
UNIVERSIDAD DE CHILE

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS

DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

A META-PROCESS FOR DEFINING ADAPTABLE SOFTWARE PROCESSES

TESIS PARA OPTAR AL GRADO DE

DOCTOR EN CIENCIAS MENCIÓN COMPUTACIÓN

JULIO ARIEL HURTADO ALEGRÍA

PROFESORA GUIA:

MARÍA CECILIA BASTARRICA PIÑEYRO

MIEMBROS DE LA COMISIÓN:

ALEXANDRE BERGEL

SERGIO OCHOA DELORENZI

ROMMAIN ROBBES

JOLITA RALYTÉ

Este trabajo ha sido parcialmente financiado por NIC Chile

SANTIAGO DE CHILE

AGOSTO, 2012

Resumen

Lograr proyectos de software productivos y con calidad dentro de una indus-

tria dinámica y competitiva, requiere definir modelos de proceso correctos y

adecuados al contexto. Aśı, el mejor proceso debe estar correctamente definido

y debe ser adecuado a las particularidades del proyecto en el que será usado.

T́ıpicamente, un ingeniero de procesos define un proceso espećıfico para cada

proyecto en forma ad-hoc, lo cual resulta costoso, irrepetible y propenso al

error. Por otro lado, la especificación de procesos demanda un esfuerzo enorme

y una vez éstos son especificados, son pocos los enfoques y aún menos las he-

rramientas, que asistan al ingeniero de procesos a analizar la calidad de sus

modelos de proceso. En los últimos cinco años hemos asesorado empresas de

software en la especificación de sus procesos de software. Como parte de este

trabajo una serie de problemas fueron identificados, éstos indican la presencia

potencial de incorrectas concepciones y especificaciones, aśı como inadecuadas

adaptaciones en el modelo del proceso. Para prevenir errores en la adaptación

de procesos, esta tesis propone Casper, un metaproceso para definir modelos

de proceso adaptables al contexto. Casper usa un enfoque basado en modelos

para adaptar el proceso de desarrollo generando procesos espećıficos a proyec-

tos a partir del proceso organizacional y el contexto espećıfico del proyecto.

El enfoque es sistemático, repetible y no depende de un usuario experto en

ingenieŕıa de procesos. Para asistir al ingeniero de procesos en el análisis de

problemas concepuales y de especificación, en esta tesis se desarrolló Avispa.

Avispa es una herramienta que gráficamente presenta diferente patrones de

error de un modelo de proceso de software resaltando los errores potenciales a

través de indicadores comprensibles e intuitivos. Los enfoques de Casper y

Avispa han sido validados aplicándolos en la definición y análisis de algunos

modelos de proceso de la industria de software Chilena y algunos procesos

públicos disponibles desde la comunidad de Eclipse Process Framework. Es-

tos enfoques muestran ampliamente la utilidad práctica del enfoque dirigido

por modelos para lograr modelos de proceso de alta calidad.

Abstract

Reaching quality and productivity in software projects within a competitive

and dynamic software industry requires defining context suitable and correct

software process models. Thus, the best process depends on the particularities

of each project and on its correctness. Typically a process engineer defines

a specific process for each project in an ad-hoc fashion, which is expensive,

unrepeatable and error prone. On the other hand, software process specifica-

tion demands an enormous effort, but once specified there are few approaches

and even fewer tools that aid the process engineer to analyze the quality of

the process. For the last five years we have assisted software companies in

specifying their software processes. As part of this work a series of problems

that indicate the potential presence of misconceptions, misspecifications or

unsuitability has been identified. To prevent suitability errors this thesis pro-

poses to define context suitable process models using Casper, a meta-process

for defining adaptable software process models. Casper uses a model-based

approach to software process tailoring that generates project specific processes

based on the organizational process and the project context. The approach

is systematic, repeatable and it does not depend on the expert people using

it. To assist process engineers to analyze the misconceptions, misspecifica-

tions of their processes, Avispa has been developed. Avispa is a tool that

graphically renders different error patterns of a software process model high-

lighting potential errors as intuitive and comprehensible indicators. Casper

and Avispa approaches have been validated applying them for defining and

analyzing some software process models of the Chilean software industry and

some public processes obtained from the Eclipse Process Framework commu-

nity. These approaches show largely the practical usefulness of a model driven

approach to achieve process models with high quality.

I would like to dedicate this thesis to my children, Arturo and Katherinne,

my parents Carmen Ruth and Julio Hernán and my wife Lida Piedad.

Arturo, for your unlimited understanding. Katherine, for her tender love.

Carmen Ruth and Julio Hernán for their insightful advice. Lida Piedad, for

her unconditional love. They were largely my great accomplices in this

achievement.

Acknowledgements

And I would like to specially acknowledge to my advisor Cecilia Bastarrica for

her great human and professional support that I received: patient, right words,

relevant questions, humanity, and unconditional dedication and collaboration.

Importantly, I would like to thank Alexandre Bergel for his advice and support

in this research. Also, I would like to acknowledge my research team, especially

to Sergio Ochoa, Daniel Perovich, Pedro Rossel and Alcides Quispe for their

valuable contributions.

Contents

Nomenclature viii

1 Introduction 1

1.1 Problems and Challenges . 2

1.1.1 General Questions . 3

1.1.2 Software Process Tailoring . 3

1.1.3 Software Process Analysis . 5

1.2 Thesis hypotheses . 5

1.3 Thesis goals . 7

1.3.1 Main goal . 7

1.3.2 Specific goals . 7

1.4 Research Method . 7

1.4.1 Case Study Method . 7

1.5 Document content . 12

2 Background and Related Work 13

2.1 The Software Process Concept . 13

2.2 Software Process Engineering . 14

2.2.1 Software process engineering life cycle 15

2.2.2 Software Process Modeling . 16

2.2.3 SPEM 2.0 . 17

2.3 Software Process Tailoring . 20

2.3.1 Process tailoring based on process families 23

2.3.1.1 The Early Age of the SPrLs 23

2.3.1.2 The emergence of the SPrLs 24

2.3.2 Model Driven Engineering in software process tailoring 26

2.4 Validating Software Process Models . 27

2.4.1 Software Process Testing . 27

2.4.2 Software Process Simulation . 28

i

CONTENTS

2.4.3 Software Process Model Metrics . 28

2.4.4 Software Process Formal Verification 29

2.4.5 Software Process Analysis . 29

2.4.6 Software Process Model Analysis by Visualization 31

2.5 Synthesis and Discussion . 31

3 Context Adaptable Software Process EngineeRing - CASPER 33

3.1 Introduction to CASPER . 33

3.1.1 CASPER in a Nutshell . 35

3.1.2 CASPER Subprocesses . 36

3.2 CASPER Domain Engineering . 38

3.2.1 Software Process Context Analysis 39

3.2.2 Software Process Feature Analysis 40

3.2.3 Software Process Scope Analysis . 40

3.2.4 Software Process Reference Model Design 40

3.2.5 Production Strategy Implementation 41

3.3 CASPER Application Engineering: Context-Based Software Process Adap-

tation . 42

3.4 Process Model Analysis using AVISPA . 43

3.5 Synthesis and Discussion . 44

4 Building and Adapting Software Process Models with CASPER 46

4.1 Introduction . 46

4.2 Example Problem: CC51A Requirements Engineering Software Process Line 46

4.3 Software Process Context Analysis . 47

4.3.1 Software Process Context Meta model - SPCM 48

4.3.2 Context Modeling with SPMC . 49

4.4 Software Process Features Analysis . 51

4.4.1 Process Feature Meta model PFMM 52

4.4.2 Process Feature Modeling with PFMM 53

4.5 Software Process Scope Analysis . 55

4.5.1 Software Process Scope Meta model - SPMM 57

4.5.2 Software Process Scope Determination with SPSMM 58

4.5.3 SPrL Scope Change . 59

4.6 Implementing Software Process Models Variability with SPEM 2.0 and the

CASPER meta-process . 60

4.6.1 Evaluating SPEM 2.0 variability mechanisms 61

4.6.2 Software Process Architectural Model in CASPER with SPEM 2.0 . 62

ii

CONTENTS

4.6.3 General Requirements Engineering Process 66

4.7 A MDE production strategy of CASPER 68

4.7.1 Environment Implementation Definition 68

4.7.1.1 Modeling Platform . 69

4.7.1.2 Model Transformation Language 70

4.7.2 MDE Software process tailoring . 71

4.7.3 Defining transformation rules . 71

4.7.4 Implementing transformation rules 72

4.8 CASPER application engineering: Context-Based Software Process Adap-

tation . 73

4.8.1 Generating context-adapted process models 74

4.8.2 Manually Tailoring . 75

4.9 Preliminary Validation . 76

4.9.1 CASPER Tool Prototype . 76

4.9.2 CASPER Academic Case Study 76

4.10 Synthesis and Discussion . 77

5 Software Process Models Analysis and Visualization 78

5.1 Introduction . 78

5.2 Software Process Blueprints . 79

5.2.1 Example Process: DTS Process . 80

5.2.2 Problems in Software Process Model Analysis 81

5.2.3 Multiple Software Process Model Blueprints 83

5.2.3.1 Process Model Blueprints in a Nutshell 83

5.2.3.2 Role Blueprint . 83

5.2.3.3 Task Blueprint . 85

5.2.3.4 WorkProduct Blueprint 86

5.3 AVISPA . 88

5.3.1 Example Process: Scrum . 90

5.3.1.1 Scrum: a rule-based process framework 90

5.3.1.2 Scrum Process Model in SPEM 2.0 91

5.3.2 Process Model Error Patterns . 92

5.3.3 AVISPA Error Patterns . 93

5.3.4 Localizing Errors with AVISPA . 95

5.3.4.1 Implementation of AVISPA 95

5.3.4.2 Error Pattern Implementation in AVISPA 96

5.3.4.3 AVISPA User Interface . 99

iii

CONTENTS

5.3.5 Applying AVISPA to the Scrum Process Model 100

5.3.6 Scrum Analysis Results . 104

5.4 Synthesis and Discussion . 105

6 CASPER Validation 106

6.1 Introduction . 106

6.2 Research Question . 107

6.3 Case Study Metrics . 107

6.4 Case Study Selection . 107

6.5 Case Study Context . 108

6.6 Organizational Process Model . 108

6.7 Context Model . 111

6.8 Tailoring Transformation . 112

6.9 Case Study Results . 116

6.9.1 Qualitative Results . 119

6.9.2 Influence of the size of the process family in the Cost-Effectiveness

Index . 120

6.10 Case Study Validity . 121

6.11 Synthesis and Discussion . 123

7 AVISPA Validation 125

7.1 Introduction . 125

7.2 Preliminary Validation . 125

7.2.1 AVISPA initial cases with EPF community software process models 126

7.2.2 Initial Industrial Case using Software Process Blueprints 126

7.3 AVISPA Case Study . 128

7.3.1 Research Question . 129

7.3.2 Case Study Selection . 129

7.3.3 Case Study Context . 129

7.3.4 AVISPA Case Study Results . 129

7.3.5 AVISPA Case Study Results Analysis 134

7.3.5.1 False Positives Analysis 134

7.3.5.2 Pattern Tuning . 135

7.3.6 Qualitative Results . 136

7.3.7 Case Study Validity . 137

7.4 Synthesis and Discussion . 138

iv

CONTENTS

8 Conclusions, Contributions and Limitations 140

8.1 Goals review . 140

8.2 Main Contributions . 141

8.3 Conclusions . 142

8.4 Limitations . 144

8.5 Further Work . 145

References 147

v

List of Figures

1.1 Basic Software Process Engineering Meta-process 4

1.2 Hypothesis in the Basic Software Process Engineering Meta-process 6

1.3 Research Method Phases . 9

1.4 Research Disciplines . 9

1.5 Research Iteration . 11

1.6 Thesis Feature Model . 12

2.1 Software Process Engineering and Process Management Cycles 16

2.2 Conceptual Model of SPEM . 18

2.3 Conceptual Model of SPEM2.0 . 19

3.1 Principles of Casper . 34

3.2 Software Process Engineering for SPrL . 36

3.3 Software Process Engineering for SPrL . 37

3.4 Casper Roles . 37

3.5 Domain Engineering Meta-Process . 39

3.6 Process Production Strategy . 41

3.7 Casper Application Engineering . 42

3.8 Software Process Validation based on Avispa 43

4.1 Software Process Context Meta model . 48

4.2 Context Model Visual Stereotypes . 49

4.3 Context Model of CC51A-RE Process . 51

4.4 Process Feature Meta model PFMM . 53

4.5 Process Features Model of CC51A-RE Process 55

4.6 Software Process Scope Meta model . 58

4.7 CC51A-RE Process Scoping . 59

4.8 Partial view of experimental SPEM (eSPEM) highlighting where variability

is specified. 61

4.9 An example of variation points and variants 63

vi

LIST OF FIGURES

4.10 A partial view of the RUP architecture in SPEM2.0 taken from SPEM2.0

Specification (OMG, 2008) . 64

4.11 Implementing an alternative task with a hierarchy of tasks and the task

link as a variation point . 66

4.12 Requirements Engineering Process . 67

4.13 Software Requirements Specification and Validation Alternatives 68

4.14 Requirements Engineering Process as an instance of eSPEM 69

4.15 ATL Transformation Approach . 70

4.16 Select Rule defined as Tree Decision . 72

4.17 ATL Tailoring Transformation . 73

4.18 A Context configuration to an user project of CC51A-RE Process 75

4.19 An adapted software process model of CC51A-RE 75

5.1 DTS Organizational Process . 80

5.2 SPEM Model Fragment for Requirements Change Management 81

5.3 Role Blueprint of the DTS Process Model. 84

5.4 Task Blueprint of the DTS Process Model. 85

5.5 Work Product Blueprint of the DTS Process Model. 87

5.6 Avispa in localizing software process model improvement opportunities . . 89

5.7 Scrum Process Model in EPF . 92

5.8 Scrum Process Model as SPEM2.0 Model 93

5.9 The Avispa logical architecture . 96

5.10 The Avispa metamodel (gray classes belong to FAMIX) 97

5.11 The Avispa main user interface . 100

5.12 Role Blueprint, Work Product Blueprint and Task Blueprint

identifying elements without guidelines . 101

5.13 Applying Avispa for localizing overloaded and isolated roles in Scrum . . . 101

5.14 Applying Avispa for localizing multiple purpose tasks 102

5.15 Applying Avispa for localizing demanded work products 102

5.16 Applying Avispa for localizing independent projects in the WorkProduct

Blueprint . 103

5.17 Applying Avispa for localizing independent projects in the Task Blueprint 103

5.18 Work products that are potential waste in Scrum 104

6.1 Requirements Engineering Process . 109

6.2 Requirements Development . 110

6.3 Requirements Management . 110

6.4 Requirements Understanding . 111

vii

LIST OF FIGURES

6.5 (a) Requirements Development and (b) Requirements Management Feature

Models . 112

6.6 Context Model . 113

6.7 Requirements Development and Requirements Understanding for a simple

Maintenance project . 114

6.8 Attribute values for selecting the Environment Specification activity 115

6.9 Requirements Development process in the case of non existent documentation116

7.1 Task Blueprint for localizing disconnected subgraphs in Amisoft. 130

7.2 Work Product Blueprint for localizing disconnected subgraphs in

Amisoft. 130

7.3 Task Blueprint for localizing multiple purpose tasks in Amisoft. 131

7.4 Task Blueprint for localizing disconnected subgraphs in BBR Engineering.131

7.5 Work Product Blueprint for localizing disconnected subgraphs in

BBR Engineering. 132

7.6 Task Blueprint for localizing tasks involved with too many work prod-

ucts in BBR Engineering. 132

7.7 Task Blueprint for localizing disconnected subgraphs in DTS. 133

7.8 Work Product Blueprint for localizing disconnected subgraphs in DTS.133

7.9 Task Blueprint for localizing tasks involved with too many work prod-

ucts in DTS. 134

viii

Chapter 1

Introduction

Counting on a well defined software process model is an important factor for achieving

software quality and process productivity. Therefore, many companies have prioritized

initiatives to specify and improve their software process. As a result, organizations usually

need many different kinds of processes of different magnitudes and for different purposes.

The organization would also generally need more than one development process. This set

of the processes implicitly compose a software process family (Rombach, 2005) and it in

the best cases include a reference process, a library of reusable assets, and tailoring and

enacting mechanisms.

Different software development life cycles suggest specific activities to be carried out

in a particular order, from traditional models such as the Waterfall, to more modern

ones such as RUP (Kruchten, 2003), Scrum (Schwaber, 1995) or XP (Beck & Andres,

2004). Also, if a company aims to certify or evaluate its software development process,

it should be strictly defined as prescribed to comply with some models and standards

such as CMMI (SEI, 2006) and ISO/IEC 12207 (ISO/IEC, 2008). This organizational

process definition normally requires an enormous effort and it still needs to be adapted to

satisfy the specific characteristics of different project situations (Mirbel & Ralyé, 2005).

Also, there are still no standard mechanisms for determining the quality of the specified

process, and thus of software process definition could be risky to the organization.

This thesis has been motivated by the observations collected for the past five years

on software companies in Chile to define their development processes in an effort to

improve national industry standards1. As part of this practical experience, the process

adaptation problem arose as an industrial need. On the other hand, some typical recurrent

errors in software process modeling showed that the quality of the process models is also

problematic. But both, adaptation and analysis are not easy tasks because there is an

1Tutelkán: Achieving High Quality in National Software Industry by Applying Reference

Processes (www.tutelkan.org).

1

1.1 Problems and Challenges

enormous amount of process elements involved, there are multiple views, and informal

notations that may sometimes introduce ambiguity are usually used. This thesis deals with

the reuse of reference processes, the tailoring of software process models to specific contexts

and the verification of software process models to achieve quality in their definition.

Consequently, this thesis assesses how a model driven approach may result useful and

practical to perform a meta-process (Kontio, 1998) to mainly implement:

• An MDE approach to software process tailoring.

• A visual recovery approach to analyze software process models.

This chapter introduces this thesis including the problem, the challenges, the hypo-

thesis, the goals, the used research methodology and the document content outline.

1.1 Problems and Challenges

The more oriented towards their processes organizations intend to be, the more conceptual

and technological support they require. There are several challenges when an organization

is process oriented. Among them, there is a huge variety of models for different purposes

including quality, reference process, assessment and improvement, a variety of software

process modeling languages, diverse implementations for software process execution, and

a complex relationship among all the above. Managing these relationships among models

with different goals, languages and technologies requires a deep knowledge about software

processes in order to put them into practice and being able to reach all the advantages

they may provide.

One of the challenges in the area of process engineering is to research for mechanisms

that allow taking advantage of the variety of supporting technologies for process definition,

tailoring, execution, verification, validation and evolution including process modeling lan-

guages (PMLs) (Zamli, 2004). Process model solutions should be independent of changing

aspects such as a particular project or the execution platform, and in this way their oper-

ation, evolution, reuse and adaptation would be easier (Bretón & Bézivin, 2001). A key

strategy for reaching a competitive software industry is to apply the concepts and tech-

nologies of process engineering in the most context-suitable way possible. However, this

strategy requires a big and disciplined effort for the organizations for defining, tailoring

and analyzing software process models.

2

1.1 Problems and Challenges

1.1.1 General Questions

Process models are major knowledge assets for mature organizations and communities.

When a process model is defined and applied many errors could be introduced. Some

errors correspond to underspecifications or misspecifications, however others are related

to conceptual and design problems when a software process model is defined, tailored,

interpreted or used. Defining a software process model with quality requires the use of

techniques for building, validating and verifying software process models. As in soft-

ware, two complementary approaches are the detection and prevention of defects. Each

practice for achieving quality requires effort. The challenge is achieve a good trade off

between quality and practicality. Following this two approaches, this thesis has two major

components:

• Prevention of defects introduced by human errors during the tailoring step. Because

tailoring must be executed in the context of a software project, the time, knowledge

and effort to achieve a suitable software process model is limited. Figure 1.1 shows

the tailoring step within a basic meta-process. The relevant question is : how the

tailoring step can be conduced in an effective and expert independent way?

• Detection of defects introduced by human errors in different stages, in Figure 1.1

points 1,2, 3 and 4. A way for detecting errors in process models is to analyze their

correctness and practical issues. Therefore, analyzing software process models is

in general a transversal activity for achieving quality process models. Particularly,

in situational method engineering and tailoring approaches, process analysis has a

great value for assessing general and derived process models. However validating and

verifying software process models result either impractical or limited. The relevant

question is : how the software process model analysis can be conduced in a effective

and practical way?

1.1.2 Software Process Tailoring

Process tailoring is the task of defining project-specific processes by adapting the activi-

ties and their related process elements from a base process model to develop high-quality

software efficiently (Washizaki, 2006). Within software organizations, the standard soft-

ware process is usually applied directly (without any tailoring at all) o tailored in an

inadequate way as a consequence of the difficulty required for it. As a consequence, this

situation increases the costs and risks of development projects (Pedreira et al., 2007). On

the other hand, if the software process is not rigorously applied, the organization could

3

1.1 Problems and Challenges

Figure 1.1: Basic Software Process Engineering Meta-process

be losing most of the effort invested for defining the software process as a competitive

strategy. For that reason, tailoring is a trade off required to have both, a repeatable

software process and a software process suitable for the particular needs of each project.

Process tailoring is a difficult task because it involves intensive knowledge in software

process engineering or in situational method engineering (Mirbel & Ralyé, 2005; Rol-

land, 2009). Additionally, it normally occurs in a reactive way, and therefore it is time

consuming (Ocampo et al., 2005). According to Bai et al. (2010), process engineering

stakeholders and software engineers (project stakeholders) are usually not clearly distin-

guished. The process tailoring is generally performed by the project manager, i.e., a pro-

cess user and not a process designer. Thus, a process modeling approach should provide

ways to cost-efficiently adapt a general (or combined) process model into a project-specific

process model (Armbrust et al., 2009). The problem is how a process adapter tailors a

process model just defining a specific situation, because the main concern for software

engineers (Bai et al., 2010) is to build software and not to built software processes.

The Software Process Line (SPrL) approach has emerged to resolve the reactive ap-

proach in software process tailoring. The SPrL approach facilitates the planned reuse of

process assets, while classic tailoring re-actively integrates unanticipated variability in the

process model (Armbrust et al., 2009). A SPrL seems to be an ideal way to define, tailor

and evolve a set of related processes as it can be evidenciated by the work on process

variability (Simidchieva et al., 2007; Washizaki, 2006). However, to build software pro-

cess lines requires methodological approaches and technological support, particularly to

perform the process engineering considering situational information both, as part of the

planned variability and as a tailoring strategy itself.

4

1.2 Thesis hypotheses

1.1.3 Software Process Analysis

Software process models are sophisticated and huge specifications and building them de-

mands an enormous effort. However, once a process model is specified it is not evident

how to determine if it is well defined, or if it can be improved in any sense before it is

enacted (Osterweil, 1987). The software process meta model SPEM 2.0 (OMG, 2008)

proposes wellformedness rules for software process definition but their scope is limited.

For example, SPEM 2.0 does not determine if for a given process some of the roles are

overloaded, if there are work products that are potential bottlenecks, or if there is no clear

termination condition for a task cycle. Furthermore, these issues do not always constitute

errors, but they are indicators that something may not be completely right (Jacobs &

Marlin, 1996). Even though there are some metrics defined for measuring software pro-

cesses (Cánfora et al., 2005), they are general metrics over the software process model

and they provide a limited intuition about what may be wrong, where errors are, and how

to find opportunities for improvement when there is no apparent error. So, a question

arises: how can we present a rich software process on mere flat diagrams? Software pro-

cess models should represent a complex, dynamic and multidimensional world. Moreover,

available tools are usually intended only for software process visual specification, and not

for analysis, let alone visual evaluation.

For the last five years several Chilean software companies have been observed while

they specified their software processes and some recurrent problems have been identified

indicating the potential presence of misconceptions or misspecifications. However, it is

a recurrent situation that none of them are easily identified, let alone localized, because

of the huge amount of process elements involved, multiple views required, and informal

notations that may sometimes introduce ambiguity.

1.2 Thesis hypotheses

The hypothesis has been formulated around the fundamental problem of achieving soft-

ware process models of quality. However, this hypothesis has been focused to achieve

suitable and correct software process models, as Figure 1.2 shows.

1. Hypothesis: a software process can be built and tailored as a software process line

in a systematic way using an MDE production strategy and situational information

formally specified, introducing the advantages of the planned reuse of the software

process lines approach and the automatization of the MDE approach.

5

1.2 Thesis hypotheses

• Derived Hypothesis: the software process derivation from a software process line

using the MDE approach is simpler and faster than a non planned approach.

Thus, a major cost-effectiveness could be achieved and the software process

could be improved in practice.

2. Hypothesis: a software process model can be analyzed using a visual approach.

Thus, an intuitive mechanism could simplify the software process model validation

by identifying syntactical, semantical and pragmatical problems

• Derived Hypothesis: a software process model can be analyzed using a visual

approach without requiring a great experience. Software process model verifi-

cation and validation could be applied in practice to identify missconceptions,

underspecifications and practical issues.

Figure 1.2: Hypothesis in the Basic Software Process Engineering Meta-process

Although both hypotheses address to the same problem line, it is important to con-

siderer the independendence presented in this work. To validate each hypothesis requires

to define a unique technological context. The tailoring hypothesis requires counting with

technological maturity of the software modeling tools; the ideas behind of this hypothe-

sis are to improve the current tools for modeling software process models including new

concepts (i.e. contexts, process features and tailoring rules). In this thesis, the process

models in tailoring research are based on eSPEM a simplified version of SPEM and for the

complementary models, specific metamodels have been defined. On the other hand, the

analysis hypothesis requires work on available industrial process models; this is achieved

6

1.3 Thesis goals

defining mechanisms to analyze process models using standard information. Hence, in

this thesis, the process models in analysis research are based on UMA the metamodel

behind Eclipse Process Framework, a SPEM based process modeling tool used by the

software industry and the process community. Actual and available UMA software pro-

cess models are used to validate this approach. On the other hand, in the software process

model tailoring hypothesis, the technological maturity is lower than that required by the

process analysis hypothesis. Therefore, a basic infrastructure was developed for validat-

ing the tailoring proposal itself and the cases introduced(normally specified in textual

way) are modeled with this infrastructure using its process sources modeled in different

metamodels.

1.3 Thesis goals

1.3.1 Main goal

The main goal is to build a meta-process based enabling context suitable and correct

software process models. It includes a general and abstract process process line from

which derived processes can be created through a production strategy based on MDE and

verified in a visual way.

1.3.2 Specific goals

1. To create and validate a meta-process including a set of meta-process assets for

supporting it. These assets include a set of practices and strategies for supporting

model representation and model transformation including an MDE tailoring strategy

as its central asset.

2. To define and validate a visual approach to statically analyze software process mod-

els formally specified in order to identify specification problems before the process

models are executed.

1.4 Research Method

1.4.1 Case Study Method

The research developed in this thesis is based on the case study method. According to Yin

(1984) case study is an empirical research method that investigates a contemporary phe-

nomenon within its real-life context. Yin (1984) suggests this method specially when the

7

1.4 Research Method

boundary between the research object and its context is not well delimited. The case stud-

ies have been criticized as less valuable than analytical and controlled studies, including

its powerlessness to generalize hypothesis. This corresponds to a one of the misunder-

standing claimed by Flyvbjerg (2006) where it is not possible to generalize from individual

cases. Thus, experimental and formal generalization are considered as valid tools of the

scientific method, whereas the case study is used as an exploratory study (Rowley, 2002).

According to Eisenhardt (1989), the case study is also useful to validate theoretical

models. The case studies can be generalizable if they are strategically selected from the

universe of cases (Rosch, 1978). For instance, as reports Rosch (1978), if the objective is to

get the greatest possible amount of information on a given phenomenon, a representative

case or a random sample may not be the most suitable strategy, because an extreme case

could offer the richest information to validate the research hypothesis. The case study

adds to existing knowledge more knowledge to established theory or to go down into an

established theory. A suitable method in empirical software engineering is the use of

controlled experiments. However the control of the all variables in software engineering

is very difficult (Shull et al., 2002) because they include the human factor. A case study

is an appropriate method in this research because it is difficult to controller all of the

variables to understand the process tailoring and process analysis phenomena in industrial

settings as Runeson & Höst (2009)suggest. Furthermore, in industrial settings there are

few available cases to conduce experiments with a representative number of samples.

According to Klein & Myers (1999) there are three types of case studies: positivist,

critical and interpretative. Following this classification, this thesis has used positivist case

studies, where evidence for testing hypotheses is searched. The case studies in this thesis

define their units of analysis in a determinisistic way. Flyvbjerg (2006) classify the case

selection according to the information required as: extreme/deviant, maximum variation,

critical and paradigmatic. The purpose of the selection in this thesis was driven by its

representativity (Benbasat et al., 1987). However, the case selected following a general

availability criteria.

The complete research method description used in this thesis is presented from three

points of view. Figure 1.3 depicts the phases of the research method and it refers to a

management view. The three phases (and their milestones) are: exploration (problem

defined), formulation (model defined) and validation (hypothesis validated). At the end

of the exploration phase, the project proposal was accepted (Thesis I), by the end of the

formulation phase a model (or validation mechanism) was completed (Thesis II and III)

and when the validation was performed, the research was completed (Thesis IV).

In the exploration phase the main objective is to establish the problem statement.

In the formulation phase the technical infrastructure was developed including methods,

8

1.4 Research Method

techniques and tools associated to the different parts of the meta-process. In the validation

phase a set of study cases for validating hypotheses 1 and 2 are designed and performed.

Figure 1.3: Research Method Phases

The second point view refers to the research disciplines (main activities): state of

the art review, problem formulation, hypothesis formulation, validation design, model

validation and documentation. These disciplines were executed many times with different

levels of effort according to the phase in execution as it is shown in Figure 1.4.

Figure 1.4: Research Disciplines

1. State of the art review activity: the relevant literature and industry was observed,

studied and organized.

2. Problem formulation activity : a well defined problem statement was achieved. This

activity motivates and defines a relevant problem for both, the industrial and sci-

entific software process community.

9

1.4 Research Method

3. Hypothesis formulation activity : the hypotheses were iteratively formulated and

re-formulated according to the scientific and industrial review, and the problem

statement.

4. Model Formulation activity : mechanisms were defined according to the hypotheses

and the validation needs. The problem, the state of the art and the hypotheses were

used to create the models (meta-process and meta-models) and tools to facilitate

the evaluation of the hypothesis.

5. Validation design activity: validation instruments were defined and implemented.

The instruments refer to non formal (test and initial cases) and industrial study cases

according to the iteration performed. The software process line study cases were

selected as extreme and critical (Requirements engineering), whereas the process

analysis case studies were based on the availability of the EPF process models

(both, community and industrial).

6. Model Validation activity: validation was performed according to the study cases

defined at validation design. The case studies were performed according to the

specified design.

7. Documentation: it was generated while the project advanced. So, technical reports,

papers, process models and this thesis have been defined in an incremental way.

The above two points view, are related in a new third point view: the research iteration.

A research iteration organizes the research disciplines in a workflow as it is presented in the

Figure 1.5. In each iteration, the variable emphasis by phase is represented in Figure 1.4.

In this thesis three iterations were executed with the following results:

1. First Iteration: software process improvement projects were observed and an initial

version of the problem and the state of the art was established. The hypothesis was

initially stated. Process models in EPF were defined and process assessments were

conducted by the organizations. Two publications were obtained: Software Pro-

cess Improvement in Small Enterprises published in ICSP 2009 (Pino et al., 2009)

and Software process tailoring as a means for process knowledge reuse published on

Kreuse’009 (Hurtado & Bastarrica, 2009).

2. Second Iteration: a more complete description of the problem and the state of the

art was established. The hypothesis was stated with a better definition than in

the previous iteration. The models were defined and initial versions of the tools

were implemented. Additionally, example process models were defined as software

10

1.4 Research Method

Figure 1.5: Research Iteration

process lines and available software process models were analyzed. A first proposal

to process adaptation and analysis was defined and validated using small cases and a

small industrial case in DTS enterprise. Two publications were presented: Software

process models blueprints published on ICSP’ 2010 (Hurtado et al., 2010b) and

Analyzing Scrum with Avispa on the SCCC 2010 (Hurtado et al., 2010a).

3. Third Iteration: industrial cases were defined to validate the hypothesis. Mecha-

nisms were improved and applied in the study cases. More concrete results were

obtained and published in this iteration. Four publications were presented: To-

ward Lean Development in Formally Specified Software Processes on the EuroSPI

2011 (Bastarrica et al., 2011), Analyzing software process models with Avispa (Hur-

tado et al., 2011a) on the ICSSP 2011, An MDE approach to software process tai-

loring on the ICSSP 2011 (Hurtado et al., 2011c), Is it Safe to Adopt the Scrum

Process Model? on the CLEI Electronical Journal (Hurtado et al., 2011b) and

Building Software Process Models with CASPER on the ICSSP 2012 (Hurtado &

Bastarrica, 2012).

11

1.5 Document content

1.5 Document content

Figure 1.6: Thesis Feature Model

The rest of this document details the structure of the thesis. Chapter 2 includes

the state of the art and the related work about software process tailoring, software pro-

cess lines and software process model analysis. Chapter 3 presents the methodological

framework: Casper (Context Adaptable Software Process EngineeRing). Chapter 4 de-

tails how Casper is applied, particularly how software process lines are developed and

a process is produced. Chapter 5 explains software process blueprints and Avispa, the

approach and technology to software process analysis. Chapter 6 and Chapter 7 present

the study cases where Casper and Avispa are respectively validated. Chapter 8 presents

the main contributions and limitations of this thesis and some further work is explained.

This document could be read of three ways. The feature model in Figure 1.6 shows these

alternatives according to the reader preferences. Basically three initial review scenarios

have been considered, a review on software process lines (Chapters 4 and 6), a review on

software process model analysis (Chapters 5 and 7) and a complete review (Chapters 4,

5 ,6 and 7). The remaining chapters may be necessary to understand the thesis.

12

Chapter 2

Background and Related Work

Software processes have been recognized as a important asset for software development (Humphrey,

1989). However, for suitably defining, applying and analyzing software processes a great

effort is required. This chapter defines the relevant concepts involved in this thesis. They

range from basic concepts as what a software process is to specific concepts such as soft-

ware process tailoring strategies including software process families.

2.1 The Software Process Concept

According to Humphrey (1989), software process is a set of tools, methods, and practices

for producing software products. For Feiler & Humphrey (1993) and Conradi et al. (1993),

a software process is a set of partially ordered steps intended to reach a goal. On the other

hand Lonchamp (1993) defines the process as a set of partially ordered process steps,

with sets of related artifacts, human and computerized resources, organizational structures

and constraints, intended to produce and maintain the requested software deliverables.

Additionally, some authors suggest that the software process is a complex entity (Fuggetta,

2000) that requires to use a staged and multiview (Jacobs & Marlin, 1996) approach.

Definition 1. A Software Process is an entity explicity or implicity defined for repre-

senting, tailoring, enacting and executing a set of partially ordered software tasks with

their associated performers, inputs, outputs and knowledge in a software development or

maintance context

Software processes are defined from simple elements called process elements or enti-

ties. The element names depend on the vocabulary used to define a software process. For

example performer, agent, actor, stakeholder or role can be used to represent somebody

performing a task, activity or step at a specific stage. This document uses a standard

terminology based on the SPEM 2.0 language, described bellow, as a way of adhering

13

2.2 Software Process Engineering

to a unique language for this thesis. Normally these entities can be considered key ele-

ments for reuse, tailoring, measurement, enactment or improvement. So, process elements

can be considered as method elements or chunks as in Situational Method Engineering

- SME (Ralyté et al., 2003). A method fragment is defined as an indivisible part of a

methodology according to Brinkkemper et al. (1998). These authors discriminate between

two kinds of method fragments: process fragments (e.g. tasks) and product fragments

(e.g. artifacts). Additionally, ther define a method chunk as a combination of a process

fragments and product fragments very related (Ralyté & Rolland, 2001). A similar sit-

uation is presented in SPEM 2.0 (OMG, 2008): a process component includes process

elements and method content elements. A process is defined as a special kind of reusable

ProcessComponent.

A software process as an artifact, is normally expressed as a software process model.

A model describes, at different detail levels, an organization of the elements of a process

for designing, enacting, using, evaluating and improving. This process model can be

analyzed, validated, and executed or simulated when it is an executable artifact. The

process models can be used for software process control (evaluation and improvement) in

an organization and for experimenting with software process theory and to ease process

automation.

Definition 2. A Software Process Model is an abstract software process description (Acuña

& Ferré, 2001), (Lonchamp, 1993) to certain level of abstraction and a particular view

on the process (Lonchamp, 1993) used for representating, tailoring, enacting, simulating

or executing a software process.

According to Lonchamp (1993) An abstract description hides some aspects of the sys-

tem or item being described: either definitional details, or some properties, or the way to

implement the system or item. Different process models can describe different points of

view giving priority to particular concerns of a complex system (Humphrey, 1989) (Jacobs

& Marlin, 1996). Some formalisms as suggest (Lonchamp, 1993), define views as perspec-

tives, such as the functional, organizational, and behavioral facets. Process models could

be described as a set of views when they are defined or analyzed.

2.2 Software Process Engineering

Software development organizations have found that count with defined processes can

improve the organization performance and product quality (Humphrey, 1989). Provided

that software process definitions’ make high-quality software easier and more economical

to produce, they have become widely valued and used. This means that software process

14

2.2 Software Process Engineering

definitions are both useful for practitioners and reasonably economical to produce. Expe-

rience to date, however, demonstrates that the development of a comprehensive software

process definition can be very expensive and time consuming. Thus, process design re-

quires developing general purpose process definitions together with techniques for reusing,

tailoring, enhancing and analysing them. Just as with software, this implies that large

scale software processes should be carefully designed, constructed and validated.

According to (Feiler & Humphrey, 1993), Process engineering is the research area

involved with the practices for the definition, application, improvement and evolution of

the software process. Process engineering follows a meta-process, a conceptual framework

for defining and building software process models (Lonchamp, 1993). Software processes

are software too (Osterweil, 1987), so, a meta-process has many of the same artifacts and

require quite similar disciplines and methods as software engineering. For example, one

possible simple life cycle can start with clear process requirements followed by a process

architecture and detailed process design stages. Processes must be validated against

users’ needs, and process prototypes (over pilot projects) may be needed before full scale

development is undertaken.

Definition 3. A software meta-process is a process describing the engineering of software

processes. Meta-process artifacts are generic process models, tailored process models, in-

stantiated process models, and model driven software processes among others. A model

driven process is a process execution influenced by the interpretation of an instantiated

process model, for example by a workflow machine.

2.2.1 Software process engineering life cycle

Meta-process steps are intended for modeling, analyzing, supporting, and improving soft-

ware process. Meta-process agents are either humans (e.g. process model engineers,

process model managers, process model performers) or process support technology (Con-

radi et al., 1992). A meta-process is highly related to the kind of software process model

to be delivered. In Figure 2.1, we enumerate several main meta-process activities: pro-

cess model design, tailoring, instantiation, enactment, validation, verification, monitoring,

evolution and improvement (Madhavji, 1991), (Conradi et al., 1992), (Humphrey, 1989).

Actual meta-processes do not necessarily include all these meta-steps. Therefore, accor-

ding to Madhavji (1991) the boundaries between some steps may vanish in approaches with

intertwined model design / customization / instantiation and enactment: even during en-

actment a guidance-oriented or enforcement-oriented model must be changeable. Software

process management is based on measurement, assessment and improvement activities

15

2.2 Software Process Engineering

Figure 2.1: Software Process Engineering and Process Management Cycles

whereas software process engineering is based on analysis, design, tailoring, instantiation

and enactment activities.

2.2.2 Software Process Modeling

The modeling of the software process is a meta-task to define a software process as a

software process model (Acuña & Ferré, 2001). Different model representations describe,

at different detail levels, an organization of the elements of a process (actual or future).

Further, they provide definitions of the process to be used, instantiated, enacted or ex-

ecuted. So, a process model can be analyzed, validated, simulated or executed if it is

suitably defined with these goals.

Curtis et al. (1992) present some benefits of software process modeling:

• Ease of understanding and communication: a process model must contain enough

information for its application. Additionally, it formalizes the process providing a

basis for training and knowledge reuse.

• Process management support and control: a process model facilitates project-specific

software process adaptation, monitoring, management and coordination.

16

2.2 Software Process Engineering

• Provision for automated orientation for process performance: a process model fa-

cilitates to define an effective software development environment, providing user

orientation, instructions and reference material.

• Provision for automated execution support: a process model facilitates identifying

automated process parts, cooperative work support, a set of metrics and process

integrity assurance.

• Process improvement support: a process model facilitates reusing well defined and

effective software processes, the selection or comparison of alternative processes and

process development support.

One of the main challenges in the area of process engineering is to be able to take ad-

vantage of the huge variety of research and supporting technologies for process construc-

tion, tailoring, execution and evolution, including process modeling languages as Zamli

(2004) state. A Process Modeling Language (PML) is feined by Fuggetta (2000) as a

particular language for modeling and describing software processes. Examples of PMLs

are E3 language (Jaccheri et al., 1998), APEL (Dami et al., 1998), Little-JIL (Osterweil,

1998), PROMENADE (Franch & Ribo, 1999) and SPEM 2.0 (OMG, 2008). SPEM 2.0

is a standard proposed and maintained by the Object Management Group (OMG). It is

based on MOF (Meta Object Facility) and it has been the most popular language used to

specify software processes (e.g., Scrum, XP and OpenUP). It also defines a UML profile

in order to provide a mechanism to model processes using the UML language.

2.2.3 SPEM 2.0

Software and Systems Process Engineering Meta model SPEM 2.0 OMG (2008) is the

OMG standard for process modeling. SPEM is a process engineering meta-model as well

as a conceptual framework. This metamodel provides fundamental concepts for modeling,

documenting, presenting, managing, interchanging, and enacting development methods

and processes. An implementation of this meta-model would be oriented to different

stakeholders such as process engineers, project leaders, project and program managers.

In general any stakeholder responsible for implementing and maintaining processes for

their development organizations or individual projects.

SPEM conceptual model, as depicted in Figure 2.2, allows identifying roles that rep-

resent a set of related skills, competencies, and responsibilities in the development team.

Roles are responsible of specific types of work products. For creating and modifying work

products, roles are assigned as performers in tasks where specific types of work products

are consumed (inputs) and produced (outputs). Roles, work products and tasks could

17

2.2 Software Process Engineering

Figure 2.2: Conceptual Model of SPEM

have associated information. This information could be classified as fundamental and

complementary. Fundamental information is described in the same element whereas com-

plementary information is described as associated Guidance. Guidance is defined in SPEM

as an element that provides additional information related to Describable Elements (this

includes task, roles and work products). There exist specific kinds of guidance: Guide-

lines, Templates, Checklists, Tool Mentors, Estimates, Supporting Materials, Reports,

Concepts, etc. To obtain a complete list of guidance kinds and detailed description refer

to OMG (2008).

SPEM provides a standardized and managed representation of method libraries in

order to allow reuse of method content. It aims to support development practitioners in

defining a knowledge base for software development. It allows them to manage and deploy

method library content using a standardized format. Such content could be licensed,

acquired or reused. Examples of method content are tasks, work products, roles, examples,

method definitions, white papers, guidelines, templates, principles, best practices, internal

procedures and regulations, training material, and many other general descriptions of how

to develop software. Details of these concepts are presented in OMG (2008).

SPEM provides a standardized representation of process structure for defining an inde-

pendent life cycle, allowing method content to be placed into a specific process life cycle.

Such processes can be represented as workflows and/or breakdown structures. Within this

process, the reused method content can be then refined for its specific context. SPEM

2.0 also provides the conceptual foundation for process engineers and project managers

for selecting, tailoring, and rapidly assembling processes for their concrete development

projects.

The SPEM 2.0 meta model separates reusable method contents and their application

in specific processes to promote reusability. Method content provides step-by-step ex-

planations, describing how specific development goals are achieved independently of the

18

2.2 Software Process Engineering

Figure 2.3: Conceptual Model of SPEM2.0

placement of these steps within a development life cycle. Processes take these method

content elements and relate them into partially-ordered sequences that are customized to

specific types of projects. SPEM 2.0 is structured in seven packages:

• Core Package: contains classes and abstractions that build the basis for all other

packages.

• Process Structure Package: defines the basis for defining process models as a break-

down of nested Activities with the related performing Roles, as well as input/output

Work Products. It also provides mechanisms for process reuse such as dynamic

binding of process patterns that allow users to assemble processes with sets of dy-

namically linked Activities.

• Process Behavior Package: extends the static structures of the process models with

externally defined behavioral models, e.g. UML state and activity diagrams.

• Managed Content Package: introduces concepts for managing content of develop-

ment processes documented and managed as natural language descriptions. These

concepts can either be used as standalone or in combination with process structure

concepts.

19

2.3 Software Process Tailoring

• Method Content Package: adds concepts for defining life cycles and process-independent

reusable method content elements that provide a basis of documented knowledge of

software development methods, techniques, and concrete realizations of best prac-

tices. Method content describes how to achieve fine-grain development goals, by

which roles, with which resources and results, independently of the placement of

these elements within a specific development life cycle. The basic concept is Method

Content Element (method fragment).

• Process With Methods Package: facilitates integrating processes defined with Pro-

cess Structure with instances of Method Content. Whereas Method Content defines

fundamental methods and techniques for software development, process structure

places these methods and techniques into the context of a life cycle model.

• Method Plugin Package: introduces concepts for designing and managing main-

tainable, reusable, and configurable libraries of method content and processes. The

concepts introduced in this package allow arranging different parts of such a library

based on different layers of concern. Using concepts such as Method Plugin, Process

Component and Variability Types, processes with a variety of capabilities can be

defined. Variabilities can be used for defining variants of a method to choose among

different choices at tailoring time.

For a detailed description of SPEM 2.0 meta model refer to OMG (2008).

2.3 Software Process Tailoring

There is no standard software process suitable for all development situations since ap-

propriateness depends on various organizational, project and product characteristics, and

what is even worse, all these characteristics evolve continuously. A one-size fits-all ap-

proach does not work for software development (Firesmith, 2004). Each project has its

own characteristics and requires a particular range of techniques and strategies, and se-

lecting a set of practices and integrating them into a coherent process should also be

aligned with the business context (Cusumano et al., 2009). In their process improve-

ment approach, Dörr et al. (2008) suggest that the right set of practices for a project can

be better found if we understand the context of the company. So, each project context

should dictate the definition of the process that best fits it. Moreover, the particular pro-

cess applied should not vary dramatically from one project to the other, so that process

knowledge acquired by the development team could be reused. Tailoring is the process

through which a general software process is configured for adapting it to the particularities

20

2.3 Software Process Tailoring

of the project at hand. Empirical studies show that process tailoring is difficult because

it involves intensive knowledge generation and deployment (Rolland, 2009). If tailoring is

carried out manually, it would involve an enormous effort and still be error prone, and the

knowledge necessary for appropriately tailoring the process may be lost from one project

to the following one.

Definition 4. Software Process Tailoring is a step inside of a software meta-process for

adapting a general software process to a specific context. This step generally occurs before

process enactment: in this case the general process is an organizational software process

and the specific process is a project context adapted process.

Tailoring methods proposed by Dai & Li (2007) and Yoon et al. (2001) allow making

tailoring decisions about deleting of merging process elements but the proposed formalisms

and the generalization they propose make more complex the work of the project manager

at tailoring time. Situational Method Engineering (SME) is a related area to software

process tailoring focusing on the project specific method construction from a method

repository (Ralyté et al., 2003). In general SME defines three general techniques. The

most common one is for assembling method chunks or process fragments. Another strat-

egy is for extending an existing method, and the other one is for generating a method by

abstraction/instantiation of a model/meta-model. Nevertheless, in most cases the effort

for tailoring the process is huge, especially when the assembly is carried out at method

construction time, as in Mirbel & Ralyé (2005). This is a big problem because process

tailoring is normally not a responsibility of process engineers, but of the project man-

ager. During the organizational process definition, an adaptable structure and a guide

for process tailoring by situational knowledge can be defined, as proposed by Aharoni &

Reinhartz-Berger (2008).

Process tailoring is a required practice for most processes. The Unified Process (Jacob-

son et al., 1999) uses an adjust guide tailoring approach where tailoring rules are defined as

recommendations to adapt phases, iterations and disciplines according to project specific

situations. This approach requires a huge effort, knowledge and it is error prone. Agile

methods, e.g. XP (Beck & Andres, 2004), define principles, values and practices where the

process results as an emergent entity adapted to the project specific needs. So, agile meth-

ods follow an auto-adaptable tailoring approach. This approach is oriented to people, so

the knowledge mainly flows in an oral way. Particularly, Crystal Methodology (Cockburn,

2000) is defined as an agile methodology family with four members: Clear, Yellow, Or-

ange and Red. This classification can result insufficient for suitably covering each specific

project. The ISO/IEC 29110 standard ”Life cycle profiles for Very Small Entities” (ISO,

2011) defines a set of profiles, where VSEs selecting one of them according to Business

21

2.3 Software Process Tailoring

Models (commercial, contracting, in-house development, etc.), situational factors (such

as criticality, uncertainty environment, etc.), and Risk Levels. According to O’Connor

& Laporte, creating one profile for each possible combination of values of the various di-

mensions introduced above would result in an unmanageable set of profiles. Crystal and

ISO/IEC 29110 tailoring follow a template based tailoring approach. Commercial processes

such as RUP (Kruchten, 2003), use a framework based tailoring approach, where a general

process is defined and a specific configuration is created by each specific project. Still,

in this approach knowledge about processes is required at tailoring time. This approach

requires using composition tools such as Method Composer of Rational IBM or Eclipse

Process Composer. The framework strategy presents understandability problems and an

overloaded model, and the template strategy presents the inherent difficulty of defining

the adequate set of templates for the satisfaction of different types of projects (Bustard

& Keenan, 2005). In this latter strategy, reuse is partially considered, but adaptation is

not.

Martinho et al. (2008) present a two-step tailoring approach based on controlled

flexibility. The process engineer expresses which, where and how changes can be applied

onto process elements. The other process participants (process users) can easily identify

which changes they are allowed to perform, and act accordingly. To support this approach,

they have proposed a flexibility meta model, a modeling language, and a software process

modeling tool called FlexEPFC. This approach is practical because each participant tailors

the process fragment that he/she is interested in, however general inconsistencies could

appear because to incompatible local decisions can be taken by the participants. So, this

approach is still time consuming and error prone.

The above approaches do not facilitate mechanisms for reusing the tailoring knowledge.

An intelligent tailoring approach has been proposed using case based reasoning (Xu,

2005), (Henninger & Baumgarten, 2001) and neuronal networks (Park et al., 2006). In

these cases, tailoring is based on an incremental set of previously tailored processes, so

the benefits are achieved after various processes have been adapted. So, the knowledge

and experience required at tailoring time is smaller when a good experience base has been

defined. In an intelligent tailoring approach the specific situation is explicitly defined as a

context encapsulated as a set of values for a set of context variables. When a new tailoring

decision is required, it is manually implemented, however it improves the knowledge base

for subsequent cases. The main difficulties in this approach correspond to the set up cost

and the non planned change and evolution of various processes. So a change to the process

may require training again the adaptation mechanism. So, this approach consumes a huge

effort and time too.

22

2.3 Software Process Tailoring

Killisperger et al. (2009) propose an instantiation based tailoring approach. However

there are few processes formalized up to an enactment level. So, this approach may result

in little benefit. If it were possible, still some problems would arise. For example, decisions

about replication of tasks, resource allocation and scheduling of events are added on the

top of adaptation decisions. This approach makes very complex the tailoring process.

2.3.1 Process tailoring based on process families

Software Process Lines (SPrL) could be considered are a special kind of Software Product

Line (SPL) (Clements & Northrop, 2001) (Osterweil, 1987).

Definition 5. Software Process Line - SPrL is a set of related software processes defined

from a set reusable of process assets in a planned way. SPrL enable a planned software

process tailoring approach.

2.3.1.1 The Early Age of the SPrLs

The first work widely known in SPrL was published by Sutton & Osterweil (1996b). In

this work it is apparent the usefulness of viewing the software process as a process family.

Osterweil based his work on the observation that the Booch Object Orientation Design

(BOOD) method is a framework for describing different specific processes instead of only

one unique specific process. Although a software process framework is not necessarily

a SPrL, this observation and the analogy with the product engineering have been key

concepts for following this approach. Following a SPrL approach, BOOD was used by

the Programmable Design Process (PDP) project (Sutton & Osterweil, 1996a) for gen-

erating a variety of processes. The PDP project used a combination of mechanisms for

selecting, specifying and tailoring processes. Rather than to show the process flexibility

and adaptability, this work has risen key questions for this research line such as, how can

the process family members be differentiated?, can one member be tailored for becoming

other? So, this work suggests an integrated vision of product families and process families.

It also states the need for characterization, use and management of commonalities and

variabilities among family members. So, process families is a promising area where some

interesting concerns are the identification, specification, support and adaptation of the

SPrL. Osterweil’s work is a first step in the identification of SPrL but it does not present

a concrete proposal for dealing with SPrL, as this thesis intends.

A configuration management approach is proposed by Belkhatir & Estublier (1996)

for the software process reuse and configuration. The idea is based on using a combi-

nation of an object-oriented view and the concept of process interface. For explaining

this approach, the authors use the Process Interconnection Language (PIL), which was

23

2.3 Software Process Tailoring

built for process reuse and composition. The language provides version management

characteristics for controlling the specific unit versions within a particular software pro-

cess. The complete software process model is considered as a configuration, which can be

automatically generated and may support multiple configurations simultaneously. The

most relevant contributions of Belkahir’s work are suggesting that the modeling language

must be separated from the composition language, and that the configuration manage-

ment can support process reuse and configuration at large scale. For theses reasons, the

model defines a configuration model and includes the process unit concept (interface and

implementation), the family concept (interface and variant group) and the configuration

concept. The model makes a separation in three levels: meta class, family and instance.

This work addresses the technical problem about the control and management process

models as a family; however, it does not offer a specific approach for defining and applying

software processes as the framework as is proposed in this thesis. The work of Belkhatir

& Estublier (1996) does not make emphasis on the way of adapting process models to

specific contexts such as projects and execution machines, which is the production strat-

egy proposed in this thesis; however, a process configuration strategy as that shown in

their work must be included in any meta-process proposal.

2.3.1.2 The emergence of the SPrLs

Simidchieva et al. (2007) present an approach for defining a process and a set of variants

as a process family. This work proposes a formal approach for defining process families by

characterizing them. They also use the language Little-Jil for implementing an example.

The purpose of this work is showing that the language and the approach are appropriate

for defining process families. The key elements for process family management lie on the

language used that allows a separation of concerns (specification, coordination, agents and

artifacts), visual representation, and an experimental platform for modifying the process

allowing variants. Generating variants is achieved by the technique of process components

reuse and combination, based on the user specifications. In the example used, the authors

create process variants by changing an agent’s behavior, a task elaboration and an artifact.

The work neither considers any particular technique for SPrL, nor it is closed to one

particular definition of a SPrL. The scope of this work is process lines in general and not

SPrL, so its scope is wider than ours. On the other hand, our thesis is centered around

software processes as a specific domain, and it intents to define a conceptual framework

for SPrL and based on this framework, to define a systematic meta-process for building

SPrLs. However, some ideas suggested by Simidchieva et al. (2007) will be taken and

adapted for our work.

24

2.3 Software Process Tailoring

Rombach proposes the SPrL concept as a systematic mechanism for managing a pro-

cess and its variants (Rombach, 2005). This work is a motivation for SPrL work because it

strengthens the relation between software product lines and software process lines stated

by Sutton & Osterweil (1996a). However, the main contribution of his work is about

establishing possible further work for SPrL. The work highlights that PMLs must include

variability management mechanisms, effective methods for creating empirically supported

processes as evidence-based software engineering methods or value-oriented software engi-

neering methods; it also includes theoretical and engineering foundations for an integrated

vision of SPrL and software product lines. Rombach’s work has generated great interest,

but it neither includes a particular approach for modeling SPrLs, nor includes a con-

crete meta-process. This thesis uses and extends his perspective, and intends to take the

following step by proposing a concrete methodology for building and applying SPrLs.

In Hanssen et al. (2005), the tailoring of a software process based on the SPrL concept

is presented. The method uses a SPrL in a specific domain (automobile industry), it

follows a top-down adaptation approach, and it supports a bottom-up refinement of the

generic process based on tracing the instantiated processes. The work shows through

an informal validation study that tailoring, within the SPrL approach, is efficient and it

yields adherence to a generic process at adaptation time. This method is about the SPrL

concept, but it does not define a specific meta-process or tailoring strategy. This thesis

proposes a generalization of this approach defining a meta-process based on a generative

tailoring strategy.

Following Rombach’s path, Washizaki (2006) proposes a concrete work in SPrL: the

SPrL architecture construction via an ascendant approach. Washizaki’s work proposes

a technique for tailoring the process through SPrL. A SPrL is understood as a set of

common processes within the same problem domain, and a SPrL architecture that spec-

ifies commonalities and variabilities. The architecture is the basis for deriving the SPrL

member processes using a global optimization view. Furthermore, a conceptual frame-

work and concrete definitions are provided; also a practical example is presented where

a software process is tailored. However, the conceptual framework is limited in terms of

methodological issues for defining the scope, the architecture, the process components,

commonalities and variabilities. Although this work defines a special notation for repre-

senting commonalities and variabilities (a SPEM 2.0 extension), the work is centered in

factorization and reverse engineering, and it does not prescribe any method for process

engineering. Another characteristic is that the work considers the process composition as

the only mechanism for process customization to generate a new process instance and it

does not consider that complete models could also be defined from adaptations either.

25

2.3 Software Process Tailoring

Other work following the bottom-up strategy to SPrL is presented by Ocampo et al.

(2005). The approach is based on a tool for factorizing commonalities among several

software process models. To do so, the work shows an initial evaluation in the Wireless

Internet Services domain. The steps followed by this work are: define pilot processes,

execute pilot processes, observe and model processes, identify and evaluate processes and

derived practices, analyze commonalities and variabilities, and finally, create a reference

model. Again, it is a work where the SPrL is based on the factorization strategy. Although

this alternative is feasible for building SPrLs, the process asset composition (in a context

of a huge number of components) is poor and the adherence to a general process is hard to

achieve (Zhu et al., 2007). The work proposed in this thesis takes the ideas of these other

work for representing variabilities and commonalities, but, it will follow a generative

approach based on model transformations. This work will use a descendant approach

based on reusing and adapting process models, and using transformations as part of the

production strategy in the meta-process for SPrL. So, reuse is applied in a systematic

way instead of an opportunistic way. Similarly, model adaptation can be reused too and

therefore, the process assets associated to these models could also be reused. Although

the SPrL is created as a whole, it could use some factorization strategies for its definition.

The software process architecture will be considered as the core asset of the SPrL as

proposed by Washizaki (2006).

2.3.2 Model Driven Engineering in software process tailoring

According to France & Rumpe (2007) the Model-driven engineering (MDE) is a software

development approach where abstract models are defined and systematically transformed

into more concrete models, and eventually into source code. This approach promotes

reuse through a generative strategy. MDE has been originally created for software en-

gineering, but following the Osterweil’s premise (Osterweil, 1987), MDE can also be ap-

plied to software process engineering as Bretón & Bézivin (2001) propose. In particular,

transformation techniques have been used as instantiation strategies in process engineer-

ing (Killisperger et al., 2009), (Bézivin & Bretón, 2004). This thesis is based on the ideas

of formally defining process models and using transformations to manipulate them. For

this reason, MDE will be used for separating the process definition in two abstraction lev-

els: organizational process level and project specific process level. In the organizational

process model a general and abstract process model is defined, that is the core of the

SPrL. Via transformations the next level model is produced. A transformation is an au-

tomatic activity based on contextualized information about project and the environment

respectively.

26

2.4 Validating Software Process Models

This thesis follows a software process line approach for supporting the software pro-

cess tailoring. Process domain engineering facilitates the planned reuse anticipating the

variability in the process model (Armbrust et al., 2009), so a model transformation is

proposed as a tailoring strategy to produce project-specific process models (Bretón &

Bézivin, 2001) (Hurtado & Bastarrica, 2009). Context information modeling (Kajko-

Mattsson, 2010) is achieved using a Process Model Context Meta model. The thesis

approach searches a separation of Software Process Engineering and Software Engineer-

ing Domains where process modeling stakeholders and process enactment stakeholders

(project stakeholders) are usually not clearly distinguished in other approaches (Bai et al.,

2010). Additionally, software process tailoring is complex, requiring the reuse of intensive

tailoring knowledge reuse (Hurtado & Bastarrica, 2009). Thus, a process modeling ap-

proach should provide ways to cost-efficiently instantiate a general (or combined) process

model into a project-specific process model (Armbrust et al., 2009). The process adap-

tation should be reduced to defining a specific situation, because the main problem for

software engineers is to build software and not software processes. So, adaptation should

result appropriate and not time consuming to software engineering stakeholders and the

software process models and software process tailoring rationale could be reused between

different projects.

2.4 Validating Software Process Models

Software quality is a key issue in software engineering, and it highly depends on the

process used for developing it (Humphrey, 1989). Quality of process models is also a key

issue in process engineering (Lonchamp, 1993). Software process model quality can be

addressed from different approaches: metrics (Cánfora et al., 2005), testing (ISO/IEC,

1998; SEI, 2006), simulation (Gruhn, 1991) and formal verification (Ge et al., 2006).

2.4.1 Software Process Testing

Process testing is an effective way to evaluate a process model; assessments and audits are

based on data of executed projects, but executing the process is generally expensive. Our

approach provides a means for a priori evaluation of the software process quality. Cook &

Wolf (1999) present a formal verification and validation technique for testing and measur-

ing the discrepancies between process models and actual executions. The main limitation

of testing is that it can only be carried out once the process model has already been

implemented, tailored and enacted. When process models are tested according to their

specifications, they are validated in a similar way to software testing (Osterweil, 1987).

27

2.4 Validating Software Process Models

An example of process testing is a software process assessment, where a process and its

corresponding model are evaluated based on a capability maturity framework. This kind

of approach is present in CMMI (SEI, 2006) and ISO/IEC15504 (ISO/IEC, 1998). This

kind of testing activities can only be carried out once the process model has already been

implemented, possibly tailored and enacted. This approach checks for the adherence to

a standard but it does not evaluate the appropriateness of the process for the organiza-

tional or project needs. Process testing requires very long time cycles. Gruhn (Gruhn,

1991) has proposed a verification technique based on simulation results and execution

trace evaluation. Simulation has a shorter cycle, but it still requires enactment data.

This is an appropriate verification technique if the process is known to be suitable for the

environment, but if the model is incomplete, underspecified or it is not suitable for the

organization, then the process model simulation will not reflect the expected results.

2.4.2 Software Process Simulation

Simulation has an usefull shorter cycle to validate proposals, but it still requires enact-

ment data to be a reliable execution. Software process simulation is useful for instance to

project managers for supporting management decisions Raffo & Kellner (2000). To ana-

lyze process models using simulation sophisticated and complex techniques are required,

simulation requires historical data normally unavailable when a process is defined the

first time. However, with data available and a suitable simulation approach, simulation

is an effective tool to analyze software process models, taking in count dynamic elements

also. It is hard to adopt a simulation technology because of the difficulty in developing a

simulation model Park & Bae (2011). Park & Bae (2011) propose reduce the complexity

of a simulation model resolving the lack of historical data, deriving the simulation model

from a descriptive process model widely adopted.

2.4.3 Software Process Model Metrics

Cook & Wolf (1999) propose formal verification and validation technique for identifying

and measuring the discrepancies between process models and actual executions. Cánfora

et al. (2005) have defined some ratio metrics for measuring the maintainability of overall

software process. However metrics for partial portions of the process or individual process

elements have not defined. These mesurements besides being generals, are usually not a

suitable presentation for a reviewer. Based on this general data it is hard to know what

is wrong, where the error is located, and how to find opportunities for improvement when

there is no apparent error. Pérez et al. (1996) suggest to evaluate the congruence between

the process model and a given environment based on past data. However, obtaining these

28

2.4 Validating Software Process Models

measurements is hard and the results are not necessarily precise. Johnson & Brockman

(1998) use execution histories for predicting process execution in order of estimates a

project. The above metrics do not address suitability, completeness or consistency of the

process model, however these metrics were any way a key starting point in the Avispa

development.

2.4.4 Software Process Formal Verification

Formal specifications and checking based on Petri Nets in a multi-view approach are

presented by Ge et al. (2006). Because the particularity and the complexity, this views

include activity view, product view and role view, which are considered in Avispa too.

However the formal checking covers sintactic issues but has practical and semantic limi-

tations. Atkinson & Noll (2003a) state that data-flow analysis can uncover specification

errors, such as misspelled resource names, that can exist in otherwise syntactically correct

process specifications. They suggest that analysis is requieres, to detect these problems

before the process be executed. The analysis includes verifying that the resource flow

specified by the process execute correctly. The process engineer can validate that the

process inputs are used to generate the respective outputs, identifying potential errors in

a process specification. Additionally, the flow analysis aids to identify opportunities of

redesign of the analized process.

2.4.5 Software Process Analysis

Software reviews, such as inspections, walkthroughs, and technical reviews, are widely

used to improve software quality, so they are promising techniques for software processes

too (Osterweil, 1987). The main idea is that a project team of software engineers, in order

to review and improve a software product, can to detect defects that the product designer

or developer could have introduced. According to Sauer et al. (2000), the review process

has three main tasks: defect discovery, defect collection, and defect discrimination. The

defect discovery is the one that demands the highest expertise and knowledge. Scac-

chi (2000) employs a knowledge-based approach to analyzing process models identifying

problems related to consistency, completeness, and traceability of a process model. Based

on the evidence about usefulness of the visualization in data analysis and problem detec-

tion presented by (Lee et al., 2003), visualization may be also applicable for analyzing

different concerns about process models using the human visual capacity for interpret-

ing the process in context and to evaluate its consistence and suitability as in software

visualization (Larkin & Simon, 1987). So, this thesis is based on these assertions and it

proposes and uses a visual mechanism for process model validation.

29

2.4 Validating Software Process Models

Using visualization to identify error patterns is not new. A lot of research use vi-

sual approaches to identify positive or negative properties of software systems (Lanza &

Ducasse, 2003; Perin et al., 2010; ?). However, none of the related work we are aware

of elaborated on visual patterns for identifying problems in software process models. We

have developed and applied Avispa, a visual approach and tool for analyzing the process

models defined in three different Chilean software companies.

Another technique similar to Avispa is presented by Atkinson & Noll (2003b) for an-

alyzing the flow of resources through a process. This technique, derived from research in

data-flow analysis of conventional programming languages, enables a process designer to

analyze outputs, waste work products, the coherence between control work flow and data

work flow, improvement opportunities in the resources flow (e.g. parallel tasks). The ana-

lysis is oriented to search specification errors, indicating re-design needs. Furthermore the

analysis highlight flaws in the underlying process, indicating a potential process improve-

ments. However, Avispa metrics and visualization facilitates analyzing not only syntactic

aspects from process specifications but also semantic errors (in conceptualization).

Soto et al. (2009) present a case study that analyzes a process model evolution using

the history of a large process model using the configuration management system with the

purpose of understanding model changes and their consequences. Soto’s goal is oriented

toward the evaluation of the impact of the changes in software process models whereas

Avispa’s approach is oriented to early analyzing a new or changed process model just

before the model is used in a specific project. Soto’s approach analyzes the changes on

the process elements comparing many XML files, while in the Avispa tool the analysis is

realized using a unique and static process model using XML files exported from the EPF

tool.

Analysis of SPEM models, in particular to community models such as Scrum, is lim-

ited. A close work by Osterweil & Wise (2010) presents an analysis of Scrum using Little-

JIL (Osterweil, 1998), a graphical language for defining processes where autonomous

agents are coordinated.the language includes the use of resources during a task. In Little-

JIL executable programs, the agents are conduced through a process achieving that their

actions satisfy a process constraints. Little-JIL programs can be statically analyzed to

ensure that process requirements are satisfied for all executions. A Little-JIL process

program defines a variety of ways of accomplishing tasks that can work with varying re-

source requirements and varying agent capabilities. Agents may be human or automated

(software or robots). Little-JIL process programs conduce to agents through a set of

alternatives and facilitate their communication and resource sharing. Preconditions and

postconditions are used to dynamically verify that the process is being applied correctly.

30

2.5 Synthesis and Discussion

Resources are defined using a resource model and are reserved and locked during the

execution of a process.

Little-JIL has been applied to analyze the Scrum Software process Osterweil & Wise

(2010). This analysis determines a weak point when the product is integrated in each

development work. So, provided that continuous integration is not part of Scrum, it can

fall in long periods of development without integration, generating a bottleneck. However

Avispa based analysis, additionally detected other potential bottleneck problem; guidance

missing, multi purpose tasks, and too demanded work products. Whereas Osterweil &

Wise (2010) follow a formal and agent-oriented approach, Avispa focuses on analyzing

SPEM 2.0 process models. The Avispa approach could be implemented to analyze other

languages including Little-JIL. In Avispa approach, the process designer can gain some

insights about the process model design and potentially find some problems.

2.4.6 Software Process Model Analysis by Visualization

Considering that software engineers use UML models as inputs and outputs of its de-

velopment tasks, Lange et al. (2007) propose an approach to analyze system properties

using metrics of the UML model or from its context information (version control system).

On these metrics, they propose a set of views to visualize the information to support the

tasks and they validate its proposal on a large-scale controlled experiment to validate

the usefulness of the proposed views. The views were implemented in the MetricView

Evolution tool. This approach analyze the requirements for performing the tasks, but it

does not include tacit and explicit knowledge of the process, for instance the participant

roles, the produced artefacts (furthermore models) or the associated knowledge to the

task (guidance). Sadiq & Orlowska (2000) present a visual verification approach where a

set of graph reduction rules are used for identifying structural conflicts in process models

providing a well-defined correctness (deadlock free, lack of synchronization free) criteria

in a process model. The Sadiq & Orlowska (2000) work use Petri Nets and workflow

graphs, however, this technique could be applied to extend the analyzis capabilities of

Avispa, introducing new problematic patterns.

2.5 Synthesis and Discussion

The works described above show the need for defining a practical framework for software

process engineering for building adaptable software processes. None of the works here

presented takes the SPrL in an integrated way as the Software Engineering Institute did by

creating a framework for software product lines (Clements & Northrop, 2001). This work is

31

2.5 Synthesis and Discussion

a starting point for intending to unify concepts and for establishing a specific path to build

and apply adaptable software processes in a way close to real organizations. This work

proposes and implements a generative strategy for automatically tailoring organizational

processes, modeled as SPEM 2.0 instances to particular project contexts, based on MDE

techniques so that appropriate processes are achieved rapidly and with little effort. The

SPEM 2.0 models are recovered and visualized independently using some basic metrics for

a practical evaluation. The validation approach includes a tool that supports the software

process model review based on visual mechanisms.

32

Chapter 3

Context Adaptable Software Process

EngineeRing - CASPER

3.1 Introduction to CASPER

Suitable software process models are required for reaching quality and productivity in

software projects. The most suitable process for a particular project depends on the

organizational context, the project context, and the rigor required. Due to both, high costs

and the time consumed, to define a specific process for every project results unfeasible.

So, software process models need to be built for reuse and adaptation.

A Software Process Line - SPrL is a special Software Product Line - SPL in the software

process engineering domain. Families of software processes share common features as well

as exhibit variability (Sutton & Osterweil, 1996b). Consequently, a process family is

a promising approach for achieving a high level of reuse and adaptation (Simidchieva

et al., 2007), (Rombach, 2005), (Washizaki, 2006). In a SPrL, process domain engineering

develops and maintains process assets promoting planned reuse, while classic tailoring

re-actively integrates unanticipated variability in the process model (Armbrust et al.,

2009).

This thesis propose Casper (Context Adaptable Software Process EngineeRing), a

meta-process to define context adaptable software process models. Casper facilitates

situational method engineering (SME) or software process tailoring defining a software

process line instead of just a software process. Casper uses coherently three key ap-

proaches as shown in Figure 3.1: software process lines, context and process modeling

and MDE based tailoring. Casper has been building on the follow four principles:

• Principle 1. Separation of Software Process Engineering and Software Engineer-

ing Domains : process modeling stakeholders and process enactment stakehold-

33

3.1 Introduction to CASPER

Figure 3.1: Principles of Casper

ers (project stakeholders) are usually not clearly distinguished (Bai et al., 2010).

Software process engineering stakeholders’ required capabilities are different from

software engineering stakeholders’ capabilities. Consequently, the software process

model definition task (including its adaptation mechanisms) should be assigned to

the process engineering group, and the process adaptation task should be a responsi-

bility of the project management group before project planning. Thus, Casper is a

SPrL approach that separates process domain engineering from process application

engineering activities. A SPrL facilitates a planned reuse and evolution of software

process models and their elements.

• Principle 2. Software Process Scoping : it is in principle unclear which decision mod-

els can help determining which process can be applied to a specific project (Pérez

et al., 1996), (Boehm et al., 1995). Particularly to SPrL, it is necessary to determine

which processes and process elements should be part of the process line, and which

should not (Armbrust et al., 2008). Software process engineers need to define the

limits of the SPrL. Scoping the SPrL will determine situations where the process

will be used and which process elements (common and variable) will be required in

each situation. Moreover, planned situations should be related to process features

for determining suitable process configurations for each situation. A Casper pro-

cess line is formally scoped using a Context Model that defines all different possible

project circumstances, a Process Feature Model that identifies all possible process

elements that may vary and their relationships.

34

3.1 Introduction to CASPER

• Principle 3. Software Process Models are Software Models too: it is a direct con-

clusion of the fact that software processes are software too (Osterweil, 1987). So,

similar to software models, process models could use the MDE approach for different

goals: design, adaptation, simulation and enactment of process models (Bretón &

Bézivin, 2001), (Killisperger et al., 2009), (Bézivin & Bretón, 2004). Hence, soft-

ware process models and software process tailoring rationale could be reused along

different projects. Casper uses an MDE approach for tailoring software process

models including context models to define where these process models will be ap-

plied. Each specific situation can be represented before project planning and used

to automatically produce a specific process model.

• Principle 4. Software Process Adaptation Complexity Hiding : process tailoring in-

volves intensive knowledge and it is usually time consuming mainly when it is done

manually (Rolland, 2009) (Ocampo et al., 2005). A process modeling approach

should provide ways to cost-efficiently tailor a general (or combined) process model

into a project-specific process model (Armbrust et al., 2009). The process adapta-

tion should just consist of defining a specific situation, because the main problem for

software engineers is to build software and not software processes. So, adaptation

should not be time consuming for software engineering stakeholders. A Casper

process line uses an MDE production strategy. The software process engineering

group, according to the SPrL scope, defines an adaptable software process model,

an adaptation context (organizational context) and a set of tailoring rules. The

software engineering group defines a context model configuration (project context)

and automatically executes the transformation and validates the specific process

model.

3.1.1 CASPER in a Nutshell

CASPER follows three basic key tactics: tailoring is context sensible (context-adaptable),

the process reuse and adaptation is planned (software process line), and rules relating con-

text information to process model variants are programmed (tailoring strategy). In Figure

3.2, a project context has been defined by two context attributes (Time Constraints), each

attribute includes two values. Furthermore, Figure 3.2 shows a process including an op-

tional Activity (Use Case Realization) and an activity with two non-exclusive options

(Database Design, Persistence Framework Design). Context attributes and process vari-

ants have been related (blue arrows) according to past adaptation information. These

relations define what and how variants will be resolved at tailoring time and so these

relationships determine the scope of the software process line. These relationships could

35

3.1 Introduction to CASPER

Figure 3.2: Software Process Engineering for SPrL

be programmed reusing the tailoring knowledge and thus achieving an automatic tailor-

ing strategy. For instance a specific project with a high reusability level but with time

constraints will produce a process like the one presented as adapted process model, by

applying the rules described in the tailoring strategy. So, the tailoring task complexity is

reduced to only defining a specific context.

3.1.2 CASPER Subprocesses

Casper meta-process is presented in Figure 3.3. It embodies two main subprocesses:

Process domain engineering: this is an iterative process focused on capturing the

software process domain knowledge and developing the process model core assets (con-

texts, process features, process components, reference process models, tailoring rationale

and concrete tailoring rules) for enabling the implementation of each context-adapted

process model.

Process application engineering: a context-adapted software process model is au-

tomatically produced according to the requirements of a specific project using a reference

process model. The production strategy is an MDE implementation where the tailoring

36

3.1 Introduction to CASPER

Figure 3.3: Software Process Engineering for SPrL

Figure 3.4: Casper Roles

rationale is expressed as a set of transformation rules.

These subprocesses are described in more detail in Chapter 4. Each subprocess consists

of different tasks, produces specific artifacts, and defines the roles to perform these tasks.

When Casper is adopted within an organization, this organization should include

two different groups of engineers: one for domain software process engineering(Software

Process Engineering Group - SPEG) and another for software process application engi-

neering(Project Team - PT). The first group corresponds to a SPEG in a Software Process

Improvement(SPI) approach. The second one corresponds to people in charge of applying

the software process to specific projects. The SPEG takes care of the development and

evolution of the process family. The project team produces and applies a family member

according to the project-specific context. The Casper roles are shown in Figure 3.4.

A roadmap of Casper including stages, deliverables, languages and activities is pre-

sented in Table 3.1

37

3.2 CASPER Domain Engineering

Table 3.1: Casper Road map

Stage Deliverables Representation Activities

Domain Analysis Context Model SPCM Context Analysis

Feature Process Model PFMM Process Feature Analysis

Scope Model SPSMM Software Process Scope Analysis

Domain Design Organizational SPEM Software process architecture design

Process Model SPEM Software process model design

MDE Production Strategy ATL Software process model

transformation implementation

Application Analysis Configuration SPCM Project Specific

Context Model Context Analysis

Application Design Adapted Software SPEM MDE production strategy execution

Process Model Manual tailoring(optional)

Verification and Software Process AVISPA Visual process

Validation Blueprints Visual Model model analysis

3.2 CASPER Domain Engineering

Process domain engineering is an iterative process that captures the knowledge gained

in the software process domain. This knowledge is expressed as context models, process

features, process components, software process models and tailoring rationale. This pro-

cess, as defined in Figure 3.5, includes five general activities: process context analysis,

process feature analysis, scoping analysis, reference process model design, and production

strategy implementation. These activities are performed by both, the software process

engineering group and the software engineering group; however, the software engineering

group mainly participates as a source of requirements and experience, and for validating

the resulting models.

The process context analysis activity allows the understanding of process require-

ments, where a context model is defined to cover the possible situations of a project

in the organization. The process feature analysis activity identifies and defines process

features that establish the general process elements and their classification as common,

optional or alternative. The scoping activity validates the context characteristics, the pro-

cess features and defines their relationships. The process reference model design activity

includes the process features in a reference process model. The reference process model

design builds a process model according to the identified process features using the vari-

ability and reuse mechanisms available in the process modeling language. The strategy

production implementation activity defines and implements a set of decisions that adapt

(tailoring rationale) the process model in specific variation points using situational or

contextualized information represented as a configuration context model. These decisions

are implemented as a set of model transformations based on information of the process

38

3.2 CASPER Domain Engineering

Figure 3.5: Domain Engineering Meta-Process

feature model, the reference process model, the context model and their relationships.

3.2.1 Software Process Context Analysis

In the process context analysis activity the set of situations where the SPrL will en-

able to produce suitable software process models is defined. A context is modeled by

dimensions, context attributes and their possible values (context attribute values). This

activity requires to determine the dimensions covered and their potential variable and

constant attributes. The attributes and their possible values should be delimited using

past projects, future projects or using the knowledge and experience of the project man-

agers and process engineers (Pérez et al., 1996), (Armbrust et al., 2008), (Boehm et al.,

1995), (Koolmanojwong & Boehm, 2010b). First, the dimensions are defined. Dimensions

are sets of related attributes to achieve the separation of concerns in context modeling.

Next, for each dimension, relevant attributes are defined including their possible values.

If there is only one possible value for a certain attribute then the context attribute is

a constant, otherwise the attribute is variable and it may take one of a set of possible

values. This information is presented in a Context Model. The context model, including

39

3.2 CASPER Domain Engineering

its possible configurations, should be defined using the Software Process Context Meta

model - SPCM detailed in Chapter 4.

3.2.2 Software Process Feature Analysis

Different process models are analyzed in order to identify process variants and justifica-

tions for them (Ocampo et al., 2005) recognizing the differences between some canonical

situations (e.g. software process templates). This information will enable the creation

of a reusable (and adaptable) reference process model. Therefore, the process should

be analyzed as a process feature model. Process feature analysis is used to identify the

common and variable characteristic of the process-line members. In the domain design,

the points and ranges of variation captured in process feature models are implemented as

part of the reference process model. Software process features are a special kind of soft-

ware features. Process properties (life cycle type, maturity level, etc), method elements

(method fragments), process elements (process components, process fragments), process

with method elements (chunks) and method plug-in elements (reusable components, pro-

cesses and configurations) are examples of process features. We use the feature model

proposed by Kang et al. (1998), but using SPEM 2.0 stereotypes for modeling software

process variabilities.

3.2.3 Software Process Scope Analysis

In the software process scope analysis activity process it is decided which features should

be supported, and which should not (Armbrust et al., 2008). The process scope in Casper

is explicitly defined through a cross reference (or mapping) between process features

and context characteristics as Pérez et al. (1996) propose. This cross reference is an

abstract view of the tailoring decisions to be implemented during the production strategy

implementation.

3.2.4 Software Process Reference Model Design

A process reference model is designed for supporting commonalities and variabilities spe-

cified in the process feature model from one or more, explicit or implicit, current or future

software process models (Rombach, 2005). A reference process model is designed accor-

ding to the process features using variability mechanisms (e.g. extend, contribute and

replace in SPEM 2.0) and reuse mechanisms (e.g. process components, patterns, configu-

rations, plug-ins and links between process elements and method elements in SPEM 2.0)

available in the process modeling language.

40

3.2 CASPER Domain Engineering

Figure 3.6: Process Production Strategy

A reference process model may be structured (Washizaki, 2006) according to one or

more reference models or a life cycle (internal or external). For example, a process could

be built using the life cycle of the Unified Process (Jacobson et al., 1999), according

to phases, disciplines and iterations. However, other process components (e.g. project

management, support processes) can be organized according to categories of CMMI (SEI,

2006). A hybrid approach could also be used for achieving the goals of the implementation.

So, a set of process patterns, life cycles, commercial process models (e.g. RUP (Kruchten,

2003)), and community process models (e.g. Scrum (Schwaber, 1995)) can be used as a

starting point. In this thesis, both, the reference process model and the project-specific

process model, are specified in SPEM 2.0.

3.2.5 Production Strategy Implementation

As Figure 3.6 shows, the production strategy implementation activity defines a model

transformations using as input a reference process model and a context configuration

model, and as output a project-specific process model (tailored model). A project-specific

process is suitable for a specific context configuration (1), the context attributes have

been previously related to variabilities of the feature process model during scoping (2)

and these variabilities have been implemented in the reference process model during de-

sign (3). Consequently, a transformation rule set can be specified (from 1 to 3) in order to

create a project-specific software process model. The transformation rules follow an MDE

approach on process models (Bretón & Bézivin, 2001), (Bézivin & Bretón, 2004), (Kil-

lisperger et al., 2009). This transformation is implemented in a transformation language

such as Atlas Transformation Language - ATL, Epsilon Transformation Language - ETL

41

3.3 CASPER Application Engineering: Context-Based Software Process
Adaptation

Figure 3.7: Casper Application Engineering

or Query/View/Transformation - QVT, but it could also been eventually implemented in

a general purpose language.

3.3 CASPER Application Engineering: Context-Based

Software Process Adaptation

The application engineering embodies the activities depicted in Figure 3.7. Application

engineering defines a project specific context configuration according to project informa-

tion and executes the transformation strategy. This strategy has been previously defined

in the domain engineering process to generate the project-specific software process model.

If it is not possible to model the situation with the context model, the most approximated

context configuration should be defined by the software engineering group. Then, the ob-

tained model can be manually tailored by the software process engineering group. In this

case, a scoping decision must be made by this group refining the SPrL:

1. The SPrL scope will not be extended and the new software process model will not

belong to the software process line.

42

3.4 Process Model Analysis using AVISPA

Figure 3.8: Software Process Validation based on Avispa

2. The SPrL scope will be extended, thus the new process is part of the family. Hence,

the domain engineering activities must be re-executed so that the new process re-

quirements are also considered (Scope Analysis).

3.4 Process Model Analysis using AVISPA

The process models specified in SPEM 2.0 should be analyzed because the investment

realized in the domain models is significant. The validation process is presented in Fi-

gure 3.8. The proposed model validation follows an architectural recovery approach to

evaluate different process characteristics. Three process architectural view types - Role

Blueprint, Task Blueprint and Work Product Blueprint- have been defined

to support the analysis. These blueprints are process partial views that make use of met-

rics computed from the process model for helping understanding and evaluating different

aspects not directly available in SPEM 2.0 and its associated tools.

43

3.5 Synthesis and Discussion

These visualizations have been implemented in Avispa1, a tool that builds blueprints

and highlights error patterns (Hurtado et al., 2011a) . Counting on this tool, the process

engineer only needs to analyze highlighted elements, not demanding much experience and

also requiring little previous knowledge for effective process model analysis, and adding

usability as well. Avispa’s implementation is a based on Moose technology and the

Mondrian tool. Visualization in general aids in data analysis and problem detection (Lee

et al., 2003). Using different concerns about process models in a graphical manner, we

make use of the human visual capacity for interpreting the process in context and to

evaluate its coherence and suitability (Larkin & Simon, 1987). The analysis is realized

via a visual inspection of the software process model by the process model engineer,

however some insights are offered by Avispa for localizing some recurrent problems. The

Avispa approach and tool are presented in Chapter 5.

3.5 Synthesis and Discussion

This chapter showed an overview of a practical framework for software process engineering

for building adaptable software processes called Casper. This framework is based on

four principles: Separation of Software Process Engineering and Software Engineering

Domains, Software Process Scoping, Software Process Adaptation Complexity Hiding and

Software Process Models are Software Models too. Based on these principles the Casper

process is built based on three basic concepts: software process lines, context and process

modeling, and MDE based adaptation.

Armbrust et al. (2008) define four requirements (R) to adequately scoping software

processes and two constraints (C). Casper meets these needs as follows:

1. (R) Support software product development : context modeling in Casper helps de-

termining which attributes are relevant for the organization and specific software

processes. So, a product dimension, including attributes as complexity and size,

should be defined supporting product concerns.

2. (R) The approach provides ways to characterize software products, projects, and pro-

cesses accordingly : context modeling in Casper is based on dimensions, so char-

acteristics can be of different nature and they can be classified and organized in

these dimensions. So, product dimensions can be defined including complexity and

size characteristics. In a similar way characteristics of project, process and other

dimensions can be added.

1Freely available at http://www.moosetechnology.org/tools/ProcessModel.

44

http://www.moosetechnology.org/tools/ProcessModel

3.5 Synthesis and Discussion

3. (R) Distinguish stable process parts from variable ones : process feature models in

Casper aid to identify common and variable process features explicitly (process

components, process elements, method elements, chunks and others). These features

are implemented in SPEM 2.0.

4. (R) Incorporate unanticipated variability in a controlled manner : the software prod-

uct line approach in Casper allows to produce a project specific process in a planned

way because an MDE strategy on a scoped infrastructure is implemented during do-

main engineering.

5. (C) Provide ways to store stable and variable parts within one process model : the

process models are defined in SPEM 2.0. In this language the variabilities are

implemented, however in a process feature model the variation points should be

identified, stored, related and managed.

6. (C) Provide ways to cost-efficiently instantiate such a combined model into a project-

specific process model : provided that the tailoring is planned, each project-specific

process is obtained in an automatic way from a situation specification. The situation

specification is realized by configuring the context model according to the specific

needs in the new project.

45

Chapter 4

Building and Adapting Software

Process Models with CASPER

4.1 Introduction

This chapter details the main activities defined by Casper including: software process

context analysis, process features analysis, process scoping, reference software process

design, production strategy implementation and software process tailoring itself. The

production strategy is the essence of Casper and it is one the main contributions of this

thesis. All Casper activities and artifacts are defined around this strategy. The activi-

ties and the resulting work products are illustrated with an actual academic requirements

process of an advanced software engineering course. Section 4.2 presents the example

process (CC51A-RE Requirements Process). Sections 4.3, 4.4, 4.5 and 4.6 detail the main

activities and techniques of the domain engineering to obtain the context model, the fea-

ture model, the scope model and the process model. To complete the domain engineering,

section 4.7 details the production strategy. Section 4.8 details the application engineering,

i.e., the software process model adaptation. Section 4.9 presents the preliminary results

of the case study.

4.2 Example Problem: CC51A Requirements Engi-

neering Software Process Line

A general requirements engineering process is used by advanced computer science students

of the University of Chile while developing a real world project as part of a regular 5th

year course. The projects developed involve teams of 5 to 6 students and an advisor. The

advisor and most of the students have some professional experience. The projects also

46

4.3 Software Process Context Analysis

involve real world problems and real world clients representing the work environment of a

real world small software company (Hurtado & Bastarrica, 2010). Nowadays, this type of

company represents most of the software development task force around the world (Neu-

muller & Grunbacher, 2006; Von Wangenheim et al., 2006). However the process is not

applied exactly in the same way for all cases in the course. The lecturer normally intro-

duces the software process with the idea that students tailor it to their specific project.

However, some students apply the general process just as it is and others spend long hours

trying of adapt it. Additionally, when control points are applied, the auxiliary professor

found that the processes are either missing elements or have more than necessary. There-

fore, this introduces learning problems, missconceptions about the project or a major

development effort. Therefore, a tailoring solution is required to allow the projects to

work with the most suitable software process in each case.

4.3 Software Process Context Analysis

The context of a project may vary according to different project variables such as: product

size, project duration, product complexity, team size, application domain knowledge, and

familiarity with the involved technology, among others. The study case of Pérez et al.

(1996) defines the characteristics of a software process model and its environment, and

determines how congruent the process model is in the given environment using project

information of a specific organization. On the other hand, COCOMO II (Boehm et al.,

1995) defines a cost model for projects based on situational information. This information

is defined as a fix set of factors and their scaling factors. The context dimension is

introduced by Mirbel & Ralyé (2005) as a way to separate context concerns in a matching

strategy for selecting chunks in a road map approach to SME. In the work of Bucher et al.

(2006) a context engineering method is proposed where context factors are identified

and analyzed to enable the engineering of contextual methods. Royce (1998) presents

an approach to tailor the Unified Process based on two dimensions of characteristics:

technical complexity and management complexity. The characteristics in the literature

cited above are discriminating factors such as scale, stakeholder cohesion or contention,

process flexibility or rigor, process maturity, architectural risk and domain experience.

The unified Process is a horizontal process framework, and the idea of CASPER is to

define a process at the organizational level (vertical reuse), so the context dimensions and

factors are those defined by the organization nature. According to Aharoni & Reinhartz-

Berger (2008) a specific context can be defined as a vector of characteristics that relate to

the organization, the project, the developing team, the customer, etc. However, defining

the context as a formal model enables us to automatically tailor the organizational process

47

4.3 Software Process Context Analysis

Figure 4.1: Software Process Context Meta model

according to it. The SPCM (Software Process Context Meta model) has been defined as

part of this thesis by (Hurtado et al., 2011c) in order to express both context models

at the organizational level and the context configuration models at project specific level.

This meta model is depicted in the Figure 4.1.

4.3.1 Software Process Context Meta model - SPCM

SPCM is a meta model defined in Casper to express software process contexts. SPCM

is based on three basic concepts: Context Attribute, Dimension and Context Attribute

Configuration. Every element in SPCM extends a Context Element that has a name and a

description. A Context Attribute represents a relevant characteristic of the process context

that may be required for tailoring. The Context Attribute includes a priority (used when

a trade-off between context attributes is required) and it can take one of a set of values

defined as Context Attribute Value. An example of a Context Attribute is the Project Size.

A Context Attribute Value represents a specific value for qualifying a Context Attribute.

Examples of Context Attribute Values for the Project Size Context Attribute are Small,

Medium and Large. A Dimension represents a collection of related Context Attributes. A

Dimension eases the separation of concerns applied to Context Attributes. An example

48

4.3 Software Process Context Analysis

Figure 4.2: Context Model Visual Stereotypes

of Dimension is Team dimension, referring to team attributes such as team size, team

capabilities, team skills and team cohesion, among others. A Context is represented as a

collection of Dimensions. A Context represents the whole context model. To represent

possible specific process contexts, a Context Configuration can be defined from the context

model. A Context Configuration is a collection of Context Attribute Configuration that

is set to one of the possible Context Attribute Values for a Context Attribute. Therefore,

a Context Attribute Configuration is associated to a Context Attribute and to one unique

Context Attribute Value. An example of a Context Attribute Configuration is the Project

Size Configuration for a small project, where its Context Attribute is Project Size and

the Attribute Value associated is Small. A graphical notation has been defined to express

each of the context concepts as shown in the Figure 4.2.

4.3.2 Context Modeling with SPMC

Requirements engineering refers to the process of elicitation, analysis, specification and

validation of real-world goals for software systems, functions of software systems, and

constraints on software systems (Zave, 1997). It is also concerned with the connection of

these requirements to particular specifications of software behavior, and to their evolution

over time and across software families. The context model could be used as one of the

requirements artifact in the process engineering domain. This fact is supported by the

principle that first it should be determined the context before designing or comparing

processes (Armbrust & Rombach, 2011). Context definition could be achieved by applying

software requirements techniques to the software process domain.

• Context Elicitation: elicitation starts identifying the information sources includ-

ing past projects, process experts, previous process adaptations, identified kinds

of projects, process templates, process configurations and tailoring guides. Accor-

ding to the specific source, the information is analyzed in order to determine the

relevant context attributes. For example, the elicitation work could be conducted

as a workshop, so an initial list of the context attributes could be obtained using

brainstorming, and then an analysis is conducted by the process engineering team.

49

4.3 Software Process Context Analysis

Context Attributes Description Fixed Value

Developers Number of people in the development team X 5–6

Duration Project duration (months) X 3

Training Project team education in Computer Science (years) X 5

Complexity Size of the problem or the technical solution Medium or High

Domain knowledge Familiarity with the problem domain YES or NO

Project type Software development, evolution or reengineering D, E or R

Table 4.1: Context attributes of CC51A-RE Process

Otherwise an initial proposal of context model (prototype) could be developed first

and analyzed during the workshop. Some other techniques that could be used in

this step are: develop a focus group with the project managers or an interview with

a process expert. This information could be obtained incrementally as the process

domain engineering continues (See Chapter 3). So, different context characteristics

could be defined and exemplified. Each characteristic is defined including its possi-

ble values (domain). General sources of relevant context information can be found

in (Boehm et al., 1995; Pérez et al., 1996; Royce, 1998). In the CC51A RE-Process

case, the elicitation was conducted with an interview to the course lecturer (expert

in the process). In an open interview, attributes and their possible values that would

be used for adapting the general process to specific situations were identified.

• Context Analysis: in practice not all combinations of context attribute values are

relevant for adaptation. According to Bucher et al. (2006), a process model must

address only those combinations occurring with a certain frequency in practice. To

extract these combinations, a survey or a workshop can be conducted. These tech-

niques could aid to determinate all potentially relevant context attributes and their

values in the context set for which the process model should be applicable. The

result of this analysis should be groups of context attribute values and specific com-

binations that are relevant. In CC51A-RE case study and using an initial context

model, a workshop was conduced. The expert stated that, with respect to people,

there were no relevant differences among projects, but the complexity of the solu-

tion, the project type and the domain knowledge could vary substantially from one

project to another. Therefore, these context attributes were analyzed considering

their possible values. The resultant context variables are presented in the Table 4.1.

• Context Specification: the context model is formally specified as an instance of

SPCM. So, the related context attributes are defined and grouped by dimensions.

For each attribute the domain is defined as a set of possible values. The context

model of CC51A-RE is depicted in the Figure 4.3 according to the previous elici-

tation. The context includes three dimensions: project, product and team. Some

50

4.4 Software Process Features Analysis

Figure 4.3: Context Model of CC51A-RE Process

other attributes were identified but their domains were not specified because these

attributes were modeled as fixed according to the expert. In the identified dimen-

sions a high detail was required to define the possible values of Domain Knowledge

attribute (High, Medium and Low) and the possible values of the Complexity at-

tribute (High, Medium and Low). A priority could be introduced to the context

attribute if a trade-off between two o more context attributes is required at tailoring

time. The priority could also be specified afterwards when the scope is analyzed

and defined.

4.4 Software Process Features Analysis

Feature modeling was proposed as part of the Feature-Oriented Domain Analysis (FODA)

method (Kang et al., 1998), and since then, it has been applied in a number of different

domains (Antkiewicz & Czarnecki, 2004). Feature modeling is used to model the com-

mon and variable properties in product-lines. At early stages, feature modeling enables

product-line scoping, i.e., deciding which features should be supported by a product line

and which should not. In domain design, the points and ranges of variation captured in

feature models need to be mapped to a common product-line architecture. Cardinality-

based feature modeling (Kang et al., 1998) extends the original feature modeling from

FODA with feature and group cardinalities, feature attributes, feature diagram references,

51

4.4 Software Process Features Analysis

and user-defined annotations. A feature diagram is a visual notation of a feature model,

which is basically an alternative (OR) or inclusive (AND) tree of features (represented

by a tree symbol) where each sub-tree can be optional (represented by a white circle)

or mandatory (represented by a black circle). Requires and excludes constraints between

nodes can also be defined (represented by unidirectional arrows or bidirectional arrows

respectively).

In CASPER software process features are considerer as a special kind of software

features. Examples of process features are process properties (life cycle type, maturity

level, etc), method elements (method fragments), process elements (process components,

process fragments), process with method elements (chunks), method plug-in elements

(reusable components, process patterns, processes and configurations), process packages,

method packages and categories. We use the feature model notation proposed by Czar-

necki & Antkiewicz (2005), but using SPEM 2.0 stereotypes. Because a software process

has multiple views, these perspectives such as role view, process view and work product

view among others, could be defined in one or many process feature models. Elements in

the same and different perspectives can include relevant constraints for a coherent process

assemble, for example the requires constraint. In general a process feature could be im-

plemented with many process pieces and a process piece could implement many features.

However, SPEM 2.0 stereotypes could be suitably used to identify the process and method

points where variation (and their variants) will be required.

4.4.1 Process Feature Meta model PFMM

PFMM is a meta-model defined in CASPER to define the features of a software process

line. As Figure 4.4 shows, PFMM is based on basic the concept of feature Czarnecki

& Antkiewicz (2005) extended as a process feature to be applied to software processes:

PFeature. Every PFeature could be decomposed into more process features. A PFeature

is sub classified as a Group Feature and as a SpecificPFeature. The former in turn is sub

classified as OR GroupPFeature or XOR GroupPFeature to facilitate alternative process

features. The SpecificPFeature is classified according to implementable variation points

in a software process (the SPEM concepts have been used): WPFeature, TaskFeature,

GuidanceFeature, TaskUseFeature, RolFeature, ActivityFeature, CapabilityPatternFeature,

DeliveryProcessFeature and PluginFeature. A ProcessFeatureModel is a tree including

a RootPFeature, where its children are references as its PFeature members. MethodLi-

braryFeature, RootPluginFeature, RootCapabilityPattern and RootDeliveryProcessFeature

are specific features of RootPFeature. Furthermore, a ProcessFeatureModel includes a set

of Constraints about dependencies between SpecificProcessFeatures defined as Requires

52

4.4 Software Process Features Analysis

Figure 4.4: Process Feature Meta model PFMM

elements, where two SpecificProcessFeatures are related when a dependence appears be-

tween them.

4.4.2 Process Feature Modeling with PFMM

Modeling the process features is a task concurrently executed with context analysis and

scope analysis tasks. Thus, elicitation, analysis and specification form a recurrent pattern.

• Process Mining: similar to context elicitation, this task starts by identifying the in-

formation sources including past projects, process experts and process adaptations,

identify kinds of projects, process templates, process configurations and tailoring

guidelines. According to the specific source, the information is analyzed in order to

determine the relevant process and consider the family members. The mining work

could be conducted as knowledge exploration based on interviews to the process

engineer and the process users. This information is obtained incrementally as the

process domain engineering continues (see Chapter 3). In the CC51A RE-Process

case, the mining was conducted by interviewing to the course lecturer (expert in

the process). In a work session the process owner presented the general software

process defined for the course and some examples about tailored specific processes.

• Commonality and Variability Analysis: Similar to Ocampo et al. (2005) proposal,

a commonality analysis is conducted in CASPER. It identifies common and variant

53

4.4 Software Process Features Analysis

process components. In the elicitation task a set of software process models are

identified. Similar process components are identified among these processes using a

process walk through, evaluating the projects, interviewing to users or conducting a

focus group. The common and variant components could appear in any granularity

level, so a decomposition of the software process as is suggested by the modeling

language could be applied. For instance, SPEM plug-in and package structure,

the breakdown structure and links between process elements and method elements

are used to obtain the structure of the process model of CC51A-RE, and so it is

applied to identify process features. During a 2 hours work session, the process

owner showed the process model and he was asked about what things ever happen;

and about what things must happen. Thereby, process features as User Require-

ments Specifications and Validation, and System Requirements Specification and

Validation were identified as mandatory parts in any project. Similarly, the process

owner was asked about the components of the process not always applied. Thus,

the Exploration feature was identified as optional. The same approach was applied

to each process feature, if the process feature was not a variability, the recursive

process stops in this feature, because its detail concern to the process modeling in-

stead of to the process feature identification. In the CC51A-RE process, the process

feature Software Requirements Specification and Validation includes in turn the Soft-

ware Requirements Validation process feature with two alternatives process features:

Prototype based Validation and Internal Validation, and an optional process feature:

Operational Prototyping. Further, to ensure that a well composition is achieved, a

consistence analysis is conduced. Therefore, dependencies between features must be

analyzed. This analysis restructures the defined process feature model because an

optional feature could introduce alternative features where one requires the optional

process feature but not the other way around. In the CC51A-RE process, in order

to include the Prototype Based Validation process feature, it is required to select

the Operational Prototyping process feature. The process engineer has to check

the description of processes, activities, work products, tasks, roles, and guidance

in order to determine commonalities and variabilities. Each task feature includes

the related method elements (roles and work products). The identified commonal-

ities and variabilities must be validated with the process performers related to the

specific process features.

• Process Feature Specification: the process model depicted in Figure 4.5 is formally

specified as an instance of PFMM. So, a tree of the features is used to characterize

a software process. A root type is identified as the whole process and a recursive

54

4.5 Software Process Scope Analysis

Figure 4.5: Process Features Model of CC51A-RE Process

decomposition strategy is applied. The process features notation is much closer

to the implementation language but implementation issues could be relaxed in the

modeling.

4.5 Software Process Scope Analysis

Product line scoping determines what is inside and what is outside of the software prod-

uct line (Clements & Northrop, 2001). This identifies those context entities with which

products deal (the product line context), and it also establishes the commonalities and

sets limits on the variability of the products in the product line. Getting the scope right

is important: if the scope is too large, the core assets will have to accommodate so much

variation that they will be too complex to be useful and cost-effective in any product. If

the scope is too small, the product line may not have enough opportunities to recover

the investment in the core assets and having either a unique process or just a couple of

process would be a better strategy. And if the scope bounds the wrong products, the

product line will not satisfy the target market. A software process line may result useful

when a reference process is involved but some manageable differences between projects

are relevant for productivity and quality issues.

Armbrust et al. (2008) define Software Process Scoping as the systematic charac-

terization of products, projects, and processes and the subsequent selection of processes

and process elements, so that product development and project execution are supported

efficiently and process management effort is minimized. Software process optional and

55

4.5 Software Process Scope Analysis

alternative features determine the possible process models. However it is important to

determine for each process what the most suitable context is. A specific context configura-

tion could determine a project specific context, but the relationship between processes and

configuration contexts is a complex many to many relationship. A set of processes could

be defined and associated with a set of context configurations. One specific experience is

presented in the Incremental Commitment Life Cycle Process proposed by Boehm (2010)

where a set of decision points based on risks are defined. For this model a set of patterns

for Rapid-Fielding Projects has been developed (Koolmanojwong & Boehm, 2010b). A

pattern is selected according to the situation (suitability). Because each organization is

unique, the process model is also unique, so a more general approach than that of Kool-

manojwong & Boehm (2010a) is required. Nevertheless, a process or pattern selection is

less flexible; process models are limited and complex to maintain. Consequently, when

the features tree grows it is critical to produce each process model. In contrast, partial

decisions about each feature according to specific situations facilitates producing only one

and the most suitable process to this configuration context.

The scoping in a Casper SPrL represents a preliminary way to define early tailoring

rules, such as selectOptional (ContextAttributeSet, ProcessFeature): Boolean and selec-

tAlternative (ContextAttributeSet, ProcessFeature): ProcessFeature operations, to obtain

a global suitable software process model. Lee & Kang (2010) propose a method for scop-

ing SPLs in which contexts of use are related to product features. This method includes

three main models: Usage Context Variability Model (UCVM), Quality Attribute Vari-

ability Model (QAVM) and Product Feature Model (PFM). The method is based on the

mapping between these models: UC-QA mapping and QA-FD mapping. This method is

similar to Casper, however, Casper is simpler because the Process Features are directly

related with the context information using a mapping table or other mechanisms as model

mapping or abstract rules among others.

Casper could be combined with PuLSE-Eco, a method for determining the scope of

a product line (Bayer et al., 1999). This method is based on mapping too. First, product

candidates are mapped with characteristics about the system domain and stakeholders.

Candidates include existing, planned, and potential systems. The result is a list of po-

tential characteristics for products in the product line. Products and characteristics are

combined into a product map a kind of product/attribute matrix. In parallel evaluation

functions are created, using stakeholder and business goals as input. These evaluation

functions allow to predict the costs and benefits of including a particular product with a

particular characteristic (such as a feature). Next, potential products are characterized,

using product maps and the evaluation functions. Finally, benefit analysis determines the

scope of the product line.

56

4.5 Software Process Scope Analysis

4.5.1 Software Process Scope Meta model - SPMM

When the process line scope is defined, the relationship between context attributes and

process features could result in a one to one, one to many, many to one, and many to

many relationship as explained below:

• One to one relationship: is the simplest decision, a process feature variable depends

on only one context attribute.

• One to many relationship: in this case a context attribute defines many process

features. This kind of context attributes are very relevant because certain congru-

ence between the decisions of many related features is required, e.g., features related

by the requires relationships. In this case many simple rules must be defined for

the same context attribute. Maybe these process features correspond to a crosscut

software process concern as the one presented by Mishali & Katz (2006) and thus,

they could be modeled as a process aspect.

• Many to one relationship: this case is very complex. Some context attributes to-

gether define the process feature selection. This combination requires an order in a

static decision rule and additionally a priority if it is required at tailoring time. In

this case it is possible to define when an element must be selected or not selected by

one specific combination context attributes. A color code could be used, e.g., col-

oring green the cross between the involved context attribute value and the process

feature if the process feature must be mandatoriy selected for this attribute value,

red if the context attribute value implies eliminating a process feature and yellow

when a combination of context attribute values of different attributes will define to

select or to eliminate a process feature.

• Many to many relationship: this case is the most complex. The complexity of the

previous case is increased by the complexity of the second case.

According to the above analysis the scope metamodel presented in Figure 4.6 has

been built as a set of relationships between process features and context attributes (and

its values). A relationship ranges from a simple relationship (one to one) to a complex

relationship (many to many), and so it could be decomposed into many matches. A Match

includes links to meta-classes defined in the PFMM and SPCM metamodels. A Match has

associated a Context Attribute Value that belongs to a Context Attribute. An Optional

Match is associated to a Specific PFeature whereas a Selection Match is associated to a

Group PFeature. A Match can have priority over others. These matches could be used to

guarantee a consistent tailoring and to define deterministic tailoring rules.

57

4.5 Software Process Scope Analysis

Figure 4.6: Software Process Scope Meta model

4.5.2 Software Process Scope Determination with SPSMM

The scope should be determined based on empirical evidence. Past context projects

and their adaptations should be correlated. A frequency table should aid identifying

the stronger relationships between process features and context attributes. A simple

relationship table could be enough to map process features and context attributes when

there are only a few elements to match. However it could be difficult to manage when

numerous elements are included in the relationship table. To determine the scope the

process engineering should work with the different process users using empirical evidence

provided by the project registers and tacit knowledge. The steps could be conducted as

follows:

1. Source identification and information collection: past projects, specific contexts

and variants of process features are identified. Sources include project documents,

process users and processes experts.

2. A simple analysis of correlation could be enough to establish the relationships, but if

the match is more complex, a frequency analysis of the correlation between context

attributes and process features should be conducted.

3. A consolidation of the strong relationships is obtained. Then, this consolidation is

analyzed by the process engineers and process users.

4. Based on the previous analysis, a scope model (match model) is defined.

58

4.5 Software Process Scope Analysis

Figure 4.7: CC51A-RE Process Scoping

For the CC51A-RE process, the scope definition was obtained in a work session with

the process owner and the process engineering team. Provided that there are only a

few context attributes and a few variants, this session was enough to establish the scope.

Figure 4.7 depicts a scope solution for the CC51A-RE process based on a matrix where the

rows are context attributes (and values) and the variable features are the columns. In this

case only a one to one and a one to many relationships appear. For example the project

type attribute determines when the Exploration process feature will be selected. The other

case is one to many, because the Domain Knowledge attribute determines if a prototype

will be used, i.e., selecting the kind of requirements validation and according to this,

the requires relationship makes or not mandatory to select to Prototype Based Validation

task. However, the Operational Prototyping process feature in a SPrL evolution could be

selected independently from other situations, e.g., when product complexity requires to

define a prototype for risk management or verification issues.

4.5.3 SPrL Scope Change

Similar to the SPL Framework of the SEI (Clements & Northrop, 2001), the process scope

definition is used during software process tailoring to know if the expected process model

is a feasible member of the process line. Sometimes a process clearly falls within the

defined scope and others it will be clearly out of scope. However the complex situation is

when the new process is located on the boundary. In that case, a scope analysis may help

to determine if the organization requires this new process as part of the software process

line, and then the scope (and the software process line) can be extended appropriately. If

59

4.6 Implementing Software Process Models Variability with SPEM 2.0 and
the CASPER meta-process

it is frequent to have processes that fall on-the-boundary, it is perhaps an indication that

the scope should be expanded to include these processes.

In Casper, the scope could be extended when:

1. A new situation is added with a new context attribute or a new context attribute

possible value.

2. A new optional/alternative process feature is added.

3. A new constraint on a context attribute-feature relationship is added.

4. A set of old context attributes, process features or a context-feature relationship

are modified because a new specific situation must be considered. For example,

the team size starts to be relevant for selecting the Operational Prototyping process

feature.

4.6 Implementing Software Process Models Variabil-

ity with SPEM 2.0 and the CASPER meta-process

In Casper, process models are defined using SPEM 2.0 (OMG, 2008), that is the OMG

standard for process modeling. This thesis actually uses a subset of SPEM 2.0 that is

enough for research purposes (eSPEM). SPEM provides some primitives for specifying

variability as shown in Figure 4.8. A compliant SPEM complete process model is mod-

eled as a Method Plug-in including Process Elements and their linked Method Content

Elements. Method Content Elements specifically correspond to Task Definitions having

Work Product Definitions as input and output, and performed (or participate) by Role

Definitions. An Activity is a Work Breakdown Element and Work Definition that defines

basic units of work within a Process as well as a Process itself. An Activity supports the

nesting and logical grouping of related Breakdown Elements forming breakdown struc-

tures. The concrete breakdown structure defined in an Activity can be reused by another

Activity via the used Activity association which allows the second Activity to reuse its

complete sub-structure. So, Role Use, Task Use and Work Product Use are Work Break-

down Elements that refer to activity-specific occurrence of the respective Method Content

Element.

A Variability Element is a SPEM element that can be modified or extended by other

Variability Element of the same kind according to a Variability Type (extends, replace,

contributes, extends-replace). To understand the variability types in SPEM refer to its

60

4.6 Implementing Software Process Models Variability with SPEM 2.0 and
the CASPER meta-process

Figure 4.8: Partial view of experimental SPEM (eSPEM) highlighting where variability

is specified.

meta model specification (OMG, 2008). Thus, each Method Content Element (TaskDef-

inition, RoleDefinition and WorkProductDefinition) and the Activity meta-classes are

Variability Elements.

Casper could use Variability Elements when alternative variants require it (labeled as

an alternative symbol used in feature models) and a general condition or constraint must

be accomplished. A set of alternatives can be defined from the same Variability Element

(maybe abstract). When a Process Element is linked to the Variability Element one of

these alternatives could be selected without assembly problems. For example, a Task Use

can be linked to one of many available Task Definitions. Moreover, each Work Breakdown

Element can be considered as optional or not according to its isOptional value.

4.6.1 Evaluating SPEM 2.0 variability mechanisms

In general, SPEM 2.0 offers variation points based on associations to be specified at

tailoring time and mechanisms for modeling alternative features when it is required to

guarantee the process model integration. An evaluation of the mechanisms offered by

SPEM 2.0 for modeling variability in Casper is presented as follows:

1. Process Structure Package: defines the basis for defining process models as a break-

down of nested activities with the related performing roles, as well as input/output

work products. It also provides mechanisms for process reuse such as dynamic

61

4.6 Implementing Software Process Models Variability with SPEM 2.0 and
the CASPER meta-process

binding of process patterns that allows users to assemble processes with sets of dy-

namically linked activities; Casper uses this decomposition for defining optional

and alternative elements in different decomposition levels.

2. Method Content Package: includes concepts for defining process-independent and

reusable method content elements that provide a basis of documented knowledge of

software development methods, techniques, and concrete realizations of best prac-

tices. Method content describes how to achieve fine-grain development goals, by

which roles, with which resources and results, independently of the placement of

these elements within a specific development life cycle. CASPER uses the relation-

ships between method elements to make optional method element or to select a

method element among a set of alternatives.

3. Process with methods Package:facilitates integrating processes defined with elements

of the Process Structure package with instances of the Method Content package.

Whereas Method Content package defines fundamental methods and techniques for

software development, processes place these methods and techniques into the context

of a life cycle model. Casper uses method elements as a method content repository

to be associated to process structure at tailoring time. A alternative activity is

resolved using the usedActivity link.

4. Method Plugin Package: introduces concepts for designing and managing maintain-

able, reusable, and configurable libraries of method content and processes. The

concepts introduced in this package allow arranging different parts of such a library

based on different layers of concern. Using concepts such as Method Plugin, Pro-

cess Component, and Variability Types, processes with increasing capabilities can

be defined. Casper use this complete variabilities capacity for defining variants on

a method library(method content and process structure) to be selected at tailoring

time.

4.6.2 Software Process Architectural Model in CASPER with

SPEM 2.0

According to Washizaki (2006) a Process Line Architecture - PLA is a process structure

which reflects the commonality and variability in a collection of processes that make up a

process line from the perspective of overall optimization. The overall optimization refers

to preparing a PLA with general usefulness rather than defining separate but similar

optimized processes. By deriving individual processes from the PLA, the fixed amount

of additional effort required in the future can be reduced, and timeliness of completion

62

4.6 Implementing Software Process Models Variability with SPEM 2.0 and
the CASPER meta-process

Figure 4.9: An example of variation points and variants

can be improved. CASPER production strategy uses the idea of a SPEM PLA as an

organizational (or reference) process where commonality is represented by the core process

(kernel process). Variability is represented by the variation points in the kernel process and

process variants are available as plug-ins, process components, process patterns, processes,

activities, method elements and managed content elements.

SPEM processes in Casper follow the idea of a Software Process Line Architecture

with variation points as presented above which can be changed according to the partic-

ularities of a specific project. Process variants corresponding to optional or alternative

process or method elements are applied to the variation points as it is exemplified in Figure

4.9 in a model transformation (generation). Processes that are specialized for particular

but similar projects can be defined and applied effectively by combining, extending and

reusing the core process and variants following a production strategy. When a genera-

tive strategy is used, a set of rules relating variation points with project characteristics

is required. These rules embody tailoring decisions that could take place to different

granularity level. Specific examples follow:

1. A complete process configuration (the template tailoring approach).

2. A complete process pattern could be selected to one discipline or an iteration.

63

4.6 Implementing Software Process Models Variability with SPEM 2.0 and
the CASPER meta-process

Figure 4.10: A partial view of the RUP architecture in SPEM2.0 taken from SPEM2.0

Specification (OMG, 2008)

3. A complete set of document templates according to what is rigorously required.

4. A complete method plug-in could be selected because specific technology methods

or processes are required.

5. A complete method/process package or process component could be selected because

a third party’s specific interface is required.

6. A complete phase could be selected according to a management criterion.

7. A medium-size activity could be selected according to a technical criterion.

8. A set of tasks, work products or roles could be selected according to a techni-

cal/management criterion.

To different granularity levels, variation point modeling depends on the feature models

defined in the domain analysis, as the software process model architecture is and the

constructs of the used software process meta model. Thus, a process feature could be

implemented by a unique element (e.g. a task definition), by a set of elements (e.g. a set

of Templates), a process pattern or an activity among others as depicted in Figure 4.10

where the Rational Unified Process is sketched. The SPEM 2.0 architecture itself provides

a framework for structuring a software process model. The basic steps for structuring a

process supporting variability are:

64

4.6 Implementing Software Process Models Variability with SPEM 2.0 and
the CASPER meta-process

• Step 1. Create a Method Library. A Method Library is the complete container of

the organizational software process model and the adapted software process models.

• Step 2. Identify common (e.g. RUP Method Plugin), optional and alternative

(e.g. J2EE Extensions for RUP) method plug-ins. Create and reuse the respective

method plug-ins. Relate the process features to the respective method plug-ins.

Define the variation points in the kernel process and their associations to variant

method plug-ins.

• Step 3. For each Method Plug-in create a Method Content Package (e.g. Require-

ments with use cases Method Content Package in RUP). Structure each Method

Content Package according to the corresponding design decisions (e.g. RUP Method

Content Packages corresponds to Disciplines). Create and identify the Method Ele-

ments. Relate the Process Features to their respective Method Elements identifying

variants. For a set of variants of a variation point, a hierarchy of Method Elements

could be defined using the respective types of the variability types defined in SPEM

2.0 as depicted in Figure 4.11 where a set of alternative Tasks has been defined as

a hierarchy of Tasks.

• Step 4. For each Method Plug-in create the respective process packages (e.g. RUP

process framework package). Structure each process package according to the cor-

responding design decisions. Create and identify process patterns (e.g. a Process

Pattern is defined by each discipline such as OOAD Process Pattern) and Delivery

Processes (e.g. RUP Delivery Process) both core and variants. Relate the process

features to the respective process elements (including process patterns). For each

alternative feature that has previously been identified to be part of an Activity, a

hierarchy of activity elements could be created using the respective types of the

variability types defined in SPEM 2.0. When an alternative feature has been identi-

fied in step 3 to a Method Element in Use then the element with the variation point

must be set to a default method Content Element as shows Figure 4.11. This link

considers the variation point to be fixed at tailoring time. Similarly, the usedActivity

link of an Activity to another Activity could be considered as an alternative (similar

to Figure 4.9) variation point (extended activity in SPEM2.0). In this case this link

must be set to a default Activity and fixed at tailoring time to the corresponding

Activity identified as a variant.

65

4.6 Implementing Software Process Models Variability with SPEM 2.0 and
the CASPER meta-process

Figure 4.11: Implementing an alternative task with a hierarchy of tasks and the task link

as a variation point

4.6.3 General Requirements Engineering Process

In the general requirements engineering process presented so far, three main process com-

ponents have been identified: Exploration, User Requirements Specification and Valida-

tion, and Software Requirements Specification and Validation, as shown in Figure 4.12.

A complete view of the CC51A-RE Process Model as an instance of eSPEM is presented

in Figure 4.14 where a method library, a method plugin and their respective elements

(Packages, Patterns, Process Elements and Method Elements) have been defined. It is a

simple process because it is related to real small software companies that typically de-

velop small software projects and they have little resources to conduct sophisticated RE

activities (Vergara, 2008).

The Exploration activity is in charge of identifying the business problem to be ad-

dressed and the project context. Typically, clients, analysts and the project manager

participate in this activity. The Exploration activity does not have formal inputs; how-

ever it produces a detailed problem and project context specification. Exploration activity

matches the Exploration Activity which has been defined as optional (shadowed in Figure

4.12). This activity could be either included or not at tailoring time. The User Require-

ments Specification and Validation activity is in charge of determining the project’s goals

and scope in terms of user requirements. Performing this activity may involve the use of

simple prototypes that help clients and team members to validate the user requirements

and conceive the high-level solution. The activity input is the problem definition and the

output is the user requirements specification.

In the last stage of the RE process, Software Requirements Specification and Validation

activity, each user requirement is translated into one or more software requirements. The

resulting list represents the software requirements specification for the project. Provided

66

4.6 Implementing Software Process Models Variability with SPEM 2.0 and
the CASPER meta-process

Figure 4.12: Requirements Engineering Process

that this translation is done by members of the development team, a validation with users

and clients is required. Such a validation is carried out in two steps and it may involve

operational prototypes as is shown in Figure 4.13 (this variation point was implemented

as Figure 4.11 shows). One option is to have an internal validation in which just team

members participate. Its goal is to check if the translation is good enough and also to

determine if the resulting requirements list is addressable by the development team.

The first alternative involves using an operational prototype to validate the require-

ments translation with users and clients. In the Software Requirements Specification and

Validation activity, analysts, designers and eventually some programmers participate in

the translation process. Once the software requirements specification is approved by the

development team, an operational prototype is implemented in order to validate the trans-

lation with clients and users. This second validation process typically produces feedback

that is recorded and used to refine software requirements and also to adjust the prototype.

This is an iterative activity that concludes when the translation of all priority user re-

quirements have been validated; therefore the resulting product is the validated software

requirements specification.

On the other hand, if the development team is familiar with the application domain,

the Software Requirements Specification Validation activity is carried out internally with-

out the user intervention, and without the need of an operational prototype. However, as

67

4.7 A MDE production strategy of CASPER

Figure 4.13: Software Requirements Specification and Validation Alternatives

validation is required, it is realized anyway internally by the team members who are in

charge of checking and refining each requirement translation through an iterative process.

4.7 A MDE production strategy of CASPER

CASPER follows an approach for automatically tailoring organizational processes to par-

ticular project contexts, based on MDE techniques so that appropriate processes are

achieved rapidly and with little effort. Tailoring is implemented by means of a model

transformation whose inputs are the organizational process model including variabilities

and a model of the project context, and whose output is the context-adapted process.

Previously the meta models were formalized and this section shows how transformation

rules could be defined and implemented using ATL (Atlas Transformation Language).

4.7.1 Environment Implementation Definition

The Casper tool1 implementation was developed in Eclipse Modeling Framework - EMF

3.42 and the ATL plug-in 2.03.

1Casper tool website https://sites.google.com/site/softwaremetaprocess/
2EMF website http://download.eclipse.org/tools/emf
3ATL website http://www.eclipse.org/downloads/

68

https://sites.google.com/site/softwaremetaprocess/
http://download.eclipse.org/tools/emf

4.7 A MDE production strategy of CASPER

Figure 4.14: Requirements Engineering Process as an instance of eSPEM

4.7.1.1 Modeling Platform

The EMF project is a modeling framework and code generation facility for building tools

and other applications based on a structured data model (Budinsky et al., 2003). EMF

is based on two meta-models: the Ecore and the Genmodel meta models. The Ecore

meta model contains the information about the defined classes. The Genmodel contains

69

4.7 A MDE production strategy of CASPER

Figure 4.15: ATL Transformation Approach

additional information for the code generation and the control parameter about how the

coding should be generated. The Ecore model shows a root object representing the whole

model. This model has children which represent the packages, whose children represent

the classes, while the children of the classes represent the attributes of these classes.

Meta models, eSPEM and SCPM were defined as Ecore meta models in EMF and the

transformations were implemented as ATL rules. Models were implemented as instances

of defined meta models and edited using Exeed (Extended EMF Editor) an extended

version of the built-in EMF reflective editor that enables customization of labels and

icons by adding annotations to Ecore meta models.

4.7.1.2 Model Transformation Language

ATL is applied in the context of the transformation pattern shown in Figure 4.15. In this

pattern a source model Ma is transformed into a target model Mb according to a trans-

formation definition mma2mmb.atl written in the ATL language. The transformation

definition is a model conforming to the ATL meta model, while all meta models conform

to the MOF.

ATL is a hybrid transformation language: it mixes declarative and imperative con-

structs (Jouault et al., 2008). Declarative is the main style of specifying transformations.

However, sometimes is difficult to provide a complete declarative solution for a given

transformational problem, this is the case of tailoring rules. In that case some impera-

tive features of ATL are required. ATL transformations are unidirectional, operating on

read-only source models and producing write-only target models. During the execution

of a transformation the source model may be navigated but changes are not allowed to

it. The target model cannot be navigated, it is a limitation when SPEM elements of the

70

4.7 A MDE production strategy of CASPER

target model require to be linked after or before a transformation rule, e.g. in a Work-

BreakDownElement when the nextElement is optional and it is not selected. Source and

target models for ATL are expressed in the XMI OMG serialization format using Ecore.

An ATL transformation can be decomposed into three parts: a header, helpers and

rules. The header is used to declare general information such as the module name, the

input and output meta model and potential import of needed libraries. Rules are the

heart of ATL transformations because they describe how output elements (based on the

output meta model) are produced from input elements (based on the input meta model).

The ATL rules express a mapping between an input element and an output element. In

Casper, because the transformation produces a delta of the input, the rules basically

are copiers with small changes at the variation points, and the helpers are called to fix

the variants according to a specific context configuration when a variation point is found.

Variation points are located on rules whereas variants are recovery from helpers. Helpers

functions are called from rules to fix the selected variant.

4.7.2 MDE Software process tailoring

Adaptation in Casper is the process to resolve variation points to specific variants accor-

ding to a context configuration (specific situation). The SPrL scope model defined above

is the main input to the transformation implementation, because all the process features

have been related to context attributes (as preliminary tailoring rules). In CASPER,

the adaptation ocurrs during the domain engineering following a planed approach, where

the project manager should only provide the project characterization at hand, and a

project-adapted process is rapidly and automatically generated. In Casper the tailoring

decisions are encapsulated as rules. Thus, rules about tailoring the general process model

according to the context attributes can be composed incrementally. In this way we can

configure new process models through a generative strategy by recombining partial tai-

loring transformation rules, and thus reusing the knowledge they embody. All and only

the required roles, activities and work products will therefore be present in the adapted

process, and no extra work would be required. The adapted process is thus more efficient,

and the tailoring process is more reliable as well, since it is computed automatically.

4.7.3 Defining transformation rules

Each variation point identified and associated with a process feature requires one o more

simple or complex rules. To determine a decision, the scope table aids to identify when

a variant (optional or alternative) is selected. To set an optional variation point requires

a rule returning a Boolean value, whereas to set an alternative variation point requires a

71

4.7 A MDE production strategy of CASPER

Figure 4.16: Select Rule defined as Tree Decision

rule returning a Kind value(according to the Kind defined in the selection). For instance,

a Task alternative variation point requires a rule returning a Task value and a Activity

variation point requires a rule returning a Activity value. In the case of the CC51A-RE

Process the select rule shown in Figure 4.16 is defined as a decision tree from the scope

definition table presented early in Figure 4.7. A Tree decision structure has been selected

for simplicity and scalability reasons.

4.7.4 Implementing transformation rules

The ATL tailoring transformation developed is endogenous (Czarnecki & Helsen, 2006)

because its output conforms to the same meta model as the input, eSPEM. However, it is

not in place since we want to preserve the organizational process model for future trans-

formations. CASPER uses ATLCopier1 for duplicating the general process, while rules

executed modify the copy according to the values in the context model. Matched rules

constitute the core of an ATL declarative transformation since they allow us to specify: (i)

which target elements should be generated for each source element, and (ii) how generated

elements are initialized from the matched source elements. In CASPER tailoring rules

make decisions for identified variation points in the process model. Each variation point

has an associated helper called from the matched rule. Figure 4.17 shows rule TaskUse.

The source pattern MM!TaskUse is defined after the keyword from, meaning that the rule

will generate target elements for each source element matching the pattern. For instance,

in order to select only those source elements that are relevant for the specific project, an

extra condition is added: an optionality rule implemented as a helper function. When this

rule returns false, the element needs to be removed from the process, so the copier rule is

not applied to this element. Attribute initialization uses the values in the source process

model element. However, and provided that we use eSPEM variability mechanisms, a

process element (e.g. TaskUse) could be linked to several variants of method elements

1ATL Transformation Zoo. http://www.eclipse.org/m2m/atl/atlTransformations/

72

4.8 CASPER application engineering: Context-Based Software Process
Adaptation

(e.g. Task Definition). Therefore, we define an AlternativeTailoringRule as a rule that

returns the selected method element according to the helper rule. The AlternativeTai-

loringRule chooses the most suitable TaskDefinition variant, according to the Domain

Knowledge Value in the context. If there were more variability points, a combination of

rules would be applied. Additionally if priorities to make trade-offs were required the

respective helpers would be used.

Figure 4.17: ATL Tailoring Transformation

4.8 CASPER application engineering: Context-Based

Software Process Adaptation

Tailoring in CASPER requires to understand the specific project context and to define

a suitable context configuration. The contextual framework was defined by the general

context model during the domain engineering activities. Each attribute must be fixed

to a specific Context Attribute Value. Therefore, new attributes will not be taken into

account because they would be out of the scope. However, an approximated context

configuration could be defined and the resultant process model could be tailored manually

(delta). In this case the new process manually defined is a possible input to a new

73

4.8 CASPER application engineering: Context-Based Software Process
Adaptation

domain engineering cycle. Also, the tailoring could be applied many times according to

the available knowledge of the project context while the project progresses.

4.8.1 Generating context-adapted process models

In the SPMC meta model, the Context Configuration is key to define a specific configu-

ration of the process model. Thus, a context configuration is a set of Context Attribute

Configurations where the value is fixed during project planning when the process normally

is tailored and enacted. At that time, the project context information is available and

it could be refined as the project progresses if a new process tailoring is required. In an

iterative way the project manager could execute the following steps:

• Step 1. Analyze each dimension defining the conditions of the actual project. This

analysis depends on the context dimensions. In this step it is very important to

have a suitable idea about the real context. For instance, the project manager could

elicit requirements from different stakeholders. However, the information could be

incomplete (but planning will be incomplete too anyway). In any case when planning

is required, tailoring must be executed with the available information at hand. This

case is different from the case where the context model is insufficient to express the

context for a new project.

• Step 2. Determine for each attribute the specific value in the context configuration.

In this case the project manager chooses an alternative of the possible attribute

values.

• Step 3. Generate the process model running the ATL transformation with the con-

text configuration and the organizational process model. Use the resulting process

model to enact it in the project.

Tailoring transformation execution of CC51A-RE Process on the context defined in Fi-

gure 4.18 is shown in Figure 4.19. The context model configuration corresponds to an

extension project for a low domain knowledge. We can see that the Exploration activity

is not included as part of the process and the Operational Prototyping activity was in-

cluded, and therefore Software Requirements Validation task in use is realized through

its Prototype-Based Validation task option. This result matches what was expected. All

others configurations were used as well and the adapted processes generated matched

what was expected too.

74

4.8 CASPER application engineering: Context-Based Software Process
Adaptation

Figure 4.18: A Context configuration to an user project of CC51A-RE Process

Figure 4.19: An adapted software process model of CC51A-RE

4.8.2 Manually Tailoring

When the adaptation is out of scope (the specific project context cannot be modeled with

the defined context model), a non-member of the SPrL could be manually created. If the

new situation will happen frequently in the future, the SPrL scope could be extended. A

scope analysis could be realized to determine if the new process could be a member or

not of the SPrL, if a new member must be included then a new domain engineering cycle

should be executed. Furthermore, this scenario could be the starting point to create a

SPrL. Therefore, a set of the manually created members are transformed into a SPrL. In

this case, according to Washizaki (2006) the process architecture should be recovered and

in the same way the specific context should be recovered from past specific situations to

define the process context of the SPrL.

75

4.9 Preliminary Validation

4.9 Preliminary Validation

Before applying the proposed approach to an industrial case, a preliminary validation

was conduced to confirm its consistency, feasibility, and applicability. This preliminary

validation was presented in this Chapter where the Casper prototype was presented and

a small academic case study was used as an example. The academic case study refers to

a requirements engineering process used as part of a software engineering course CC51A.

The following subsections provide details on the particular forms of validation and present

the obtained results.

4.9.1 CASPER Tool Prototype

As was explained above, Casper tool is based on the definition of the Casper meta-

process and its MDE strategy. A successful implementation of the meta models and

transformation rules support for Casper demonstrates that the meta-method is applica-

ble (in particular the production strategy) and it has achieved a suitable level of definition,

consistency and determinism. Casper tool was used to validate Casper in academic

and real world case studies.

4.9.2 CASPER Academic Case Study

Casper was initially used in an academic context. The partial process model of the

course Software Engineering II (CC51A) at the University of Chile was used as a small

initial but complete case to validate the suitability of the whole approach. The case only

includes the requirements engineering process. This case has been presented as example

to introduce CASPER in this Chapter. According to the case description, the CC51A

process model consists of 2 optional elements, 1 variation point, 2 variants and 1 requires

constraint producing 6 different processes. Additionally, the context model covered two

dimensions with three context attributes and 9 possible attribute values, resulting in 27

possible contexts. The ratio between contexts (27) and process models (6) was of a 22.2

(6/27) percent (with a unique process model would be 3.7(1/27) percent and in a template

approach with three processes a 11.1 (3/27) percent). However, the solution could give

better results if the requirements process is improved with some requirements practices

introducing rich variability. This example shows that the approach is suitable for the

problem; consequently, the tailoring rules are reusable, and the tailoring is significantly less

time-consuming and simpler than a configuration based approach. Because the manual

intervention is not possible, the process is not human error prone. Still, the human error

could happen when the context configuration model is defined, but in this case the error

76

4.10 Synthesis and Discussion

does not correspond to the tailoring process itself but to the way how the project context

is established. Although this is an interesting and valid problem in software process

modeling, it is a problem out of the scope of this thesis.

A relevant question arises about the effort involved in tailoring. In Casper the tailor-

ing effort is very low, however the domain engineering effort cannot be ignored. Thus, the

domain engineering effort (to build software process line models) should be distributed

among the possible instances of the process line (at least among used instances), and also

the context specific modeling effort. Even so, in this academic case, the effort is lower

than a reactive approach because the setup effort is divided among 6 processes. In the

Casper validation in Chapter 6 the effort is analyzed in detail.

4.10 Synthesis and Discussion

Casper proposes an MDE-based meta-process for automatically generating processes by

tailoring a general process applying a set of transformation rules defined during the defi-

nition of the organizational process as a process line. Casper has the potential to enable

improvement with respect to project productivity and quality of the resulting software

products. Provided that the adapted process will include all process elements that are

required for the particular project context, no extra work will be needed and only the

essentially required effort and resources will be spent. In addition, high quality work prod-

ucts can be expected, because the process is adjusted with this goal in each particular

project context. Since this tailoring process is automatic, and it eventually uses already

validated transformations, it is expected to achieve a reduction of the tuning time and

cost, and also the number of adaptation errors. The case study developed in this chapter

shows how the approach works and shows that it is possible to apply tailoring transfor-

mations built for adapting a general RE process to different project contexts in a planned

manner. An industrial case will be presented later in Chapter 6. Being able to validate

the transformations for particular known cases gives us confidence on their validity for

the general case. Therefore, whenever unanticipated scenarios happen, a combination

of already built (and potentially already validated as well) tailoring transformations can

be applied; and as a consequence, an appropriate context adapted processes can be ob-

tained quickly and easily. The experience has allowed us to conclude that: (1) Casper

techniques are an effective tool to achieve process tailoring; (2) the Casper approach

is useful and practical because it was easily implementable in the MaTE Laboratory.

However (3) the prototypical tool still needs be more usable, in particularly to define the

transformation rules.

77

Chapter 5

Software Process Models Analysis

and Visualization

5.1 Introduction

Software process models are sophisticated and large specifications aimed at organizing

and managing software development. An approach as Casper in particular requires

formalized software process models. Their formal specification demands an enormous

effort, but once specified there are few approaches and even fewer tools that aid the

process engineer to analyze the quality of the process. For the last five years as part of the

Tutelkan project, ten Chilean software companies were assisted in specifying their software

processes. A serie of problems that indicate the potential presence of misconceptions or

misspecifications in their process models were found.

As a first step, process model blueprints (Hurtado et al., 2010b) were developed as a

means for visualizing and analyzing different perspectives of a software process model.

The three blueprints considered (Role Blueprint, Task Blueprint, and Work

Product Blueprint) were applied to software process models specified with SPEM

2.0 OMG (2008). The software process blueprints enable the identification of exceptional

entities (Demeyer et al., 2002), i.e., exceptions in the quantitative data collected. Software

process blueprints were successfully used to identify a number of flaws in an industrial pro-

cess model, but a lot of experience from the process engineer was required for identifying

these flaws. Since then, several other industrial process models were assessed, and a set

of recurrent patterns ranging from suboptimal modeling to misconceptions and misspec-

ifications were discovered. The next step was to characterize kinds of process modeling

errors as error patterns, and to detail how errors could be localized within a software pro-

cess model. To assist process engineers to analyze the quality of their processes Avispa

was developed. Avispa is a tool that graphically renders different aspects of a process

78

5.2 Software Process Blueprints

model and highlights potential errors as intuitive and comprehensible indicators. This

chapter presents both, software process blueprints and Avispa tool1. The approach and

the supporting tool are illustrated by applying them in two software process models.

5.2 Software Process Blueprints

There is a generalized agreement among software practitioners about the relevance of

counting on a well defined process model for systematizing development. There have been

several efforts in aiding organizations toward this goal: maturity models and standards

that describe which elements should be part of a software process, notations that allow

rigorous specification, and tools that support these notations. However, having a well

defined software process does not necessarily mean having a good process. It is not

apparent how to determine if a software process is good, or if it can be improved in any

sense before it is enacted (Osterweil, 1987).

The convenience of specifying the software architecture with multiple views has been

agreed upon (Clements et al., 2002). Different stakeholders require different informa-

tion for evaluations, thus it seems natural to deal with multiple process architectural

views (Jacobs & Marlin, 1995). Process architectural views are built following an architec-

tural recovery process such that they allow us to evaluate different process characteristics.

In this thesis, three blueprints were proposed to analyze processes: Role Blueprint,

Task Blueprint and Work Product Blueprint. These blueprints are process

architectural view types that make use of metrics computed from a process model for

understanding and evaluating different aspects not directly available in SPEM 2.0 and its

associated tools. These visualizations have been implemented in the ProcessModel tool2

based on Moose technology and the Mondrian tool. Visualization aids in data analysis

and problem detection (Lee et al., 2003). Using different concerns about process models

in a graphical manner, the human visual capacity is used for interpreting the process in

context and to evaluate its coherence and suitability (Larkin & Simon, 1987). The ap-

proach has been applied to the process model specification of DTS, a real world medium

size company that develops software for retail. Process model blueprints have been able

to identify several problems in the process and the company’s stakeholders agreed that

they were actual problems. The process has been improved based on the problems found.

This subsection presents the software process blueprints using as example the process of

DTS.

1Analysis and VIsualization in Software Process Assessment
2Freely available at http://www.moosetechnology.org/tools/ProcessModel.

79

http://www.moosetechnology.org/tools/ProcessModel

5.2 Software Process Blueprints

Figure 5.1: DTS Organizational Process

5.2.1 Example Process: DTS Process

System and Technology Development - DTS is a company that started business around

1990 from a joint venture between a Chilean Aeronautic company, EANER and ELTA

Electronics Industries. DTS works in solutions for military and civil technology. It has

around 250 employees, including engineers, certified technicians, operation workers and

managers. DTS started to define its software process model in 2008, using the Unified

Process as a reference process. In DTS there is no specific software process improvement

project; its effort has been oriented toward recovering the software process actually applied

in the organization, in order to formalize it, analyze it, and eventually improve it.

Figure 5.1 shows the organizational process of DTS specified with SPEM 2.0. The

depicted organizational software process defines:

• A method library called MethodLibrary DTS that defines the organizational knowl-

edge and the mechanisms for applying the software process.

• A method plug in called DTS MethodPlugin that facilitates the management of

reusable and configurable software processes and method content.

• Four Content Packages that encapsulate knowledge about development methods,

techniques, and concrete realizations of best practices on areas relevant for the organi-

zation: technical solution, validation and verification, management, and requirements

80

5.2 Software Process Blueprints

Figure 5.2: SPEM Model Fragment for Requirements Change Management

development.

• Three Process Packages that define the main process structures. Proposal and Devel-

opment define the process patterns for pre-development breakdown structure (proposal)

and development breakdown structure, respectively.

• Three Category Packages that define the main categories used for visual deployment

of the process (standard categories and processes) and for grouping elements sensible to

a context attribute or a tailoring rule (Tailoring Categories).

• A Method Configuration that defines a basic configuration for the most typical

projects in the organization. This basic configuration is used for defining new configura-

tions tailored to specific contexts.

5.2.2 Problems in Software Process Model Analysis

Defining a software development process is an effort to systematize and improve software

development. However, defining a software process does not necessarily imply that the

process is complete, sound and/or well defined.

Enterprise Architect (EA)1 and Eclipse Process Framework (EPF)2 are two popular

integrated development environments (IDE) used to describe and visualize SPEM pro-

cesses. Hurtado et al. (2010b) argue that the representations provided by these tools are

not enough for easily assessing model quality.

1http://www.sparxsystems.com.au
2http://www.eclipse.org/epf

81

http://www.sparxsystems.com.au
http://www.eclipse.org/epf

5.2 Software Process Blueprints

The software process model used by DTS is composed of 57 tasks, 66 work products

and 9 roles. The complete process has been considered, including project management,

testing, requirement management and technical development. Figure 5.2 is a screenshot

of a piece of the DTS process model. This model excerpt focuses on some tasks of the

requirements change management area. The figure represents the main dependencies

between tasks and their related roles and work products.

The process model adopted at DTS received a careful attention at every step of its

conception by dedicated engineers. However, a number of problems were recently detected

to assist but not easily localized.

Incorrect relationships (a,b): W4 (Change Request) should be an output of T1 (Re-

quirement Change Reception) instead of being an input, and W2 (Change Estimated)

should be an output of T3 (Estimate Change) instead of T2 (Requirement Change Ana-

lysis). The change request is received by task Requirement Change Reception and is used

by all other tasks. The Change Estimated work product is the result of the Estimate

Change task.

Missing elements (d,e): W5 (Requirement Change Analysis) is required as output of

T2 (Requirement Change Analysis) and input of T3 (Estimate Change). A new role R3

(Client) is required because it is involved in T1 and T2 (Requirements Change Recep-

tion and Analysis). W5 and R3 are missing because the process has been inadequately

designed.

Missing relationships (c): control links between work product W5 (Requirement Change

Analysis) to task T2 (Requirement Change Analysis) as output and to task T3 (Estimate

Change) as input are missing. Without W5 between T2 and T3, the information flow

remains underspecified.

These anomalies in the DTS process were not easily identified mainly due to scalability,

complexity and availability issues. Figure 5.2 depicts only a small portion of the complete

process and Figure 5.1 depicts the general structure. The complete picture is multi screen

which makes it difficult to analyze. Many different sources of information are gathered in

the picture obtained from EA. As a consequence, checking the validity of the model is often

perceived as a tedious activity if possible at all. A global picture can be obtained through

a simple composition within the environment, but this composition is not automatically

built in a global fashion by SPEM modeling tools.

Although the analysis has been directed on EA and EPF, the same actions could have

been made in other tools (including SPEM as a UML Profile). To tackle these issues,

a number of extra visualizations could be used during the process designer’s activities.

Simulation is not a practical option in this specific case because SPEM 2.0 neither provides

concepts nor formalisms for executing process models (Bendraou et al., 2009).

82

5.2 Software Process Blueprints

5.2.3 Multiple Software Process Model Blueprints

There is no unique perfect view to visually render a software process model (Jacobs &

Marlin, 1996). As for most engineering activities, defining a robust, efficient and multi-

view software process is a non-trivial activity that requires flexible and expressive tools.

As a complement to software process design tools, a visual approach has been proposed to

evaluate some quality criteria. Therefore, a software process model blueprint is a partial

but focused graphical representation of a software process model.

5.2.3.1 Process Model Blueprints in a Nutshell

Process model blueprints are graphical representations meant to help software process

designers to (i) assess the quality of software process models and (ii) identify anomalies

in a model and provide hints on how to fix them. The essence of these blueprints is

to facilitate the comparison between elements for a given selected domain using a graph

metaphor, composed of nodes and edges.

The size of a node or an edge tells us about their relative importance. In the case that

a node is “much larger” than other nodes, this should draw the attention of the process

designer to this particular node. Its size may reveal an anomaly or a misconception.

The visualizations proposed are based on polymetric views (Lanza & Ducasse, 2003).

A polymetric view is a lightweight software visualization technique enriched with software

metrics information. It has been successfully used to provide “software maps” intended

to help comprehension and visualization. Two-dimensional nodes represent entities. A

map including up to 5 metrics can be calculated on the node characteristics: position

properties X and Y , height property, width property and color property. A software

process blueprint follows the intuitive notion that the wider and the higher the node is,

the bigger the measurements its size is telling. The color interval between white and black

may render another measurement. The convention that is usually adopted by Gı̂rba &

Lanza (2004) is that the higher the measurement the darker the node is. Thus light

gray represents a smaller metric measurement than dark gray. An edge between two

nodes n and m may be directed representing asymmetry. Direction is usually graphically

represented with an arrowed line. Software process blueprints do not make use of other

edge measurements.

5.2.3.2 Role Blueprint

Description and Specification: this blueprint shows a role-oriented perspective of

a process model. A role (called Role Definition in SPEM 2.0) defines a set of skills,

competences and responsibilities required for performing it. A role is responsible of some

83

5.2 Software Process Blueprints

Figure 5.3: Role Blueprint of the DTS Process Model.

tasks and could participate in others; also a role is responsible of some work products

in the software process. In general, the more associated to tasks, work products and

guidances a role is, the heavier the load the role has. In this blueprint a role is represented

as a rectangular node. The width represents the quantity of tasks and the height the

quantity of work products this role is in charge of. An edge between two roles represents

the collaboration between them, i.e., they work on the same task. Collaboration is not

explicit in a SPEM 2.0 model, but it can be obtained from the role associated tasks. The

quantity of guidance determines the color of a role(the node is darker to major guidance).

Example: the Role Blueprint of DTS is presented in Figure 5.3. It shows collab-

oration between roles, so it can be seen that a role–the Client–appears isolated. This

situation suggests that this role is either not involved in the process (and it is a possible

conceptual problem), or that the process has been badly specified. On the other hand,

the Analyst role should have been related to Engineer Manager and it is not, so this is an

underspecification of the process model. Moreover, in this blueprint two roles are much

larger than the others (Project Manager and Developer): they have several work products

assigned and they participate in a big number of tasks. Furthermore, the role Client is

small, and this issue suggests that it is not an active participant in the software process.

Interpretation: this blueprint allows the process engineer to evaluate whether the as-

signed responsibility is suitable to the process requirements. It allows him to discover

overloaded roles when one would expected a lightweight one, a lightweight role when a

heavy load role is required, a role that is isolated when it requires collaborations, and

roles without training material when it would be necessary for a good performance. So,

as a response to inconsistencies, a complex role could be decomposed, simple roles could

84

5.2 Software Process Blueprints

Figure 5.4: Task Blueprint of the DTS Process Model.

be integrated, training material could be added, collaborative techniques and enactment

constraints could be added.

5.2.3.3 Task Blueprint

Description and Specification: this blueprint shows a task-oriented perspective of the

process model. A task (Task Definition in SPEM 2.0) is the basic element for defining a

process. It defines a work unit assignable to roles. The granularity of a task ranges from

hours to several days. A task is associated to input and output work products. A task has

a clear purpose: it provides a complete explanation step by step of the associated work.

In this blueprint a node represents a task and it is represented as a box. The width and

height of a task represent the quantity of work products that are required and produced,

respectively, and the color represents the number of roles involved in the task. A directed

edge between two tasks states an execution order dependency between them: T1 depends

on T2 if T1 uses work products produced by T2 and therefore then will exist an edge

from T2 to T1. The organization of the graph uses a tree order layout, so they are placed

in a top-down fashion to reflect the order of dependency. As a natural and intuitive good

practice, each task must be connected to a previous and a next task, except for the start

and final work products.

Example: the Task Blueprint of DTS is presented in Fig. 5.4. The size of the

tasks is related to their complexity. In the example, the Requirements Review task is

more complex than all others, so more decomposition would be probably necessary. For

example, Requirements Review task could be decomposed into Software Requirements

85

5.2 Software Process Blueprints

Review task and User Requirements Review task. The color shows the participant roles,

so the User Requirements Definition task does not have associated roles. Unless this

task is automatic, this situation represents a specification error. Other problems may be

identified in the model such as the existence of many initial and final tasks; some of them

are intermediate tasks without a possible next or previous task. Another problem arises

due to the multiple links between tasks belonging to different process areas. This indicates

a high coupling between the main components of the process. The tasks on the upper left

of the picture belong to the management process area, those on the upper right correspond

to the engineering process area and those on the bottom belong to testing. These process

areas, interpreted as process components, should be connected between them with as few

dependencies as possible using process ports as SPEM2.0 suggests; they can be used with

composed work products and reports generated from other work products between main

or facade tasks inside each process component. Some sets of related small tasks can be

redefined as steps of a larger task.

Interpretation: this blueprint allows the process engineer to evaluate if task granularity

is appropriate for process requirements. It enables the discovery of a complex task, or a

disconnected task or task sub graph. A complex task could be decomposed and simple

tasks could be integrated. Similarly, this blueprint could be used to find SPI opportunities

and misspecifications such as process components with high coupling, final or initial tasks

with next or previous tasks, and tasks without assigned roles.

5.2.3.4 WorkProduct Blueprint

Description and Specification: this blueprint shows a work product-oriented perspec-

tive of the process model. A work product (Work Product Definition in SPEM 2.0) is an

element used, modified or produced by tasks. Roles use work products to perform tasks

and produce other work products. Roles are responsible for work products, so they aid

in identifying skills required for producing them. In this blueprint each node is a work

product and it is represented as a box. The width and height of the box represent the

quantity of tasks where the work product is an input or an output, respectively. The

color refers to the quantity of associated guidances. An edge between two work products

designates a production dependency: W1 depends on W2 if W1 is an output of a task

where W2 is input. Normally, any work product must be connected to previous and next

work products except for the first and the last.

Example: the Work Product Blueprint of DTS is presented in Fig. 5.5. The work

product view suggests a process with small work products except for a few of them. System

Requirements Specification work product is big and it can probably be divided into simpler

86

5.2 Software Process Blueprints

Figure 5.5: Work Product Blueprint of the DTS Process Model.

work products. Very few work products appear colored, so this process has not defined a

homogeneous guidance for executing the defined process. This suggests that the process

may not be repeatable because each performer may choose a different representation and

define himself a specific format. The work product Unit Test Checklist work product is

produced during the development, but it is not represented in the model, so it is incorrectly

modeled as an initial work product. The same situation occurs with Solution Proposal

work product because it is not a final product but no task consumes it. It is either a

waste work product, so process grease can be eliminated (improvement of the process),

or it was wrongly specified (improvement of process model specification).

Interpretation: this blueprint allows to process engineer to evaluate if a work product

has a considerable bottleneck risk associated. For example, it enables to discover a discon-

nected work product, or to identify isolated descriptions in the process model. Similarly,

this blueprint can be used to find SPI opportunities such as complex, bottleneck and

waste work products. Guidances are very important in this blueprint because the more

formal a process model is, the more reference material it requires, so the darker the boxes

will appear. For example, UP defines templates for each work product, whereas XP does

not. Similar to tasks, work products must be separated by process areas; connections

between them are first candidates to be component ports.

Table 5.1 summarizes the meaning of boxes, edges and dimensions for each of the

blueprints just presented.

87

5.3 AVISPA

Role Blueprint Task Blueprint Work Product Blueprint

Layout Circle layout Tree ordered layout Tree ordered layout

Node Role Task Work product

Edge Role collaboration Task order dependence Work product production

dependence

Scope Full Process Model Full Process Model Full Process Model

Node color Associated guidances Associated roles Associated guidances

Node height Required and produced Required work products Tasks where it is an input

work products

Node width Tasks where it participates Produced work products Tasks where the it is

an output

Table 5.1: Blueprints Details

5.3 AVISPA

In a previous work, the process blueprints proposed enabled the identification of excep-

tional entities (Demeyer et al., 2002). Blueprints have been successfully used to identify

a number of flaws in an industrial process model, but a lot of experience from the process

engineer is required for identifying these flaws. Afterwards and based on these experi-

ence, several industrial process models have been assessed, and a set of recurrent patterns

ranging from suboptimal modeling to misconceptions and misspecifications has been dis-

covered.

This section is about presenting, formalizing and implementing these recurrent error

patterns as a tool. Recurrent errors appearing in software process models have been

defined, and their potential consequences have been explained. This subsection also shows

how each of these error patterns can be identified within a software process blueprint.

Avispa (Analysis and VIsualization for Software Process Assessment)1 has been built

as part of this thesis. This tool displays the blueprints and highlights error patterns.

Counting on this tool, the process engineer only needs to analyze highlighted elements,

demanding less experience and also less previous knowledge for effective process model

analysis, and adding usability as well.

Using visualization to identify error patterns is not new. A large body of research use

visual patterns to identify positive or negative properties of software systems (Lanza &

Ducasse, 2003; Perin et al., 2010). However, none of the related work presented and dis-

cussed in this thesis has been based on visual patterns for identifying problems in software

process models. However Knab et al. (2010) specify generic visual process patterns that

can be found in issue tracking data. With these patterns they analyze information about

effort estimation, and the length, and sequence of problem resolution activities. In this

1http://www.moosetechnology.org/tools/ProcessModel Avispa is freely available under

the MIT license.

88

5.3 AVISPA

Figure 5.6: Avispa in localizing software process model improvement opportunities

case the information is about the software process execution trace but not the software

process model itself.

Figure 5.6 depicts the pile of technologies involved in building Avispa. Software pro-

cess models specified in SPEM 2.0 are assumed to exist. SPEM 2.0 was considerer in this

work since it is the standard of OMG, and it has also been promoted within the Chilean

software industry by the Tutelkán project. On top of them series of software process

metrics are defined; these metrics will be used for identifying errors and improvement

opportunities. Software process blueprints are built using these metrics. Error patterns

are identified as those elements or constructs within blueprints whose values for certain

metrics satisfy some constraints. The identified elements are visually highlighted using

Avispa.

Avispa has been applied for analyzing the Scrum process model1 published in the

Eclipse Process Framework community where it has been defined as a SPEM 2.0 model OMG

(2008) using Eclipse Process Composer2 to illustrate the approach and the tool (Hurtado

et al., 2011a). Process engineers have been able to find several of the defined error pat-

terns, and most of them resulted in actual errors, giving support to our intuition that a

formal tool that helps the process engineer is useful. Avispa has been highly welcomed

in all companies where it was presented, these experiences are reported in more detail in

Chapter 6.

1Scrum:http://www.eclipse.org/epf/downloads/scrum/scrum downloads.php
2EPF: http://www.eclipse.org/epf/

89

5.3 AVISPA

5.3.1 Example Process: Scrum

Scrum is an agile software process frequently used to rapidly develop software. It has

been defined by Jeff Sutherland and more formally elaborated by Schwaber (1995). Scrum

stresses management values and practices, and it does not include practices for technical

parts (requirements, design, and implementation); this is why it is usually used in com-

bination with another agile method such as XP (Beck & Andres, 2004). The application

of Scrum enforces a few simple rules that make a team self-organize into a process that

can achieve 5 to 10 times the productivity of a waterfall based process. However, most

Scrum teams never achieve this goal (Sutherland et al., 2009). According to Sutherland,

teams face difficulties to organize work in order to deliver working software at the end

of each sprint. Moreover, they also experience trouble working with a Product Owner to

get the backlog in a ready state before bringing it into a sprint. Also, organizing into

a hyper-productive state during a sprint remains a challenging issue. A hypothesis is

that one of the reasons for this situation is an improper definition and implementation of

Scrum.

5.3.1.1 Scrum: a rule-based process framework

Scrum is an agile method that works under the idea that software processes are incom-

pletely defined. So, the Scrum approach assumes that the analysis, design, and devel-

opment processes are unpredictable. A control mechanism is used to manage the unpre-

dictability and control the risk for improving the process flexibility, responsiveness, and

reliability (Schwaber, 1995). Scrum is not a process or a technique for building prod-

ucts; rather, it is a rule based framework where various processes and techniques can

be used. The role of Scrum is to achieve the most effectiveness possible of a series of

development practices while providing a framework where complex products can be de-

veloped (Schwaber & Sutherland, 2010). The Scrum framework is a set Scrum teams,

time-boxes, artifacts and their rules:

• Scrum teams are designed to maximize flexibility and productivity; Scrum teams

are self-organizing, cross-functional, and work in iterations. Each Scrum team has

three roles: the Scrum Master, who is responsible for ensuring that the process is

understood and followed; the Product Owner, who is responsible for maximizing the

value of the work that the Scrum team does; and the Scrum Team, which does the

work. The Team consists of developers with all the skills to transform the Product

Owner’s requirements into a potentially releasable piece of the product by the end

of the sprint. Scrum employs time boxes to create regularity.

90

5.3 AVISPA

• The time-boxed elements are the release Planning Meeting, the Sprint Planning

Meeting, the Sprint, the Daily Scrum, the Sprint Review, and the Sprint Retrospec-

tive. The focus of Scrum is a sprint, which is an iteration of one month or less that

is of consistent length throughout a development effort. All sprints use the same

Scrum framework, and all sprints deliver an increment of the final product that is

potentially releasable.

• Scrum employs four main artifacts. The Product Backlog is a prioritized list of fea-

tures required for the product. The Sprint Backlog is a list of tasks to be performed

in a sprint, producing an increment of a potentially shippable product from the

Product Backlog. A burn down is a measure of remaining Backlog over time. A

Release Burn down Chart measures remaining Product Backlog in the context of a

release plan. A Sprint Burn down Chart measures remaining sprint backlog in the

context of a sprint.

Scrum life cycle is defined by the sprint and by three groups of phases: pre-game, game

and post-game. In the pre-game, the planning and architecture phases are performed. In

the planning phase a new release is defined according to the current product backlog,

including an estimative of its schedule and cost. In the architecture phase a design (ar-

chitectural and high level design) is generated to determine how the backlog items will be

implemented. In the game phase, the sprints are performed. There are multiple, iterative

development sprints that are used to develop the system. In the post-game the closure

phase is performed. The release is prepared including final documentation, pre-release

staged testing, and release. Figure 5.7 is a screen shot of the Scrum model defined using

EPF tool.

5.3.1.2 Scrum Process Model in SPEM 2.0

The Scrum process model presented by the Eclipse Process Framework Community has

been defined as a SPEM 2.0 model as shows Figure 5.8 using Eclipse Process Framework.

This definition includes a Scrum plug in and a Scrum overview configuration. The plug

in includes the Scrum method package and four categories. Roles, work products, tasks,

and the guidance, are organized in packages inside the Scrum method package. Also,

the Scrum activities, roles, work products and guidance are defined as categories linking

to corresponding method elements defined in the method package. Process structure

with method has not defined because in essence Scrum is an incomplete process and

it is considered as a process framework and not a process itself. As a consequence,

EPF community has defined Scrum life cycle as a supporting material element (a specific

guidance) where it is graphical and textually described. Although, this definition does not

91

5.3 AVISPA

Figure 5.7: Scrum Process Model in EPF

include the phases defined by Schwaber (1995), the Scrum life cycle could be defined and

customized in a delivery process by each organization reusing the Scrum method plug-

in. The method package elements have been defined and linked according to a Scrum

description as was presented above. However, the question is if the method elements will

match with this or other adapted life cycle. For example, are the tasks outputs and inputs

consistent among the tasks inside a value flow? These are relevant questions mainly when

the model is used with academic purposes, for the first time, for comparing or combining

it with other process models.

5.3.2 Process Model Error Patterns

For the past five years has been followed applied research in the area of software process

models in small software companies in Chile (Hurtado et al., 2010a; Valdés et al., 2010)

and Iberoamerica (Pino et al., 2009; Villarroel et al., 2010) as part of the Tutelkán and

Competisoft projects. Along this work a number of common errors and problematic

situations in software process model specifications have been identified, either due to

misconceptions or misspecifications. In this section a series of these patterns are reported,

how they may be identified in Avispa, and mainly how they are automatically highlighted

as part of the blueprint where they appear. In this work there is a misspecification in the

software process model if the development process is well designed but its specification

does not necessarily reflect the actual practice, e.g., there exist some guidance for a role

but it is not specified as part of the model. Complementary, there is a misconception

92

5.3 AVISPA

Figure 5.8: Scrum Process Model as SPEM2.0 Model

whenever there is a flaw in the software process design, e.g., a task produces a work

product that neither a task nor a role needs.

5.3.3 AVISPA Error Patterns

There is a number of anomalies in software process specifications that are fairly frequent.

These anomalies have been structured as Error Patterns. This section describes some of

them along with their consequences and how they would look in the blueprint where they

may be found. Error pattern descriptions provide a tentative quantification for how bad

may be considered too bad, so that it serves as a basis for automating their localization.

No guidance associated error pattern. If a role, task or work product has no guidance

about how to be executed, there is a big chance that it will not be properly done. This error

is generally an underspecification, meaning that there should have been certain guidance

associated with each element. In the respective blueprint elements without guidance are

highlighted in blue.

Overloaded roles error pattern. If a role is involved in a large number of tasks, it

becomes a risk: if it fails, all the associated tasks within the process will fail as well.

This is a clear anomaly in the process model conception. Better choices would be either

93

5.3 AVISPA

specializing the role by dividing its responsibilities, or reassigning some tasks to other

roles. A role is overloaded if it is more than one standard deviation larger than the

average size. This error pattern is computed as part of the Role Blueprint, and the

overloaded roles are highlighted in red.

Isolated roles error pattern. There may be certain tasks that a role executes by itself,

but it is not frequently right to have a role that never collaborates in any task with other

roles. In general, this kind of error pattern shows a misspecification: a role should have

been assigned to take part in a certain task but appears to be left apart. This error

pattern is also apparent in the Role Blueprint, and the isolated roles are highlighted

in green.

Multiple purpose tasks error pattern. A process where tasks have too many output

work products may reveal that these tasks are not specified with the appropriate gran-

ularity. A task with too many output work products may be too complex since its goal

is not unique. This may reflect a misconception in the process model. This pattern is

seen in the Task Blueprint where wide nodes (too many output work products) are

highlighted red. A task is considered to be too complex if it is more than one standard

deviation than the average task width. A better choice could be to divide the task in two

or more tasks with more specific purposes.

Demanded work products. Work products required for a high number of tasks may

cause serious bottlenecks when they are not available, and thus it could reveal a miscon-

ception. This situation is seen in the Work Product Blueprint where wide nodes

are highlighted in yellow, nodes whose width (number of tasks that require it as an input)

is more than one standard deviation than the average.

Independent sub projects error pattern. In a Task Blueprint and a Work

Product Blueprint, tasks and work products are related with edges indicating prece-

dence. Considering that the process model specifies the way to proceed when working on

one unique project, it is conceptually odd to have disconnected subgraphs, both in the

Task Blueprint and the Work Product Blueprint. In general, these situations

arise due to under specifications, when work products have not been specified as input or

output work products for certain tasks when they should have been. Each subgraph is

presented with a different color in both, the Task Blueprint and the Work Product

Blueprint, in order to identify the existence of independent sub projects. So having a

graph with more than one color nodes indicates that there are independent sub projects

specified.

Waste error pattern. In Work Product Blueprint an arc connecting nodes

represents precedence between work products. If there is a WPa that precedes WPb in

94

5.3 AVISPA

the graph, that means that there is a task such that WPa is its input and WPb is its

output. In this way, all leaves in the graph, i.e., nodes with no successor, should represent

deliverable work products. This pattern highlights in blue all those leaves that are not

defined as deliverables. In SPEM 2.0 deliverables are those work products that need to

be delivered to the customer as part of the final product. However, if there are work

products that are neither deliverables nor input for any other task within the process,

then they are waste.

Table 5.2 summarizes the error patterns that have been identified so far.

Error pattern Description Localization Identification

No guidance An element with no any blueprint A white node.

associated guidance associated.

Overloaded role A role involved Role Blueprint Nodes over one deviation

in too many tasks. larger than the mean.

Isolated role A role that does Role Blueprint A node that is not

not collaborate. connected with an edge.

Multiple purpose Tasks with too many Task Blueprint Nodes whose more

tasks output work products. than one deviation

tasks wider than the mean.

Demanded Work Work products required Work Product Blueprint Nodes more than one

products for too many tasks. deviation higher than

the mean.

Independent Independent subgraphs. Task Blueprint or Subgraphs that are not

subprojects Work Product Blueprint connected with edges.

Waste A waste work Work Product Blueprint A work product

product non deliverable

and leave in the graph.

Table 5.2: Error patterns identified by Avispa

5.3.4 Localizing Errors with AVISPA

This section sketches the internals of the implementation of Avispa. The scripts for

implementing two of the error patterns are subsequently offered as examples of the way

errors are computed. Finally, a description of the tool from the user point of view is

provided.

5.3.4.1 Implementation of AVISPA

The SPEM 2.0 error patterns presented in the previous subsection were implemented

in Avispa extending the MOOSE platform according to the architecture defined in Fi-

gure 5.9. As Figure 5.10 shows, Avispa extends the FAMIX family of meta models of

MOOSE1 by subclassing MooseEntity and MooseGroup. The names of the classes that

1http://www.moosetechnology.org/docs/famix

95

5.3 AVISPA

Figure 5.9: The Avispa logical architecture

belong to Avispa begin with PM, standing for Process Model. PMObject contains oper-

ations and attributes common to all SPEM elements (essentially a particular identifier).

PMRole, PMTask and PMArtifact describe elementary components of SPEM 2.0. Each of

these classes offers methods for computing metrics and navigating through a model. For

example, each task is aware of its following tasks (i.e., tasks that farther need to be com-

pleted) and its associated artifacts. A group of roles, tasks and artifacts are expressed as

instances of PMRoleGroup, PMTaskGroup and PMArtifactGroup, respectively. The purpose of

offering specialized collections is to enable dedicated visualization to be defined on these

groups. For example, the method viewTaskBlueprintOn: is defined on PMTaskGroup which

defines the enhanced task blueprint describe below.

Avispa is visualized using the Mondrian visualization engine1 (Meyer et al., 2006).

Mondrian operates on any arbitrary set of values and relations to visually render graphs.

As exemplified below, visualizations are specified with the Mondrian domain specific lan-

guage.

5.3.4.2 Error Pattern Implementation in AVISPA

The implementation is illustrated with two error patterns: independent projects and

multiple purpose tasks, i.e.,tasks involving too many output work products. There is a

script for each of them, and the rationale in each implementation. The implementation

of the other error patterns is conceptually similar to these ones.

Independent sub projects This kind of error is seen, for example, when the Task

Blueprint has disconnected subgraphs. Thus, each independent subgraph is colored

differently, and having a Task Blueprint with more than one color means that there

1http://www.moosetechnology.org/tools/mondrian

96

5.3 AVISPA

PMObject

PMRole PMArtifactPMTask* *
* *

* *

MooseGroup

PMRoleGroup PMTaskGroup PMArtifactGroup

*

followingTasks
numberOfArtifactOutputs
numberOfArtifactMandatoryInputs
deviationToMeanInputArtifacts: double
deviationToMeanOutputArtifact: double

PMTask
viewTaskBlueprintOn:

PMTaskGroup

detailled view

MooseEntity

Figure 5.10: The Avispa metamodel (gray classes belong to FAMIX)

are some missing dependencies. On the other hand, if the Task Blueprint is all the

same color, this will mean that there are no independent sub projects, and therefore the

process will be fine with respect to this error pattern. The following script builds a colored

Task Blueprint where independent sub projects are identified. Independent subproject

always reveal an error in the process model specification.

PMTaskGroup>> viewTaskBlueprintOn: view

| ds components orderedComponents normalizer cycleColor |

“Compute disjoint sets”

ds := MalDisjointSets new.

ds nodes: self.

ds edges: self from: #yourself toAll: #followingTasks.

ds run.

components := ds components.

orderedComponents := Dictionary new.

components doWithIndex: [:roles :index |
roles do: [:role |

orderedComponents at: role put: index]].

“Assign a color to each set”

97

5.3 AVISPA

normalizer := MONIdentityNormalizer new.

(1 to: (components size * 10)) do: [:v — normalizer moValue: v].

cycleColor := [:v — normalizer moValue:

((orderedComponents at: v) + 10)].

“Display the blueprint”

view shape rectangle

borderColor: Color black;

borderWidth: 1;

fillColor: [:v | cycleColor value:v];

width: [:each | each numberOutputs * 10];

height: [:each | each numberInputs * 10].

view nodes: self.

view shape arrowedLine.

view edges: self from: #yourself toAll: #followingTasks.

view treeLayout

First a cycle is computed so that edges of connected subgraphs are painted with the

same color. Then, individual nodes are built assigning them a size and a color. Tasks

are represented as rectangular nodes whose color is that of the subgraph it belongs to.

Their width is related to the number of output work products, and the height shows the

number of input work products. Arrows between two nodes exist if they are related with

the following relationship. The whole blueprint is shown as a tree.

Multiple Purpose Tasks Here again the error will be seen in the Task Blueprint,

but now nodes that are wider than one standard deviation from the average number of

output work products will be highlighted as potential errors. Highlighted tasks reveal

complexity in the task specification, but they are not necessarily errors. One standard

deviation in a normal distribution function was the empirical value calibrated from a pre-

liminary analysis. A serie of metrics are precalculated so that the script can be executed.

numberOutputsi is the number of output work products of task i in the process. Then,

considering that there are n tasks in the process, the error pattern calculates the mean

number of output work products for the whole process as follows:

MeanOutWP =

∑n
i=1 numberOutputsi

n
(5.1)

And then, the standard deviation can be calculated as follows:

98

5.3 AVISPA

sigmaOut =

√∑n
i=1(numberOutputsi −MeanOutWP)2

n
(5.2)

Also, the distance from the mean value to MeanOutWP is calculated as follows:

distToMeanOutWPi = numberOutputsi −MeanOutWP (5.3)

These metrics are used as part of the script in order to determine the color of each

node in the Task Blueprint.

PMTaskGroup>>viewTaskWarningBlueprintOn: view

view shape rectangle

fillColor: [:each | (each distToMeanOutWP >

self myModel sigmaOutWP)

ifTrue: [Color red]

ifFalse:[Color white]];

borderColor: Color black;

width: [:each | each numberOutputs * 10];

height: [:each | each numberInputs * 10].view nodes: self.

view shape arrowedLine.

view edges: self from: #yourself toAll: #followingTasks.

view treeLayout.

view root interaction item:

’inspect group’ action: [:v | self inspect]

The main part of the script is devoted to determining the color of each node according

to its relative size. If the distance from the number of output work products to the mean

is larger than one standard deviation, then the node will be red. Otherwise, the node will

be white. Edges will be drawn according to the followingTasks set that should have been

precalculated. The whole blueprint is presented as a tree.

Obtaining a Task Blueprint that is all white means that all tasks have similar

complexity with respect to the number of output work products. Several red tasks clearly

suggest a poor design because the purpose of the tasks is not always uniquely defined.

5.3.4.3 AVISPA User Interface

Avispa has become a useful tool to import and visualize SPEM 2.0 based process mod-

els. It is built on top of Moose and the Pharo programming language1, and so it benefits

1http://www.pharo-project.org

99

5.3 AVISPA

Figure 5.11: The Avispa main user interface

from a large toolset for navigation and visualization. Figure 5.11 shows the main user

interface. The Tutelkan model has been loaded and is ready to be analyzed. The navi-

gation panel shows four entry points to begin an analysis: activities, artifacts, roles and

tasks. Navigation is realized through the information available in the meta model (see

Sect. 5.3.4.1). Although not depicted in the figure, metrics and other specific information

(e.g., descriptions and annotations) are also available under the properties tab.

5.3.5 Applying AVISPA to the Scrum Process Model

The Avispa tool was used for analyzing the Scrum process model defined by the EPF

process community. It is exported from EPF as an XML file and imported in Avispa.

Avispa is guided by the kind of error patterns it is able to identify and localize, so the

analysis is organized accordingly.

• No guidance associated. Process elements leave too much freedom for interpreting

the purpose of each element within the process. Scrum provides guidance, but we

have found that they are not always associated with the corresponding nodes (see

Figure 5.12). In the Role Blueprint we found that absolutely no guidance is

provided for any role. In the Work Product Blueprint, the Task board and

the PotentiallyShippableProductIncrement have no guidance either. This situation is

even worse in the Task Blueprint because the Sprint Retrospective, Sprint Plan-

ning Meeting, Sprint Review Meeting and the Daily Scrum do not have associated

guidance. This situation is particularly serious for Scrum because of its agility: if

neither methods nor guidance are provided, it is difficult to achieve the expected

results.

100

5.3 AVISPA

Figure 5.12: Role Blueprint, Work Product Blueprint and Task Blueprint

identifying elements without guidelines

• Overloaded role and isolated role. Generating the Role Blueprint (see Figure

5.13) there are neither overloaded nor isolated roles. Thus, there are no problems

in the specification of Scrum with respect to error patterns referring roles.

Figure 5.13: Applying Avispa for localizing overloaded and isolated roles in Scrum

• Multiple purpose tasks. A task that is too wide in the Task Blueprint will

be colored in red in order to call the attention of the process engineer. A task

with too many output work products does not have one clear goal, so it may be

better to divide it into more specific subtasks. In Figure 5.14, it can be seen that

the Sprint Review Meeting and Daily Scrum tasks are significantly wider than the

others, although only one is highlighted(Sprint Review Meeting). This is expected

in Scrum because these tasks are defined as black boxes hiding the complexity of

the software development in Scrum. But, as a software development process, the

specification of Scrum is not detailed enough. This is consistent with the literature

in the fact that Scrum should be combined with others methods.

• Demanded work products. A work product that is required for the execution of too

many tasks could become a bottleneck, so a work product that is too demanded

101

5.3 AVISPA

Figure 5.14: Applying Avispa for localizing multiple purpose tasks

reveals a problem in process conceptualization. A node in the Work Product

Blueprint that is too high identifies this kind of problem. This is the case of

Product backlog that can be clearly identified in Figure 5.15. It means that if the

Product backlog is not defined (or partially defined) when the project is not finished

yet, then it could be stopped.

Figure 5.15: Applying Avispa for localizing demanded work products

• Independent sub projects. Having independent sub projects reveals a misspecifica-

tion in the process model because all tasks and work products should be useful for

the project’s goals, and as such they should be connected in the Task Blueprint

and the Work Product Blueprint, respectively. This error pattern may be

seen in either blueprint. Figure 5.16 shows how independent subgraphs have differ-

ent colors (color is meaningless) in the Work Product Blueprint for Scrum.

The work product in green, Potentially Shippable Product Increment, belongs to a

independent graph. This implies that this work product is neither defined as an

102

5.3 AVISPA

input nor output of any task in Scrum. A similar situation occurs in the green task

Sprint Retrospective that is disconnected from the graph in Figure 5.17. The ret-

rospective is a key task in the Scrum process that consumes and produces changes

on work products (and outcomes) of other tasks. The purpose of the retrospective

is to inspect the last sprint with respect to people, relationships, process and tools.

These include Scrum team structure, meeting arrangements, support management

tools, methods of communication, and processes for turning Product Backlog items

into value. Clearly the model is imprecisely described with respect to this practice.

Figure 5.16: Applying Avispa for localizing independent projects in the WorkProduct

Blueprint

Figure 5.17: Applying Avispa for localizing independent projects in the Task Blueprint

• Waste. The Potentially Shippable Product Increment (A) has been highlighted in Fi-

gure 5.18. This work product needs to be an input to the integration task, but the

public Scrum process model does not specify this fact, so (A) is an underspecifi-

cation. The Release Burn down Chart (B) and Sprint Burn down Chart (C) are

clearly necessary for executing the development management tasks, but the model

103

5.3 AVISPA

does not specify these dependencies either. These dependences could be underspec-

ifications, but the work products could be waste too. It depends of the cost/benefit

of these work products. Actually, these artifacts do not generate value by them-

selves, the benefits are required in Scrum method for determining for example as

predict the project velocity and the time remaining, so these work products are con-

sidered as completely necessary. In this analysis, no false positives are identified:

all highlighted elements correspond to errors in the process model.

Figure 5.18: Work products that are potential waste in Scrum

5.3.6 Scrum Analysis Results

A software process model definition can be incomplete for agility reasons or self-organization.

However, if a relevant principle of the process is not included, it could be applied in an

imprecise or inaccurate way. In this subsection the Scrum process model has been ana-

lyzed with the Avispa tool, where the specification widely used by the community has

been found to be incompletely defined. In particular, the iterative nature of the process

and the incremental nature of the product development was found unclear.

An improved Scrum process model can be completed from its original definition by

adding: (i) guidance such as key concepts, examples and guidelines available in the Scrum

definition associated to each role; for instance Product Backlog Example, Story Points Key

Concept and Priorization of the Backlog guideline should be associated to the Product

Owner Role, (ii) some tasks need to be completed associating them with their required

and produced work products; for instance, because in the Spring Retrospective task Sprint

Burn Down and the Task board Work Products are used and modified, they need to be

associated as input and output, respectively, and (iii) the Task board Work Product should

104

5.4 Synthesis and Discussion

be completed with a Task board example; Potentially Shippable Product Increment should

be defined as an output of the SprintReviewMeeting task.

5.4 Synthesis and Discussion

As a complement to process model design, it is also necessary to validate and verify

software processes. This chapter presented a mechanism for recovering software process

architectural views based on blueprint visualization. This approach proposes to analyze

software process models in an early way, based on reviewing the architectural views of a

software process model defined as Software Process Blueprints (Hurtado et al., 2010b).

There, each blueprint is built following a model-driven strategy where the process model

is separated in a set of partial views that may be more illustrative for finding errors than

analyzing the whole process directly. Many process model blueprints can be defined, but

three essential ones have been described here: Task Blueprint, Role Blueprint and

Work Product Blueprint. At the top of the blueprints a set of error patterns has

been identified and implemented as part of Avispa, a tool for process model analysis that

localizes this set of identified potential errors within a process model specified in SPEM

2.0. These errors may come either from process conceptualization or from misspecifica-

tions. This chapter described how each of the error patterns identified are found in the

appropriate process blueprint, and how Avispa highlights them. Avispa encapsulates

knowledge specialized of an expert software process engineer for identifying improvement

opportunities and thus requiring less experienced process engineers for determining a

better process.

The quality of the analysis highly depends on the quality of the definition of the

error patterns. Even though the error patterns developed in this chapter have shown to

be effective in finding improvement opportunities, there is still some room for fine tuning

them. For example, in other cases determining that a task is too complex if it is more than

one standard deviation from the mean, may not help discriminating really badly specified

elements, and maybe two standard deviations is a better measure. The error pattern may

also be defined as parametric in the number of standard deviations considered.

The Avispa tool is targeted to those software process models formally specified in

SPEM 2.0. This may be one of its main limitations since it is hard and expensive to for-

mally define a complete process. However, if a company decides that it is worth the effort

to specify its software process, then Avispa provides an added value to this investment

assuring, at least partially, the quality of the specified process.

105

Chapter 6

CASPER Validation

6.1 Introduction

This chapter reports the empirical application of Casper. According to the research

method defined in Chapter 1, an industrial case study has been used as the validation

technique. The study case is holistic because an organizational software process con-

struction was used as a complete research subject (Yin, 1984). According to research

theory of Runeson & Höst (2009), this case study is positivist (to test the hypothesis)

and explanatory (it is an explanation of a situation where Casper is applied as a new

meta-process).

In this industrial case study, a general requirements engineering process of a medium

size Chilean software company was formalized. This enterprise has provided its organiza-

tional process as part of the Tutelkan project (Hurtado & Bastarrica, 2010). A rich case

aids to reveal more information, activating more actors, more concepts and more basic

mechanisms in the situation researched. So, for this case study the requirements engineer-

ing process has been taken including its adaptation guidelines. These guidelines indicate

that certain artifacts should or should not be included as part of the adapted process,

according to certain situations. In this way, there is a set of predefined project types

such as large development, small development, maintenance or incident. This case study

shows that the approach is able to automatically produce the expected process for these

project types. Furthermore, this case study shows how Casper is also able to produce

an appropriate process for an unexpected context. All these results have been analyzed

and validated by the company’s process engineer. The subsequent sections present the

complete industrial case study where the Casper approach was applied.

106

6.2 Research Question

6.2 Research Question

Casper follows a planned software process tailoring strategy to resolve the challenges of

traditional tailoring where tailoring involves intensive knowledge generation and deploy-

ment (Rolland, 2009) and it is also time consuming (Ocampo et al., 2005). Is it possible

to apply Casper to an industrial case study in a cost-effective way using only project

context information?

6.3 Case Study Metrics

To achieve the case study goal, cost-effectiveness in the tailoring process is defined as an

indicator ICE - Index of Cost-Effectiveness defined by the equation:

ICE =
CR

TE
(6.1)

Where CR is the coverage ratio and TE is the tailoring effort. These metrics are described

in Table 6.6.

Table 6.1: Metrics of the Case Study

Metric Description Rationale

CR - Coverage The ratio between the available processes Effectiveness - the larger the number of processes, the more

Ratio and the possible situations situations will be covered

TE - Tailoring The effort in hours-persons Cost - the lower the tailoring effort,

Effort spent during tailoring stage the lower the cost of the tailoring

6.4 Case Study Selection

The selection of the requirements process case was driven by several factors: (1-available

case) to have an industrial environment, so validation is performed like a real case; (2-

extreme case) the requirements process is the more variable part of the complete software

process model in the organization, so this part is the richest part of the process model

used to validate the approach, and (3- critical case) the requirements process model is

known by the research community as the most complex and richest part of the process

model in general (Pandey et al., 2010). The complexity in this process is due to several

issues: stakeholders (including paying customers, users and developers) may be numerous

and distributed; their goals may vary and conflict; their goals may not be explicit or may

be difficult to articulate, and, inevitably, satisfaction of these goals may be constrained

107

6.5 Case Study Context

by a variety of factors outside their control (Nuseibeh & Easterbrook, 2000). Included

data of this case study was obtained from the process line examination and unstructured

interviews to their process engineers.

6.5 Case Study Context

KIT is a medium size Chilean software development company, its requirements engineering

process, KIT-RE, has been formalized as a software process line. This company has

provided its organizational process as part of the Tutelkán project (Hurtado & Bastarrica,

2010; Valdés et al., 2010) and it is publicly available1. For this tailoring scenario the

requirements engineering process was took, along with its adaptation guidelines.

The current method used by KIT to tailor its software precess is based on guidelines.

These guidelines indicate that certain artifacts should or should not be included as part of

the adapted process, according to certain context values. In this way, there is a series of

predefined project types such as large development, small development, maintenance or

incident. However, the guidelines suggest the minimal process to be followed but they do

not suggest the most suitable software process. Normally, the project manager meets with

the process engineer to select the artifacts to be used in the project. Thus, the tailoring

process usually results insufficient using only the guideline, it is dependent on the process

engineer and it is repetitive only in some cases. The process engineer incrementally counts

on more tailoring rules, but the project managers only count on a partial view of possibles

tailoring decisions. Additionally, the company needs to count on a quantitative mechanism

for making good tailoring decisions. It considers that formalizing the context and the

specific process, it is possible to evaluate int the long term its tailoring decisions. Hence,

a systematical software process tailoring allows reusing process engineering knowledge,

making in the long term the best decisions, and counting on a more suitable process in

each project,achieving the benefits of the tailoring

6.6 Organizational Process Model

The requirements engineering process is part of the KIT Development Process which is

based on Rational Unified Process including its four phases:

1. Inception: the project scope is defined, cost and schedule are estimated, risks are

identified, the problem analysis is conducted, the project staff is defined and the

environment is prepared (including the process tailoring).

1Tutelkán: http://www.tutelkan.org.

108

6.6 Organizational Process Model

2. Elaboration: requirements are detailed; the architecture is identified, defined and

validated, and the environment is updated.

3. Construction: the system is modeled, built and tested. Additionally supporting

documentation is developed.

4. Transition: includes system testing, user testing, system deployment and user train-

ing.

In the general requirements engineering process we can identify two main components

that are executed asynchronously: Requirements Development and Requirements Man-

agement. Figure 6.1 shows the process formalization in the EPF tool.

Figure 6.1: Requirements Engineering Process

Requirements Development is depicted in Figure 6.2. Here the process may take two

different forms depending on the development stage. In the Inception stage, this process is

formed by two parallel and optional activities: Problem Analysis and Environment Specifi-

cation. In all other stages, this process is formed by three parallel activities: Requirements

Specification, Requirements Analysis and Validation and Early Change Management ; only

the last one is optional. Also the Problem Analysis is formed by the Preliminary Analysis

and the Project and Problem Scope Definition, and this latter one is also optional.

Requirements Management consists of Requirements Understanding, Requirements Com-

mitment, and then in parallel Requirements Tracking and Requirements Change Manage-

ment, as shown in Figure 6.3.

The Requirements Understanding process is illustrated in Figure 6.4. It is formed by

three tasks: Identify Requirements Providers, Requirements Review and Ensuring Com-

mon Requirements Understanding. Notice that the Identify Requirements Providers is

109

6.6 Organizational Process Model

Figure 6.2: Requirements Development

Figure 6.3: Requirements Management

marked as optional. In this case, the task will only be carried out if the project is a new

development.

All optionalities in the process can be summarized in a Process Feature Model (Czar-

necki & Antkiewicz, 2005) as shown in Figure 6.5.

110

6.7 Context Model

Figure 6.4: Requirements Understanding

6.7 Context Model

The general requirements engineering process model presented in the previous section is

applied in different kinds of projects. Several dimensions and attributes have been identi-

fied as relevant by the company for characterizing projects. Figure 6.6 shows the context

model. The Domain dimension has three attributes: Application Domain, Development

Environment and Source of Documentation. The first two may be either known or un-

known, and the last one may exist, not exist, or there may be an expert who may provide

information. Similarly, the Team dimension has two attributes: Team Size and Team

Expertise, each one with their corresponding values. The Management dimension has five

attributes: Project Type, Provider, Business, Customer Type and Project Duration. In

this study case the Team dimension and the Business attribute was not used, however

these were defined because it will be used for tailoring other process components besides

the requirements process.

The second column in Table 6.2 describes the values of the context variables for a

new development within an unknown application domain, whose documentation does not

exist, where the development environment and costumer type are unknown, the provider

is in house, and the duration is small. In this case the expected tailored process would

include all the optional tasks, roles and work products as it is the most complex situation.

On the other hand, the third column in Table 6.2 describes a simple maintenance

corrective project, where the application domain, the development environment and the

costumer type are known, the documentation exists, the provider is in house and the

duration is medium.

In this case a much simpler process is expected to be applied. Figure 6.7 shows both

111

6.8 Tailoring Transformation

(a)

(b)

Figure 6.5: (a) Requirements Development and (b) Requirements Management Feature

Models

the Requirements Development and the Requirements Understanding activities where some

optional tasks have been removed from the context adapted process.

6.8 Tailoring Transformation

The tailoring transformation takes the general requirements process and a particular con-

text model, and automatically yields a context adapted process. To this end particular

rules are provided so that, according to particular values in the context dimensions, de-

cisions could be made about all variation points identified as part of the Feature Model.

Table 6.3 shows some of the directions included in the original adaptation guideline that

were taken as a starting point for building the transformation rules.

112

6.8 Tailoring Transformation

Figure 6.6: Context Model

Table 6.2: Two project contexts

Context Novel Simple

attribute Development Maintenance

Project type New Corrective

development Maintenance

Application Unknown Known

domain

Documentation Does not exist Exist

Provider In-house In-house

Development Unknown Known

environment

Customer type Unknown Known

Project Small Medium

duration

It is clear from the table that most common contexts are described and there is no

ambiguity about the expected adapted process. For example, for Maintenance-Correction

project type, the Early Change Management activity is never required. However, there

are certain combinations of attribute values that are not defined. For example, for the

case of providing in house development, the Problem and Project Scope Definition task

could be required or not depending on the values of other attributes, but it is not clearly

established. There are still other situations, like that happening when the Source of

Documentation exists, where there is no clear action to be taken.

Moreover, there are situations (not shown in the table) where the action to be taken

does not only depend just on the value of one attribute, and if there are two or more

113

6.8 Tailoring Transformation

Figure 6.7: Requirements Development and Requirements Understanding for a simple

Maintenance project

Table 6.3: Adaptation guidelines

Context Value Action

attribute

Project type Maintenance Problem and Project Scope

Enhancement Definition Task is required

Project type Maintenance Early Change Management

Correction Activity is not required

Provider In house Problem and Project Scope

Definition Task could be

required

Provider Outsource Problem and Project Scope

Definition Task is required

Source of Does not exist Environment Specification

Documentation could be required

Source of Exist no action is suggested

Documentation

attribute values that yield contradictory actions, priorities should be established. In

general it is apparent the usefulness of counting on a tree based tool that enables us to

compose complex rules by combining simple rules referring to different attributes and

values in the context. Rule evolvability and scalability would be improved because the

recursivity of the structure. Figure 6.8 shows an abstract tree of conditions on attribute

values for determining the inclusion of the Environment Specification activity. In this case

114

6.8 Tailoring Transformation

the main rule could be used as an operand to compose a new and more complex rule. The

following code shows the ATL implementation of the rule.

Figure 6.8: Attribute values for selecting the Environment Specification activity

–Rule 2 - Environment Specification Activity selection

helper def:activityRule2(elementName:String) : Boolean =

if (elementName = ’Environment Specification’) then

if (thisModule.getValue(’Project Type’) = ’Incidents’) then

false

else

if ((thisModule.getValue(’Project Type’) = ’New Development’) or

(thisModule.getValue(’Project Type’) = ’Maintenance-Enhancement’) then true

else

if (thisModule.getValue(’Source of Documentation’) <> ’Exist’) then true

else false

endif

endif

endif

else true

endif

Let us now consider the case where a project context is similar to that in the corrective

maintenance (third column in Table 6.2), but now considering that the project does not

have documentation available. Clearly this is a different case and there is no definition

within the adaptation Table 6.3 that indicates the decisions to be made. In this case we

define the project context as shown in Table 6.4, and we apply the rules, in particular

Rule 2 just presented.

The obtained process will include the Environment Specification and Identify Require-

ments Provider Task that were not previously included, provided that the rule indicates

that these process elements must be included whenever the documentation is not available

115

6.9 Case Study Results

Table 6.4: Maintenance without documentation

Context attribute Attribute value

Project type Corrective Maintenance

Application domain Known

Documentation Does not exist

Provider In-house

Development environment Known

Customer type Known

Project duration Medium

(see Figure 6.9). According to the process engineer of the company, this is the expected

result even though it was not explicitly stated in the adaptation guidelines.

Figure 6.9: Requirements Development process in the case of non existent documentation

6.9 Case Study Results

The case study was developed by two external engineers, experts in process models and

requirements engineering, according to the process available and the adaptation guidelines.

The effort in the definition was 12 persons-hour for modeling the process, 6 persons-hour

were spent to model the context and, 15 persons-hour were spent to implement the rules,

with a total effort of 32 persons-hour. The process model was composed of 5 optional

116

6.9 Case Study Results

elements producing 24 different processes (an optional feature was inside another optional

feature giving 3 possibilities instead of 4 for this pair of the features). Furthermore, in

the context model 6 context attributes (the attributes of the dimension Team and the

Business attribute were not taken into account) were effectively used as part of the rules,

resulting in 480 possible contexts. The coverage ratio between the available processes (24)

and the possible situations (480) was of 0.05.

The MDE-based strategy was evaluated in a four-hour workshop including business,

process and project management people from the company (12 persons-hour to present,

evaluate and discuss the approach). In this workshop the technical work and a demo of

the solution were presented including solutions of past projects and new possible project

characterizations. Every possible adapted process was efficiently generated (5 minutes

defining the specific context, less than 5 seconds generating the new process model - 0.1

person-hour) and collectively evaluated with the process engineer of the host company.

The results indicated that the generated processes were correct and suitable for each

particular project context (without tailoring errors). The organizational process was

assumed to be already formalized, as well as the adaptation guidelines. However the

tailoring effort was calculated using the adaptability effort used to define the context

model and the tailoring rules distributed among 24 processes (plus the effective effort of

tailoring - 0.1 person-hour).

Table 6.5: Metrics of KI-SPrL

Metrics Value

CR - Coverage Ratio 0.05

TE - Tailoring Effort 0.98 Hours-Person

CE - Index of Cost-Effectiveness 0.051

To determine the cost-effectiveness of Casper in the case study respect to other

approaches, a comparative study is required. For instance comparing with a single process

model the coverage ratio is of 0.002. For a template approach, similar to the previous

mechanisms in the case, considering four processes, the coverage ratio is of 0.008. Thus,

the ratio between the available processes and the possible situations in the process line

case was approximately 25 times the ratio for a unique process model approach and 6

times the ratio for a template approach (considering four process templates). In the case

of a process framework (considering a full-flexible framework), the coverage ratio is 1.0

because each process model could be defined for each context. However, to the best of our

knowledge the literature does not report quantifiable data about tailoring effort or other

metrics, thus, establishing some comparison results difficult. Pedreira et al. (2007) analyze

117

6.9 Case Study Results

the informality of both, approaches and studies. A qualitative comparison is established

to compare two extreme approaches selected for this comparison. The approaches and

their rationale are presented as follows:

• Template approach: selected because tailoring in a SPrL consists just in select a

process model. It is less error prone error and faster. A typical case is Crystal

Methodology (Cockburn, 2000) where 4 processes are included. The effort to gen-

erate 3 additional processes is distributed among the four processes.

• Framework approach: the tailoring in a SPrL requires to build processes from a

defined infrastructure; it is more error prone and requires more effort than the

template approach. However the coverage ratio is very High. A typical case is the

Unified Process (Jacobson et al., 1999).

The metrics take as reference the following scale: Very Low if the variable is not

satisfied, Low if the variable is acceptably satisfied, High if the variable is satisfied to a

great extent and Very High if the variable is well satisfied.

Table 6.6: Process Template, Process Framework and SPrL Comparison

Metric Casper Template Framework

CR - Coverage Ratio High Low Very High

TE - Tailoring Effort Very Low High Very High

Index of Cost-Effectiveness High Low Very Low

The effort involved in generating the formalized organizational process with variabili-

ties was low since it consisted in identifying the process elements affected by the adapta-

tion. Writing the rules was more time consuming mainly because of the inherent ambiguity

in the adaptation guidelines. Defining the context model took some time for analyzing the

project specific situation, but defining a particular context only takes time to understand

the specific project (this is the minimal effort to understand the context in any approach)

and this step did not require the process expert’s participation. These findings determine

the suitability of the approach to make an adaptable software process and its adaptations.

The return of investment will become clearer as more projects are tailored. So, this indus-

trial case study shows that Casper supported its process definition in a cost-effective way

(High in the results) using only project specific information. Taking into account that the

process model only included the requirements process and the context model was near

completely defined, this ratio will improve significantly (at least 2 times for each new

independent variation point) when the process model is completely defined (estimated at

118

6.9 Case Study Results

least four major optional artifacts, it adds a minimum of four variation points to achieve

a coverage ratio of 0.8). The requirements process line is effectively ready to be adapted

to a significative number of situations.

6.9.1 Qualitative Results

Previously, during and after the workshop, some findings were extracted out of the par-

ticipant’s comments.

• The complexity for programming the tailoring rules was seen as problematic, be-

cause many rules used multiple context attributes and multiple process elements.

The transformation developed in this case left a basic and reusable transformation

infrastructure, so, the complexity could decrease in new cases. However a language

such as ATL imposes unnecessary complexity to the process engineer. Even, define

in abstract the tailoring rules is itself problematic.

• The environment to configure contexts did not result usable to the workshop par-

ticipants, because the user interface used was provided by EMF, where a set of

properties must be fixed.

• During the workshop, the process engineers found valuable the approach, it re-

sponded to their expectations, however they recommended adding a feedback loop.

Therefore, the performance of the adapted process in the projects could be used to

refine and evolve the software process line.

• The most experimented software engineer argued that the requirements process

is the most problematic part of the process and that the approach could help to

configurate many options, considering new and relevant context attributes than

those considered by its original tailoring guide.

• The process engineers argued the benefits of the independence of the tailoring pro-

cess. Tailoring in Casper only requires to characterize the project. So, knowledge

about the process (and its variabilities and variants) is not necessary at tailoring

time. Then, tailoring process does not depend on the experimented people.

• The process engineers advice on some unclear aspects of Casper. First, with respect

to software process line evolution, many assets could become obsolete including the

tailoring rules. The research group showed the Casper metaprocess, describing its

iterative nature, thus, assets are dynamic elements. During application engineering

119

6.9 Case Study Results

a jump to domain engineering has been established. Second, about when the adap-

tation task must be performed into the development project. Normally, the context

is established when the requirements are understood, thus, the requirements process

and tailoring process are interdependent activities. The research group argues that

although Casper follows a static approach, due to its simplicity and quickness, it

could be applied many times until the project context is well understood. However,

the process engineering group and the research group agreed that Casper requires

a better definition and implementation to consider this kind of scenarios.

6.9.2 Influence of the size of the process family in the Cost-

Effectiveness Index

An observation of the case study is that the more variability have the process, a major CE

is obtained. It is important validate this observation using new applications of Casper

approach. Therefore, this section extends the case study with a complete set of applica-

tions of Casper available in the Casper’s web site 1. The Table 6.7 shows the main

results of this application.

• CC51A-RE: the course Software Engineering II (CC51A) process model at the Uni-

versity of Chile was used as a small initial but complete case to validate the suit-

ability of the whole approach.

• Amisoft-TS: the process model of the application of Casper approach to the tech-

nical solution process of Amisoft, a small Chilean software company. This company

defined its organizational process in 2009, and it is currently implementing the

ISO9001:2008 standard, as well as certifying CMMI Level 2. This case study is part

of a paper submitted to the Journal of Systems and software.

• ISPW-6: the process model of the canonical example problem of the ICSSP con-

ference (before ISPW) including the activity develop a change and the unit test.

This case study corresponds to a paper accepted in the International Conference on

Software and System Processes 2012.

• ID-UP: the unified process model, particularly, the implementation discipline model

was used to define a small software process line. This case study was submitted to

the Colombian Conference in Computer Science 2012.

1https://sites.google.com/site/softwaremetaprocess/home/3-examples

120

6.10 Case Study Validity

The results suggest that the size of the process family (derived of the feature process

model) improve significantly the CE Index, therefore it implies that Casper is more

effective when the family grows.

Table 6.7: Index of Cost-Effectiveness For SPrL of Different Sizes

Metric CC51A-RE Amisoft-TS ISPW-6 ID-UP KI-RE

CR - Coverage Ratio 0.22 0.81 0.75 0.1 0.05

TE - Tailoring Effort 4.30 0.94 1.01 3.73 0.98

Index of Cost- 0.05 0.86 0.74 0.03 0.05

Effectiveness

Process Line Size 6 52 24 8 12

6.10 Case Study Validity

This section analyzes the threats to the validity of the Casper case study including

construct validity, internal validity, external validity and reliability. This analysis was

realized according to (Runeson & Höst, 2009) framework.

• Construct Validity: the capacity of the adapted software processes to fit many spe-

cific contexts (determined by the scope) is managed by the coverage ratio between

the available processes and the possible situations. This ratio allows objectively

to compare the approach with other strategies (the ideal case has N processes to

N specific situations, ratio = 1, whereas the worst case has 1 process to N spe-

cific situations ratio = 1/N). The effectiveness of the rules is determined by the

effort measured in person-hour. Although the measurement used really matched

the research question, the comparison with other approaches is a threat to validity,

because the other approaches, to the best our knowledge, do not count on quantita-

tive data. Some data was approximated by analogy, however the comparison looses

reliability. To partially improve this, a more discrete comparison was established to

show that the approach has a better trade-of between the two extreme alternatives

(respect to a good performance in some on the established metrics). For instance,

tailoring is a simpler but limited template approach, hence, it requires less tailoring

effort but its scope is small. On the other hand the framework approach is complex

(tailoring requires more effort) but its scope is wider at the best cases. The study

was extended using other applications in order to determine the influence of the size

of the process family.

121

6.10 Case Study Validity

• Internal Validity: There are no intermediate collection of data processes or subjects

that can introduce new threat factors to the internal validity. However, the coverage

ratio is defined in a general way and it does not take into account the weight of each

situation, so, a few processes that cover the most relevant or common situations

(situation weight) could increase (or decrease) the coverage ratio. It applies to the

template and framework approaches too, hence, this approach could improve the

coverage ratio similar to the Casper approach. New controlled experiments are

required to establish a comparison more detailed including weights to each situ-

ation. The qualitative data obtained from different processes and the qualitative

results extracted of the workshop, are data input directly obtained for analyzing the

approach.

• External Validity: related work compares the Casper approach with respect to

others. Previous approaches are preliminary or complementary ways to adapt pro-

cesses. The transformational strategy is not contrary to common sense in the lit-

erature (Armbrust et al., 2009). The requirements process of a CMMI-Dev Level 2

medium size company was selected as study case because it has been the most com-

plex part of the software process according to industrial experience in the Tutelkan

project (Hurtado & Bastarrica, 2010). Furthermore, according to what is reported

by the literature (Pandey et al., 2010), requirements engineering for software devel-

opment processes is a complex activity that considers a big number of viewpoints,

roles, responsibilities, and objectives. Thus, if Casper results cost-effective when

it is applied to the most complex part of a process, will Casper be cost-effective on

the whole software process model as well? this question remains open. Addition-

ally, if Casper is cost-effective in a case with a medium size organization where the

process has a typical size, will Casper be cost-effective in large settings where the

process will count with more definitions, tailoring guides and experiences? The case

of a small setting was developed in the CC51A Requirements Process case presented

in Chapter 4 showing its feasibility in this case. With the aim to generalize, new ap-

plications must be realized, using other contexts, sizes and organizations to establish

a more general conclusion. However, according to the results applying Casper to

four new processes, allows us to establish a stronger conclusion about the Casper

approach. A threat of external validity is the absence of data to establish a direct

comparison with the related work.

• Reliability: The research question stated, for this study case, is if Casper is a cost-

effective technique. Both, comparison and workshop coincide with each other in

this study case. Process engineers found effective the approach because it does not

122

6.11 Synthesis and Discussion

requires expert knowledge and it is less error prone. The comparison estimates the

best situations for the other approaches (four process templates is a high number

and a flexible process framework to produce any derivated process model), so the

comparison was developed using ideal competitors to Casper approach. However,

more controlled experiments must be conduced to achieve a better quantitative

and qualitative comparison, allowing to establish how good Casper really is with

respect to various approaches. The information obtained using the workshop is

not replicable. Other study cases could be realized to generalize the conclusions

obtained using this technique. The technical part of the study case following the

Casper approach could be considered as repeatable; the environment and process

models are available, they are concrete and replicable. The adaptation was executed

according to what was expected; models, meta models and the ATL rules are the

main concrete elements to repeat the experience.

6.11 Synthesis and Discussion

In this chapter an MDE approach to define software process models from a software

process line has been proved in an industrial environment (Hurtado et al., 2011c). A

context model including dimensions and context attributes has been defined using a Soft-

ware Process Context Meta model following the ideas in Hurtado & Bastarrica (2009),

and Kajko-Mattsson (2010). The process model variability has been represented using

a process feature model similar to software features models (Kang et al., 1998) and the

process models have been implemented using SPEM 2.0. The MDE strategy was effec-

tively implemented to achieve a separation between the process modeling stakeholders

and process enactment stakeholders (project stakeholders) (Bai et al., 2010) and it hides

the complexity by intensively reusing tailoring knowledge (Hurtado & Bastarrica, 2009).

Furthermore, for the case study presented, the MDE tailoring strategy provides a way to

cost-effectively instantiate a general process model into a project-specific process model

where the project manager should only provide a definition of a specific context.

This approach has the potential to enable improvement with respect to project produc-

tivity and quality of the resulting software products. Provided that the adapted process

will include all process elements that are required for the particular project context, no

extra work will be needed and only the essentially required effort and resources will be

spent. In addition, high quality work products can be expected, because the process is

adjusted with this goal in each particular project context. Since this tailoring process

is automatic, and it eventually uses already validated transformations, it is expected to

123

6.11 Synthesis and Discussion

achieve a reduction of the tuning time and cost, and also the number of adaptation errors

(Hurtado et al., 2011c).

124

Chapter 7

AVISPA Validation

7.1 Introduction

This chapter reports the empirical application of Avispa. According to the defined re-

search method, a case study (Runeson & Höst, 2009) was used as validation technique

covering a wide spectrum of process types and scenarios. Avispa has been applied for an-

alyzing the process models defined in three different Chilean software companies. Avispa

was applied to find several of the defined error patterns, and most of them resulted in

actual errors, giving support to the hypothesis that a visual tool that helps the process

engineer is effective to analyze software process models. Avispa has been highly welcomed

in all companies we have worked with, and process engineers also pointed out that it is

relevant for them to count on Avispa for maintaining their software process model, an

application that was not initially envisioned. In this chapter this experiences are reported.

7.2 Preliminary Validation

Before exposing the proposed tool and approach to the industrial cases, a set of prelim-

inary validation issues were conduced to confirm its consistency, feasibility, and applica-

bility. The preliminary validation included:

1. Avispa tool prototype described in chapter 5

2. Avispa initial cases with EPF community software process models

3. Initial industrial case with Software Process Blueprints

The following subsections provide details on the particular forms of validation and

they present the obtained results.

125

7.2 Preliminary Validation

7.2.1 AVISPA initial cases with EPF community software pro-

cess models

Avispa was incrementally implemented and used with small process models. First a test

process model was created, but to evaluate the approach, known and available process

models were required. So, EPF process models available in the EPF web site1 were used,

particularly XP, Open/UP and Scrum process models were used to validate the blueprints,

the metrics, the views and the patterns. XP is an incomplete specification of the process

where no tasks are specified (because of its agility), so it was not very interesting to

analyze it with Avispa. Scrum was a relevant work to refine the problem patterns;

this case was shown in the Chapter 5 where it is used as an example to illustrate the

identification of problematic patterns with Avispa. The experience with Scrum conduced

to the validation of the metrics, visualizations and problem patterns in an incremental

way. So, the tool was iteratively improved where the Scrum process model was used as the

simple but complete case to evaluate model consistence and usability (easy interpretation

of the visualizations) (Hurtado et al., 2010a).

7.2.2 Initial Industrial Case using Software Process Blueprints

In Chapter 5, DTS’s development process was presented as an illustrative case. As part

of its SPI project DTS wants to assess the quality of its process, so they used the Process

Model Blueprints (the initial version of Avispa) (Hurtado et al., 2010b). The problems

found were used as input for the following improvement cycle in DTS and to introduce

in the Avispa tool the problem patterns. Even though some evaluations such as CMMI

appraisals were included, there was still no information about the quality of the process

model itself or the adequacy to the company’s goals. The evaluation process was carried

out by two process engineers, one from DTS and another one from the University of Chile,

and two software engineers users of the process definition. The steps followed were:

(1) Visualization: the process engineers imported the model from EPF and they realized

a short review. Some errors in the tool were identified and some aspects were tuned up.

A first visualization of the blueprints was generated.

(2) Potential problems identification: for each blueprint problems were identified. Each

problem was recorded for further analysis. However a trivial analysis was realized in

this step. Table 7.1 presents the set of problems found in DTS’s process model using

blueprints; false positives have been discarded.

1Casper tool website http://www.eclipse.org/epf/

126

http://www.eclipse.org/epf/

7.2 Preliminary Validation

Blueprint Identified Problems Quantity Improvements

WorkProduct Few guidelines, some are very long, some are 31 23

Blueprint disconnected, many initial and final artifacts

Task Blueprint Tasks without roles, disconnected tasks, 22 19

many initial tasks, many final tasks, many

relationships big tasks, deformed tasks

Role Blueprint Roles with light load, roles with weight 7 5

load, roles isolated, there are few guidelines

Total 60 47

Table 7.1: Process Model Problems Identified with PMBlueprints

(3) Problem analysis : each blueprint was also used to find a symptom of a problem

and the related elements. For example, the analysis did not have relationships to Client

and Engineer Chief roles, so it was possible that some tasks where these roles participated

were not adequately specified. Some problems required more analysis and discussion with

users of the software process.

(4) Data collection: the potential and actual problems were collected, and also some

solutions found were reported.

(5) Data analysis : the data collected in this study case was analyzed and the main results

are presented below.

Table 7.1 summarizes the main problems found during the evaluation of DTS using

Software Process Blueprints. For a total of 132 process elements, 47 actual problems

were found. So, the process model error rate was of 0.356 errors per model element.

In general, the review determined that there were few guidances associated to model

elements. This situation suggests low formality in software process specification. Discon-

nected elements caused modeling problems: some connections were omitted at modeling

time, but others caused serious conceptual problems in the software process. For example,

the isolated Client role was a symptom of a problem, and actually a big problem: the

client was not involved in many tasks where his/her participation is required, specially in

requirements tasks. Two kinds of improvements was obtained:

Improvements to the Software Process: the main suggested improvements are: in-

crease guidance for roles (guide of work) and for work products (templates, examples

and concepts); task re-design for getting tasks of medium size (neither too large nor too

small), such as Requirements Review ; big work products decomposition such as System

Requirements Specification; decrease coupling between process areas with fewer relation-

ships between work products and tasks; increase the Client participation and improve the

collaboration required between the Analyst and Engineer Manager roles. The bottleneck

risks identified on the System Requirement Specification, Alpha Component and Alpha

127

7.3 AVISPA Case Study

Blueprint Improvements to Specification Improvements to Process

WorkProduct Blueprint 19 4

Task Blueprint 16 3

Role Blueprint 2 3

Total 37 10

Table 7.2: Improvements suggested with PMBlueprints

System Cycle n work products are normal bottlenecks because of the incremental nature

of the software process, so these work products are completed and refined cycle by cycle

during the software process. However the Architecture work product and its associated

tasks are not adequately contextualized in this approach (it is related to the requirements

area but it is isolated with respect to incremental development tasks and work products).

So, the architecture knowledge, including its associated tasks need a strong analysis for

supporting a better incremental development.

Improvement to the Software Process Model Specification: the main improve-

ments to software model specification are about missing nodes, edges and guidances.

Several problems were identified directly, others required more analysis as collaboration

between specific roles, and others were generally due to conceptual problems of the soft-

ware process. These types of problems were the most frequent ones.

7.3 AVISPA Case Study

According to the research method defined in Chapter 1, a positivist and explanatory

industrial case study has been used as the technique for validating Avispa. It is positivist

because it seeks to test the hypothesis and it is explanatory because it seeks an explanation

of a situation where Avispa is applied as both a new analysis approach and a tool.

This Avispa case study is embedded (Runeson & Höst, 2009) because it includes the

analysis of three complete process models of three small size Chilean software companies:

Amisoft, BBR Engineering and DTS (Hurtado et al., 2011a). In order to be able to

compare results we chose to analyze the three processes according to the same error

patterns: disconnected subgraphs in the Task Blueprint and tasks with too many

output work products. Also, disconnected subgraphs could have been analyzed in the

Work Product Blueprint. The process models used in this research were developed

in the last two years; these models were obtained from the respective libraries using the

exporter feature of EPF. The process models were analyzed in the MaTE (Model and

Transformation Engineering Group) Laboratory and then the results were discussed with

the respective process engineers.

128

7.3 AVISPA Case Study

7.3.1 Research Question

Is it possible for a non expert process engineer to early analyze the quality of the process

model? The term early refers to analyze a process model before it is enacted and executed

on a specific project. Avispa has demonstrated its power to analyze software process

models. However this study case tries to validate if Avispa enables the process engineer

to analyze the software process model quality in an easy way before this model is enacted.

7.3.2 Case Study Selection

The research object is the software process model. In this case, real, complete and for-

malized software process models have been used to assess the Avispa effectiveness for

identifying some specification and conceptualization problems. A set of three software

companies were selected to conduct this embedded case study. The companies’ contexts

match the research objective.

7.3.3 Case Study Context

Avispa was applied on three Chilean software companies: Amisoft, BBR Engineering and

DTS. The characteristics of each company are described as follows.

Amisoft is around ten years old and it is formed by thirteen qualified employees. Its

main goal has been to deliver specialized and quality services. Its development areas are:

client/server architecture solutions, enterprise applications based on J2EE and Systems

integration using TCP/IP and MQ Series. Amisoft has started its software process im-

provement project in 2009, and it is currently implementing the ISO9001:2008 standard

and the CMMI model. Its software process model has been inspired by OpenUP.

BBR Engineering is one of the main software factories of BBR, an international con-

sulting company since 1994. It is formed by twenty four employees specialized in different

roles including architects, project managers, developers, quality assurance specialists and

analysts. BBR Engineering has developed solutions mainly in the area of retail; specifi-

cally, its main areas are: points of sale, payment systems, communications and interfaces,

e-business, and integration. The company has started its software process improvement

project in 2009 using the Tutelkán Reference Process as a reference for its implementation.

DTS enterprise was described in the Chapter 5 for introducing the blueprints.

7.3.4 AVISPA Case Study Results

Amisoft. In this software company, Avispa helped to identify 5 instances of the

pattern independent sub projects corresponding to the nodes with a color different than

129

7.3 AVISPA Case Study

blue in Figure 7.1. These nodes represent the tasks: Configuration Items Update, Non-

Compliant Communications, Delivery Document Generation and Sending, Getting Con-

figuration Items and Execute Unitary Test to Interfaces and Communications. These

disconnected subgraphs (in this case disconnected tasks) represent a high risk because

the configuration management process could be chaotic (everybody needs to know how to

get and put configuration items) and the testing of interfaces and communications could

be forgotten just when it is required the most. Looking for independent sub projects

in the Work Product Blueprint is a dual case: whenever there are errors in one,

normally, there are also errors in the other. This pattern facilitates to find isolated work

products too: Directory Structure, Case Test Template, Client Satisfaction Survey and

Glossary. These work products corresponding to the nodes with a color different than

yellow in Figure 7.2. These work products are not adequately linked with the rest of the

process elements being this ambiguous for the process users.

Figure 7.1: Task Blueprint for localizing disconnected subgraphs in Amisoft.

Figure 7.2: Work Product Blueprint for localizing disconnected subgraphs in

Amisoft.

When the multiple purpose task pattern was applied on Amisoft Process Model (red

nodes in Figure 7.3), the result was 9 potential errors of multiple purpose tasks out of

93 tasks in total (9.7%). However, reviewing these tasks, many of them refer to man-

agement tasks where different inputs are required to evaluate the project advance or to

make some decisions, and as a result these tasks modify many work products. So, the

130

7.3 AVISPA Case Study

Figure 7.3: Task Blueprint for localizing multiple purpose tasks in Amisoft.

granularity cannot be finer, but more guidance could be added. However, the task Docu-

ment Requirements could have been better decomposed into two different tasks separating

abstraction levels (concerns covered or users of the requirements). On the other hand the

task Measure Data Collection is shown as a multipurpose task and it really is, because

the measurement results are not available directly in a unique work product; instead of

this, the data is available in many work products according to the metrics established in

the measurement plan.

BBR Engineering. Similarly, Avispa was applied for finding disconnected graphs

and multiple purpose tasks to the process model of BBR Engineering, and the results

are shown in Figure 7.4, Figure 7.5 and Figure 7.6, respectively. Many tasks were found

disconnected, 29 out of 79 (36.7%), and this situation shows that the process presents

many underspecifications, increasing the risk of not applying it as intended. Most of the

problems are related to project management and configuration management. The config-

uration management issues reveal the process immaturity in BBR Engineering contrary

to project management. However, both process components must be specified with more

precision. Nevertheless, there are some tasks underspecified which could be problematic

when the process is instanciated: User Needs Understanding, Requirements Priorization,

Measure Data Collection, Unit Data Base Testing, Unit Component Testing and Inter-

faces and Communication Testing.

Figure 7.4: Task Blueprint for localizing disconnected subgraphs in BBR Engineering.

When the independent projects pattern was also applied on the Work Product

Blueprint using Avispa, similar problems arose on project management, but excluding

131

7.3 AVISPA Case Study

Figure 7.5: Work Product Blueprint for localizing disconnected subgraphs in BBR

Engineering.

Figure 7.6: Task Blueprint for localizing tasks involved with too many work products

in BBR Engineering.

these general problem, the problematic work products were: User Interface Model, Inte-

gration Plan and Design Document. This process would inject many technical problems

at instantiation time because it includes many imprecisions in tasks and work products

of requirements, technical solution, testing and project management areas. The process

in BBR includes 79 tasks, and 9 of them are identified as problematic (11.4%) according

to the multiple purpose task pattern (red nodes in Figure 7.6). Similarly to the previous

case study, the project management task defines many outputs and for the same reasons

cannot be changed. However, the tasks Data Base Design and Component Design could

be decomposed to reach a homogeneous process model definition.

DTS. Avispa was also applied to the process of DTS for identifying and localiz-

ing both kinds of error patterns (see Figure 7.7, Figure 7.8 and Figure 7.9). Only two

tasks were found disconnected showing a careful specification job: Identify Requirements

Provider and Change Requirements Reception. These tasks are critical to manage require-

ments change, so this part of the process would not be instantiated adequately at projects.

This analysis is consistent with the obtained previously in (Hurtado et al., 2010b). The

132

7.3 AVISPA Case Study

process in DTS includes 57 tasks, and 6 of them were found to be multi purpose tasks

(10.5%) painted in red in Figure 7.9. Similar to the previous cases, most of these tasks

are part of the project management and this characteristic cannot be changed. But, the

Generating Implementation Document and Requirements Review tasks could be decom-

posed, whereas Help Diagram Development could be specialized for each specific help

diagram to be designed.

Figure 7.7: Task Blueprint for localizing disconnected subgraphs in DTS.

Figure 7.8: Work Product Blueprint for localizing disconnected subgraphs in DTS.

133

7.3 AVISPA Case Study

Figure 7.9: Task Blueprint for localizing tasks involved with too many work products

in DTS.

7.3.5 AVISPA Case Study Results Analysis

This section analyzes the results in order of establish valid conclusions on the Avispa

approach. In general, Avispa is able to identify and localize problematic elements in

three blueprints. However, it is also important to evaluate the data to delimit Avispa

capabilities. First the false positives are analyzed and then, the tunning of the patterns

according to the F-Measure is analyzed.

7.3.5.1 False Positives Analysis

The No guidance associated, Isolated roles and Waste error patterns always identify spec-

ification errors (also highlighting conceptual errors), so, false positives are not analyzed

for these cases. Overloaded roles error pattern does not define specifically when a role

is overload, it only defines an overload level, the actual overload is subjectively deter-

mined by the process engineer. For the rest of the error patterns a false positive analysis

has been included. The Tables 7.3 and 7.4 show the relationships between the identified

problems and the actual problems in order to determine the effectiveness of the Avispa

approach. According to these results the Independent Subproject was very effective in

the study case with only 5.4% of false positives. On the other hand the multiple purpose

tasks error pattern had a lower effectiveness with 54.1% of false positives. The Demanded

work products pattern was not validated in this case study because this pattern was not

implemented when the case study was realized. This pattern still requires a validation

similar to multipurpose task error pattern.

134

7.3 AVISPA Case Study

Table 7.3: False Positives in the Independent Subprojects Error Pattern

Identified Problems Actual Problems Percentage of False Positives

BBR 28 28 0

Amisoft 6 5 16

DTS 3 2 33

Global 37 35 5.4

Table 7.4: False Positives in the Multiple Purpose Error Pattern

Identified Problems Actual Problems Percentage of False Positives

BBR 9 3 66.6

Amisoft 9 3 66.6

DTS 6 5 16.6

Global 24 11 54.1

In order to validate the Waste error pattern, it was applied independently to the DTS

process. In order to evaluate the relevance of the waste work products, the blueprint’s

results were evaluated with the DTS process engineer. From the 22 highlighted work

products found, 3 have been confirmed to be non specified deliverables, 16 underspec-

ified task inputs, and 3 are indeed waste work products. As a summary, the practical

effectiveness of the tool has been confirmed with DTS by identifying 22 problematic work

products: 13.6% of deliverables that had not been identified, 31.9% underspecified tasks

(where the work product should be an input), 13.6% waste and 40.9% could be improved

(refactoring and integration). Hence, in well-specified software process model for DTS,

only the actual wast would be detected.

7.3.5.2 Pattern Tuning

In these case studies, Avispa has been applied to validate its effectiveness to visually iden-

tify problematic elements in software process models. The F-Measure (Van Rijsbergen,

1979) has been used to evaluate the effectiveness of the patterns because it recovers prob-

lematic elements in software process models but not all were actual errors. The F-Measure

is obtained by identifying two types of sets: recovered potential problems (retrievedEle-

ments) and the actual relevant problems (relevantElements). The recall (R - fraction of

the process elements that are relevant to the query that are successfully retrieved) and

precision (P - the fraction of retrieved process elements that are relevant to the search)

metrics are calculated according to the formulas:

135

7.3 AVISPA Case Study

Table 7.5: F-Measure including all the process models

1-sigma 2-sigma 3-sigma

BBR 0.50 1.00 1.00

Amisoft 0.50 0.17 0.33

DTS 0.91 0.44 0.29

Average 0.64 0.54 0.54

R =
‖{relevantElements} ∩ {retrievedElements}‖

‖{relevantElements}‖
(7.1)

P =
‖{relevantElements} ∩ {retrievedElements}‖

‖{retrievedElements}‖
(7.2)

FMeasure = 2 ∗ P ∗R
P + R

(7.3)

The analysis is focused on two patterns: independent projects and multipurpose tasks.

The first pattern resulted very effective because most of the identified problems were

actual problems: its F-Measure is of 0.96. The second pattern is not as effective as the

first one. It was tuned to achieve a larger benefit using as reference unit a standard

deviation (sigma) and three cases were analyzed: using 1-sigma, 2-sigma and 3-sigma

as problem identification filters. Tables 7.5 and 7.6 show the F-Measure applied to the

process models.

Table 7.5 includes all processes included in the case studies. The BBR process had

a particularity: only one problem was identified and the problem was identified in the

three cases; as a result, the average F-Measure is similar in the three cases although it was

slightly lower for 1-sigma. Table 7.6 excludes the BBR process because a unique identified

problem makes it less reliable, thus, using the two processes with major error reporting

(DTS and Amisoft) the F-Measure was considerably higher for the case of 1-sigma case

(two times the others). So, the multipurpose task pattern was tuned to 1-sigma: each

task positively deviated 1-sigma from the average number of outputs will be identified as

a potential error of multipurpose task.

7.3.6 Qualitative Results

Previously, during and after the work meeting with the process engineers, some observa-

tions, comments and results came out:

136

7.3 AVISPA Case Study

Table 7.6: F-Measure including the most relevant process models

1-sigma 2-sigma 3-sigma

Amisoft 0.50 0.17 0.33

DTS 0.91 0.44 0.29

Average 0.70 0.31 0.31

• Previous to the evaluation meeting, when a demonstration of Avispa was performed.

The all process engineers requested more time to debug the software process model.

• Each potential error was identified by the research team with the process engineer.

The process engineer evaluates each potential error localizing the problematic pro-

cess element in Eclipse Process Composer. Then errors identified and classified by

the process engineer were analyzed by the research team. This interaction added re-

liability to the analysis made by the processes engineers. Amisoft and DTS reported

more evaluations with Avispa after of the case study realization.

• During the process analysis meeting, AVISPA was highly welcomed. It responded

to the expectations. The process engineers found the tool practical, intuitive and

effective. In Amisoft, where three process engineers participated, the tool was in-

corporated as part of its software process improvement infrastructure.

• The process engineer recommended to include a top-down structure to analyze pro-

cesses, because they considered that the follow-up analysis could be focused on a

specific process area because with a big process the relationships make the Avispa

blueprints less clear.

7.3.7 Case Study Validity

This section analyzes the threats to the validity of the Avispa case study including con-

struct validity, internal validity, external validity and reliability. This analysis was realized

according to Runeson & Höst (2009) framework.

• Construct Validity: the used metrics count elements related to the measured ele-

ment and considered statistical issues for deriving some object information. These

metrics are presented in a visual way to aid the process engineering to analyze the

process model. The patterns have been derived for the last five years while imple-

menting processes in small software companies in Chile. Many alternatives for the

137

7.4 Synthesis and Discussion

visualization of scripts and for statistical parameters were evaluated in the prelim-

inary cases to calibrate the Avispa tool to facilitate a consistent data collection

and visualization. The No Guidance Associated, Isolated Roles and Waste error

patterns always identify specification errors (and also conceptual errors) whereas

the Independent Subproject presents a 5.4% of false positives. The multiple purpose

tasks error pattern had a low effectiveness with 54.1% of false positives. The Waste

and Demanded Work Products error patterns require more validation.

• Internal Validity: the process analysis with Avispa is still dependent on the pro-

cess engineer experience, intuition and subjectivity. The results, in particular the

actual problems in the processes were mainly determined by the process engineers.

However, the problem analysis, resolution and determination of false positive was

carried out working together the process engineer with the research team. Thus,

errors, improvements suggested and false positives were identified and validated.

• External Validity: process model analysis is normally realized through model check-

ing, metrics or simulation. This approach is comparable to other approaches and

its applicability is different from them. Any process model defined in EPF and ex-

ported as a XML file can be analyzed with Avispa in a similar way as the analysis

presented in this case. However, some errors detected could not be considered as

actual errors by a process engineer according to her/his experience and the orga-

nization context. So, Avispa could only assist to an process engineer to visually

analyze her/his software process model.

• Reliability: False positives were identified in order to determine a reliability level.

Because patterns compute and highlight recurrent problems, this case study can

be replicated with the same process models and the results of the blueprints will

be exactly the same. However the actual errors reported will change according

to the process context, the process engineer participation and the specific pattern.

Some error patterns are more reliable than others, according to the results of this

study case. However it is not possible to generalize the metrics and patterns; more

experimentation is required for achieving an objective generalization.

7.4 Synthesis and Discussion

A set of error patterns has been implemented as part of Avispa, a tool for process model

analysis that localizes a set of identified potential errors within a process model specified

in SPEM 2.0. These errors may come either from process conceptualization or from

138

7.4 Synthesis and Discussion

misspecifications. Process models of some of the Chilean companies we were working with

for the last years have been analyzed using Avispa to validate their applicability. Some

errors were found, as well as some improvement opportunities, showing the effectiveness

of the patterns and the Avispa tool. These errors were not foreseen by process engineers,

but they agreed they were real improvement opportunities. The quality of the analysis

highly depends on the quality of the definition of the error patterns. Even though the

error patterns presented in this chapter have shown to be effective in finding improvement

opportunities, there is some room for fine tuning them. For example, determining that

a task is too complex if it is more than one standard deviation from the mean, may not

help discriminating really badly specified elements, and maybe two standard deviations

is a better measure. We may also define the error pattern as parametric in the number of

standard deviations considered. As part of the practical experience, some typical recurrent

errors in software processes have been identified, some of them due to conceptual errors in

the process design and other errors introduced during process specification. But none of

them are easily identified, let alone localized, because of the enormous amount of process

elements involved, multiple views, and informal notations that may sometimes introduce

ambiguity.

139

Chapter 8

Conclusions, Contributions and
Limitations

This chapter presents the main contributions of this thesis, the goals are reviewed, the

main results are analyzed, some limitations are identified and further work is delineated.

8.1 Goals review

At the beginning of this thesis, some goals were defined. The subsequent items explain

how these goals were achieved:

1. In order to build a cost-effective mechanism for software process tailoring, an MDE

approach was proposed as a SPrL production strategy. The SPCM meta-model

was defined to specify project specific contexts, a subset of SPEM 2.0 meta-model

was used to specify software process models and the ATL language was used to

implement the tailoring decisions. In each study case this infrastructure was used

and completed with specific case study information. Chapters 4 and 6 show some

scenarios where a cost-effective tailoring mechanism is possible using the proposed

techniques. The technique shows its effectiveness, although more case studies will be

necessary to conclusively demonstrate that the cost (effort) has been decreased and

to express with certainty how much it was. So, an MDE technique is a feasible and

practical approach to support software process tailoring under the SPrL approach.

2. To build a practical way to verify a software process model. This thesis proposed as

another hypothesis that a visual approach could be used to analyze software process

models in a practical way. The Avispa tool was developed and applied to many

processes; among them there are three real software process models presented as a

case study in Chapter 7. With this case study, the hypothesis was demonstrated and

140

8.2 Main Contributions

the objective was achieved. The visual approach resulted useful to analyze software

process models provided that a set of the error patterns were used to show that the

exhibited errors effectively were misspecifications or conceptual errors.

8.2 Main Contributions

The main contributions of this thesis are:

1. According to the literature review performed in this thesis, to the best of our knowl-

edge, there are no other reports presenting practical results where MDE is used as

a tailoring strategy. In this thesis an MDE strategy of production in a SPrL has

been applied to real cases showing its effectiveness. It may guide the research com-

munity to introduce more sophisticated mechanisms to produce SPrLs in a more

practical way. Particularly, models and tailoring rules should be presented in a

usable and practical way to achieve a massive application in the software industry

and to get more empirical evidence about this approach and its consequences. In

the Chilean case the ADAPTE1 project funded by Fondef - Chile is heavily based

on this thesis as a starting point to create and apply novel mechanisms to support

context-adaptable software process models.

2. This thesis contributes to the process research community with Casper, a meta-

process to build software process lines. The MDE based tailoring strategy results

useful when the general software process model includes variabilities and these have

been mapped according to specific context values. Therefore, the tailoring rules are

possible because the reuse and adaptation of the process model has been defined

in a planned way. For example, a process element can be deleted at tailoring time

for the complete process model to remain consistent in the tailored process model.

The meta-process Casper adds a concrete methodology to the software process

lines literature. So, new methodologies could be created complying with technical

and managerial requirements or new meta-process assets (meta-models and rules)

could be created or evolved to strengthen this approach. As a result, tailoring rules

design is addressed as a process engineering activity whereas tailoring execution as

a software engineering activity.

3. It is the first case where the context is formally defined and used as an independent

and formalized process asset. To express contexts, a simple meta-model has been

1Adaptable Domain and Process Technology Engineering http://www.adapte.cl/

141

http://www.adapte.cl/

8.3 Conclusions

defined enabling the specification of relevant context dimensions and their context

attributes and context attribute values providing flexibility to the organizations for

defining their own tailoring drivers. This context meta-model contributes to the

literature with the idea that the context can be formally specified, so an interesting

line could be oriented to asses if this meta-model in different application cases will

support context definitions. Additionally, new proposals of context models could be

developed according to this assessment and even a standard meta-model could be

proposed and defined. So this thesis has contributed to consider the context as a

first order citizen in software process models.

4. The software process verification task was exhibited as a practical activity using the

power of visualization. Software visualization has shown to be practical to analyze

software models. Based on the idea that software processes are software too, visual-

ization was applied to process models showing its power too. It opens a great area

where software process models and particularly complex software process models

could be analyzed from different points of view. This thesis has proposed some of

these views as blueprints; however, other blueprints could be defined. For instance,

performance and, modifiability could require measurement and visualization of the

process from other perspectives. Additionally, Avispa’s analysis is limited by the

process model language; so, improvements to process meta-models should be sug-

gested if more assessment views are required.

5. The error patterns found were implemented in Avispa for supporting the findings

that the process analysis could be assisted in a practical way by a visual tool in-

dicating what could be wrong in the model. Error patterns are a starting point to

establish practical paths about how a process model could be assessed. The term

practical refers to assessing the quality of the process model according to organi-

zational, project and team needs, beyond a syntactic, semantic or standards-based

assessment.

8.3 Conclusions

As process technology is largely based on models, model-driven is naturally a suitable

approach (Lonchamp, 1993). Thus, the paradigms and schemes of model-driven engi-

neering could be applied to process engineering. This thesis has addressed in general

the hypothesis that the application of MDE in the definition and validation of software

process models is suitable. The definition uses the MDE approach as a context-oriented

142

8.3 Conclusions

adaptation strategy, while validation uses an MDE strategy to retrieve a process model to

a visual-oriented analysis environment. Both approaches have proved feasible and prac-

tical, allowing the process engineer to increase the value and the reliability of the process

models. Process models explicitly express how the organizations and teams work, so they

these are key knowledge assets. However, the value of these assets depends on their use-

fulness and quality. Process model quality attributes addressed in this thesis have been

the suitability and correctness, showing that it is feasible to address them using an MDE

approach. Several studies presented in Chapter 2 show different approaches dealing with

relevant properties related to tailoring or analysis of the software process models, however

there is no quality framework for process models which allows to establish the relevance

of referential measures and approaches to objectively compare the results as presented in

this thesis with others works. In addition to determine the properties of process models,

it is necessary to replicate the experiences reported in this thesis to extend and generalize

the findings obtained in its study cases. The potential of the approaches together was not

addressed to maintain independence to validate the hypotheses, but in general a tradi-

tional tailoring approach or the method engineering approach could be benefited with the

approach of Avispa. Avispa is useful in the analysis of process models with variability,

variabilities could be shown in Avispa as errors suggested in the same patterns, so, they

must be refined to exclude these cases. Processes evaluated using Avispa are processes

that lack variability, so this has not interfered with the evaluation results of the process

models. Finally, there is a technological gap in the proposals of this thesis, Casper is a

proposal including process model properties (context and tailoring rules) not supported

by existing tools, thus in order to validate this thesis we have developed a minimal in-

frastructure. Therefore, there are no actual process models previously specified under

this approach. A different scenario occurs with Avispa where available real processes are

analyzed using the XML scheme of EPF tool processes. Thus, although both, Avispa

and Casper need to mature, Avispa is better prepared for the replication of the case

studies and therefore closer to the extension and generalization of the error patterns pre-

sented in this thesis. Avispa has been highly welcomed in all companies where it was

presented, and process engineers also pointed out that it is relevant for them to count

on Avispa for maintaining their software process model, an application not envisioned

for the tool at the beginning.

143

8.4 Limitations

8.4 Limitations

The case studies and the discussions have also evidenced some limitations of the proposed

approaches:

1. The context model has been considered as a key asset in software process tailoring.

However the technique to define a context model still requires more experimental

support. The question is how an organization could define the relevant context

attributes and the suitable scale. Thus, a suitable definition of the context model

requires evidence-based techniques (Kitchenham, 2006).

2. A major empirical experimentation with Casper meta-process application is re-

quired and not only on the MDE strategy. Particularly in defining and implementing

software process features to enable the planned tailoring.

3. ATL tailoring rules are not usable. A higher abstraction level is required, a spe-

cialized meta-model could be defined to specify rules, for example a decision tree as

was showed in Chapter 4 is a promising structure to represent tailoring rules in an

abstract way.

4. The Avispa tool does not take advantage of the complete specification of SPEM

2.0. Avispa only uses some key elements and their relationships in order to analyze

software processes. A complete analysis tool would significantly increase its power

of analysis.

5. Avispa tool metrics are not evidence based. Incrementally metrics were defined and

applied to software process models as a calibration mechanism. However empirical

studies on the relationships among metrics and process model quality is required.

6. The case studies reveal some unclear aspects of Casper. First, with respect to

the software process line evolution, it is to say that many assets could become

obsolete including the tailoring rules. Casper metaprocess describes that process

are iterative, thus, assets are dynamic elements. During application engineering

a jump from application engineering to domain engineering has been established.

However this scenario has not been tested. Second, with respect to software process

adaptation and the software development itself. Normally, the context is established

when the project progresses, so the process execution and the tailoring process

are interdepent activities. Although Casper follows a static approach, due to its

simplicity and quickness, it could be applied many times until the project context

is well understood. However, Casper should be improved to considerer this kind

of scenarios.

144

8.5 Further Work

7. Avispa and Casper have been considered powerful tools to process engineers and

project managers, respectively. Process engineers were initially afraid for being in

charge of analyzing the software process models, but after a while, they were en-

thusiastic about Avispa’s capacity to find real problems in process specifications.

Project managers found the Casper approach very relevant to get more suitable

software processes, however they considered that many tailoring decisions could

be planned whereas other only could be taken in to account when new context

attributes appear at tailoring time. Because a fine and manual tailoring is neces-

sary in these cases, Casper included manual tailoring as an additional activity.

Although Casper and Avispa conceptually could work together, there is a techno-

logical limitation. Casper maturity level is low, so its languages are not known by

the industry whereas Avispa works with industrial processes defined by a known

community tool.

8.5 Further Work

Several further work can be considered in the short and medium terms. They include:

1. More experimental work will be developed within the ADAPTE project. It includes

work with 6 software companies intending to have adaptable software process mod-

els using the techniques proposed in this thesis. For usability issues, the research

prototypical ideas should be implemented on practical tools, as Eclipse Process

Framework, where context and rules could be defined and executed. The ADAPTE

project will offer more empirical evidence on the application of Avispa too.

2. A transformation language as ATL could result too complex for a process engineer,

so it is important to increase the abstraction level, making it easier for the process

engineer to define tailoring rules.

3. Some of the models defined could have a more relevant role. It is the case of the

process feature model and the scope model. These models could be integrated in

the transformation chain for facilitating the adaptation. Specifically, tailoring rules

could be automatically programmed from a match model of context attributes with

process features.

4. SPEM 2.0 supports the definition of many variation points. However the repre-

sentation could result unclear to the process modeler. For example, a variation

point and a non variation point could not be appropriately differentiated, so an

145

8.5 Further Work

error could be produced when a variation point is not resolved at rule programming

time. So, extensions could be used as a SPEM 2.0 profile to express these issues.

However, similarly to what happens in software product lines, the implementation

language provides various mechanisms to express variability, making it simple for

many purposes, and instead artifacts of a higher abstraction level are used to define

and evolve the software product line. So, SPEM 2.0 could keep simple the process

model definition and implementation and meta-models could be defined to express

a process feature model and the derived process feature configuration models. So,

a process feature configuration could be obtained using the context model indepen-

dently of SPEM 2.0. Consequently, more portable and revolvable rules than SPEM

2.0-based rules could be defined. This configuration could be used to implement

directly, with the respective variation points and their variants, a context- adapted

software process model.

5. Avispa will be complemented with a method based on a set of steps guiding the

analysis of software process models for specification problems as was introduced

in (Bastarrica et al., 2011). Then, conceptual problems could be analyzed with the

process users to improve the software process model and the software process itself.

6. The Avispa tool and its underlying conceptual infrastructure will be extended for

supporting more evidence-based metrics and a more complete set of errors from the

perspective of a SPEM 2.0 process model. So, more blueprints and problematic

patterns could be identified and implemented in Avispa improving its analysis ca-

pability. For example currently Avispa is being extended to measure the coupling

and cohesion levels of a SPEM 2.0 software process model, and implementing the

resolution of variability definitions of a SPEM 2.0 model. With modular views a

top-down analysis approach could be realized in a more organized way in order to

avoid that in a big process the relationships darken the Avispa blueprints visual

information.

7. Casper meets Avispa. Although Casper and Avispa are complementary ap-

proaches, these are not been validate together. As further work, with an SPEM

based version of AVISPA or an EPF based version of Casper support tool, the two

approaches could be validated together.

146

References

Acuña, S.T. & Ferré, X. (2001). Software Process Modelling. In World Multiconfer-

ence on Systemics, Cybernetics and Informatics, ISAS-SCIs 2001, July 22-25, 2001,

Orlando, Florida, USA, Proceedings, Volume I: Information Systems Development ,

237–242. 14, 16

Aharoni, A. & Reinhartz-Berger, I. (2008). A Domain Engineering Approach for

Situational Method Engineering. In Proceedings of the International Conference on

Software Engineering Advances, ICSEA 2008 , 455–468. 21, 47

Antkiewicz, M. & Czarnecki, K. (2004). FeaturePlugin: Feature Modeling Plug-in

for Eclipse. In Proceedings of the Workshop on Eclipse Technology eXchange, ETX ’04,

67–72, ACM, New York, NY, USA. 51

Armbrust, O. & Rombach, H.D. (2011). The Right Process for Each Context: Ob-

jective Evidence Needed. In International Conference on Software and Systems Process,

ICSSP 2011, Honolulu, HI, USA, May 21-22, 2011, Proceedings , 237–241. 49

Armbrust, O., Katahira, M., Miyamoto, Y., Münch, J., Nakao, H. &

Ocampo, A. (2008). Scoping Software Process Models: Initial Concepts and Experi-

ence from Defining Space Standards. In ICSP’08: Proceedings of the Software process,

2008 international conference on Making globally distributed software development a

success story , 160–172, Springer-Verlag, Berlin, Heidelberg. 34, 39, 40, 44, 55

Armbrust, O., Katahira, M., Miyamoto, Y., Münch, J., Nakao, H. &

Ocampo, A. (2009). Scoping Software Process Lines. Software Process: Improvement

and Practice, 14, 181–197. 4, 27, 33, 35, 122

Atkinson, D. & Noll, J. (2003a). Automated Validation and Verification of Process

Models. In Proceedings of the 7th International Conference on Software Engineering

and Applications, IASTED 2003 , 587–592. 29

147

REFERENCES

Atkinson, D.C. & Noll, J. (2003b). Automated Checking of Software Process Models.

Tech. rep., Santa Clara University. 30

Bai, X., Huang, L. & Zhang, H. (2010). On Scoping Stakeholders and Artifacts in

Software Process. In New Modeling Concepts for Today’s Software Processes, Inter-

national Conference on Software Process, ICSP 2010, Paderborn, Germany, July 8-9,

2010. Proceedings , 39–51. 4, 27, 34, 123

Bastarrica, C., Hurtado, J.A. & Bergel, A. (2011). Toward Lean Development

in Formally Specified Software Processes. In European System and Software Process

Improvement and Innovation, EuroSPI 2011 . 11, 146

Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K.,

Widen, T. & DeBaud, J.M. (1999). PuLSE: A Methodology to Develop Software

Product Lines. In Proceedings of the symposium on Software Reusability , SSR 1999,

122–131, ACM, New York, NY, USA. 56

Beck, K. & Andres, C. (2004). Extreme Programming Explained: Embrace Change.

Addison-Wesley Professional, 2nd edn. 1, 21, 90

Belkhatir, N. & Estublier, J. (1996). Supporting Reuse and Configuration for Large

Scale Software Process Models. In Proceedings of the 10th International Software Pro-

cess Workshop, ISPW 1996 , 35–39. 23, 24

Benbasat, I., Goldstein, D.K. & Mead, M. (1987). The Case Research Strategy in

Studies of Information Systems. MIS Quarterly Journal , 11, 369–386. 8

Bendraou, R., Jezéquél, J.M. & Fleurey, F. (2009). Combining Aspect and

Model-Driven Engineering Approaches for Software Process Modeling and Execution.

In International Conference on Software Process, ICSP 2009 , 148–160, Springer-Verlag,

Berlin, Heidelberg. 82

Bézivin, J. & Bretón, E. (2004). Applying the Basic Principles of Model Engineering

to the Field of Process Engineering. SPT Software Process Technology - Upgrade, V,

27–33. 26, 35, 41

Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy, R. & Selby,

R. (1995). Cost Models for Future Software Life Cycle Processes: COCOMO 2.0. 1.

34, 39, 47, 50

148

REFERENCES

Boehm, B.W. (2010). A Risk-driven Decision Table for Software Process Selection.

In Proceedings of the international conference on software processes , ICSP 2010, 1–

1, Springer-Verlag, Berlin, Heidelberg. 56

Bretón, E. & Bézivin, J. (2001). M odel Driven Process Engineering. In Computer

Software and Applications Conference, COMPSAC 2001. 25th Annual International ,

225–230, IEEE Computer Society. 2, 26, 27, 35, 41

Brinkkemper, S., Saeki, M. & Harmsen, F. (1998). Assembly Techniques for

Method Engineering. In Proceedings of the 10th International Conference on Advanced

Information Systems Engineering, CAISE 1998 , 381–400, Springer-Verlag, London,

UK. 14

Bucher, T., Klesse, M. & Winter, R. (2006). Contextual Method Engineering.

Working paper, University of Saint Gallen. 47, 50

Budinsky, F., Brodsky, S.A. & Merks, E. (2003). Eclipse Modeling Framework .

Pearson Education. 69

Bustard, D.W. & Keenan, F. (2005). Strategies for Systems Analysis: Groundwork

for Process Tailoring. In Proceedings of the 12th IEEE International Conference and

Workshops on the Engineering of Computer-Based Systems, ECBS’05 , 357–362, IEEE

Computer Society, Washington, DC, USA. 22

Cánfora, G., Garćıa, F., Piattini, M., Ruiz, F. & Visaggio, C.A. (2005). A

Family of Experiments to Validate Metrics for Software Process Models. Journal of

Systems and Software, 77, 113–129. 5, 27, 28

Clements, P. & Northrop, L. (2001). Software Product Lines: Practices and Pat-

terns . Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA. 23, 31, 55,

59

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R.,

Nord, R. & Stafford, J. (2002). Documenting Software Architectures . Addison-

Wesley. 79

Cockburn, A. (2000). Selecting a Project’s Methodology. IEEE Software, 17, 64–71.

21, 118

Conradi, R., Fernström, C., Fuggetta, A. & Snowdon, R.A. (1992). Towards

a Reference Framework for Process Concepts. In Proceedings of the Second European

149

REFERENCES

Workshop on Software Process Technology, EWSPT 1992:, 3–17, Springer-Verlag, Lon-

don, UK. 15

Conradi, R., Fernström, C. & Fuggetta, A. (1993). A Conceptual Framework for

Evolving Software Processes. Software Engineering Notes, SIGSOFT , 18, 26–35. 13

Cook, J.E. & Wolf, A.L. (1999). Software Process Validation: Quantitatively Mea-

suring the Correspondence of a Process to a Model. ACM Transactions on Software

Engineering Methodology , 8, 147–176. 27, 28

Curtis, B., Kellner, M.I. & Over, J. (1992). Process Modeling. Communications

of ACM , 35, 75–90. 16

Cusumano, M.A., MacCormack, A., Kemerer, C.F. & Crandall, W.B. (2009).

Critical Decisions in Software Development: Updating the State of the Practice. IEEE

Software, 26, 84–87. 20

Czarnecki, K. & Antkiewicz, M. (2005). Mapping features to models: a Template

Approach Based on Superimposed Variants. In Proceedings of the 4th international

conference on Generative Programming and Component Engineering , GPCE 2005, 422–

437, Springer-Verlag, Berlin, Heidelberg. 52, 110

Czarnecki, K. & Helsen, S. (2006). Feature-based Survey of Model Transformation

Approaches. IBM Systems Journal , 45, 621–645. 72

Dai, F. & Li, T. (2007). Tailoring Software Evolution Process. In International

Conference on Software Engineering, Artificial Intelligence, Networking, and Paral-

lel/Distributed Computing, ACIS 2007 , vol. 2, 782–787. 21

Dami, S., Estublier, J. & Amiour, M. (1998). APEL: A Graphical Yet Executable

Formalism for Process Modeling. Automated Software Engineering , 5, 61–96. 17

Demeyer, S., Ducasse, S. & Nierstrasz, O. (2002). Object-Oriented Reengineering

Patterns . Morgan Kaufmann. 78, 88

Dörr, J., Adam, S., Eisenbarth, M. & Ehresmann, M. (2008). Implementing Re-

quirements Engineering Processes: Using Cooperative Self-Assessment and Improve-

ment. IEEE Software, 25, 71–77. 20

Eisenhardt, K.M. (1989). Building Theories from Case Study Research. The Academy

of Management Review , 14. 8

150

REFERENCES

Feiler, P.H. & Humphrey, W.S. (1993). Software Process Development and Enact-

ment: Concepts and Definitions. In International Conference of Software Process, ICSP

1993 , 28–40, IEEE Computer Society, Berlin, Germany. 13, 15

Firesmith, D. (2004). Creating a Project-Specific Requirements Engineering Process.

Journal of Object Technology , 3, 31–44. 20

Flyvbjerg, B. (2006). Five Misunderstandings About Case-Study Research. Qualitative

Inquiry , 12, 219. 8

France, R. & Rumpe, B. (2007). Model-driven Development of Complex Software: A

Research Roadmap. Future of Software Engineering, FOSE 2007 , 37–54. 26

Franch, X. & Ribo, J.M. (1999). Using UML for Modelling the Static Part of a

Software Process. In Proceedings of UML 1999, Forth Collins CO (USA). Lecture Notes

in Computer Science, 292–307, Springer-Verlag. 17

Fuggetta, A. (2000). Software Process: A Roadmap. In International Conference in

Software Engineering - Future of Software Engineering Track , 25–34. 13, 17

Ge, J., Hu, H., Gu, Q. & Lu, J. (2006). Modeling Multi-View Software Process

with Object Petri Nets. In Proceedings of the International Conference on Software

Engineering Advances, ICSEA 2006 , 41, IEEE Computer Society, Washington, DC,

USA. 27, 29

Gı̂rba, T. & Lanza, M. (2004). Visualizing and Characterizing the Evolution of Class

Hierarchies. In Inproceedings of International Workshop on Object-Oriented Reengineer-

ing, WOOR 2004 . 83

Gruhn, V. (1991). Validation and verification of software process models. In Proc. of the

Software development environments and CASE technology , 271–286. 27, 28

Hanssen, G.K., Westerheim, H. & Bjørnson, F.O. (2005). Tailoring RUP to a

Defined Project Type: A Case Study. In F. Bomarius & S. Komi-Sirviö, eds., Proceed-

ings of International Conference on Product Focused Software Process Improvement,

PROFES 2005 , vol. 3547 of Lecture Notes in Computer Science, 314–327, Springer. 25

Henninger, S. & Baumgarten, K. (2001). A Case-based Approach to Tailoring Soft-

ware Processes. In Proceedings of the 4th International Conference on Case-Based Rea-

soning, ICCBR 2001 , 249–262, Springer-Verlag, London, UK. 22

151

REFERENCES

Humphrey, W.S. (1989). Managing the Software Process . Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA. 13, 14, 15, 27

Hurtado, J.A. & Bastarrica, C. (2009). Process Model Tailoring as a Mean for

Process Knowledge Reuse. In 2nd Workshop on Knowledge Reuse, KREUSE 2009 ,

Falls Church, Virginia, USA. 10, 27, 123

Hurtado, J.A. & Bastarrica, M.C. (2010). Tutelkan Implementation Process:

Adapting a Reusable Reference Software Process in the Chilean Software Industry.

Tech. rep., Computer Science Department, Universidad de Chile. 47, 106, 108, 122

Hurtado, J.A. & Bastarrica, M.C. (2012). Building Software Process Lines with

CASPER. In Proceedings of International Conference on Software and Systems Process,

ICSSP 2012 , 170–179, IEEE. 11

Hurtado, J.A., Bastarrica, M.C. & Bergel, A. (2010a). Analyzing the Scrum

Process Model with AVISPA. In International Conference of the Chilean Computer

Science Society, SCCC 2010 , 60 –65. 11, 92, 126

Hurtado, J.A., Lagos, A., Bergel, A. & Bastarrica, M.C. (2010b). Software

Process Model Blueprints. In Proceedings of International Conference on Software Pro-

cess, ICSP 2010 , 285–296. 11, 78, 81, 105, 126, 132

Hurtado, J.A., Bastarrica, M.C. & Bergel, A. (2011a). Analyzing Software Pro-

cess Models with AVISPA. In Proceedings of International Conference on Software and

Systems Process, ICSSP 2011 , 23–32, ACM. 11, 44, 89, 128

Hurtado, J.A., Bastarrica, M.C. & Bergel, A. (2011b). Is It Safe to Adopt the

Scrum Process Model? CLEI Electronic Journal , 14. 11

Hurtado, J.A., Bastarrica, M.C., Quispe, A. & Ochoa, S.F. (2011c). An MDE

Approach to Software Process Tailoring. In Proceedings of International Conference on

Software and Systems Process, ICSSP 2011 , 43–52, ACM. 11, 48, 123, 124

ISO (2011). Software Engineering - Lifecycle Profiles for Very Small Entities (VSEs) -

Part 2: Framework and Taxonomy. 21

ISO/IEC (1998). ISO/IEC 15504 : Information Technology - Software Process Assess-

ment and Improvement. Tech. rep., International Organization for Standardization. 27,

28

152

REFERENCES

ISO/IEC (2008). ISO/IEC 12207:2008 Systems and Software Engineering – Software life

cycle processes. Tech. rep., International Organization for Standarization ISO. 1

Jaccheri, M.L., Picco, G.P. & Lago, P. (1998). Eliciting Software Process Models

with the E3 Language. ACM Transactions on Software Engineering Methodology , 7,

368–410. 17

Jacobs, D. & Marlin, C. (1996). Multiple View software Process Support Using the

MultiView Architecture. In Proceedings of the Second International Software Archi-

tecture Workshop and International Workshop on Multiple Perspectives in Software

Development, ISAW 1996, Viewpoints 1996 , 217–221, ACM, New York, NY, USA. 5,

13, 14, 83

Jacobs, D. & Marlin, C.D. (1995). Software Process Representation to Support Mul-

tiple Views. International Journal of Software Engineering and Knowledge Engineering ,

5, 585–597. 79

Jacobson, I., Booch, G. & Rumbaugh, J. (1999). The Unified Software Development

Process . Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA. 21, 41, 118

Johnson, E.W. & Brockman, J.B. (1998). Measurement and Analysis of Sequential

Design Processes. ACM Transactions Design Automatization Electronic Systems , 3,

1–20. 29

Jouault, F., Allilaire, F., Bézivin, J. & Kurtev, I. (2008). ATL: A Model Trans-

formation Tool. Sciences of Computer Programming , 72, 31–39. 70

Kajko-Mattsson, M. (2010). Maturity is Also About the Capability to Conform the

Process to the Right Context! In Proceedings of the workshop on Future of software

engineering research, FSE/SDP 2010 , FoSER ’10, 181–186, ACM, New York, NY,

USA. 27, 123

Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E. & Huh, M. (1998). FORM: A

Feature-oriented Reuse Method with Domain-specific Reference Architectures. Annals

of Software Engineering , 5, 143–168. 40, 51, 123

Killisperger, P., Stumptner, M., Peters, G., Grossmann, G. & Stückl, T.

(2009). Meta Model Based Architecture for Software Process Instantiation. In Interna-

tional Conference on Software Process, ICSP 2009 , 63–74. 23, 26, 35, 41

153

REFERENCES

Kitchenham, B. (2006). Evidence-Based Software Engineering and Systematic Liter-

ature Reviews. In J. Münch & M. Vierimaa, eds., Product-Focused Software Process

Improvement, 7th International Conference, PROFES 2006, Amsterdam, The Nether-

lands , vol. 4034 of Lecture Notes in Computer Science, 3, Springer. 144

Klein, H.K. & Myers, M.D. (1999). A Set of Principles for Conducting and Evaluating

Interpretive Field Studies in Information Systems. MIS Quarterly , 23, 67–93. 8

Knab, P., Pinzger, M. & Gall, H.C. (2010). Visual Patterns in Issue Tracking Data.

In Proceedings of the International Conference on Software Processes , ICSP 2010, 222–

233, Springer-Verlag, Berlin, Heidelberg. 88

Kontio, J. (1998). A Software Process Engineering Framework. Elsevier , 46, 35 – 108.

2

Koolmanojwong, S. & Boehm, B. (2010a). The Incremental Commitment Model

Process Patterns for Rapid-fielding Projects. In Proceedings of the International Confer-

ence on Software Processes , ICSP 2010, 150–162, Springer-Verlag, Berlin, Heidelberg.

56

Koolmanojwong, S. & Boehm, B.W. (2010b). The Incremental Commitment Model

Process Patterns for Rapid-Fielding Projects. In Proceedings International Conference

on Software Process, ICSP 2010 , 150–162. 39, 56

Kruchten, P. (2003). The Rational Unified Process: An Introduction. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA. 1, 22, 41

Lange, C.F.J., Wijns, M.A.M. & Chaudron, M.R.V. (2007). Supporting Task-

oriented Modeling Using Interactive UML Views. vol. 18, 399–419, Academic Press,

Inc. 31

Lanza, M. & Ducasse, S. (2003). Polymetric Views-A Lightweight Visual Approach

to Reverse Engineering. Transactions on Software Engineering , 29, 782–795. 30, 83, 88

Larkin, J.H. & Simon, H.A. (1987). Why a Diagram is (Sometimes) Worth Ten

Thousand Words. Cognitive Science, 11, 65–100. 29, 44, 79

Lee, K. & Kang, K.C. (2010). Usage Context as Key Driver for Feature Selection. In

Proceedings of the International Conference on Software Product Lines: Going Beyond ,

SPLC 2010, 32–46, Springer-Verlag, Berlin, Heidelberg. 56

154

REFERENCES

Lee, M.D., Reilly, R.E. & Butavicius, M.E. (2003). An Empirical Evaluation of

Chernoff Faces, Star Glyphs, and Spatial Visualizations for Binary Data. In Proceed-

ings of the Asia-Pacific Symposium on Information Visualisation, APVis 2003 , 1–10,

Australian Computer Society, Inc., Darlinghurst, Australia, Australia. 29, 44, 79

Lonchamp, J. (1993). A Structured Conceptual and Terminological Framework for Soft-

ware Process Engineering. Second International Conference on the Continuous Software

Process Improvement , 41–53. 13, 14, 15, 27, 142

Madhavji, N.H. (1991). The Prism Model of Changes. In Proceedings of the 13th Inter-

national Conference on Software Engineering, ICSE 1991 , 166–177, IEEE Computer

Society Press, Los Alamitos, CA, USA. 15

Martinho, R., Varajao, J. & Domingos, D. (2008). A Two-Step Approach for

Modelling Flexibility in Software Processes. In Proceedings of the 23rd IEEE/ACM In-

ternational Conference on Automated Software Engineering , ASE 2008, 427–430, IEEE

Computer Society, Washington, DC, USA. 22

Meyer, M., Gı̂rba, T. & Lungu, M. (2006). Mondrian: An Agile Information Visual-

ization Framework. In Proceedings of the ACM Symposium on Software Visualization,

SOFTVIS 2006 , 135–144, ACM. 96

Mirbel, I. & Ralyé, J. (2005). Situational Method Engineering: Combining Assembly-

based and Roadmap-driven Approaches. vol. 11, 58–78, Springer-Verlag New York, Inc.

1, 4, 21, 47

Mishali, O. & Katz, S. (2006). Using Aspects to Support the Software Process: XP

Over Eclipse. In Proceedings of International Conference on Aspect-Oriented Software

Development, AOSD 2006 , 169–179, ACM, New York, NY, USA. 57

Neumuller, C. & Grunbacher, P. (2006). Automating Software Traceability in

Very Small Companies: A Case Study and Lessons Learned. In Proceedings of the

IEEE/ACM International Conference on Automated Software Engineering, ASE 2006 ,

145–156, IEEE Computer Society, Washington, DC, USA. 47

Nuseibeh, B. & Easterbrook, S. (2000). Requirements Engineering: A Roadmap. In

Proceedings of the Conference on Software Engineering , ICSE 2000, 35–46, ACM, New

York, NY, USA. 108

155

REFERENCES

Ocampo, A., Bella, F. & Münch, J. (2005). Software Process Commonality Analysis.

In Software Process: Improvement and Practice. Special issue on ProSim 2004, The

5th International Workshop on Software Process Simulation and Modeling, Edinburgh,

Scotland , vol. 10, 273–285. 4, 26, 35, 40, 53, 107

O’Connor, R.V. & Laporte, C.Y. (????). Towards the Provision of Assistance for

Very Small Entities in Deploying Software Lifecycle Standards. 22

OMG (2008). Software Process Engineering Metamodel SPEM 2.0 OMG Specification.

Tech. Rep. ptc/07-11-01, Object Management Group. vii, 5, 14, 17, 18, 20, 60, 61, 64,

78, 89

Osterweil, L.J. (1987). Software Processes are Software Too. In Proceedings of the 9th

International Conference on Software Engineering, ICSE 1887 , 2–13, IEEE Computer

Society Press, Los Alamitos, CA, USA. 5, 15, 23, 26, 27, 29, 35, 79

Osterweil, L.J. (1998). JIL and little-JIL Process Programming Languages. In Pro-

ceedings of the 6th European Workshop on Software Process Technology, EWSPT 1998 ,

152, Springer-Verlag, London, UK. 17, 30

Osterweil, L.J. & Wise, A.E. (2010). Using Process Definitions to Support Reasoning

about Satisfaction of Process Requirements. In J. Münch, Y. Yang & W. Schäfer, eds.,

ICSP , vol. 6195 of LNCS , 2–13, Springer. 30, 31

Pandey, D., Suman, U. & Ramani, A. (2010). An Effective Requirement Engineering

Process Model for Software Development and Requirements Management. In Proceed-

ings of International Conference on Advances in Recent Technologies in Communication

and Computing ARTCom, 2010 , 287 –291. 107, 122

Park, S. & Bae, D.H. (2011). An Approach to Analyzing the Software Process Change

Impact Using Process Slicing and Simulation. Journal on Systems and Software, 84,

528–543. 28

Park, S., Na, H. & Sugumaran, V. (2006). A Semi-automated Filtering Technique

for Software Process Tailoring using Neural Network. Expert Systems with Applications ,

30, 179–189. 22

Pedreira, O., Piattini, M., Luaces, M.R. & Brisaboa, N.R. (2007). A Systematic

Review of Software Process Tailoring. Software Engineering Notes SIGSOFT , 32, 1–6.

3, 117

156

REFERENCES

Pérez, G., El Emam, K. & Madhavji, N. (1996). Evaluating the Congruence of a

Software Process Model in a Given Environment. 49–62. 28, 34, 39, 40, 47, 50

Perin, F., Gı̂rba, T. & Nierstrasz, O. (2010). Recovery and Analysis of Transaction

Scope from Scattered Information in Java Enterprise Applications. In Proceedings of

International Conference on Software Maintenance, ICSM 2010 . 30, 88

Pino, F.J., Hurtado, J.A., Vidal, J.C., Garćıa, F. & Piattini, M. (2009). Pro-

ceedingsA Process for Driving Process Improvement in VSEs, International conference

on software process, icsp 2009. In ICSP , vol. 5543 of Lecture Notes in Computer Science,

342–353, Springer. 10, 92

Raffo, D.M. & Kellner, M.I. (2000). Empirical Analysis in Software Process Simu-

lation Modeling. vol. 53, 31–41, Elsevier Science Inc., New York, NY, USA. 28

Ralyté, J. & Rolland, C. (2001). An Assembly Process Model for Method Engi-

neering. In Proceedings of the 13th International Conference on Advanced Information

Systems Engineering, CAISE 2001 , 267–283, Springer-Verlag, London, UK. 14

Ralyté, J., Deneckére, R. & Roll, C. (2003). Towards a Generic Model for Sit-

uational Method Engineering. In Advanced Information Systems Engineering Interna-

tional Conference 2003, LNCS 2681 , 95–110, Springer-Verlag. 14, 21

Rolland, C. (2009). Method Engineering: State-of-the-Art Survey and Research Pro-

posal. In Proceeding of Conference on New Trends in Software Methodologies, Tools and

Techniques, 2009 , 3–21, IOS Press, Amsterdam, The Netherlands, The Netherlands. 4,

21, 35, 107

Rombach, H.D. (2005). Integrated Software Process and Product Lines. In International

Software Process Workshop, SPW 2005, Beijing, China, 83–90. 1, 25, 33, 40

Rosch, E. (1978). Principles of Categorization, 27–48. Lawrence Erlbaum Associates,

Hillsdale (NJ), USA. 8

Rowley, J. (2002). Using Case Studies in Research. Management Research News , 25,

16–27. 8

Royce, W. (1998). Software Project Management: A Unified Framework . Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA. 47, 50

Runeson, P. & Höst, M. (2009). Guidelines for Conducting and Reporting Case Study

Research in Software engineering. Empirical Software Engineering , 14, 131–164. 8, 106,

121, 125, 128, 137

157

REFERENCES

Sadiq, W. & Orlowska, M.E. (2000). Analyzing Process Models Using Graph Re-

duction Techniques. Information Systems , 25, 117 – 134. 31

Sauer, C., Jeffery, D., Land, L. & Yetton, P. (2000). The Effectiveness of Soft-

ware Development Technical Reviews: a Behaviorally Motivated Program of Research.

IEEE Transactions on Software Engineering , 26, 1–14. 29

Scacchi, W. (2000). Understanding Software Process Redesign Using Modeling, Analysis

and Simulation. 29

Schwaber, K. (1995). SCRUM Development Process. In Proceedings of the Annual ACM

Conference on Object Oriented Programming Systems, Languages, and Applications,

OOPSLA 1995 , 117–134. 1, 41, 90, 92

Schwaber, K. & Sutherland, J. (2010). Scrum. Available in:

http://www.scrum.org/storage/scrumguides/Scrumof 2012. 90

SEI (2006). CMMI R© for Development, Version 1.2. Tech. Rep. CMU/SEI-2006-TR-008,

Software Engineering Institute. 1, 27, 28, 41

Shull, F., Basili, V., Carver, J., Maldonado, J.C., Travassos, G.H.,

Mendonça, M. & Fabbri, S. (2002). Replicating Software Engineering Experiments:

Addressing the Tacit Knowledge Problem. In Proceedings of International Symposium

on Empirical Software Engineering, ISES 2002 , 7–, IEEE Computer Society, Washing-

ton, DC, USA. 8

Simidchieva, B.I., Clarke, L.A. & Osterweil, L.J. (2007). Representing Process

Variation with a Process Family. In International Conference on Software Process,

ICSP 2007 , Lecture Notes in Computer Science, 109–120, Springer. 4, 24, 33

Soto, M., Ocampo, A. & Münch, J. (2009). Analyzing a Software Process Model

Repository for Understanding Model Evolution. In Proceedings of the International

Conference on Software Process, ICSP 2009 , ICSP ’09, 377–388, Springer-Verlag,

Berlin, Heidelberg. 30

Sutherland, J., Downey, S. & Granvik, B. (2009). Shock Therapy: A Bootstrap

for Hyper-Productive Scrum. In Y. Dubinsky, T. Dyb̊a, S. Adolph & A.S. Sidky, eds.,

AGILE , 69–73, IEEE Computer Society. 90

Sutton, S.M. & Osterweil, L.J. (1996a). PDP: Programming a Programmable De-

sign Process. In Proceedings of the 8th International Workshop on Software Specification

and Design, 186–190. 23, 25

158

REFERENCES

Sutton, S.M. & Osterweil, L.J. (1996b). Product Families and Process Families.

In Proceedings of the 10th International Software Process Workshop, ISPW 1996 , 109,

IEEE Computer Society, Washington, DC, USA. 23, 33

Valdés, G., Astudillo, H., Visconti, M. & López, C. (2010). The Tutelkán SPI

Framework for Small Settings: A Methodology Transfer Vehicle. In Proceedings of the

17th European System & Software Process Improvement and Innovation, EuroSPI 2010 ,

Grenoble, France. 92, 108

Van Rijsbergen, C.J. (1979). Information Retrieval . Butterworths, London, 2nd edn.

135

Vergara, A. (2008). Automatic Generation of Requirements-based Metrics in Software

Projects . Master’s thesis, Computer Science Department. Universidad de Chile. 66

Villarroel, R., Fajardo, R. & Rodŕıguez, O. (2010). Implementation of an Im-

provement Cycle using the Competisoft Methodological Framework and the Tutelkán

Platform. CLEI Electronic Journal , 13. 92

Von Wangenheim, C.G., Anacleto, A. & Salviano, C.F. (2006). Helping Small

Companies Assess Software Processes. IEEE Software, 23, 91–98. 47

Washizaki, H. (2006). Building Software Process Line Architectures from Bottom up.

In J. Münch & M. Vierimaa, eds., Product-Focused Software Process Improvement ,

PROFES 2006, 415–421, Springer. 3, 4, 25, 26, 33, 41, 62, 75

Xu, P. (2005). Knowledge Support in Software Process Tailoring. Proceedings of the

Annual Hawaii International Conference on System Sciences, HICSS 2005 . 22

Yin, R.K. (1984). Case Study Research: Design and Methods . Applied social research

methods series, Sage Publications, Beverly Hills, CA. 7, 106

Yoon, I.C., Min, S.Y. & Bae, D.H. (2001). Tailoring and Verifying Software Process.

In Asia-Pacific Software Engineering Conference, APSEC 2001 , 202–209. 21

Zamli, K.Z. (2004). A Survey and Analysis of Process Modeling Languages. Malaysian

Journal of Computer Science, 17, 68–89. 2, 17

Zave, P. (1997). Classification of Research Efforts in Requirements Engineering. ACM

Computer Survey , 29, 315–321. 49

Zhu, L., Jeffery, D.R., Staples, M., Huo, M. & Tran, T.T. (2007). Effects of

Architecture and Technical Development Process on Micro-process. In International

Conference on Software Process, ICSP 2007 , LNCS, 49–60, Springer. 26

159

	Nomenclature
	1 Introduction
	1.1 Problems and Challenges
	1.1.1 General Questions
	1.1.2 Software Process Tailoring
	1.1.3 Software Process Analysis

	1.2 Thesis hypotheses
	1.3 Thesis goals
	1.3.1 Main goal
	1.3.2 Specific goals

	1.4 Research Method
	1.4.1 Case Study Method

	1.5 Document content

	2 Background and Related Work
	2.1 The Software Process Concept
	2.2 Software Process Engineering
	2.2.1 Software process engineering life cycle
	2.2.2 Software Process Modeling
	2.2.3 SPEM 2.0

	2.3 Software Process Tailoring
	2.3.1 Process tailoring based on process families
	2.3.1.1 The Early Age of the SPrLs
	2.3.1.2 The emergence of the SPrLs

	2.3.2 Model Driven Engineering in software process tailoring

	2.4 Validating Software Process Models
	2.4.1 Software Process Testing
	2.4.2 Software Process Simulation
	2.4.3 Software Process Model Metrics
	2.4.4 Software Process Formal Verification
	2.4.5 Software Process Analysis
	2.4.6 Software Process Model Analysis by Visualization

	2.5 Synthesis and Discussion

	3 Context Adaptable Software Process EngineeRing - CASPER
	3.1 Introduction to CASPER
	3.1.1 CASPER in a Nutshell
	3.1.2 CASPER Subprocesses

	3.2 CASPER Domain Engineering
	3.2.1 Software Process Context Analysis
	3.2.2 Software Process Feature Analysis
	3.2.3 Software Process Scope Analysis
	3.2.4 Software Process Reference Model Design
	3.2.5 Production Strategy Implementation

	3.3 CASPER Application Engineering: Context-Based Software Process Adaptation
	3.4 Process Model Analysis using AVISPA
	3.5 Synthesis and Discussion

	4 Building and Adapting Software Process Models with CASPER
	4.1 Introduction
	4.2 Example Problem: CC51A Requirements Engineering Software Process Line
	4.3 Software Process Context Analysis
	4.3.1 Software Process Context Meta model - SPCM
	4.3.2 Context Modeling with SPMC

	4.4 Software Process Features Analysis
	4.4.1 Process Feature Meta model PFMM
	4.4.2 Process Feature Modeling with PFMM

	4.5 Software Process Scope Analysis
	4.5.1 Software Process Scope Meta model - SPMM
	4.5.2 Software Process Scope Determination with SPSMM
	4.5.3 SPrL Scope Change

	4.6 Implementing Software Process Models Variability with SPEM 2.0 and the CASPER meta-process
	4.6.1 Evaluating SPEM 2.0 variability mechanisms
	4.6.2 Software Process Architectural Model in CASPER with SPEM 2.0
	4.6.3 General Requirements Engineering Process

	4.7 A MDE production strategy of CASPER
	4.7.1 Environment Implementation Definition
	4.7.1.1 Modeling Platform
	4.7.1.2 Model Transformation Language

	4.7.2 MDE Software process tailoring
	4.7.3 Defining transformation rules
	4.7.4 Implementing transformation rules

	4.8 CASPER application engineering: Context-Based Software Process Adaptation
	4.8.1 Generating context-adapted process models
	4.8.2 Manually Tailoring

	4.9 Preliminary Validation
	4.9.1 CASPER Tool Prototype
	4.9.2 CASPER Academic Case Study

	4.10 Synthesis and Discussion

	5 Software Process Models Analysis and Visualization
	5.1 Introduction
	5.2 Software Process Blueprints
	5.2.1 Example Process: DTS Process
	5.2.2 Problems in Software Process Model Analysis
	5.2.3 Multiple Software Process Model Blueprints
	5.2.3.1 Process Model Blueprints in a Nutshell
	5.2.3.2 Role Blueprint
	5.2.3.3 Task Blueprint
	5.2.3.4 WorkProduct Blueprint

	5.3 AVISPA
	5.3.1 Example Process: Scrum
	5.3.1.1 Scrum: a rule-based process framework
	5.3.1.2 Scrum Process Model in SPEM 2.0

	5.3.2 Process Model Error Patterns
	5.3.3 AVISPA Error Patterns
	5.3.4 Localizing Errors with AVISPA
	5.3.4.1 Implementation of AVISPA
	5.3.4.2 Error Pattern Implementation in AVISPA
	5.3.4.3 AVISPA User Interface

	5.3.5 Applying AVISPA to the Scrum Process Model
	5.3.6 Scrum Analysis Results

	5.4 Synthesis and Discussion

	6 CASPER Validation
	6.1 Introduction
	6.2 Research Question
	6.3 Case Study Metrics
	6.4 Case Study Selection
	6.5 Case Study Context
	6.6 Organizational Process Model
	6.7 Context Model
	6.8 Tailoring Transformation
	6.9 Case Study Results
	6.9.1 Qualitative Results
	6.9.2 Influence of the size of the process family in the Cost-Effectiveness Index

	6.10 Case Study Validity
	6.11 Synthesis and Discussion

	7 AVISPA Validation
	7.1 Introduction
	7.2 Preliminary Validation
	7.2.1 AVISPA initial cases with EPF community software process models
	7.2.2 Initial Industrial Case using Software Process Blueprints

	7.3 AVISPA Case Study
	7.3.1 Research Question
	7.3.2 Case Study Selection
	7.3.3 Case Study Context
	7.3.4 AVISPA Case Study Results
	7.3.5 AVISPA Case Study Results Analysis
	7.3.5.1 False Positives Analysis
	7.3.5.2 Pattern Tuning

	7.3.6 Qualitative Results
	7.3.7 Case Study Validity

	7.4 Synthesis and Discussion

	8 Conclusions, Contributions and Limitations
	8.1 Goals review
	8.2 Main Contributions
	8.3 Conclusions
	8.4 Limitations
	8.5 Further Work

	References

