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El objetivo principal del presente trabajo es el estudio, tanto teérico como numérico,
de métodos de procesamiento de imagenes orientados al area de las senales e iméagenes
con texturas.

Se comienza con una revision de conceptos basicos tanto en procesamiento de imégenes,
como en herramientas matematicas de interés, se exploran trabajos previos que motivan
buena parte de esta memoria. En particular los trabajos de filtros no locales, formulados
por Buades en 2005 y los funcionales no locales del tipo Mumford-Shah, formulados por
Jung et al. en 2011, ademés de varios trabajos clasicos del area del célculo de variaciones
ligados al procesamiento de imagenes. Mas adelante, se explora en detalle el problema de
segmentacion, estableciendo una definicién concreta y ejemplos de aplicacién, presentando
luego el funcional de Mumford-Shah. Se analiza la limitacién de este funcional desde el
punto de vista numérico para realizar segmentacién y por esto se introduce el funcional
de Ambrosio-Tortorelli, donde destacan sus resultados més importantes, en particular la
['-convergencia al funcional de Mumford-Shah relajado.

Como desarrollo central, se trabajo el problema de segmentacion no local, considerando
el funcional planteando por Jung et al. en 2011. Se prueba que en el caso unidimensional el
funcional no es adecuado en el sentido del I'-limite obtenido, el cual no penaliza el conjunto
de discontinuidades de la senal u. A partir de esto, se propone un funcional modificado
que, bajo ciertas suposiciones sobre la funcién de peso no local w(x,y), permite obtener
un término que es equivalente como semi-norma a la semi-norma de Slobodeckij, lo que
implica que el funcional quede definido en el espacio H® x H', donde H® es el espacio
de Sobolev fraccionario con s € (1/2,1). Se prueba rigurosamente la I'-convergencia a
un funcional que se puede interpretar como el funcional de Mumford-Shah relajado con
gradiente no local. Este resultado es relevante porque en este caso el I'-limite si penaliza
el conjunto de discontinuidades de la senal u, que es el comportamiento deseado para
estos funcionales. A continuacién, se exponen las llamadas funciones de Gabor general-
izadas, para ser utilizadas en la aproximacion de una senal, utilizindose como ejemplo
las splines exponenciales (complejas), que corresponden a funciones trigonométricas con
soporte compacto, permitiendo aproximar una senal en diferentes niveles de resolucion.

Finalmente, se presenta la implementaciéon numérica de los modelos considerados, par-
tiendo por filtros no locales, modelos de segmentacién local y no local, y concluyendo con
la aproximacion por splines exponenciales. Se exponen simulaciones numéricas que per-
miten comparar diversos métodos ademas de explorar las ventajas y limitaciones de cada
método en particular, concluyendo que existe evidencia de que estos métodos efectiva-
mente permiten mejorar el analisis de seniales e imagenes que contienen texturas.
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Chapter 1

Introduction

The present work consists, mainly, in the development of theoretical and numerical
results in the study of a new functional proposed in the field of image processing. Basically
the considered functional is an approximation, in some sense that we will specify later, of
the well-known Mumford-Shah functional used widely in image processing, the objective
of this functional is to perform a task called segmentation, which basically consists in
the recognition of edges of the different objects in a (digital) image. In this case, we want
to prove some essential results which leads to correctness of the numerical tasks which are
performed in the practice. We also perform numerical experiments in order to verify the
known numerical results and also to study how this methods perform in the practice.

This chapter is intended to introduce the basic terminology that will be used in this
work, in a mathematical and descriptive way.

1.1 Digital Images

A natural question when one work in mathematics with images is: What is a digital
image?

A digital image, or discrete image also, is obtained (from the continuous world) by
sampling and quantization. Certainly this depends on the acquisition devices, for example
on CCDs (Charge-Coupled Device) for digital cameras. The basic idea to acquire is to
superimpose a regular grid on an analogue image, and assign a number to each square
on the grid, that represents some feature in order to characterize the actual image, an
example for this number could be the average brightness in each square. The squares
are called pixels, and they are the smallest elements in an image, its assigned value is
usually the grey-level or brightness. Notice that this quantities in the practice are always
bounded and moreover, usually takes integer values between 0 and 255.

To describe a pixel, depending on the way we want to represent an image, we may
need different channels or bands, in fact, if we want an image on grey-scale we just need

one channel, but if we want a color image we will need three channels: red, green and blue.

The final characteristic of an image is its size or resolution. This is the number of rows

1



1.1. Digital Images Chapter 1

and columns in the image, this is simply the size of the regular grid we superimpose on
the analogue image. Notice that this characteristic depends on the acquisition device and
is not relative to the real image itself.

So, one can describe a digital image as the discretization of an analog image. In a
mathematical setting could be described as follows:

Definition 1.1.1 (Image). A digital image can be defined as a function v € L>*(Q) (in
the case of grey-scale digital image) or u € (L>(£2))? (in the case of color images), where
(2 is a bounded set, specifically, in our context: 2 = [0, N — 1] x [0, M — 1] where N, M
are the numbers of rows and columns in the image, u takes values only on the points
(n,m) € Q where n, m are integers between 0 and N and 0 and M respectively.

Notice that this definition could be completely defined by a matrix, but we prefer to
describe the image in a continuous setting, because in the theoretical problems we will
work with continuous models.

u(i.j)

Figure 1.1: Example of a digital image: Notice that a digital image is nothing but a two-dimensional
array of pixels where each pixel/point has an assigned brightness value.

It is natural to notice that digital images are just an approximation of reality, we
have a size and representation measures that depends on the acquisition devices, so, for
example, if the size of the digital image is low, the approximation of the real image in the
moment that the picture is taken, will be low in comparison from a digital image with a
bigger size, which will be able to retain more specific details, moreover, we just have a
finite number of possible values for each pixel, and finally we have to consider that the
digitalization process carries random noise, so, the digitalization process is limited by its
own restrictions. Reality have infinite choices, digitalization just a finite ones.
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(d)

Figure 1.2: Example Digital Image Defects: (a) low resolution which can distort objects - (b) low contrast
which can “hide’ objects - (c¢) small elements which can be loss - (d) strong transitions between objects

Due to these restrictions, several processes or tasks have been developed in order
to improve the quality of a given digital image, these tasks are usually formulated in
a mathematical continuous setting, rather than the discrete one represented in a digital
image. The use of continuous setting is focused in to be able to apply all the mathematical
results available from optimization, partial differential equations and functional analysis,
areas where image processing tasks could be formulated. Notice that obviously in the
practice we will work with discrete evaluations of the involved image functions.

1.2 Image Representation

Our first definition of an image is the formalization of what we seen in the practice.
In order to be able to handle this images in the usual image tasks, we need to represent
them in a more specific ways, in order to have an appropiated mathematical definition for
the tasks involved. Here we present several representations for digital images:

e Random fields: In this case, an observed image uq is modeled as the sampling of
a random field. Images are modeled by some Gibbs/Markovian random fields [30].
The statistical properties of fields are often established through a filtering technique
and learning theory. This modeling is the ideal approach for describing natural
images with several patterns such as trees and mountains.

e Wavelet Representation: An image is often acquired from the responses of a
collection of microsensors, either digital or biological. It has been realized, supported
with experiments, such that local responses can be well approximated by a functions
called wavelets, this functions can be described as a ‘brief oscillation’ (like the one
can see on a seismograph or heart monitor). This representation is highly useful for
multiscale structures [10], and is used in widely known compression protocols such
as JPEG2000. The theory that have been started by this representation is highly

3



1.3. Classical Issues on Image Processing Chapter 1

active and pushed forward by the generation of several new models coming from the
idea involved of wavelet representations.

e Regularity Spaces: In order to be able to use the rich structure and results from
Sobolev Spaces, is conventional to consider an image u in the Sobolev space H'(Q),
or more generally, u € W'P(Q) for some p € [1,00]. This model works well for
homogeneous regions, but it is insufficient as a global image model, since it ‘smears’
an important visual cue: the edges. In order to find them, there exists some models
that are defined precisely for images in this representation: the ‘object-edge’ model
of Mumford and Shah [11] and the Bounded Variation image model of Rudin, Osher
and Fatemi [12].

In this work we will consider the Regularity Spaces representation of images when
we deal with the variational formulation of the segmentation problem, and also we will
consider a ‘Wavelet-like’ representation of images in order to ‘decompose’ it in several
structures that are of our interest.

1.3 Classical Issues on Image Processing

In this section we will present the classical image processing issues, in order to improve
the quality of a given digital image, we will start defining in an abstract idea the Image
processing concept which follows the ideas given in [23].

An Image Processor could be understand as an abstract input-output system:

Qo — ‘Image Processor T‘ —Q

where the input data Qo could be an observed or measured single image (or a series
of images, in the case of Movie purposes), and the output @ = (q1,¢2,...) contains the
targeted image features.

Essentially, an image processor is the link between Computer Vision, which we un-
derstand as the field that tries to reconstruct the 3-D world from observed 2-D images
and Computer Graphics, which tries to design 2-D scene images to simulate the 3-D world.

As a basical example we can consider the image processor T as the human visual sys-
tem, in this case the input )y represents the image sequence projected onto the retina,
and the output () contains all the major features that are relevant to our daily life, pass-
ing by the most basical features as relative orders, shapes and grouping rules to the most
specifical features that help to classify or identify patterns and objects.

We will present the most important image processing tasks as a particular image
processors, detailing the input and output associated:

e Denoising and Deblurring: Image blur and noise are the most commom problem
in photography, which came from the nature of the acquisition devices and the

4



1.3. Classical Issues on Image Processing Chapter 1

discretization of the image to become a digital one. Image deblurring is the process
of recovering a sharp image from an input image corrupted by blurring and noise,
where the blurring is due to convolution with a known or unknown kernel. The task
associated with deblurring and denoising can be stated with:

Qo:ug=Kxu+n
where u is the ‘original” image, K is a blurring kernel, and n is the noise model, and

Q@ : clean and sharp u

e Inpainting: Image inpainting, also known as image interpolation, is the process
of reconstructing lost or corrupted parts of an image. This is an important in-
verse problem with many applications, for example: removal of scratches in old
photographs or filling-in missing blocks in unreliably transmitted images. The task
associated with Inpainting can be stated with:

Qo : U0|Q\D
where () is the original domain of u and D is the ‘missing’ part, and

@ : entire image ulq

e Super-Resolution: This task corresponds to the reconstruction of a high resolution
image from a filtered and down-sampled (i.e. reduced resolution) image. This task
have many applications in video. The task associated with Super-Resolution can be
stated with:

Qoiuo

@ : multiscale images (uy,, Uz, - -.)

e Segmentation: Images are the proper 2-D projections of the 3-D world which
contains several objects. In order to (approximately) reconstruct the 3-D world the
first step is to identify the regions in which each object belongs. The problem of
segmentation is to identify this regions. This problem have a lot of applications
in a wide variety of fields, such as computer vision, medical image processing and
military image processing. The task associated with Segmentation can be stated
with:

Qo = ug

@ : the boundary of objects, the objects, and their associated regions: T', (uy, Q%)

here I' represents the set of boundaries of the objects, {2, represents a subset of the
image domain €2 and uy represents the values of u in €2, i.e. the image of the object
in the region (2.

As we mentioned in the first section, in this work we will focus on Image Segmentation,
studying a classical method to perform it, and a new method which promises to perform
better than the classical ones in an important class of images.
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1.4 Texture in Images

One of the motivations of this work is to improve the classical denoising and segmen-
tation models in order to get better results in images with texture, which we can define
informally as a repetitive structure in an image, this kind of images is strongly usual in
natural environments and usual methods tend to have trouble to deal with them.

Figure 1.3: The change between different textures

Try to characterize the texture concept takes relevance when we talk about segmen-
tation, because our first impression is that the human eye recognizes the change between
different textures, which can be related by the segmentation procedure itself, see Figure
1.3.

Define texture is a difficult task, because we don’t have a precise and unique math-
ematical definition or a clear concept. The basic idea is that the texture can be seen
as a repetition of basic texture elements called texels or textons made of pixels whose
placement obey some rule.

Let us give some recompilations ideas about textures:

1. The textured region can contain texture elements of various sizes, each of which can
itself be textured.

2. The order consists in the nonrandom arrangement of elementary parts.

3. The parts are roughly uniform entities having approximately the same dimension
everywhere within the textured region.

4. A region in an image has a constant texture if a set of local statistics or other
properties of the picture function are constant, slowly varying, or approximately
periodic.

Notice that this characterizations of texture have some similarities with the idea of
noise in an image, and naturally some differences, this become a problem for the common
methods of denoising and segmentation for images with texture, specially with ones from
natural environments. The classical methods tend to fail in this tasks because the associ-
ated methods usually identify texture as noise, which leads to a loss of information of the
texture on the outputs of the image processors.

6
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1.5 Objectives of this Work

We conclude this chapter listing the main objectives of this work:

e Review the actual works on denoising and non-local segmentation proposed models
for textured images.

e Study the non-local segmentation proposed model in order to obtain theorical results
about the functionals involved.

e Build implementations for denoising and non-local segmentation proposed models
to perform a numerical testings for this methods in order to understand them and
discover their advantages from the classical models.

e Propose and implement a new (approximated) representation of images in 1-Dimension,
in order to be able to decompose them in resolution levels and identify ‘hidden’ tex-
tures.

e Finally, concluding from all the previous objectives, describe suitable methods to
process 1-D and 2-D images in order to understand better the textures in them.



Chapter 2

Preliminaries: Mathematical Tools
for Image Processing

In this chapter, we will review some theoretical results and definitions, that will be
used in this work, and also we review some interesting mathematical models.

We start reviewing some theoretical tools that we will use in this work. Firstly we
review the classical tool from calculus of variations, the called Direct Method of Caluclus
of Variations. This is the classical method to prove the existence of solutions on problems
that involve the minimization of a functional, defined in a suitable space. Secondly we
present and review some properties of a variational convergence: the called I'-convergence,
we have to use this tool, because when we want to approximate some functional with a
numerical bad-behavior by a family of a well-behaved ones. We cannot expect to have
strong convergence of the functionals, this requirement is almost impossible in general,
and also is much more than we need, the idea of I'-convergence is to ensure convergence
of minima, which is the only thing we will need in our context. Finally we also include
some tools of interest like Euler-Lagrange equations and some useful lemmas.

After the mathematical introduction, we will review some interesting works : we start
with an article published in 2005 by Antoni Buades [19], the importance of this article
is the proposal of a new denoising filter which is designed to work with textures. The
main feature of this filter is the ability to denoise correctly images with texture, a task
in which the common filters fail due to their local nature. This feature is based on the
nature of the filter itself, Buades propose a filter based on replace the value of a fixed pixel
by averages of pixels in the whole image, this non local behavior retains textures and do
not consider them as noise unlike the classical filters which consider texture as noise and
therefore delete them in denoising process. This model may seem away from the purpose
of this work, but this filter is the basis of all the work on non-local image tasks, due to the
simplicity of the involved formulas and the ability of them to capture texture on images
without consider them as noise.

Finally we review an article published in 2011 by M. Jung, X. Bresson, T. Chan
and L. Vese [31], in this article the authors propose a new functional designed to have
a better performance in images with texture, they propose an Ambrosio-Tortorelli-like

8
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functional, changing the local behavior of the functional replacing the regularization term
in the image by a non-local regularization term, this one is based on the Buades filter
due to their great performance on images with texture. This model seems to work great
numerically in images with texture in some common image processing tasks, but nothing
as been proved about the functional itself. This is the starting point for our work, because
we already know that the functional seems to work great numerically (something that we
will check in this work), but theoretical results has not been proved yet.

2.1 The Direct Method of Calculus of Variations

The typical problem of the calculus of variations is to minimize an integral of the form:
F(u) = | fule), Va()ds
Q

where €2 is an open subset of RY, usually € is also bounded, the minimization is among
functions u : Q — R, belonging to some suitable function space, and usually satisfying a
boundary condition, for example a Dirichlet boundary one: u(y) = g(y) y € 0.

Thus, the problem is
min F(u)

ueC

The classic way to prove that this problem have solution is the procedure called the
direct method of the calculus of variations, the idea is very simple:

We have to take a minimizing sequence (uy,), C C, i.e.:

lim F(u,) = irégF(u)

n—oo

and show that some subsequence of (u,,) converges to a minimizer u € C.

In order to make this strategy successful, we need several conditions to be met:

1. Some compactness condition has to hold so that a minimizing sequence contains a
convergent subsequence. Notice that this requires a careful selection of a suitable
topology on C (Notice this also implies that we may need to change the suitable
space C when we want to prove the existence of minimizers for the functional without
knowing in principle the ‘good’ space).

2. The limit u of such subsequence should be contained in C, i.e. a closedness condition
on C.

3. Some lower semicontinuity condition of the form

F(u) <liminf F(u,) if u, converges to u
n—oo

has to hold, in order to ensure that the limit of a minimizing sequence is indeed a
minimizer for F'
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Notice that the conditions 1 and 2 suggest that we need to consider a space C which
is not too restrictive, but, in the other hand, to hold the condition 3 we may need to
consider a topology in C which is more restrictive. So, we have to make a balance in the
choice of the topology in C (and even in the choice of the space itself).

We will follow this method in order to prove the existence of solution for some func-
tionals of our interest, moreover, we will face the difficulty of chosing a suitable space C
due to the problems that we will face to establish the conditions 1, 2 and 3.

There are several conditions for which we can ensure the existence of solutions for the
typical problem of the calculus of variations using the direct method, we don’t expose
them here because this results will not apply in our context but the interested reader
could find them in [2] pp. 11-16, [33] Chapter 4 and [25] Chapter 3.

2.2 [ Convergence

In this section we will review the definition and main properties of the I'-convergence
that we will use in this work.

Let (X, d) be a metric space, and let f; : X — R a family of functions.

We need first to recall the definition of a lower semicontinuous function:

Definition 2.2.1. We say that a function f : X — R is (sequentially) lower semi-
continuous (or Isc) in z € X, if and only if V (z;) — = we have:

() < limnt (z;)

or equivalently,
f() = mindlimin f(z;) : (a;) = =},
J

we will say that f is Isc in X if it is Va € X.
Given this definition, we can provide the definition of the I'-convergence:

Definition 2.2.2. We say that the sequence (f;) I-converges to a function f, : X — R
if Vx € X we have:

1. (liminf inequality): V(z;) = x: fo(x) <liminf; f;(z;)
2. (limsup inequality): 3(z;) — 2 : foo(x) > limsup; f;(z;)
if this conditions hold, we say that f. is the I'-limit of (f;) and we denote it as

fo=T—limf;.

10
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Notice that if (z;) satisfies the second condition of the definition we have, for this
sequence:

foo(x) < limjinf fiz;) <limsup fi(25) < foo(2) = fool®) = lin fi(x)

So, we can replace the second condition of the definition by:
2'. (existence of a recovery sequence) 3(z;) = z: foolx) = lim; f;(z;)

Notice that the I'-limit, if it exists, is unique and lower semi-continuous. Moreover,
every sequence f; admits a subsequence which I'-converges.

In the case where the family of functions depends on a continuous parameter, we have
to make a precise definition of the I'-convergence, obviously this definition will rely on the
I'-convergence for a discrete sequence of functions, and for this case we have the following
definition:

Definition 2.2.3. We say that f. : X — R I'-converges when € — 0 to fy if:

V(éj) — 0 we have: I' — lim fe]- = fy
J

Let us enounce now the principal properties of the I'-convergence:

Proposition 2.2.4. Assume that f; : X — R T-converges to f. Then, the following
statements hold:

1. If g: X — R is a continuous function, then fj + g I'-converges to f + g.

2. Lett; — 0. Then, every cluster point of the sequence of sets
{ee X fi(z) <inf fi +1;}

minimizes f.

3. Assume that the functions f; are lower semicontinuous and for every t € [0,00)
there exists a compact set Ky C X with:

{reX: fi(x) <t} CK; VjeN

Then, the functions f; have minimizers in X, and any sequence x; of minimizers of
f; admits subsequence converging to some minimizer of f

There are many characterizations of I'-convergence and many other properties of in-
terest about it, we just need the ones presented here in order to prove the I'-convergence
for some family of functionals of our interest, so, for more information of this variational
convergence we suggest the refer the reader to check the following references: [14], [13],

9]
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2.3 Some useful results

In this section we review some results of interest, that will be useful in our work, first
of all we review the well known Euler-Lagrange equations and then we define some other
result of interest.

2.3.1 Euler-Lagrange Equations

Using the Direct Method of the calculus of variation we can prove the existence of
solution for the problem

min F(u mm/f z,u(x), Vu(z))dz (P),

ueC ueC

the obvious question after the existence of the solution will be how to characterize it.
This is important, because this is the fundamental step in order to develop computational
methods to compute numerical simulations in the case of functionals which represents
some real problems.

A classic result in the field of the calculus of variations give us the called Euler-Lagrange
equations, and could be considered as the necessary first order conditions for functional
minimization problems, the result can be stated as follows:

If we denote f: Q x R™ x R™ — R such that: (z,u,v) — f(x,u,v) then:

Theorem 2.3.1. Suppose that f € CH(Q x R™ x R™ R). Ifu € C1(Q,R™) is a solution
of (P), then O, f(x,u(x), Vu(z)) is differentiable and we have:

dof of . __
E%(:B,u(x),Vu(:v)) 8u( u(r), Vu(z)), x € (2.1)

this second order equations onu are known as the Fuler-Lagrange equations for the problem
(P).

This result is also valid with less regular minimizer u, for example, the equations are
also valid if f is superlinear (i.e. f(z,y) > a-+bl||y||” with p > 1), in this case the minimizer
u is just Lipschitz, but the equations still holds.

2.3.2 The Fundamental Lemma of Calculus of Variations

The following result is a little lemma used in the proof of the theorem of the Euler-
Lagrange equations.

Lemma 2.3.2. Let f be a function of class C' on the interval (a,b) such that:

[ =

for all functions h(z) of class C* on the interval (a,b) such that h(a) = h(b) = 0. Then
f(z) =0 in[a,b].
12
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This result was generalized by du Bois-Reymond in the following version

Lemma 2.3.3. Suppose f is in L} (), where Q C RY is an open set. If

loc

/Qf(as)h(x)dx =0

for all h € C3°(Q), then f(z) =0 a.e. inx € €.

These lemmas allow us to rewrite Euler-Lagrange equations for complicated functionals
in a simpler PDE formulation, we refer to [2] pp. 19-22 and [25] pp. 47-60 for details.

2.4 The Non Local Denoising Filter

In [20] the author develop a new denoising method which is able to handle textured
signal /images, this denoising filter is essentially a nonlocal one in the sense that it re-
places a pixel value with a mean of other similar (in a sense which we will explore later)
pixels but with no spatial restriction. In this section we will review this important work
to explore its main results.

2.4.1 Introduction: Neighborhood Filters and NL-means

We will say that a filter (for images or videos) is a neighborhood/NBH filter, if this
reduces the noise by averaging similar pixels. Note that, we can use another statistical
estimates like the median.

General CCD noise models are signal dependent, fortunately, two pixels, which received
the same energy from the outdoor scene, undergo the same kind of perturbations and
therefore have the same noise model.

We will accept the following general assumption, which is the basic idea where this
models relies:

Assumption: At each energy level the noise model is additive and white, then denois-
ing can be achieved by first finding out the pixels which received the same original energy,
and then, averaging their observed grey levels.

Since the original values of the image are lost, the filters proceed by picking for each

pixel i, the set of pixels N, spatially close to ¢ with similar grey value. The NBH filters
proceed by replacing the grey level of ¢, which will be denoted u(7), by the average

Under the assumption that the pixels of A; have the same energy as i, we have that,
NF(u(7)) is a denoised version of u(7).

13
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Most popular NBH filters are: o—filter (see [33]), SUSAN (see [11]) and the bilateral
filter (see [15]), where the neighborhoods are Gaussian in space and grey level.

In contrast, the Non-local means, proposed by Buades et al. in 2005 (see [19]), is based
in the following idea:

He extends the concept of neighborhood to a wide class, in a method which is called
non-local means (NL-means). These algorithms defines the neighborhood N; of ¢ under
the following condition:

j € N; iff the grey level of a whole window around j is close to the grey level of the
window around t. In simple words, we are relaxing the spatial constraint of the classical
netghborhood filters.

2.4.2 Comparison Principles

A systematic comparison of the huge variety of denoising methods is requested. The
authors consider that visual comparison of artificially noisy images with their denoised
version is subjective, which is a usual technique, moreover, this comparison method de-
pends strongly on the choice of the image, and does not permit to address the main issues:
the loss of image structure in noise and the creation of artifacts.

The authors propose three comparison principles aiming at more objective bench-
marks.

1. The first principle states that noise and only noise should be removed from an im-
age. It has to be perceptually tested directly on an image, with no artificial noise
added, then the idea is to compare the difference between the image and its de-
noised version for each method. We will call this difference method noise. With this
comparison method, it is much easier to evaluate whether a method noise contains
some structure removed from the image or not.

2. The second principle, which we will call noise to noise, relies on the idea that a
denoising algorithm transforms a white noise into a white noise. This may be seen
as a paradoxical requirement, but it is a good way to characterize artifact-free al-
gorithms. Also, we have a powerful mathematical tools for testing: Mathematical
analysis and Fourier spectrum testing.

3. The third principle, which we will call statistical optimality, it is restricted to neigh-
borhood filters, and is based to the question if a given NBH filter is able or not to
retrieve faithfully the neighborhood N; of any pixel 7.

14
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2.4.3 Noise Model

In this section we study barely a classic model for noise, this is the model for the CCD
devices and the main result of this model is an hypothesis that will made the NBH filters
useful for denoising.

In CCD devices, we have three kinds of noise:

1. Shot Noise: This noise is proportional to the square root of the number of incoming
photons in the captors during the exposure time, namely:

nozglq)%-A#]:C\/é,

where @ is the light power, hr the photon energy, ¢ the exposure time, A the pixel
area, and 1 the quantum efficiency. Joining all constants in C' we have the last
formula, where ® can be understood as the true image.

2. Dark or Obscurity Noise: We will denote this noise as nq, and it is due to spurious
photons produced by the captor itself. We can assume the dark noise to be white,
additive and with zero mean.

3. Read out Noise: We will denote this noise as ns, and it is another electronic additive
and signal independent noise. Can be assumed to have zero mean.

Also, we have to consider another correction, a gamma correction, which is a nonlinear
increasing contrast change, we will denote it as a function f applied to the noisy image.
It is applied as an internal adjustment in rendering of images through photography, tele-
vision and computer imaging. Usually we take: f(z) = z* with a € (0, 1)

Summarizing we have:

u(i) = i)+ e/ P(i) + nq (i) + na(i)).

When (i) is large the shot noise \/®(i) dominates n; and the signal ®(i) dominates
ng, thus we have that

u(i) ~ f(®(2)) + INCV (i) +ni(i) + na(i)) =: f(P(d)) + n(i).

If ®(4) is small with respect to ny(i) 4 ns(i):

n(i) ~u(z) ~ f(ni(i) + na(i)),

in the particular, and interesting, case of a« = 1/2 we have:

no(7) bright parts of the image

V/n1(i) + na(i)  dark parts of the image

15
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In all these cases the noise is signal dependent but independent at different pixels.

In the following we aim at recovering f(®(i)), i.e. the true image up to the unknown
gamma correction. The approximations we made for u(i) and the white noise and inde-
pendence assumptions on ng, ny, ne legitimate the following important hypothesis:

Hyphotesis: In a digital image, the noise model at each pixel ¢+ only depends on the
original pixel value ®(i) and it is additive. Let N; be the set of pixels with the same
original value as 7. Then n(j),j € N; is independent and identically distributed. (i.i.d.).

Remark 2.4.1. This hypothesis leads us to gives a proof of the correctness of NBH (and
NL-means) algorithms:

Given a pixel i, let j € N; all the pixels that follow the same model of i, i.e.,
Vi €Nt u(j) =v(i) + n(j),
where v(7) is a deterministic function, n(j) are i.i.d. noise.

Then, considering the denoising filter:

thanks to the hypothesis and variance formula for independent variables, we have that,
NF(u(i)) = v(i) + 7(i),

where,

Var(i(i)) = ﬁwr(n(i)) < Var(n(i)),

i.e., these filters reduce the variance of the residual noise.

2.4.4 General Neighborhood Filters
2.4.4.1 Local NBH Filters

We will present these filters in order or complexity. The first one, and then the most
primitive, is based in replacing the color of a pixel with an average of the nearby pixels
colors, i.e., N; is just a spatial neighborhood. The filtered value for the pixel z is given
by

2

Muta)) = = [ <

Tp?

where p is a control parameter, roughly, the size of the neighborhood. The problem of
this filter relies on the case when a spatially closer pixels of the pixel ¢ do not have similar
colors as i. When the color is replaced by an average of very distinct colors, it produces
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blurring in the border of the transition of colors.

This suggests the need of a model which includes a weight to discard closer, but too
much different pixels, for the averaging, this is the idea for the Sigma filter (see [38], [10]):
Average neighboring pixels which have a similar color value, thus the filtered value is given
by

1 _ u@—u@)?
NF, ,(u(zx)) = C’(:E)/B()e 2 u(y)dy.

Only pixels inside B,(x) are averaged, h controls the color similarity, that is, roughly
speaking, the tolerance for the color similarity, and C'(x) a is normalization factor.

Later, to avoid the dependence on a Ball Neighborhoods, we have the filters SUSAN [1/]
and bilateral [15], where the ball neighborhoods are replaced by exponential penalization
on space, i.e., we have bilateral Gaussian depending on both space and grey level, that is,

1 Clr=yl? ju@)—u))?
SNF (@) = g [ F e

Another way to avoid the blurring of the spatial filtering M, is considering a statistical
correction due to Lee in 1980 (see [37]):

LM, (u(z)) = M(u(x)) +

— (u(@) = M, (u(2))),

2 2
o;+0

where

o2 = max <o, Wi/ﬂ /R 0 = 9 () — M () ?dy — 0—2) |

p

The idea of this correction is based on the following observation: When the Gaussian
mean is performed on an edge, the variance of the performed mean can become larger
than the variance of the noise, this phenomena is not desired, and the correction tries to
avoid this.

Bilateral filters anyway have a better performance than Lee’s correction. A small
comparison of this neighborhood filters can be seen on the original works, and gives us
non fully acceptable results: Gaussian filtering don’t maintain sharp edges, anisotropic
filter removes small details and fine structures, Lee’s statistical filter leave some areas
untouched, then noisy, sigma and bilateral creates irregularities on the edges. This com-
parison make the needs to consider a new model.

2.4.4.2 Non Local Averaging

As we said before, the main idea of this model is based on the simply observation that,
the most similar pizels to a given pizel have no reason to be close of it, for example in
periodic patterns, then the idea is to construct a filter which consider pixels with neigh-
borhoods with similar average values as the neighborhood of the original pizel, then we do
not have spatial constraint.

17
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Then, the proposed formula is:

where g, is a Gaussian kernel with standard deviation p, C'(x) is the normalizing factor,
h acts as a filtering parameter and

9o * u(z + ) — uly +)*(0) = /RQ o()|u(x +1) — uly + t)*dt.

This last formula reveals the most important characteristic of this filter, NL replace the
value of u(x) by a weighted mean of u(y). The weight is relevant only if a Gaussian win-
dow around y is similar to the same window around x. This is the concept of self-similarity.

NL-means works great with text images, but is limited when an image have structured
noise, like JPEG compression, in that case NL loose details. More specific information
can be seen on the original paper.

2.4.5 Principles for Denoising Algorithms Evaluation

We will enounce the formal assertions for this principles that we mentioned before in
the introduction.

2.4.5.1 Method Noise

As we said before, the idea of this principle is to evaluate if an algorithm just removes
noise, or it also removes some structure of the image.

Definition 2.4.2. Let u be am image, not necessarily noisy, and D}, a denoising operator
depending on A. The method noise of u is the image difference:
n(Dy,u) = u — Dy(u)
and the formal principle will be:

Principle 1: For every denoising algorithm, the method noise must be zero if the
image contains no noise, and should be in general an image of independent zero-mean
random variables.

Examples of the evaluation of algorithms under this principle can be seen on the

original paper, anyway, roughly speaking, the NL-means have the best results for this
principle.

18
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2.4.5.2 Noise to Noise Principle

As we said before, the idea of this principle is: accepting that no algorithm can re-
move all the noise from an image, at least we want to transform noise in noise with less
variance. This is a way to check if an algorithm reduces the noise, and also do not create
artifacts on images.

Principle 2: A denoising algorithm must transform a white noisy image into a white
noisy image, with lower variance.

As we said before, this principle have a good way to be checked: Studying the Fourier
transform of denoised image, because we know that the Fourier Transform of a white
Gaussian noise is a white Gaussian noise, so, visualizing the Fourier Transform of the
denoised image, we will see if it remains as a white Gaussian noise, or it have changed in
wrong way, creating artifacts.

Several algorithms have been checked with this principle, that can be seen on the
original paper, bilateral filters and NL-means report the best results.

2.4.6 Statistical Optimality

We will understand statistical optimality as the ability of a generalized neighborhood
filter to find the right set of pizels N, performing the average yielding the new estimate for
u(i), obviously, this principle will be useful just for neighborhood, or averaging in general
methods.

Principle 3: A generalized neighborhood filter is optimal, if it finds for each pixel 1,
all and only the pixels j, having the same model as 7.

Obviously is impossible to check if the pixels in N satisfy ®(j) = ®(i), then in general
this condition is relaxed to check if the pixels j are likely to have the same value as 1.
Examples are given in the original paper, anyway, this principle is more useful for movie
denoising.

2.4.7 Numerical Examples

In what follows we will present some numerical examples performed in [19]
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Figure 2.1: Comparison of neighborhood filters. From top to bottom and left to right: noisy image
(with gaussian noise with o = 15), Gaussian filtering, anisotropic filtering, Lee’s statistical filter, sigma
or bilateral filter and the NL-means algorithm. All methods except the Gaussian filtering maintain sharp
edges. However, the anisotropic filtering removes small details and fine structures. These features are
nearly untouched by Lee’s statistical filter and therefore completely noisy. The comparison of noisy grey
level values by the sigma or bilateral filter is not so robust and irregularities are created on the edges.
The NL-means better cleans the edges without losing too many fine structures and details.

Figure 2.2: Method noise experiment on Lena (gray levels only). From top to bottom and left to right:
original image, Gaussian mean, mean curvature motion, total variation minimization, translation invariant
soft and hard thresholding, bilateral filter and NL-means
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Figure 2.3: Noise to noise principle: Upper images: Application of the denoising algorithms to a noise
sample. From left to right and top to bottom: noise sample, filtered noise by the Gaussian filtering, total
variation minimization, hard wavelet thresholding, bilateral filter and the NL-means algorithm. The
parameters of each algorithm have been tuned in order to have a filtered noise of standard deviation 2.5.
For the neighborhood or bilateral filter the research zone has been fixed to 21 x 21 and for NL-means
we have used the whole image. Therefore, only the h parameter has been tuned in order to obtain the
desired standard deviation Lower Images: Noise to Noise principle: Fourier transforms of the filtered
noises displayed in the upper images. The Fourier transform of a Gaussian white noise is a Gaussian
white noise
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2.5 Non Local Mumford-Shah Regularizers for Color
Image Restoration

In [34] the authors develop several functionals based on approximations of the original
Mumford-Shah functional with nonlocal characteristics incorporated, this nonlocal char-
acteristics are based on the work of Buades et al. [19] and Gilboa et al. [31]. In this
section we will review this important work to explore its main results.

It is important to incorporate the nonlocal characteristics in new models, because this
performs better, than local methods, in image denoising and restoration when the image
have textures, for example, local methods usually consider textures as noise, and then, in
denoising tasks this algorithms just remove the textures.

The authors presents non local extensions for the widely known approximations for
the Mumford-Shah functional, this approximations are due to Ambrosio-Tortorelli and
Shah, with the primary objective of better restoration of fine structures and textures.
The functionals proposed in this paper are the starting point of our work, because the
proposed functionals are just used in [34] in a numerical way, moreover, the authors use
this functionals for different image tasks than the one of our interest.

2.5.1 Introduction - Background

First of all, we need to recall some basic results and concepts about image regulariza-
tion methods. We will extend this concepts in later chapters, but we will to introduce
them slightly now, to define the model in what we will work.

2.5.1.1 Local Regularizers

The basic Mumford-Shah regularizating functional is used commonly in segmentation
and restoration algorithms, it is given by the following formulation:

Given u : Q — R and K its edge set, the MSH" reqularizer is:
JMSH (4 K) =3 |Vu|*dx + a/ dH?,
O\K K

where |[Vu| = \/u2 +u2,, © = (x1,22), H' is the 1-D Hausdorff measure and Q C R? is

the open image domain.

Notice that the first term enforces u to be smooth everywhere, except on the edge set
K, and the second term enforce to minimize the total length of edges.

In general is very hard to minimize this functional, due to its non convexity. A way to
solve this problem is to consider another functionals (with better structure) which approx-
imate this one in some sense that asserts that the minimum points of this new functionals
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approximates the minimum points of the original one.

Ambrosio and Tortorelli approximated the Mumford-Shah functional by considering
a sequence of more regular functionals, denoted by J., which converges to JM57" in the
sense of I'-convergence. The idea of this functional is to approximate the edge set K by
a smooth function v, the approximation is given by:

1 —1)?
JMSH (4 v) = 6/ v?|Vul|?dr + g/ <5|Vv|2 + u) dx,
Q 2 Ja €

where 0 < v(x) < 1 represents the edges: v(z) ~ 0 if z € K = S5, (discontinuity set of
u), v(x) ~ 1 otherwise; ¢ is a small positive constant, «, § positive weights.

If we add a fidelity term to this functional we have that a minimizer v = u. of JMH'
approaches a minimizer of JM5H "ase — 0.

Another approach is given by Shah, using the total variation regularization proposed
in image restoriation mainly by Rudin, Osher and Fatemi, this is very useful due to its
benefits of preserving edges and convexity.

The total variation regularization is defined in the following way: given a locally
integrable function u define:

I (u) = sup {/ uV - ddz : ¢ € Co(QR), ||¢]|r=() < 1} )
Q

which coincides with / |Vu|dz when v € WH(Q).
Q

Based on this approach, Shah proposed a modified version of Ambrosio-Tortorelli
approximation, by replacing the term |Vu|? by |Vu| in the first term, then, the Shah
approximation for the Mumford-Shah functional is given by:

—1)2
JMSTV (4, v) = B/ v?|Vu|dz + a/ (»3|Vv|2 + u) dx.
Q Q 4e
This functional I'-converges to the JMSTV functional given by:

+ _ —
JMSTV — 3 |Vu]d;1:+a/ [t = w7

O\K k 1+ |ut —u|

dH' + |D.u|(Q)

where u™,u~ denotes the values of u at each side of K and D.u is the Cantor part of
Du. This last functional is very similar with the total variation of u € BV (Q2), that can
be written for K = J, as:

JTV — s \Vu|dz + a/ |uJr — 1f|d’H1 + | D.ul(Q).
O\K K

The only difference is that the MSTV regularizer does not penalize the jump part, as
much as, the TV regularizer does.
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These functionals are considered only for monochromatic images, but is naturally
extended to color images by Blomgren and Chan, which propose a color TV regularization
by coupling the channels, i.e., considering:

Jv :/ || Vul||de = / VIVuR2 4 |[VuC|? + |VuB|2da.
Q Q

Bar et al. in [!1] extend this idea for the Mumford-Shah approximations for color
images, by replacing |Vu| by ||[Vu|| in JM5H and JMSTV . Notice that the scalar-valued
edge map v is common for the three channels and provides the necessary coupling between
colors.

2.5.1.2 Nonlocal Methods

As we seen before in review of the paper of Buades et al. the importance of nonlocal
methods is based on their well adaptation to texture denoising in contrast to standard
local methods. Recall that the basic idea is, to extend the concept of neighborhood filters
which replace the value of a pixel with an average of its spatial neighbors, the nonlocal
filters extend this concept to the one of patch-similarity, i.e., we will replace the value of
a pixel for an averaging of pixels which have similar patch values, and then, the spatial
restriction is relaxed. The classical filter for this task is the NL-means filter due to Buades

et al. [19]:
V) = gy e (<L) rpay

1@ ) = [ Ol +1) - fo+ olFat

where d, is the patch distance, f is the image to be filtered and g, is a Gaussian kernel
with standard deviation a, which determines the patch size.

2.5.1.3 Nonlocal Regularizers

The idea of this regularizers is to see the nonlocal filtering as a quadratic regularization
based upon a nonlocal graph (a graph with weights). The most important contributions
on this field are given by Gilboa and Osher.

We will need some operators from this theory, the so-called non local differential op-
erators over graphs, proposed for image processing by Gilboa and Osher in [31].

Let u: 2 — Rand w : Q x € — R be a non negative and symmetric weighted
functions. We define the non local gradient vector V,u : 2 x 2 — R as:

(Vyu)(z,y) = (uly) — u(z))vw(r,y),

and the norm of the nonlocal gradient of u is defined by:

Votl(z) = \/ / (uly) — ule))?w(z, y)dy
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We also define the non local divergence of the vector ' : 2 x 2 — R by:
(divsd)(a) = [ (v(o.9) ~ vl 2) Vel iy
Q

Inspired in this operators, Gilboa and Osher in [31] proposed the following general
form for nonlocal regularizing functionals:

- / OV ul?)do

where s — ¢(s) is positive, increasing and convex in /s, and ¢(0) = 0.
If ¢(s) = /s, they propose the NL/TV (NonLocal Total Variation) regularizer:

JNEITV (4 /|un\dx—/\// ) — u(x))?w(z, y)dydz,

which coincides, in the 2D local case, to J™V(u) = [, |Vuldz

2.5.2 Proposed Nonlocal Mumford-Shah Regularizers

Based on the above approximations, the authors propose nonlocal versions of the ap-
proximating functionals of Ambrosio-Tortorelli and Shah to the Mumford-Shah functional.
It is important to recall that they also incorporate the vector case, i.e. color images, in
their formulation, in the way as we seen above.

Then, the general model proposed by the authors is:

NL/MS 2 2 a ,  (v—1)?
JNEMS (y v) = B [ v*¢(||Vwull )dm—|—§ e|Vou|* + . dx
Q 0

Fnggz?MS }a; (23)
- FrzggL/MS(ua U) + FAT('U)a

where v : @ — R v : Q — [0,1], and ¢(s) = s or ¢(s) = /s, the first choice
correspond to NL/MSH"' and the second to MS/TV | i.e.,

NL/MSH! o 2 2 a ,, (w=1)°
J (u,v) == B [ v*||Vyull d:c—l—zfﬂ e|Vu|? + . dz
Q
FNLV/]\IS (24)

regAT

Fryir (u,v) + Far(v)

NL/MSTV 2 a 2 (v— 1)2
JNL/ (u,v) == B | ||un||dx+§fQ e|Vou|? + . dx
Q

FNE?]V[S (2.5)

regS

FNHM (u,0) + Fag(v),
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and recall that:

V@) = [ S (Vo] \/ > [ ) o

i=R,G,B =R,G,B

As we said before, adding a fidelity term to this functionals, we will be able to perform
a specific restoration task, we will discuss this in the next section.

As an additional remark the authors recall that in the practice the weight function
that will be used is the classic NL-means weight (given an image q):

w(z,y) = exp GW)

da(q(),q(y)) = /R ga()llq(x + ) — q(y + t)|]*dt

and we use search windows S(z) ={y / |[x —y| <r}.

The functional JVNE/MS(y, v) is the most important functional of this work, we will try
to study it in the context of segmentation (i.e. with a L? similarity term) in a theoretical
way. This is motivated because in numerical testings this functional seems to approximate
in a good way the original Mumford-Shah segmentation functional, but nothing has been
proved before about the theoretical properties of this functional, this will be the central
objective of this work and also, we will perform independent numerical testings for this
functional and we will try to improve its performance for some tasks of our interest.
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Chapter 3

The Segmentation Problem

3.1 Introduction to the Problem of Segmentation

Segmentation of an image can be understood basically as the process of partitioning
a digital image into multiple sets of pixels. The goal of this process is to simplify and/or
change the representation of an image into something, that is more meaningful and easier
to analyze. More precisely, in this process we could assign a label to each pixel in an
image, such that pixels with the same label share a common visual characteristic, for
example: color, intensity, texture.

Segmentation is the key process in order to differentiate objects in a digital image,
practical applications of image segmentation are:

1. Medical Imaging: Location of tumors and other pathologies, Measure tissue volumes,
Computer-guided surgery.

2. Satellite Imaging: Location and classification of several objects: roads, forests, etc.
3. Human recognition: Face, iris and fingerprint recognition.
4. Military Imaging and Surveillance: Camouflage recognition.

and, in general, any application which needs the identification of objects in a digital image.

In order to develop models for image segmentation, it is important to get a clear and
precise objective of what can lead us to differentiate one region or object from another.

Let’s review a simple example for this purpose, which is presented in [10] Chapter 4:
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e
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Figure 3.1: Edges and Derivatives

We can see in Figure 3.1 that an effective way to differentiate regions in an image is
detecting the edges or contours of each physical object. Edge detection has been studied
widely in computer vision. The classical approaches are based on local differential prop-
erties of an edge, for instance, as we see on the Figure 3.1, on the first and/or second
derivatives of the image. The consideration of a regularization, applying a convolution
mask, of the input image (second row of images) is based on the fact that this process
enhance edges.

This idea can be resumed as follows: Starting from an image ug, we look for a pair
(u, K), such that, u is a nearly piecewise constant approximation of ug and K which cor-
responds to the set of edges. This idea was proposed by Mumford and Shah in 1989, and
will be our choice to work with.

It is important to notice that there are other ways to perform segmentation, the de-
cision of which one we use depends of the objective of the process: differentiate physical
objects or reveal object structure for example. In the first case, one can consider a big
curve K which encloses the group of objects to be differentiated and make it evolve, with
some defined criteria, until it reaches the boundary of each object. This idea was proposed
by Kass, Witkin and Terzopoulos in [35] and it is called active contours, but we won't
work with that.

In our case, the edge detection will be our principal objective, so, we will start exploring
the best way to perform segmentation based on edge detection: Considering the Mumford
and Shah Functional.
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3.2 Mumford-Shah Functional

Let Q € RY an open and bounded set, with N = 2, 3 and u is the input image, which
we can assume, without loss of generality, such that, 0 < uy(z) <1, a.e. x € Q.

We will search for a pair (u, K), where K C (2 is the set of discontinuities, which
will represent the edges of the objects, such that, minimizes some functional that we will
define before.

The idea of this functionals is to define a minimization problem in which the following
conditions prevail:

1. u is closer to wuyg.
2. wu is constant in regions away from the set K.
3. The length of the set K is the minimum possible.

Considering these conditions, Mumford and Shah proposed the following functional,
known as the Mumford and Shah Functional:

F(u, K) :/Q\K(u—uO)de+a/Q\K|Vu|2dx+ﬁ/Kda (3.1)

where o and [ are nonnegative constants, and / do is the length of K. This func-
K
tional is defined in [? |].

Then, the segmentation problem can be solved, in this model, by solving the following
variational problem:

To find suitable (u, K) such that minimizes F(u, K).

Notice that, if we want to apply the direct method of the calculus of variations, we
need to define a correct spaces for the function u and for the edge set K. It is clear that we
cannot impose that K to be in the space of piecewise C'! curves, since one cannot hope
to obtain compactness properties, and hence any existence theorem with this restriction.
Regularity issues about K should be studied a posteriori. To overcome this difficulty we
have to look for solutions in a wider class of sets of finite length. We will define the length
of K as its (N — 1)-dimensional Haussdorf measure H"~1(K), this is the classical way to
extend the notion of length to nonsmooth sets.

Considering this relaxation, we have to rewrite the Mumford and Shah functional as:
Fu,K) = / (u — ug)*dx + a/ \Vu|*dz + BHYN(K). (3.2)
O\K O\K

It is interesting to see that this functional is minimal, in the sense that, if we remove
one of the terms involved, then inf F'(u, K) = 0 and we could get trivial solutions. For
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example, if we remove the first term, then v = constant and K = () is a solution, and if
we remove the second term, then u = uy and K = () is a solution. Notice also that, in
principle, we have u € H*(2).

In the next sections we will discuss how the minimization problem have to be defined,
in order to, at least, expect non trivial solutions and then we will review some results
about the existence of solutions.

3.3 Spaces of Work: BV (Q)), SBV(Q)) and GSBV ()

In order to have good properties on the functionals involved in this chapter, we will
have to consider this functionals defined on some function spaces which are not the clas-
sical spaces like the Sobolev ones.

First of all we need to define some preliminary things: Given Q@ C RY and v : Q —
[—00, +00] a measurable function, we define the approximate upper limit of u at z € Q

| uy(z) = inf {t € [—o0, 00 : 111%1 y: uly) :Nt} N B,()l = O}

Pl
where B,(z) is the ball of radius p centered at « and |E| denotes the Lebesgue measure
of the set E. The approximate lower limit u_(x) is defined in the same way:

The set:
Su={xeQ: u_(z) <uy(z)}

is the set of essential discontinuities of u, it is a (Lebesgue)-negligible Borel set. If
x &€ Sy, we say that u is approximately continuous at x and we write:

w(x) = u_(z) = uy(z) = aplimy_u(y)

The first space that we will define is the space of bounded variation functions: BV (Q),
this space is well known from measure theory and will be the starting point to define the
most interesing spaces to work with:

Definition 3.3.1. Let u € L'(Q); we say that u is a function of bounded variation in Q
if the distributional derivative of u is representable by a finite Radon measure in 2, i.e.

if:

0
/u ¢dx:—/¢dDiu V6 ECX(Q), i=1,...,N (3.3)
o Ox; Q
for some RY-valued measure Du = (Dyu,..., Dyu) in . The vector space of all

functions of bounded variation in €2 is denoted by BV (Q2)

Notice that this definition is equivalent to the following one
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Definition 3.3.2. Let u € L'(Q2); Then u is a function of bounded variation in € if the
distributional derivative of u is a vector valued measure with finite total variation in €.
Where total variation is defined by:

V(f,Q) :=sup {/Qudivgodx s € [CHO, lelloe < 1}

An important theorem about this spaces is the following one:
Theorem 3.3.3. If u € BV (Q), the set S, is countably (HN=1, N — 1)-rectifiable, i.c.:
So=JKiuN
i>1
where HN=Y(N') = 0 and each K; is a compact subset of a C*-hypersurface T';.

A consequence of this, is that there exists a Borel function v, : S, — S¥~! such that
HN'a.e. in S, the vector v, () is normal to S, at x in the sense that it is normal to T;
if v € K;. For every u,v € BV (), we must therefore have v, = +v,,, H¥ " !-a.e. in S,NS,.

Notice that, for every u € BV (€2), the measure Du can be decomposed as follows:
Du = Vu(z)dr + (uy —u_)r,HY LS, + Cu (3.4)
where Vu is the approximate gradient of u, defined a.e. in €2 by:
uly) — u(x) = (Vu(z),y — x)
ly — |
and HN71LS, is the restriction of the NV — 1 dimensional Hausdorff measure to the set

Su, and Cu is the Cantor part of the measure Du, which is singular with respect to the
Lebesgue measure and such that |Cu|(E) = 0 for any E with HY~}(E) < .

=0

aplimy_,,

This decomposition lead us to define the space of Special functions of Bounded Vari-

ation, denoted by SBV (2):

Definition 3.3.4. We say that a function v € BV () is a special function of bounded
variation if C'u = 0 where C'u is the same as in 3.4. This condition means that the singular
part of the distributional derivative Du is concentrated on the jump set S,. This vector

space is denoted by SBV ()

This space is not trivial, in the sense that we can find a function u such that
u € BV (Q)\ SBV(2), the classical example is to take u as the well known Cantor-Vitali
function.

Finally we define the define the space of Generalized SBV functions:

Definition 3.3.5. We say that a measurable function u : Q@ — [—00, +00] is a generalized
SBV function if for any k > 0 the function u* = (=kAu)Vk € SBV(Q), where X \Y =
min(X,Y) and X VY = max(X,Y). We denote this vector space by GSBV (Q).

This last two spaces were defined by Ambrosio in [1] in order to obtain compactness

theorems to work in the minimization of functionals in free-discontinuity problems.

An extensive treatment of this spaces can be found in [7] in chapters 3 and 4.
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3.3.1 Existence of Minima

If we want to apply the direct method of the calculus of variations, it is necessary
to find a suitable topology, such that, we can ensure the lower semicontinuity of F' and
compactness of the minimizing sequence. Notice that we have two unknowns in the
functional u and K, which have a very different nature, u is a function defined on a N
dimensional space, and K is an (N — 1) dimensional set. So, we will have a big difficulty
in our purpose, basically based on the term H™~1(K). Because we have the following
known result about the Hausdorft’s measure:

Theorem 3.3.6. Let E be a Borel set of RN, with topological boundary OF, then, the
map

E — HY Y OF)

is not lower semicontinuous with respect to any compact topology.

Due to this result, it is necessary to find another formulation for F'(u, K). A new, and
suitable, formulation involves the use of the space BV (£2) that we defined before. The
idea is that we can identify the set of edges K with the jump set of u, denoted by S,