since they would yield to the similar results by modifying

the condition over the enable signal, which would be completely valid, however the reason lies in

the corner cases of the transitions of the clk and EN signals when both transitions are nearly

simultaneous. In such scenario the OR gate provides better results for the output signal of the CG

cell. The timing analysis of the corner cases is left as an exercise to the reader given that is very

simple but doesn’t provide more useful information for understanding the following parts.
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Latch-free negative edge triggered

Figure 2.48: latch free negative edge triggered clock-gating cell

The latch-free clock-gating cell for negative edge triggered Flip-Flops ,shown in figure 2.48, suffers

from the problems as its positive edge counterpart, and it’s also limited by a restriction on the EN

signal which is to allow transitions of the enable signal only when clk signal is at Logic 0 .

Figure 2.49: Timing diagram for a latch free negative edge clock-gating cell

The timing diagram of the latch-free for negative edge triggered Flip-Flops is shown in figure

2.49, where it can be seen the effect of allowing transitions of the enable signal while the clk signal is

at Logic 1 which yield to incorrect trigger of the clk signal received by the gated cell thus producing

bad results for the circuit. Still the same diagram shows how the CG cell is able to provide at the

output of itself a the correct falling edge transitions of the clk signal.

In the same way as discussed in 2.9.1 the latch free negative edge CG cell is built using an

AND gate instead of an OR gate for the protection that the AND gate provide against the corner

cases of the transitions of the EN and clk signals.

Despise the problems that might arise when using latch-free clock-gating cell, they are still used

by circuit designers since they can provide, good results with a smaller area cost for the circuit.

2.9.2 Basic clock-gating insertion

The basic clock-gating insertion, already introduced in 2.8.2 is based in the identification of the

enable signal of the different registers15 and use it as the enable signal of the clock-gating cell to be

introduced. There are 2 basic mechanisms used to identify the enable signal of a candidate cell.

15Registers is just another term used to identify Flip-Flop cells
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Dedicated enable pin in the cell

Figure 2.50: Flip-Flop with en pin

Some Flip-Flop cells have a dedicated EN pin which is identified and used as the source of the

enable signal to be connected in the clock-gating cell. Figure 2.50 shows a register with an enable

pin, these registers still capture the data coming from their D pin at the positive rising edge of the

clk signal, however thanks to the enable pin, the registers only capture data for the next signal if

the signal in the EN pin is already at Logic 1 during the rising edge transition of the clk signal.

Therefore it becomes clear that the latch based clock-gating cell showed in figure 2.42 whose timing

diagrams is shown in figure 2.43 reproduces the expected behavior of the Flip-Flop if no clock-gating

insertion were performed.

Feedback-loop reduction

Figure 2.51: Flip-Flop with feedback loop
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Figure 2.52: Flip-Flop with feedback loop with a multiplexer representation

Clock-gating insertion is possible for Flip-Flops that don’t have an EN pin available, if they have

a feedback-loop between the registers inputs and outputs, as shown in figure 2.51, in such scenario

it might be possible to restructure the combinational logic to represent is as shown in figure 2.52.

Figure 2.53: Flip-Flop with multiplexer and enable signal

The advantage of the representation of the feedback loop with the multiplexer incorporated is

the coupling of the multiplexer and the Flip-Flop as shown in figure 2.53 because it has the exact

same behavior as the Flip-Flop with enable pin, therefore it can be gated using the enable signal

of the EN as the enable signal of the clock-gating cell and removing the multiplexer leaving only

the input from the combinational logic.

2.10 Advanced clock-gating insertion for Flip-Flop based designs

From now on the clock-gating insertion analysis will consider only positive edge triggered Flip-Flops

with EN pin, unless otherwise stated, as the results and algorithms are equally applicable to the

other Flip-Flop cell possibilities using the strategies previously discussed. The following advanced

clock-gating insertion strategies are state of art, available through Design Compiler R©
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2.10.1 Enhanced clock-gating insertion

So far the clock-gating insertion analysis realized have only considered single registers which, as the

reader might have already guessed, is nearly useless and counterproductive when trying to reduce

the power consumption of the circuit, therefore circuit designers tend to enforce certain restrictions

over the minimum number of cells sharing the same enable condition in order be gated using the

clock-gating insertion strategies.

Sometimes banks of registers that aren’t big enough in order to be gated given the minimum

bank size restriction, can still be gated using only partially their enable condition. This process is

known as enhanced clock-gating, or partial clock-gating (as the enable condition is used partially)

Use existing clock-gates

Figure 2.54: A bank of registers sharing the enable condition and a single registers with a more

complex enable condition

To understand this clock-gating insertion mechanism, it better to work it through and example,

so considering the scenario shown in figure 2.54 where a bank of registers sharing the same enable

condition En1 is shown, also in the same design a single register whose enable condition is given by

the logic AND between the input signals En1 and En2.

Figure 2.55: Gated bank of registers while a single register isn’t gated

Then as discussed previously there is no reason to insert a clock-gate for the single register,

while the bank gets a clock-gating cell using the enable condition En1 as shown in figure 2.55
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Figure 2.56: Bank of registers sharing the clock-gate with the single register

Finally using the existent clock-gate, the single register can be gated by connecting the output

signal of the clock-gate to the clk pin of the single register, now the register still retains it’s full

functionality as if the clk signal were connected, but now the cell wastes less dynamic power since

it’s connected to an existent clock-gate, and the signal En1 it’s redundant for the cell, so it’s

removed as well, obtaining the circuit shown in figure 2.56

Create new clock-gates

Figure 2.57: Two single registers with their enable conditions shown

Figure 2.57 shows 2 single registers, with different enable conditions, clearly as previously stated,

makes little sense to insert a clock-gate for each register

Figure 2.58: Two registers sharing a clock-gate but not completely gated
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Even if each Flip-Flop have a different enable condition, both registers share the same signal

as part of their enable condition (En1 ) therefore using a similar logic as used in 2.10.1 a new clock-

gating cell can be created using the signal En1 as enable condition and use it to gate both registers,

therefore the signal En1 and the AND gates driving the enable conditions of the different registers

becomes redundant, thus they are modified in the circuit leading to the final result shown in figure

2.58

2.10.2 Multistage clock-gating insertion

Figure 2.59: Two banks of Flip-Flops with their enable conditions, Note the signal En1 is shared

between the banks

Multistage clock-gating insertion is a more aggressive power reduction technique, in which a group

of clock-gates sharing partially their enable conditions are gated together using another clock-gate

for them, available for banks of Flip-Flops with different enable conditions, when at least one

component of the enable condition of each bank is shared between the banks as shown in figure

2.59.

Figure 2.60: Two banks of gated Flip-Flops using their respective enable conditions

Unlike the case discussed in 2.10.1 each Flip-Flop bank is large enough to be gated by itself

using their respective enable condition as shown in figure 2.60, but considering only the clock-gates

it’s possible to observe the analogy between the scenario of figure 2.60 and the scenario shown in

figure 2.57
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Figure 2.61: Two registers sharing a clock-gate but not completely gated

Therefore by taking advantage of the fact that the clock-gates share the signal En1 as part of

their enable conditions another clock-gate can be inserted using the signal En1 as enable signal,

and connect to it’s output the other clock-gates as shown in figure 2.61. Using this strategy the

energy consumption of the CG cells now that they have a clk signal a gated clk signal.

2.10.3 XOR Self-Gating

Figure 2.62: Single register candidate for XOR Self-gating, note that the register has no enable

condition

The XOR Self-gating technique is a clock-gating strategy where a register without enable condition

is gated, such as the one shown in figure 2.62. The idea behind XOR Self-gating as discussed in [18]

is to generate the enable condition of the clock-gate using the information of the activity of the

data signal arriving to the register, then if that signal has low activity, which means that doesn’t

change often, it means that the register is candidate for XOR Self-gating.
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Figure 2.63: Single register gated using XOR Self-gating, note the inclusion of the feedback-loop

and the XOR logic gate to allow clock-gating insertion

The enable condition for the Flip-Flop is created by comparing the input and output of it using

a XOR logic gate, therefore if both signals are equal, there is no need to update the register, thus

the output of the XOR gate is the enable signal of the register which is used to fed the enable input

of the new CG cell inserted for the register, as shown in figure 2.63

Figure 2.64: Two registers gated using XOR Self-gating

As discussed previously, there is little meaning to insert a clock-gate for a single register,

therefore candidate registers for XOR Self-gating are grouped together and activated only if at least

one of them must be activated, to do so, OR gates are used as shown in figure 2.64.
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2.10.4 Other clock-gating operations

Clock-gate insertion is not the only operation performed automatically related to clock-gating cells

since circuit designers may have inserted their own clock-gates or users of automatic synthesis tools

may want to modify the circuit, in those scenarios the synthesis tool should be able to modify the

circuit to fit the new requirements.

Remove clock-gating cells

The clock-gating cells removal is a straightforward operation as it’s the reverse operation to the

clock-gating insertion so to remove a clock-gate the gated register must be replaced by a register

with an enable pin and connect the enable pin of the clock-gate to the enable pin of the new

representation of the cell, finally the clk pin of the CG is connected to the clk pin of the Flip-Flop.

If an adequate replacement for the gated cell can be found, then a multiplexer is inserted.

Balance clock-gating cells load

Figure 2.65: Large bank of gated registers for the figure consider the maximum for the CG cell to

be 12

The clock-gating balance is no other thing that the balance of the register gated by a clock-gating

cell or a group of them (that share the same enable condition) but the number of registers gated

by a single clock-gate are either too large or to small16 as shown in figure 2.65 where the number

of gated registers is too large for the output of the clock-gating cell so the number of registers

connected to each cell must be balanced; if the number of registers by cell is still too large then new

clock-gating cells may be created.

16Having too many registers gated by the same clock-gating cells may introduce timing problems as the length of
the number of wires becomes large increasing the capacitive load in the output of the clock-gating cell which modifies
the speed of the rise and fall times of the signal
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Figure 2.66: Balanced group of gated banks, now the bank is splitted in 2 smaller banks of 8 registers

Figure 2.66 shows the result of a balanced clock-gating cell, now each clock-gating cell gates 8

registers while the maximum is 12 so there are no violations to the circuit requirements and since

the number of registers in each CG cell is equal the impact of the load on each cell is reduced by

the better balance.

2.11 Aproaches to clock-gating for Latches

Clock-gating insertion for Latches is not currently supported by synthesis tools so when circuits

designers need CG in their circuits with Latches they have to insert them manually which is

obviously time consuming and error prone, and even if there is no mistake, an automatic tool

should be able to find even more cases where to insert CG cells for latches.

2.11.1 Pulser-gating

Pulser gating, as discussed in [19] is the technique in where a clock-gating cell is inserted for pulsed

Latches 17, because Latches consume less power than Flip-Flop and as discussed in 2.5 the timing

equations for Latches depend on the time window or duty cycle of the control signal, therefore by

having a very short time window Latches timing is close to Flip-Flop timing, thus can be replaced

directly.

The paper suggest performing regular synthesis of clock-gating using Flip-Flops as sequential

elements and then replacing the Flip-Flop with Latches by using a pulse generator in the clock tree,

however the paper works using a different clock-gating insertion engine than the discussed here and

17A pulsed Latch, as it names suggest is a simple Latch which is fed with a very short pulse train, or small duty
cycle clock, as opposed to the 50% duty cycle used in most circuits
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also given the noisy characteristics of the pulse generators, the pulsed Latch approach requires the

cells to be physically close together.



62

Chapter 3

Tool Development

3.1 Relevance of the work

Previously it was mentioned that clock-gating is one of the most effective and widely used techniques

for reducing dynamic power consumption, however automatic synthesis tool support clock-gating

for Flip-Flop based designs only, for most designs use Flip-Flops as sequential elements given that

Flip-Flop timing is simpler than Latch timing as discussed in 2.5.

Latch based designs do exist since Latches have certain advantages over Flip-Flop in circuit

designs as discussed in 2.6.2, therefore circuit designers are bound to have Latch based circuit to

consume large quantities of dynamic power, and in order to reduce they have to insert clock-gates

manually a task time consuming and clearly error prone while circuits designer would probably skip

many gating opportunities or even worse, by inserting the clock-gates prior synthesis might prevent

optimizations in the circuit.

Therefore circuit designers often request support for automatic clock-gating insertion for

Latch based designs to companies that develop the automatic synthesis software such as Synopsys

developer of the Design Compiler R© tool. In order to realize this work a Synopsys customer allowed

Synopsys employees access to a Latch based design of their own as a testing platform for the feature

in development

3.2 Auxiliar tools developed

One of the first challenges faced, during the development of automatic clock-gating for Latches in

the Design Compiler R© synthesis tool, was the fact that such feature never existed, thus no tools

were available for analyzing the results of the clock-gating insertion in a Latch based design, if
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anything the current report tools1 would show an increase in the number of clock-gating cells,

but wouldn’t provide any information regarding if the clock-gates are actually gating Latches or if

they are properly inserted, and any other information should be extracted using the graphical user

interface (GUI ) of Design Compiler R© .

Obviously in order to allow ease of verification on the correctness of the tool in development

some auxiliary tools had to be developed, but this tools couldn’t be embedded in the code for

the feature being a prototype and implementing a report would be disruptive, therefore a set of

scripts were created using the scripting language used in Design Compiler R© , Tcl coupled with

some already existent commands embedded in Design Compiler R©

3.3 Timing analysis of a gated Latch

In 2.4 and 2.5 the timing analysis of Latches and Flip-Flops was introduced, also 2.9 realized a

brief description of the clock-gates available for Flip-Flops and how they reproduced the behavior

of the Flip-Flop depending on the clock-gating cell and certain restrictions. The same patterns can

be applied for Latches in order to define the adequate clock-gating cells.

Let’s begin the analysis by considering the behavioral description of a Flip-Flop with enable

signal and comparing it to the behavioral description of a Latch with the same pins, for this purpose

the Verilog HDL is used.

1 module EnFFD

(D,En ,Q, c l k ) ;

input [ 0 : 0 ] D;

input [ 0 : 0 ] En , c l k ;

output reg [ 0 : 0 ] Q;

6 always@ (posedge c l k )

begin

i f (En == 1 ’ b1 )

begin

Q<=D;

end

end

11

endmodule ;

Listing 3.1: Verilog description of a

Flip-Flop with EN pin

module EnLatch (D,En ,Q, c l k ) ;

2 input [ 0 : 0 ] D;

input [ 0 : 0 ] En , c l k ;

output reg [ 0 : 0 ] Q;

always@ ( clk ,D,En) begin

7 i f ( (En && c lk ) == 1 ’ b1 ) begin

Q<=D;

end

end

12 endmodule ;

Listing 3.2: Verilog description of aLatch with EN pin

From the behavioral description it becomes evident the fact that the difference between the

EN and clk pin of a Latch is only by their name making them indistinguishable, which means that

the obvious choice of a CG cell for a Latch based design is a latch-free clock-gate AND based, as

1The report tools here described are a series of Synopsys command starting the report prefix that print in the
screen useful information about the cells or the designs according to the information requested. In this case mainly
reports about clock-gating
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it reproduces perfectly the behavior described by the code fragment 3.2, thus requires no further

analysis.

The testcase provided by Synopsys customers, which already had some gated Latches, showed

that some of them shared their CG cell with similar Flip-Flop, and the shared CG was a Latch-

based one, which means that these kind of CG cells are expected in a Latch based design, thus they

must be analyzed.

Figure 3.1: Reasonable possible EN signals as input in a Latch based design

When analyzing a Latch based design, the discussion over the different types of digital designs

in 2.3 should be taken in consideration, as it states that basically most (if not all) complex digital

circuits are synchronous, therefore a Latch based design is most likely to behave in a synchronous2

fashion, which implies that random states transition are unlikely and mostly undesired, which can

be summarized in the following statements:

1. For a positive-edge Latch the state should be stable as long as the sequential elements are

inactive.

2. The enable condition of a Latch in the design should be stable during a clock period.

3. Therefore the enable condition of the Latch should be stable during any clock-edge.

The previous statements provide a restriction over the enable condition, therefore only the

enable conditions shown in figure 3.1 represent the expected “behaviors” in a Latch based design.

En1: The transitions of the enable signal are allowed only while the clk is at Logic 0 so the signal

is stable as long as the clock is at Logic 1

En3: The transitions of the enable signal are allowed only while the clk is at Logic 1 so the signal

is stable as long as the clock is at Logic 0

En3: The enable signal can only stabilize itself at Logic 1 if the clk signal is at Logic 0 , and can

only stabilize to Logic 0 if the clock is at Logic 1

2In this case, the Latch based design is considered synchronous because all the state transitions are bound to the
clock signal even if the Latch has an asynchronous behavior.
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En4: The enable signal can only stabilize itself at Logic 0 if the clk signal is at Logic 1 , and can

only stabilize to Logic 1 if the clock is at Logic 0

This analysis was verified with the customer’s own engineers and designers which confirmed

the analysis by saying that in a Latch based design they expected the enable signal to behave as

En1 for a positive driven Latch .

Using this information and comparing it with the state of art of clock-gating for Flip-Flop

based designs, it became evident that the relation between clock-gates and enable condition was

very similar between both cases, but reversed, as for Flip-Flops the latch-based CG cells reproduce

the behavior of the cell perfectly and the latch-free clock-gating required the verification of the

characteristics of the enable condition, meanwhile for Latch based designs, latch-free clock-gating

cells reproduce the behavior of the cell and the latch-based CG cells required a timing analysis on

the enable condition for it to preserve the behavior of the circuit.

Therefore automatic clock-gating insertion for Latch based designs is feasible and similar

enough to the Flip-Flop based designs scenario, as to recycle the algorithms used in the tool.

3.4 Analysis of the clock-gating insertion algorithm

Design Compiler R© provides automatic clock-gating insertion as part of the synthesis process

during the execution of the compile or compile ultra commands which differ on the optimization

algorithm used, but from the clock-gating insertion perspective there is no significant difference, at

least for the clock-gating insertion algorithm discussed in this work.

3.4.1 Design Compiler R© compile command flow

The present works assumes that the reader has some level of familiarity with the Design Compiler R©

tool developed by Synopsys , therefore no tutorial or introduction will be presented about this tool.

The compile flow corresponds to all the process realized by Design Compiler R© during which

the circuit design is logically optimized, mapped and constraints are applied to the cells in the

design; also depending on the mode, it performs a basic routing of the cells in order to improve the

timing optimization. The design once compiled though the compile or compile ultra commands

is ready to be processed by a place and route tool which is the following step in a circuit design.
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Figure 3.2: Rough representation of the compile flow performed by Design Compiler R©

The compile flow can be understood, for clock-gating insertion perspective, as shown in figure

3.2 where each step represents:

1. Compile Start At the moment of compile start the design is already loaded in the tool and all

the configurations and variables necessary during compile are set.

2. RTLCG Is the first clock-gating insertion engine used during compile, only works with RTL

designs before mapping, thus its name.

3. Mapping In the mapping stage the combinational logic is optimized, the feedback loops

removed and cell are mapped, which means that the generic representation of the cell is

replaced by their specific representation according to the configuration and which has the full

information about the building of the cells (area capacitance etc).

4. CGOPT The second clock-gating insertion engine, this one works over RTL and mapped cells

so it’s used to finish insert clock-gates in any instance left behind by the RTLCG engine and

to perform further optimizations on the already gated cells.

5. Timing This stage performs the timing and area optimizations which makes it the longest

part of the process.
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3.4.2 CGOPT flow

The clock-gating insertion for Latches prototype feature is developed only in CGOPT since in

Design Compiler R© only mapped Latches have an EN pin aside the clk pin, because there is no

way to distinguish the EN and clk pin in a Latch from their behavioral description so Design

Compiler R© makes no difference between both pins, thus it doesn’t have a model for the Latch with

EN and clk pins, until the cells are mapped, therefore providing a prototype using the RTLCG

insertion engine would require an additional amount of effort only to distinguish the enable and

clock signals which are already available in the mapped cell, thus available in during the CGOPT

engine.

Figure 3.3: Rough representation of the CGOPT insertion engine performed during Design

Compiler R©

The CGOPT insertion engine roughly follows the algorithm showed in figure 3.3 where:

Start CGOPT : This is the stage of the flow, where the CGOPT insertion engine is started, the

user configurations are loaded and most variables required thought the process are set

Filter hierarchies: Each hierarchy (or module using verilog notation) may or may not have

candidate cells for clock-gating insertion, so all the hierarchies that don’t have sequential

cells, are CG cell are filtered in this stage to avoid unnecessary calculations later on.

Find candidate cells: For every hierarchy with possible candidate cells, each cell is verified to

determine if it’s possible to gate the cell, at this stage all the cells that aren’t registers (Flip-
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Flops ) are filtered out, also any register that has already been gated is filtered, the only

exception to this rule are CG cells as they could be used to gate more registers.

Store candidate cells: Each candidate cell, is processed before being stored, during this process

the enable condition of the cell is calculated and then the candidate cell along with the enable

condition and other parameters are stored. Finally when the once all the cells are stored, they

are grouped by enable condition and clk signal in banks.

Insert CG cells: For every bank, using the enable and clk signal stored and comparing it to the

same signals of the already exiting CG cells to check if an already existing CG can be used,

if no CG cell exists then a new cell is created and all the cellls in the bank are connected to

the CG cell.

3.5 Clock-gating for Latches implementation

Considering the already existing code dealing with clock-gating insertion for Flip-Flop based designs,

and the availability of CG cells types the following restrictions were applied to the prototype

implementation:

1. Reuse the largest possible amount of code and existing algorithms for the Latches case

2. Consider only latch-based cells for insertion.

Considering only Latch -based CG cells may not be as correct as considering latch-free cells,

but in order to provide support for Latch free cells the whole CG cell selection engine would have

to be re-implemented which escapes the purpose of generating a prototype.

3.5.1 New Variables

Perhaps the most important modification made to the code is the inclusion of a variable to activate

the feature, and another variable to print helpful debug messages. This variables were created using

an already existent mechanism for increased speed of execution at variable setting and reading.

The new variables are:

power cg allow cg for latches: When this variable is turned on, the clock-gating for latches is

enabled.

boolean c g op t g e t v a r p owe r c g a l l ow c g f o r l a t c h e s (void )

2 {
return powe r c g a l l ow c g f o r l a t c h e s ;
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}

Listing 3.3: Relevant fragment of code that recovers the value of the variable

power cg allow cg for latches

pwr cg print msg in cg for latch: When this variable is turned on, debug message printing

is allowed during clock-gating for Latches, therefore this variable hold no meaning unless

power cg allow cg for latches is turned on.

1 boolean c g op t g e t v a r pw r c g p r i n t ms g i n c g f o r l a t c h (void )

{
return pwr c g p r i n t ms g i n c g f o r l a t c h ;

}

Listing 3.4: Relevant fragment of code that recovers the value of the variable

pwr cg print msg in cg for latch

3.5.2 Functionality modifications

In order to provide the prototype for clock-gating for Latches different parts of the code had to be

modified, in different parts of the CGOPT insertion flow.

Filtering hierarchies

True to the spirit of recycling as much as possible the already existent algorithms in clock-gating

for Flip-Flops, the modifications to the code are mostly to allow Latches to get past the filters when

the variable power cg allow cg for latches is activated.

1 d c f o r a l l c h i l d c e l l s ( a l t , c e l l ) {

/∗ Check i f the c e l l has va l i d a t r i bu t e s ∗/
i f ( d c c e l l i s s e q u e n t i a l o r h a s s e q u e n t i a l a r c s ( c e l l ) &&

! d c c e l l i s m a s t e r s l a v e ( c e l l ) ) {
6 /∗ add f l o p s ∗/

i f ( c l k g t d c c e l l i s r e g i s t e r ( c e l l ) ) {
f o u nd s e q c e l l = TRUE;

break ;

} else i f ( c g op t g e t v a r p owe r c g a l l ow c g f o r l a t c h e s ( ) &&

11 d c c e l l i s l a t c h ( c e l l ) ) {
/∗ Adding l a t ch i f not i n s i d e a cg c e l l ∗/
i f ( ! c l k g t p a r e n t c e l l i s c g c e l l ( c e l l ) ) {

f ound la t ch = TRUE;

break ;

16 }
}

}
} dc end f o r ;

Listing 3.5: Relevant fragment of code that allows hierarchies with latches not to be discarded

during the hierarchies filtering
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The code fragment 3.5 shows the implemented code that allow hierarchies compromised only

with Latches to not be filtered out of the clock-gating insertion mechanism. In this code fragment,

there are functions already implemented which have to be explained in order to understand the

code fragment.

dc for all child cells : Variant of the well known while in the C programming language.

dc cell is sequential or has sequential arcs : This function verifies if the cell in question

has sequential attributes (like Flip-Flops and Latches have).

dc cell is master slave : This function verifies that the cell in question doesn’t have a

Master/Slave configuration

clkgt dc cell is register : Verifies if the cell is a Flip-Flop

dc cell is latch : Verifies if the cell is a Latch

clkgt parent cell is cg cell : Verifies if the Latch is not inside a CG cell hierarchy.

found latch : Is a parameter used to not remove the hierarchy from the hierarchies to verify when

searching for candidate cells later on.

Find candidate cells

The process of finding candidate cells, is actually the process of discarding progressively cells that

cannot be gated, either for not being supported (such as Latches ) of for the cells simply can’t be

gated (like being defined by the user as not a candidate cell for clock-gating), therefore this process

had to be intervened to allow clock-gating for Latches.

1 i f ( ! on l y cg s &&

d c c e l l i s s e q u e n t i a l o r h a s s e q u e n t i a l a r c s ( c e l l ) ) {

i f ( c l k g t d c c e l l i s r e g i s t e r ( c e l l ) &&

can ga t e r eg ( c e l l ) ) {
6

cgopt add cand idate r eg ( c e l l , TRUE /∗ f o r cgopt ∗/ ) ;

} else i f ( c g op t g e t v a r p owe r c g a l l ow c g f o r l a t c h e s ( ) &&

d c c e l l i s l a t c h ( c e l l )&&

11 can ga t e r eg ( c e l l ) ) {

i f ( c g op t g e t v a r pw r c g p r i n t ms g i n c g f o r l a t c h ( ) ) {
msg pr in t f ( ”Hidden va r i a b l e s s u c c s e s f u l l \n” ) ;

}
16

/∗ add l a t c h e s to candidate r e g i s t e r ∗/
cgopt add cand ida t e l a t ch ( c e l l , TRUE /∗ f o r cgopt ∗/ ) ;

}
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}

Listing 3.6: Relevant fragment of code that allows Latches to be considered as candidate cells,

instead of discarding them.

The first filtering process, allows only Flip-Flops to be gated, thus this filter had to be modified

accordingly, which is shown in the code fragment 3.6, where additional parameters and functions

are introduced.

only cgs : This boolean variable is used to identify hierarchies that only have clock-gating cells.

can gate reg : This function makes further filtering on the registers to be gated verifying among

other thing if the user used setting to avoid the gating of a certain cell.

cgopt add candidate latch : This function stores a valid candidate Latch.

cgopt add candidate reg : This function stores a valid candidate Flip-Flop.

/∗ Skip l a t c h e s whose co pin can ’ t be found by rtdc ∗/

i f ( r e t && d c c e l l i s l a t c h ( reg ) &&

cgop t g e t v a r p owe r c g a l l ow c g f o r l a t c h e s ( ) &&

5 ( ( dc p in ) r t d c c e l l g e t c o p i n ( reg ) == NIL( dc p in ) ) )

{
r e t = FALSE;

i f ( c g op t g e t v a r pw r c g p r i n t ms g i n c g f o r l a t c h ( ) ) {
msg pr in t f ( ” sk ipp ing l a t ch because the c l o c k p i n couldn ’ t be found \n” ) ;

10 msg pr in t f ( ” skipped l a t ch %s \n” , ( s t r i n g ) dc ob jec t ge t name ( reg ) ) ;

msg pr in t f ( ” skipped l i b c e l l %s \n” ,

( s t r i n g ) dc ob jec t ge t name ( d c l i b c e l l o f c e l l ( reg ) ) ) ;

}
}

15

/∗ Check i f the r e g i s t e r has mu l t ip l e c l o ck pins , only f o r mapped reg s ∗/
i f ( r e t &&

! d c c e l l i s s e q g e n ( reg ) ) {
20 c l k p i n s = c l k g t d c c e l l c l o c k p i n c o u n t ( reg ) ;

i f ( c l k p i n s == 0) {
ungated reason = PWR CG UNGATED REGISTER NO CLOCK;

r e t = FALSE;

} else i f ( c l k p i n s > 1) {
25 i f ( ! d c c e l l i s l a t c h ( reg ) | | ! c g o p t g e t v a r p owe r c g a l l ow c g f o r l a t c h e s ( ) )

{
ungated reason = PWR CG UNGATED REGISTER MULTIPLE CLOCKS;

r e t = FALSE;

}
}

30 }

Listing 3.7: Relevant fragment of code that include verification to allow only suitable Latches to be

added as candidate cells.
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The second filter is obviously the function can gate reg, which had to be modified in order

to allow Latches to be considered as valid candidate registers. Since this function was originally

developed considering no Latches to arrive this function ever, there was no explicit filter for Latches,

however there was an indirect filter in the function, because the function would filter any sequential

cell with more than 1 pin with clk pin functionality and, as previously stated, the functionality of

the clk and EN pins isn’t distinguishable in a Latch, thus Latches were filtered out.

In later stages of the development, a problem arose with certain types of Latches making the

tool crash in certain circumstances, thus a filter had to be added to kept problematic Latches out

of the possible candidate cells. The code 3.7 shows the relevant fragments of the code modified to

get the expected functionality.

rtdc cell get co pin : This function finds unequivocally the clk pin of a cell, which is

particularly useful for Latches, therefore if that function can’t find the clk pin of the cells

(regardless of the cell actually having one) the Latch isn’t considered as a valid candidate3

Storing the cells

As previously discussed the function cgopt add candidate latch stores a Latch as a valid

candidate cell, this function was created to mimic its counterpart cgopt add candidate reg, but

taking in consideration some subtleties in the Latch cell handling.

/∗ s p e c i f i c c l k pin −> l a t c h e s ∗/
s p e c i f i c c l k p i n = r t d c c e l l g e t c o p i n ( reg ) ;

s p e c i f i c c l k n e t = s p e c i f i c c l k p i n ?

d c n e t o f p i n ( s p e c i f i c c l k p i n ) :

5 NIL( dc net ) ;

s p e c i f i c c l k i s i n v e r t i n g = r t d c c e l l c o p i n i s i n v e r t i n g ( reg ) ;

/∗ s p e c i f i c en pin => enable pin in l a t ch ∗/
s p e c i f i c e n p i n = r t d c c e l l g e t s l p i n ( reg ) ;

10 s p e c i f i c e n n e t = s p e c i f i c e n p i n ?

d c n e t o f p i n ( s p e c i f i c e n p i n ) :

NIL( dc net ) ;

s p e c i f i c e n i s i n v e r t i n g = r t d c c e l l s l p i n i s i n v e r t i n g ( reg ) ;

15 i f ( s p e c i f i c e n n e t ) {
pwrbdd add target net (pbm, s p e c i f i c e n n e t ) ;

}

s p e c i f i c c l k b d d = pwrbdd formula of (pbm, s p e c i f i c c l k n e t ) ;

20

/∗ tak ing in to c on s i d e r a t i on we are s t o r i n g the ex t e rna l p ins ∗/
cand = cand i d a t e l a t c h ob j c r e a t e ( reg , pbm, s p e c i f i c c l k bdd , en bdd , ns bdd ,

f b i s e x t e r n a l , FALSE, s p e c i f i c c l k p i n ,

3Patching this function to find the clk pin in some problematic cells is completely out of the scope of the prototype
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s p e c i f i c c l k n e t ) ;

Listing 3.8: Relevant fragment of code that corresponding to the storing of Latches as candidate

cells.

The function cgopt add candidate latch calculates the feedback-loop (if any) and the

representation of the logic functions connected to the clk and EN pins (if the EN pin

exists). These computations are performed in a slightly different way as they are done in the

cgopt add candidate reg function and the code fragment 3.8 shows the code lines in which both

functions differ.

stat ic cgop t cand ida t e r eg

c and i d a t e l a t c h ob j c r e a t e ( d c c e l l reg ,

pwrbdd manager pbm,

bdd formula clk bdd ,

5 bdd formula en bdd ,

bdd formula ns bdd ,

boolean has fb ,

boolean has non standard sync p ins ,

dc p in c lk p in ,

10 dc net c l k n e t )

{
cgop t cand ida t e r eg cand ;

cand = cand i d a t e r e g ob j c r e a t e ( reg , pbm, clk bdd , en bdd , ns bdd , has fb ,

15 has non s tandard sync p in s ) ;

cand−>r e g c l k p i n=c l k p i n ;

cand−>r e g c l k n e t=c l k n e t ;

20 return cand ;

}

Listing 3.9: Function candidate latch obj create as an extension of the function

candidate reg obj create

typedef struct c gop t c and i da t e r e g s cgop t cand ida t e r eg t , ∗ cgop t cand ida t e r eg ;

2 struct c gop t c and i da t e r e g s {
d c c e l l reg ;

pwrbdd manager pbm;

bdd formula r eg c l k bdd ;

bdd formula reg en bdd ;

7 bdd formula reg ns bdd ;

bdd formula c lk bdd ;

bdd formula en bdd ;

unsigned int has fb : 1 ;

unsigned int has non s tandard sync p in s : 1 ;

12 unsigned int ha s non s t anda rd ex t fb l oop : 1 ;

unsigned int ha s non s t anda rd i n t f b l o op : 1 ;

dc p in r e g c l k p i n ;

dc net r e g c l k n e t ;

} ;

Listing 3.10: Modified data structure, candidate reg
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The introduction of the function candidate latch obj create, shown in the code fragment

3.9, as an extension of the already existent function candidate reg obj create, which creates a

data structure holding all the necessary information required in the further stages of the clock-gating

insertion algorithm, was necessary because the data structure shown in the code fragment 3.10 had

to be modified incorporating the fields reg clk pin and reg clk net required in further stages of

the algorithm to allow clock-gating insertion for Latches.

Clock-gating insertion

The clock-gating insertion part of the algorithm required few modifications thanks to the previous

modifications, still 2 functions had to be modified.

i f ( d c c e l l i s l a t c h ( reg ) ) {
c l k p i n = cand−>r e g c l k p i n ;

3 c l k n e t = cand−>r e g c l k n e t ;

}

Listing 3.11: Relevant code fragment in the function that verifies if and inverter is needed between

the clock-gate and the gated cell

The first modification is related to the modification in the candidate reg data structure, this

modification, whose lines are shown in the code fragment 3.11, is necessary to obtain the clk pin

and net of the Latch in the function that realizes the connection between the CG cell and the gated

cell, because it needs to verify if an inverter should be connected between the CG and the cell.

1 i f ( d c c e l l i s s e q u e n t i a l o r h a s s e q u e n t i a l a r c s ( c e l l ) ) {
i f ( d c p i n i s c l o c k ( pin ) &&

( c l k g t d c c e l l i s r e g i s t e r ( c e l l ) | |
( c g op t g e t v a r p owe r c g a l l ow c g f o r l a t c h e s ( )

&& d c c e l l i s l a t c h ( c e l l ) ) ) )

6 hash put kp t r v in t ( gated pin hash , pin , 1) ; /∗ r e g i s t e r or l a t ch ∗/
return TRUE; /∗ s e qu en t i a l ∗/

}

Listing 3.12: Relevant code fragment in the function that verifies the presence of a gated cell (Latch

or Flip-Flop ) connected to a clock-gate

The second modification to the clock-gating insertion mechanism, shown in the code fragment

3.12, is necessary to allow the correct identification of the sequential cells connected to the CG

cell, because prior the prototype, any Latch that would be connected to a CG cell, wouldn’t be

considered as a sequential cell, thus isn’t used to verify the maximum number of connected cells to

the clock-gate.
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3.6 Unit tests for the code

As part of the clock-gating for Latches prototype development some unit tests had to be created.

The unit test are verified automatically every night to ensure that the implemented functionality

wouldn’t be broken by other developers working on the code.

Four unit test were created to verify different aspect of the clock-gating for Latches insertion

engine, and ensure that some bugs that were in the code during the first development stages of the

code will no longer be reproducible. These unit test are available in appendix B.
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Chapter 4

Analysis of Results

The clock-gating for Latches prototype feature was successful by providing basic clock-gating

functionality in Latch based designs, similarly some of the advanced available for Flip-Flop based

designs worked properly, mainly because such features work over existent clock-gates without

double-checking the connected cells, still those features are not considered as part of this project

because there are still some basic features that should be improved first and full functionality of

the advanced features is not guaranteed.

4.1 Unit test results

The prototype clock-gating for Latches engine was able to insert clock-gates in Latch based design,

which is the main purpose of this work, in fact the software was effective enough for unit test to be

developed as discussed in 3.6. Regarding the functionality implemented only the unit tests B.1 and

B.2 are interesting as the others only verify that some early bugs are not longer reproduced.
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4.1.1 Mapped Latch clock-gating

Figure 4.1: Bank of 8 mapped Latches with EN pin used as staring point in the testcase

Figure 4.1 shows the bank of Latches as displayed in the Design Compiler R© GUI used as starting

point in the unit test B.1 for the clock-gating for Latches feature.

Figure 4.2: Bank of 8 mapped Latches gated using Design Compiler R© and the clock-gating for

Latches feature

At the end of the compile command with the clock-gating for Latches feature turned on, the
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mapped Latches are gated with a newly created clock-gating cell and the gated cells are remapped

into simpler version of the original Latches without their enable pin, which is the exact same

behavior the clock-gating engine would have if the cells were Flip-Flops. This test illustrates the

successful implementation of the feature in the Design Compiler R© tool.

4.1.2 Latch with feedback loop clock-gating

Figure 4.3: Single Latch with feedback loop after the first compile in Design Compiler R© used as

staring point for the clock-gating for Latches feature

The other type of clock-gating insertion developed for Latches requires a feedback loop to be present

in the cell to be gated such as the one shown in figure 4.3 where the cell has a clear multiplexer-based

feedback loop in the same way as the feedback loop required for Flip-Flop based designs, without

an enable pin for the cells, to be gated. The diagram in figure 4.3 is extracted from a middle point

in the unit test B.2 for comparison.

Figure 4.4: Gated Latch using Design Compiler R©

Again the clock-gating for Latches feature is able to perform clock-gating in a cell as expected,

by connecting the enable pin of the multiplexer to the newly created clock-gating cell and disarming

the already existent feedback loop, as shown in figure 4.4 taken directly from the GUI of Design

Compiler R© after the unit test B.2 is run.
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4.2 Customer testcase results

One of the Synopsys customers provided access to one of their designs to be used as a testing

platform for the clock-gating or Latches feature. This testcase has to be accessed through an

external server under a strict non disclosure agreement, thus very little details can be given about

this project without violating those agreements.

4.2.1 The testcase

The testcase design has over ten thousand Latches and over fifteen thousand Flip-Flops, and the

design already has several cells mapped and clock-gating cells inserted, in fact, some Latches are

already gated with the same latch based CG cells than the Flip-Flops and some Latches share their

clock-gating cell with Flip-Flops, thus the testcase provides support for some of the assumptions

made during the feature development and discussed in 3.3.

The script used to run the testcase performs 2 successive compile commands, with slightly

different configurations in order to obtain the desired results, a full run takes more than 4 hours.

4.2.2 The results

In order to obtain the results several copies of the testcase folder were made in order to store the

results from different configurations and to avoid conflicting file access during the runs.

There are 2 flows run to validate the results of the clock-gating for Latches feature, the first

flow is to stop the script at the end of the first compile command referred as the Short flow, while

the second flow is to run the full script, which is as the Full flow. Each flow is run twice, using

the same binary of Design Compiler R© , one of the runs is performed as reference while the other is

performed using the variable power cg allow cg for latches set to true.

In order to analyze the results, the Design Compiler R© commands and the scripts designed to

measure the results were used.
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The short flow

Data Reference Latches Improvement (%)

Inserted CG 958 1023 6.78

Flip-Flops 32983 32983 0.00

Latches 9799 9799 0.00

Gated Flip-Flops 26282 26282 0

Ungated Flip-Flops 6701 6701 0

Gated Latches 2473 5398 118.27

Ungated Latches 7326 4401 -39.92

Gating Latch (%) 25.24 55.09 29.84

Tabla 4.1: Comparison between the reference results and the clock-gating for Latches results in the

short flow

The results of the short-flow run in table 4.1 show that the design already had some Latches gated

by the designers, still the number of gated Latches by the clock-gating for Latches feature allowed

a 118.28% of gated Latches increase compared with the designers original effort, which given the

lack of such feature is probably their best effort, thus the prototype shows promising results for the

feature.

The full flow

Data Reference Latches Improvement (%)

Inserted CG 777 907 16.731017

Flip-Flops 32981 32980 N/A

Latches 9799 9799 0

Gated Flip-Flops 26539 26527 -0.05

Ungated Flip-Flops 6442 6543 1.57

Gated Latches 2392 5365 124.29

Ungated Latches 7407 4434 -40.14

Gating Latch (%) 24.410654 54.750485 30.34

Tabla 4.2: Comparison between the reference results and the clock-gating for Latches results in the

full flow

The full-flow results in table 4.2 showed even better results for the number of gated Latches

compared with the designers original effort, regardless of the reduction in the number of CG cells

which can be explained by further optimizations performed by the tool in the second run of the

full-run and the slight reduction in the number of gated Flip-Flops which can be understood as a

conflict in the number of gated cells for a given CG .
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From the Latches that couldn’t be gated in any flow there were 587 Latches that were skipped

because their clk pin couldn’t be determined reliably, which is not a problem in the feature but a

problem in the cells used by the customer that couldn’t be analyzed correctly by the tool.
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Chapter 5

Conclusions

5.1 Conclusions

The goal for this works is to implement a prototype of clock-gating insertion for Latch based

designs in the Design Compiler R© tool developed by Synopsys , which was performed successfully

as discussed in Chapter 4.

Unfortunately the clock-gating for Latch based design literature was scarce, since very little

could be found through papers and much less was available in book abut clock-gating, which is a

consequence of the little development in the area and that a small percentage of commercial designs

make heavy use of Latches, making the knowledge of clock-gating implementations not widespread.

The closest approach to clock-gating for Latch based design in the literature was the pulser-gating

approach discussed in [19]

Still circuit designers use clock-gating for their Latch based circuits, but when they do they

make sure by hand that the designed behavior of the circuit is not perturbed by the CG cell insertion

because they tend to use the same cells for Latches and Flip-Flops .

Considering the differences between Flip-Flops and Latches, it’s clear that the differences can

be classified in area; power and timing differences. The area and power consumption differences are

not relevant for clock-gating, while the timing differences are fundamental. The most interesting

timing characteristics of Latches are dynamic time borrowing and clock uncertainty absorption, and

any clock-gating scheme implemented should not break these characteristics.

During the present work, the analysis of clock-gating insertion for Flip-Flops provided 2

different strategies for gating Flip-Flops. The first strategy is based on Latch based clock-gates

which provide a functionality invariant transformation on the circuit, while the second strategy

based on Latch free clock-gates provide an unsafe clock-gating insertion which must be dealt with

care in order to honor the designed functionality. Using the previous information and establishing an

analogy between the Latches and Flip-Flops timing, it’s possible to provide support for clock-gating
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insertion for Latches as long as the appropriate clock-gating cells are used and some restrictions are

observed.

Even if clock-gating for Latches is properly supported, the timing differences between Latches

and Flip-Flops require the utilization of different CG cells between Latches and Flip-Flops, which

raise the issue of not having the capability of selecting the CG cells for Latches. Also since clock-

gating for Latches is only at experimental stages and not supported by any commercial tools, the

process is not supported by formal verification tools1.

Considering the similarities between Latch based designs and Flip-Flop based designs, it

became clear that the candidate cells selection and some of the clock-gating mechanisms used

in Flip-Flop based designs could be used in a Latch based designs; this means that the existent

code base used by Design Compiler R© during clock-gating insertion can be used in Latch based

designs with minor modifications in order to produce a prototype. Still some extra modifications

are required to consider border cases and ensure complete correctness in a Latch based design, but

no redesign of the existent algorithms is required.

Finally the prototype developed showed promising results in the unit tests developed and in

the testcase provided by Synopsys customer the significant increase in the number of gated Latches

is even more relevant as the circuit designers already had gated the Latches in the design to their

best effort, so every additional Latch gated is an improvement over the best possible result up to

date.

5.2 Future Work

Despite the success of the clock-gating for Latches prototype, there is still much work to do in order

to the feature to be considered as “Production Ready”, thus here is presented a list of the required

work to be done in this feature:

5.2.1 Fix Remove Clock-gating

The remove clock-gating is partially supported for Latches, because even if the tool is able to remove

the CG cell, the tool is still unable to correctly map the Latch to a version with EN and clk pin,

and it’s also unable to properly create a feedback loop, or to connect the enable signal and the clock

signal with a logic AND gate, thus the current state of the feature would introduce an inconsistency

between the original design and the implemented one.

Although the remove clock-gating feature was initially implemented, no further efforts were

made to fix the remapping of Latches, because there was an ongoing development conflicting with

the required modifications so they would have to be made after the other development was stable.

1Formal verification tools allows the verification that the functionality of the circuit is not affected by the
optimizations performed
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5.2.2 New configuration of the clock-gating requirements

Currently the clock-gating specification set through the set clock gating style has no means of

specifying the clock-gating requirements for Latches being the inability to configure the type of

clock-gating cell the most critical feature to be implemented.

The reason for this requirement is already discussed in 3.3, as the best clock-gating cell is the

latch-free clock-gate, and in the current scheme setting a latch-free CG cell would implement the

latch-free clock-gating cell for Flip-Flop based designs whose timing diagram, shown in figure 2.47,

would introduce erroneous signal propagation through the Latch .

5.2.3 Separate Latches and Flip-Flop

To separate Latches and Flip-Flops, means to avoid using the same CG cell to drive a Latch and a

Flip-Flop, this feature is a must in order to consider the feature as “Production ready” because the

user would need it, and providing such a basic option, which means to be able to allow or forbid

the same CG cell between Latches and Flip-Flop at user request.

5.2.4 Support some advanced features

As discussed in 2.10 the clock-gating insertion is a complex feature that has already reached a high

degree of sophistication, thus some of the previously discussed advanced features, are expected, not

only at user request, but to be used at every possible scenario (such as the enhanced clock-gating

features) where a clock-gate is inserted. Therefore a the clock-gating insertion for Latches must be

able to support at least some of the advanced clock-gating features before it’s considered as available

for Synopsys customers. Obviously the ultimate goal for a clock-gating for Latches feature is to

support the same features as the Flip-Flops counterpart.

5.2.5 Formality R© support

With the advance of automatic synthesis tools, and the increase of the transformations they perform

on the circuit designs by optimizing the logic and features like clock-gating that actively modify

the circuit, circuit designers require a tool that allows them to verify that the functionality of the

circuit isn’t modified by the synthesis process.

Although one option is to simulate the circuit for every possible input combinations to verify

the functionality of the circuit, such strategy is not practical, therefore the verification relies in

the formal verification of the circuit by analyzing the combinational logic of the original design

and the synthesized circuit and demonstrate the logic equivalence using mathematical functions.

Synopsys provides Formality R© as a formal verification tool, however the clock-gating transformation

requires additional instructions to Formality R© in order to be accepted as a valid transformation as
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it performs a non mathematical equivalent transformation, similarly the clock-gating for Latches

feature requires additional instructions in order to Formality R© to validate it.

Currently there is no implementation in the Formality R© tool to support clock-gating for Latch

based design, because this feature is still in the prototyping stage. There is little to no information

on the required instruction (if any) to validate clock-gating for Latches as Formality R© could still

validate the transformation, based on the instructions that are already valid in clock-gating for

Flip-Flop based designs.
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Appendix A

TCL Scripts

#######################################################################

2 # #

# #

# T i t l e : CG coun t e r s f o r l a t c h . t c l #

# Author: Joaquin Figueroa #

# #

7 # Abst rac t : #

# This s c r i p t i s the wrapper o f the other s c r i p t s inc luded in the #

# f o l d e r ,w i t h the purpose o f having t o o l s to count l a t c h e s that #

# were c l o ck ga t ed or to know how many were not ga t ed , a l s o #

# al l ows to do the same with f l o p s without us ing the r e p o r t , #

12 # however the r e s u l t s are not exac t l y the same between #

# both methods. #

# #

# A good example o f usage f o r these commands i s in l a t c h e s #

# Regre s s i ons l o ca t ed in syn/ un i t /power/cg/ cgc / l a t ch #

17 # #

#######################################################################

############################################################################

22 # #

# #

# Some examples on how to use the commands and intended u s e : #

# #

# # get the s e t s #

27 # #

# se t l a t c h e s [ a l l r e g i s t e r s − l e v e l s e n s i t i v e ] #

# se t f l o p s [ a l l r e g i s t e r s −edge t r i gge red ] #

# #

# # get a l l c lock−gated c e l l s #

32 # se t a l l g a t e d c e l l s [ g a t e d p i n s c o l l e c t i o n \ #

# [ output p ins [ a l l c l o c k g a t i n g c e l l s ] ] ] #

# #

# # get a l l c l o ck ga t ed r e g i s t e r s and l a t c h e s #

# se t g a t e d f l o p s I n t e r c o l l e c t i o n s $ a l l g a t e d c e l l s $ f l o p s #

37 # se t ga t ed l a t ch e s I n t e r c o l l e c t i o n s $ a l l g a t e d c e l l s $ l a t ch e s #

# #
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# #

# # get a l l unga t ed c e l l s #

# #

42 # se t unga t ed f l op s I n t e r c o l l e c t i o n s ( $ f l op s−$ga t ed f l op s ) $ f l o p s #

# se t ungated l a t che s I n t e r c o l l e c t i o n s ( $ l a t che s−$ga t ed l a t che s ) $ l a t ch e s #

# #

# #

# #

47 # #

############################################################################

# This command i n t e r s e c t 2 c o l l e c t i o n s

proc I n t e r c o l l e c t i o n s {A B} {\
52 set interAB [ r emove f r om co l l e c t i on $A [ r emove f r om co l l e c t i on $A $B ] ] ; \

return $interAB ;\
}

#############################################################

57 # #

# Example: #

# #

# se t A = a l l r e g i s t e r s − l e v e l s e n s i t i v e #

# se t B = a l l c l o c k g a t i n g c e l l s #

62 # #

# I n t e r c o l l e c t i o n s $A $B #

# Gives a l l the l a t c h e s i n s i d e an CG c e l l whose are not ICG #

#############################################################

67

#Joaquin F igue roa : Command created to get a l l the c e l l i n s i d e a g iven h i e r a r c hy , f o r

# example to get the i n t e r n a l s t r u c tu r e o f a ICG.

proc H i e r i n t e r { c e l l s } { \
set i n t c e l l {}

72 f o r e a c h i n c o l l e c t i o n a c e l l $ c e l l s { \
app end t o c o l l e c t i o n i n t c e l l [ g e t c e l l s [ g e t a t t r i b u t e $ a c e l l fu l l name ] / ∗ ] ; \
}

return $ i n t c e l l ;\
}

77

#######################################################################

# #

# #

# T i t l e : g a t e d p i n s c o l l e c t i o n . t c l #

82 # Author: Joaquin Figueroa #

# #

# Abst rac t : #

# This s c r i p t f i nd a l l the c e l l s conected though an input port to #

# a s p e c i f i c p i n , e i t h e r d i r e c t l y or at most though bu f f e r s or #

87 # inv e r t e r s thus the main use f o r t h i s f unc t i on i s to f i nd a l l #

# the r e g i s t e r s or l a t c h e s connected to a c l o c k ga t i n g c e l l . #

# #

# The output o f t h i s procedure i s a c o l l e c t i o n , which means #

# that t h i s r e s u l t can be used with other commands l i k e #

92 # a l l r e g i s t e r s or r e p o r t c e l l #

# #

#######################################################################
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97 proc g a t e d p i n s c o l l e c t i o n {pin } { \
set CG {}

set pins [ f i l t e r c o l l e c t i o n [ a l l c onn e c t ed [ a l l c onn e c t ed [ g e t a t t r i b u t e $pin fu l l name ] ]

− l ea f ] ” p i n d i r e c t i o n == in ” ] ; \
f o r e a c h i n c o l l e c t i o n gated p in $pins { \

set c e l l [ g e t c e l l s −o f ob j e c t s $gated p in ] ; \
102 set num in pins [ s i z e o f c o l l e c t i o n [ f i l t e r c o l l e c t i o n [ g e t p i n s −o f ob j e c t s $ c e l l ]

” p i n d i r e c t i o n == in ” ] ] ; \
set num out pins [ s i z e o f c o l l e c t i o n [ f i l t e r c o l l e c t i o n [ g e t p i n s −o f ob j e c t s $ c e l l ]

” p i n d i r e c t i o n == out” ] ] ; \
# i f the c l o ck enab l e s i g n a l goes to a bu f f e r / i n v e r t e r , sk ip the c e l l and go to the next

c e l l

i f { $num in pins == 1 && $num out pins == 1} { \
set out p in [ f i l t e r c o l l e c t i o n [ g e t p i n s −o f ob j e c t s $ c e l l ] ” p i n d i r e c t i o n == out” ] ; \

107 f o r e a c h i n c o l l e c t i o n r e cu r p i n $out p in { \
append t o c o l l e c t i o n CG [ g a t e d p i n s c o l l e c t i o n $ r e cu r p in ] ; \

} \
} else {

app end t o c o l l e c t i o n CG $ c e l l ; \
112 }

}
return $CG;\
}

Listing A.1: Tcl functions developed to measure the gated Latches
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Appendix B

Unit Tests

##/−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
##

## Test : gate mapped Elatch

4 ## Author: Joaquin Figueroa

## Date: Oct 13 , 2011

##

## Abst rac t : This t e s t v e r i f i e s the i n s e r t i o n o f c l o ck gate s in a l a t ch

## based d e s i g n , with mapped l a t c h . The t e s t i s an 8 mapped−latches bank

9 ##

## Checkpo ints :

## CP0: General e r r o r s

## CP1: v e r i f i e s no CG i n s e r t i o n in compi le

## CP2: V e r i f i e s the i n s e r t i o n o f CG in compi le −gate c lock

14 ## CP3: Check a l l 8 l a t c h e s are gated

## CP4: Check the re are no l a t ch ungated

## CP5: V e r i f i e s 2 CG in s e r t e d with maxfanout 4

## CP6: Check a l l 8 l a t c h e s are gated

## CP7: Check the re are no l a t ch ungated

19 ## CP8: V e r i f i e s 8 CG in s e r t e d with maxfanout 1

## CP9: Check a l l 8 l a t c h e s are gated

## CP10: Check there are no l a t ch ungated

## CP11: V e r i f i e s 1 CG in s e r t e d with min b i t = max fanout = 5

## CP12: Check only 5 l a t c h e s are gated

24 ## CP13: Check 3 l a t c h e s l e f t ungated

##

##

## There i s no f o rma l i t y run , because t h i s opera t i on i s not supported by

## f o rma l i t y , and ( in t h i s s c ena r i o ) never w i l l

29 ##

## Hi s t o r y :

## Tue Oct 25 06 : 2 7 : 5 1 PDT 2011 − Joaquin F igue roa : as I ’ ve uploaded the

## s c r i p t s to count gated l a t c h e s , I ’m inc l ud ing those t e s t s .

##

34 ##

## ∗∗∗ TODO ∗∗∗
## As f u n c t i o n a l i t y i s added to the c l o c k ga t i n g f o r l a t ch based de s i gn s

## pro j e c t and the UI ( and other t o o l l i k e r epo r t c g ) s t a r t to suppot

## Latches add these v e r i f i c a t i o n s to the r e g r e s s i o n .

39 ##
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##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−/

44 ########################################################################

#

# For Now, we d i s ab l e pa s s 1 , pass2 p a r t i a l c g , s i n c e the i n s e r t CG

# And the fanout o f a CGcell doesn ’ t count l a t c h e s .

#

49 ########################################################################

# CP0:

### Set l i b r a r y i n f o

54 ## source [ format ”%s%s” [ getenv POWER SCRIPTS] / a l i b p a t h . t c l . i n c l u d e ]

set s earch path [ concat $search path [ l i s t \
[ format ”%s%s” [ getenv REGRESSO DESIGN] ”/power/Latch cg ” ] \
[ format ”%s%s” [ getenv REGRESSO LIB ] ”/seqmap” ] \
[ format ”%s%s” [ getenv REGRESSO LIB ] ”/ ret ime ” ] \

59 [ getenv REGRESSO LIB ] \
] ]

### se t c g op t do pa r t i a l 1 FALSE

64 ### se t c g op t do pa r t i a l 2 FALSE

### source the u t i l i t i e s I uploaded f o r CG f o r l a t c h e s

source [ format ”%s%s” [ getenv POWER SCRIPTS] ”/ Latch counter s / CG coun t e r s f o r l a t c h . t c l ” ]

69

set t a r g e t l i b r a r y [ l i s t a r t i s an addhv t t t s . db l s i 1 0 k . d b ]

set l i n k l i b r a r y ”∗ $ t a r g e t l i b r a r y ”

## se t a l i b l i b r a r y s e a r c h p a t h

74 ### We read a des ign

r e a d f i l e −f v e r i l o g l a t ch bank .v

cu r r en t d e s i gn top

l i n k

79

### ac t i v a t e c l o ck gat ing f o r l a t ch based de s i gn s us ing the hidden va r i a b l e s

set powe r c g a l l ow c g f o r l a t c h e s TRUE

set pwr c g p r i n t c g f o r l a t c h e s me s s a g e s TRUE

84

### From now s e v e r a l compi le w i l l be made with d i f f e r e n t c l o c k ga t i n g r e s u l t s

### expected from the c l o c k g a t i n g s t y l e .

89 ########################################################################

########################################################################

### Fi r s t no s t y l e , no g a t i n g .

94

compi le
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# CP1:

r e p o r t c l o c k g a t i n g

99 # CP1:FIND REG EXP ”Number o f Clock gat ing e lements \ s+\|\ s+0\s+\|”

### Now make an incrementa l comp i l e , d e f au l t s t y l e , 1 expected CG

compi le − incremental −gate c lock

104

# CP2:

r e p o r t c l o c k g a t i n g

# CP2:FIND REG EXP ”Number o f Clock gat ing e lements \ s+\|\ s+1\s+\|”

109

### Now we count how many l a t c h e s were ga t ed .

### Def ine a l l l a t c h e s in des ign

114 set l a t c h e s [ a l l r e g i s t e r s − l e v e l s e n s i t i v e ]

### Get a l l c l o ck gate s

set cgs [ a l l c l o c k g a t e s ]

### get a l l l a t c h e s i n s i d e a cg c e l l

set l a t che s in CGs [ I n t e r c o l l e c t i o n s $ l a t ch e s [ H i e r i n t e r $cgs ] ]

119 ### Use t h i s to get a l l l a t c h e s that are not i n s i d e a CG c e l l

set l a t ches not in CG [ r emove f r om co l l e c t i on $ l a t ch e s $ la tches in CGs ]

### Get a l l gated c e l l s

set g a t e d c e l l s [ g a t e d p i n s c o l l e c t i o n [ a l l c l o c k g a t e s −output pins ] ]

124 ### get which o f the gated c e l l s are l a t c h e s

set ga t ed l a t ch e s [ I n t e r c o l l e c t i o n s $ la tches not in CG $g a t e d c e l l s ]

### Get which o f the l a t c h e s were not gated

set ungated l a t che s [ r emove f r om co l l e c t i on $ la tches not in CG $ga t ed l a t ch e s ]

129 ### Fina l l y we de f i n e the checkpo int s needed.

### we should have 8 gated l a t c h e s and 0 ungated

# CP3:

s i z e o f c o l l e c t i o n $ga t ed l a t ch e s

# CP3:FIND STRING ”8”

134

# CP4:

s i z e o f c o l l e c t i o n $ungated la t che s

# CP4:FIND STRING ”0”

139

### Now, f r e e d e s i n g , s e t s t y l e , and compi le aga i n , 2 CG expeted

f r e e

144 #######################################################################

#######################################################################

r e a d f i l e −f v e r i l o g l a t ch bank .v

cu r r en t d e s i gn top

149 l i n k



g

s e t c l o c k g a t i n g s t y l e −minimum bitwidth 1 −max fanout 4

compi le −gate c lock

154

# CP5:

r e p o r t c l o c k g a t i n g

# CP5:FIND REG EXP ”Number o f Clock gat ing e lements \ s+\|\ s+2\s+\|”

159

## Def ine a l l l a t c h e s in des ign

set l a t c h e s [ a l l r e g i s t e r s − l e v e l s e n s i t i v e ]

### Get a l l c l o ck gate s

164 set cgs [ a l l c l o c k g a t e s ]

### get a l l l a t c h e s i n s i d e a cg c e l l

set l a t che s in CGs [ I n t e r c o l l e c t i o n s $ l a t ch e s [ H i e r i n t e r $cgs ] ]

### Use t h i s to get a l l l a t c h e s that are not i n s i d e a CG c e l l

set l a t ches not in CG [ r emove f r om co l l e c t i on $ l a t ch e s $ la tches in CGs ]

169

### Get a l l gated c e l l s

set g a t e d c e l l s [ g a t e d p i n s c o l l e c t i o n [ a l l c l o c k g a t e s −output pins ] ]

### get which o f the gated c e l l s are l a t c h e s

set ga t ed l a t ch e s [ I n t e r c o l l e c t i o n s $ la tches not in CG $g a t e d c e l l s ]

174 ### Get which o f the l a t c h e s were not gated

set ungated l a t che s [ r emove f r om co l l e c t i on $ la tches not in CG $ga t ed l a t ch e s ]

### Fina l l y we de f i n e the checkpo int s needed.

### we expect 8 gated l a t c h e s and 0 ungated

179

# CP6:

s i z e o f c o l l e c t i o n $ga t ed l a t ch e s

# CP6:FIND STRING ”8”

184 # CP7:

s i z e o f c o l l e c t i o n $ungated la t che s

# CP7:FIND STRING ”0”

189

### Now, f r e e d e s i n g , s e t s t y l e , and compi le aga i n , 8 CG expeted

f r e e

########################################################################

194 ########################################################################

r e a d f i l e −f v e r i l o g l a t ch bank .v

cu r r en t d e s i gn top

l i n k

199

s e t c l o c k g a t i n g s t y l e −minimum bitwidth 1 −max fanout 1

compi le −gate c lock

# CP8:

204 r e p o r t c l o c k g a t i n g

# CP8:FIND REG EXP ”Number o f Clock gat ing e lements \ s+\|\ s+8\s+\|”
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209 ## Def ine a l l l a t c h e s in des ign

set l a t c h e s [ a l l r e g i s t e r s − l e v e l s e n s i t i v e ]

### Get a l l c l o ck gate s

set cgs [ a l l c l o c k g a t e s ]

### get a l l l a t c h e s i n s i d e a cg c e l l

214 set l a t che s in CGs [ I n t e r c o l l e c t i o n s $ l a t ch e s [ H i e r i n t e r $cgs ] ]

### Use t h i s to get a l l l a t c h e s that are not i n s i d e a CG c e l l

set l a t ches not in CG [ r emove f r om co l l e c t i on $ l a t ch e s $ la tches in CGs ]

### Get a l l gated c e l l s

219 set g a t e d c e l l s [ g a t e d p i n s c o l l e c t i o n [ a l l c l o c k g a t e s −output pins ] ]

### get which o f the gated c e l l s are l a t c h e s

set ga t ed l a t ch e s [ I n t e r c o l l e c t i o n s $ la tches not in CG $g a t e d c e l l s ]

### Get which o f the l a t c h e s were not gated

set ungated l a t che s [ r emove f r om co l l e c t i on $ la tches not in CG $ga t ed l a t ch e s ]

224

### Fina l l y we de f i n e the checkpo int s needed.

### we expect 8 gated l a t c h e s and 0 ungated

# CP9:

229 s i z e o f c o l l e c t i o n $ga t ed l a t ch e s

# CP9:FIND STRING ”8”

# CP10:

s i z e o f c o l l e c t i o n $ungated la t che s

234 # CP10:FIND STRING ”0”

### Now, f r e e d e s i n g , s e t s t y l e , and compi le aga i n , 1 CG expeted

239 f r e e

##########################################################

##########################################################

244

r e a d f i l e −f v e r i l o g l a t ch bank .v

cu r r en t d e s i gn top

l i n k

249

s e t c l o c k g a t i n g s t y l e −minimum bitwidth 5 −max fanout 5

compi le −gate c lock

# CP11:

254 r e p o r t c l o c k g a t i n g

# CP11:FIND REG EXP ”Number o f Clock gat ing e lements \ s+\|\ s+1\s+\|”

259 ## Def ine a l l l a t c h e s in des ign

set l a t c h e s [ a l l r e g i s t e r s − l e v e l s e n s i t i v e ]

### Get a l l c l o ck gate s

set cgs [ a l l c l o c k g a t e s ]

### get a l l l a t c h e s i n s i d e a cg c e l l



i

264 set l a t che s in CGs [ I n t e r c o l l e c t i o n s $ l a t ch e s [ H i e r i n t e r $cgs ] ]

### Use t h i s to get a l l l a t c h e s that are not i n s i d e a CG c e l l

set l a t ches not in CG [ r emove f r om co l l e c t i on $ l a t ch e s $ la tches in CGs ]

### Get a l l gated c e l l s

269 set g a t e d c e l l s [ g a t e d p i n s c o l l e c t i o n [ a l l c l o c k g a t e s −output pins ] ]

### get which o f the gated c e l l s are l a t c h e s

set ga t ed l a t ch e s [ I n t e r c o l l e c t i o n s $ la tches not in CG $g a t e d c e l l s ]

### Get which o f the l a t c h e s were not gated

set ungated l a t che s [ r emove f r om co l l e c t i on $ la tches not in CG $ga t ed l a t ch e s ]

274

### Fina l l y we de f i n e the checkpo int s needed.

### we expect 5 gated l a t c h e s and 3 ungated

# CP12:

279 s i z e o f c o l l e c t i o n $ga t ed l a t ch e s

# CP12:FIND STRING ”5”

# CP13:

s i z e o f c o l l e c t i o n $ungated la t che s

284 # CP13:FIND STRING ”3”

289 ##########################################################

##########################################################

# CP0:DONT FIND REG EXP ”(?<!MEM ) Er ro r : ”

Listing B.1: Unit test used to verify proper clock-gating insertion in Latches with enable pin

##/−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
##

3 ## Test : cg l a t ch w i th FB loop

## Author: Joaquin Figueroa

## Date: Oct 17 , 2011

##

## Abst rac t : This t e s t c a s e v e r i f i e s the i n s e r t i o n o f a c l o ck gate in a

8 ## la t ch based d e s i g n , with mapped l a t ch and a smal l feedback loop though

## a mux with enab l e .

##

## Checkpo ints :

## CP0: General e r r o r s

13 ## CP1: V e r i f i e s no i n s e r t i o n i s made when the parameter i s FALSE

## CP2: V e r i f i e s the i n s e r t i o n o f 1 CG f o r the des ign

## CP3: V e r i f i e s the only l a t ch in the des ign in gated

## CP4: V e r i f i e s that the re i s no ”mi s t e r i ou s l a t ch ” which i s gated

##

18 ## There i s no f o rma l i t y run , because t h i s opera t i on i s not supported by

## f o rma l i t y , and ( in t h i s s c ena r i o ) never w i l l

##

## The des ign i s hosted in $REGRESSO DESIGN/power/Latch cg

##

23 ## Hi s t o r y :

## Tue Oct 25 06 : 2 7 : 5 1 PDT 2011 − Joaquin F igue roa : as I ’ ve uploaded the
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## s c r i p t s to count gated l a t c h e s , I ’m inc l ud ing those t e s t s .

##

##

28 ## ∗∗∗ TODO ∗∗∗
## As f u n c t i o n a l i t y i s added to the c l o c k ga t i n g f o r l a t ch based de s i gn s

## pro j e c t and the UI ( and other t o o l l i k e r epo r t c g ) s t a r t to suppot

## Latches add these v e r i f i c a t i o n s to the r e g r e s s i o n .

##

33 ##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−/

# CP0:

### Set l i b r a r y i n f o

### source [ format ”%s%s” [ getenv POWER SCRIPTS] / a l i b p a t h . t c l . i n c l u d e ]

38 set s earch path [ concat $search path \
[ format ”%s%s” [ getenv REGRESSO DESIGN] ”/power/Latch cg ” ] \
[ format ”%s%s” [ getenv REGRESSO LIB ] ”/power” ] \
[ getenv REGRESSO LIB ] \
]

43

### source [ format ”%s%s” [ getenv POWER SCRIPTS] / a l i b p a t h . t c l . i n c l u d e ]

### source the u t i l i t i e s I uploaded f o r CG f o r l a t c h e s

source [ format ”%s%s” [ getenv POWER SCRIPTS] ”/ Latch counter s / CG coun t e r s f o r l a t c h . t c l ” ]

48

set t a r g e t l i b r a r y ” tcbn90ghvtbc.db ”

set l i n k l i b r a r y ”∗ tcbn90ghvtbc.db ”

### s e t p owe r a l i b l i b r a r y s e a r c h p a t h

53

r e a d v e r i l o g l a t c h w i t h f e edba ck l o op . v

ungroup −all

l i n k

58

### Conf igure parameters o f the r e g r e s s i o n

s e t c l o c k g a t i n g s t y l e −minimum bitwidth 1

### Now we make 2 comp i l e s , one without c l ock−gat ing , and one without CG

63

compi le −gate c lock

# CP1:

r e p o r t c l o c k g a t i n g

68 # CP1:FIND REG EXP ”Number o f Clock gat ing e lements \ s+\|\ s+0\s+\|”

### ac t i v a t e c l o ck gat ing f o r l a t ch based de s i gn s us ing the hidden va r i a b l e s

73 set powe r c g a l l ow c g f o r l a t c h e s TRUE

set pwr c g p r i n t c g f o r l a t c h e s me s s a g e s TRUE

### Now make an incrementa l comp i l e , de f i ned s t y l e , 1 expected CG

78 compi le − incremental −gate c lock
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# CP2:

r e p o r t c l o c k g a t i n g

83 # CP2:FIND REG EXP ”Number o f Clock gat ing e lements \ s+\|\ s+1\s+\|”

### Now, I d e f i n e some u s e f u l s e t s .

### Def ine a l l l a t c h e s in des ign

88 set l a t c h e s [ a l l r e g i s t e r s − l e v e l s e n s i t i v e ]

### Get a l l c l o ck gate s

set cgs [ a l l c l o c k g a t e s ]

### get a l l l a t c h e s i n s i d e a cg c e l l

set l a t che s in CGs [ I n t e r c o l l e c t i o n s $ l a t ch e s [ H i e r i n t e r $cgs ] ]

93 ### Use t h i s to get a l l l a t c h e s that are not i n s i d e a CG c e l l

set l a t ches not in CG [ r emove f r om co l l e c t i on $ l a t ch e s $ la tches in CGs ]

### Get a l l gated c e l l s

set g a t e d c e l l s [ g a t e d p i n s c o l l e c t i o n [ a l l c l o c k g a t e s −output pins ] ]

98 ### get which o f the gated c e l l s are l a t c h e s

set ga t ed l a t ch e s [ I n t e r c o l l e c t i o n s $ la tches not in CG $g a t e d c e l l s ]

### Get which o f the l a t c h e s were not gated

set ungated l a t che s [ r emove f r om co l l e c t i on $ la tches not in CG $ga t ed l a t ch e s ]

103 ### Fina l l y we de f i n e the checkpo int s needed.

# CP3:

s i z e o f c o l l e c t i o n $ga t ed l a t ch e s

# CP3:FIND STRING ”1”

108

# CP4:

s i z e o f c o l l e c t i o n $ungated la t che s

# CP4:FIND STRING ”0”

113

### This ends the t e s t c a s e

118 # CP0:DONT FIND REG EXP ”(?<!MEM ) Er ro r : ”

Listing B.2: Unit test used to verify proper clock-gating insertion in Latches with feedback loop

## /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
##

3 ## Test : n o c g f o r l a t c h i n s i d e c g

## Author: Joaquin Figueroa

## Date: Wed Oct 26 , 2011

##

## Abst rac t : This t e s t check that the re i s no i n s e r t i o n o f cg f o r

8 ## la t ch e s i n s i d e a CG−hierarchy, to do t h i s , a manually i n s e r t e d cg i s

## used , and the parameter p ow e r c g a l l r e g i s t e r s i s s e t to t r u e .

##

## When the CG i s l e f t u n i d e n t i f i e d , the l a t ch i n s i d e the h i e ra r chy i s

## gated , o th e rw i s e , i s no t .

13 ##

## Also t h i s t e s t a l l ows s l i g h t g l oba l v e r i f i c a t i o n s , but the re w i l l

## be another r e g r e s s i o n f o r g l o b a l .

##
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##

18 ## The des ign i s l o ca t ed in $REGRESSO DESIGN/power/Latch cg

##

## Checkpo ints :

## CP0: General e r r o r s

## CP1: v e r i f i e s no CG i n s e r t i o n in compi le

23 ## CP2: V e r i f i e s the i n s e r t i o n o f CG in compi le −gate c lock

## CP3: Check a l l 8 l a t c h e s are gated

## CP4: Check the re are no l a t ch ungated

## CP5: V e r i f i e s 2 CG in s e r t e d with maxfanout 4

## CP6: Check a l l 8 l a t c h e s are gated

28 ## CP7: Check the re are no l a t ch ungated

## CP8: V e r i f i e s 8 CG in s e r t e d with maxfanout 1

## CP9: Check a l l 8 l a t c h e s are gated

## CP10: Check there are no l a t ch ungated

## CP11: V e r i f i e s 1 CG in s e r t e d with min b i t = max fanout = 5

33 ## CP12: Check only 5 l a t c h e s are gated

## CP13: Check 3 l a t c h e s l e f t ungated

##

##

## There i s no f o rma l i t y run , because t h i s opera t i on i s not supported by

38 ## fo rma l i t y , and ( in t h i s s c ena r i o ) never w i l l

##

## Hi s t o r y :

## Tue Oct 25 06 : 2 7 : 5 1 PDT 2011 − Joaquin F igue roa : as I ’ ve uploaded the

## s c r i p t s to count gated l a t c h e s , I ’m inc l ud ing those t e s t s .

43 ##

##

## ∗∗∗ TODO ∗∗∗
## As f u n c t i o n a l i t y i s added to the c l o c k ga t i n g f o r l a t ch based de s i gn s

## pro j e c t and the UI ( and other t o o l l i k e r epo r t c g ) s t a r t to suppot

48 ## Latches add these v e r i f i c a t i o n s to the r e g r e s s i o n .

##

## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−/
##

53 ### Set the search path

# CP0:

set s earch path [ concat $search path \
[ format ”%s%s” [ getenv REGRESSO DESIGN] ”/power/Latch cg ” ] \

58 [ format ”%s%s” [ getenv REGRESSO LIB ] ”/power” ] \
]

set t a r g e t l i b r a r y ” s c adv12 rv t c l n45g s t t t yp i c a l max 0p90v 25c . db ”

set l i n k l i b r a r y ”∗ $ t a r g e t l i b r a r y ”

63

### source the u t i l i t i e s I uploaded f o r CG f o r l a t c h e s

source [ format ”%s%s” [ getenv POWER SCRIPTS] ”/ Latch counter s / CG coun t e r s f o r l a t c h . t c l ” ]

68

set powe r c g a l l ow c g f o r l a t c h e s TRUE

set pwr c g p r i n t c g f o r l a t c h e s me s s a g e s TRUE

s e t c l o c k g a t i n g s t y l e −minimum bitwidth 1



m

73

########################################################################

########################################################################

### The f i r s t t e s t , w i l l v e r i f y no i n s e r t i o n o f cg

78

r e a d v e r i l o g n o c g f o r l a t c h i n s i d e c g r emad e . v

compi le −gate c lock

83 # CP2:

r e p o r t c l o c k g a t i n g

# CP2:FIND REG EXP ”Number o f Clock gat ing e lements \ s+\|\ s+0\s+\|”

########################################################################

88 ########################################################################

### Second t e s t , we f o c r e c g i n s e r t i o n on a l l s e qu en t i a l ( l a t c h , f l o p , c g )

f r e e

93 r e a d v e r i l o g n o c g f o r l a t c h i n s i d e c g r emad e . v

### Set c g a l l r e g i s t e r s to t rue −> f o r c e c l o ck gat ing on a l l ( l a t c h e s or

### f l o p ) c e l l r e g a r d l e s o f t h e i r enable cond i t i on

set p ow e r c g a l l r e g i s t e r s TRUE

98

compi le

compi le −gate c lock

103

### Now we expect 4 cg i n s e r t e d , one f o r each h i e ra r chy

# CP3:

r e p o r t c l o c k g a t i n g

# CP3:FIND REG EXP ”Number o f Clock gat ing e lements \ s+\|\ s+4\s+\|”
108

### Now we check the manually i n s e r t e d CG i s not i d e n t i f i e d

# CP4:

r e p o r t c e l l [ a l l c l o c k g a t e s ]

113 # CP4:DONT FIND REG EXP ”cg\ s+c l k g a t e \ s+\d+\ . \d+\s+cg”

########################################################################

########################################################################

118

### th i rd t e s t , we f o c r e c g i n s e r t i o n on a l l s e qu en t i a l ( l a t c h , f l o p ) After

### the i d e n t i f i c a t i n o f the clock−gate

f r e e

123 r e a d v e r i l o g n o c g f o r l a t c h i n s i d e c g r emad e . v

compi le

### Id en t i f y CG

128



n

c r e a t e c l o c k −period 10 [ g e t po r t s c l k ]

i d e n t i f y c l o c k g a t i n g −gat ing element cg

133 compi le −gate c lock

### Now we expect 3 cg i n s e r t e d , one f o r each l a t ch or f l o p , and

### the i d e n t i f i e d CG.

138

# CP5:

r e p o r t c l o c k g a t i n g

# CP5:FIND REG EXP ”Number o f Clock gat ing e lements \ s+\|\ s+3\s+\|”

143

### Now we check the manually i n s e r t e d CG i s c o r r e c t l y inc luded

# CP6:

r e p o r t c e l l [ a l l c l o c k g a t e s ]

# CP6:FIND REG EXP ”cg\ s+c l k g a t e \ s+\d+\ . \d+\s+cg”

148

153 ########################################################################

########################################################################

### Fourth t e s t , no i d e n t i f i c a t i o n o f the CG, g l oba l On, so 2 expected

### CG fo r a l l h i e r a r c h i e s , p lus the CG in s e r t e d f o r the f l o p .

158

f r e e

set c omp i l e c l o ck ga t i ng th r ough h i e r a r chy TRUE

163 r e a d v e r i l o g n o c g f o r l a t c h i n s i d e c g r emad e . v

compi le

### Id en t i f y CG

168

c r e a t e c l o c k −period 10 [ g e t po r t s c l k ]

compi le −gate c lock −boundary optimization

173 ### Now we expect only 2 CG f o r a l l h i e r a c h i e s

# CP7:

r e p o r t c l o c k g a t i n g

# CP7:FIND REG EXP ”Number o f Clock gat ing e lements \ s+\|\ s+2\s+\|”
178

### Now we check the manually i n s e r t e d CG i s not inc luded

# CP8:

r e p o r t c e l l [ a l l c l o c k g a t e s ]

183 # CP8:DONT FIND REG EXP ”cg\ s+c l k g a t e \ s+\d+\ . \d+\s+cg”
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### Now we check a l l c e l l s are ga t ed .

# CP9:

s i z e o f c o l l e c t i o n [ g a t e d p i n s c o l l e c t i o n [ a l l c l o c k g a t e s −output pins ] ]

188 # CP9:FIND STRING ”4”

########################################################################

########################################################################

193

### Fi f th t e s t , Global on and i d e n t i f i e d CG.

f r e e

r e a d v e r i l o g n o c g f o r l a t c h i n s i d e c g r emad e . v

198

compi le

### Id en t i f y CG

203 c r e a t e c l o c k −period 10 [ g e t po r t s c l k ]

i d e n t i f y c l o c k g a t i n g −gat ing element cg

208 compi le −gate c lock −boundary optimization

### Now we expect only 2 CG f o r a l l h i e r a c h i e s

213 # CP10:

r e p o r t c l o c k g a t i n g

# CP10:FIND REG EXP ”Number o f Clock gat ing e lements \ s+\|\ s+2\s+\|”

218 ### Now we check the manually i n s e r t e d CG i s inc luded

# CP11:

s i z e o f c o l l e c t i o n [ g a t e d p i n s c o l l e c t i o n [ g e t p i n s −o f ob j e c t s [ g e t c e l l c l k g a t e q r e g ]

− f i l t e r ” p i n d i r e c t i o n == out” ] ]

# CP11:FIND STRING ”2”

223 ### Now we check a l l c e l l s are ga t ed .

# CP12:

s i z e o f c o l l e c t i o n [ g a t e d p i n s c o l l e c t i o n [ g e t p i n s −o f ob j e c t s [ g e t c e l l f 2 / c l k g a t e q r e g ]

− f i l t e r ” p i n d i r e c t i o n == out” ] ]

# CP12:FIND STRING ”1”

228 ### END OF TESTCASE

# CP0:DONT FIND REG EXP ”(?<!MEM ) Er ro r : ”

Listing B.3: Unit test used to verify that no Latches that would be inside of a CG cell are gated

##/−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
##

## Test : f i x n o n l a t c h c a n d i d a t e . t c l

## Author: Joaquin Figueroa

5 ## Date: Thu Oct 20 , 2011

##



p

## Abst rac t : Test f i x a f a t a l when t ry ing to i n s e r t a CG to a cad idate

## c e l l which i s not a FF, nor l a t ch ( in cg f o r l a t ch based de s i gn s ) ,

## so the f i l t e r was improved and now only l a t c h e s are a l lowed to become

10 ## candidate c e l l as i t should have been from the b eg i n i n g .

##

## This r e g r e s s i o n i s very s immilar to

## p r e v e n t a c t i v e l o w i n v e r t e r r em o v a l f o r f l a t i c g . t c l , only that in t h i s

## case we a c t i v a t e the i n s e r t i o n o f c l o ck gate s in l a t ch based d e s i g n .

15 ## Also i t uses the same t e s t des ign

##

## Checkpo ints :

## CP0: General e r r o r s

## CP1: Checks s u c c e s s f u l l compi le −gate c lock

20 ##

##

##

## ∗∗∗ TODO ∗∗∗
## As f u n c t i o n a l i t y i s added to the c l o c k ga t i n g f o r l a t ch based de s i gn s

25 ## pro j e c t and the UI ( and other t o o l l i k e r epo r t c g ) s t a r t to suppot

## Latches add these v e r i f i c a t i o n s to the r e g r e s s i o n .

##

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−/

30 # CP0:

set s earch path [ concat $search path \
[ format ”%s%s” [ getenv REGRESSO DESIGN] ”/power” ] \
[ format ”%s%s” [ getenv REGRESSO LIB ] ”/power” ] \
]

35

set t a r g e t l i b r a r y ” s c adv12 rv t c l n45g s t t t yp i c a l max 0p90v 25c . db ”

set l i n k l i b r a r y ”∗ $ t a r g e t l i b r a r y ”

40 set powe r c g a l l ow c g f o r l a t c h e s TRUE

set pwr c g p r i n t c g f o r l a t c h e s me s s a g e s TRUE

r e ad v e r i l o g f l a t ac t i v e l ow TE ICG.v

cu r r en t d e s i gn top

45

# CP1:

compi le −gate c lock

# CP1:COMMANDSUCCEEDED

50

# CP0:DONT FIND REG EXP ”(?<!MEM ) Er ro r : ”

Listing B.4: Unit test used to verify that a bug in which a cell that isn’t a Latch nor a Flip-Flop

would be gated with the feature is no longer reproducible
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