
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

IMAGE DESCRIPTIONS FOR SKETCH BASED IMAGE RETRIEVAL

THESIS SUBMITTED FOR THE DEGREE OF PHD IN COMPUTER SCIENCE

JOSÉ MANUEL SAAVEDRA RONDO

ADVISOR:
BENJAMIN BUSTOS CARDENAS

COMMITTEE MEMBERS:
NANCY HITSCHFELD KAHLER

DOMINGO MERY QUIROZ
JOHN COLLOMOSSE

This work has been partially funded by CONICYT.

SANTIAGO DE CHILE
2013, JANUARY

Resumen

Debido al uso masivo de Internet y a la proliferación de dispositivos capaces de generar
información multimedia, la búsqueda y recuperación de imágenes basada en contenido se han
convertido en áreas de investigación activas en ciencias de la computación. Sin embargo, la
aplicación de búsqueda por contenido requiere una imagen de ejemplo como consulta, lo cual
muchas veces, puede ser un problema serio, que imposibilite la usabilidad de la aplicación. En
efecto, los usuarios comúnmente hacen uso de un buscador de imágenes porque no cuentan
con la imagen deseada. En este sentido, un modo alternativo de expresar lo que el usuario
intenta buscar es mediante un dibujo a mano compuesto, simplemente, de trazos, sketch, lo
que conduce a la búsqueda por imágenes basada en sketches. Hacer este tipo de consultas
es soportado, además, por el hecho de haberse incrementado la accesibilidad a dispositivos
táctiles, facilitando realizar consultas de este tipo.

En este trabajo, se proponen dos métodos aplicados a la recuperación de imágenes basada
en sketches. El primero es un método global que calcula un histograma de orientaciones
usando gradientes cuadrados. Esta propuesta exhibe un comportamiento sobresaliente con
respecto a otros métodos globales. En la actualidad, no existen métodos que aprovechen la
principal característica de los sketches, la información estructural. Los sketches carecen de
color y textura y representan principalmente la estructura de los objetos que se quiere buscar.
En este sentido, se propone un segundo método basado en la representación estructural de
las imágenes mediante un conjunto de formas primitivas que se denominan keyshapes.

Los resultados de nuestra propuesta han sido comparados con resultados de métodos
actuales, mostrando un incremento signi�cativo en la efectividad de la recuperación. Además,
puesto que nuestra propuesta basada en keyshapes explota una característica novedosa, es
posible combinarla con otras técnicas para incrementar la efectividad de los resultados. Así,
en este trabajo se ha evaluado la combinación del método propuesto con el método propuesto
por Eitz et al., basado en Bag of Words, logrando un aumento de la efectividad de casi 22%.

Finalmente, con el objetivo de mostrar el potencial de nuestra propuesta, se muestran dos
aplicaciones. La primera está orientada al contexto de recuperación de modelos 3D usando
un dibujo a mano como consulta. En esta caso, nuestros resultados muestran competitividad
con el estado del arte. La segunda aplicación explota la idea de buscar objetos basada en la
estructura para mejorar el proceso de segmentación. En particular, mostramos una aplicación
de segmentación de manos en ambientes semi-controlados.

i

Abstract

Due to the massive use of Internet together with the proliferation of media devices, content
based image retrieval has become an active discipline in computer science. A common content
based image retrieval approach requires that the user gives a regular image (e.g. a photo) as
a query. However, having a regular image as query may be a serious problem. Indeed, people
commonly use an image retrieval system because they do not count on the desired image.
An easy alternative way to express what the user is looking for is by giving a line-based
hand-drawing, a sketch, leading to the sketch-based image retrieval (SBIR). This kind of
query is also supported by the fact that emerging touch screen based technology is becoming
more popular, allowing the user to make an sketch directly on the screen.

In this work, we propose methods aiming to deal with the sketch based image retrieval
problem. The �rst method is a global method that computes a histogram of local orientations
based on the gradient squared technique. This proposal method exhibits outperforming
results in comparison with current global methods. To the best of our knowledge, any of
the current sketch based image retrieval approaches have not exploited yet the structural
composition of an image (or sketch) represented by a set of strokes. Therefore, the second
proposed method is a local approach that exploits the structural information given a sketch
representation. This method is based on representing an image by a set of simple shapes
called keyshapes. Each keyshape belongs to one of �ve keyshape classes. The set of keyshapes
computed over an image de�nes the image structure representing the image in a higher
semantic level than interest points do. To this end, we propose a method for detecting
keyshapes that processes stroke pieces to classify it as one of the keyshape classes.

We experimentally compare our results with current methods, showing an increase in the
retrieval e�ectiveness. We also demonstrate that our approach may successfully be combined
with other leading methods. The reason for that stems from the fact that our method is
based on a novel feature, di�erent from those used by the other current methods. We show
that a combination of our method with one of the state of the art signi�cantly outperforms
current SBIR methods, achieving an increase in e�ectiveness of almost 22%.

Finally, in this work we show two applications of our keyshape-based approach. In the
�rst case, we adapt our method to be applied in the context of sketch-based 3D model
retrieval, achieving competitive results with respect to current methods. In the second case,
we extend our method for the hand segmentation problem in semi-controlled environments.
In particular our keyshape-based approach permits locating a hand in an image in order to
improve the subsequent segmentation stage.

ii

iii

To my wife, Viole, and my little daughter, Adrianita, for giving me the motivation to �nish
this thesis.

iv

Acknowledgements

I would like to acknowledge all people who collaborate with me providing interesting ideas to
address the sketch based retrieval in the image domain as well as in the 3D model domain. In
particular, I thank people who helped drawing sketches or providing data set for experimental
purposes.

v

Contents

1 Introduction 1
1.1 Related Work . 2
1.2 Contributions of this Thesis . 3
1.3 Evaluation Methodology . 5
1.4 Applications of this Thesis . 5

2 Basic Concepts 7
2.1 Introduction . 7
2.2 Image Processing . 7

2.2.1 Linear Filtering . 8
2.2.2 Canny Edge Detector . 11
2.2.3 Morphological Operators . 12
2.2.4 Thinning . 14

2.3 Image Retrieval . 16
2.3.1 Classi�cation . 16
2.3.2 Query modality . 16
2.3.3 Process modality . 16
2.3.4 Architecture of an Image Retrieval System 17
2.3.5 Applications . 17
2.3.6 Image Retrieval Techniques . 18

2.4 Local Descriptors . 25
2.5 Summary . 28

3 Sketch Based Image Retrieval 29
3.1 Introduction . 29
3.2 Query by Visual Example . 30

3.2.1 Adaptive Image Abstraction . 30
3.2.2 Flexible Image Matching . 31

3.3 Elastic Matching of User Sketches . 32
3.3.1 Spatial Relationship . 34

3.4 Edge Histogram Orientation . 35
3.4.1 Local histograms . 35
3.4.2 Global and semi-global histograms 37

3.5 Angular Partitioning of Abstract Images . 37
3.5.1 Abstract Image . 38
3.5.2 Feature Extraction . 38

vi

3.5.3 Rotation Invariance . 39
3.6 Structure Tensor Descriptor . 39
3.7 Bag Of Features Approach . 41

3.7.1 Spark Feature . 42
3.7.2 DoIGOH Feature . 42
3.7.3 Gradient Field - Histogram of Orientated Gradients 43

3.8 Edgel Index . 45
3.9 Summary . 46

4 Histogram of Edge Local Orientations 47
4.1 Introduction . 47
4.2 Square Gradient Method . 48
4.3 Histogram of Edge Local Orientation . 49

4.3.1 Preprocessing . 49
4.3.2 Histogram Computation . 50
4.3.3 Tackling the rotation problem . 52

4.4 Experimental Evaluation . 56
4.4.1 Translation and scale invariance comparison 58
4.4.2 Rotation invariance comparison . 60

4.5 Summary . 62

5 Keyshape Based Approach 64
5.1 Introduction . 64
5.2 Proposal . 65

5.2.1 Keyshapes Detection . 66
5.2.2 Local Descriptors . 74
5.2.3 Matching . 77

5.3 Computational Complexity . 80
5.3.1 Keyshape Detection . 81
5.3.2 Keyshape Descriptors . 81
5.3.3 Keyshape Matching . 81

5.4 Experimental Evaluation . 82
5.5 Summary . 84

6 Sketch Based 3D Model Retrieval 88
6.1 Introduction . 88
6.2 Related Work . 90
6.3 The STELA Approach . 91

6.3.1 Abstract Image . 91
6.3.2 Detecting Keyshapes . 92
6.3.3 The Local Descriptor . 93
6.3.4 Matching . 95
6.3.5 Invariance issues . 96
6.3.6 Filtering Step by HELO . 96
6.3.7 Handling viewpoint changes . 97

6.4 The HKO-KASD Approach . 98
6.4.1 Keyshapes . 98

vii

6.4.2 Histogram of Keyshape Orientation 99
6.4.3 Keyshape Angular Spatial Distribution 99

6.5 Experimental Results . 101
6.5.1 Dataset Description . 101
6.5.2 Result Analysis . 102

6.6 Case of Study: Hand Segmentation using STELA 105
6.6.1 Hand Segmentation . 107
6.6.2 Experimental Results . 110

6.7 Summary . 112

7 Conclusions 115
7.1 Future Work . 117

Glossary 119
Bibliography . 120

viii

List of Tables

6.1 First-tier precision for each class. 104
6.2 Correct detection rate (CD) vs. false positive rate for our method and the

skin color model proposed by Jones [50]. 111

ix

List of Figures

1.1 A keyshape representation example. 3

2.1 (a) Point operator scheme. (b) Neighborhood operator scheme. 8
2.2 An example of a convolution process. 9
2.3 (a) Original image. (b) Image convolved using a 3×3 kernel with σ = 0.5. (c)

Image convolved using a 3× 3 kernel with σ = 1. 9
2.4 (a) Gradient in horizontal direction. (b) Gradient in vertical direction. (c)

Gradient in diagonal direction. 10
2.5 Examples of detecting edges on the image shown in (a). (b) Using Prewitt

Operator. (c) Using Sobel Operator. 12
2.6 Example of the performance of the Canny operator. The result on the left is

computed with σ = 1 and the result on the right is obtained with σ = 1.5.
Both results are obtained using Thlow = 0.05 and Thhigh = 0.125. 13

2.7 Examples of structuring elements. 13
2.8 (a) A binary image of cells. (b) Resulting image after a dilation operation. (c)

Resulting image after a erosion operation. Both results are obtained using a
3× 3 square mask. 14

2.9 Support for the thinning operator. 15
2.10 Examples of the thinning operation. 15
2.11 Two images having the same color distribution but di�erent color spatial dis-

tribution. 21
2.12 A contour of Africa with its corresponding CSS image. This example is cour-

tesy of Mokhtarian et al. [71] . 24
2.13 On the left, a shape is presented with its sample edge point. On the right, the

diagram of the log-polar bins with respect to the sample point (marked with
a red triangle) used by the shape context descriptor is depicted. 25

2.14 Example of two di�erent images representing the same scene. 25

3.1 Examples of sketches. In this �gure, (a) shows a sketch of a government
building, (b) shows a sketch of a lamp and (c) depicts a sketch of a teapot. 29

3.2 An example of the performance of the elastic matching algorithm. (a) shows
a test image over which an sketch has been drawn. (b) shows the deformation
undergone by the initial curve to �t the mug on the test image. 34

3.3 The �ve types of edges in the EHD approach: (a) vertical edge, (b) horizontal
edge, (c) 45-degree edge, (d) 135-degree edge and (e) non-directional edge. . 35

x

3.4 Five �lters used by the EHD approach: (a) vertical edge �lter, (b) horizontal
edge �lter, (c) 45-degree edge �lter, (d) 135-degree edge �lter and (e) non-
directional edge �lter. 36

3.5 Clusters used to compute semi global edge histograms by the EHD approach.
(a) clusters formed with sub-images of the same row. (b) clusters formed
with sub-images of the same column and (c) clusters formed with nearby sub-
images. 37

3.6 Angular partitioning of the APAI method. 39
3.7 Spark Features . 42
3.8 DoIGOH Features . 43
3.9 A sketch representation shown in (a) and the correspondent gradient �eld

shown in (b). 44

4.1 Directional Field of a �ngerprint. 48
4.2 Block division for the HELO descriptor. 51
4.3 An image (a) with its corresponding orientation �eld (b). Here, Wh = Ww = 25. 51
4.4 PCA normalization results. (a) and (c) show sketches a�ected by a rotation

variation. (b) and (d) show the sketch after applying the PCA normalization
process. 53

4.5 PC normalization results. (a) and (c) show sketches a�ected by a rotation
variation. (b) and (d) show the sketch after applying the PC normalization
process. 55

4.6 A sketch on column (a) and its corresponding target image on column (b). . 56
4.7 Examples of sketches. 57
4.8 Examples of test images. 57
4.9 Mean Query Rank for di�erent values of K (histogram size) 58
4.10 Mean Query Rank for di�erent values of W (grid size). 59
4.11 Mean Query Rank of the evaluated methods. 59
4.12 Recall ratio graphic for the evaluated methods. 60
4.13 (a), (b) and (c) are examples of the �rst six retrieved images using the HELO

approach. The �rst image is the query. 61
4.14 Mean Query Rank of the evaluated methods with respect to rotation invariance. 62
4.15 Recall ratio graphic for the evaluated methods with respect to rotation invari-

ance. 63

5.1 Examples of hand drawings of teapots. 64
5.2 Proposal Stages. 66
5.3 Simple Canny edges of a test image. 66
5.4 Edge image produced by a multiscale Canny. 67
5.5 Edge images produced by a multiscale approach over a sketch. 67
5.6 Branching and terminal points. 68
5.7 Strokes approximated by endge links. 68
5.8 The six clases of keyshapes. 70
5.9 On the left, a synthetic example showing in�ection points on a stroke. On the

right, straight lines (dashed lines) approximating stroke pieces. 71
5.10 Test images on the left and their keyshape images on the right. 75

xi

5.11 A local region of around of a diagonal-type keyshape (that marked with a red
�lled circle). 76

5.12 On the left, an angular partitioning descriptor. On the right, a histogram of
orientations descriptor. 77

5.13 Scheme of the combined descriptor. 77
5.14 Two query sketches. 83
5.15 Kendall's correlations for SBIR methods. Our proposal (the last bar on the

right) outperforms that of the state of the art. 84
5.16 Kendall's correlations for the approaches: BoF, Keyshape-based, and the

Keyshape+BoF. 85
5.17 Correlation values for the �rst 15 queries. 86
5.18 Correlation values for the last 16 queries. 86
5.19 Example of SBIR using our proposal. 87

6.1 An example of a user-drawn sketch. 89
6.2 The behavior of an oriented-based global approach for comparing an sketch

with a 3D model suggestive contour. 90
6.3 The pipeline of the proposed local approach. 91
6.4 A synthetic example of a sequence of edgelinks. 92
6.5 Approximating a stroke by a set of straight lines. 92
6.6 First column shows the suggestive contour of two 3D models, second column

shows the corresponding abstract images, and third column shows the detected
keyshapes. 93

6.7 A synthetic representation of the partitioning to make up the proposed local
descriptor. 94

6.8 Matching between a sketch (top image) and a suggestive contour (bottom image). 96
6.9 Combining a global approach with a local one for 3D model retrieval. 97
6.10 A suggestive contour image with its corresponding keyshape representation. . 98
6.11 (a) Local region around a referent keyshape. (b) Local descriptor and its 4-bin

histograms for each slice. 100
6.12 Examples of 3D models used as training data. 102
6.13 Examples of sketches used as queries. 102
6.14 Examples of the 3D model retrieval using the proposed local approach. The

�rst columns show a sketch query, the other �ve images correspond to the �rst
�ve retrieved models. 103

6.15 The �rst-tier precision for each class. We compare HKO-KASD with HOG-
DFT, HELO and STELA methods. 104

6.16 A low accurate segmentation result using a skin color based approach [50].
The white pixel on the right binary are the pixels detected as hand points. . 105

6.17 An example of hand segmentation using our approach. The blue contour
de�nes the segmented region. 107

6.18 Proposal framework. 108
6.19 Two examples of hand localization. 108
6.20 An image containing a hand (left) and its corresponding mask (right). 110
6.21 ROC curves comparing our method with the skin color model proposed by

Jones [50]. The AUC value is indicated in the legend. 111

xii

6.22 Hand segmentation comparison. (a) Input image, (b) target segmentation, (c)
output using our method, and (d) output using the skin color model. 112

6.23 Examples of hand segmentation using our proposed approach. 113
6.24 ROC curves comparing our method with the GrabCut approach. The AUC

value is indicated in the legend. 113

7.1 A very complex image . 116

xiii

Chapter 1

Introduction

Over the last years, the massive use of Internet has fueled the study of information retrieval
systems which has become a very active research area among computer sciences. The classical
approach for information retrieval is that based on textual information where a user writes
a textual query composed of target concepts and the retrieval system returns a ranking with
the most relevant documents stored in a database (or on the web). From the early days
of Internet to present, there has been a great e�ort in the research community to develop
e�cient algorithms capable of searching and indexing textual documents [90, 4]. The result
of this e�ort is re�ected in the fact that the usage of search engines nowadays is an ubiquitous
activity with results characterized by e�ciency and e�ectiveness.

Because of the proliferation of media devices, the web content is no longer based only on
textual documents, but also on multimedia content like images, videos, music, etc. Ongo-
ing research on information retrieval is focused on multimedia information retrieval and in
particular, image retrieval systems has attracted a great number of researchers coming from
di�erent communities like computer vision, multimedia retrieval, data mining, among others,
leading to a vast number of related publications. The reason why image retrieval is the focus
of much research is basically due to the fact that images are ubiquitous and easy to capture
by users.

An image retrieval system returns a set of images which are ranked in a certain order
under a similarity function in response to a query given by a user. A simple way to formulate
a query is by textual concepts. Although this approach is the most common way in which
users make queries, it requires images to be represented by a set of textual information
called metadata. In this way, the image retrieval based on concepts is reduced to a textual
information retrieval. Unfortunately, this approach still has many serious limitations. For
instance, not all images in the web are correctly tagged. In addition, the metadata describing
an image does not re�ect the whole content of the image reducing the expressiveness power
provided by the images themselves. To describe completely the image content using concepts,
we would have to possibly write long texts, which becomes impractical. To address these
problems, current research is focused on searching by the image content itself leading to what
is known as the content based image retrieval approach.

1

Content based image retrieval (CBIR) requires another image as query as opposed to the
concept based query. The retrieval system has to extract some relevant information from the
input image and from those stored in the database (test images). The extracted information
is commonly represented as vectors of numerical features that will be compared by using a
similarity function. Traditionally, a CBIR system receives a regular image showing color and
texture as the input. In this way, in order to start the search, the user must have an example
image resembling what the user is looking for.

Although content based image retrieval seems to overcome the aforementioned drawbacks
related to the concept based image retrieval, the fact of having a regular image as query may
be a serious problem. Indeed, people commonly use an image retrieval system because they
do not count on the desired image, thereby, having such an image query may not be possible,
limiting the image retrieval system usability.

An alternative for querying is by simply drawing what the user has in mind. That is,
making a sketch of what the user expects as an answer could overcome the absence of a
regular example image. This kind of query is also supported by the fact that emerging touch
screen based technology is becoming more popular, allowing the user to make a sketch directly
on the screen. Of course, a sketch may be enriched by adding color, however we claim that
making a sketch only by strokes is the easiest and natural way for querying. Therefore, in
this work, our focus is on image retrieval using stroke-based sketches as queries.

1.1 Related Work

Although a vast number of authors have been involved in content based image retrieval using
an example image as query, some relevant works on sketch based image retrieval have just
appeared in the last three years. The work of Eitz et al. [31] is one of the most relevant
methods in this context. They propose two techniques based on the well known SIFT and
Shape Context approaches for extracting relevant information from sketch representations.
The extracted information, in the form of feature vectors, is clustered to form a codebook
that is then used under the Bag of Features (BoF) approach. This work is also relevant
because the authors propose the �rst systematically built benchmark for the SBIR problem.
One outstanding property of this benchmark is that it takes into account the user opinion
about the similarity between sketches and test images. This is highly important because the
ultimate goal of a retrieval systems is to satisfy the user requirements.

Another approach is that proposed by Hu et al. [44, 45]. This work is also based on the
Bag of Feature approach but addressed the extraction information step in a very di�erent
way with respect to the Eitz's approach. The novel idea in this work is the transforming of
sketch representations into gradient �eld (GF) images. The test images are converted into
sketch representations by edge maps using the Canny operator. The GF images are then
used to compute HOG descriptors in three di�erent scales with respect to each edge pixel.
After that, a BoF approach is applied to form a frequency histogram. This method requires
solving a sparse linear equation system where the number of variables is the order of the size
of the underlying image.

2

Figure 1.1: A keyshape representation example.

Another work was recently presented by Yan Cao et al. [17]. This work presents a method
based on the Chamfer Distance [12]. The method does not present any kind of invariance,
although the authors present a technique to deal with large database based on the inverted
index structure.

Moreover, to the best of our knowledge, the SBIR methods proposed so far have not
exploited yet one of the main features of a sketch representation, its structure. In fact, a sketch
is a simple drawing that lacks color or texture but maintains the structural composition of
what the user is looking for. For instance, if we are interested in retrieving pictures containing
the sun over a beach, we will probably draw a circle representing the sun and some horizontal
lines representing the beach. These shapes (circle and lines) represent structural components.
In addition, the term structure also implies a relationship between the underlying structural
components. In this way, it is not the same to draw a circle over the lines as to draw a circle
below the lines, with respect to our aforementioned example.

1.2 Contributions of this Thesis

Therefore, the contribution of this thesis is to propose novel approaches to dealing with the
sketch based image retrieval problem. Our �rst proposal is a global approach that is based
on representing sketches by a histogram of edge local orientations (HELO). This technique is
inspired by the estimation of orientations in the context of �ngerprint processing using the
square gradient method. This proposal also shows outperforming results when it is compared
with other SBIR global methods.

The second proposal is a local technique that takes into account structural information
from sketch representations. This approach is novel because it is the �rst method that
takes into account the structural composition of a sketch representation. We represent the
structural components of a sketch by decomposing it into a set of primitive geometric shapes
named keyshapes. An example of a keyshape representation obtained from an input image
is showed in Figure 1.1 . Further, our proposal forms feature vectors that take into account
the spatial relationship between the keyshapes. Our results show an increase in the retrieval
e�ectiveness with respect to current methods.

3

We also demonstrate that our keyshape based approach may successfully be combined
with another leading method. The reason for that stems from the fact that our method is
based on a novel feature, di�erent from those used by the other current methods. Speci�cally,
we show that a combination of our method with the Eitz's proposal signi�cantly outperforms
current SBIR methods, achieving an increase in terms of e�ectiveness of almost 22%.

Additionally to the image retrieval domain, we also present two novel approaches for
the sketch-based 3D model retrieval problem which are extended from our keyshape based
method. The �rst approach named STELA, derived from StrucTurE based Local Approach,
is a local technique that leverages the structural information provided by sketch strokes.
Furthermore, in this approach, a variation of the HELO descriptor is used as a �ltering
step to reduce the database size. The second proposal named HKO-KASD as acronym of
Histogram of Keyshape Orientations - Keyshape Angular Spatial Descriptor also exploits the
structural information from sketch representation, but di�erent from STELA, it computes
a local descriptor composed of the local distribution of four types of strokes. In addition,
for the �ltering step, this proposal applies a global technique based on the distribution of
keyshape orientations.

The results of our proposal show an increase in precision for many classes of 3D models
with respect to current strategies applied for sketch-based 3D model retrieval. Particularly,
our method achieves signi�cant improvement over 3D models with a well de�ned structure
as explained later in this chapter.

We also show in this work, how our keyshape based method, that takes into account
the structural information of objects, can be used in a very di�erent domain as the case
of the hand segmentation problem. In particular, we use the STELA technique for �nding
a hand in an image. Using the hand location we extract a training region that is used to
get an accurate segmentation of hand. Interesting applications may be derived from this
proposal, for instance a non-intrusive system may be developed for biometric recognition
using palmprints. In this case, the �rst stage would be the segmentation of a hand whose
result would be the input for the subsequent analysis.

Our contribution on this thesis is supported by a set of publications related to our proposed
methods. First, the HELO [80] descriptor is published in the Proceedings of the 32nd Annual
Symposium of the German Association for Pattern Recognition (DAGM 2010). Second, the
STELA proposal [82] is published in the Proceedings of the ACM International Conference
in Multimedia Retrieval (ICMR 2011). Third, the HKO-KASD [83] is published in the Pro-
ceeding of the Eurographics Workshop on 3D Object Retrieval (2012) together with a SHREC
competition paper [57]. Fourth, the work where we use STELA to improve the accuracy of
the hand segmentation task was accepted to be presented in the International Conference
on Computer Vision Theory and Applications (VISAPP 2013). Finally, we recently have
submitted the paper entitled �Sketch based Image Retrieval using Keyshapes� to Multimedia
Tools and Applications [81].

The organization of this thesis is established as follows:

• Chapter 2 describes basic concepts that are necessary to understand the subsequent
chapters.

4

• Chapter 3 de�nes the sketch based image retrieval problem and the related work known
so far.

• Chapter 4 describes our global proposal, HELO.

• Chapter 5 describes the keyshape based proposal.

• Chapters 6 and 7 present extensions of our proposal for 3D model retrieval based on
sketches and hand segmentation, respectively.

• Chapter 8 discusses the conclusions of this work.

1.3 Evaluation Methodology

On the one hand, to evaluate the performance of our global descriptor we have developed
a benchmark containing a set of test images and a set of sketch images (queries). For the
test image database, we have randomly selected 1326 images. We selected 1285 color images
from the Caltech101 database [34]. Additionally, we added 46 images of castles and palaces
to our database.

For the query database, we have chosen 53 images from the test database. For each
chosen image, a line-based sketch was hand-drawn resembling accurately the underlying
chosen image. Then, the evaluation of the methods was performed by querying each query
sketch for the most similar images and �nding the target image rank. The lower the value of
the rank, the better the method.

On the other hand, to evaluate our local approach based in keyshapes, we use a public
benchmark proposed by Eitz et al. [31]. We pick this benchmark because this was used to
compare state-of-the-art local approaches.

The Eitz's benchmark consists of 31 query sketches, each one associated with a set of 40
test images. In addition, each test image has been ranked by people using a 7-point Likert
scale with 1 representing the best rank and 7 representing the worst rank. This provides the
baseline ranking which is called the user ranking. The evaluation of a method is carried out
by comparing the ranking of the method against the user ranking. To this end, Eitz et al.
propose to use the Kendall's correlation that determines how similar two rankings are.

1.4 Applications of this Thesis

A potential application of a SBIR system could promote the cognitive development of children
who have not yet acquired writing skills. In this way, a SBIR will allow children to draw
simple shapes and the SBIR system will return a set of images resembling what the child
drew. This may allow children to associate abstract shapes with real objects, improving
their ability to understand the real environment. This application is also supported by the
emerging touch-screen based technology that allows any kind of users to make a sketch query
drawing directly on the screen.

5

People with hand motility disability is another user group that may receive signi�cant
bene�ts from a SBIR solution. The impact of a SBIR application becomes more relevant
due to the fact that the majority of computer applications commonly are not accessible for
this kind of users. In this way, a SBIR system would provide great bene�ts to people with
hand-motility issues who can not interact with a computer, writing queries or taking pictures
to use them as queries. Moreover, current research on gaze interaction [13, 91] have allowed
disabled people to interact with computer making any kind of task. However, gaze interaction
may result in an overload work for eyes, specially when the user is exposed to this kind of
interaction for long time. Making a sketch may result faster than typing a query, letter by
letter, with an eye tracker system. Therefore, an image retrieval based on sketches o�ers an
amazing alternative for people with hand-motility issues, reducing in this way the time for
making a query.

6

Chapter 2

Basic Concepts

2.1 Introduction

In this chapter we present a review of basic concepts which are required to completely un-
derstand the proposal methods discussed in this thesis. In particular, we focus on describing
fundamental operations in image processing. The image processing operations are frequently
required in the pre-processing stage in any application of computer vision. In particular, we
describe linear �ltering, edge detectors and morphological operators.

Furthermore, considering that this thesis falls in the context of image retrieval, we dedicate
some sections in this chapter for describing classical techniques applied for the content based
image retrieval problem. In this regard, we review techniques based on color, shape and
texture properties.

2.2 Image Processing

Image processing is a key discipline in computer vision, in fact, it is the �rst stage in most
computer vision applications. The idea is to pre-process an image to highlight some kind
of information in order to facilitate its subsequent analysis. For instance, getting edge in-
formation of an image is very important in the context of sketch processing. Other useful
operations applied in computer vision include exposure correction, color balancing, noise re-
duction, increasing sharpness, among others [94]. Image processing is a fundamental piece
in the computer vision domain in such a way that the results of many computer vision ap-
plications depend on the well design of the image processing algorithms. Moreover, image
processing in the context of image retrieval should be understood as a step for enhancing the
image information, not for describing the content of the image in its entirety [25].

In the image processing domain we can classify two types of operators. The �rst one covers
those operators that compute each output pixel value depending solely on the corresponding
input pixel value (plus, potentially, some globally collected information or parameters). This

7

(a) (b)

Figure 2.1: (a) Point operator scheme. (b) Neighborhood operator scheme.

class of operators is known as point operators. Examples of such operators include brightness
and contrast adjustment as well as color correction and thresholding. A complete description
of these operators can be found in many text books such as the book of Gonzalez et al. [40]
and the book of Russ et al. [49].

The second operator type covers operators which take into account a neighborhood of the
input pixel to compute its corresponding output value. These neighborhood operators are
known as �lters and allow us to remove noise, sharpen details, accentuate edges, among many
other tasks. In Figure 2.1 we show a scheme representing the behavior of a point operator
and a neighborhood operator.

In the subsequent sections we will describe some of the most common neighborhood op-
erators or �lters.

2.2.1 Linear Filtering

The most commonly used type of neighborhood is a linear �lter, in which an output pixel
value is determined as a weighted sum of input pixel values. The weights are represented by
means of a mask known as kernel. A simple equation to calculate an output value with respect
to a pixel (x, y) (the new pixel value) is shown below, where it uses a (2r+ 1)× (2r+ 1)-size
kernel.

g(x, y) =
∑
k,l

f(x− k, y − l)h(k, l) (2.1)

The entries in the weight kernel are often called the �lter coe�cients. The kernel is also
known as a convolution mask. The above equation can be written in a more compact way as:

g = f ⊗ h (2.2)

The symbol ⊗ is the convolution operator and it is, probably, the most common operator
in image processing. Depending on the designing of the mask, one could get diverse results
under a given input image. An example of how the convolution works is shown in Figure 2.2.

Generating an m× n linear spatial �lter requires that we specify m× n mask coe�cients.
These coe�cients are selected based upon what the �lter is supposed to do. Next, we will
describe some commonly used �lters.

8

Figure 2.2: An example of a convolution process.

Gaussian Filter

In this case, the coe�cients of the �lter are calculated using the following continuous function
of two variables:

h(x, y) =
1

2 ∗ π ∗ σ
e−

x2+y2

2σ2 (2.3)

where σ is the standard deviation and x, y are integers which take values depending on the
h's support. Remember that a 2D Gaussian function has a bell shape, and that the standard
deviation controls the tightness of the bell. For example, a 3 × 3 Gaussian �lter mask with
σ = 0.5 is shown below: 0.0113 0.0838 0.0113

0.0838 0.6193 0.0838
0.0113 0.0838 0.0113

A set of examples applying a Gaussian �lter over an input image is shown in Figure 2.3,

where we use a 5× 5 neighborhood with σ = 0.5 and σ = 1. The greater the value of σ, the
stronger the blur e�ect.

(a) (b) (c)

Figure 2.3: (a) Original image. (b) Image convolved using a 3 × 3 kernel with σ = 0.5. (c)
Image convolved using a 3× 3 kernel with σ = 1.

Edge Detector

Edge pixels are pixels at which the intensity of an image function changes abruptly, and
edges (or edge segments) are sets of connected edge pixels. The edge detector methods also

9

(a) (b) (c)

Figure 2.4: (a) Gradient in horizontal direction. (b) Gradient in vertical direction. (c)
Gradient in diagonal direction.

fall on the group of neighborhood operators. They are also known as high-pass �lters since
edges are characterized by showing high frequency in the frequency domain.

Edge operators work �nding local changes on the image. Local changes in intensity can be
detected using derivatives. In this way, the �rst and second order derivatives are particularly
well suited for this purpose.

The mathematical tool for �nding edge strength and direction at location (x, y) of an
image f , is the gradient, denoted by ∇f , and de�ned as follows:

∇f = grad(f) ≡
[
gx
gy

]
=

[∂f
∂x
∂f
∂y

]
. (2.4)

An important geometrical property of the gradient vector is that it always points out in the
direction of the greatest rate of change of f at location (x, y) as shown in Figure 2.4.

The magnitude of vector ∇f , denoted as M(x, y) is de�ned by:

M(x, y) = mag(∇f) =
√
g2
x + g2

y. (2.5)

M(x, y) is the value of the rate of change in the direction of the gradient vector at (x, y). We
must note that gx, gy, and M(x, y) are images that are the same size as the original image
f . In addition, the direction of the gradient vector is given by the angle

α(x, y) = tan−1

[
gy
gx

]
. (2.6)

Getting the gradient of an image requires computing the partial derivatives ∂f/∂x and
∂f/∂y at every pixel on the image. A discrete approximation of the partial derivatives at a
pixel (x, y) is:

gx =
∂f(x, y)

∂x
= f(x+ 1, y)− f(x, y), (2.7)

gy =
∂f(x, y)

∂x
= f(x, y + 1)− f(x, y). (2.8)

It is possible to write the above equations as the convolution masks gMx and gMy , which are
computed as follows:

gMx =
[
−1 1

]
, gMy =

[
−1

1

]
. (2.9)

10

When a 3×3 neighborhood is considered, the simplest approximation is by using the Prewitt
masks (Prewitt operator):

gPx =

 −1 0 1
−1 0 1
−1 0 1

 , gPy =

 −1 −1 −1
0 0 0
−1 −1 −1

 . (2.10)

A slight variation on the Prewitt operator uses a weight of 2 in the center. This variation
is known as the Sobel operators, and it is the most common operator to highlight edges in
images. The reason why this operator is preferable relies in its characteristic to reduce noise
(smoothing) in an image. The corresponding masks for the Sobel operator are shown below:

gSx =

 −1 0 1
−2 0 2
−1 0 1

 , gSy =

 −1 −2 −1
0 0 0
1 2 1

 . (2.11)

The edge masks discussed previously allow us to compute the gradient images Gx and Gy by
convolution. For instance, if we choose to use the Sobel approximation to detect edges from
the image f , the corresponding gradient images Gx and Gy are computed as shown below:

Gx = f ⊗ gSx (2.12)

Gy = f ⊗ gSy (2.13)

Using these two images it is possible to estimate edge strength and direction using Equations
2.5 and 2.6. Additionally, in order to avoid time consuming issues, the magnitude may be
computed without using multiplications in the following way:

M(x, y) ≈ |Gx|+ |Gy| (2.14)

Examples of using edge detector operators are shown in Figure 2.5

2.2.2 Canny Edge Detector

The Canny operator [16] allows us to improve the quality of the edge detection procedure
based on minimizing spurious response, increasing the accuracy of the detected edge points,
and maximizing the single edge point response.

First, the Canny operator applied a smoothing operator over an image f . To this end, a
Gaussian �lter g is applied on f by convolution. This operation is followed by computing the
gradient magnitude M(x, y) and the direction α(x, y) at each point (x, y). To approximate
the gradients image Gx and Gy, the Sobel operator is used.

The next step, known as the nonmaxima suppression, is to thin those ridges that commonly
appear wide around a local maxima. For nonmaxima suppression the gradient direction at
each pixel is quantized in four directions: horizontal, vertical, dir_45 (45◦), and dir_135
(135◦).

Let d1, d2, d3, and d4 be the four directions mentioned. The nonmaxima suppression
proceeds as follows:

11

(a) (b) (c)

Figure 2.5: Examples of detecting edges on the image shown in (a). (b) Using Prewitt
Operator. (c) Using Sobel Operator.

1: Let gN be the nonmaxima suppression image.
2: for each point (x, y) do
3: Find the direction dk that is closest to α(x, y).
4: if M(x, y) is less than at least one of its two closest neighbors along dk then
5: gN(x, y) = 0 (suppression);
6: gN(x, y) = M(x, y)
7: end if
8: end for

The �nal step is called hysteresis thresholding. To this end, the Canny operator uses two
thresholds Thlow and Thhigh. Therefore, a pixel (x, y) with M(x, y) < Thlow is discarded as
edge pixel; if M(x, y) >= Thhigh, the pixel (x, y) is marked as a strong edge pixel; otherwise
(i.e. Thlow ≥ M(x, y) < Thhigh) the pixel is marked as a weak edge pixel. After that, a
weak edge pixel becomes a strong edge pixel only if it is connected to a strong edge pixel.
Finally, only strong edge pixels are considered as edge pixels of the underlying image. Figure
2.6 shows examples of the result produced by the Canny operator when it is applied over
the image appearing in Figure 2.5(a). The result shown in Figure 2.6(a) is obtained by the
Canny operator using a Gaussian �lter with σ = 1, Thlow = 0.05 and Thhigh = 0.125 and the
result of Figure2.6(b) is computed with σ = 1.5 and the values of Thlow and Thhigh are the
same as before.

2.2.3 Morphological Operators

The most common binary operations1 are called morphological operations, since they change
the shape of the underlying binary objects. To carry out this task, a binary structuring

1A binary operation is applied over a binary image.

12

(a) (b)

Figure 2.6: Example of the performance of the Canny operator. The result on the left is
computed with σ = 1 and the result on the right is obtained with σ = 1.5. Both results are
obtained using Thlow = 0.05 and Thhigh = 0.125.

element is required. The process works as the convolution process, calculating a binary
output value which depends on a speci�ed threshold. The structuring element can be any
shape, from a simple 3×3 mask to more complicated shapes like disk-shape structures. Some
examples of structuring elements are shown in Figure 2.7.

Figure 2.7: Examples of structuring elements.

To formalize how these operations work we follow the explanation given by Szeliski [94]
because it is short and very clear. In this way, we de�ne the binary operator � that operates
on an image f using a structuring element s, similar to that of the convolution operator. We
de�ne the result of this pseudo convolution process as follows:

c = f � s (2.15)

where, c is the count of the number of 1's that fall inside the structuring element s as it is
scanned over f . In addition, we de�ne S as the size of the structuring element (number of
pixels) and θ(·, ·) to be a thresholding function de�ned as:

θ(x, t) =

{
1 if x ≥ t

0 otherwise
(2.16)

The standard operations used in binary morphology include:

13

1. Dilation: dilate(f, s) = θ(c, 1)

2. Erosion: erode(f, s) = θ(c, S)

3. Majority: maj(f, s) = θ(c, S/2)

4. Opening: open(f, s) = dilate(erode(f, s), s)

5. Closing: close(f, s) = erode(dilate(f, s), s)

Examples of the result yielded by the dilation and erosion operations using a 3 × 3 square
mask are shown in Figure2.8.

(a) (b) (c)

Figure 2.8: (a) A binary image of cells. (b) Resulting image after a dilation operation. (c)
Resulting image after a erosion operation. Both results are obtained using a 3 × 3 square
mask.

2.2.4 Thinning

Thinning is a fundamental preprocessing step in many image processing and pattern recog-
nition applications. When the fundamental primitives in an image are strokes or curves of
varying thickness it is usually desirable to reduce them to thinned representations located
along the approximate middle of the original stroke or curve.

There are many algorithms for obtaining a thinned representation of a binary image. The
survey of Lam et al. [55] is a valuable source to read about it. Here, we will describe
the two-subiteration based thinning algorithm proposed by Guo and Hall [41] because of its
simplicity, e�ciency, and its proven good performance.

The algorithm proposed by Guo and Hall processes a binary image evaluating each fore-
ground pixel (with value 1) in two di�erent stages. The �rst one takes place during odd
iterations and the second one during even iterations. The algorithm uses operators with
a 3 × 3 support where the pixel p lies on the center and its eight neighbors are named
p1, p2, . . . , p8 as de�ned in Figure 2.9.

Additionally, two functions are de�ned over the point p that is being processed. These
functions are:

• C(p): The number of distinct 8-connected components of ones in the neighborhood

14

Figure 2.9: Support for the thinning operator.

around p. C(p) = 1 means that p is a boundary pixel.

C(p) = ¬p2 ∧ (p3 ∨ p4) + ¬p4 ∧ (p5 ∨ p6) (2.17)

+¬p6 ∧ (p7 ∨ p8) + ¬p8 ∧ (p1 ∨ p2) (2.18)

• N(p): This function provides an endpoint check. N(p) is the number of pairs which
contain one or two ones around p without overlapping.

N(p) = min(N1(p), N2(p)) (2.19)

where,

N1(p) = (p1 ∨ p2) + (p3 ∨ p4) + (p5 ∨ p6) + (p7 ∨ p8) (2.20)

N2(p) = (p2 ∨ p3) + (p4 ∨ p5) + (p6 ∨ p7) + (p8 ∨ p1) (2.21)

To decide if a pixel p is deleted, three conditions must exist. We call these conditions the
Guo-Hall conditions. These are:

1. C(p) = 1

2. 2 ≤ N(p) ≤ 3 and

3. Apply one of the following conditions depending whether the underlying iteration is
odd or even.

(a) (p2 ∨ p3 ∨ ¬p5) ∧ p4 = 0 in odd iterations

(b) (p6 ∨ p7 ∨ ¬p1) ∧ p8 = 0 in even iterations

The algorithm works in a parallel way, so all modi�cations occur after an iteration is
completed. An example of using the described thinning operator is depicted in Figure2.10.

Figure 2.10: Examples of the thinning operation.

15

2.3 Image Retrieval

Nowadays, research in image retrieval (IR) is an active discipline in computer science. Image
retrieval (IR) is focused on the study of techniques for �nding images in large collections
which are spread over a wide variety of media such as DVDs or the web. Moreover, image
retrieval may be extendend to work on video retrieval since a video is in fact a sequence of
images [38, 46].

Image retrieval involves topics of multiple disciplines such as computer vision, arti�cial
intelligence, statistics, databases, high performance computing, and human-computer in-
teraction. In this section, we will describe some fundamental on image retrieval including
traditional techniques which are based on color, texture or shape.

2.3.1 Classi�cation

There are several ways in which we could classify an image retrieval system. However, Datta
et al. presented a very comprehensible description of image retrieval classi�cation [25] and
which is the base for the classi�cation described in this section. In this vein, an image retrieval
system may be classi�ed from two perspectives. The �rst one is set from the user perspective,
taking into account the modality of querying and classifying the type of the input. The second
one is set from the system perspective, classifying the modality of processing.

2.3.2 Query modality

• Keyword: In this case, the user writes the query using concepts about what he or she
is looking for. Therefore, this kind of query is in fact a textual query. This is currently
the most common way under which the search engines are implemented.

• Image: Here, the user wishes to �nd images resembling a query image. To search
in this way, the user requires a regular image representing what he or she is actually
looking for.

• Graphics: This kind of query is created by hand or by a computer program. Therefore,
a query falling in this category may be regarded as an arti�cial picture. In addition,
this kind of query may be based on a colorful graphic or a simple stroke-based drawing.

2.3.3 Process modality

Next, we describe a characterization of how image retrieval system algorithms are imple-
mented.

• Text-Based: In this situation, a search process is carried out by comparing textual
information registered on the images. The problem is that the majority of images come
without such information. In this case, an annotation process is required for tagging

16

images automatically. However, it is quite rare for complete text annotation to be
reliable and available because it would entail describing every color, texture, shape,
and objects appearing in the visual media. Commonly, text-based processing may
involve some techniques for natural processing to understand the query as a whole.

• Content-Based: The content-based search is the focus of current research on content
based image retrieval. In this case, a content-based approach requires extracting visual
information from images. The extracted information is then used to evaluate similarity
between images. Commonly, this approach also involves image processing and computer
vision techniques. An appropriate feature representation and a similarity measure to
rank images, given a query, is essential here.

• Composite: Composite processing is a combination of techniques falling in the two
aforementioned categories.

2.3.4 Architecture of an Image Retrieval System

An image retrieval system basically consists of three components: preprocessing, feature
extraction, and similarity measurement. The results of the search are usually shown as a list
which is sorted according to a score given by a selected similarity measure.

• Preprocessing: This component uses image processing techniques in order to get a
simpler representation of the input image that could be analyzed in an easier way by the
subsequent steps. Some techniques applied here are noise elimination, edge detection,
image enhancement, thresholding, morphological operations among others.

• Feature Extraction: This component is very critical in order to select appropriate
features for the image retrieval task. These features are typically low level features
related to color, texture and/or shape. The set of features must possess a good or an
optimal discriminatory power in the particular application.

• Similarity Measurement: The similarity measure is used to compute a distance value
between the user query and a candidate match from the database. A good similarity
measure is characterized by showing a low distance value when the underlying compared
images are very similar and vice-versa, it must show a high distance value when the
underlying images are very di�erent.

2.3.5 Applications

Image retrieval has very important applications that are beyond the traditional application
based on searching the web. Some of these are described below:

• Architecture and Interior Design: Describing buildings by text may become a
di�cult task owing mainly to the absence of a standard terminology that describes
correctly the underlying architectural aspects. Therefore, content-based image retrieval
appears as an valuable alternative that allow interested users to �nd images containing
particular structures. Moreover, in interior design, a content based image retrieval

17

system may assist users in �nding paintings that math with a room with certain features
[51, 86].

• Biochemical: �Each day more molecules are found and cataloged by biochemical
researchers�[65]. Therefore, computational methods that permit searching molecules
with particular shape properties would be helpful in the design of drugs [84]. For
example, to study the e�ects of a certain drug researches may want to look for molecules
sharing similar shapes. This is supported by the principle of Johnson and Maggiora,
which states �similar compounds have similar properties�.

• Digital Catalog Shopping: Commonly, people spend a lot of time looking for some-
thing that covers him or her requirements when they go shopping. In this case an image
retrieval system may assist shopper in �nding the correct object (sofa, television, car,
etc) by a relevant feedback strategy starting with an image that represents a vague idea
of what the user is actually looking for [42].

• Education: Education is a potential environment where an image retrieval system
could become a very important learning tool. A speci�c application is in a history
course, where students are interested in exploring history events including medieval
and modern events. For instance, if a class session is focused on the World War II, an
image retrieval system would allow student to retrieve relevant pictures or videos about
this speci�c event [76].

• Film and Video Archives: An extension of image retrieval can be applied to the
case when what we want to process is a sequence of images like videos or �lms. A
particular instance where a video retrieval [46, 38] would impact enormously is in
the case of television stations. Until recently, the only option available for �nding
a particular video shot was to manually fast-forward through the video tapes until
the video segment was found. A video retrieval would permit to �nd a certain video
shot faster searching in a large collections of videos using attributes as color, shape
or texture. �The ability to �nd video shots quickly is particularly important to news
stations because they often only have minutes to put together the late-breaking news
story� [65].

• Medicine: Typically, medical diagnosis is carried out by using visual information of
abnormal conditions [5] which are either directly viewed by the physician or scanned into
an image using techniques as X-rays, magnetic resonance, or computed tomography.
Using a large collection of examples of both normal and abnormal states of organs or
tissues, an image retrieval system could support the medical sta� decision in order to
provide a more accurate diagnosis.

2.3.6 Image Retrieval Techniques

In the early years of the image retrieval systems (early 90's), the methods for image retrieval
were based on textual information. To this end, images are required to be annotated with
appropriate tags. However, text-based annotation has important drawbacks especially when
dealing with huge databases. Automatic annotation does not provide a high level of semantic
as the manual annotation does. However, manual annotation is actually labor intensive.
Moreover, people may describe the same image in di�erent ways. Furthermore, since images

18

are rich in content, text may, in many applications, not be descriptive enough. To overcome
the problem arising from the text-based image retrieval, the current direction in this context
is on the content based image retrieval (CBIR) which describes images by their own visual
information like color, texture or shape. Therefore, in the next paragraphs, we will describe
some classical methods to address the content-based image retrieval problem.

Color-based Image Retrieval Methods

Color is the visual attribute that a user can perceive directly from images. It is probably the
easiest image attribute users can use to judge similarity between two images. Indeed, color is
one of the most widely used visual features in image and video retrieval systems [63, 21, 103].

In order to describe an image using color, �rst we need to specify a color system. Color
systems have been developed for di�erent purposes. Some of the most used color systems
are: RGB, HSV, YCbCr, L?a?b?, L?u?v?, HMMD, among others.

RGB is the most common color space in computer based processing. This system rep-
resents a color using the channels red (R), green (G), and blue (B). In this way, this space
is de�ned as the unit cube in the Cartesian coordinate system. A RGB color system is not
perceptually uniform and it is dependent on the image conditions. This situation may cause
problems when the images are recorded under di�erent lighting conditions for instance.

HSV [88] color space is another popular color system. Here, the colors are represented
by three properties: hue (H), saturation (S) and value or intensity (V). The hue attribute
corresponds with the dominant wavelength of the spectral energy distribution, specifying a
kind of color like: red, yellow, green, cyan, blue or purple. The saturation value points out
how pure a color is. In other words, saturation is the richness of a hue denoting how pure a
hue is. Finally, the intensity value corresponds to the level of darkness or brightness of the
color. This value is related to the gray-scale value. HSV is an intuitive color, and it can be
obtained from the a RGB representation by a non-linear transformation.

YCbCr is a way of encoding RGB information used principally for video transmission.
In the YCbCr color system, Y represents the luminance component and Cb, Cr represent the
chromatic components related to blue and red di�erences, respectively.

L?a?b? is a visually uniform color system proposed by CIE (Commission Internationale
d'Eclairage). The color feature L? corresponds to the perceived luminance, the color feature
a? correlates with the red-green content, and the color feature b? correlates with the yellow-
blue content.

HMMD is a color space used by the standard MPEG 7 [63], and consists of the color
features Hue, Max=max(R,G,B), Min=min(R,G,B), and Di� =Max-Min. In addition, a �fth
feature Sum=0.5*(Max+Min) is de�ned. Although HMMD has �ve features, a set of three
components {H,Max,M in} or {H,Diff, Sum} is su�cient to form the HMMD color space
and specify a color point.

Following we describe the color based algorithms for image retrieval proposed by MPEG-7

19

[21, 87, 63].

1. Dominant Color Descriptor (DCC): This descriptor provides a compact descrip-
tion of representative colors in an image. The DCC descriptor works determining a set
of clusters, in which each cluster centroid ci is regarded as a dominant color. RGB is
used as the default color space. For clustering the Generalized Algorithm of Lloyd [39]
is used. In addition, two statistical properties are computed for each cluster ci.

• The percentage pi of pixels belonging to ci.

• The variation vi of cluster ci.

Additionally, a spatial coherency s of all dominant colors is computed. The spatial
coherency is based on the average connectivity of the pixels within their respective
clusters.

In this way, the dominant color descriptor of an image I is represented as follows:

DCD(I) = {{ci, pi, vi}, s}, (i = 1, 2, . . . , N) (2.22)

where N is the number of dominant colors.

2. Scalable Color Descriptor (SCD): This descriptor is obtained by using the Haar
transform across values of a color histogram represented in the HSV color system. This
method computes a 256-bin histogram on the HSV space, which is quantized by using
16 bins for the hue (H) component, 4 bins for the the saturation (S) component, and
4 bins for the intensity (V) component. This histogram is passed through a series of
1-D Haar Transform to reduce the number of bins of the histogram. In addition the
resulting Haar coe�cients may be quantized with a certain number of bits allowing
a higher level of interoperability. Finally, the matching between SCD descriptors is
carried out by the L1 metric applied over the Haar representations.

3. Color Layout Descriptor (CLD): This is a descriptor based on spatial distribution
of pixels on an image represented in the L?a?b? color space. The CLD descriptor
consists of four stages. The �rst stage partitions the image in 8× 8 blocks to deal with
resolution or scale variation. In this case, the size of a block depends on the size of the
image. In the second stage a representative color for each block is determined. The
average of colors on a block is recommended. This results in a reduced image of 8× 8
pixels. For each channel of the reduced image a DCT transform [72] is computed, so
we have DCTL, DCTa, and DCTb. The �nal descriptor is composed of three arrays,
each listing the coe�cients of each DCT representation scanning the corresponding
coe�cients in a zig-zag way.

4. Color Structure Descriptor (CSD): The CSD represents an image by both the
color distribution of the image and the spatial structure of the color. This descriptor
is a way to face the problem of having two images with the same color distribution
but with completely di�erent color spatial distribution. An example of this problem is
shown in Figure 2.11 in which the images are represented by black and white pixels.

The CSD is a one-dimensional array de�ned as follows:

CSD = hs(m),m ∈ {1, . . . ,M} (2.23)

where M, the number of bins, may be any value in {256, 128, 64, 32} and s is an associated
structuring element that passes through all pixels on the image.

20

Figure 2.11: Two images having the same color distribution but di�erent color spatial distri-
bution.

The structuring element allows the descriptor to represent the color spatial distribution.
The CSD works by increasing a histogram bin hs(m) by 1 if the color m occurs in the set
of pixels within the structuring element s each time s visits a pixel on the image. MPEG-7
de�nes the structuring element as an 8× 8 square.

Texture-based Image Retrieval Methods

Texture is another property of images that characterizes the surface of objects and it also
may be used for image browsing. Although many authors have proposed diverse methods
for texture based image retrieval [62, 78], there is not an appropriate de�nition for texture.
However, authors coincide in two points: (1) within a texture there is a signi�cant variation
in intensity levels between nearby pixels and (2) texture is an homogeneous property at some
spatial scale, larger than the image resolution. Therefore, a single scene may contain di�erent
textures at varying scales [65].

At the core of the MPEG-7 [63], there are three texture descriptors for image retrieval
which are discussed below:

1. Texture Browsing Descriptor (TBD): This descriptor is a compact representation
of the image texture. This is composed of three perceptual texture attributes: direc-
tionality, regularity, and coarseness. The regularity of a texture describes how well
de�ned the texture pattern is. So, this attribute varies from 0 to 3, where 0 indicates
an irregular or random pattern and 3 indicates a well de�ned pattern. The direction-
ality of a texture is quantized to be in {0◦, 30◦, 60◦, 90◦, 120◦, 150◦}. Patterns do not
necessarily have only one dominant direction, the TBD considers two dominant direc-
tions (e.g a brick wall has two orthogonal directions). Coarseness is related to image
scale or resolution. It may represent pattern varying from the �nest to the coarsest
pattern resolution. This attribute is represented using four integer values from 0 to 3.
The value 0 indicates a �ne grain texture and 3 indicates a coarse texture.

The computation of the attributes values of the TBD is carried out by a bank of Gabor
�lters. A detailed description of this algorithm can be found in [63].

2. Homogeneous Texture Descriptor(HTD): This descriptor is computed over the
frequency domain of an image. We can represent an image in its frequency domain
using the Fourier Transform [40, 72]. The frequency space is divided into 30 channels

21

with equal division in the angular direction and octave division in the radial direction.
The angular direction is partitioned in 6 equal-size regions in steps of 30◦ and the radial
direction is divided in 5 regions.

The individual feature channels are modeled using 2D Gabor functions as explained in
[78]. For each �ltered channel Ci, i = 1 . . . 30 the texture energy and the energy devia-
tion is computed. Both values are logarithmically scaled to obtain two values ei and di.
These values as well as the mean of the pixel intensities fm and the standard deviation
of the entire image pixels fsd form the texture descriptor. Finally, the homogeneous
texture descriptor has the following form:

HTD = [fm, fsd, e1, . . . , e30, d1 . . . , d30] (2.24)

3. Edge Histogram Descriptor (EHD): The EHD is an edge based descriptor. This
approach captures the local spatial distribution of edges. The term local arises from
the fact that the EHD divides the image in 4 × 4 blocks and computes a local spa-
tial distribution (histogram) of edges for each block. The spatial edge distribution is
represented by a 5-bin histogram, where each bin represents a type of edge. Edges
are typi�ed using �ve categories: vertical, horizontal, 45◦ diagonal, 135◦ diagonal, and
isotropic. The �nal descriptor is obtained concatenating the local histograms. Since
the entire image is partitioned into 16 blocks, the �nal descriptor is composed of 80
bins.

Shape-based Image Retrieval Methods

Object shape provides a powerful clue to the object identity and functionality and can even
be used for object recognition tasks [65]. The survey of Schomaker et al. [85] about cognition
aspects of image retrieval showed that users are more interested in retrieval by shape than
by color and texture as pointed out by Veltkamp et al. [97].

Image retrieval by shape is still considered one of the most challenging tasks for content
based search. Even, representative search systems as Query by Image Content (QBIC) [35]
of IBM performs poorly when searching on shape.

MPEG -7 standard de�nes three descriptors [10] with di�erent properties: the contour-
based shape, the region-based shape and the 3D shape spectrum descriptors. Since we are
interested in 2D shape descriptors, the following will describe the two former descriptors.

1. Region Based Shape Descriptor (RBSD) : The importance of the region based
shape descriptors is that they may perform well for complex shapes that consist of
several disjoint regions, such as trademarks or logos, emblems, clipart, and characters.
Further, these kinds of descriptors may solve certain problems that contour based
descriptors undergo. Typical problems with contour based techniques arises due to
distortions such as crack-like opening or objects touching neighboring objects that may
drastically change the contour.

The RBSD is based on the Angular Radial Transform (ART), that is an orthonormal
unitary transform de�ned on a unit disk that consists of orthonormal sinusoidal basis

22

functions in polar coordinates. The ART coe�cients are de�ned as follows:

ψmn =

∫ 2π

0

∫ 1

0

V ∗mn(ρ, θ)f(ρ, θ)ρdρdθ (2.25)

where f(ρ, θ) corresponds to the image in polar coordinates and V ∗mn is the ART basis
function that is separable along the angular and radial redirections and it is de�ned by:

Vmn(ρ, θ) = An(θ)Rm(ρ), (2.26)

where An(θ) is the angular basis function and Rm(ρ) is the radial basis function. In
order to cope with rotation invariance, the angular basis function is computed using an
exponential function:

An(θ) =
1

2π
exp(i · n · θ) (2.27)

and the radial basis function is de�ned by a cosine function as follows:

Rm(ρ) =

{
1 m = 0

2cos(πmρ) m 6= 0
(2.28)

Finally, the MPEG-7 region based descriptor is de�ned as the normalized magnitudes
of the ART coe�cients. For scale normalization, ART coe�cients are divided by the
magnitude of the ART coe�cient of order m = 0, n = 0. Furthermore, the standard
MPEG-7 recommends using 35 coe�cients for the region-based descriptor, where each
one is quantized using 4 bits.

2. Contour Based Shape Descriptor :

The contour based descriptor expresses shape properties of the object outline. The
MPEG-7 contour based shape descriptor is based on the Curvature Scale Space (CSS)
representation of a contour [70, 69]. The CSS method requires having a digital contour
C extracted from an image. This contour is parameterized as:

C(µ) = (x(µ), y(µ)) (2.29)

where (x, y) are the coordinates of the pixels belonging to the contour. Having a contour
C, the CSS decomposes it into convex and concave sections by determining in�ection
points (zero-crossing points). The curvature of a contour is computed as:

k(µ) = x′(µ)y′′(µ)− x′′(µ)y′(µ) (2.30)

This curvature computation is done in a multiresolution way, where a contour is ana-
lyzed at various scales, each obtained by a Gaussian smoothing process.

CSS keeps information of the zero-crossing of curvature function associated with the
corresponding scale yielding a CSS image. The CSS image is obtained by plotting all
the zero crossing points on a 2D plane, where vertical axis corresponds to the amount
of �ltering and horizontal axis corresponds to the position on the contour. In this way,
zero-crossing points appearing at various scales will show a high amount of �ltering.
Next, the location of the prominent peaks (xcss, ycss) on the CSS image are extracted.
These peaks are ordered according to the decreasing values of ycss. This ordered set of

23

Figure 2.12: A contour of Africa with its corresponding CSS image. This example is courtesy
of Mokhtarian et al. [71]

peaks together with the eccentricity and circularity value form the �nal CSS descriptor.
An example of a contour with it corresponding CSS image is depicted in Figure 2.12.

So far we have reviewed shape descriptors proposed in MPEG-7. However, one of the
approaches for describing hapes that have received much attention during the last ten
years is the proposal of Belongie et al. [9] describing the Shape Context method. We
describe this approach following.

Shape Context: This method proposed by Belongie et al. [9] is a contour based
approach for determining a similarity value between two shapes. The central idea relies
on �nding correspondences between these shapes.

As a contour-based approach this method requires a contour representation as input.
However, unlike ART descriptor, this does not require the contour to be continuous,
and edge map representation of the image computed by Canny operator is enough.

Shape Context treats an image as a set of points. Moreover, a shape is represented
by a subset of random points sampled from the contours on the image. In this way, a
shape may be represented by a set P = p1, p2, . . . pn (typically n = 100 is used).

For each pi ∈ P this method computes a histogram hi of the relative coordinates of the
remaining n-1 points under the following expression:

hi(k) = |{q 6= pi : (q − pi) ∈ bin(k)}| (2.31)

To favor nearby pixels, the bins are distributed using a log-polar space around the
underlying point pi. An example of this technique is shown in Figure 2.13.

For setting a correspondence between sets of points, a cost function must be de�ned.
In this way, the shape context method uses the χ2 test statistics to determine the cost
of matching C(pi, qj) between to descriptors pi and qj. Using this function, the method
looks for minimizing the total matching cost expressed as:

H(π) = Σn
i=1C(pi, qπ(i)) (2.32)

For sake of simplicity we will suppose that two shapes are represented with the same
number of points. Let P = {p1, . . . pn} and Q = {q1, . . . , qn} be such representations. In
the previous equation π is a permutation of the sequence 1, . . . n turning the matching
to be a one to one representation.

In order to solve the matching problem, shape context uses the Hungarian Method
used for Bipartite Graph problems. In addition, the alignment process is carried out

24

Figure 2.13: On the left, a shape is presented with its sample edge point. On the right, the
diagram of the log-polar bins with respect to the sample point (marked with a red triangle)
used by the shape context descriptor is depicted.

by the Thin Plane Spline model [11]. Finally, the dissimilarity between two shapes is
represented by the sum of the matching cost.

For further description on image shape descriptors we recommended going to surveys
presented by Loncaric [58] and Veltkamp [97].

2.4 Local Descriptors

Local descriptors have been spread vastly in the computer vision community with a variety
of applications like image retrieval, object recognition, object categorization, image stitching
and 3D modeling [94]. Unlike global descriptors, which represent an image using information
from the whole image, local descriptors represent an image using interest local regions. This
allows methods to handle a variety of image invariance problems like geometric variations
(scale, translation, rotation, a�nity), occlusions and intra-category variations. In the Figure
2.14, two images representing the same scene are shown. In this case, a global approach
commonly fails. The book that appears in the image of Figure 2.14(a) is missing on the
image of Figure 2.14(b), so a global representation of the two images may be very di�erent.
However, local descriptors perform very well in the mentioned case due to there still being a
lot of common regions between the images.

(a) (b)

Figure 2.14: Example of two di�erent images representing the same scene.

A general approach for working with local descriptors consists of four steps: (1) �nd a set

25

of distinctive interest points, (2) de�ne a local region around each interest point, (3) compute
a local descriptor from each local region, and (4) match local descriptors.

Finding interest points also known as keypoints has been studied broadly and many algo-
rithms have been proposed to this end [67, 96]. A keypoint detector method should hold two
properties (1) repeatability and (2) informativeness.

• Repeatability: Given two images of the same object or scene, taken under di�erent
viewing conditions, a high percentage of the features detected on the scene part in one
of the images should be found in the other.

• Informativeness: This feature, also known as the distinctiveness property, sets that the
intensity patterns underlying the detected features should show a lot of variation such
that features can be distinguished and matched.

Keypoint detectors may be classi�ed as corner-based detectors or blob-based detectors. In
the �rst case, the Harris detector [43] is the most representative one. It is based on evaluating
the distribution of derivatives on a image region by means of the second moment matrix. In
the second case, the Hessian detector, based on the assessment of second order derivatives,
and DoG (Di�erence of Gaussians) [59] are the most representatives. The Harris and Hessian
detectors have been extended by Mikolalzyk et al. [67] to deal with scale variations using the
Laplace operator for determining a characteristic scale as a peak of Laplacian response. In
addition, an a�ne invariant detector was proposed by the same authors [66].

Another keypoint detection strategy is to simply sample points on the image. The Shape
Context approach [9] is based on this strategy.

After detecting keypoints on an image the next problem is to appropriately describe the
region around a keypoint. This task is carried out by local descriptors. Many local descriptors
have been proposed, however the current methods are based on the SIFT method [59]. We
could consider that the publication of the SIFT method represents a milestone in the local
descriptor �eld.

SIFT (Scale Invariant Feature Transform) is computed from gradients distributed on a
16×16 rectangular region around a keypoint. The rectangular region is divided into 4×4 non-
overlaped blocks. For each block, an 8-bin histogram representing the gradient orientation
distribution is formed with the corresponding gradient magnitudes falling in the block. In
order to reduce the in�uence of gradients far from the center, the magnitudes are weighted
by a Gaussian kernel. The SIFT descriptor is the juxtaposition of the gradient histograms
for all the blocks. The �nal 128-bin histogram, produced by the 16 local 8-bin histograms,
is normalized to unit length.

In the same vein of the SIFT descriptor, Ken an Sukthankar [53] proposed the PCA-SIFT,
where x and y derivatives are computed over a 39 × 39 patch. The derivative values make
up a 3042-dimensional vector. This vector is reduced to only 36 principal components using
PCA.

Another interesting local descriptor is SURF (Speed Up Robust Features) [7], a variant
of SIFT that uses integral images and Haar-like features to get a descriptor in a fast way.

26

Similar as SIFT, SURF divides a rectangular region around a keypoint into 4×4 subregions.
For each subregion, the method computes four values using Haar-like features. The �nal
descriptor is a 64-dimensional vector.

The GLOH (Gradient Location-Orientation Histogram) method [68] is another variant
of SIFT. This method uses a log-polar binning instead of the 4 × 4 blocks used by SIFT.
This type of partition produces 17 local regions, the center with radius=7 and the other 16
regions formed by partitioning the image into two radial section (radius=11 and 15) and eight
angular sections. Among each local region a 16-bin histogram is formed in a similar way as
SIFT. The �nal 272 (17×16)-dimensional descriptor is reduced to 128 principal components.

The �nal step is to match keypoints coming from two di�erent images using their corre-
sponding local descriptors. To this end, each descriptor from one of the images (generally, the
test image) has to be mapped to a descriptor on the other image (generally, the query image).
The Nearest Neighbor (NN) strategy [108] is commonly used for mapping descriptors.

In the NN approach, a cost function or distance function is required to map two descriptors.
In addition, a threshold is used to determine the goodness of the mapping. There are a variety
of alternatives from which we could choose a distance function. The Minkowski distance is
typically the option when descriptors are represented as vectors. The Minkowski distance
DM(x,y) between d-dimensional descriptors x and y is de�ned as follows:

DM(x,y) =

(
d∑
i=

|xi − yi|α
)1/α

. (2.33)

Typical values of α are 1 or 2. The former is known as the Manhattan distance, while the
latter is the Euclidean distance. Further, when α→ inf we obtain the Chebyshev distance:

limα→inf

(
d∑
i=

|xi − yi|α
)1/α

= maxd
i=1|xi − yi|. (2.34)

If the histogram is represented by a probability density function (pdf), typical distance
functions include the K-L divergence and the χ2− test. The K-L divergence comes from the
Theory of Information �eld [22], and it is de�ned as:

DKL(x, (y) =
d∑

i=1

xilog(
xi

yi

). (2.35)

The χ2 − test is an approximation of the statistical χ2 function. It is de�ned as:

Dχ2(x,y) =
d∑

i=1

(xi − yi)
2

xi + yi

. (2.36)

Another approach to set a mapping between local descriptors comes from the Operation
Research �eld. In this case, we try to minimize the total cost of the mapping. Formally,

27

let A be a referent image represented by m local descriptors and let B be a query image
represented by n local descriptors, the objective function is de�ned as:

min
m∑

i=1

n∑
j=1

cijxij (2.37)

where cij is the cost of mapping a descriptor i from A with a descriptor j from B, and xij is
a characteristic function de�ned as below:

xij =

{
1 if descriptor i of A is mapped with descriptor j of B
0 otherwise

(2.38)

This leads to the assignment problem, which has been studied in depth in the Operation
Research �eld [14, 74]. The assignment problem aims to achieve an optimal matching under
a certain cost function. One of the most popular methods to solve this problem is the
Hungarian Method [54] which is suitable in cases where the number of descriptors is low (in
order of tens).

2.5 Summary

In this chapter we have discussed relevant topics required to understand the subsequent
chapters. The discussed topics come from a variety of computer science areas like image
processing, computer vision and multimedia information retrieval. For further reading refer-
ence regarding image processing, please see the book �Digital Image Processing� of Gonzales
and Woods [40] or �The Image Processing Handbook� of Russ [49]. In the case of com-
puter vision, there are also very good reference books like �Computer Vision, Algorithms
and Applications� of Szeliski [94] and �Computer Vision, A Modern Approach� of Forsyth
and Ponce [36]. Finally, further topics in multimedia information retrieval can be found in
"Principles of Visual Information Retrieval" of Lew [65].

28

Chapter 3

Sketch Based Image Retrieval

3.1 Introduction

Due to the progress in digital imaging technology, image retrieval has become a very relevant
discipline in computer science. In a content-based image retrieval system an image is required
as input. This image, known as the example image, should express what the user is looking
for. However, people commonly use an image retrieval system because they do not count on
the desired image, thereby, having such an example image may not be possible, limiting the
image retrieval system usability. An easy way to express the user query is using a line-based
hand-drawing, a sketch, leading to the sketch-based image retrieval (SBIR). In fact, a sketch
is the natural way to make a query in applications like CAD or 3D model retrieval [37, 32].

De�nition 1 A sketch is a free hand-drawing consisting of a set of strokes. A sketch lacks
texture and color. It is drawn without �lling or shadows. The main characteristic of a
sketch is that it represents the structure of the objects. Figure 3.1 depicts three examples of
sketches.

De�nition 2 The sketch based image retrieval (SBIR) is part of the image retrieval �eld.
In a SBIR system, the input is a simple sketch representing one or more objects. According

(a) (b) (c)

Figure 3.1: Examples of sketches. In this �gure, (a) shows a sketch of a government building,
(b) shows a sketch of a lamp and (c) depicts a sketch of a teapot.

29

with the image retrieval classi�cation discussed in Section 2.3.1, a SBIR system falls into
the graphic category with respect to its input. Due to the underlying di�erences between
a sketch nd a regular image, classical methods applied in the content based image retrieval
�eld cannot be applied directly to the sketch based image retrieval problem.

Although a vast number of researchers on multimedia image retrieval are mainly focused
on content-based image retrieval systems using a regular image as query, in the last few years
the interest in the sketch based image retrieval problem has been increased. This interest may
be owed to the emerging touch screen technology that allow users to draw a query directly
on a screen, turning the process of making a query easy and accessible.

The current SBIR methods vary from global approaches to local ones. In the case of global
techniques, classical methods are based on building a frequency histogram of orientations [93]
or a histogram representing the distribution of edge pixels [18]. In the case of local techniques,
approaches based on the Bag of Features strategy are predominant [31, 44, 45, 32].

Another kind of approach is that based on elastic contours [28], where a sketch is repre-
sented by a parametric curve that is then strained or bent in order to �t the border of an
object in an image. Another approach for the SBIR problem is based on converting the input
sketch into a regular image with color an texture [20, 30]. This conversion process is known
as image montage. After applying the montage process, the SBIR problem is reduced to
the classical CBIR problem in which an example image required as input is the result of the
montage process. The montage based image retrieval leads to an expensive process, owing
mainly to the additional process to convert the image into a regular image.

In the following, we will describe the most relevant approaches that have been proposed
in the last few years to tackle the SBIR problem.

3.2 Query by Visual Example

The Query by Visual Example (QVE) method, proposed by Kato et al.[52], was one of the
�rst approaches dealing with the sketch based image retrieval problem. This method is
mainly focused on retrieving art gallery pictures having a rough sketch as a query.

The algorithm consists of two steps:

1. Adaptive image abstraction.

2. Flexible image matching.

3.2.1 Adaptive Image Abstraction

An input sketch and a test image are compared by means of their corresponding edge map
representations whose size is regularized to 64 × 64 pixels. On the one hand, since sketches
are already edge map representations, only a thinning operation is applied to them in order

30

to obtain a linear sketch. On the other hand, test images are RGB representations, so a
speci�c edge detection algorithm is required to produce an abstract image. The edge detection
algorithm followed by the QVE approach is based on a di�erential �lter. The �nal result of
this stage is an abstract image that will be the input for the next stage. The algorithm of
this stage is described below:

1. Given a pixel pi,j, calculate the gradients for RGB intensity values in four directions
∂1

ij, ∂
2
ij, ∂

3
ij, ∂

4
ij.

∂ij1 =
1

|Iij|
1

3
[(pi−1j−1 + pij−1 + pi+1j−1)− (pi−1j+1 + pij+1 + pi+1j+1)]

∂ij2 =
1

|Iij|
1

3
[(pi−1j−1 + pi−1j + pi−1j+1)− (pi+1j−1 + pi+1j + pi+1j+1)]

∂ij3 =
1

|Iij|
1

3
[(pi−1j−1 + pi−1j + pij−1)− (pi+1j + pi+1j+1 + pij+1)]

∂ij4 =
1

|Iij|
1

3
[(pij−1 + pi+1j−1 + pi+1j)− (pi−1j + pi−1j+1 + pij+1)]

where |Iij| is the intensity power de�ned as:

|Iij| =

√√√√1

9

i+1∑
u=i−1

j+1∑
v=j−1

p2
uv (3.1)

2. Get the local maximum gradient:

|∂ij| = max(∂1
ij, ∂

2
ij, ∂

3
ij, ∂

4
ij) (3.2)

3. Calculate the mean µ and deviation σ for all gradients previously calculated.

4. Select as global candidates those pixels (i, j) holding |∂ij| ≥ µ+ σ.

5. Calculate the local mean µij and local deviation σij for gradient values of global can-
didates (i, j). The local region of a pixel (i, j) is speci�ed by a 7× 7 size local window
centered on (i, j).

6. Select the local edge candidates as those pixels (i, j) keeping |∂ij| ≥ µij +σij. The local
edge candidates are represented by a binary image.

7. Apply a thinning algorithm to get the �nal edge image named the abstract image.

3.2.2 Flexible Image Matching

The �exible matching is based on evaluating a local correlation between a linear sketch and
an abstract image which afterward is aggregated to compute a global correlation value. Given
an abstract image P and a linear query Q, the algorithm for the QVE matching proceeds as
follows:

1. Divide P and Q into 8 × 8 local blocks. In this way, P = {P ij} and Q = {Qij},
i, j = 0 · · · 7.

31

2. Calculate the local correlation Cab
δ,ε between P ab and Qab where shifting (δ, ε) with

respect to Qab.

Cab
δ,ε =

n(a+1)−1∑
r=na

n(a+1)−1∑
s=na

(αprs · qr+δs+ε + βprs · qr+δs+ε + γprs ⊕ qr+δs+ε) (3.3)

where n = 8, pij ∈ P , qij ∈ Q, and (α, β, γ) are control parameters used for weight-
ing one-match, zero-match or non-match, respectively. The control parameter values
described in QVE [52] are α = 10, β = 1, and γ = −3.

3. Maximize the local correlation

Cab = max−n
2
≤δ,ε≤n

2
,(C

ab
δε). (3.4)

4. Calculate the global correlation C between P and Q

C =
7∑

a=0

7∑
b=0

Cab. (3.5)

Finally, the global correlation C is used as a similarity score for the retrieving task.

The computational complexity of this method is (δ + ε)O(N), where N is the number of
pixels in the image and δ y ε are the o�set parameters set for the local correlation. The o�set
parameters are directly related with the property of tackling position variations. Therefore,
to handle a wide range of position variations the complexity of the method increase too. In
addition, it is not clear how QVE could deal with rotation invariance. Furthermore, the QVE
approach requires the sketch be drawn very similar to the object contour which is not always
possible because, frequently, people draw sketches in an uncontrolled way.

3.3 Elastic Matching of User Sketches

Another approach for SBIR was presented by Del Bimbo and Pala [28] based on an Elastic
Matching Model. In that work, they assume that a user draws a sketch as a contour repre-
senting the shape of the object aimed to retrieve. Furthermore, the sketch must be drawn
with similar aspect ratio as the target object .

In this approach a sketch is regarded as a deformable template modeled by a linear com-
bination of splines. The term �deformable� or �elastic� is set because the template is capable
of being warped to �t the border of an object on a test image. The match between the �nal
deformable template and an object of an image, as well as the elastic deformation energy
spent during the warping process are used to evaluate the similarity between the sketch and
the underlying image.

The deformable template parameterized with respect to its normalized arc length is given
by: −→

φ (s) = −→τ (s) +
−→
θ (s) (3.6)

32

where −→τ : R 7→ R2 is the sketched template and
−→
θ : R 7→ R2 is the deformation

undergone by the template.

The warping process is constrained to satisfy two criteria: (1) the template must undergo
elastic deformation avoiding discontinuities and (2) the template must be pushed to the edges
of the image.

For the �rst criterion, the deformation undergone by the template is represented by the
energy spent with respect to how much the template is strained and how much the template
is bent to �t an object. This energy E is formulated by following:

E = S + B (3.7)

= α

∫ 1

0

[(
dθx
ds

)2

+

(
dθy
ds

)2
]

ds+ β

∫ 1

0

[(
d2θx
d2s

)2

+

(
d2θy
d2s

)2
]

ds, (3.8)

where the term S represents the straining energy and B is the bending energy. In the
formula, α and β are control parameters that control how much a template may be strained
or bent, respectively.

For the second criterion, the edge map representation IE of an image I is used. To measure
how well the deformable template �ts the edges, the following formula is applied:

M =

∫ 1

0

IE(
−→
φ (s))ds, (3.9)

where a valueM = 1 means that the template lies completely on edges of the image, while
M = 0 means that the template lies entirely in areas where the gradient is null (no edges
found).

Since the idea is that the template gets closer to the edges spending the least amount
of energy as possible, the goal is to maximize M minimizing E . This is formulated as an
optimization problem trying to minimize the functional F de�ned as follows:

F = S + B −M (3.10)

To solve the optimization problem Del Bimbo and Pala proposed to use the well known
gradient descend method [28]. An example of the dynamic of this approach is shown in
Figure 3.2.

To determine how well a sketch resembles an object of an image, the energy spent during
the warping process represented by S and B, as well as theM value are taken into account.
Moreover, since the energy spent by the deformable template is related to the complexity of
the shape, the number N of the zeros of the curvature function associated with the sketch
is also considered. Finally, a correlation value C between the original template and the �nal
one obtained by the warping process is considered for the similarity computation.

To get the similarity score between a sketch and a test image, a learning process is
carried out. Speci�cally, a multilayer neural network is trained using the �ve parameters
(S,B,M,N , (C) previously discussed. The output of the neuronal network is the �nal simi-
larity score.

33

(a) (b)

Figure 3.2: An example of the performance of the elastic matching algorithm. (a) shows a
test image over which an sketch has been drawn. (b) shows the deformation undergone by
the initial curve to �t the mug on the test image.

3.3.1 Spatial Relationship

Assuming that the objects on images are represented by minimum enclosing rectangles
(MER), Del Bimbo and Pala proposed to consider the spatial relationship between objects
on a test image and on a sketch to �lter out some test images before applying the elastic
matching approach.

Let I be an image containing N objects o1, · · · oN , where each object is represented by its
MER with the beginning boundaries de�ned by (bx, by) and the ending boundaries de�ned
by (ex, ey). The relationship between oi and oj is represented by Rij = [Cij, Oij], where
Cij pointing out one of �ve relationship classes. These classes are disjoint, meet, contain,
inside, and partly_overlap. The term Oij is a 4-tuple Oij = [O1

ij, O
2
ij, O

3
ij, O

4
ij] indicating an

orientation vector between oi and oj. This is de�ned as:

O1
ij =

{
1 cx(oi) ≤ bx(oj)
0 bx(oj) < cx(oi)

O2
ij =

{
1 cx(oi) ≤ ex(oj)
0 ex(oj) < cx(oi)

O3
ij =

{
1 cy(oi) ≤ by(oj)
0 by(oj) < cy(oi)

O4
ij =

{
1 cy(oi) ≤ ey(oj)
0 ey(oj) < cy(oi)

where (cx(oi), cy(oi)) are the projections of the centroid of oi on the two axes.

To speed up the search, a signature �le that represents the spatial relationship between
objects is proposed by Del Bimbo and Pala. The signature �le is composed of �ve �elds,
each one representing one the �ve classes of relationship de�ned previously. Each �eld is
composed of nb bits. A bit of a �eld λ is turned on depending on a hashing function H =
H(i, j, Oij) 7→ {0, · · ·nb − 1} only if the relationship class of objects oi and oj corresponds to
the λ class. In this way images whose signature �les do not match the sketch signature �le

34

are �ltered out.

In multi-objects images the �nal similarity score R is obtained summing up similarity
scores computed for each object R =

∑N
i=1 Si, where N is the number of objects. Retrieved

images are sorted depending on the values of R.

The main drawback of this approach is that it requires a continuous curve as a sketch in
order for the application of the warping process be possible. This fact is far from the real
environments . For instance, the sketches depicted in Figure 3.1 can hardly be represented
by a simple curve.

3.4 Edge Histogram Orientation

The Edge Histogram Descriptor (EHD) was proposed in the visual part of the MPEG-7 [63]
and was improved by Sun Won et al. [93] in the context of image matching. The idea is to
use global and semi-global edge histograms generated from the local histograms computed
according to the MPEG-7.

This approach can be divided in two steps: (1) compute local edge histograms and (2)
aggregate the local histograms to get a global and semi-global histograms. It is worth noting
that both the input sketch and the test image used for comparison follow the same process.

3.4.1 Local histograms

The local edge histograms are computed as following:

1. An image (a query sketch or a test image) is divided into 4 × 4 grid, where each cell
of the grid is called a sub-image. An edge histogram is then computed for each sub-
image. The edge histogram represents the local distribution of �ve types of edges in
the underlying sub-image. The �ve types of edges are (1) vertical edge, (2) horizontal
edge, (3) 45-degree edge, (4) 135-degree edge, and (5) non-directional edge. A picture
of these edges are shown in Figure 3.3.

(a) (b) (c) (d) (e)

Figure 3.3: The �ve types of edges in the EHD approach: (a) vertical edge, (b) horizontal
edge, (c) 45-degree edge, (d) 135-degree edge and (e) non-directional edge.

2. To determine the occurrence of a certain edge type, each sub-image is further divided
into H ×W image blocks, where the H and W depend on the size of the image block,

35

which in turn, depends on the global image size. Next, we show how to compute the
size of the image block (block_size) for an image of m× n pixels.

block_size =

⌊√
m× n
D

⌋
× 2, (3.11)

where D is the desired number of blocks, which is �xed to deal with the various image
resolutions.

3. Each image block is divided into 2 × 2 sub-blocks which are numbered from 0 to 3 in
a zig-zag way starting from the left-top corner. Additionally, the intensity value of a
sub-block b, I(b), is obtained by averaging the intensity values of all pixels falling in b.

4. Compute the response of �ve directional �lters in an image-block to detect a predomi-
nant edge direction. These �lters are de�ned as follow:

fv = [1,−1, 1,−1] (3.12)

fh = [1, 1,−1,−1] (3.13)

f45 = [
√

2, 0, 0,−
√

2] (3.14)

f135 = [0,
√

2,−
√

2, 0] (3.15)

fnd = [2,−2,−2, 2] (3.16)

The graphical representation of the �lters are shown in Figure 3.4.

(a) (b) (c) (d) (e)

Figure 3.4: Five �lters used by the EHD approach: (a) vertical edge �lter, (b) horizontal
edge �lter, (c) 45-degree edge �lter, (d) 135-degree edge �lter and (e) non-directional edge
�lter.

5. Compute the magnitude of the response MB
τ for a �lter fτ over an image block B,

where τ ∈ {v, h, 45, 135, nd}

MB
τ =

3∑
k=0

|I(bBk)× fτ (k)| (3.17)

where bBk corresponds to the sub-block k in the image block B.

6. The edge type of a block B is that with the maximum �lter response.

type(B) = arg maxτ∈{v,h,45,135,nd}(M
B
τ) (3.18)

7. Finally, a 5-bin edge histogram is computed for each sub-image representing the fre-
quency of occurrence of each edge type in the underlying sub-image. In this way we
obtain sixteen 5-bin local edge histograms.

36

3.4.2 Global and semi-global histograms

Sun Won el al. [93] proposed to extend the original EHD descriptor considering not only
local histograms, but also a global and semi global histograms. The global edge histogram
represents the edge distribution for the whole image. For the semi-global case, the edge
histograms are computed in three types of clusters.

The �rst type of cluster is formed with sub-images falling in the same row yielding four
row edge histograms as shown in Figure 3.5(a). Likewise, four column edge histograms are
computed by grouping the sub-images by columns (Figure 3.5(b)). This corresponds to the
second cluster type. The third type of cluster is formed with nearby sub-images as shown
in Figure 3.5(c), yielding �ve histograms. In this way, the �nal edge histogram is composed
of sixteen local histograms (80 bins), 1 global histogram (5 bins) and thirteen semi-global
histograms (65 bins). Thereby, this approach yields a histogram consisting of 150 bins.

(a) (b) (c)

Figure 3.5: Clusters used to compute semi global edge histograms by the EHD approach. (a)
clusters formed with sub-images of the same row. (b) clusters formed with sub-images of the
same column and (c) clusters formed with nearby sub-images.

In terms of computational complexity, the EHD method is linear O(N) with respect to
the number of pixels N in the image. Although, this method is simple to be computed, it
does not deal with rotation variations. Furthermore, this method fails when it has to face
partial matching.

3.5 Angular Partitioning of Abstract Images

The Angular Partitioning of Abstract Images (APAI) proposed by Chalechale et al. [18]
method is another approach for the SBIR problem. This method computes an abstract
representation from both the query image and the test image based on the corresponding
edge images. Then, the angular distribution of pixels on the abstract image is employed for
making up a feature vector. This method addresses the rotation problem by applying the
Fourier Transform to the APAI descriptor. The steps followed by this approach are (1) get an
abstract image from both the sketch and a test image, (2) apply a feature extraction based
on an angular partitioning and (3) apply the Fourier Transform to get rotation invariance.
Next, we describe each of these steps in detail.

37

3.5.1 Abstract Image

The �rst step is to compute an edge map representation from the query and from a test
image. Since the former is almost an edge map, only a thinning operation will be required.
However, for the latter, the Canny operator is applied using σ = 1 and a Gaussian mask of
size=9. To compute the high and low threshold required for the Canny hysteresis process,
this method proposes the following strategy:

1. Compute an edge �lter H based on the smoothed derivative g of the 1D version of the
Gaussian �lter applied for the Canny operator.

H = G⊗ g, (3.19)

where G is a 1D Gaussian �lter, and ⊗ is the convolution operator.
2. Calculate two directional components X(u, v), Y (u, v) for each pixel (u, v) of the image
I composed of M ×N pixels:

X(u, v) =
M∑
j=1

(u, j)H(v − j) (3.20)

Y (u, v) =
N∑

i=1

(i, v)H(u− i) (3.21)

3. Compute an edge magnitude Γ(u, v) of a pixel (u, v).

Γ(u, v) =
√
X(u, v)2 + Y (u, v2) (3.22)

4. Make up a cumulative histogram hc of Γ values and pick the smallest index κ of hc such
as hc(κ) ≥ α×M ×N (α = 0.7).

5. The high threshold is set to β × κ and the low threshold is set to 0.4× β × κ.

After computing the edge map representation, the method obtains the bounding box of
the edge image resizing it to a J×J pixels in order to deal with scale problems. The resulting
image is called the abstract image.

3.5.2 Feature Extraction

For the feature vector extraction, an abstract image Ω is divided in angular partitions (slices)
with respect to the corresponding surrounding circle with radius R (an example of this
partition is depicted in Figure 3.6). In this way, the angle between adjacent slices is φ =
2π/K, where K is the number of angular partitions and it will correspond to the size of the
feature descriptor as well.

The number of edge points falling in each slice is chosen to represent the slice feature.
Thus, the feature vector f(i), i = 1, · · · , K is de�ned as:

f(i) =

(i+1)2π
K∑

φ= i2π
K

R∑
ρ=0

Ω(ρ, φ), (3.23)

38

Figure 3.6: Angular partitioning of the APAI method.

which becomes a scale and translation invariant descriptor.

3.5.3 Rotation Invariance

In order to tackle the rotation invariance problem, the magnitude of the Fourier Transform
applied to f is used because of its shift-invariant property. The 1D Fourier Transform F (·)
of f(·) is obtained as follows:

F (u) =
1

K

K−1∑
k=0

f(K)e
−i2πuk
K , (3.24)

whose magnitude ||F (u)|| is de�ned as follows:

||F (u)|| =

√√√√ 1

K

(
K−1∑
k=0

f(k)cos

(
2πuk

K

))2

+

(
K−1∑
k=0

f(k)sin

(
2πuk

K

))2

(3.25)

Finally, the feature vector is given by {||F (u)||}, u = 0 · · ·K − 1. The similarity between
feature vectors is computed by the Manhattan distance.

In the case of the APAI approach, it entails an overload of computing the parameters for
the Canny method yielding a computational complexity of O(Nr ×Nc)(Nr +Nc), where Nr

and Nc are the number of rows and number of columns of the underlying image, respectively.
This method is one of the �rst methods to deal with rotation issues.

3.6 Structure Tensor Descriptor

The Structure Tensor Descriptor (STD) was proposed by Eitz et al. [29] as a novel alternative
to deal with large scale image retrieval based on sketched feature lines. This proposal is

39

constructed in such a way that both the query sketch and the test image undergo the same
processing to get the descriptor or feature vector.

The STD approach is based on getting a local descriptor that captures the main direc-
tions in local regions of both the test image and the query. Local descriptors corresponding
to equivalent local regions are compared, and an aggregation function that computes a dis-
similarity score based on the local comparison is de�ned.

Speci�cally, the local regions are obtained by dividing the image into a number of regular
cells, typically between 24× 16 and 32× 24 cells per image. Let Cij be a cell, (u, v) ∈ Cij if
the pixel (u, v) falls within the cell Cij.

Having divided the image into cells, the gradients guv are computed for each pixel (u, v)
discarding some gradients with small magnitude. In particular, the method discards those
gradients g where gTg < ε2 (ε =

√
(2)/20).

The structure tensor provides information about the main orientation of the gradients in
a cell. The idea is to �nd a single vector x in a cell that is as parallel as possible to the image
gradients in that cell. Since xTguv attains a maximum when x||guv then �nding such a vector
x could be formalized as the following maximization problem:

x = arg max

 ∑
(u,v)∈Cij

(xTguv)
2

 , (3.26)

where ∑
(u,v)∈Cij

(xTguv)
2 = xT

 ∑
(u,v)∈Cij

guvg
T
uv

x. (3.27)

De�ning Gij =
∑

(u,v)∈Cij
guvg

T
uv, we get:

x = argmax
(
xTGijx

)
. (3.28)

Since the optimization problem relies just on Gij the descriptor Tij proposed in this ap-
proach for a cell Cij is Gij normalized by the corresponding Frobenius norm as below:

Tij =
Gij

||Gij||F
(3.29)

For comparing a sketch and a test image, the corresponding structure tensor based de-
scriptors are compared. To this end, a distance dij between two tensor descriptors T Sij and
T Iij corresponding to cell (i, j) of a sketch and a test image, respectively, is de�ned as:

dij = ||T Sij − T Iij||F (3.30)

40

The �nal distance or dissimilarity score d is computed as summing up the distances for
each cell as:

d =
M∑
i=1

j=N∑
j=1

dij, (3.31)

where M is the number of cells per row and N is the number of cells per column.

The tensor-based descriptor requires to pass through all pixels of an image to form all
the tensor matrices Gij, which leads to a computational complexity of O(N), where N is
the number of pixels. Similar to the EHD method, the tensor based descriptor does not deal
with rotations variations.

3.7 Bag Of Features Approach

Widely used in the context of text retrieval, the Bag of Words (BoW) approach has also
been applied in the computer vision �eld successfully, speci�cally for the category recognition
problem.

The Bag of Words approach, also known as Bag of Features in the computer vision com-
munity, simply computes the distribution or histogram of �visual words� found in the query
image and compares this distribution with those found in the test images [94]. Csurka et al.
[23] were the �rst to use the term bag of keypoints to describe such approaches and among
the �rst to demonstrate the utility of frequency-based techniques for the category recognition
task.

Di�erent from the text retrieval environment where words can easily be separated and
extracted, in the context of images, we do not have such a behaviour, we have only pixels
which do not contain semantic information[94].

A common approach to represent visual words is to construct a visual vocabulary known
as a codebook by clustering local descriptors, given a set of training images. Each cluster
center represents a codeword, and the �nal histogram for an image I is computed counting
the number of local descriptors of I falling in each cluster (codeword). Typically, the size of
the codebook is to the order of 1000.

In the categorization problem, the distribution of visual words are then classi�ed using
typical classi�ers like Naïve Bayes or SVM. [23]. However, due to SVM has showed an
outperforming behaviour over Naïve Bayes, SVM is the classi�er commonly used in the
categorization problem.

In this vein, Eitz et al. [31] have recently presented modi�ed versions of the well known
local descriptors like Shape Context [9] or SIFT [59] to be applied in the context of SBIR,
using the BoW approach. The variations they propose are the Spark Feature and the DoIGOH
Feature. In addition, they use 500 descriptors per image in random locations and have

41

Figure 3.7: Spark Features

reported outperforming results with a codebook of 1000 visual words. Finally, as a search
strategy they rely on standard inverted index.

3.7.1 Spark Feature

In the Spark descriptor, the random points are generated to lie in the empty areas between
image edges. For each sampled point, the method traces rays of random directions until the
�rst edge point is achieved. The descriptor then represents the distribution of features of the
rays that generated a hit. The features of rays that the authors propose are: (1) the distance
of the ray and (2) the angle of the ray or the orientation of the hit point. According to the
authors, using a 2D histogram storing the distance and the angles information of rays, as in
the shape context approach, results in a better performance. An example of this descriptor
is shown in Figure 3.7.

3.7.2 DoIGOH Feature

This is a variant of the well known SIFT descriptor. The name of this approach stems from
Dominant Image Gradient Orientation Histogram (DoIGOH). In this case, the locations on
the image over which the local descriptors are computed are determined randomly. The
variation is that only orientations that correspond to important feature lines are stored. The
method uses Canny lines as an indicator for important features and stores only orientations
that correspond to data lying under a slightly blurred version of the Canny feature lines. An
example of this descriptor is depicted in Figure 3.8

One of the advantages of using the BoW approach is related to the necessary time for
searching. Di�erent from the classical local approach, where many descriptors need to be
matched with many descriptors, in the BoW approach an image is represented by only
one histogram. This means that comparing two images is reduced to compare the two
corresponding histograms, allowing to decrease the time for searching in the context of CBIR,
for instance. However, this approach losses the locality property of the descriptors, turning

42

Figure 3.8: DoIGOH Features

impossible detecting the position of an object of interest. In addition, the BoW ignores the
spatial relationship among features of the image, which represents a relevant feature, specially
in cases with objects are represented in a minimalist way like in the case of sketches that are
represented only by strokes.

In terms of computational complexity, the spark feature approach and the DoIGOH ap-
proach compute the descriptors of an image in O(N + P ×W), where N is the number of
pixels of the image, P is the number of selected points on the image, and W is the number
of pixels corresponding to the local region in which a descriptor is computed.

3.7.3 Gradient Field - Histogram of Orientated Gradients

In the Gradient Field-Histogram of Oriented Gradients (GF-HOG) approach, that was pre-
sented by Hu et al. [44, 45], each test image is represented by and edge map using the Canny
operator. The resulting edge map is considered as a sketch representation for the underly-
ing image. The edge maps of the all test images are then compared with the input sketch.
Considering that sketch representations are commonly sparse with respect to edge pixels,
this method propose an interesting approach consisting in using a dense gradient �eld over
which descriptors are computed. The gradient �eld is computed from a sketch representation
interpolating the corresponding set of edge pixels. This gradient �eld is also called gradient
image.

Having a sketch representation M : Ω 7→ {0, 1}, where Ω ∈ R2, a gradient image G : Ω 7→
[−π, · · · π] is computed overM . G is computed such that G(x, y) = tan−1(Gx(x, y)/Gy(x, y)),
where Gx is the gradient image computed in the abscissa direction and Gy in the ordinate
direction. The gradient �eld F ofM is computed solving the following minimization problem:

F = argmin

∫ ∫
Ω

(5F −G)2 s.t. F|E = G|E, (3.32)

where E = (x, y) ∈ Ω|M(x, y) = 1. The process of computing F by using the Equation 3.32
is known as a guidance interpolation where G is a guidance �eld. The solution of Equation
3.32 is achieved by solving a Poisson's Equation with Dirichlet boundary condition. Perez et

43

(a) (b)

Figure 3.9: A sketch representation shown in (a) and the correspondent gradient �eld shown
in (b).

al. [77] proposed a discrete solution for the Poisson's equation and it is the base of the GF-
HOG approach. The discretization process consists in solving a set of sparse linear equation
de�ned as follow:

4F(x, y) =
∑

(p,q)∈N(x,y)G(x,y)

,∀(x, y) /∈ E. (3.33)

where N(x,y) represents a neighborhood of (x, y). In addition, in order to satisfy the constrain
speci�ed in Equation 3.32, F must be equal to G(x, y) for the points (x, y) ∈ E. Moreover,
Hu et al. [44] propose to approximate 4F using a 5 × 5 window. In Figure 3.9, we show a
sketch representation together with its corresponding gradient �eld image.

Having computed the gradient �eld image, the next step is the characterization process.
To this end, Hu et al. use the Histogram of Gradient Orientations approach (HOG) [24].
Speci�cally, a HOG descriptor is computed over each pixel (x, y) on F that corresponds to
an edge pixel in M (M(x, y) = 1). To compute a HOG descriptor with respect to a pixel
(x, y), the method requires to de�ne a support local region around (x, y). Having de�ned
the local region R(x,y) around (x, y) the HOG descriptor in the GF-HOG method works as
follows:

1. Divide the local region R into a 3× 3 grid. Each cell of R is called a window.

2. Divide each window W into n× n grid. Each cell of W is called a block.

3. Compute a histogram of gradient orientation for each block. The orientation of the
gradients are quantized into a 9-bin histogram.

4. Compute an aggregate histogram for each window concatenating all the block his-
tograms. We obtain a n× n× 9-bin histogram.

5. Compute an aggregate histogram for R concatenating all the window histograms. The
�nal result is a 92 × n2-bin histogram.

In order to deal with scale variations, Hu et al. propose to use n = {5, 10, 15}, where each
value of n represents a di�erent scale for computing the HOG descriptors. For the retrieval
task, the GF-HOG approach is based on the Bag of Feature approach. In this way, the set of
local descriptors computed for each test image are clustered by using the k-means algorithm
to form a codebook. The input sketch as well as the test images are characterized by mean
of a frequency histogram which is computed using the computed codebook. To measure a
similarity value between a sketch and a test image the corresponding frequency histograms

44

are compared using a histogram intersection functions. Let HS be the frequency histogram
constructed from an input sketch Sand HI be the frequency histogram constructed from
a test image I the similarity value d(HS, HI) between S and I is computed by using the
Equation 3.34.

d(HS, HI) =
k∑

i=1

k∑
j=1

(ωijmin(HS(i), HI(j))) (3.34)

where k is the size of the underlying codebook and wij is a weight computed with respect to
a normalized version Ĥ of H de�ned as follows:

wij = 1− |ĤS(i)− ĤI(j)|. (3.35)

The computational cost of the GF-HOG approach depend strongly on the cost of solving
the sparse linear equation system to obtain the gradient image. Considering that a classi-
cal sparse linear equation system solver is cubic in terms of its computational complexity,
computing the gradient image is the order of O(N3), where N is the size of the image. Con-
sidering besides that the HOG descriptor may be computed in O(N) the computational cost
of the GF-HOG approach is O(N3 +N).

3.8 Edgel Index

This approach, presented by Yang Cao et al. [17], proposes to describe a sketch represen-
tation, generated from the input sketch or from a test image, using a triplet (x, y, θ) where
(x, y) corresponds to the position of edge pixels and θ is the edge orientation at (x, y). For
matching an input sketch and a test image, the approach is based on the Oriented Chamfer
Matching (OCM) [12, 92] applied over the triplet representations.

One of the relevant structures used by the Edgel Index approach is the hit map. Let TS
be a triplet representation of a sketch S, the hit map of TS is computed as follows:

HitS(p) =

{
1 ∃q ∈ TS, ||(x, y)p − (x, y)q||2 ≤ r ∧ θp = θq

0 otherwise
, (3.36)

where r is a tolerance radius and |||̇| is the Euclidean distance.

Let TI be a triplet representation of the test image I, the Edge Index method computes
a similarity value between S an I as follows:

sim(I, S) =

[(
1

|TI |
∑
p∈TI

HitS(p)

)
·

(
1

|TS|
∑
p∈TS

HitI(p)

)] 1
2

. (3.37)

The proposed method compares two images with a computational cost of O(N), where N
is the number of pixels of the biggest image. In addition, for indexing purposes, an inverted
index approach is applied with respect to the triplets that characterize the test images.

45

Although this approach allows a user to obtain the retrieval result fast, it lacks minimal
invariance properties. This method does not permit, for instance, to handle position or scale
variations. This may be a critical drawback because commonly users are interested in a
concept further than in the right position of the objects. For instance, a user looking for
pictures containing the sun will draw simply a circle as the input sketch. If the circle is drawn
on the left side of the canvas, the Edgel Index approach will never return pictures containing
the sun on the right side.

3.9 Summary

In this chapter we have discussed the most relevant methods that address the sketch based
image retrieval problem. All of these methods share a common property. They all transform
test images into edge map representations in order to compare them with an input sketch. To
this end, the discussed methods tend to use the Canny operator. Although there are other
state-of-the-art approaches for computing edge maps such as the Berkeley boundary detector
[64], many authors still prefer Canny due to its processing time.

The SBIR methods permit representing a sketch in a global or local way. On the one
hand, global approaches are commonly based on computing a histogram of orientations or on
computing a distribution of edge pixels with respect to a certain image partitioning. Methods
falling in this group are QVE, APAI and ST. Another global method is the EHD that forms
a global edge histogram concatenating local ones. These global methods fail when local
variations are a�ecting the images.

On the other hand, local methods extract relevant information from interest points. The
interest points may simply be the edge pixels on an image such as the GF-HOG approach
does, or non edge-pixels randomly selected like in the case of the Spark or the DOIHoG ap-
proach. Furthermore, it has been observed a predominant tendency toward using histograms
of orientations to extract local information in the form of feature vectors. In addition, for
matching purposes the local feature vectors are commonly clustered using a Bag of Features
approach which ultimately represents an image by a distribution of local descriptors with
respect to a set of clusters.

46

Chapter 4

Histogram of Edge Local Orientations

4.1 Introduction

Among the Content Based Image Retrieval �eld, an image may be characterized globally
or locally. The former one known as a global approach is carried out by means of global
descriptors which have the main advantage of being easy to compute and fast to compare
with other descriptors, in some cases, producing e�ective results. This chapter describes
a global approach for the sketch based image retrieval problem based on computing local
orientations of sketches.

Orientation information is an important attribute of images and it has been used by many
successful techniques in the �eld of computer vision such as SIFT [59] or HOG [24]. In the
case of SBIR, the orientation of strokes is one of the most noticeable features since a sketch
lacks color and texture having only strokes as objects. Therefore, a descriptor has to rely on
the information provided only by strokes.

Orientation estimation is also an important issue for other tasks. A particular case where
orientation estimation turns in a critical stage is in the context of �ngerprint processing
[61]. In terms of the �ngerprint processing �eld, the task of estimating the orientation of
�ngerprints is also known as the computation of the directional �eld of the image. The
directional �eld (DF) describes the coarse structure, or basic shape, of a �ngerprint [8] as
shown in Figure 4.1. The directional �eld is de�ned as the local orientation of the ridge-
valley structure. An accurate directional �eld estimation is important not only for �ngerprint
reconstruction but also for a global classi�cation of a �ngerprint. The latter is very useful
for reducing the number of comparisons during the �ngerprint matching stage.

Although many methods for estimating directional �eld on a �ngerprint have been pro-
posed [8], the most successful approach is a gradient based method known as the square
gradient method. The idea behind this method is to average gradients in a neighborhood. To
avoid opposite gradients cancel each other, the angles of the gradients are doubled, and to
give more weight to strong orientations, the length of the gradients are squared.

47

Figure 4.1: Directional Field of a �ngerprint.

Inspired by the squared gradient method, we propose a global descriptor based on estimat-
ing edge local orientations to form a histogram. Our descriptor is named HELO as initialism
of Histogram of Edge Local Orientations. Our proposed approach is invariant to scale and
translation transformations. In addition, the orientation histogram turns out invariant to
lighting conditions, as well. Although orientation invariance is rarely required for an SBIR
method, we tackle the orientation problem applying two di�erent normalization processes;
one using principal component analysis (PCA) and the other using polar coordinates (PC).
Finally, we use a combined distance as a similarity measure.

Moreover, since noise adversely a�ects the edge orientation estimation [26], its presence
in an image may cause descriptors to perform poorly in the image retrieval context. Thus,
our proposal attempts to reduce this undesired e�ect, computing each edge orientation in a
local way. Additionally, using a local estimation, the sketches do not need to be drawn with
continuous strokes.

4.2 Square Gradient Method

This method estimates the gradient orientation in a local way using a de�ned neighborhood.
Let I be a gray scale image. First of all, the gradient vector for all pixels in I are estimated
using a well known approach such as Sobel or Prewitt [40]. Let [Gx, Gy]

T be the corresponding
gradient vector for a pixel (x, y) in an image I. For doubling the angle and squaring the
length, the gradient vector is represented in its corresponding polar coordinates. This polar
representation is given by:

[
Gρ

Gφ

]
=

[√
G2
x +G2

y

tan−1Gy
Gx

]
(4.1)

The gradient vector is also transformed back to its Cartesian representation from the polar

48

coordinates by the following equation:[
Gx

Gy

]
=

[
Gρcos(Gφ)
Gρsin(Gφ)

]
(4.2)

After doubling the angle and squaring the length of the gradient, we obtain the corre-
sponding squared gradient [Gsx, Gsy] as follows:[

Gsx

Gsy

]
=

[
G2
ρcos(2Gφ)

G2
ρsin(2Gφ)

]
(4.3)

Applying trigonometric properties for double angles, we can transform the above equation
leaving only terms in the Cartesian representation as follows:

[
Gsx

Gsy

]
=

[
G2
ρ(cos

2(Gφ)− sin2(Gφ))
G2
ρ(2sin(Gφ)cos(Gφ))

]
=

[
G2
x −G2

y

2GxGy

]
(4.4)

Finally, the average squared gradient [Gsx, Gsy] is calculated in some neighborhood using a
window W .

4.3 Histogram of Edge Local Orientation

Our method works in two stages. The �rst one performs preprocessing tasks to get an abstract
representation from both the sketch and the test image. The abstract representation tries to
make the feature extraction stage easier. The second stage makes up the orientation based
histogram extracting local orientation of edges. A detailed description of this method is
discussed below.

4.3.1 Preprocessing

On the one hand, the test images are preprocessed in an o�-line way. In this case, the
method uses the Canny algorithm [16] to get an edge map from each test image. For the
Canny algorithm, we use a 9×9-size Gaussian mask with σ = 1.5. The method then applies a
cropping operation to the result using horizontal and vertical projections to cover the interest
object with a minimum bounding rectangle de�ned between the upper left corner (xi, yi) and
the lower right corner (xf , yf).

Let E be a m× n binary edge map image with a white background, with the vertical VE
and horizontal HE projection of E de�ned as:

VE(i) =
n∑
j=1

E(i, j), i = 1, · · · ,m (4.5)

HE(j) =
m∑

i=1

E(i, j), j = 1, · · · , n. (4.6)

49

In addition, the limits of the bounding rectangle is computed as follow:

• xi: �rst index q in HE complying with HE(xi) ≥ 0.2 × max(HE), where indexes are
evaluated from q = 1 to q = n.

• xf : �rst index q in HE complying with HE(xi) ≥ 0.2 ×max(HE), where indexes are
evaluated from q = n down to q = 1.

• yi: �rst index q in VE complying with VE(xi) ≥ 0.2 × max(VE), where indexes are
evaluated from q = 1 to q = m.

• yf : �rst index q in VE complying with VE(xi) ≥ 0.2 × max(VE), where indexes are
evaluated from q = m to q = 1.

On the other hand, the sketch (the query) is preprocessed in an on-line manner. The
processing is similar as before, but since the sketch is already an edge map representation,
this method applies a thresholding operation instead of the Canny operation.

4.3.2 Histogram Computation

Here, we compute a K-bin histogram (usually K=72) where each bin corresponds to a quan-
tization of a gradient orientation regardless the direction of the gradient. The computation
of the gradient orientation is carried out within a local region which is called �a block� and
which size is de�ned to be regular around the whole image. We de�ne the size of block as
Bh ×Bw. The complete description of this computation is presented in the next lines.

1. Compute the gradient vector for each pixel on the image. Let [Gx(r, s), Gy(r, s)] be the
gradient vector computed for the pixel (r, s).

2. Divide the image into Wh×Ww regular blocks as shown in Figure 4.2. We regard each
block as a local area where we will estimate the local orientation. In this approach the
block size (Bh × Bw) is dependent on the image size (Ih, Iw). The reason for de�ning
(Bh, Bw) with respect to (Ih, Iw) is to get the method to be robust to scale changes. In
this way, Bh and Bw are de�ned as:

Bh =

⌊
Ih
Wh

⌋
, Bw =

⌊
Iw
Ww

⌋
(4.7)

3. Compute local orientations according to the squared gradient method as follows:

• Let bij be a block and αij its corresponding orientation (i = 1, · · ·Wh, j = 1, · · · ,Ww).

• Let Lij
x and Lij

y be the components of the local gradient with respect to x and y
directions, respectively, computed on a block bij as follows:

Lij
y =

∑
(r,s)∈bij

2Gx(r, s)Gy(r, s) (4.8)

Lij
x =

∑
(r,s)∈bij

(Gx(r, s)
2 −Gy(r, s)

2) (4.9)

here, Lij
β is the gradient on bij in the β direction.

50

Figure 4.2: Block division for the HELO descriptor.

(a) (b)

Figure 4.3: An image (a) with its corresponding orientation �eld (b). Here, Wh = Ww = 25.

• Calculate the block orientation αij correspondent to the block bij as follows:

αij =
1

2
tan−1

(
Lij
y

Lij
x

)
+
π

2
. (4.10)

In Equation 4.10, the angle is divided by a factor of two because the gradients
were doubled with respect to their angles. Additionally, since the gradient is
orthogonal to the underlying edge, we get the real edge orientation adding π/2.
Finally, supposing that −π ≤ tan−1(·) ≤ π, αij ranges between 0 and π.

4. Create a K-bin histogram h to represent the distribution of the block orientations in
the image. Each block orientation αij will contribute by one unit to the bin index(αij)
of h, where:

index(x) =

⌊
x× K

π

⌋
(4.11)

5. To avoid the e�ect of noise in the construction of the histogram, we discard blocks
containing few edge points. To this end, we use a threshold thedge to �lter out those
blocks. We set thedge to be equal to the half of the maximum value between Bh and
Bw. The resulting histogram is named the Histogram of Edge Local Orientation whose
acronym is HELO. Figure 4.3 shows an orientation �eld of a test image, computed by
this method.

Our proposed descriptor HELO is invariant to translation because the orientation is in-
dependent of edge positions. In addition, since the block size depends on the image size,
HELO is also invariant to scale changes. Furthermore, as the computation of orientations is

51

invariant with respect to lighting conditions, our method becomes a descriptor invariant to
illumination, as well.

Finally, we measure similarity between two HELO descriptors using the L1 distance, also
known as the Manhattan distance function (See Equation 2.33).

Similar to the previous orientation-based method discussed in the previous chapter, the
HELO descriptor is computed in linear time O(N) with respect to the number of pixels of
the image.

4.3.3 Tackling the rotation problem

To deal with the rotation invariance, we need to normalize, in terms of the object orientation,
both the sketch and the test image before computing the HELO descriptor. To this end, we
use two di�erent normalization processes and then we compute two HELO descriptors, one
for each normalization process. After that, we measure similarity by combining linearly
the partial distances stemming from the comparison between descriptors produced by two
di�erent normalization processes. For normalization, we use principal component analysis
(PCA) and polar coordinates (PC). We present a detailed description of this approach below:

• Preprocessing: This stage is similar to the previous one (Section 4.3), except that
in this case the cropping operation is performed after the orientation normalization
process.

• Orientation normalization:

� Principal Component Analysis based Approach (PCA): We compute a 2-d
eigenvector v representing the axis with higher variance of the edge pixels (those
with value 1). To this end, we represent each edge pixel as a coordinate vector
[x,y].

Let X be a matrix with N rows and 2 columns, where N is the number of edge
pixels. Thus, each row of X corresponds to an edge pixel in the form of a 2-
component vector. The normalization process using PCA requires linear time with
respect to the number of pixels of the input image, and the steps are summarized
below:

1. Center the points of X at the origin [0,0]. This is attained subtracting the
mean of X.

2. Compute the covariance matrix mc of X.

3. Compute the eigenvalues and eigenvectors of mc.

4. The eigenvector v = [vx, vy] with the highest eigenvalue is the vector repre-
senting the main orientation of the underlying image object.

5. Compute α = tan−1(vy/vx).

6. Normalize the input image rotating it −α degrees around their center of mass.

7. Crop the resulting image as in Section 4.3. Some examples of the result of
this normalization are shown in Figure 4.4.

52

(a) (b) (c) (d)

Figure 4.4: PCA normalization results. (a) and (c) show sketches a�ected by a rotation
variation. (b) and (d) show the sketch after applying the PCA normalization process.

53

� Polar Coordinate based Approach (PC): We transform both the test image
and the sketch abstract representation into polar coordinates. In this case, two
rotated images containing the same object become similar images only a�ected
by an horizontal shifting. A simple algorithm to convert a binary image to its
corresponding polar representation is described in Algorithm 1. The algorithm
is linear with respect to the number of pixels of the input image. A couple of
examples of the result of this PC-based normalization process are shown in Figure
4.5.

Algorithm 1 toPolarImage
Require: im: a binary image

h← height(im)
2: w ← width(im)

R←
√

h
2

2
+ w

2
2

4: N_ANGLES ← 360
newIm← zeros(R,N_ANGLES)

6: E = {(x, y)|im(x, y) = 1}
[cx, cy]← center of mass of E

8: for (x, y) ∈ E do
x′ ← x− cx

10: y′ ← cy − y
r ←

√
y′2 + x′2

12: α← atan2(y′, x′)
if α < 0 then

14: α = α + 2π
end if

16: angleIdx← (N_ANGLES)(α/2π)
newIm(r, angleIdx)← 1

18: end for
return newIm

• Histogram Computation: This stage is exactly similar to the previous one (Section
4.3). However, we compute similarity between a test image I and a sketch S combining
PCA-based HELO an PC-based HELO. Let IPCA and SPCA be the PCA-based HELO
descriptors computed over I and S, respectively. Let IPC and SPC be the correspondent
PC-based HELO descriptors. The similarity measure sm(I, S) is computed as follows:

sm(I, S) = wPCAL1(IPCA, SPCA) + wPCL1(IPC , SPC) (4.12)

where, wPCA + wPC = 1, wPCA ≥ 0, wPC ≥ 0 and L1 is the Manhattan distance.

Our proposal may be con�gured for working with or without rotation invariance. This
is an advantage, because the rotation invariance requirement commonly depends on the
application. For example, in the context of handwriting recognition rotation invariance may
result in confusing the digit 6 with digit 9.

54

(a) (b) (c) (d)

Figure 4.5: PC normalization results. (a) and (c) show sketches a�ected by a rotation
variation. (b) and (d) show the sketch after applying the PC normalization process.

55

(a) (b)

Figure 4.6: A sketch on column (a) and its corresponding target image on column (b).

4.4 Experimental Evaluation

To compare the performance of our global descriptor we have developed a benchmark con-
taining a set of test images and a set of sketch images (queries). For the test image database,
we have randomly selected 1326 images. We selected 1285 color images from the Caltech101
database [34]. Additionally, we added 46 images of castles and palaces to our database.

Many of the test images consist of multiple objects or are cluttered images. For the query
database, we have chosen 53 images from the test database. For each chosen image, a line-
based sketch was hand-drawn. Thus, we have 53 sketches 1. In order to produce sketches, a
target image was presented to participants and they were asked to draw a line-based sketch
resembling the target image. Two examples of a sketch together with its corresponding target
image is shown in Figure 4.6. Moreover, some examples of the sketches are shown in Figure
5.14, and a variety of images from the test database are shown in Figure 4.8.

We compare our method with �ve other methods according to the state of the art. Four
of these methods are: APAI [18], ST [29], HED [48], and EHD [93], which were implemented
following the speci�cation that appears in the corresponding papers. Additionally, we com-
pare our method with the histogram of distance distribution (HDD) which represents the
distribution of Euclidean distances between a random set of edge pixels.

The evaluation of the methods was performed by querying each sketch for the most similar
images and �nding the target image rank. We called this rank query rank. For measuring
our results, we use two metrics. First, we use Mean of Query Rank (MQR), for which the
average of all query ranks is computed. Second, we use the recall ratio Rn, which shows the
ratio to retrieve the target image in the best n-candidates. Rn is de�ned as follows:

Rn =
target images among �rst n responses

total number of queries
× 100 (4.13)

1 http://prisma.dcc.uchile.cl/archivos_publicos/Sketch_DB.zip

56

Figure 4.7: Examples of sketches.

Figure 4.8: Examples of test images.

57

To evaluate translation, scale, and rotation robustness, we divide the experiments in two
parts. First, we evaluate our method with sketches having di�erent scales and positions from
the corresponding target images. Second, we evaluate our method with sketches that have
been rotated by three di�erent angles (30◦, 60◦, and 90◦). Therefore, in the last case, we
have 53× 4 = 212 sketches . The results of these experiments are discussed in the following
subsections.

Our method needs three parameters to be speci�ed, the histogram length (K), the number
of horizontal and vertical blocks (W), and a threshold (thedge). We �x K = 72, W = 25,
and we set thedge as 0.5 times the maximum image dimension. These parameter values were
chosen experimentally.

In Figure 4.9 we present a MQR graphic showing the performance of HELO for di�erent
values of K (the histogram size). We note that for values of K below 50 the method degrades.
However for values greater than 50 the method has a stable performance achieving a MQR
value around 25.

In the same way, in Figure 4.10, we present a MQR graphic showing the performance of
HELO for di�erent values of W (the grid size). We note that a small value of W degrades
drastically the performance of the method. Also, a large value of W may degrade the per-
formance of our method. A large value of W means a small region within the orientation
is estimated. Therefore, decreasing the local region causes the method has to estimate the
orientation relying on a reduced number of neighbors which leads a less reliable orientation.

Figure 4.9: Mean Query Rank for di�erent values of K (histogram size) .

4.4.1 Translation and scale invariance comparison

Figure 4.11 shows the MQR for each evaluated method. We observe that our method is more
robust than the other methods when scale and position changes exist. We achieve 24.60

58

Figure 4.10: Mean Query Rank for di�erent values of W (grid size).

as MQR value. This indicates that HELO needs to retrieve less than 25 images from the
database to recover the target image. In comparison with the other methods, the EHD is
the closest to ours with a signi�cant di�erence. EHD achieves 208.26 as MQR, speci�cally,
EHD would require retrieving almost 208 images to �nd the target one. Thus, our method
improves e�ectiveness on recall by 8.4 times with respect to that of the state of the art.

Figure 4.12 shows the recall ratio graphic. This graphic shows that HELO outperforms
the state of the art methods for any value of n. In addition, an example of image retrieval
using HELO is shown in Figure 4.13.

Figure 4.11: Mean Query Rank of the evaluated methods.

59

Figure 4.12: Recall ratio graphic for the evaluated methods.

4.4.2 Rotation invariance comparison

In this section, we show the HELO performance under rotation changes on the sketches.
First of all, we evaluate the HELO descriptor using separately PCA and PC as orientation
normalization methods. Using PCA, we obtain a MQR value of 197.04. The principal axis
is computed over the edge point distribution. However, a sketch is a simple rough hand-
made drawing without details as those appearing in the target image. Due to this, the
input sketch and the target image may have a very di�erent principal axis a�ecting the
retrieval e�ectiveness. Using PC, sketches a�ected by di�erent angular shifts have similar
representations in polar coordinates. This is the reason why PC gives a better MQR value
(156.09) than that given by PCA. However, PC changes drastically the edge point distribution
decreasing the discriminative power.

Therefore, to take advantage of each orientation normalization method we propose a
linear combination of PC-based HELO and PCA-based HELO, that allows us to improve the
retrieval e�ectiveness. Using our approach we get a MQR value to 101.09. We described this
method in Section 4.3.3. We will refer to the combined-based HELO descriptor as HELO_R.
To implement the HELO_R descriptor, we use wPCA = 0.3 and wPC = 0.7.

Figure 4.14 shows the MQR for the evaluated methods under a rotation distortion. Clearly,
under this kind of change, our proposal improves the e�ectiveness on recall by 2.6 times with
respect to that of the state of the art.

To visualize how many images are needed to retrieve the target image, Figure 4.15 shows
the recall ratio graphics comparing the six evaluated methods.

60

(a)

(b)

(c)

Figure 4.13: (a), (b) and (c) are examples of the �rst six retrieved images using the HELO
approach. The �rst image is the query.

61

Figure 4.14: Mean Query Rank of the evaluated methods with respect to rotation invariance.

4.5 Summary

In this chapter we have described a global approach (HELO) to address the sketch based
image retrieval problem. Our proposal is based on computing an orientation histogram using
the gradient square method. In this way, the image is divided by a cell grid, and a edge
orientation is estimated within each cell. In addition, the HELO method discards cells where
there is not a signi�cant amount of edge pixels, in order to be robust to noise.

Although our approach shows a very competitive performance with respect to the results
achieved by current global approaches, it still has some drawbacks owing to its global char-
acteristic. For instance, our proposal has poor performance in the cases of partial matching
and occlusion. These are important properties since users commonly draw only the objects
that they are interested in, hoping to get, as response, all images containing objects similar to
those drawing in the query. A simple example is when a user is looking for images containing
the sun, the user will possibly draw only a circle.

Unfortunately, a global approach does not overcome the aforementioned problems, we
require a local approach. Therefore, in the next chapter we discuss a novel local approach
for the sketch based image retrieval based on extracting structural information from sketches
and test images, providing a higher semantic level representation.

62

Figure 4.15: Recall ratio graphic for the evaluated methods with respect to rotation invari-
ance.

63

Chapter 5

Keyshape Based Approach

5.1 Introduction

Sketches are characterized by representing the structural components of an object instead of
representing color or texture information. For instance, when a person is asked to make a
simple drawing of a teapot, he or she will probably draw only three components: the body,
the spout and the handle like one of the pictures depicted in Figure 5.1. In addition, the
absence of color and texture information in sketches may cause the retrieval process becomes a
di�cult task. This fact also means that techniques thought to work on regular images do not
work appropriately when the input is a simple sketch. Therefore, in this section we present
a novel method for retrieving images using a sketch as query. Our proposal is characterized
principally by exploiting the structural information provided by sketches, which allow us to
work in a higher semantic level representation.

Figure 5.1: Examples of hand drawings of teapots.

De�nition 3 The object structure is the distribution of the parts that compose such an
object.

From the De�nition 3, we extract two relevant terms: (1) the component of an object,
and (2) the distribution of the components.

1. Component : The components of an object are di�cult to de�ne because these exist in
diverse scales. However, we will de�ne a component from the geometric perspective.
Therefore, a component is a simple geometric shape like, arcs, ellipses, circles, tri-
angles, rectangles, squares, or simply straight lines. In this way the teapot from the

64

Figure 5.1 may be decomposed into a set of primitive shapes like an arc representing
the handle, two arcs representing the spout, and an ellipse representing the body.

2. Distribution: The distribution of the components describes the spatial relationship
between such components. In this way, using the teapot example again, the distribution
should point out that the handle and the spout are located on the sides of the body;
one on the left and the other on the right side.

To our knowledge, the methods proposed for sketch based image retrieval have not yet ex-
ploited the structural property of sketches. Instead, many of the current methods are based
on edge point distribution [18] or edge point orientations [31, 45] which do not appropriately
represent the structural components of the objects on the image. Furthermore, the interest
point (keypoint) approach [96], proposed in the computer vision �eld, does not represent com-
ponents with the semantic level as we are de�ning here. Moreover, the local region around
keypoints could not be discriminating enough since sketches are simple line-based drawings.

Therefore, our proposal is based on describing objects appearing in an image using struc-
tural components. Representing sketches by means of their structural components brings up
the following advantages:

• A structural representation allows methods to represent objects in a higher semantic
level which is re�ected in the increment of the retrieval e�ectiveness.

• A structural representation allows methods to handle a small number of components
with respect to handle interest points or simply edge points. This leads to a more
e�cient matching step.

In order to deal with the structural property of objects we detect simple geometric shapes
that we call keyshapes and which will represent the components of the objects in an image.
In addition, we propose two local descriptors computed over each detected keyshape. These
descriptors are characterized by representing the spatial distribution of the components. In
short, our proposal exploits the structural property of an object describing the distribution
of the parts composing it.

In addition, owing to our method is based on a di�erent feature (the structure) from
those used by current methods, a combination of our method with a method that has showed
good results would lead to a signi�cant improvement in the retrieval e�ectiveness. In this
document, therefore, we experimentally demonstrate such a property.

De�nition 4 A keyshape is a simple geometric shape that composes a more complex object.
Examples of a keyshape may be a circle, an ellipse, a square, a line, among others.

5.2 Proposal

Our proposal consists of three stages (1) keyshapes detection, that allows us to detect
simple shapes from an input image, (2) local descriptor computation, that allows us to
locally represent the spatial relationship between a reference shape with respect to the others,

65

Figure 5.2: Proposal Stages.

Figure 5.3: Simple Canny edges of a test image.

(3) matching, that computes a cost value after setting some relation between two sets of
local descriptors. In the following sections we will describe each one of these stages in detail.

5.2.1 Keyshapes Detection

Sketch-like Representation

We will detect keyshapes from the input sketch (the query) and the images from the database
(test images). In order to compare a sketch with a test image we require to transform a
test image into a sketch-like representation. In particular, we need to transform the test
images into sketches since they are regular color images. A simple way to carry out this
transformation is by using an edge detection procedure. To this end, we use the Canny
operator [16]. We prefer Canny than other methods like the Berkeley boundary detector [64]
because of two folds: (1) Canny allows us to get edge pixels accurately, and (2) computing
Canny is much faster that the Berkeley's approach. In Figure 5.3 we depict an image and its
edge map representation computed using the well known Canny approach with σ = 0.3.

A simple edge detection method produces a chaotic edge image. Many of the edge pixels

66

Figure 5.4: Edge image produced by a multiscale Canny.

Figure 5.5: Edge images produced by a multiscale approach over a sketch.

do not provide relevant structural information as we note in Figure 5.3. Furthermore, many
of them may be a result of noise which may cause degradation in the keyshape detection
and consequently in the retrieval e�ectiveness. To solve this problem, we apply the Canny
operator in a multiscale manner. Each scale is computed by the Canny operator applied over
a downsampled image. For each scale, an image is downsampled using a factor of 0.5 with
respect to the previous scale. In our method, we apply the downsampling process iteratively
until the size of the resulting image is less than 200 pixels in one of its dimensions. In
our experiments, the downsampling stops after approximately three iterations. We show an
example of this process in Figure 5.4.

In the same vein, we apply a multiscale approach for the query. However, due to a query
already being a sketch we apply a thinning operation [41] instead of the Canny operator.
The result of this approach is shown in Figure 5.5. We can note that a sketch do not change
through the multiscale approach, the resulting sketch is just a resized image.

After the multiscale stage we keep only the edge map of the third scale, where the noise
has been reduced considerably. In addition, small details have been deleted leaving only
high-scale edges representing the object from a coarser level.

Having a sketch-like image from both the test image and the query, the next step is to
obtain an abstract representation from them that allows us to detect simple shapes in a

67

Figure 5.6: Branching and terminal points.

Figure 5.7: Strokes approximated by endge links.

easy way. A good approach for getting such an abstract representation is to decompose the
sketch-like image into strokes.

De�nition 5 A stroke is a set of pixels produced when a user is making a line-based hand-
drawing between a �pen down� and a �pen up� event.

Considering that the underlying images are produced in an o�ine environment, we do not
have available information about the real strokes. To solveF this problem, we propose to
approximate real strokes by edge links.

Edge Links

An edge link is a sequence of edge pixels starting and ending in a branching or terminal
point. In Figure 5.6, branching points are shown enclosed by circles and terminal points are
shown enclosed by squares. We call the branching or terminal points simply breakpoints.

A simple algorithm to compute edge links is by tracing neighbor edge pixels starting from
a breakpoint until another breakpoint is reached. Having a binary image as input, the output
of the algorithm is a set of edge links.

The algorithm for edge links computation described in Algorithm 2 returns a set of edge
links which approximate real strokes. For this reason, henceforth we call these edge links
simply �strokes�. In Figure 5.7, the image of Figure 5.6 is depicted with its corresponding
strokes which are showed with di�erent colors.

68

Algorithm 2 Edgelink
Require: bim: a binary image
1: E ← edgepixels(bim)
2: B ← detect_breakpoints(bim)
3: L← ∅
4: for ∀e ∈ E do
5: visited(e)← false
6: end for
7: for ∀b ∈ B do
8: τ ← ∅
9: q ← create a queue

10: push(q, b)
11: end← false
12: while !empty(q)&!end do
13: x← pop(q)
14: visited(x)← true
15: τ ← τ

⋃
x

16: if isBreakpoint(x) then
17: end ← true
18: else
19: for ∀v that is a 4-connected neighbor of x do
20: if !visited(v) then
21: push(q, v)
22: end if
23: end for
24: end if
25: end while
26: L← L

⋃
τ

27: visited(b)← false
28: visited(x)← false
29: end for
30: return L

Keyshapes

Detecting simple shapes like circles or ellipses on an image might lead to a time consuming
process, so we propose an e�cient strategy for detecting six types of keyshapes. These
keyshape classes are: (1) vertical line, (2) horizontal lines, (3) diagonal line (slope=1), (4)
diagonal line (slope =-1), (5) arc, and (6) ellipse (see Figure 6.10). The latter also includes
circular shapes. It is important to note that as the number of keyshapes increases, the
complexity for scaling the method to large databases also increases. For this reason we
decided to keep just six keyshape types. In spite of the small number of keyshape classes, we
still get important structural information from sketch representations. We will now describe
the complete process for detecting keyshapes.

Considering that a stroke may include one or more keyshapes, the �rst step is to divide

69

Figure 5.8: The six clases of keyshapes.

each stroke S, computed previously, into a set of one or more stroke pieces SPS. To this end,
a stroke S is divided with respect to its in�ection points.

De�nition 6 An in�ection point is a point where the local edge pixels around it are dis-
tributed signi�cantly in two directions.

To determine whether a stroke point q is actually an in�ection point or not, we compute
the two eigenvalues (λ1, λ2) of the covariance matrix of the points falling in a local region
around q. Then, we evaluate the ratio r = max(λ1, λ2)/min(λ1, λ2) and proceed to mark q
as an in�ection point if r is less than a threshold.

Trying to evaluate all points of a stroke is, of course, a time consuming task. Thus,
instead of applying the in�ection point test over all stroke points, we test only a small set
of points. This set is named set of maximum deviation points (SoM). We obtain the SoM
by approximating a stroke S, which is de�ned by a set of points S = {pi, · · · pj}, by straight
lines. To this end, a line L is set between pi and pj. Then we look for the point pk ∈ S with
the maximum distance δM to L. We call pk a maximum deviation point. If δM > µ then we
process recursively the resulting substrokes S1 = {pi, · · · pk} and S2 = {pk+1, · · · , pj}. In our
experiments, we set µ equal to 6 . Finally, all the maximum deviation points produced by
this method form the SoM . A description of this algorithm is described in Algorithm 3.

Algorithm 3 getSoM
Require: S = {pi, · · · , pj}
1: if i > j then
2: return ∅
3: end if
4: L← a line de�ned between pi and pj.
5: [k, δM]← getMaxDistPoint(L, S)
6: SoM ← ∅
7: if δM > µ then
8: SoM1 ← getSoM({pi, · · · , pk})
9: SoM2 ← getSoM({pk+1, · · · , pj})

10: SoM ← SoM1

⋃
{(pk, δM)}

⋃
SoM2

11: end if
12: return SoM

We should note that the Algorithm 3 returns the set of maximum deviation points (SoM)
together with their corresponding deviation value. In Figure 5.9 we show a synthetic example
of the stroke decomposition in a set of stroke pieces.

70

Figure 5.9: On the left, a synthetic example showing in�ection points on a stroke. On the
right, straight lines (dashed lines) approximating stroke pieces.

After the stroke decomposition stage, we have a set of stroke pieces {sp1, · · · , spK} for
a given stroke S. The next task it to classify each of these stroke pieces as one of the
six prede�ned keyshape types. In addition, we could also get the number of straight lines
approximating a stroke piece from the SoM . Let Ni be such a number for a stroke piece spi.
This will be a valuable information for the subsequent steps.

To determine the occurrence of a keyshape, we start applying a test which will determine
whether spi is an ellipse or not. We apply this test only if Ni ≥ 2. To this end, we use
the function testEllipse, that will be described afterward, that returns a �tness value indi-
cating how well spi is approximated by an ellipse and the underlying approximated ellipse
parameters. If Ni < 2 or the ellipse �tness value is less than a threshold, the stroke piece
spi may be composed by arcs or straight lines. In this way, if Ni = 1, a line is detected.
Otherwise, we apply a test for detecting arcs using the function testArcs, described later,
that returns an error of arc approximation and the underlying arc paramaters. If the error
of arc approximation is greater than a treshold we divide spi in the point with maximum
deviation using the SoM . The resulting two substrokes are tested separately to detect arcs
and lines recursively. The algorithms for detecting keyshapes are described in Algorithms 4
and 5.

Algorithm 4 detectKeyshapes
Require: SP : a stroke piece
Require: SoMSP : the set of maximum deviation points with respect to SP , SoMSP =
SoM

⋂
SP .

KS ← ∅
Ni ← number of straight lines approximating SP .
if Ni > 2 then

[t, param]← testEllipse(SP)
if t > THE then
KS = {(�ellipse� , param)}

else
[lines, arcs]← detectArcsLines(SP, SoMSP)
KS ← lines

⋃
arcs

end if
end if
return KS

71

Algorithm 5 detectArcsLines
Require: SP = {pi, · · · , pj}: a stroke piece
Require: SoMSP : the set of maximum deviation points with respect to SP , SoMSP =
SoM

⋂
SP .

lines← ∅
arcs← ∅
Ni ← number of straight lines approximating SP .
if Ni = 1 then
lines = {(�line� , [pi, pj])}

else
[e, param]← testArc(SP)
if e < THA then
arcs = {(�arc� , param)}

else
k ← maximumDeviationPoint(SoMSP)
SP1 ← {pi, · · · pk}
SP2 ← {pk+1, · · · pj}
[lines1, arcs1]← detectArcsLines(SP1, SP1

⋂
SoMSP)

[lines2, arcs2]← detectArcsLines(SP2, SP2

⋂
SoMSP)

lines← line1

⋃
line2

arcs← arcs1

⋃
arcs2

end if
end if
return [lines, arcs]

72

Detecting Ellipses

The testEllipse function takes a stroke piece SP and tries to approximate SP by an ellipse.
To approximate an ellipse we use the ellipse general equation as in the work of Yao et al. [104].

Ax2 + 2Bxy + Cy2 + 2Dx+ 2Ey + 1 = 0 (5.1)

where the �ve parameters (xc, yc, rmax, rmin, θ) corresponding to the center of the ellipse
(xc, yc), the maximum and minimum radii (rmax, rmin), and the angle respect to the major
radius are obtained as follow:

xc =
BE − CD

W
(5.2)

yc =
DB − AE

W
(5.3)

rmax =

√
−2 · det(M)

W (A+ C −R)
(5.4)

rmax =

√
−2 · det(M)

W (A+ C +R)
(5.5)

θ =
1

2
tan−1

(
2B

A− C

)
, (5.6)

where

W = AC −B2 (5.7)

R =
√

(A− C)2 + 4B2 (5.8)

M =

 A B D
B C E
D E 1

 . (5.9)

To solve the Equation 5.1 with respect to a stroke piece SP = {p1, · · · , pn}, we take the
following �ve points {p1, pn

4
, pn

2
, p 3n

4
, pn}. We then validate the estimated ellipse with respect

to the pixels on the image. To this end, we use a �tness function de�ned by Yao et al. [104].

The �tness function takes each point p on the approximating ellipse E and looks for the
closer edge pixel on the image. Let dp be the closer distance from p to any edge pixel on SP
and we compute the �tness value as:

f itnessE =

∑
∀p∈E

1
exp(γdp)

|E|
, (5.10)

where the distance function is the Manhattan distance and γ is a regularization factor that
we set to 0.2. The �tness value varies from 0 to 1, where 1 indicates a perfect approximation
while 0 indicates a null approximation.

73

Detecting Arcs

Since an arc is a segment of a circle, the testArc function tries to approximate a circle with
�ve points selected from the underlying stroke piece.

These �ve points are chosen in the same way as in the case of the testEllipse function.
The resulting parameters are the circle center (xc, yc), and the circle radius r. To evaluate
how well a stroke piece SP is approximated by an arc, we compute an approximation error
in the following way:

errorA =
∑
p∈SP

|r − dist(p, (xc, yc))| (5.11)

where dist is the Euclidean distance.

After detecting ellipses, arcs, or straight lines, we represent each detected keyshape with
a set of parameters. In this way, each keyshape is especi�ed as follows:

• Lines: [x1, y1, x2, y2, L, ι], where (x1, y1) is the initial point and (x2, y2) is the �nal point
of the detected line. L is the line length. In addition, we use ι to indicate the type of
the line (horizontal, vertical, diagonal (slop 1), diagonal (slope -1)).

• Arcs: [xc, yc, r], where (xc, yc) is the center of the estimated circle, and rc is the corre-
sponding estimated radius.

• Ellipse: [xc, yc, rmax, rmin, φ], these are the �ve parameters of an ellipse representing the
center (xc, yc), the maximum and minimum radii (rmax, rmin), and the orientation φ.

Clustering Arcs

It is possible that a circle shape be detected as a set of arcs sharing similar parameters.
For this reason, we apply an additional step in the keyshape detection stage aiming to solve
this problem. Our algorithm works clustering the detected arcs using their three parameters
[xc, yc, r]. Arcs falling in the same cluster are tested to determine if a circle is �tted to the
set of arcs. The tested function we use here is similar as that used for testing ellipses.

Finally, we produce a new stroke representation by means of an image called keyshape
image drawing on it each detected keyshape. The keyshape image might be regarded as a
normalized stroke representation. Two examples of a keyshape representation produced
by the keyshape detection process is shown in Figure 5.10.

5.2.2 Local Descriptors

In this section we focus on describing a local region around each keypoint, aiming to represent
the distribution of keyshapes. We know from De�nition 3 that the distribution of the object
components is a very important aspect for the structural characterization of the underlying
objects. In this stage, we propose two local descriptors for the sketch based image retrieval
problem which are characterized by taking into account spatial information of the keyshapes.

74

Figure 5.10: Test images on the left and their keyshape images on the right.

The �rst descriptor is called Keyshape Angular Spatial Descriptor (KASD). It divides a lo-
cal region in an angular way and takes some information from each slice to make a histogram,
where the histogram size is the same as the number of slices. The angular partitioning has
been used in the computer vision �eld for the object recognition task [68] and for describing
line-base hand-drawings in a global manner [18].

The second descriptor is named Histogram of Keyshape Orientations (HKO). It is a SIFT-
like descriptor which computes a local histogram of keyshape orientations on a local region
around a referent keyshape.

Local Region

We de�ne a local squared region with respect to a keyshape (the referent keyshape) in order to
compute a local descriptor that characterizes the spatial distribution of the keyshapes around
the referent keyshape. The center of the local region coincides with the center position of the
underlying keyshape. Thus, let k be a keyshape. If k is a line, the local region is centered on
the center of that line. If k is an arc, the local region is centered in the center of the circle
containing the arc. In the case of k is an ellipse, the region is centered on the ellipse center.

In order to face with scale variations, we de�ne the region size depending on the keyshape
size. Thus, let k be a keyshape and l be the length of the underlying square-like region side,
we proceed to compute l as follows.

• If k is a line then l = length(k) · η.
• If k is an arc then l = radius(k) · η.
• If k is an ellipse then l = major_radius(k) · η.

75

The symbol η is a constant that we de�ne to be equal to 3. Figure 5.11 shows a keyshape
with the scope of its corresponding local region.

Figure 5.11: A local region of around of a diagonal-type keyshape (that marked with a red
�lled circle).

Keyshape Angular Spatial Distribution (KASD)

Let k be a reference keyshape. We divide the local region in angular partitions around k
as shown in Figure 5.12(a). The number of angular regions or slices (NSLICES) is �xed
(we suggest using four or eight slices). For each slice, we compute a local histogram that
represents the local distribution of the keyshape points with respect to the six keyshape
types. Consequently, we obtain a 6-bin histogram for each slice. Then, we concatenate all
the local histograms built for each slice to form a NSLICES × 6-size descriptor. Finally, we
transform the descriptor into its unit representation.

The spatial distribution of keyshapes is represented by the local histograms spread through
the slices in which the local region is partitioned.

Histogram of Keyshape Orientations (HKO)

Let k be a reference keyshape, we divide the local region around k into a 2 × 2 grid, where
each cell of the grid is called a subregion, as shown in Figure 5.12(b). For each subregion we
compute a histogram of orientations. The orientation angle varies between 0 and π, and it is
quantized using 8 bins. The keyshape orientation is computed approximating local gradients
using Sobel masks [40]. The local gradients are computed over the keyshape image where
many of the outliers have been removed. Therefore, computing orientations over the keyshape
image is more robust than computing them over a simple edge map representation. The �nal
descriptor is the concatenation of the four histograms of orientations. We obtain a 32-size
descriptor as a result of having four 8-bin histogram for each one of the four subregions.
Similar to the above, we take the unit representation of the descriptor.

76

(a) (b)

Figure 5.12: On the left, an angular partitioning descriptor. On the right, a histogram of
orientations descriptor.

Combined Descriptor (CD)

To take advantage of both descriptors discussed previously, we propose to use a combined
descriptor. This is a descriptor composed of two parts. The �rst one corresponds to the
Keyshape Angular Partitioning Descriptor (KASD) and the second to the Histogram of
Keyshape Orientations (HKO) descriptor. A schematic example of the combined descrip-
tor is depicted in Figure 5.13. In this case, we reduce the number of slices for the KASD
representation to 4. Thus, the combined descriptor is a 56-size vector, where the �rst 24 bins
correspond to the KASD descriptor and the last 32 bins correspond to the HKO descrip-
tor. As with both descriptors discussed previously, we use the unitary representation of the
combined descriptor.

Figure 5.13: Scheme of the combined descriptor.

5.2.3 Matching

As seen in previous sections, both a test image and an input sketch are represented by a set of
local descriptors whose size depends on the complexity of the underlying image (for instance,
see the images presented in Figure 5.10). The next step is to �nd a way to map descriptors
from an input sketch to descriptors computed from a test image in order to get a similarity
or dissimilarity score. This score will allow us to rank the test images in an increasing order
with respect to the similarity score or in an decreasing order with respect to the dissimilarity
score.

Let S be an input sketch and LD(S) be the set of local descriptors of S. We de�ne LD(S)

77

as:
LD(S) =

⋃
t∈{v,h,d1,d−1,a,e}

LDt(S) (5.12)

where LDv(S) is the set of local descriptors of vertical lines in S. In the same way, LDh(S)
is set for horizontal lines, LDd1(S) is set for diagonal lines having slope 1, LDd−1(S) is set
for diagonal lines having slope -1, LDa(S) is set for arcs, and LDe(S) is set for ellipses.

Further, let I be a test image that will be compared with S. Similarly as the case of S we
de�ne LD(I) as:

LD(I) =
⋃

t∈v,h,d1,d−1,a,e

LDt(I) (5.13)

The matching process is performed between local descriptors corresponding to the same
keyshape type. Since the number of local descriptors is much lower than in the case of having
keypoints like those used by the SIFT or the shape context approach [59, 9], we could solve an
instance of the bipartite graph problem using the well known Hungarian method [54] between
LDt(S) and LDt(I), t = h, v, d1, d−1, a, e. The �nal match results from the union of the
partial matches.

Speci�cally, the Hungarian method solves an instance of the assignment problem where,
given two sets A,B, the goal is to assign objects of B to objects of A. This produces a
one-to-one relationship between A and B. Moreover, an assignment between two objects
produces a cost known as the assignment cost. Thus, the objective is to set an appropriate
assignment between objects of A and objects of B minimizing the total assignment cost.

Coming back to our case, A is the set of local descriptors of S (LD(S)), and B is the
set of local descriptors of I (LD(I)). The objects are unitary vectors which represent local
descriptors. Finally, the cost function we use is the Manhattan distance.

Let M(S, I) be the resulting match between S and I from the previous process, de�ned
as follows:

M(S, I) = {(is, jI , c)|(is, jI , c) is a match

whose cost is c,∧is ∈ LD(S) ∧
jI ∈ LD(I)}, (5.14)

we de�ne the following properties on M :

• |M(S, I))|: The cardinality of M , i.e the number if matches between S and I.
• A(M(S, I)): The average match cost de�ned as:

A(S, I) =
∑

∀(i,j,c)∈M

c

|M(S, I)|
. (5.15)

In the case that no matches occur, A(S, I) = max(LD(S), LD(I)).
• U(M(S, I)): The number of unmatched descriptors. It is de�ned as follows:

U(S, I) = max(LD(S), LD(I))− |M(S, I)| (5.16)

78

Match Filtering

The matching is followed by a �ltering step that aims to discard matches discordant with a
pose estimation. To this end, we apply a vote based approach that takes into account spa-
tial information from the corresponding matched keyshapes in order to estimate a geometric
transformation. This transformation considers the scale and location parameters of the com-
puted keyshapes. In this way, each match vote for a certain transformation, the predominant
transformation will correspond to the pose estimation. Only the matches that voted for such
a pose are held, the remaining matches are discarded. In Algorithm 6 we show how to �lter
a set of matches.

Algorithm 6 Match Filtering
Require: M : the set of matches.
Require: KS: The set of keyshapes of the input sketch.
Require: KI : The set of keyshapes of the test image.
for ∀m = (iS, jI , c) ∈M do
kS ← the keyshape of iS
kI ← the keyshape of jI
(xS, yS)← center_of(kS)
(xI , yI)← center_of(kI)
sS ← scale(kS)
sI ← scale(kI)
dx = xI − xS sIsS
dy = yI − yS sIsS
qx = quantize(dx)
qy = quantize(dy)
matches(qx, qy)← matches(qx, qy)

⋃
m

end for
the_matches← the set of matches in matches with the major number of elements.
return the_matches

In Algorithm 6, scale(k) gives the scale of a keyshape k. The scale for lines is simply the
length of the underlying line, the scale for arcs is the associated radius, and the scale for
ellipses is the corresponding major radius. In addition, for the quantization step we divide
both the x-dimension and the y-di mension by a factor 3.

Dissimilarity Score

After the match �ltering step we need to get a score value that represents the similarity or
dissimilarity between both images. To this end, we de�ne three dissimilarity functions based
on the average match cost, the number of matches, and the number of unmatched descriptors.

1. D1(S, I) = A(S, I) + U(S, I).

2. D2(S, I) = 1/|M(S, I)|.

79

3. D3(S, I) = A(S, I)/|M(S, I)|.

The dissimilarity function can be regarded as a cost function. Thus, D1 and D3 are based
on the average match cost A(·, ·). Furthermore, the number of unmatched descriptors U(·, ·)
also can express a cost function. Thus, as the value of U(·, ·) increases, the resemblance level
between the comparing images decreases. In contrast, as the number of matches |M(·, ·)|
increases, the resemblance level between both images also increases. Therefore, we also use
the number of matches in D2 and D3, but inversely.

To exploit the bene�ts of all dissimilarity functions de�ned above, we compute di�erent
rankings combining local descriptor with dissimilarity functions. Thus, we de�ne rS(D,F) as
the resulting ranking for an input sketch S, where D indicates one of the local descriptors
(KASD, HKO, or CD) and F is one of the dissimilarity functions (D1, D2, or D3) that allows
us to sort the test images.

Let rank(r,Γ) be a function that provides the position where a test image Γ appears in
the ranking r. For computing the �nal rank, we need to determine a new score (the �nal
score) for each test image. This score is computed as follows:

f inal_score(Γ) =
∑
∀r

rank(r,Γ). (5.17)

The �nal ranking then is formed in an increasing order with respect to the new scores.
Images with low scores must appear �rst in the �nal ranking. Therefore, if an image appears
in the top of all rankings, it also will appear in the top of the combined ranking.

In order to get the rankings, we propose to use the followings:

• r(CD,D2): Ranking produced by the combined descriptor and the dissimilarity function
D2.

• r(KASD4,D3): Ranking produced by the KASD descriptor using 4 partitions and the
dissimilarity function D3.

• r(KASD8,D1): Ranking produced by the KASD descriptor using 8 partitions and the
dissimilarity function D1.

5.3 Computational Complexity

In this section, we discuss the computation complexity of our approach. For the sake of
clarity, we divide the discussion of the computational complexity of our algorithms in three
groups. First, we discuss the complexity of the detection keyshape stage. Second, we discuss
the complexity of computing the proposed descriptors. Finally, we discuss the complexity of
comparing a test image with an input sketch.

80

5.3.1 Keyshape Detection

This stage involve many algorithms including pre-processing tasks, edgelink detection, in�ec-
tion point detection and the keyshape classi�cation.

• Pre-processing: This task consists in analyzing each pixel of an image to obtain an edge
map representation. The complexity of this task is O(N) where N is the number of
pixels of the underlaying image.

• EdgeLink: In this stage, we trace the edge map pixels to determine potential strokes.
Therefore, the complexity of this algorithm is O(E), where E is the number of edge
pixels.

• Set of Maximum Deviation Points: To get the Set of Maximum deviation (SoM), the
algorithm receives a set of strokes and, by approximating straight lines, determines
points of maximum deviation with respect to those lines. Tho this end, the algorithm
has to evaluate a number of points proportional to the size of E. Therefore, the
complexity of getSoM is O(E).

• In�ection Points: To determine in�ection points the algorithm evaluates each maximum
deviation point together with a local region of 25× 25 pixels. As the size of SoM is less
than the size of E, the complexity of this algorithm is also bounded by O(E).

• Detection of Keyshapes: In this stage, each stroke piece is evaluated to determine
what keyshape the underlying stroke piece corresponds to. However the algorithm for
classifying arcs and lines may have a cost proportional to the number of straight lines
that approximate a stroke piece. Therefore, this stage has a complexity of O(NL),
where NL is the number of approximating straight lines, which is less that the size of
E.

Therefore, the complexity of detecting keyshapes is O(N + E). However, since N > E,
the complexity results to be linear with respect to the image size.

5.3.2 Keyshape Descriptors

We have presented two descriptors. The �rst one, KASD, processes an image in time O(K2),
where K is the number of keyshapes. The second approach, HKO, runs in time O(K ×W),
where W is the size of the local regions around a descriptor is computed.

5.3.3 Keyshape Matching

We use the Hungarian method to �nd a set of matches between two sets of keyshapes. This
algorithm runs in cubic time with respect to the size of the input [102]. As our input is a set of
keyshapes, the time of the algorithms runs in O(K3), whereK is the number of keyshapes . In
practical issues, the average number of keyshapes computed in our data set is approximately
30, which requires low computational cost in terms of matching. Experimentally, the reported
time for comparing two sets of keyshapes is approximately 8 ms.

81

In conclusion, the total cost for comparing two images is O(N +K ×W +K3), where N
is the number of pixels in the image, K is the number of keyshapes and W is the size of the
local region used for computing local descriptors.

5.4 Experimental Evaluation

Due to sketch-based image retrieval being a young research area, there is not a standard
benchmark for comparison purposes. However, Eitz et al. [31] recently have conducted an
interesting systematic work to propose a benchmark in this area. We choose this benchmark
because this takes into account the user's opinion. This fact turns very important as the
main goal of a retrieval system is, precisely, to calculate a ranking very close to what the
user is expecting to get.

This benchmark consists of 31 query sketches, each one associated with a set of 40 test
images. An example of two query sketches and seven of their associated test images in the
data set are shown in Figure 5.14.

Furthermore, each test image has been ranked by people using a 7-point Likert scale [31]
with 1 representing the best rank to 7 representing the worst rank. This provides the baseline
ranking which is called the user ranking.

We proceed to compare the ranking of the proposal method against the user ranking. To
this end, Eitz el al. propose to use the Kendall's correlation τ that determines how similar
two rankings are. The correlation coe�cient τ may vary from 1 to -1, with -1 indicating that
one ranking is the reverse of the other, 0 indicating independence between the rankings, and 1
indicating that the two rankings have the same order. Therefore, as we achieve a correlation
value near 1, our proposal will be better, indicating that the resulting ranking is very similar
to that expected for the users.

Considering that both the user ranking and the ranking of a proposal method may include
tied scores, a variation of the Kendall's correlation is used. This variation is denoted by τb
and it is de�ned as:

τb =
nc − nd√

(n0 − n1)(n0 − n2)
, (5.18)

where

• nc = Number of concordant pairs.

• nd= Number of discordant pairs.

• n0= n(n− 1)/2.

• n1=
∑t

i=1 ti(ti − 1)/2.

• n2=
∑u

i=1[ui(ui − 1)/2.

• ti=Number of tied values in the ith group of ties for the user ranking.

• ui=Number of tied values in the ith group of ties for the proposed ranking.

• t = Number of groups of ties for the user ranking.

82

Figure 5.14: Two query sketches.

• u=Number of groups of ties for the proposed ranking.

In the experiments conducted by Eitz et al. [31], the best correlation value they achieved
was 0.277. This result was obtained using a Bag of Features methodology with a variant of
the histogram of gradient descriptor. The approach uses a 1000-size codebook, thas means
that the codebook is formed with 1000 codewords. In addition, a correlation value under
0.18 is reported for the Shape Context method [9].

Our results show a slight increment in the e�ectiveness of the retrieving process without
requiring a tedious learning stage. We achieve a correlation value of 0.289. A graphic showing
the di�erence correlation value for di�erent SBIR methods is depicted in Figure 5.15. Con-
sidering that our proposal is based on the structural feature of a sketch representation, which
has not been taked into account for current methods, our method is potentially adequate for
being combined with a leading method to increase the retrieval e�ectiveness.

83

To show the goodness of combining our method with a current leading method, we show,
in this document, the results of combining our proposal with the BoF approach proposed by
Eitz et al. [31]. For combination, we follow the same approach we use to combine our two
proposed descriptors. In Figure 5.16 we show that the combined method (Keyshape+BoF)
allows us to achieve a correlation value of 0.337 which means an increase of almost 22% with
respect to the correlation value achieved by the BoF approach. To validate these results, we
run a statistical test (T-Test) comparing the results produced by the BoF approach and the
results achieved by our combined proposal. The statistical test gave a p_value of 0.1% which
indicates that our combined method improves signi�cantly the BoF approach.

Furthermore, we present in Figure 5.17 and 5.18 the correlation value achieved for each
sketch using the BoF approach, our keyshape-based proposal and the combined method.
We note that although our approach gains a signi�cant improvement for some queries (for
instance, see query 25 and 22), the overall improvement is not signi�cant enough. However,
when we analyze the correlation achieved by the combined method, we see that it achieves
an improvement in 24 queries with respect to the BoF results. Additionally, the overall
e�ectiveness is improved in almost 22%.

Finally, it is important to note that it is possible that a variation of the image may
produce a di�erent set of keyshapes. Speci�cally, the detection of arcs and lines may be
a�ected. However, as our method is characterized by many keyshapes where straight lines
are the most frequent type of keyshapes, we will still have a good number of keyshapes for
the matching purpose.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

Sh
ap

eC
on

te
xt

Te
ns

or

H
oG Bo

F

K
ey

sh
ap

e

 C
or

re
la

tio
n

 SBIR Methods

Correlation Value

Figure 5.15: Kendall's correlations for SBIR methods. Our proposal (the last bar on the
right) outperforms that of the state of the art.

5.5 Summary

In this chapter we have presented a novel local method for sketch based image retrieval. Our
method is based on detecting simple shapes called keyshapes. This allows us to get structural
representation of images leading to an improvement of retrieval e�ectiveness. Our proposal
improve the results of the state of the art methods achieving a correlation value of 0.289.

84

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

Bo
F

K
ey

ha
pe

(K
ey

sh
ap

e+
Bo

F)

 C
or

re
la

tio
n

 SBIR Methods

Correlation Value

Figure 5.16: Kendall's correlations for the approaches: BoF, Keyshape-based, and the
Keyshape+BoF.

Furthermore, we analyze a combined proposal exploiting the results of the BoF approach
and the results of our keyshape based approach showing that our method is complementary
to the BoF approach. This fact is re�ected by the results achieved by the combination of
both methods. The results shown that using a combined method allows us to increase the
retrieval e�ectiveness in almost 22%. Additionally, we shown that this result is signi�cantly
better than that of the state-of-the-art methods.

In addition, we have presented an e�cient method for detecting simple shapes on an
image. This strategy could be applied for other applications requiring a reduction of the
image complexity.

Of course, sketch based image retrieval is still a challenging task. In this vein, our current
work is focused on de�ning a more e�cient metric for comparing keyshapes.

85

 0

 0.2

 0.4

 0.6

 0.8

 1

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

 C
or

re
la

tio
n

 Queries 1:15

Correlation Value/ Query

BoF
Keyshape
(Keyshape+BoF)

Figure 5.17: Correlation values for the �rst 15 queries.

 0

 0.2

 0.4

 0.6

 0.8

 1

Q
16

Q
17

Q
18

Q
19

Q
20

Q
21

Q
22

Q
23

Q
24

Q
25

Q
26

Q
27

Q
28

Q
29

Q
30

Q
31

 C
or

re
la

tio
n

 Queries 1:15

Correlation Value/ Query

BoF
Keyshape
(Keyshape+BoF)

Figure 5.18: Correlation values for the last 16 queries.

86

input sketch

input sketch

input sketch

input sketch

input sketch

input sketch

input sketch

Figure 5.19: Example of SBIR using our proposal.

87

Chapter 6

Sketch Based 3D Model Retrieval

6.1 Introduction

In the last years there has been a wide interest and progress on computer aided retrieval of
multimedia data. The advances in this area have allowed users to look for a multimedia object
in large repositories in a more e�cient way. As advances in multimedia retrieval increase, new
interesting challenging applications are coming up. One of the current interesting applications
is the 3D model retrieval with impact extending from design to medical issues [15].

The simplest way for retrieving 3D models is by means of textual metadata describing
the 3D objects. This requires 3D models to have reliable metadata. However, 3D models
not always come with reliable human tags. Although many authors have addressed the
multimedia data annotation problem, this is still considered as an open problem [100, 101].
Due to this fact, the ongoing research on multimedia retrieval relies on a content-based
approach [25].

In the context of content-based 3D model retrieval, several approaches for computing sim-
ilarity between two 3D models have been proposed [95, 15]. Among these methods are shape
histogram [1], shape distribution [75], moments [33], light �eld [19] or spherical harmonics
[37]. Following any of these approaches, users require a 3D model as an example for querying.

However, a 3D model example as query is not always available, frequently requiring some
kind of technical expertise to produce it. Even though some tools for making the 3D modeling
task easier for any kind of users (e.g. Google Sketchup) are coming up, they are still di�cult
to operate and produce detailed models on the �y. This fact clearly limits the 3D model
retrieval usability.

An easy alternative for querying is simply drawing a 2D stroke-based sketch lacking of
color and texture. A simple example of a user-drawn sketch is shown in Figure 6.1. Although
such a kind of sketch is composed of few strokes, it still keeps enough structural information
representing what the user is looking for. This kind of querying leads to the sketch-based 3D
model retrieval.

88

Figure 6.1: An example of a user-drawn sketch.

In this work we are interested in rough sketches that novice users can draw easily. One
important issue here is how to compare a 3D model with a 2D sketch. To this end, some
strategies project and render the model from di�erent viewpoints getting 2D representations
[105]. They then process these 2D representations as in the context of sketch-based image
retrieval using, for instance, HOG [24] or HELO descriptors (see Chapter 4).

An interesting technique for getting a 2D representation from a 3D model is using sug-
gestive contour images [27]. This technique applied in the context of non-photorealistic
rendering resembles hand drawings of 3D dimensional objects very closely. Yoon et al. [105]
showed that this technique performs better than the classical contour or ridge and valley
techniques for retrieval tasks. Therefore, our proposal use suggestive contours to get 2D
sketch representations from 3D models.

Since a sketch image provides structural information of the underlying objects, our pro-
posed descriptors are based on extracting structural components named keyshapes similar as
in the case of image retrieval (see Chapter 5).

Our contribution in this chapter is to present two novel approaches for the sketch-based
3D model retrieval problem which are extended from our keyshape based method discussed in
Chapter 5. The �rst approach named STELA, derived from StrucTurE based Local Approach,
is a local technique that leverages the structural information provided by sketch strokes.
Furthermore, in this approach, a variation of the HELO descriptor is used as a �ltering
step to reduce the database size. The second proposal named HKO-KASD as acronym of
Histogram of Keyshape Orientations - Keyshape Angular Spatial Descriptor also exploits the
structural information from sketch representation, but di�erent from STELA, it computes
a local descriptor composed of the local distribution of four types of strokes. In addition,
for the �ltering step, this proposal applies a global technique based on the distribution of
keyshape orientations.

The results of our proposal show an increase in accuracy for many classes of 3D models
with respect to current strategies applied for sketch-based 3D model retrieval.

89

6.2 Related Work

Sketch-based retrieval is a young and challenging area not only in the case of 3D model
retrieval but also in image retrieval systems. In the case of image retrieval the proposals
of Eitz et al. [31] and our proposal presented in Chapter 5 are the most representatives.
While for 3D model retrieval using sketches as queries we highlight the approaches of Yoon
et at. [105] that is based on representing a 3D model by means of a set of suggestive contour
images.

The general idea for comparing a sketch (a 2D object) against 3D models is representing
each 3D model by a set of 2D projection images. To this end, contour or ridge and valley
representations may be used. However, Yoon et al. [105] showed that a suggestive contour -
based representation outperforms the performance of the contour-based or ridge and valley-
based representations. In particular, Yoon et al. propose the HOG-DFT approach, which uses
suggestive contour images [27] as projections of 3D models from fourteen di�erent viewpoints.
For the matching problem they form histograms of orientations using a di�usion tensor �eld
based approach. Since the histogram of orientations is a global technique, it could get
confused easily. That is, two sketches representing di�erent objects may have similar global
descriptors. For instance, in Figure 6.2, we show a sketch and a suggestive contour of a
3D model with their corresponding global descriptor (in this case we are using the HELO
descriptor). Both descriptors look very similar even though they are representing di�erent
objects. Moreover, a global descriptor does not take into account structural information
which is the main information represented by sketches.

Following the proposal of Yoon et al., we also use suggestive contour images to get a
sketch representation from a 3D model for both of our keyshape based proposal (STELA and
HKO-KASD). In the following sections we describe both proposals in detail.

Figure 6.2: The behavior of an oriented-based global approach for comparing an sketch with
a 3D model suggestive contour.

90

Figure 6.3: The pipeline of the proposed local approach.

6.3 The STELA Approach

In this section we describe STELA in detail for the sketch based 3D model retrieval. It
is necessary to be aware that this method requires 2D sketch-like representations. The
query sketch is already a sketch representation, but a 3D model is not. To obtain a 2D
sketch representation from a 3D model we use the suggestive contours technique proposed
by DeCarlo et al. [27]. The main property of STELA is that it is the �rst method that
takes advantage of the structural information as well as of the locality information over the
sketches representations.

For getting structural information, we follow the basic ideas of our proposal for the sketch
based image retrieval, in which a sketch image is represented by a set of keyshapes, but
instead of detecting arcs and ellipses, STELA works detecting only straight lines. In this
way, our proposal is composed of the following steps: (1) get an abstract image, representing
in a simpler way a sketch or suggestive contour image. (2) detect keyshapes, that should
return a set of simple primitive shapes from an abstract image, (3) compute local descrip-
tors, that computes a �ngerprint for each keyshape, and (4) matching, allowing us to set a
correspondence mapping between local descriptors of a query sketch and local descriptors of
a suggestive contour image representing a 3D model from a certain viewpoint. These four
steps are shown in Figure 6.3. The next subsections describe each step in detail.

6.3.1 Abstract Image

The sketches and the suggestive contour images obtained from the 3D models are 2D images.
These will be represented by a set of keyshapes. Before detecting keyshapes, we pre-process
the images using thinning operator [41] for sketches and Canny operator [16] for suggestive
contour images. In addition, we apply a cropping operation keeping only the bounding box
surrounding the object on the image.

Let I be a sketch or suggestive contour image after the preprocessing step. We represent
I by a set of strokes I = {S1, S2, . . . , SNs}. We approach real strokes by means of edgelinks
using the same algorithm discussed in the Chapter 5. In Figure 6.4 we show an example of
a sequence of edgelinks. Henceforth an edgelink will be called simply stroke.

91

Figure 6.4: A synthetic example of a sequence of edgelinks.

After representing an image I as a set of strokes, we proceed to detect keyshapes. In this
step, we may de�ne many kinds of keyshapes like circles, arcs, ellipses, lines, etc. However,
due to the complexity of a sketch image, drawn in a rough way together with the scarce
information provided by 3D model projections, circles, arcs and other shapes could not be
detected appropriately causing a decrease in e�ciency. In this way, we only consider straight
lines as keyshapes. Although lines are simple shapes, these still keep enough structural
information which will be exploited by our descriptors. Event though we will use only straight
lines as keyshape we decide to keep the term keyshape because it could be extended to other
shapes in other contexts.

6.3.2 Detecting Keyshapes

For getting keyshapes (or keylines), we take each stroke S to be approximated by a set of
straight lines. First, we de�ne a line l between the start and end point of S. Second, we
calculate the maximum deviation τ from a point on S to l. If τ > TH, S is divided into
two lines l1 and l2, taking the maximum deviation point on S as division point (see Figure
6.5) . We proceed processing l1 and l2 in the same way leading to a recursive procedure.
In addition, the detected lines are split if they are longer than a threshold. We de�ne the
minimum line length as 20 per cent of the image size.

Figure 6.5: Approximating a stroke by a set of straight lines.

Finally, a stroke S of I is decomposed into a set of lines. Therefore, image I can be
represented by the set of lines, each one corresponding to a stroke. Now we can de�ne
I = l1, l2, . . . ln, where n is the total number of detected lines or keyshapes.

The resulting set of lines contains lines of di�erent size. It is worth pointing out that curve
strokes will yield a set of very small lines. So, to get a set of lines representing appropriately
straight strokes we need a threshold Tshort to reject small lines. In addition, considering
the possible discontinuities of strokes on the sketches, a process for merging nearby lines
with similar slope is required. We use a threshold Tnear to evaluate nearness between lines.
Furthermore, lines with length above a threshold Tlarge should be split into smaller ones. We
propose to use the following threshold values: Tshort = D ∗ 0.05, Tnear = 5, Tlarge = D ∗ 0.5,

92

Figure 6.6: First column shows the suggestive contour of two 3D models, second column
shows the corresponding abstract images, and third column shows the detected keyshapes.

where D is the length of the abstract image diagonal. The �nal set of lines represent the set
of keyshapes.

Finally, we regard the center of each line as the representative point of each keyshape.
Figure 6.6 shows two 3D models, represented by one of their suggestive contours, together
with their corresponding abstract representations (second image) and the detected keyshapes
(third image). In our proposal, each keyshape L is represented as a 5-tuple [(x1, y1), (x2, y2),
(xc, yc), s, φ], where (x1, y1) is the start point, (x2, y2) is the end point, (xc, yc) is the repre-
sentative point, s is the line length, and φ is the slope. Although the two �rst components
representing L are enough to compute the remaining three components, we decided to keep
the 5-tuple notation just for making our algorithm easy to be understood.

6.3.3 The Local Descriptor

Di�erent descriptors could be used in this step. For instance, an extension of Shape Context
[9] to work over keyshapes instead of working over a point sampling is an alternative. How-
ever, this choice could yield a sparse descriptor considering that the number of keyshapes is
much smaller than the number of sampled points.

Therefore, in our approach we use an oriented angular 8-partitioning descriptor. Figure
6.7 depicts a graphical representation of this descriptor.

93

Figure 6.7: A synthetic representation of the partitioning to make up the proposed local
descriptor.

Having a keyshape L as reference, this descriptor works as follows:

• Create a vector h, containing 8 cells. Initially, h(i) = 0, i = 1 . . . 8.

• Let L be the reference keyshape represented as :

L = [(x1, y1), (x2, y2), (xc, yc), s, φ
′]. (6.1)

• Let fr : R2 → R2 be a rotation function around the point (x1, y1) with rotation angle
β = −φ. This function is de�ned as below:

fr(x, y) = (xr, yr),where, (6.2)

xr = [(x− x1)cos(β)− (y1 − y)sin(β)] + x1

yr = y1 − [(x− x1)sin(β)− (y1 − y)cos(β)]

• Let (x̂c, ŷc) = fr(xc, yc) be the normalized version of (xc, yc).

• For each keyshape Q 6= L represented by [(x′1, y
′
1), (x′2, y

′
2), (x′c, y

′
c), s

′, φ′].

� Get (x̂′c, ŷ
′
c) = fr(x

′
c, y
′
c).

� Dx = x̂′c − x̂c and Dy = ŷ′c − ŷc
� If Dx > 0 ∧Dy > 0 ∧ |Dx| > |Dy|, bin = 1.

� If Dx > 0 ∧Dy > 0 ∧ |Dx| <= |Dy|, bin = 2.

� If Dx ≤ 0 ∧Dy > 0 ∧ |Dx| <= |Dy|, bin = 3.

� If Dx ≤ 0 ∧Dy > 0 ∧ |Dx| > |Dy|, bin = 4.

� If Dx ≤ 0 ∧Dy ≤ 0 ∧ |Dx| > |Dy|, bin = 5.

� If Dx ≤ 0 ∧Dy ≤ 0 ∧ |Dx| <= |Dy|, bin = 6.

� If Dx > 0 ∧Dy ≤ 0 ∧ |Dx| <= |Dy|, bin = 7.

� If Dx > 0 ∧Dy ≤ 0 ∧ |Dx| > |Dy|, bin = 8.

� h(bin) = h(bin) + s′/MAX_LEN , where MAX_LEN is the length of the ab-
stract image diagonal. This is a normalization parameter depending on the image
size.

• Finally, h(bin) =
h(bin)
8∑

i=1

h(i)

, bin = 1 . . . 8.

94

6.3.4 Matching

In our approach, we treat an object, a query sketch or suggestive contour image, as a set of
descriptors. This set captures the object shape.

Let P = {p1, p2, . . . , pm} be the set of descriptors representing a query sketch, and Q =
{q1, q2, · · · qn} be the set of descriptors representing a suggestive contour obtained from a
3D model from a certain viewpoint. Here, pi, qj ∈ R8. Without loss of generality, we will
suppose n < m. So, we need to �nd an assignment from Q to P . This is, for each qj we
need to look for the pi that allows us to minimize an overall cost. We de�ne the function
π : {1, . . . , n} → {1, . . . ,m} that maps the j-th descriptor from Q with the i-th descriptor
from P .

Furthermore, we de�ne the cost T of the assignment using a certain mapping function π
as follows:

T (π) =
n∑

i=1

C(qi, pπ(i)) (6.3)

where, C(q, p) is the cost of matching a descriptor q ∈ Q with p ∈ P . This cost function could
be thought as the distance between p and q. In this way, the less similar the descriptors are,
the more expensive the match become. As our proposal descriptor is, in fact, a probability
distribution, we use the χ2 test statistics:

C(q, p) =
1

2

8∑
i=1

[q(i)− p(i)]2

q(i) + p(i)
(6.4)

Therefore, the problem of minimizing the overall cost is de�ned as:

π? = argmin T (π) (6.5)

This problem may be regarded as an instance of the Bipartite Graph Matching. Di�erent
from the case of classical local methods for the image context, our number of descriptor per
image is much lower. So, in our case we will resolve the assignment problem applying the
Hungarian Method [54].

After the assignment stage, we need to look for a representative pose transformation
between the matched descriptors. This will allow us to achieve a more consistent matching.
To this end, we will use the stored information of the corresponding keyshape (see Eq. 6.1).
We are only interested in �nding the scale and position transformation. The position is
represented by the center of the keyshape (xc, yc) as the scale is represented by the keyshape
length s.

For estimating the pose transformation, we use the Hough Transform [6], where each can-
didate match must vote just for three parameters (scale, translation in x-axis and in y-axis).
We keep the set of parameter with the highest vote. This set of transformation parameters
characterizes the estimated pose. Only the matches which agree with the estimated pose are
retained for the next process, the others are discarded.

95

Figure 6.8: Matching between a sketch (top image) and a suggestive contour (bottom image).

Finally, the similarity between a sketch and a suggestive contour is computed as the
average cost of the matched descriptors. The cost of the unmatched suggestive contour
descriptors are set to 1. Figure 6.8 shows an example of this matching step.

6.3.5 Invariance issues

Our local approach is robust under positions, scale, and rotation changes. The translation
invariance is directly derived as our descriptor extract local information. We achieve scale
invariance normalizing the length of the keyshape by the MAXLEN , a parameter depending
on the image size. Finally, we get rotation invariance making the keyshape be coincident
with the x-axis of the partitioning system as shown in Figure 6.7.

6.3.6 Filtering Step by HELO

Taking into account that local approaches are commonly expensive in time, we add a �ltering
step, where a reduced number of suggestive contour images are selected. In addition, this
�ltering step allows us to get an improvement in precision, reducing the number of false
positives that could arise from the fact that we have 14 suggestive contour images for each
3D model. That means, having many viewpoints for each 3D model could make the method
get confused during the retrieval process.

Each chosen suggestive contour represents a di�erent 3D model. Our �lter considers the
global shape of the objects, therefore only 3D model with global shape similar to that of
the query are kept. To this end, we use HELO [80] as the global descriptor with a slight
variation.

In this approach, instead of applying HELO just over the whole image, we apply it over
three kind of zones, leading to three types of HELO:

1. HELO : This is applied over the whole image, using a 36-size descriptor.

2. HELO_V: This is applied over four equal-sized vertical regions, juxtaposing each de-
scriptor to make up the global one. In this case, since the HELO_V is applied over

96

Figure 6.9: Combining a global approach with a local one for 3D model retrieval.

smaller regions, we use 18-size descriptors for each region, generating a 72-size global
descriptor.

3. HELO_H: This is applied over four equal-sized horizontal regions, juxtaposing each
descriptor to make up the global one. The size of this descriptor is the same as that of
the HELO_V.

Each one of the three mentioned descriptors are evaluated separately using the χ2 distance,
producing 3 di�erent distances, dHELO, dHELOV , dHELOH . The �nal distance D is computed
as follows:

D = w1 ∗ dHELO + w2 ∗ dHELOV + w3 ∗ dHELOH (6.6)

where wi are appropriate weights such that
3∑

i=1

wi = 1. Empirically, we set w1 = 0.2,

w2 = 0.4, w3 = 0.4. We call this global approach vHELO.

6.3.7 Handling viewpoint changes

In our approach, we project each 3D model from 14 di�erent viewpoints [105] getting the
corresponding 14 suggestive contours. The global dissimilarity between a query sketch and a
3D model is computed as the minimum distance between the input and the 14 corresponding
suggestive contours.

After selecting the candidates using the global �lter, we keep only one suggestive contour
for each selected 3D model. The local approach explained in the previous section will give
the �nal rank. A graphical representation of how our proposal works is illustrated in Figure
6.9.

97

6.4 The HKO-KASD Approach

Following the STELA method, in this approach we also get a 2D sketch representation from
3D models using fourteen suggestive contour images, each one corresponding to a speci�c
viewpoint as speci�ed by Yoon et al. [105]. Our approach comprises two stages. The �rst
stage is a �ltering step which determines the most appropriated projection for each 3D
model having a query sketch as input. The �ltering step is carried out by means of a
global descriptor. Classical global descriptors are based on gradient orientations as HOG or
HELO. We claim that gradient-based methods are sensitive to noise or outliers. Instead, we
propose the Histogram of Keyshape Orientations (HKO), where orientations are estimated
with respect to keyshapes that compose a sketch or a suggestive contour image.

After the �ltering step we keep only one suggestive contour image for each 3D model of
the database. The next stage is a re�ning step, which will determine the �nal ranking of the
database objects with respect to the input sketch. As in the case of STELA, we are interesting
in exploiting the structural information provided by sketches or contour images. In this way,
we propose to use the keyshapes as structural componentes. In addition, to take into account
locality information, we compute a local descriptor for each keyshape. We propose a new
local descriptor representing the keyshape spatial distribution around a referent keyshape.
The next sections are dedicated to describe in detail each of our mentioned stages.

6.4.1 Keyshapes

This approach follows the same �ow of STELA but the local descriptor together with the
matching step is di�erent. In particular, an abstract representation from a sketch query
or from a suggestive contour image is required. To this end, the same strategy applied for
STELA is used. In addition, in this approach we decompose an sketch representation into a
set of keyshapes based on detecting straight lines similar as STELA.

Once keyshapes have been detected, we classify them as horizontal line (H), vertical line
(V), diagonal line with slope 1 (D1), or diagonal line with slope -1 (D2). In Figure 6.10
we displayed an example of a suggestive contour image with its corresponding keyshape
representation.

Figure 6.10: A suggestive contour image with its corresponding keyshape representation.

98

6.4.2 Histogram of Keyshape Orientation

This global approach named HKO is used for �ltering purposes determining the best sugges-
tive contour image for each 3D model in the database. This could be understood as choosing
the appropriate projection image for a 3D model.

Unlike gradient-based global methods [24, 80], we take into account the information given
by keyshapes. In this way, we compute a histogram of keyshape orientations (HKO) made
up with the orientations of the lines detected previously. Since we are not interested in line
directions, the orientation of line L, θ(L) varies from 0 to π. We quantize θ(Li) i = 1 . . . n
into 8 bins. In this way, each HKO bin b represents the number of lines with orientation
quantized as b, b = 1, . . . , 8. The �nal descriptor is the corresponding unitary version of the
HKO descriptor.

To determine the appropriate suggestive contour image for each 3D model, we compare the
input sketch with each of the 14 contour images of each 3D model using the HKO descriptor.
We choose the suggestive contour image with the smallest distance to the sketch's HKO. We
use L1 metric (Manhattan distance) as distance function. Finally, we keep only one suggestive
contour image for each 3D model, instead of the 14 contour images at the beginning.

To rank the 3D models of the database, we proceed using a local approach based on
keyshapes as well.

6.4.3 Keyshape Angular Spatial Distribution

Sketches are characterized by keeping structural information instead of color and texture.
Structural information represents the components of an object. For instance, a hand-drawing
of a chair is composed of vertical lines representing legs and horizontal line representing
its body. Moreover, structural information also represents a spatial relationship between
components. For instance, the body of a table is drawing over its corresponding legs. We are
interested in our local descriptor exploits such as information.

Taking into account structural information of sketch images we propose a new local de-
scriptor. The proposed local descriptor is computed around of each keyshape. So, we will
have n local descriptors, where n is the number of keyshapes.

Getting Local Descriptor

We named our descriptor as Keyshape Angular Spatial Distribution (KASD) because it takes
into account the spatial distribution of the keyshapes around a referent keyshape where an
angular-partitioned local circular region is de�ned.

Let LR be a referent keyshape, we de�ne a circular local region around LR. The radius of
the local region is three times the referent keyshape length. In addition, the local region is

99

divided in angular partitions (slices). Each partition corresponds to a spatial region around
LR. An example of a local region and its partitions is depicted in Figure 6.11 (a).

(a) (b)

Figure 6.11: (a) Local region around a referent keyshape. (b) Local descriptor and its 4-bin
histograms for each slice.

Having partitioned the local region of LR, we proceed to compute a 4-bin histogram
for each partition (see Figure 6.11) (b). This histogram represents the distribution of
keyshape types around LR computed for each foreground pixel. Because we have four classes
(H,V,D1, D2), we compute a 4-bin histogram. The local descriptor is the unitary version of
the juxtaposition of the eight histograms. The detailed algorithm is presented in Algorithm
7.

Algorithm 7 Local descriptor algorithm
1: for all partition i = 1 : 8 do
2: hpi(1 . . . 4) = 0
3: for all pixel(x, y) = 1 ∈ partition i do
4: class = getClass(x, y)
5: hpi(class) = hpi(class) + 1
6: end for
7: end for
8: h = hp1 ◦ hp2 ◦ · · · ◦ hp8
9: h = toUnit(h)

10: return h

In Algorithm 7, the function getClass(x, y) returns a value in {1, 2, 3, 4} depending on the
line type which the pixel (x, y) falls on. In this way, if pixel (x,y) falls on a horizontal line
(classH), getClass(x,y)=1. For classes V , D1 andD2, getClass returns 2,3, or 4, respectively.

Furthermore, symbol ◦ means juxtaposition, and function toUnit(v) returns the unitary
vector of v.

Matching
Let I be an image (sketch or suggestive contour). We de�ne LD(I) as:

LD(I) =
⋃

t∈{H,V,D1,D2}

LDt(I) (6.7)

100

where LDH(I) is a set of local descriptor for horizontal lines in I, LDV (I) for vertical lines,
LDD1(I) for diagonal lines having slope 1, and LDD2(I) for diagonal lines having slope -1.

We compare an input sketch against a suggestive contour for each 3D model. The matching
process is carried out between local descriptors corresponding to the same keyshape type.

Since the number of local descriptors is much lower than in the case of having keypoints
[59, 9], for the matching problem, we could solve an instance of the bipartite graph problem
using the well known Hungarian Method [54] between LDt(S) and LDt(C), t = H,V,D1, D2,
where S is an input sketch and C is a suggestive contour of a 3D model.

The cost of matching two local descriptors is measured by the L1 metric (Manhattan
distance). The �nal match is the union of the partial matches, and the cost of the match is
de�ned as the average cost of all matches.

A question arising in this point is what the cost of comparing an input sketch S with a
suggestive contour image C must be. In other words, we need to determine the dissimilarity
value between S and C. There are many ways to represent such a dissimilarity value. Some
could be the average matching cost, a function respect to the number of matches, among
others. We de�ne the dissimilarity value as:

DV (S,C) = AC(S,C)/n_matches(S,C) (6.8)

where, AC indicates the average matching cost and n_matches is the number of matches.
The �nal raking is presented starting with the 3D model having the smallest dissimilarity
value between its corresponding suggestive contour and the input sketch ending with that
having the highest dissimilarity value.

6.5 Experimental Results

6.5.1 Dataset Description

For our experiments, we used the same benchmark as in [105]. This benchmark has been
developed using several 3D mesh models from the Princeton Shape Benchmark, from where
260 models belonging to 13 di�erent classes were selected. These classes are: ant, bear, bird,
chair, cup, �sh, glasses, hand, human, octopus, plane, table, tool.

Using the 3D models, 260 × 14 = 3640 suggestive contours from di�erent viewpoints
are rendered, which we use for our experiments as training examples. Additionally, the
benchmark provides 250 user hand-drawn sketches, which are used as input for the retrieval
task evaluation. It is worth mentioning that the sketches are, in fact, rough sketches drawn
by users in a free way. No constraint are imposed to the users for drawing such sketches.

Figure 6.12 shows examples of the 3D model used as training data and Figure 6.13 shows
several sketches corresponding to four di�erent classes.

101

Figure 6.12: Examples of 3D models used as training data.

Figure 6.13: Examples of sketches used as queries.

6.5.2 Result Analysis

In this section, we show the results of the retrieved 3D models from various test sketches.
Two examples of the retrieval task using the HKO-KASD approach are shown in Figure
6.14. In these examples we depict only the �rst �ve retrieved models. We can note that our
proposal retrieves only one false positive among the �rst �ve retrieved objects, the remaining
four objects correspond to objects belonging to the same class of the query.

It is important to note two aspects in our method. First, our method retrieves relevant
objects even though they have di�erent viewpoints. Second, our method can retrieve relevant
objects even though such as objects, belonging to the same class, undergo shape variations.
For instance, looking at the �rst and last retrieved chair 3D models in Figure 6.14 we can
notice that these chairs belong to di�erent chair models. Despite of that fact, our method
is capable of retrieving them. The key point here is that our method takes into account the
structural components of the underlaying objects. In this way, both chairs are composing of
the same components: legs, seat, and backrest.

102

Figure 6.14: Examples of the 3D model retrieval using the proposed local approach. The
�rst columns show a sketch query, the other �ve images correspond to the �rst �ve retrieved
models.

To measure the performance of our approaches we use the �rst-tier precision (FTP) metric.
In short, the FTP metric evaluates the precision of a retrieval method after retrieving a
number of object equal to the number or relevant models in the data set. In our case, each of
the 13 classes contains 20 di�erent models, so any input sketch, belonging to one of classes
must retrieve 20 relevant models. The FTP metric, then, is computed as the number of the
retrieved models that are relevant to the input query divided by the number of the total
retrieved models (in our case this value is equal to 20).

We compare our results with recent proposals in the context of sketch-based 3D model
retrieval. In particular we present results against HOG-DFT [105] and HELO [80] achieving
an increasing in e�ectiveness for many classes.

In Table 6.1, we show the results achieved by our methods. The result are presented
independently for each class in terms of the �rst tier precision metric. We can note that our
two proposals STELA and HKO-KASD have a comparative performing with respect to the
state of the art (HOG-DFT). However, STELA and HKO-KASD outperform the HOG-DFT
by six classes. For instance, the HKO-KASD achieves outperforming results for the classes:
chair, cup, glasses, hand, table and tool, with a maximum improvement for the class tool.

In terms of retrieval time, our approaches and the HOG-DFT method require similar
times. In particular, our two approaches require approximately 4.2 seconds for retrieving 3D
models, while the HOG-DFT requires 3.2 seconds.

103

Table 6.1: First-tier precision for each class.
Class HELO HOG-DFT STELA HKO-KASD
Ant 0.147 0.253 0.126 0.153
Bear 0.210 0.290 0.338 0.135
Bird 0.107 0.145 0.110 0.121
Chair 0.088 0.068 0.121 0.167
Cup 0.138 0.140 0.142 0.244
Fish 0.162 0.192 0.152 0.124
Glasses 0.029 0.029 0.079 0.109
Hand 0.333 0.134 0.319 0.252
Human 0.255 0.452 0.321 0.180
Octopus 0.108 0.240 0.150 0.195
Plane 0.021 0.120 0.117 0.088
Table 0.135 0.071 0.120 0.110
Tool 0.079 0.005 0.045 0.157

AVG 0.139 0.165 0.165 0.157
DES 0.084 0.117 0.093 0.049

Figure 6.15: The �rst-tier precision for each class. We compare HKO-KASD with HOG-DFT,
HELO and STELA methods.

104

Figure 6.16: A low accurate segmentation result using a skin color based approach [50]. The
white pixel on the right binary are the pixels detected as hand points.

6.6 Case of Study: Hand Segmentation using STELA

Hand segmentation has become a very important task for many applications such as those
related to vision-based virtual reality [107], gesture recognition [99], and biometric recognition
[47, 106]. Furthermore, the hand segmentation task turns more critical in cases where a depth
analysis of the hand is required. This kind of analysis could imply getting some measures
from the hand image. For instance, in the case of hand biometrics getting reliable hand
measurements is essential. Commonly, hand-based biometrics require a special device to
capture the hand properties limiting its usability. This problem could be solved if we could
get hand measurements directly from a digital cam. Of course, this would require an accurate
segmentation stage. Yoruk et al. [106] proposed a method to carry out this process. However,
in their work, they consider that the image background is dark and homogeneous leading to
a trivial segmentation stage and to low usability as well.

Commonly, hand segmentation is carried out by skin color based techniques [50, 56]. These
techniques build a generic model (e.g. a statistical model) from a large collection of training
skin images. The model will decide whether a pixel in the image is actually a hand point
or not. An important study on this kind of model proposed by Jones et al. [50] is based
on a Gaussian mixture model. A critical drawback of a skin color based technique is its
low performance under illumination variations. Moreover, this kind of technique performs
poorly in presence of skin color-like regions. Figure 6.16 shows a segmentation result using
the statistical model proposed by Jones et al. [50] for skin segmentation.

In addition, the hand segmentation problem has also been studied in the context of 3D
tracking of hand articulations. In this context techniques based on mixing chromatic informa-
tion with depth information (using Kinect for instance) have showed outperforming results.
In this vein, the work of Oikonomidis et al. [73] shows how hand segmentation is achieved
blending a skin color model with depth information. The problem with this kind of approach
is that a special device (the Kinect) is required. So, our discussion in this document is focus
on techniques that simply take as input, a color image.

Instead of using a generic color model we could use a model dependent on the user skin

105

color leading to an adaptive approach. The adaptive term arises due to the fact that the
color model will be adapted to the user skin color. This approach allows us not only to tackle
the diversity of skin color but also to handle diverse illumination conditions.

In the adaptive segmentation approach, a hand portion called the training region needs
to be previously marked on an input image. The pixels inside the marked region are used
to build a color model that will be used to segment the rest of the hand by means of color
similarity. Following this idea, Yuan et al. [107] proposed an algorithm that makes up color
clusters using a training region and then labels the clusters as hand or background depending
on the size of each cluster. Finally, the image points are classi�ed depending on what cluster
they belong to. The problem with this algorithm is that it requires one to mark the training
region manually, an undesired task in automatic environments.

To get a training region automatically we could locate the hand on the input image.
Using this location we could mark an appropriate hand region, commonly using the location
coordinates as the center of such a region.

For the localization problem, the Viola and Jones detector [98] may be used. The problem
with this approach is that it requires large training image collection and is time consuming
for the training. Because a hand is a simple object with a well de�ned shape, an expensive
training stage is unnecessary. Moreover, the localization problem may be carried out using a
local structure-based approach exploiting not only locality information but also the structure
of the hand shape.

Our contribution in this work is to present a very accurate hand segmentation technique
composed of two main steps: (1) estimate the hand location on an image, and (2) separate
the hand region from the background. For the localization stage, we use a local structure-
based approach exploiting both structural and locality information of a hand. Structural
information is related to the components forming a hand and locality information is related
to the spatial relationship between these components. To this end, we use our keyshape based
approach named STELA in the context of the stetch based 3D model retrieval [82]. For the
segmentation stage we extend the idea of Yuan et al. [107] proposing strategies to compute
the underlying parameters. In this case, we make up color clusters from a training region
obtained directly from the localization stage (a manual localization is no longer required).
For color representation we use only the chromatic channels of the L*a*b* color space as
suggested by Yuan et al. [107]. The segmentation stage ends with a post-procesing phase
to reduce imperfections caused by noise. An example of our results is shown in Figure 6.17
where the segmentation is speci�ed by a blue contour.

Moreover, our proposal of using a training region may be exploited for applying interactive
energy-based segmentation methods like the Grab-Cut approach [79]. This kind of algorithm,
that has shown outperforming behavior for the segmentation problem, requires a initialization
region. In this way, the training regions resulting from the STELA approach may be used
as the initialization region. We show later results achieved using STELA together with the
GrabCut approach.

106

Figure 6.17: An example of hand segmentation using our approach. The blue contour de�nes
the segmented region.

6.6.1 Hand Segmentation

We divide our approach in two stages, the �rst one corresponds to the hand localization,
where STELA is applied to estimate the location of the occurrence of a hand. After this, we
extract a training region from the center of the located region and proceed to segment the
hand using the color information given by the training region. Finally we carry out a post-
processing stage to make our result more robust to environment conditions like illumination
or skin color-like regions near to the hand region. A framework of our proposal is presented
in Figure 6.18.

Hand Localization

Unlike the machine learning approach for detecting objects, our approach only requires a
simple hand prototype. In our implementation we use a 80× 80 hand prototype image.

We use STELA to estimate the hand location in an image. Since we are interested in
detecting a hand shape we could make STELA faster reducing the image size. We resize the
input image to a 100 × 120 image. To appropriately determine the location of a hand, we
apply the sliding window strategy. Each region inside a 80×80 window is compared with the
hand prototype by STELA. The center of the window keeps the dissimilarity value between
the windowed region and the prototype.

Let dij be the STELA dissimilarity value for each pixel (i, j) in the resized input image. We
de�ne D as a set of points where the dissimilarity value is close to the minimum dissimilarity
value (mdv). That is:

D = {(i, j) : dij −mdv ≤ 0.1, i = 1 . . . 100, j = 1 . . . 120},

Finally, the occurrence of a hand is located in the centroid (ic, jc) of D only if the mdv ≤
THh. This means that if we have mdv > THh the method will report a hand not found

107

Figure 6.18: Proposal framework.

Figure 6.19: Two examples of hand localization.

message. In our experiments we set THh = 0.65. If a hand is located, the centroid (ic, jc)
needs to be rescaled to have the real location. Two examples of hand localization are shown in
Figure 6.19 where we notice that the proposed method works even when the hand undergoes
rotation variations.

Hand Segmentation

After locating the hand, we extract a 150x100 region where the upper left corner corresponds
to the hand location point (see Figure 6.18). A great number of pixels inside this region must
correspond to the hand. We will refer to this region as the training region.

We proceed to make up color clusters. In this way, each pixel of the training region must
fall within one of the built clusters. We represent the image by the L*a*b* color space.
We only use the chromatic channels a∗ and b∗ similiar as the proposal of Yuan et al. [107].
Though we have conducted experiments using di�erent color spaces, we got better results

108

using L*a*b*.

Each color cluster q needs to keep two values, the �rst one corresponds to the number of
pixels falling inside it (Nq), and the second one is a representative point of the cluster (this is
not necessarily a real pixel), expressed in terms of its corresponding a* b* color information.
We represent this point as [raq , r

b
q]. The representative pixel corresponds to the average of the

a* b* components of all pixels falling inside q.

We make up the clusters following this given algorithm:

• SoC = ∅ (set of clusters)
• N = 0 (number of clusters)

• For each pixel p in the training region

� Let [a,b] the corresponding a*b* color information of p.

� m = min1≤q≤N(L2([a, b], [raq , r
b
q]))

� q∗ = argmin1≤q≤N(L2([a, b], [raq , r
b
q]))

� If m < TH, update [raq , r
b
q] and increase Nq by 1.

� Otherwise, add a new cluster w to SoC using p, increasing N by 1. In this case,
[raw, r

b
w] = [a, b] and Nw = 1.

• return SoC

In the previous algorithm TH = 0.01 and L2 corresponds to the Euclidean distance.

After building the set of clusters SoC, we segment a hand starting from the pixel corre-
sponding to the hand location point expanding the process to the rest of the pixels using the
breadth �rst search strategy through the pixels detected as hand point. This strategy avoids
detecting objects that are far from the hand region, minimizing the false positive points. The
algorithm determines what cluster a pixel p must belong to. An appropriate cluster q? for
the pixel p must satisfy two criteria:

1. The number of pixels in q? must be greater than TH_N . Clusters with few pixels may
correspond to the background.

2. Considering only clusters satisfying the �rst criterion, the cluster q? corresponds to that
with minimum distance (md) between p and each cluster representative point. Here,
the distance function is the Euclidean distance.

If md > THD the pixel is marked as background, otherwise it is marked as a hand point.

In our implementation TH_N is the median of the cluster sizes. Formally:

TH_N = median(N1, . . . , NN) (6.9)

In the case of THD we conduct a di�erent strategy. The main idea is that THD has to
be computed depending on the distances between hand points from the training region.
Therefore THD is a distance that allows us to discard the 10% of the training region points
with higher distance value whit respect to the cluster they belong to.

109

Figure 6.20: An image containing a hand (left) and its corresponding mask (right).

Post-processing

After the segmentation stage we have a binary representation where detected hand points are
set to 1 and background points are set to 0. To have an accurate segmentation we apply two
post-processing operations. First, the method discards a point detected as hand point if the
number of hand points in a local region around the point is less than 50% of the local region
size. In this case, we use a 21x21 local region. Second, the method applies morphological
operations to �ll holes in the hand region [89].

6.6.2 Experimental Results

In this section we show results of the automatic hand segmentation using our proposal. To
test our approach, we used a collection of 25 640 × 480 images containing a hand captured
with di�erent kinds of illumination. In terms of pixels, our collection is composed of 5,761,985
hand pixels (positive set) and 18,084,503 non-hand pixels (negative set). We compare our
result against a renowned skin color model, speci�cally we use as baseline as proposed by
Jones et al. [50]. We also show the performance of the GrabCut algorithm [79] for the hand
segmentation problem. In this case, the GrabCut algorithm is initialized with a foreground
region obtained using the STELA approach.

A good tool to assess the performance of our segmentation results is the ROC curve, which
allow us to evaluate a method with respect to the relation between false positive points and
correct detection points. In this way, we have a mask indicating the hand region for each
test image. An image with its corresponding mask is shown in Figure 6.20.

ROC curve analysis also takes into account the area under the curve (AUC) as a quality
measure. The higher the AUC value is, the better the quality of our method is. Furthermore
ROC curves show us the cost we have paid in terms of false positives when a high correct
detection is desired. The ROC curve comparing our method with the skin color model is
presented in Figure 6.21.

Our method achieves an AUC value of 0.97 as the skin color model only achieves 0.83. In
addition to the overall good performance of our method, it is worth pointing out that our
proposal achieves a correct detection rate over 90% at the expense of having only 5% for

110

Figure 6.21: ROC curves comparing our method with the skin color model proposed by Jones
[50]. The AUC value is indicated in the legend.

CD FP (Our method) FP (Skin color model)
0.95 0.146 0.641
0.90 0.052 0.490
0.85 0.046 0.334
0.80 0.009 0.234

Table 6.2: Correct detection rate (CD) vs. false positive rate for our method and the skin
color model proposed by Jones [50].

false positives. The skin color model results in 49% of false positives to achieve a comparable
result. In Table 6.2 the relationship between false positive and correct detection is shown for
both evaluated methods.

Figure 6.22 shows how well our method segments a hand in an image in comparison with
the baseline method. Additionally, six examples of hand segmentation using our method are
depicted in Figure 6.23.

Finally, we have to say that our method correctly locates a hand for di�erent images. In our
experiments we get 100% of correct localization. Therefore, any application requiring a hand
localization step could take advantage of our proposal, hand tracking and hand biometrics
are two potential applications.

Comparison with the GrabCut approach

In this section we show the performance of the GrabCut approach for the hand segmentation
problem and we compare it with our proposed approach. �

To apply the GrabCut approach, we de�ne the training region or foreground region using
our localization-based proposal as discussed in the previous sections. Using a training region
of foreground pixels provides a better performance than using a bounding rectangle. For
this reason, we only show the results of using a foreground training region in the GrabCut
approach.

111

(a) (b)

(c) (d)

Figure 6.22: Hand segmentation comparison. (a) Input image, (b) target segmentation, (c)
output using our method, and (d) output using the skin color model.

In Figure 6.24 we show a ROC curve comparing the proposed method and the GrabCut
approach using STELA. We note that the GrabCut approach outperforms the skin-based
method, but its performance is still below ours. However, to achieve the better results the
GrabCut algorithm requires less time than our approach. In particular we achieve the better
result in approximately 34 seconds, while the GrabCut algorithm achieved its better results
in 22 seconds using an Intel processor of 2.20 GHz.

6.7 Summary

We have presented two novel approach for retrieving 3D model using rough sketches as
queries. In this context, traditional methods do not work appropriately since sketches lack
color and texture. However, sketches provide structural information that de�nes how an
object is composed of.

Our proposals STELA and HKO-KASD are a kind of �lter-re�ne methods. We use a
global descriptor as the �ltering stage and a local descriptor for the re�ning stage. Both
stages rely on structural components called keyshapes. These proposals takes into account
the structural information that sketches provide.

Our results shows that STELA and HKO-KASD achieves outperforming results for many
classes with respect to the HOG-DFT descriptor. For instance, the HKO-KASD descriptor

112

Figure 6.23: Examples of hand segmentation using our proposed approach.

Figure 6.24: ROC curves comparing our method with the GrabCut approach. The AUC
value is indicated in the legend.

113

shown an improvement by a factor of 31 with for the class tool with respect to the HOG-DFT
descriptor.s

In addition, we have presented a novel approach for the hand segmentation task based
on a hand localization using STELA. Our method estimates the hand location to capture
a training hand region. This allows us an adaptive color model based on the user skin
color. This allows us to handle illumination changes and diverse skin colors. We compare
our method with a skin color based model achieving notable improvement in the accurate
segmentation. One advantage of our method is that it segments the hand in an accurate way
without requiring a lengthy time consumption for the training stage.

We have also showed that a state-of-the art method for object segmentation like the
GrabCut algorithm may exploit the hand localization strategy using STELA to outperform
the e�ectiveness. Moreover, using the STELA approach allows the GrabCut algorithm to
perform in an automatic way, without requiring any kind of user participation.

114

Chapter 7

Conclusions

Two novel approaches to dealing with the sketch based image retrieval problem have been
addressed in this thesis. The �rst approach called HELO is a global approach that is based
on computing a histogram of orientation using, to this end, the squared gradient technique.
Although this global approach exhibits outperforming results with respect to current global
methods, it still undergoes critical problems. For instance, our global proposal has poor
performance in the cases of partial matching and occlusion. These are important properties
since users commonly draw only the objects that they are interested in, hoping to get, as
response, all images containing objects similar to those drawing in the query. A simple
example is when a user is looking for images containing the sun, the user will possibly draw
only a circle.

The second proposed approach represents the core of this thesis. This is a local approach
that addresses the sketch based image retrieval problem by exploiting the structural property
of a sketch representation. The structural property becomes the main property of a sketch
representation since sketches lack color and texture information. In addition, state-of-the-art
methods have ignored this property, facing the sketch based image retrieval problem using
low level features like edge pixels distribution or edge pixels orientations.

Our structural based approach can be divided in two coarse stages. The �rst one is focused
on detecting the structural components of a sketch representation. To this end, our method
detects six types of primitive shapes: ellipses, arcs, horizontal lines, vertical lines, diagonals
lines with slope 1 and diagonal lines with slope -1. The occurrence of one of this primitive
shapes is called a keyshape. We keep only six keyshape types due to the fact that detecting
keyshapes on a sketch image may lead in a time consuming process. Therefore, having a
large number of keyshape types may makes the structural representation of a sketch, an
impractical task.

The second stage consists in extracting local information from the keyshape distribution.
To this end, we have proposed three local descriptors characterized by taking into account
the spatial relationship between detected keyshapes. The spatial relationship is a critical
feature of our methods, since it is not the same to draw a circle over an horizontal than to
draw it under the line, if what the user wants to express is �the sun on the beach�.

115

Figure 7.1: A very complex image

Although our keyshape based method outperforms the state-of-the-art techniques, a valu-
able property of this proposal is that it can be combined with other leading methods in-
creasing signi�cantly the retrieval e�ectiveness. We show experimentally that our method
improves the retrieval results achieved by the Eitz's BoF approach in almost 22%, for in-
stance.

Although detecting primitives shapes of a sketch provides a high level semantic represen-
tation of images, this stage may fail when it has to face very complex images like that shown
in Figure 7.1. Detecting keyshapes on such an image may be degraded to detect only small
segments of lines yielding a decrement in the retrieval e�ectiveness. Therefore, one of our
ongoing tasks is focused on applying techniques like machine learning, or graphical models
to improve the keyshape detection stage. In addition, we are interested in extending our
proposal for large repositories. Thereby, we are studying techniques for indexing keyshapes
and to turn our method in a parallel one.

In addition, we have shown that our keyshape based proposal may be extended to be used
in other domains. In particular, we have show how our keyshape proposal may be adapted
to address the 3D model retrieval and how it may be useful for the segmentation of hands in
a semi-controlled environment.

3D model retrieval using sketches is a challenging problem owing mainly to the fact that
a sketch is a 2D representation in contrast to the 3D models. In this thesis, we also have
proposed two approaches to dealing with the 3D model retrieval using sketches as queries.
Our proposals leverage the structural information given by sketch strokes. Both proposal fall
into the class of �lter-re�ne methods, where the �lter step is aimed to pick up the projection
image of a 3D model that is closer to the input sketch.

Our �rst proposal for the 3D model retrieval is STELA which is a �rst attempt of describ-
ing a sketch representation of 3D models by means of a set of keyshapes. For the �ltering
step, STELA uses a variation of the HELO descriptor that takes into account orientations
from local regions. The second approach is HKO-KASD that follows the same pipeline as
STELA, but proposes a new descriptor based on computing local distribution of four types of
lines. The �lter step in this case is carried out by a histogram of keyshape orientations. Our

116

keyshape orientation descriptor provides a more robust results because it does not rely on
a gradient approximation that is sensitive to noise. Although, our results show an increase
in retrieval e�ectiveness for some classes of 3D models, they also show that the sketch based
3D model retrieval is still a very challenging problem.

Finally, we have presented a application of the STELA method for the case of hand
segmentation outperforming classical techniques based on skin segmentation. For the hand
segmentation problem, we use STELA to localize a hand in an image. After that, we used
a training region derived from the localization point to learn the distribution of hand colors.
Using this information the pixels on the image are classi�ed as a hand point or a non-
hand point. Even though our proposal presents outperforming results, its e�ectiveness may
decrease with highly cluttered backgrounds.

7.1 Future Work

Although we have proposed a novel approach to dealing with the sketch based image retrieval,
exploiting structural information from a sketch representation, this is still a challenging
problem. This situation is re�ected in the e�ectiveness achieved with respect to the Eitz's
benchmark. Our proposal is the best method known up to now, achieving a correlation
value of 0.34. However this value is still far from the optimal value 1, even though we have
improved the retrieval e�ectiveness in almost 22% with respect to current methods. Therefore
our future work is based on improving the retrieval e�ectiveness of the sketch based image
retrieval. In addition, we are planning to extend our work to be applied in large repositories.
Next, we summarize four directions of future work derived from this thesis:

1. Keyshape Detection: The keyshape detection is a critical stage of our proposal. We
have presented an e�cient approach for detecting six types of keyshapes. Unfortunately,
noisy and cluttered images may lead to a poor results. In this regard, a future work
must be focused on improving the precision in detecting keyshapes. Machine learning
and probabilistic graphical models may be useful for predicting the occurrences of certain
keyshapes on noisy and cluttered images.

2. Sketch-like Representation: One of the problems in the sketch based image retrieval
domain is that test images are not sketches. A robust technique to turn a test image in
a sketch representation is required. We have proposed to use the Canny operator com-
puted in a multiscale manner because Canny operator is fast an permit detecting image
edges accurately. However, other approaches based on the image contour detection may
be useful for this stage. Some outstanding contour detector methods are Ultrametric
Contour map [2, 3] and Global Probability of Boundary [60]. These techniques have
shown outperforming results on the Berkeley benchmark [64]. A study on using this
boundary detection techniques in the context of sketch based image retrieval in large
databased would be a valuable topic of research.

3. Multi Sketch based 3D Model Retrieval: We have presented two techniques to
dealing with the sketch based 3D model retrieval problem. Our results have shown that
this problem is very di�cult, even more when we want to retrieve 3D objects using only
a 2D representation like a sketch. Therefore, an interesting future work in this context

117

is to research techniques that permit combining di�erent input sketches representing
di�erent viewpoints of a target 3D model in order to improve the retrieval e�ectiveness.

4. Combining Descriptors: We have show in this work that a combination of descriptor
may allow us to increase the retrieval e�ectiveness. This becomes very important when
the descriptors used in the combination extract di�erent information from a source
(image or 3D model). For instance, we have shown that a traditional method using
a histogram of orientation together with our proposal based on structural information
increase the retrieval e�ectiveness in almost 22% in the context of image retrieval.
However, a deep study about the properties that may be kept by descriptors in order
to be combined is required.

5. Indexing: One goal of the content based image retrieval community is to propose
methods that exhibit good performance in large repositories. This goal is also shared
by the sketch based image retrieval problem. To this end, data structures that permit
speeding up the retrieval process is imperative. Therefore, another direction of future
work derived from this thesis must be related to the study of methods for indexing
keyshapes in order to make the comparison of an input sketch with test images to work
in real time.

6. Parallelism: Nowadays, parallel algorithms are preferable that sequential ones, so
another direction of future work is based on turning the proposal method in a parallel
one. This will allow the proposal method to be practical for searching the web, for
instance.

7. Other Domains: The ideas of structural representation as the proposed in this thesis
may be applied for other domains di�erent from the multimedia retrieval. A potential
area where the structural information becomes really important is the handwriting
recognition. For instance, in the case of handwritten digits recognition, digits of the
same classes share similar structural composition, due to this reason we claim that an
extension of our work in that area would produce high e�ectiveness.

8. Novel Applications: Although there still are a few people working on the sketch based
image retrieval area, in the last two years it has been observed an increased interest
in this area. Furthermore, due to the advances in the human-computer interaction
technology such as touch-screen displays and gaze based human-computer interaction,
potential applications based on image retrieval by sketches are appearing. For instance,
our proposal may be useful to improve the cognitive skills of children and to allow users
with hand-motility issues to draw a simple sketch query using a gaze interaction system.

118

Glossary

APAI Angular partitioning of abstract images.

BoF Bag of features.

BoW Bag of words.

CBIR Content based image retrieval.

CLD Color layout descriptor.

CSD Color structure descriptor.

DCD Dominant color descriptor.

DoIGOH Dominant image gradient orientation histogram.

EHD Edge histogram descriptor.

GF-HOG Gradient �eld- histogram of oriented gradients.

HELO Histogram of edge local orientations.

HKO-KASD Histogram of keyshape orientations - Keyshape angular spatial distribution.

HOG Histogram of oriented gradients.

HOG-DTF Histogram of oriented gradients - Di�usion tensor �eld.

PC Polar coordinates.

PCA Principal component analysis.

QBIC Query by image contents.

QVE Query by visual example.

SBIR Sketch based image retrieval.

SIFT Scale invariant feature transform.

119

ST Structure tensor.

STELA A structure local approach for multimedia retrieval using sketches as query.

TBD Texture browsing descriptor.

120

Bibliography

[1] Mihael Ankerst, Gabi Kastenmüller, Hans-Peter Kriegel, and Thomas Seidl. 3D shape
histograms for similarity search and classi�cation in spatial databases. In Proc. of the
6th International Symposium on Advances in Spatial Databases, pages 207�226, 1999.

[2] Pablo Arbelaez. Boundary extraction in natural images using ultrametric contour maps.
In Proceedings of the 2006 Conference on Computer Vision and Pattern Recognition
Workshop, CVPRW '06, pages 182�, 2006.

[3] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Contour detec-
tion and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 33(5):898�916, May 2011.

[4] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval: Con-
cepts and Technology behind Search. Addison-Wesley Professional, USA, second edition,
2011.

[5] Alfonso Baldi, Ra�aele Murace, Emanuele Dragonetti, Mario Manganaro, Oscar
Guerra, Stefano Bizzi, and Luca Galli. De�nition of an automated content-based im-
age retrieval (cbir) system for the comparison of dermoscopic images of pigmented skin
lesions. Biomedical Engineering Online, 8(18), 2009.

[6] D. H. Ballard. Readings in computer vision: issues, problems, principles, and
paradigms. chapter Generalizing the hough transform to detect arbitrary shapes, pages
714�725. 1987.

[7] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up robust
features (surf). Computer Vision and Image Understanding, 110(3):346�359, June 2008.

[8] Asker M. Bazen and Sabih H. Gerez. Systematic methods for the computation of the
directional �elds and singular points of �ngerprints. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24(7):905�919, July 2002.

[9] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using
shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24(4):509�522, April 2002.

[10] Miroslaw Bober. Mpeg-7 visual shape descriptors. IEEE Transactions on Circuits and

121

Systems, 2001.

[11] F.L. Bookstein. Principal warps: thin-plate splines and the decomposition of defor-
mations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(6):567
�585, 1989.

[12] Gunilla Borgefors. Hierarchical chamfer matching: A parametric edge matching algo-
rithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(6):849�
865, November 1988.

[13] Andreas Bulling and Hans Gellersen. Toward mobile eye-based human-computer inter-
action. IEEE Pervasive Computing, 9:8�12, 2010.

[14] Rainer Burkard, Mauro Dell'Amico, and Silvano Martello. Assignment Problems. So-
ciety for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2009.

[15] Benjamin Bustos, Daniel Keim, Dietmar Saupe, and Tobias Schreck. Content-based
3D object retrieval. IEEE Computer Graphics and Applications, 27(4):22�27, 2007.

[16] John Canny. A computational approach to edge detection. IEEE Tranactions on
Pattern Analysis and Machine Intelligence, 8(6):679�698, 1986.

[17] Yang Cao, Changhu Wang, Liqing Zhang, and Lei Zhang. Edgel index for large-scale
sketch-based image search. In Proceedings of the 2011 IEEE Conference on Computer
Vision and Pattern Recognition, pages 761�768. IEEE Computer Society, 2011.

[18] Abdolah Chalechale, Golshah Naghdy, and Alfred Mertins. Sketch-based image match-
ing using angular partitioning. IEEE Transactions on Systems, Man and Cybernetics,
Part A: Systems and Humans, 35(1):28�41, 2005.

[19] Ding-Yun Chen, Xiao-Pei Tian, Yu te Shen, and Ming Ouhyoung. On visual similarity
based 3D model retrieval. In Proc. in Eurographics, Computer Graphics Forum, pages
223�232, 2003.

[20] Tao Chen, Ming-Ming Cheng, Ping Tan, Ariel Shamir, and Shi-Min Hu. Sketch2photo:
internet image montage. ACM Transactions on Graphics, 28(5):124:1�124:10, Decem-
ber 2009.

[21] Leszek Cieplinski. Mpeg-7 color descriptors and their applications. In Proceedings of
the 9th International Conference on Computer Analysis of Images and Patterns, pages
11�20. Springer-Verlag, 2001.

[22] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John Wiley
& Sons, New Jersey, USA, 2006.

[23] Gabriella Csurka, Christopher R. Dance, Lixin Fan, Jutta Willamowski, and Cédric
Bray. Visual categorization with bags of keypoints. In In Workshop on Statistical
Learning in Computer Vision, ECCV, pages 1�22, 2004.

122

[24] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection.
In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR'05) - Volume 1 - Volume 01, pages 886�893. IEEE
Computer Society, 2005.

[25] Ritendra Datta, Dhiraj Joshi, Jia Li, and James Z. Wang. Image retrieval: Ideas,
in�uences, and trends of the new age. ACM Computing Surveys, 40(2):1�60, April
2008.

[26] E. R. Davies. The e�ect of noise on edge orientation computations. Pattern Recognition
Letters, 6(5):315�322, 1987.

[27] Doug DeCarlo, Adam Finkelstein, Szymon Rusinkiewicz, and Anthony Santella. Sug-
gestive contours for conveying shape. ACM Transaction og Graphics, 22:848�855, July
2003.

[28] Alberto Del Bimbo and Pietro Pala. Visual image retrieval by elastic matching of user
sketches. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(2):121�
132, 1997.

[29] Mathias Eitz, Kristian Hildebrand, Tamy Boubekeur, and Marc Alexa. A descriptor
for large scale image retrieval based on sketched feature lines. In Proc. of the 6th
Eurographics Symposium on Sketch-Based Interfaces and Modeling, pages 29�36, 2009.

[30] Mathias Eitz, Kristian Hildebrand, Tamy Boubekeur, and Marc Alexa. Photosketch:
a sketch based image query and compositing system. In SIGGRAPH 2009: Talks,
SIGGRAPH '09, pages 60:1�60:1, 2009.

[31] Mathias Eitz, Kristian Hildebrand, Tamy Boubekeur, and Marc Alexa. Sketch-based
image retrieval: Benchmark and bag-of-features descriptors. IEEE Transactions on
Visualization and Computer Graphics, 17(11):1624�1636, 2011.

[32] Mathias Eitz, Ronald Richter, Tamy Boubekeur, Kristian Hildebrand, and Marc Alexa.
Sketch-based shape retrieval. ACM Transactions on Graphics (Proc. SIGGRAPH),
31(4):31:1�31:10, 2012.

[33] Michael Elad, Ayellet Tal, and Sigal Ar. Content based retrieval of vrml objects: an
iterative and interactive approach. In Proc. of the sixth Eurographics workshop on
Multimedia 2001, pages 107�118, 2002.

[34] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few
training examples: an incremental bayesian approach tested on 101 object categories.
page 178, 2004.

[35] Myron Flickner, Harpreet Sawhney, Wayne Niblack, Jonathan Ashley, Qian Huang,
Byron Dom, Monika Gorkani, Jim Hafner, Denis Lee, Dragutin Petkovic, David Steele,
and Peter Yanker. Query by image and video content: The qbic system. Computer,
28:23�32, 1995.

123

[36] David A. Forsyth and Jean Ponce. Computer Vision: A Modern Approach. Prentice
Hall, 2012.

[37] Thomas Funkhouser, Patrick Min, Michael Kazhdan, Joyce Chen, Alex Halderman,
David Dobkin, and David Jacobs. A search engine for 3d models. ACM Transactions
on Graphics, 22(1):83�105, 2003.

[38] P. Geetha and Vasumathi Narayanan. A survey of content-based video retrieval. Jour-
nal of Computer Science, 4(6):474 �486, 2008.

[39] Allen Gersho and Robert M. Gray. Vector Quantization and Signal Compression.
Kluwer Academic Publisher, Massachusetts, USA, 1993.

[40] Rafael Gonzalez and Richard Woods. Digital Image Processing. Pearson Prentice Hall,
New Jersey, USA, third edition, 2008.

[41] Zicheng Guo and Richard W. Hall. Parallel thinning with two-subiteration algorithms.
Communications of the ACM, 32(3):359�373, March 1989.

[42] Yan Ha and BoYoun Kim. Shopping mall system with image retrieval based on uml. In
First ACIS International Symposium on Software and Network Engineering (SSNE),
2011, pages 103 �106, 2011.

[43] C. Harris and M. Stephens. A Combined Corner and Edge Detection. In Proceedings
of The Fourth Alvey Vision Conference, pages 147�151, 1988.

[44] Rui Hu, M. Barnard, and J. Collomosse. Gradient �eld descriptor for sketch based
retrieval and localization. In 17th IEEE International Conference on Image Processing
(ICIP), 2010, pages 1025 �1028, 2010.

[45] Rui Hu, Tinghuai Wang, and J. Collomosse. A bag-of-regions approach to sketch-based
image retrieval. In 18th IEEE International Conference on Image Processing (ICIP),
pages 3661 �3664, sept. 2011.

[46] Weiming Hu, Nianhua Xie, Li Li, Xianglin Zeng, and S. Maybank. A survey on visual
content-based video indexing and retrieval. IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, 41(6):797 �819, 2011.

[47] De-Shuang Huang, Wei Jia, and David Zhang. Palmprint veri�cation based on principal
lines. Pattern Recognition, 41, April 2008.

[48] Anil Jain and Aditya Vailaya. Image retrieval using color and shape. Pattern Recogni-
tion, 29:1233�1244, 1996.

[49] Russ John C. The Image Processing Handbook. CRC Press, Florida, USA, fourth
edition, 2006.

[50] Michael J. Jones and James M. Rehg. Statistical color models with application to skin
detection. Int. Journal Comput. Vision, 46, January 2002.

124

[51] Sabrina Kacher, Jean-Claude Bignon, Gilles Halin, and Gérald Du�ng. The content-
based image retrieval as an assistance tool to the architectural design domain. In Harry
Timmermans & Bauke de Vries, editor, Architecture and Urban Planning, 2002.

[52] Toshikazu Kato, Takio Kurita, Nobuyuki Otsu, and Kyoji Hirata. A sketch retrieval
method for full color image database-query by visual example. In Proc. of the 11th
IAPR International Conf. on Computer Vision and Applications, Conf. A: Pattern
Recognition, pages 530�533, 1992.

[53] Yan Ke and Rahul Sukthankar. Pca-sift: a more distinctive representation for local
image descriptors. In Proceedings of the 2004 IEEE computer society conference on
Computer vision and pattern recognition, pages 506�513. IEEE Computer Society, 2004.

[54] Harold W. Kuhn. The hungarian method for the assignment problem. Technical report,
2010.

[55] Louisa Lam, Seong-Whan Lee, and Ching Y. Suen. Thinning methodologies-a com-
prehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,
14(9):869�885, September 1992.

[56] Y.P. Lew, A.R Ramli, S.Y.Koay, R. Ali, and V. Prakash. A hand segmentation scheme
using clustering technique in homogeneous background. In Proc. of 2nd Student Con-
ference on Research and Development, 2002.

[57] B. Li, T. Schreck, A. Godil, M. Alexa, T. Boubekeur, B. Bustos, J. Chen, M. Eitz,
T. Furuya, K. Hildebrand, S. Huang, H. Johan, A. Kuijper, R. Ohbuchi, R. Richter,
J. M. Saavedra, M. Scherer, T. Yanagimachi, G. J. Yoon, and S. M. Yoon. SHREC'12
Track: Sketch-Based 3D Shape Retrieval. In Eurographics Workshop on 3D Object
Retrieval, pages 109�118, 2012.

[58] Sven Loncaric. A survey of shape analysis techniques. Pattern Recognition, 31:983�
1001, 1998.

[59] David G. Lowe. Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, 60(2):91�110, November 2004.

[60] M. Maire, P. Arbelaez, C. Fowlkes, and J. Malik. Using contours to detect and localize
junctions in natural images. In IEEE Conference on Computer Vision and Pattern
Recognition, 2008., pages 1 �8, june 2008.

[61] Davide Maltoni, Dario Maio, Anil K. Jain, and Salil Prabhakar. Handbook of Finger-
print Recogniton. Springer-Verlag, London, UK, second edition, 2009.

[62] B. S. Manjunath, P. Wu, S. Newsam, and H. D. Shin. A texture descriptor for browsing
and similarity retrieval. Signal Processing: Image Communication, 16(1,2):33�43, 2000.

[63] B.S. Manjunath, J.-R. Ohm, V.V. Vasudevan, and A. Yamada. Color and texture de-
scriptors. IEEE Transactions on Circuits and Systems for Video Technology, 11(6):703
�715, 2001.

125

[64] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented nat-
ural images and its application to evaluating segmentation algorithms and measuring
ecological statistics. In 8th International Conference on Computer Vision, volume 2,
pages 416�423, July 2001.

[65] Lew Michael S. Principles of Visual Information Retrieval. Springer-Verlag, London,
UK, 2001.

[66] K. Mikolajczyk and C. Schmid. An a�ne invariant interest point detector. In Pro-
ceedings of the 7th European Conference on Computer Vision-Part I, pages 128�142.
Springer-Verlag, 2002.

[67] Krystian Mikolajczyk and Cordelia Schmid. Scale & a�ne invariant interest point
detectors. International Journal of Computer Vision, 60(1):63�86, October 2004.

[68] Krystian Mikolajczyk and Cordelia Schmid. A performance evaluation of local descrip-
tors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10):1615�
1630, 2005.

[69] F. Mokhtarian and A.K. Mackworth. A theory of multiscale, curvature-based shape
representation for planar curves. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 14(8):789 �805, 1992.

[70] Farzin Mokhtarian and Miroslav Bober. Curvature Scale Space Representation: Theory,
Applications, and MPEG-7 Standardization. Kluwer Academic Publishers, Norwell,
MA, USA, 2003.

[71] Farzin Mokhtarian, Yoke Khim Ung, and Zhitao Wang. Technical section: Automatic
�tting of digitised contours at multiple scales through the curvature scale space tech-
nique. Computer Graphics, 29(6):961�971, 2005.

[72] Mark Nixon and Alberto Aguado. Feature Extraction & Image Processing. Academic
Press, California, USA, 2008.

[73] Iason Oikonomidis, Nikolaos Kyriazis, and Antonis Argyros. E�cient model-based
3d tracking of hand articulations using kinect. In Proceedings of the British Machine
Vision Conference, pages 101.1�101.11. BMVA Press, 2011.

[74] Temel Oncan. A survey of the generalized assignment problem and its applications.
INFOR: Information Systems and Operational Research, (3):123�141, 2007.

[75] Robert Osada, Thomas Funkhouser, Bernard Chazelle, and David Dobkin. Matching
3D models with shape distributions. In Proc. of the International Conference on Shape
Modeling & Applications, pages 154�, 2001.

[76] Geng Peng, Wang Tongming, and Wu Weina. Application of the image retrieval tech-
nique on the education resources image database. In Computational Intelligence and
Design, 2009. ISCID '09. Second International Symposium on, volume 1, pages 152
�154, 2009.

126

[77] Patrick Pérez, Michel Gangnet, and Andrew Blake. Poisson image editing. ACM
Transactions on Graphics, 22(3):313�318, 2003.

[78] Yong Man Ro, Munchurl Kim, Ho Kyung Kang, and B. S. Manjunath. Mpeg-7 homo-
geneous texture descriptor. ETRI Journal, 23(2):41�51, 2001.

[79] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. Grabcut: Interactive fore-
ground extraction using iterated graph cuts. ACM TRANSACTIONS ON GRAPHICS,
23:309�314, 2004.

[80] Jose Saavedra and Benjamin Bustos. An improved histogram of edge local orientations
for sketch-based image retrieval. In Pattern Recognition, volume 6376 of Lecture Notes
in Computer Science, pages 432�441. 2010.

[81] Jose M. Saavedra and Benjamin Bustos. Sketch-based image retrieval using keyshapes.
Submitted to Multimedia Tools and Applications, pages �, 2012.

[82] Jose M. Saavedra, Benjamin Bustos, Maximilian Scherer, and Tobias Schreck. Stela:
sketch-based 3d model retrieval using a structure-based local approach. In Proceedings
of the 1st ACM International Conference on Multimedia Retrieval, ICMR '11, pages
26:1�26:8. ACM, 2011.

[83] Jose M. Saavedra, Benjamin Bustos, Tobias Schreck, Sang Min Yoon, and Maximil-
iam Scherer. Sketch-based 3D Model Retrieval using Keyshapes for Global and Local
Representation. In Eurographics Workshop on 3D Object Retrieval, pages 47�50, 2012.

[84] Gisbert Schneider and Uli Fechner. Computer-based de novo design of drug-like
molecules. Nature Reviews Drug Discovery, 4:649�663, 2005.

[85] Lambert Schomaker, Edward de Leau, and Louis Vuurpijl. Using pen-based outlines
for object-based annotation and image-based queries. In Proceedings of the Third Inter-
national Conference on Visual Information and Information Systems, pages 585�592.
Springer-Verlag, 1999.

[86] Gayane Shalunts, Yll Haxhimusa, and Robert Sablatnig. Architectural style classi�ca-
tion of building facade windows. In Proceedings of the 7th international conference on
Advances in visual computing - Volume Part II, pages 280�289. Springer-Verlag, 2011.

[87] Thomas Sikora. The mpeg-7 visual standard for content description-an overview. Cir-
cuits and Systems for Video Technology, IEEE Transactions on, 11(6):696 �702, 2001.

[88] Alvy Ray Smith. Color gamut transform pairs. SIGGRAPH Computer Graphics, 12(3),
1978.

[89] Pierre Soille. Morphological Image Analysis: Principles and Applications. Springer-
Verlag Telos, 1999.

[90] Amanda Spink and Jansen Bernard. Web Searching: Public Searching of the Web.
Kluwer Academic Publishers, USA, 2004.

127

[91] Sophie Stellmach, Sebastian Stober, Andreas Nürnberger, and Raimund Dachselt. De-
signing gaze-supported multimodal interactions for the exploration of large image col-
lections. In Proceedings of the 1st Conference on Novel Gaze-Controlled Applications,
pages 1:1�1:8, 2011.

[92] Bjorn Stenger, Arasanathan Thayananthan, Philip H. S. Torr, and Roberto Cipolla.
Model-based hand tracking using a hierarchical bayesian �lter. IEEE Transactions on
Pattern Analyis and Machine Intelligence, 28(9):1372�1384, September 2006.

[93] Chee Sun Won, Dong Kwon Park, and Soo-Jun Park. E�cient use of MPEG-7 edge
histogram descriptor. Electronic and Telecomunications Research Institute Journal,
24:23�30, 2002.

[94] Richard Szeliski. Computer Vision. Springer-Verlag, London, UK, 2011.

[95] Johan W. Tangelder and Remco C. Veltkamp. A survey of content based 3d shape
retrieval methods. Multimedia Tools Applications, 39:441�471, September 2008.

[96] Tinne Tuytelaars and Krystian Mikolajczyk. Local invariant feature detectors: a survey.
Foundations and Trends Computer Graphics and Vision, 3(3):177�280, July 2008.

[97] Remco C. Veltkamp and Michiel Hagedoorn. State of the art in shape matching.
In Michael S. Lew, editor, Principles of visual information retrieval, pages 87�119.
Springer-Verlag, London, UK, UK, 2001.

[98] Paul Viola and Michael Jones. Robust real-time object detection. Int. Journal of
Computer Vision, 2002.

[99] Juan Wachs, Mathias Kölsch, Helman Stern, and Yael Edan. Vision-based hand gesture
interfaces: Chall. and innov. Communications of the ACM, February 2011.

[100] Chong Wang, D. Blei, and Fei-Fei Li. Simultaneous image classi�cation and annotation.
In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on,
pages 1903 �1910, 2009.

[101] Xin-Jing Wang, Lei Zhang, Ming Liu, Yi Li, and Wei-Ying Ma. Arista - image search
to annotation on billions of web photos. In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, pages 2987 �2994, 2010.

[102] JinKue Wong. A new implementation of an algorithm for the optimal assignment
problem: An improved version of munkres' algorithm. BIT Numerical Mathematics,
19:418�424, 1979.

[103] Zijun Yang and Jay C. C. Kuo. Survey on image content analysis, indexing, and
retrieval techniques and status report of mepg-7. Tamkang Journal of Science and
Engineering, 2(3):101�118, 1999.

[104] Jie Yao, Nawwaf Kharma, and Peter Grogono. A multi-population genetic algorithm
for robust and fast ellipse detection. Pattern Analysis & Applications, 8:149�162, 2005.

128

[105] Sang Min Yoon, Maximilian Scherer, Tobias Schreck, and Arjan Kuijper. Sketch-based
3D model retrieval using di�usion tensor �elds of suggestive contours. In Proc. of the
international conference on Multimedia, pages 193�200, 2010.

[106] Erdem Yörük, Helin Duta§aci, and Bülent Sankur. Hand biometrics. Image and Vision
Computing, 24:483�497, 2006.

[107] Miaolong Yuan, Farzam Farbiz, Corey Mason Manders, and Ka Yin Tang. Robust
hand tracking using a simple color classi�cation technique. In Proc. of The 7th ACM
SIGGRAPH Int. Conf. on Virtual-Reality Continuum and Its Applications in Industry,
2008.

[108] Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal, and Michal Batko. Similarity
Search: The Metric Space Approach. Springer Science+Business Media Inc, USA,
2010.

129

	Introduction
	Related Work
	Contributions of this Thesis
	Evaluation Methodology
	Applications of this Thesis

	Basic Concepts
	Introduction
	Image Processing
	Linear Filtering
	Canny Edge Detector
	Morphological Operators
	Thinning

	Image Retrieval
	Classification
	Query modality
	Process modality
	Architecture of an Image Retrieval System
	Applications
	Image Retrieval Techniques

	Local Descriptors
	Summary

	Sketch Based Image Retrieval
	Introduction
	Query by Visual Example
	Adaptive Image Abstraction
	Flexible Image Matching

	Elastic Matching of User Sketches
	Spatial Relationship

	Edge Histogram Orientation
	Local histograms
	Global and semi-global histograms

	Angular Partitioning of Abstract Images
	 Abstract Image
	Feature Extraction
	Rotation Invariance

	Structure Tensor Descriptor
	Bag Of Features Approach
	Spark Feature
	DoIGOH Feature
	Gradient Field - Histogram of Orientated Gradients

	Edgel Index
	Summary

	Histogram of Edge Local Orientations
	Introduction
	Square Gradient Method
	Histogram of Edge Local Orientation
	Preprocessing
	Histogram Computation
	Tackling the rotation problem

	Experimental Evaluation
	Translation and scale invariance comparison
	Rotation invariance comparison

	Summary

	Keyshape Based Approach
	Introduction
	Proposal
	Keyshapes Detection
	Local Descriptors
	Matching

	Computational Complexity
	Keyshape Detection
	Keyshape Descriptors
	Keyshape Matching

	Experimental Evaluation
	Summary

	Sketch Based 3D Model Retrieval
	Introduction
	Related Work
	The STELA Approach
	Abstract Image
	Detecting Keyshapes
	The Local Descriptor
	Matching
	Invariance issues
	Filtering Step by HELO
	Handling viewpoint changes

	The HKO-KASD Approach
	Keyshapes
	Histogram of Keyshape Orientation
	Keyshape Angular Spatial Distribution

	Experimental Results
	Dataset Description
	Result Analysis

	Case of Study: Hand Segmentation using STELA
	Hand Segmentation
	Experimental Results

	Summary

	Conclusions
	Future Work

	Glossary
	Bibliography

