TABLA DE CONTENIDO

<u>1</u> INTRODUCCIÓN	1
1.1 Hipótesis	4
1.2 OBJETIVO GENERAL	5
1.3 OBJETIVOS ESPECÍFICOS	5
1.4 ALCANCES	5
2 MARCO TEÓRICO	6
2.1 CMPC TISSUE	6
2.2 PAPEL TISSUE	7
2.3 PROCESO DE FABRICACIÓN	8
2.4 PROCESOS DE SECADO	9
2.5 CILINDRO SECADOR	10
2.6 CAPOTA DE AIRE CALIENTE	13
2.7 TRANSFERENCIA DE CALOR	15
2.8 CONDUCCIÓN	15
2.8.1 CONDUCCIÓN A TRAVÉS DE UN CILINDRO	16
2.9 Convección	17
2.10 COMBINACIÓN DE CONVECCIÓN Y CONDUCCIÓN	18
2.11 TRANSFERENCIA DE MASA	21
2.12 VAPOR DE AGUA	22
2.13 CONDENSADOS	23
2.14 HUMEDAD RELATIVA Y ABSOLUTA	24
3 ANÁLISIS ETAPA DE SECADO	25
3.1 Análisis Teórico	25
3.2 ANÁLISIS OPERACIONAL	26
3.2.1 Variables de Producción	26
3.2.2 SISTEMA DE CONTROL PARA CAPOTA DE AIRE CALIENTE	27
3.2.3 BALANCES DE MASA	29
3.2.4 BALANCES DE ENERGÍA	32
3.3 ANÁLISIS DIMENSIONAL PARA COEFICIENTES DE TRANSFERENCIA	35
3.4 VELOCIDAD DEL AIRE	37
-	
4 DISEÑO EXPERIMENTAL	38
4.1 DISEÑO FACTORIAL 2 ^K	39
4.2 PLANIFICACIÓN EXPERIMENTAL	40

<u>5 RESULTADOS Y DISCUSIÓN</u>	43
5.1 ENSAYOS EN VENTILADORES DE RECIRCULACIÓN	43
5.2 ENSAYOS EN DAMPERS	48
5.3 ANÁLISIS ESTADÍSTICO EN VENTILADORES DE RECI	IRCULACIÓN 53
5.4 ANÁLISIS ESTADÍSTICO EN DAMPERS	55
6 CONCLUSIONES	58
7 RECOMENDACIONES	60
8 BIBLIOGRAFÍA	61
9 ANEXOS	64
9.1 ANEXO A	64
9.2 ANEXO B	66
9.3 ANEXO C	67
9.4 ANEXO D	68
9.5 ANEXO E	70
9.6 ANEXO F	73
9.7 ANEXO G	75
9.7.1 ENSAYO N°1	75
9.7.2 ENSAYO N°2	75
9.7.3 ENSAYO N°3	76
9.7.4 ENSAYO N°4	76
9.8 ANEXO H	77
9.8.1 ENSAYO N°1	77
9.8.2 ENSAYO N°2	77
9.8.3 ENSAYO N°3	78
9.8.4 ENSAYO N°4	78

ÍNDICE DE FIGURAS

Figura 1: Costo de remoción de agua durante la producción de papel tissue (Fuente: Fabricante Voith)	2
Figura 2: Esquema Proceso de Fabricación de Papel [2].	9
Figura 3: Diagrama estructura cilindro secador.	11
Figura 4: Diagrama de proceso cilindro secador.	12
Figura 5: Diagrama de proceso para sistema de aire caliente con capota.	14
Figura 6: Conducción de calor en un cilindro	17
Figura 7: Transferencia de calor desde el interior del cilindro hacía la hoja de papel.	18
Figura 8: Transferencia de calor desde la capota hacía la hoja de papel.	19
Figura 9: Comportamientos del condensado al interior del cilindro secador	23
Figura 10: Sistema intercambiador aire/aire.	34
Figura 11: Número de Prandtl a distintas temperaturas y su relación matemática.	71
Figura 12: Esquema sistema de inyección de aire en las capotas.	73
ÍNDICE DE IMÁGENES	
Imagen 1: Productos terminados tissue [5].	7
Imagen 2: Foto interior del cilindro secador.	11
ÍNDICE DE GRÁFICOS	
Gráfico 1: Precio gas natural para CMPC Tissue fijado por Metrogas (Fuente: CMPC Tissue, planta	
Talagante).	1
Gráfico 2: Consumo específico de gas natural mensual de MP-02 (Fuente: CMPC Tissue, Planta	
Talagante).	3
Gráfico 3: Calor entregado por el cilindro secador y la capota hacía el sistema (Fuente: CMPC Tissue,	
planta Talagante).	4
Gráfico 4: Efecto de la humedad sobre el consumo de combustible [20].	28
Gráfico 5: Humedad absoluta para el aire liberado a la atmósfera.	31
Gráfico 6: Coeficiente de convección para diferentes velocidades en los ventiladores y temperaturas.	36
Gráfico 7: Coeficiente de transferencia de masa para diferentes velocidades en los ventiladores y	
temperaturas.	37
Gráfico 8: Velocidad de impacto del aire caliente sobre el papel.	38
Gráfico 9: Promedio de la velocidad de impacto del aire para cada ensayo con ventiladores.	44

Gráfico 10: Temperatura promedio del aire establecida para cada ensayo en ventiladores.	45
Gráfico 11: Promedio del consumo energético alcanzado para cada ensayo con ventiladores.	46
Gráfico 12: Humedad absoluta del aire liberado a la atmósfera para cada ensayo con ventiladores.	47
Gráfico 13: Temperatura promedio del aire establecida para cada ensayo en dampers.	49
Gráfico 14: Promedio del consumo energético alcanzado para cada ensayo en dampers.	50
Gráfico 15: Humedad absoluta del aire liberado a la atmósfera para cada ensayo con dampers.	51
Gráfico 16: Medias y diferencias estadísticas para los consumos de gas natural entre los cuatro ensayo	s. 54
Gráfico 17: Interacción entre ventilador del lado húmedo y lado seco.	55
Gráfico 18: Medias y diferencias estadísticas para los consumos de gas natural entre los cuatro ensayo	s. 56
Gráfico 19: Interacción entre dampers de entrada y salida.	57
ÍNDICE DE TABLAS	
INDICE DE TABLAS	
Tabla 1: Consumos específicos de vapor y gas natural, en Máquina Papelera $N^\circ 2$ de CMPC Tissue, Pl	lanta
Talagante.	2
Tabla 2: Detalle de la capacidad de producción planta Talagante	6
Tabla 3: Conductividades térmicas a 1[atm] de presión [10].	16
Tabla 4: Magnitudes aproximadas de coeficientes de transferencia de calor [10].	18
Tabla 5: Consumo de vapor y gas para la producción de servilleta Abolengo.	25
Tabla 6: Parámetros y coeficientes utilizados para efectuar el balance de energía.	32
Tabla 7: Coeficientes de convección y transferencia de masa a diversas condiciones de operación.	36
Tabla 8: Condiciones estándar para cada tratamiento en un diseño 2 ² .	39
Tabla 9: Planificación experimental para ventiladores de recirculación.	40
Tabla 10: Parámetros a registrar durante la realización de ensayos en ventiladores.	41
Tabla 11: Apertura dampers para ensayo experimental en ventiladores de recirculación.	41
Tabla 12: Apertura promedio de dampers desde el año 2010.	42
Tabla 13: Planificación experimental para apertura dampers capota.	42
Tabla 14: Condiciones finales para dampers en la capota durante segunda serie de pruebas experiment	tales.
	42
Tabla 15: Coeficientes de convección estimados para las condiciones presentadas por cada ensayo.	43
Tabla 16: Configuración experimental determinada para ensayos en dampers.	48
Tabla 17: Comparación de resultados entre condición actual de operación y condición de operación	
mejorada.	52
Tabla 18: Centerline operacional propuesto para Servilleta Nova Abolengo (767).	52

Tabla 19: Diferencia y significancia estadística en el consumo de gas natural para cada posición de los	
ventiladores.	53
Tabla 20: Diferencia y significancia estadística en el consumo de gas natural para cada porcentaje de	
cierre en los dampers.	56
Tabla 21: Precio mensual de gas natural (Fuente: CMPC Tissue, planta Talagante).	64
Tabla 22: Producción mensual de papel tissue, consumos de gas natural y costo mensual asociado a su	
consumo (Fuente: CMPC Tissue, planta Talagante).	65
Tabla 23: Propiedades del agua saturado: líquido - vapor.	66
Tabla 24: Propiedades del aire como gas ideal a presión atmosférica.	67
Tabla 25: Constantes para el número de Nusselt según el Reynolds.	71
Tabla 26: Resultados obtenidos para el ensayo $N^\circ 1$ de la primera fase experimental.	75
Tabla 27: Resultados obtenidos para el ensayo $N^{\circ}2$ de la primera fase experimental.	75
Tabla 28: Resultados obtenidos para el ensayo N°3 de la primera fase experimental.	76
Tabla 29: Resultados obtenidos para el ensayo N°4 de la primera fase experimental.	76
Tabla 30: Resultados obtenidos para el ensayo N°1 de la segunda fase experimental.	77
Tabla 31: Resultados obtenidos para el ensayo N°2 de la segunda fase experimental.	77
Tabla 32: Resultados obtenidos para el ensayo N°3 de la segunda fase experimental.	78
Tabla 33: Resultados obtenidos para el ensayo N°4 de la segunda fase experimental.	78