ESTUDIO DE ROBUSTEZ DE LA PLANIFICACIÓN MINERA DEL PROYECTO MINA CHUQUICAMATA SUBTERRÁNEA

MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO CIVIL DE MINAS

YERKO MAURICIO YÁVAR DEL PINO

PROFESOR GUÍA:

ALFONSO OVALLE WALKER

MIEMBROS DE LA COMISIÓN:

MARIO SOLARI MARTINI

ANDRÉS SUSAETA MARGULIS

SANTIAGO DE CHILE

ENERO 2014

RESUMEN

La mina a rajo abierto Chuquicamata está agotando su vida útil debido al incremento de los costos operacionales relacionados con las grandes distancias de transporte del material extraído, que son necesarias para recorrer la profundidad actual del rajo, el aumento de la razón estéril/mineral, la baja de las leyes, etc. Para seguir aprovechando las reservas bajo el rajo de la mina, se ha desarrollado el Proyecto Mina Chuquicamata Subterránea (PMCHS).

El desarrollo del plan de producción para el PMCHS se elabora siguiendo los parámetros de ciertas variables críticas del proceso de planificación, muchas de las cuales están sujetas a cierta incertidumbre. La problemática que motiva este trabajo radica en estudiar la robustez del plan de producción del PMCHS. Para esto se utilizó un modelo de simulación en distintos escenarios, para estudiar el sistema minero del primer nivel del PMCHS. De esta forma se logra tener un acercamiento del riesgo en el plan de producción, y estudiar el cumplimiento del plan productivo según las holguras y oportunidades que este posea.

Primero se estudió mediante un diagnóstico a la escala de un Macro Bloque, de tal forma de identificar los principales factores que afectan el cumplimiento de la producción. Posteriormente se realizó una simulación del nivel de producción completo integrando la mina completa, desde el punto de extracción hasta la salida del mineral por las correas overland hacia la planta.

Los resultados obtenidos muestran que es posible que el plan de producción pueda tener una media anual que fluctúe entre márgenes cercanos a las 140.000 [tpd], siempre y cuando se realice gestión sobre la flota de equipos LHD y de las horas efectivas de los mismos. La alternativa de realizar gestión de las horas efectivas y de reserva permite concluir que materializando el 30% del total de la Oportunidad de Horas Efectivas y de Reserva, es posible lograr una producción promedio anual de 140 [Ktpd].

La robustez del diseño minero logra tener poca variabilidad de la capacidad productiva frente las distintas condiciones expuestas al modelo de simulación. La principal vulnerabilidad identificada en las simulaciones está en el riesgo que estas mostraron al no lograr cumplir el plan de producción bajo las consideraciones de diseño, siendo solamente posible llegar a la producción objetivo si se realiza gestión sobre los recursos. Los parámetros que presentan el mayor impacto negativo sobre la producción son la frecuencia de colgaduras y sobretamaños en el punto de extracción y el porcentaje de potencial área con colapso geomecánico.

ABSTRACT

The open pit mine Chuquicamata is running out its useful life due to increased operating costs related to the long distances that are necessary to explore the current depth of the pit, increased waste / ore ratio, low grades, etc. To continue building the reserves under the pit of the mine, it has been developed the Chuquicamata Underground Mine Project (CHUGMP).

The development of the production plan for the CHUGMP is made following the parameters of certain critical variables in the planning process, many of which are subject to some uncertainty. The problem that motivates this work is to study the robustness of the production plan CHUGMP. For this, a simulation model was used in different scenarios to study the mining system CHUGMP first level. This is achieved by having a risk approach in the production plan, and study the performance of the production plan according clearances and opportunities it holds.

First it was studied by a diagnostic scale of a Macro Block, so to identify the main factors affecting the performance of the production. Then a simulation of the full level was carried out by integrating the entire mine, from the point of extraction to the output of mineral by means of the overland conveyors to the plant.

The results show that it is possible that the production plan may have an annual average margins fluctuate between close to 140,000 [tpd], as long as management is carried out on the fleet of LHD equipment and actual hours thereof. The alternative of managing the effective hours and the ones from reserve allow to conclude that materializing the 30% of the total Opportunity Effective Hours and Reserve, it is possible to achieve an average annual production that manages near 140 [Ktpd].

The robustness of the mine design is demonstrated in front of the little variability of production capacity compared to the other conditions set simulation model. The main vulnerability identified in the simulations is the risk that these showed the failure to meet the production plan under design considerations, being only to reach the target production if management is performed on resources. The parameters that have the greatest negative impact on production are the hanging frequency and oversize at the point of extraction and the percentage of area with geomechanical collapse.

Dedicado a la memoria de Mi abueli Alicia Von Krüger

AGRADECIMIENTOS

A mi Mamá, por su amor, apoyo y esfuerzo para que yo pudiese concretar todos mis desafíos. A mi Papá por su cariño y mostrarme lo importante de seguir un camino que te haga feliz. A mi hermana Natalie, por ser mi amiga, por ser un pilar importante de la familia y por toda la alegría y felicidad de estos años.

A Andrea Cortés, gracias por tu tiempo, comprensión, amor entregado, momentos felices, por ser mi compañera en todo y sobre todo por darme el constante ánimo y fuerzas para concretar este trabajo. Te amo.

A mi profesor guía Alfonso Ovalle por entregar su apoyo en el desarrollo de esta memoria, por la transmisión de su experiencia y conocimiento, y además por su simpatía haciendo cada reunión un momento grato de conversación. A los profesores de mi comisión, Mario Solari y Andrés Susaeta, por ayudarme a mejorar este trabajo con su visión, conocimientos, correcciones y preocupación.

A los funcionarios y profesores del Departamento de Ingeniería de Minas, por su vocación y entrega, en especial a Juanita, simplemente gracias por todo.

A Sebastián Carrasco y Carlos Hunt, con quienes llegue a forjar una gran amistad, compartiendo buenos momentos, tristezas, extensos trasnoches y alegrías desde lo más simple. A mis excelentes amigos minero Yerko "Falso" Martinez y Sebastián "Sewa" Avalos, con quienes compartimos cientos de sueños, discusiones, felicidades, lecciones de compañerismo, y tantas cosas que creo que no podría enumerar. No puedo dejar afuera a José "Pepe" Fuenzalida, Juanito Quiroz, Diego "Kiwi" Vergara y Antonio "Toño" Rabajille, más que compañeros amigos en los buenos y malos momentos, cuantos momentos de distracción compartimos y cuantos veces nunca dejamos de defender con toda la garra a nuestro querido equipo del Mineirao, Boca Seca. A Rodrigo "Chino" Molinas y Camila Leiva, quienes fueron mis primeras amistades mineras

A mis compañeros de basketball y primeros años en la Escuela, Gabriel Guggisberg, Nicolás Cañas y Bruno Morales. Con quienes llevamos nuestra amistad adelante frente a todo. Al el equipo de Basketball de Ingeniería, con quienes disfruté el deporte que amo. A mis amigos en mi incursión por biotecnología Camilo Acuña y María Paz Martínez. A Flavia Sturla por su apoyo y compañía durante muy buenos momentos en este proceso.

A Marko Didyk de la VP de Codelco, quien permitió que desarrollara éste trabajo. Al equipo de Planificación Minera del PMCHS: Francisco Carrasco, Luz María y Matías Ferrada, de quienes aprendí y disfrute de una grata amistad. A Freddy Henríquez, de la VP de Codelco, por su constante ayuda en el modelo de simulación.

A Sabina Manríquez por salvarme con su computador cuando todo se había derrumbado. A Maite, Moisés y Alejandro, mis grandes amigos mineros de otras universidades con quienes compartí grandes momentos y lazos de amistad.

ÍNDICE DE CONTENIDOS

1	INTRODUCCIÓN 1	
	1.1 Contexto y Motivación	1
	1.2 Objetivos	2
	1.2.1 Objetivo general	2
	1.2.2 Objetivos específicos	3
	1.3 Alcances	3
2		
	2.1 Antecedentes del Proyecto Mina Chuquicamata Subterránea	
	2.1.1 Método de explotación e infraestructura minera	
	2.1.2 Diseño	
	2.1.3 Manejo de Minerales	8
	2.1.4 Yacimiento, geología y geomecánica	10
	2.2 Interferencias Operacionales	
	2.2.1 Fragmentación en Métodos por Hundimiento	16
	2.2.2 Punto de extracción	
	2.2.3 Parrilla y pique de traspaso	
	2.2.4 Solución de las interferencias operacionales	
	2.3 Planificación de la Producción Minera	
	2.4 Simulación	
	2.4.1 Modelos de simulación	
	2.5 Equipos e Índices Operacionales	
	2.5.1 Definición del uso del tiempo	
	2.5.2 Producción mediante LHD	
3	METODOLOGÍA	
4	PLAN DE PRODUCCIÓN PMCHS	
	4.1 Planificación de Largo Plazo	34
	4.2 Planificación de Corto Plazo	
	4.2.1 Velocidad de extracción	36
	4.2.2 Estrategia de Tiraje	37
	4.2.3 Radio Hidráulico	
5	ANÁLISIS DE VULNERABILIDADES	
	5.1 Falla y Pilar Oeste	39
	5.2 Estimación de la Fragmentación	41
	5.2.1 Estimación sobretamaño	
	5.3 Área Colapsada	47
	5.4 Planificación de la Producción	49
	5.4.1 Razón de propagación del Hundimiento	
	5.4.2 Capacidad Productiva de los Macro Bloques	
	5.4.3 Política de extracción	
6	MODELO CONCEPTUAL SIMULACIÓN53	
	6.1 Parámetros Operacionales	55
	6.2 Granulometría	58
	6.3 Mantenciones y Fallas	58
	6.3.1 Diagnóstico a escala de Macro Bloque	58
	6.3.2 Simulación Mina integrada	
7	RESULTADOS SIMULACIONES	
	7.1 Simulación de Diagnóstico para un Macro Bloque	63
	7.1.1 Reducción Secundaria en el Punto de Extracción	
	7.1.2 Reducción Secundaria en Parrilla	65

	7.1.3	Número de Flota LHD		. 68
	7.1.4	Área Colapsada		. 69
	7.2 Sim	ulación Mina Nivel integrado		. 71
8	ANÁLIS	IS DE LAS SIMULACIONES	74	
	8.1 Aná	ılisis Diagnóstico Macro Bloque		. 74
	8.1.1	Sensibilización Reducción Secundaria Punto de extracción		. 74
	8.1.2	Sensibilización Reducción Secundaria en Punto de Vaciado		. 76
	8.1.3	Sensibilización Número de Flota LHD		
	8.1.4	Sensibilización Área Colapsada		
	8.2 Aná	ılisis Mina Integrada		
	8.2.1	Incorporación equipos adicionales		
	8.2.2	Fluctuaciones en la producción		
	8.3 Imp	acto de la gestión de flota y horas efectivas		
		sificación de robustez		
9		USIONES Y RECOMENDACIONES		
		RIO		
		GRAFÍA		
		S		
		EXO A: Unidades Geotécnicas Básicas		110
	12.1.1			
	12.1.2	UGTB Zona Cizalle Moderado		
	12.1.3	UGTB Zona Cizalle Intenso		
	12.1.4	UGTB Zona Pórfido Este Sericítico		
	12.1.5	UGTB Zona Pórfido Este Potásico		
	12.1.6	UGTB Zona Pórfido Este Clorítico		
	12.1.7	UGTB Metasedimentos		
	12.1.8	UGTB Granodiorita Elena Sur		
	12.1.9	UGTB Brecha Entre Fallas		
		UGTB Cuarzo Mayor Sericíta		
		UGTB Cuarzo Igual Sericíta		
		UGTB Cuarzo Menor Sericíta		
		EXO B: Plan de Producción PMCHS		
	12.2.1	Orientación y sentido de avance de Hundimiento por Macro Bloque		
	12.2.2	Plan de Producción IB		
	12.2.3	Rh-vano y áreas a hundir por Macro Bloque		
		EXO C: Análisis de Vulnerabilidades		
	12.3.1	Benchmarking razón de propagación del hundimiento		
	12.3.2	Área Colapsada: Análisis por Esfuerzos I		
	12.3.3	Área Colapsada: Análisis de Bloques Inestables		
	12.3.4	Mantenibilidad		
		EXO D: Modelo Conceptual		122
	12.4.1	Frecuencia de generación de bolones 0.77-1.18 m3		
	12.4.2	Frecuencia de generación de bolones sobre 1.18 m3		
	12.4.3	Programa de Mantenciones		
	12.4.4	Flota de Equipo y APC		
		EXO E: Resultados Simulaciones		
	12.5.1	N° LHD		
	12.5.1	Área Colapsada		
	12.5.2	Mina Integrada		
		EXO F: Análisis Simulaciones		
	12.6.1	Sensibilización Reducción Secundaria Punto de extracción		
	12.6.1	Sensibilización Reducción Secundaria en Punto de Vaciado		
	12.0.2	OCHOIDHILACIUH NEUUCCIUH OCCUHUAHA CH F UHLU UC VACIAUU		144

12.6.3	Sensibilización Número de Flota LHD	145
	Asignación de equipos. Caso área colapsada	
12.6.5	Mina Integrada	149
	Análisis de Oportunidad de Horas Efectivas y de Reserva	

ÍNDICE DE TABLAS

Tabla 1 Mallas de extracción Nivel 1841	8
Tabla 2 Definición de Calidades de Roca del Macizo Rocoso	. 13
Tabla 3 Índice GSI para 1er nivel de explotación	
Tabla 4 Interferencias Operativas y fenomenología.	
Tabla 5 Interferencias operacionales más frecuentes en nivel productivo de minería block cav	
y técnicas de reparación	
Tabla 6 Velocidades de extracción máximas Plan de corto plazo	
Tabla 7 Resumen de análisis de Área Potencial de Colapsos	
Tabla 8 Parámetros del turno	
Tabla 9 parámetros equipo LHD 9 [yd³]	. 55
Tabla 10 Parámetros Tronadura Secundaria	
Tabla 11 Listado de equipos y capacidades de diseño Chancadores	
Tabla 12 Listado de equipos y capacidades de diseño, transporte intermedio	
Tabla 13 Listado de equipos y capacidades de diseño, acopio subterráneo	
Tabla 14 Listado de equipos y capacidades de diseño, transporte de nivel	
Tabla 15 Listado de equipos y capacidades de diseño, transporte principal subterráneo	
Tabla 16 Listado de equipos y capacidades de diseño, transporte principal de superficie	
Tabla 17 Escenarios para simulación de diagnóstico	
Tabla 18 Parámetros y criterios de Reparaciones y Mantenciones de la Infraestructura Minera	
Tabla 19. Plan de producción años 2027 y 2028 Ingneiería Básica PMCHS	. 62
Tabla 20. Resumen índices operativos simulación integrada	
Tabla 21. Diferencia de producción entre Caso Base v/s Frecuencia de Colgaduras y	
Sobretamaños	. 74
Tabla 22. Diferencia de producción entre Caso Base v/s Tiempo de Reducción Secundaria	. 75
Tabla 23. Diferencia de producción entre Caso Base v/s Frecuencia de Sobretamaño	. 76
Tabla 24. Diferencia de producción entre Caso Base v/s Tiempo reducción secundaria martillo	0.
Tabla 25. Resumen del análisis de los distintos escenarios y sensibilizaciones, Caso N° LHD.	. 78
Tabla 26. Aporte en producción al incorporar equipos LHD.	
Tabla 27. Resumen rendimiento operativo N° LHD	
Tabla 28. Puntos de producción óptima según área colapsada	
Tabla 29. Asignación de equipos LHD según escenario de área colapsada	
Tabla 30. Parámetros para ejemplo de la metodología analítica	
Tabla 31. Resultados mediante metodología analítica	
Tabla 32. Resumen dispersión datos c/r plan objetivo	. 90
Tabla 33. Resumen promedio por simulación para OHE y OHR Total Mina	
Tabla 34. Resumen de la confiabilidad e índice de robustez para las variables y escenarios.	
Tabla 35 Resumen de Razones de Propagación desde Minas en Operación (Sainsbury, 2010	•
,	
Tabla 36 Distribución de Área para Índice σ_{cm} /P0 para cada Macro Bloque en los diferentes	
	116
Tabla 37 parámetros de Confiabilidad, Mantenibilidad y Disponibilidad Equipos principales	
Tabla 38 Fallas Operacionales Alimentador de Placas	
Tabla 39 Fallas Operacionales Chancador de Mandíbula	118
Tabla 40 Mantenciones No Programadas Alimentador de Placas	118
Tabla 41 Mantenciones No Programadas Chancador de Mandíbulas	
Tabla 42 Fallas Operacionales Correa de Sacrificio	
Tabla 43 Fallas Operacionales Correa Intermedia.	
Tabla 44 Fallas Operacionales Correa Colectora	
	110

Tabla 46 Mantención No Programada Correa Intermedia	120
Tabla 47 Fallas Operacionales Correas de Nivel	
Tabla 48 Mantenciones No Programadas Correas de Nivel	
Tabla 49 Fallas Operacionales Transporte Principal Subterráneo	120
Tabla 50 Mantenciones No Programadas Transporte Principal Subterráneo	120
Tabla 51 Frecuencia bolones entre 0.77- 1.18 m3	122
Tabla 52 Frecuencia bolones sobre 1.18 m3	123
Tabla 53 Planificación mensual de las mantenciones de los componentes del Nivel de	
Transporte y Chancado	
Tabla 54. Flota de equipos LHD 2027 y Porcentaje de Área Potencial de Colapso	126
Tabla 55. Flota de equipos LHD 202 y Porcentaje de Área Potencial de Colapso	126
Tabla 56 Tiempo ciclo escenario c/Mantenciones	127
Tabla 57 Tiempo ciclo escenario s/Mantenciones	
Tabla 58 Promedio de producciones para Caso N° LHD (Considera Producción media c/Man	ıt &
S/Mant)	
Tabla 59 Información simulación 2 año 2027	
Tabla 60 Información simulación 1 año 2027	
Tabla 61 Información simulación 2 año 2028	
Tabla 62 Información simulación 1 año 2028	
Tabla 63 Información simulación 1 año 2028 más 2 LHD	
Tabla 64 Información simulación 2 año 2028 más 2 LHD	
Tabla 65 Diferencia de la producción del efecto M&FNT para la frecuencia de colgaduras	144
Tabla 66. Diferencia de la producción del efecto M&FNT para el tiempo de reducción	
secundaria	144
Tabla 67. Diferencia de la producción del efecto M&FNT para la frecuencia de sobretamaño.	
Tabla 68. Diferencia de la producción del efecto M&FNT para el tiempo de reducción secund	
	144
	145
Tabla 70. Ecuaciones de regresiones para curvas del análisis del área colapsada	
Tabla 71. Resumen índices operativos simulación integrada, + 2 LHD	149
Tabla 72. Dispersión de la producción c/r plan objetivo para mina El Teniente y simulación	
	150
	158
Tabla 74. Estadistica descriptiva Producción Simulación Mina Integrada c/ 30% OHE+OHR.	
Tabla 75. Estadistica descriptiva Producción Simulación Mina Integrada c/ 50% OHE+OHR .	160

ÍNDICE DE FIGURAS

Figura 1 Corte transversal modelo de bloques, pit final año 2018	5
Figura 2. Vista isometrica de los niveles productivos y obras de infraestructura permanente	5
Figura 3 Vista isométrica de los niveles por macro bloque	6
Figura 4 Vista en planta de Obras de Infraestructura Permanente	7
Figura 5. Disposición macro bloques y zonificación de mallas de extracción Nivel 1841	7
Figura 6 Esquema de la Ubicación de los Piques de Traspaso	
Figura 7 Esquema del manejo de minerales del PMCHS	9
Figura 8. Caracterización del yacimiento	10
Figura 9. Dominios estructurales al nivel 1841	11
Figura 10 Dominios geotécnicos al nivel 1841	13
Figura 11 Vista en planta (izquierda) e isométrica (derecha) de la falla oeste	15
Figura 12 Tipos de colgadura y sobretamaño en el punto de extracción (Laubscher, 2000)	18
Figura 13 Calidad de la fragmentación en el punto de extracción	19
Figura 14 Esquema de balde descargando sobre Punto de vaciado con parrilla (Le-Faux)	20
Figura 15 Interferencias Operacionales en piques de traspaso (Le-Faux)	21
Figura 16 Alternativas para solucionar colgaduras en piques de traspasó (Le-Faux)	22
Figura 17. Modelos de simulación	28
Figura 18. Definición uso del tiempo ASARCO	28
Figura 19 Etapas previas a la construcción del plan de producción	
Figura 20 Plan Minero IB (Producción + Desarrollos).	
Figura 21 Geometría de propagación del Caving - Año 2032	
Figura 22 Macrosecuencia por MB y año Nivel 1 – Incorporación de Área nivel 1841	
Figura 23 Principales mecanismos de falla de la pared oeste e incorporación de dilución	
Figura 24 Curvas de Fragmentación Primaria Itasca/SRK Consulting 2006	
Figura 25 Curvas de Fragmentación Secundaria Itasca/SRK Consulting 2006. (2m³)	
Figura 26 UGTB presente en la zona de interés económico.	
Figura 27 Impacto del PA en Estimación de Fragmentación Primaria	
Figura 28 Efecto de la fragmentación secundaria por altura a un tamaño de corte de 2 m3	
Figura 29 Curva de Fragmentación Primaria afectada por Fragmentación Secundaria	
Figura 30 Curvas de fragmentación resultantes a distintas alturas de extracción para PEK	
Figura 31 Curvas de fragmentación a distintas alturas con corte 0,77 y 1,18 m ³	
Figura 32 Esquema de la razón de propagación del caving	
Figura 33 Geometría del caving con franja de seguridad de 60 [m] desde la falla oeste (Itasca	
SRK, 2006)	
Figura 34 Vista del modelo de simulación	
	54 56
Figura 36 Frentes aledañas Caso 8 Frentes ProductivasFigura 37 Vista Planta MB5-1	
Figura 38. Estrategia de cierre de puntos de extracción par el área colapsada	
Figura 39. Producción sensibilizando la frecuencia de colgaduras	
Figura 41. Producción sensibilizando el tiempo de reducción secundaria en puntos de	04
extracciónerioloción sensibilizando en tiempo de reducción secundana en púntos de	65
Figura 42.Tiempo de ciclo operativo sensibilizando el tiempo de reducción secundaria en pun	toe
de extracciónde cició operativo sensibilizando el tiempo de reddeción secundana en punto de extracción.	
Figura 43.Producción sensibilizando la Frecuencia de Sobretamaño en el punto de vaciado	
Figura 44. Tiempo ciclo operativo sensibilizando la Frecuencia de Sobretamaño en el punto d	
vaciado	
Figura 45. Producción sensibilizando el tiempo de reducción secundaria del martillo	

Figura 46. Tiempo de ciclo operativo sensibilizando el tiempo de reducción secundaria del	
martillo	
Figura 47 Producción bajo la sensibilización de la flota de equipos LHD	
Figura 48 Producción sensibilizando el área colapsada	69
Figura 49 Rendimiento Efectivo, Caso Área Colapsada	70
Figura 50 Horas Efectivas LHD, Caso Área Colapsada	70
Figura 51. Rendimiento operativo LHD para 5% y 15% área colapsada	71
Figura 52. Rendimiento operativo LHD para 25% y 50% área colapsada	
Figura 53. Producción Diaria, curvas mensuales para simulación 1, Mina Integrada Año 2027	
Figura 54. Producción Mina Integrada, Simulación 1, año 2027	
Figura 55. Producción Mina Integrada, Simulación 1, año 2028	
Figura 56. Comparación Caso Base v/s Frecuencia de Colgaduras y Sobretamaños	
Figura 57. Comparación Caso Base v/s Tiempo de Reducción Secundaria	
Figura 58. Comparación Caso Base v/s Frecuencia de Sobretamaño en Punto de Vaciado	
Figura 59. Comparación Caso Base v/s Tiempo de Reducción Secundaria Martillo	
Figura 60. Producción Caso Base v/s Aporte de producción por LHD.	
Figura 61. Rendimiento Operativo según N° LHD	
Figura 62. Punto de Producción óptima, Caso área colapsada	
Figura 63. Rendimiento operativo según área colapsada y producción media caso base	
Figura 64. Rendimiento operativo según área colapsada y horas operativas caso base	
Figura 65. Asignación de LHD bajo escenario 25% Área Colapsada	
Figura 66. Metodología gráfica de asignación de equipos LHD, escenario 25% área colapsad	
rigara oo. Metodologia granda de asignadion de equipos Emb, escendito 2070 area colapsac	24 86
Figura 67 Producción Diaria Simulación Mina Integrada Año 2028 más 2 LHD, Simulación 1.	
Figura 68. Producción mina v/s Horas de Mantenciones.	
Figura 69. Producción Mina Simulación 2027.	
Figura 70. Producción Mina El Teniente, Año 2029.	
Figura 71. Distribución del tiempo disponible (ASARCO) y sus divisiones	ອາ ດວ
Figura 72. Esquema de OHE y OHR.	32
Figura 73. Diagrama de flujo del proceso de análisis de OHE y OHR	95 05
Figura 74. Gráfico de Oportunidad de Horas Efectivas y Reserva, Año 2027-Simuación 1	
Figura 75. Gráfico de Oportunidad de Horas Efectivas y Reserva, Año 2028-Simuación 1	
Figura 76. Gráfico Producción Mina según el aporte de OHE y OHR, Año 2027-Simuulación	
Figure 77 Crático Opertunidad de producción Año 2020. Cimulación 1	
Figura 77. Gráfico Oportunidad de producción, Año 2028 – Simulación 1.	
Figura 78. Gráfico Oportunidad de producción para un mes, Año 2028 – Simulación 1	
Figura 79. Clasificación de robustez.	
Figura 80 Orientación y sentido de avance de Hundimiento por Macro Bloque	
Figura 81 Plan de Producción IB.	
Figura 82 Rh-vano y áreas a hundir por Macro Bloque.	
Figura 83 Planta Índice σ_{cm} /P0 para los distintos escenarios de esfuerzo, Macro Bloques Ni	
1841	
Figura 84 Resumen exposición de bloques inestables por cada Unidad de Explotación (BMI:	
Bloque Máximo inestable)	117
Figura 85 Frecuencia bolones entre 0.77- 1.18 m3 MB Norte	
Figura 86 Frecuencia bolones entre 0.77- 1.18 m3 MB Sur	
Figura 87 Frecuencia de generación de bolones sobre 1.18 m3 MB Norte	
Figura 88 Frecuencia de generación de bolones sobre 1.18 m3 MB Sur	
Figura 89. Tiempo ciclo 5% AC	127
Figura 90.Tiempo ciclo 15% AC	
Figura 91.Tiempo ciclo 25% AC	
Figura 92. Tiempo ciclo 50% AC	128

igura 93. Producción Diaria, curvas mensuales para simulación 2, Mina Integrada Año 2027	^
	9
	9
	0
	0
	1
igura 98. Metodología gráfica de asignación de equipos LHD, escenario 5% área colapsada 14	6
igura 99. Metodología gráfica de asignación de equipos LHD, escenario 15% área colapsada 14	7
igura 100. Metodología gráfica de asignación de equipos LHD, escenario 50% área colapsada	l
	_
	_
igura 103. Gráfico de Oportunidad de Horas Efectivas y Reserva, Año 2027-Simulación 2 15	1
igura 104. Gráfico de Oportunidad de Horas Efectivas y Reserva, Año 2027-Simulación 3 15 igura 105. Gráfico de Oportunidad de Horas Efectivas y Reserva, Año 2028-Simulación 2 15	
igura 105. Gráfico de Oportunidad de Horas Efectivas y Reserva, Año 2026-Simulación 2… 15 igura 106. Gráfico de Oportunidad de Horas Efectivas y Reserva, Año 2028-Simulación 3… 15	
igura 107. Gráfico Producción Mina según el aporte de OHE y OHR, Año 2027-Simulación 2.	
	3
	3
igura 109. Gráfico Producción Mina según el aporte de OHE y OHR, Año 2028-Simulación 1. 15	3
igura 110. Gráfico Producción Mina según el aporte de OHE y OHR, Año 2028-Simulación 2.	1
igura 111. Gráfico Producción Mina según el aporte de OHE y OHR, Año 2028-Simulación 3.	
	-
igura 113. Gráfico Oportunidad de producción, Año 2027 – Simulación 2	
igura 114. Gráfico Oportunidad de producción, Año 2027 – Simulación 3	
igura 115. Gráfico Oportunidad de producción, Año 2028 – Simulación 1	
igura 116. Gráfico Oportunidad de producción, Año 2028 – Simulación 2	
igura 117. Histograma Producción Simulación Mina Integrada	
igura 118. Histograma Producción Simulación Mina Integrada c/ 30% OHE+OHR	
igura 119. Histograma Producción Simulación Mina Integrada c/ 50% OHE+OHR 16	U

1 INTRODUCCIÓN

La mina a rajo abierto Chuquicamata está agotando su vida útil debido al incremento de los costos operacionales relacionados con las grandes distancias que son necesarias para recorrer la profundidad actual del rajo, el aumento de la razón estéril/mineral, la baja de las leyes, etc. Para seguir aprovechando las reservas bajo el rajo de la mina, se ha desarrollado el Proyecto Chuquicamata Subterránea (PMCHS). Este proyecto consiste en una mina subterránea que se ubicará bajo el *pit final* de la mina, desde donde se extraerá el mineral mediante una variante del método Block Caving, compuesto por unidades mineras conocidas como Macro Bloques.

Una de las etapas fundamentales en la actual ingeniería de factibilidad del PMCHS, es la de la planificación minera del inventario de reservas. La actividad de la planificación minera es fundamental en la etapa de definir *Qué, Cuándo y Cómo* se extraerán los recursos. Mediante este proceso se logra delinear el nivel productivo para el PMCHS, pero para lograr esto se ha realizado un exhaustivo análisis de múltiples factores, algunos de los cuales poseen mayor grado de variabilidad e incertidumbre, por lo que entender de mejor manera el comportamiento de estas variables, ayuda a sacar provecho a las holguras de la planificación y lograr una mejor gestión frente a las vulnerabilidades de la operación.

1.1 Contexto y Motivación

El desarrollo del Plan de Producción para el PMCHS se elabora siguiendo los parámetros de ciertas variables críticas del proceso de planificación. Se deben respetar las restricciones propias del yacimiento, tales como las condiciones geomecánicas, geología, estabilidad / hundibilidad, dilución, discontinuidades, competencia del macizo rocoso, etc. Además se considera los parámetros que permiten modelar el comportamiento y planificación de la extracción del mineral, tales como velocidad de extracción en propagación y régimen, capacidad límite de extracción por calle, número de equipos Load Haul Dump (LHD) por calle y unidad productiva, capacidad de tratamiento de chancadores, secuencia de desarrollos, estrategia de extracción, interferencias operacionales, entre otras.

Los parámetros de los criterios utilizados han sido seleccionados en base a simulaciones del manejo de minerales, y además fueron contrastados y validados con los rangos operacionales de la industria. Estos criterios de planificación corresponden a restricciones de dos tipos; las que han sido fijadas debido a eventos planificados, por ejemplo, detención de un chancador o pique de traspaso debido a una mantención periódica; y las restricciones que por su naturaleza no son predecibles o constantes en el tiempo, tales como colgaduras, bolones en puntos de extracción, mantenciones correctivas del sistema de traspaso de mineral y chancado debido a fallas, y otras

actividades propias del método y sistema de manejo de minerales. Existen además mantenciones preventivas de larga duración de diferentes entidades del sistema minero, las cuales deben ser consideradas al igual que los eventos aleatorios en el horizonte de corto plazo.

Todas las variables y criterios mencionados pueden influir en el cumplimiento de los planes de producción por un tiempo acotado, como por ejemplo en la producción mensual de un Macro Bloque, por ende estas restricciones introducen una variabilidad intrínseca en el plan mensual de producción.

En las características propias de la planificación de producción, existen holguras que se manifiestan en la operación diaria, semanal o incluso mensual, tal como puede ser la asignación de equipos y la cartilla de tiraje. De esta forma se tiene una herramienta de gestión para la operación, que permite recuperar en parte la variabilidad de los eventos negativos que pueden o no ocurrir en la producción. Esta flexibilidad positiva en el cumplimiento debe ser considerada como una oportunidad independiente de la ocurrencia o no de eventos que paralicen la producción.

En este sentido, el plan de corto plazo debe mostrarse flexible ante la ocurrencia de los eventos planificados y aleatorios, y de esta forma tener una capacidad de respuesta al plan de producción anual del conjunto de unidades productivas. Esto se logra combinando la producción que se encuentra en riesgo debido a los eventos negativos en la producción, con las holguras propias del planificador que permitan recuperar parte o el total del plan comprometido.

La problemática que motiva este trabajo radica en estudiar la robustez del plan de producción del PMCHS estudiando para ello la variabilidad del plan mensual sujeto a diferentes actividades propias del proceso. Entendiendo un diseño robusto como un sistema fijo que está diseñado para hacer frente a una amplia gama de condiciones sin cambiar el diseño del sistema. Para esto se estudiará mediante simulaciones del sistema minero del primer nivel del PMCHS, de esta forma se logra tener un acercamiento del riesgo en el plan de producción, y estudiar el cumplimiento del plan productivo según la variabilidad y holgura mencionada.

1.2 Objetivos

1.2.1 Objetivo general

 Estudiar la robustez del plan minero del Proyecto Mina Chuquicamata Subterránea mediante la simulación del sistema minero diseñado en la Ingeniería Básica del proyecto, integrando las actividades de extracción, traspaso y transporte de mineral.

1.2.2 Objetivos específicos

- Calificar y cuantificar el riesgo en el cumplimiento del plan de producción.
- Incorporar la herramienta de simulación para lograr emular el impacto en distintos escenarios de riesgo y holgura para el plan de producción.
- Estudiar la variabilidad del plan a nivel operativo para determinar su impacto en el plan mensual, incorporando variables aleatorias y cuantificar las holguras existentes en el plan.
- Generar un índice de análisis operacional, o bien, una metodología que permita identificar holguras y riesgos para el cumplimiento del plan de producción en el corto plazo.

1.3 Alcances

El desarrollo de este estudio utilizó un modelo de simulación diseñado por la Vicepresidencia de Proyectos de CODELCO, el cual tiene definido ciertos parámetros y criterios operacionales, enmarcándose en el desarrollo de la Ingeniería Básica del PMCHS.

En un principio el análisis está enfocado a nivel de un solo Macro Bloque representativo del Primer Nivel, en un período de treinta días, con la finalidad de realizar un primer diagnóstico de las variables. Posteriormente el estudio se enfoca en una base anual, donde se integra la producción de todos los Macro Bloques operativos del primer Nivel durante la explotación en régimen del mismo.

El modelo de simulación fue diseñado a nivel mensual, por lo tanto para analizar el periodo de un año, se deben realizar simulaciones mensuales hasta completar el año.

El límite físico de la simulación de diagnóstico mensual, se realiza sobre el MB N5-1. Mientras que las simulaciones anuales se realizan sobre todos los Macro Bloques en producción del primer nivel para el año en estudio. En ambos análisis se considera el sistema minero constituido por el nivel de extracción, traspaso y transporte de mineral.

Este es un estudio de diagnóstico del plan de producción vigente del PMCHS.

2 ANTECEDENTES BIBLIOGRÁFICOS

2.1 Antecedentes del Proyecto Mina Chuquicamata Subterránea

El complejo minero asociado a la División Chuquicamata, ubicado a 1.650 kilómetros al norte de la ciudad de Santiago, en la II Región de Antofagasta, a 2.900 m.s.n.m., cuenta con tres minas explotadas a cielo abierto que son Chuquicamata, Radomiro Tomic y Mina Sur.

Debido a la intensa explotación de la Mina Chuquicamata, que se ha extendido durante los últimos 100 años, el rajo se ha profundizado de tal forma que la razón estéril mineral ha aumentado y la distancia que deben recorrer camiones y equipos mineros es tal que los costos se han incrementado haciendo el negocio menos rentable. Consecuencia de lo anterior CODELCO, como parte de su plan de negocios y estrategia de proyectos estructurales que permitan sostener la producción de finos de cobre durante las próximas décadas, realizó estudios de exploración en profundidad determinando que existe gran cantidad de recursos mineros remanentes bajo los taludes finales del rajo, cuya vida económica del cual se proyecta llegará a su fin el año 2018.

La presencia de estos recursos mineros remanentes impulsó el estudio y evaluación de la viabilidad técnica y potencial económico de explotar el yacimiento considerando minería subterránea, generando entonces un proyecto estructural que permitiría sustentar un plan de negocios hasta aproximadamente el año 2060.

El proyecto Mina Chuquicamata Subterránea (PMCHS), actualmente desarrollado por de la Vicepresidencia de Proyectos de Codelco (VP) se encuentra en la etapa de Ingeniería Básica. Esta contempla la construcción de una mina subterránea masiva, para extraer alrededor de 1.700 millones de toneladas de mineral con leyes medias de 0,71% Cu, 499 ppm Mo y 460 ppm As.

Los estudios realizados permiten concluir que la fecha más temprana de inicio de la producción de la mina subterránea sería hacia fines del año 2018 con 4.000 t/día aprox., con minerales producto de los desarrollos mina y a partir del año 2019 con minerales provenientes de hundimiento, seguidos por un ramp up hasta alcanzar su capacidad de diseño o régimen siete años más tarde, con 140.000 t/día.

Un corte transversal en la coordenada 3190 Este, muestra el pit final proyectado al año 2018 y el modelo de bloques con los recursos remanentes debajo de éste (ver Figura 1).

Figura 1 Corte transversal modelo de bloques, pit final año 2018.

El inicio de la producción se encuentra precedido por la construcción de la infraestructura necesaria que está fundamentalmente determinada por el desarrollo de largos piques de ventilación, túneles y rampas de acceso y transporte de mineral.

2.1.1 Método de explotación e infraestructura minera

La Mina Chuquicamata Subterránea está configurada en base al método de explotación block caving o hundimiento de bloques en una variante de unidades básicas de explotación independientes en su preparación y producción, denominadas Macro Bloques (MB), cuya área basal varía entre 24.000 m² y 39.000 m².

La mina se ha configurado considerando cuatro niveles de explotación (ver Figura 2), los que serán preparados y puestos en producción en forma secuencial y descendente durante la vida útil del proyecto. Éstos han sido caracterizados referencialmente por las cotas de los respectivos niveles de hundimiento (m.s.n.m.) que son: 1841/1625/1409/1193. Estos niveles serán preparados y explotados en forma secuencial y descendente durante la vida útil.

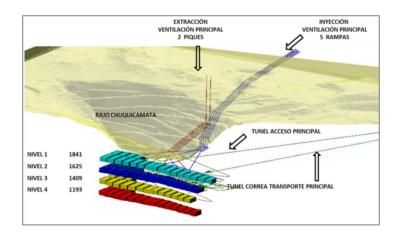


Figura 2. Vista isometrica de los niveles productivos y obras de infraestructura permanente.

En términos generales, cada macro bloque contempla en su diseño el desarrollo de seis niveles que en orden descendente se enumeran a continuación (ver Figura 3):

- Nivel de hundimiento
- Nivel de producción
- Nivel de inyección de aire
- Nivel de extracción de aire
- Nivel de chancado
- Nivel de transporte intermedio

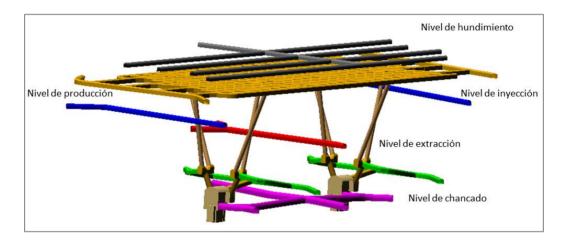


Figura 3 Vista isométrica de los niveles por macro bloque

Existe una serie de Obras de Infraestructura Permanente que contemplan principalmente realizar movimientos de tierra masivos para desarrollar caminos, plataformas para el barrio industrial, instalaciones de faena, construir portales de los túneles y brocal del pique, realizar excavaciones de gran sección para acceder a la mina, etc. (Ver Figura 4).

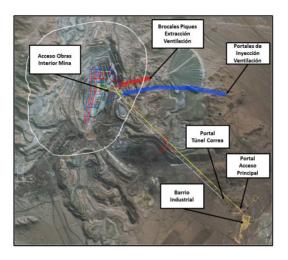


Figura 4 Vista en planta de Obras de Infraestructura Permanente

2.1.2 Diseño

El diseño de cada Macro Bloque está asociado a un layout del nivel de producción tipo Teniente donde está considerada la operación con equipos LHD con capacidad de 9 yd³, con un esquema de hundimiento convencional en los dos niveles de explotación superiores y con hundimiento avanzado en los dos más profundos. Para el primer nivel se han configurado dos tipos de malla según un análisis por zona geotécnica, Malla 16 [m] x 15 [m] para zona Centro y Sur, y Malla 16 [m] x 17 [m] para sector Norte (ver Figura 5 y Tabla 1).Para el primer nivel se diseñaron 20 macro bloques, los cuales entran en producción de acuerdo los requerimientos del Plan de Producción del proyecto.

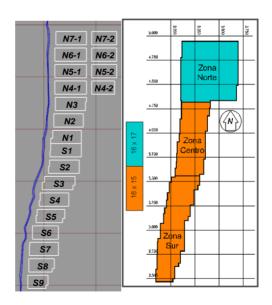


Figura 5. Disposición macro bloques y zonificación de mallas de extracción Nivel 1841.

Tabla 1 Mallas de extracción Nivel 1841.

Santar	Primer nivel (1841 m.s.n.m.)	
Sector	Malla	LHD
Norte	16x17	
Centro	16v1F	9 yd ³
Sur	16x15	

Entre Macro Bloques se ha considerado dejar un pilar de 50 [m] (dirección Este-Oeste),30 [m] (dirección Norte-Sur) y 60 [m] (Pilar Oeste),para de esta forma disminuir el efecto, habitualmente dañino, del frente de esfuerzos inducidos (Abutment Stress) por la influencia del hundimiento de un bloque hundido en producción sobre su vecino en preparación, para minimizar la interferencia operacional entre las operaciones del bloque en producción y su vecino en preparación, y para dar seguridad a la producción frente a la presencia de la Falla Oeste.

2.1.3 Manejo de Minerales

El sistema de manejo de minerales aguas abajo del nivel de producción de cada Macro Bloque, está compuesto por un arreglo de piques de traspaso, estaciones de chancado primario de mandíbulas y correas transportadoras.

A cada estación de chancado, convergen cuatro piques de traspaso (uno de cada semicalle), los cuales confluyen finalmente en dos piques que llegan a la sala de chancado (ver Figura 6). El proceso de chancado primario consiste en reducir mecánicamente el tamaño del mineral proveniente del nivel de producción.

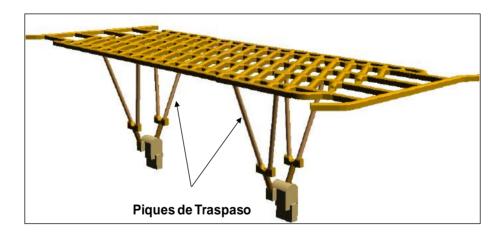


Figura 6 Esquema de la Ubicación de los Piques de Traspaso.

Cada sala o estación de chancado está formada por dos alimentadores de placa (plate feeders) que descargan el mineral a un chancador de mandíbula. Posteriormente, el

mineral chancado es traspasado gravitacionalmente a una correa transportadora de sacrificio, perteneciente al transporte intermedio.

El proceso llamado Transporte Intermedio consiste en transportar el mineral chancado desde cada Macro Bloque activo hasta la descarga en los silos de acopio de nivel (es importante mencionar que en producción cada Macro Bloque activo explotará el mineral a distinto nivel de régimen). El Transporte Intermedio está formado por: 1) Correas de sacrificio, las que atienden a cada chancador de mandíbula activo; 2) Correas intermedias, las movilizan el mineral de cada Macro Bloque a su respectiva correa colectora; 3) Correas colectoras, las cuales conectan el sector Norte y Sur del "footprint" de explotación (ver Figura 7).

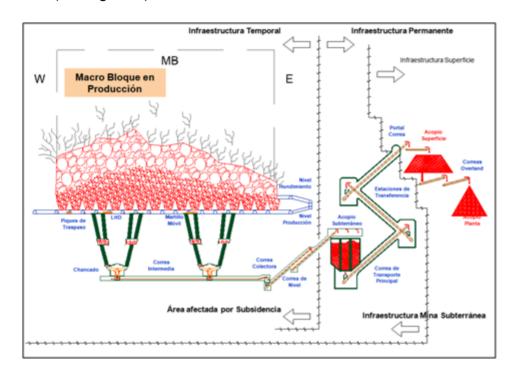


Figura 7 Esquema del manejo de minerales del PMCHS.

El acopio de nivel está compuesto por dos silos, cuya función principal es absorber las fluctuaciones operacionales horarias propias de una gran cadena productiva iniciada en el nivel de producción por la extracción de mineral, hasta la entrega de éste en la planta concentradora. El emplazamiento definido de estos piques, entre las correas colectoras para cada nivel productivo y las correas de nivel, otorga el desacoplamiento de la disponibilidad global del proceso entre el bloque de alimentación de mineral ("aguas arriba") y el bloque de transporte principal ("aguas abajo"). Cada Silo tiene una capacidad de acopio de 6.000 toneladas vivas.

La configuración del acopio subterráneo, en cada nivel, posee dos piques centrales, los cuales son capaces de ser alimentados por ambas correas colectoras (Norte y Sur) a la vez u operar por separado.

Bajo estos silos, se encuentra el transporte de nivel, el cual está formado por un tramo para los dos niveles superiores y de dos tramos en serie para el tercer y cuarto nivel. El transporte de nivel tiene por finalidad transportar y descargar el mineral desde los piques de acopio de cada nivel a la correa de transporte principal subterráneo. Para el cuarto nivel, las correas de nivel descargan el mineral sobre la primera correa del tercer nivel, para luego ser trasladado al sistema de transporte principal. Cabe mencionar que durante la operación, habrá períodos en los cuales se trabaje en dos niveles a la vez. Continuando con el proceso, el Transporte Principal Subterráneo está formado por dos correas en serie, las que llevan el mineral a superficie. Finalmente, el Transporte Principal de Superficie, compuesto también por dos correas transportadoras en serie, descarga el mineral sobre el stock pile existente "Pila Mina".

2.1.4 Yacimiento, geología y geomecánica

Chuquicamata es un yacimiento de cobre diseminado que está delimitado al Oeste por una falla regional denominada Falla Oeste, presentando una secuencia de alteración de las rocas en el sentido Oeste-Este con una gran persistencia en la vertical. Esto se traduce en una fuerte intercalación de rocas más y menos competentes en el lado Oeste del yacimiento, diversidad que decae gradualmente hacia el lado Este, donde las rocas presentan características más uniformes. La presencia de mineralización es más intensa en las rocas con mayor alteración, con una gradación hacia el Este. El cuerpo mineralizado está emplazado en rocas de mediana competencia, comparables con rocas de los sectores de Inca Norte y Central Oeste de la División Salvador (ver Figura 8).

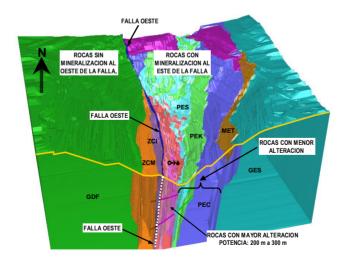


Figura 8. Caracterización del yacimiento.

La caracterización geotécnica del yacimiento muestra un campo de esfuerzos in-situ con una componente vertical de 20 [MPa] y una componente horizontal de 25 [MPa] aproximadamente. Estos valores son significativamente inferiores a los que se registran en los distintos sectores de la mina El Teniente y comparables a los registrados en el Sector Inca de la División Salvador y al Tercer Panel de la División Andina.

La condición del macizo rocoso está caracterizada como un conjunto de rocas medianamente competentes con indicadores de frecuencia de fracturas (FF) entre 2 y 4 fracturas por metro e indicadores de calidad del macizo rocoso IRMR de Laubscher (In-Situ Rock Mass Rating) entre 40 y 55 (en una escala de 100). Estos valores son menores que los de las actuales minas de El Teniente y Andina, en donde las rocas tienen índices entre 50 y 70 y levemente inferiores a los que se verifican en El Salvador, entre 45 y 60.

i) Dominios estructurales y unidades geotécnicas básicas

En la Mina Chuquicamata se identifican ocho dominios estructurales: Dominio Mesabi, Dominio Noroeste, Dominio Balmaceda, Dominio Estanques Blancos, Dominio Zaragoza y Dominios Americana Sur, Americana Centro y Americana Norte. En tanto en el talud oeste se encuentran los Dominios Fortuna Norte y Fortuna Sur, como se aprecia en la Figura 9.

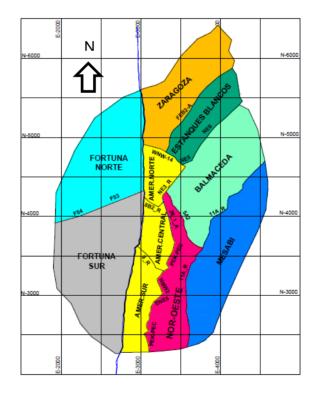


Figura 9. Dominios estructurales al nivel 1841.

Para la caracterización geotécnica se desarrolló el concepto de Unidades Geotécnicas Básicas (UGTB), las cuales consisten en cuerpos relativamente homogéneos y que son resultado de la sobreimposición de las unidades de alteración a las unidades litológicas. Se reconocen doce UGTB que se mencionan a continuación:

- Granodiorita Fortuna (GDF)
- Zona de Cizalle Moderado (ZCM)
- Zona de Cizalle Intenso (ZCI)
- Pórfido Este Sericítico (PES)
- Pórfido Este Potásico (PEK)
- Pórfido Este Clorítico (PEC)
- Metasedimentos (MET)
- Granodiorita Elena Sur (GES)
- Brecha Entre Fallas (BEF)
- Cuarzo Mayor Sericíta (Q>S)
- Cuarzo Igual a Sericíta (Q=S)
- Cuarzo Menor a Sericita (Q<S)

En la sección ANEXO A: Unidades Geotécnicas Básicas., es posible ver con más detalle los parámetros de cada UGTB.

ii) Dominios geotécnicos

En términos generales, un dominio geotécnico representa un volumen relativamente homogéneo de calidades de roca, a ajustar por condiciones de esfuerzo, presencia de agua y geometría. Estos sectores, que afectan a las distintas UGTB, presentan características estructurales propias y distintivas en lo referente a los sets o familias de estructuras y cuyos límites quedan definidos por entes geológicos (fallas geológicas, contactos litológicos, etc), es decir, un Dominio Geotécnico es producto de la superposición de un Dominio Estructural con las UGTB (ver Figura 10).



Figura 10 Dominios geotécnicos al nivel 1841.

Se definieron tres tipos de calidad geotécnica, dependiendo de su resistencia a la compresión simple (UCS) y el valor del GSI. Siendo una roca de "Buena" calidad geotécnica aquella con un UCS > 80 MPa y un GSI > 75, una roca de "Regular" calidad geotécnica aquella con valores entre 50 MPa < UCS < 80 MPa y valores entre 65 < GSI < 75, finalmente una roca de "Mala" calidad geotécnica es aquella con valores entre 30 MPa < UCS < 50 MPa y valores entre 35 < GSI < 65 (Codelco VP - PMCHS, 2012) (ver Tabla 2).

Tabla 2 Definición de Calidades de Roca del Macizo Rocoso.

Tipo de Roca	UCS	GSI
Buena Calidad Geotécnica	UCS > 80 MPa	GSI > 75
Regular Calidad Geotécnica	50 MPa < UCS < 80 MPa	65 < GSI < 75
Mala Calidad Geotécnica	30 MPa < UCS < 50 MPa	35 < GSI < 65

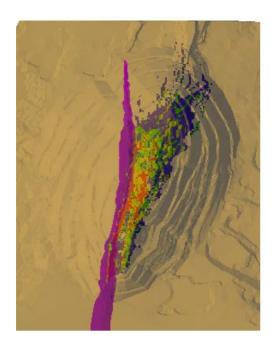

En la Tabla 3, se presentan los valores promedios validados del índice *GSI* - Ingeniería Básica PMCHS, para el 1er Nivel de Explotación.

Tabla 3 Índice GSI para 1er nivel de explotación.

Sector	Dominio Geotécnico	GSI - 1er Nivel PMCHS
Estanguas Planaes	EBPEK	80
Estanques Blancos	EBPES	80
72r2g072	ZAPEK	80
Zaragoza	ZAPES	75
	BAPEK	80
Balmaceda	BAPES	80
Bailliaceda	BAPEC	80
	BAGES	70
	NOPEK	80
Nor Oeste	NOPES	80
NOI Oeste	NOPEC	80
	NOGES	70
	ANQIS	70
Americana Norte	ANPES	75
Americana Norte	ANPEK	80
	ANQMES	65
	ACQIS	70
	ACQMES	65
Americana Central	ACQMS	70
	ACPES	75
	ACPEK	77
	ASQMS	70
	ASQIS	65
Americana Sur	ASPES	75
	ASPEK	77
	ASQMES	65
Mesabi	MEGES	70
	GDF	75

iii) Falla Oeste

La Falla oeste es la estructura más importante de la Mina Chuquicamata no solo debido a su potencia, que varía desde 7 a 10 m, sino porque es la que limita bruscamente por el oeste la mineralización del pórfido, poniéndolo en contacto con la Granodiorita Fortuna, que no posee minerales de interés económico. Es una estructura de rumbo general NS – NNE y mantea 75 – 80° hacia el oeste, ángulo que en profundidad varía levemente en forma decreciente (ver Figura 11).

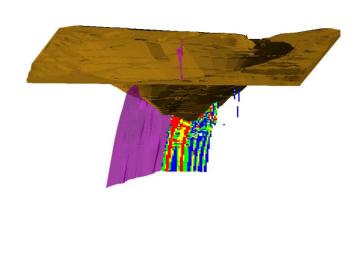


Figura 11 Vista en planta (izquierda) e isométrica (derecha) de la falla oeste

2.2 Interferencias Operacionales

Un factor relevante en la productividad de toda mina subterránea, sin importar el sistema minero en particular, corresponde a las Interferencias Operacionales (IO). Se define como Interferencia Operacional o Pérdida Operativa a todo evento que genere una reducción en el tiempo operativo de alguna de las componentes del sistema minero, estando esté en condiciones electromecánicas aptas o disponible estructuralmente. Estas pueden ser de distinta naturaleza, ya sean por pérdidas originadas en la coordinación de las operaciones, fallas de las componentes, eventos geomecánicos, reparaciones, etc. (ver Tabla 4).

Tabla 4 Interferencias Operativas y fenomenología.

Fenomenología	Interferencia Operativa
Granulometría fragmentación	Colgaduras
	Sobretamaño
	Trancadura pique
Humedad	Enllampamiento pique
	Barro en puntos de extracción
Campo de esfuerzos	Inestabilidades/Colapsos
Fenómenos correctivos	Fallas en Infraestructura y equipos (Nivel Producción, Transporte, Ventilación, etc).

Es posible afirmar que sin importar la simpleza o complejidad del sistema de manejo de materiales, este debe hacerse cargo de la ocurrencia de eventos que interfieren en cualquiera de sus partes (Troncoso, 2009). Estos eventos son interferencias de distinto origen fenomenológico y además afectan particularmente a cada componente del sistema, de la misma manera las metodologías de reparación son singulares para cada una.

La naturaleza de la interferencia permite dilucidar la solución con la cual revertir la pérdida operativa que se esté generando. Según la componente del sistema que se ve afectada es posible identificar más de un factor que afecta la disponibilidad del mismo, pero algunos afectaran en mayor importancia que otros. De este mismo modo es importante categorizar la fenomenología de la interferencia operacional.

2.2.1 Fragmentación en Métodos por Hundimiento

Según Brown (Brown, 2002) el éxito y factibilidad de un método de Block Caving dependerá significativamente de la fragmentación producida en el macizo rocoso durante el proceso de Caving. Por esto es importante entender los tipos de fragmentaciones, según el mismo autor se pueden clasificar en:

- Fragmentación in situ, que se encuentra representada por los bloques que están naturalmente en el macizo rocoso antes de toda actividad minera.
- Fragmentación primaria, que ocurre de forma posterior al pre corte y al inicio del hundimiento; en definitiva son los bloques en la vecindad del cave-back que se separan del macizo rocoso.
- Fragmentación secundaria, producida por los movimientos de los bloques a través de la columna de extracción hasta llegar a los puntos de extracción.

Si bien la clasificación anterior tiene sentido debido a las etapas que deben pasar los bloques relacionados al desprendimiento del macizo rocoso producto del caving, aún no existe un estudio validado que estipule el grado de influencia de cada tipo de fragmentación.

En general la precisión de las predicciones de fragmentación (in-situ, primaria y secundaria) depende en gran medida de las predicciones de los sets de discontinuidades (orientación, tamaño, espaciamiento, condición y término).

Las discontinuidades preexistentes en el macizo rocoso determinarán la fragmentación in-situ, la forma y tamaño de los bloques serán definidos por la geometría de las discontinuidades abiertas en el macizo rocoso. En cambio, discontinuidades nuevas o con rellenos con cierta resistencia de corte y tracción no proporcionan caras para los bloques in-situ, sólo son planos de debilidad por sobre los cuales puede ocurrir una separación en las etapas de fragmentación primaria y/o secundaria (Brown, 2002). Posterior al caving, la fragmentación primaria será un resultado de las condiciones de carga en la vecindad del cave-back. Se espera que las mayores fallas sean por los planos de debilidad, pero si la roca está sometida a altos niveles de stress y/o stress caving, la roca intacta también puede fallar. La extensión de estas fallas dependerá de la resistencia tanto de las discontinuidades como de los bloques nuevos en relación a la magnitud y orientación de los esfuerzos existentes. De esta forma, quedarían definidos los bloques primarios sólo sí la condición de las discontinuidades y su resistencia al corte son propicios. Para la misma roca, la distribución de tamaños primaria será más fina que en los casos por la relajación de los esfuerzos y la subsidencia del caving donde la gravedad - en lugar del esfuerzo inducido - causa el desprendimiento de bloques desde el cave back (Brown, 2002).

Cabe señalar que no todas las discontinuidades existentes en el macizo formarán bloques primarios, algunas también estarán involucradas en la formación de bloques secundarios. Se espera que la naturaleza y grado de la fragmentación secundaria varíe con la variación de esfuerzos en el hundimiento, la composición y propiedades mecánicas del cuerpo mineralizado, la razón de extracción, la altura de extracción y el tiempo de residencia en la columna de extracción. Brown (2002), señala que los mecanismos que incluye la fragmentación secundaria, pueden ser: extensión de discontinuidades pre-existentes, aplastamiento por carga sobrepuesta, aberturas de discontinuidades o través de planos de debilidad horizontal, fallas compresivas de bloques bajo influencia de esfuerzos dentro del cave-back, quiebre de bloques individuales por contacto con otros bloques y abrasión por molienda autógena de las esquinas y/o aristas de los bloques generando finos.

En la minería por hundimiento por bloques o paneles, el proceso de fragmentación es fundamental. Las principales perturbaciones en el sistema productivo minero están relacionadas con la aparición de material de sobretamaño y bloques que se generan en el proceso de hundimiento en el nivel productivo, esto se genera dado que las rocas de tamaños demasiado grandes para los equipos y componentes del sistema, elevan las tasas de colgadura e interrumpen el carguío, dejando inhabilitados los puntos de extracción, impidiendo el flujo libre en las parrillas o no permitiendo la operatividad de piques de traspaso.

2.2.2 Punto de extracción

La productividad se ve afectada directamente por el sobretamaño y la frecuencia de colgaduras en los puntos de extracción. Los tipos de colgadura que pueden ocurrir se pueden generalizar en dos (Figura 12):

- Colgaduras Altas: son la aparición de grandes rocas en la altura de los puntos de extracción, debido a la dificultad del acceso a la colgadura se debe realizar la reducción secundaria con explosivos sobre la superficie de la colpa.
- Colgaduras Bajas: corresponde a la aparición de rocas de tamaño tal que quedan atrapadas en el punto de extracción y deben ser perforadas con un equipo perforador Jumbo, para luego generar la reducción secundaria mediante explosivos.
- Sobretamaño en el punto de extracción: se debe a la aparición de una roca de gran tamaño en la base del punto de extracción y debido a su tamaño es imposible trasportarlo eficientemente mediante las galerías con el equipo diseñado en el nivel productivo. Para reducir de tamaño se realiza reducción secundaria con equipo del tipo martillo picador, perforación con jumbo o mediante explosivos parche en la superficie de la colpa.

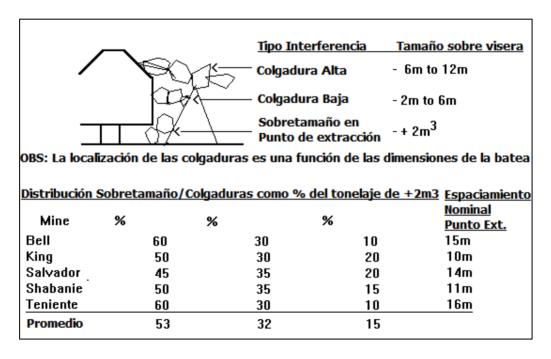


Figura 12 Tipos de colgadura y sobretamaño en el punto de extracción (Laubscher, 2000).

La reducción secundaria se lleva a cabo por la necesidad de cumplir restricciones granulométricas en el traspaso y en el trasporte de materiales. La ocurrencia de una colgadura o sobretamaño depende estrechamente del tonelaje que se extrae y la madurez del punto de extracción (ver Figura 13). La reducción secundaria se lleva a cabo por la necesidad de cumplir restricciones granulométricas en el traspaso y en el trasporte de materiales, es decir, la disponibilidad de producción del punto de extracción es dependiente del tipo de colgadura o la ocurrencia de sobretamaño.

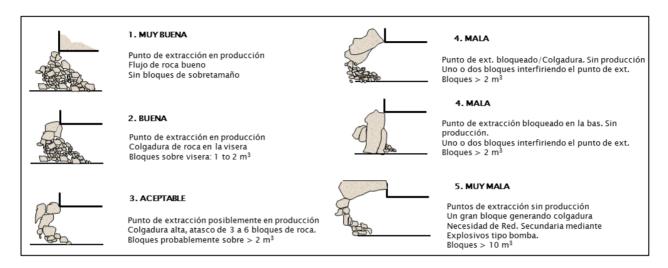


Figura 13 Calidad de la fragmentación en el punto de extracción.

2.2.3 Parrilla y pique de traspaso

Cuando el material se logra extraer desde el punto de extracción, este es cargado mediante algún equipo, generalmente en la minería del Block/Panel Caving se utilizan equipos de bajo perfil denominados cargadores LHD (de sus siglas del inglés, Load Haul Dump). Mediante los equipos LHD es posible transportar el material desde el punto de extracción a través de las calles de producción hacía el Punto de Vaciado correspondiente. Para asegurar una granulometría dentro del pique de traspaso de material y las operaciones aguas abajo, es posible utilizar una parrilla para seleccionar el tamaño de las rocas que seguirán el manejo de materiales. La parrilla se compone de barras metálicas entre sí de modo que el material que traspase la parrilla garantice flujo libre en el pique de traspaso y el sobretamaño quede fuera para ser apartado o reducido sobre la misma parrilla. Para reducir de tamaño las rocas en sobretamaño sobre la parrilla, es posible utilizar un martillo picador.

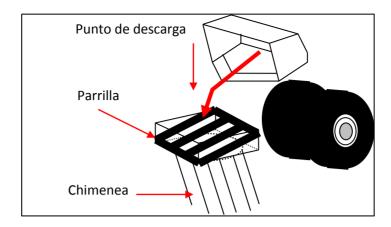


Figura 14 Esquema de balde descargando sobre Punto de vaciado con parrilla (Le-Faux).

La primera interferencia que pudiese ocurrir tiene relación con que el martillo demore más del tiempo normal en reducir de tamaño la colpa, debido a la dureza de la roca, y es aquí en donde puede ocurrir que algún equipo LHD quede en espera para vaciar su balde debido a que el martillo aun no finaliza su labor.

Luego las rocas en sobretamaño que son reducidas hasta un volumen adecuado para la parrilla y en conjunto con el material que fluye normalmente, se tiene que el mineral escurre a través de los piques de traspaso (Ore pass). Según diseño se espera que este flujo sea expedito y libre, cuando el material es almacenado en exceso se producen los problemas. Si el material se deja demasiado tiempo dentro del pique, este tiende a compactarse a medida que la columna crece. La roca compactada tiende a formar un arco natural conocido como colgadura de un pique o trancadura del pique.

Algunos factores que influyen en la formación de la trancadura son:

- Distribución de tamaños de los fragmentos de roca.
- Tamaño máximo de las rocas.
- Forma de las rocas.
- Viscosidad de la roca.
- Material fino entre las colpas.
- Contenido de humedad.
- Efectos de fragmentación que sufre la roca al pasar por el pique.

Se debe esperar que un buen diseño evite este problema, ya que al aumentar el diámetro del pique el arco pierde resistencia. Asumiendo que al aumentar el diámetro se soluciona el problema se debe asumir también el costo que ello significa (excavación), por lo que se analiza si realmente es necesaria realizar una excavación mayor siendo que la probabilidad de que se forme el arco es baja (para evento), pero como su frecuencia de uso es bastante alta la ocurrencia de este suceso se hace más probable.

También se deben considerar otros aspectos relacionados con la operación y de la faena en particular. Por ejemplo (ver Figura 15) en faenas ubicadas en zonas de bajas temperaturas puede que sea frecuente el congelamiento del material (agua entre los espacios del material), lo cual genera colgaduras (1). Otra consideración es que el material fino puede generar compactación en las paredes de la chimenea produciéndose el enllampamiento (y la consecuente disminución de la sección del pique) (2). Por último la erosión que sufre el pique puede causar un caseroneo (derrumbe), el cual puede ser de ayuda si se trata de una erosión en fragmentos similares a los que fluyen por éste (aumenta la sección y escurren junto con el mineral) (3), pero también podría darse el caso que el material desprendido de las paredes sea de una magnitud tal que bloquee el pique por completo (dependiendo de las estructuras presentes), lo cual puede ser inmanejable e inutilizar total y definitivamente esta componente de infraestructura (4).

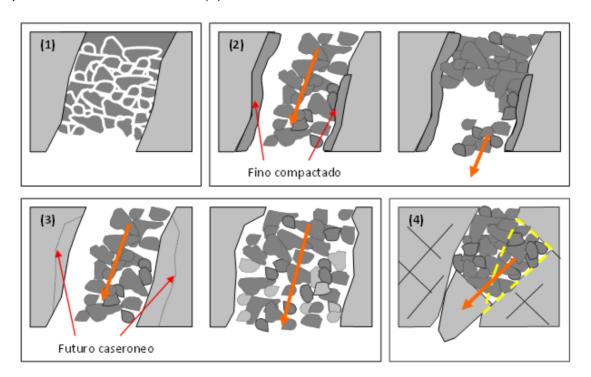


Figura 15 Interferencias Operacionales en piques de traspaso (Le-Faux).

Para evitar una colgadura debe realizarse un diseño adecuado sobre la base de un buen conocimiento de las características del material y de la explotación en sí. Ya en operación también se pueden intercalar parrillas previamente al paso del material, evitando que el sobretamaño entre a los piques (este material tendrá que ser reducido de alguna forma).

Operacionalmente ante la ocurrencia de un problema de colgadura se puede optar por diversas soluciones, de las cuales destacan las siguientes (ver Figura 16):

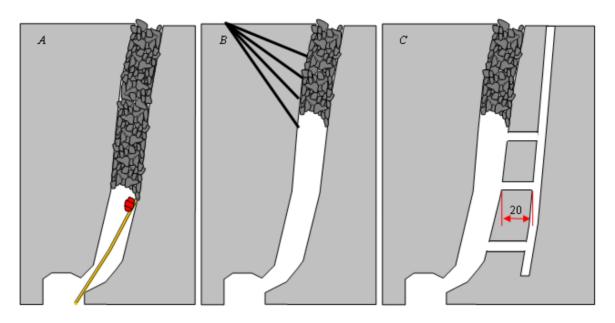


Figura 16 Alternativas para solucionar colgaduras en piques de traspaso (Le-Faux).

- **A.** En este caso la colgadura se encuentra a corta distancia del buzón, de modo que se puede acceder a ella con una vara con explosivos en un extremo. Debe notarse que esta operación es muy peligrosa, por lo que se debe realizar un tapado especial (corta saca) de modo que la descolgadura no provoque un accidente y a la vez debe encontrarse abierto el sistema de descarga del buzón, de modo que no sufra daños por la explosión.
- **B.** En este caso la colgadura no puede ser alcanzada con una vara, por lo que se recurre a la perforación (llamada a veces perforación coyote), que va tanteando donde se encuentra el material colgado y posteriormente se introducen explosivos para descolgarla. Este método es muy caro, ya que encontrar el punto buscado en el primer intento es muy poco probable.
- **C.** En este caso se aprecia la construcción de una chimenea adicional, con comunicación directa a la chimenea de traspaso, permitiendo un acceso a ella y aplicar algún método de descolgadura desde las pequeñas estocadas o galerías que unen a

ambas chimeneas (niveles de control). El costo es alto, ya que debe considerarse la construcción de una chimenea extra más los niveles de control, pero se tiene un acceso más expedito.

2.2.4 Solución de las interferencias operacionales

El proceso de fragmentación es fundamental en el método de minería subterránea, la aparición de rocas de granulometría tal que dificultan el carguío y transporte del mineral, y que generan bloqueos en el flujo de mineral a través del sistema minero. Tal como se mencionó anteriormente, las interferencias operacionales son particulares para cada componente al igual que sus metodologías de reparación, entre las que afectan principalmente al Nivel de Producción de los métodos de Hundimiento por Bloques están, ver Tabla 5:

Tabla 5 Interferencias operacionales más frecuentes en nivel productivo de minería block caving y técnicas de reparación.

Componente	Interferencia	Solución
Puntos de extracción	Sobretamaño	Perforación y tronadura
		Detonación de cargas superficiales
		Martillos rompedores
	Colgaduras	Perforación y tronadura (dificultad de acceso para colgaduras de mucha altura)
	Compactación de finos	Tronadura secundaria
	Barro	Extracción controlada con equipos telecomandados (aprox. 0,15 t/m²-dia)
Cruzados de producción	Cierre para reparación de puntos de extracción	Reparación de puntos de extracción
	Daño en carpeta de rodado	Repavimentación.
	Colapsos	Re-excavación (Diseño en mismo u otro nivel)
		Perdida de la galería.
Parrilla	Sobretamaño	Martillo rompedor
	Rotura de parrilla	Remplazo de parrilla
Piques de traspaso	Colgaduras	Perforación y tronadura (dificultad de acceso)
		Detonación de cargas superficiales (dificultad de acceso)
	Compactación de finos	Tronadura secundaria
Buzones	Fallas mecánicas variadas	Reparación mecánica
Chancador	Falla mecánica chancador	Reparación mecánica
Carguío	Falla equipo LHD	Reparación mecánica
		Remplazo con equipo en reserva

Las interferencias que afectan los componentes del sistema minero van a variar en cantidad y ocurrencia según el diseño y tecnología en particular que se utilicen. Generalmente pueden ser solucionados, pero siempre generando una no disponibilidad temporal en la infraestructura, la que dependerá de manera variable según cual sea la fenomenología de la interferencia, estrategia de reparación y recursos disponibles para solucionarlas.

2.3 Planificación de la Producción Minera

La planificación minera es una parte esencial del proceso de maximizar el retorno en un proyecto minero (Horsley, 2002). Una de las tareas centrales de la planificación de la producción minera está enfocada en definir el ritmo de producción de un sistema minero. Toda labor que se realiza en esta disciplina de la ingeniería de minas tiene el objetivo de entregar el mejor negocio productivo para el dueño, donde es importante que este proceso esté alineado con los objetivos estratégico de la compañía. De este modo se buscará maximizar la renta del negocio minero basado en esta estrategia, de tal manera de integrar las restricciones impuestas por el recurso mineral, disponibilidad de recursos humanos y capital, tecnología, entorno socio-político y medio ambiental en el cual se desenvuelve, entre otros.

Según el enfoque desde donde se observe la planificación, es posible distinguir los siguientes componentes del proceso de planificación minera (Troncoso, 2009):

- Planificación Estratégica: se relaciona con los factores que permiten obtener un valor del recurso minero y cómo estos se relacionan con el mercado respectivo. Busca posicionar a la compañía para beneficiarse de los resultados futuros posibles.
- Planificación Conceptual: es el proceso que delinea los recursos minerales y
 físicos existentes para conducir a la meta productiva definida como parte de la
 planificación estratégica y generalmente se enmarca dentro de un ámbito de
 proyecto. En esta etapa es donde se definen la capacidad y vida de la mina,
 además de las reservas.
- Planificación Operativa: una vez que la mina es puesta en operación, se realizan diversas actividades de optimización de equipos y procesos que conducen a la consecución del plan minero definido en la planificación conceptual. En esta etapa se produce retroalimentación hacia la planificación conceptual de modo de redefinir algunos conceptos y generar los proyectos que permitan alinearse con el plan minero. El aporte de la planificación operativa es fundamental desde el punto de vista de la definición de indicadores operacionales y retro análisis de planificación.

La planificación se puede categorizar según el horizonte temporal con el cual se trabaja en el proceso minero, para esto existen los siguientes conceptos:

- Planificación de largo plazo: define la envolvente económica, el método de explotación, ritmos de extracción, secuencias de explotación y las leyes de corte.
- Planificación de mediano plazo: se encarga de adaptar los modelos que sustentan la planificación de largo plazo. Produce planes de producción que permiten conducir la operación a las metas de producción definidas.
- Planificación de corto plazo: su rol más importante es la recopilación y utilización de la información operacional de modo de retroalimentar al largo plazo. Por otro lado, se preocupa de definir indicadores de modo de corregir los modelos que sustentan la planificación.

Como se mencionó, una de las principales tareas del proceso de planificación minera es la definición del programa de producción, que cuantifica las tasas de producción del sistema minero en el tiempo. Esta labor debe realizarse desde los estudios de factibilidad hasta la última fase productiva y sustenta el valor económico de un proyecto minero, definiendo qué parte del yacimiento subyacente corresponde a reservas mineras. La construcción de un programa de producción en una mina de Block o Panel Caving se basa en los siguientes parámetros:

- Tasa de incorporación de área (Tasa de desarrollos): define para cada periodo del programa la cantidad máxima de puntos de extracción que pueden construirse. Esta restricción se basa generalmente en la geometría del nivel de producción, el comportamiento geotécnico del macizo rocoso y la infraestructura minera disponible.
- Secuencia de construcción de puntos de extracción: define el orden en que los puntos de extracción se construyen. Esta secuencia se define en función de la secuencia de hundimiento.
- Área en producción máxima: en cada periodo del programa, el área activa máxima es función de la infraestructura y los equipos disponibles, como también de la capacidad de ventilación de la mina.
- Velocidad de extracción: limita el tonelaje que puede extraerse desde un punto de extracción en cada período del programa. La velocidad de extracción es función de la fragmentación y la velocidad de propagación del hundimiento.

 Razón de tiraje: define una relación temporal entre el tonelaje de un punto de extracción y sus vecinos. Se cree que este parámetro puede controlar la entrada de dilución y el daño en el nivel de producción debido a esfuerzos inducidos.

2.4 Simulación

En muchas disciplinas existe la necesidad del entendimiento de los fenómenos que controlan los procesos con que se trabaja. A medida que estos fenómenos se tornan más complejos e independientes, se incrementa la necesidad de explorar las posibles consecuencias de tomar ciertas decisiones antes de ejecutar alguna acción. El modelamiento y la simulación son los pasos para lograr reproducir un sistema (Yarmuch, 2012). Con el desarrollo en el área computacional se ha abierto terreno a variados softwares para reproducir la realidad mediante simulaciones.

Como sistema se entenderá el conjunto de elementos que se interrelacionan para funcionar como un todo, mientras que el modelo será la conceptualización y diseño de una simplificación de las características más relevantes del objeto en estudio, las partes del sistema componen el modelo de simulación. Dentro de ellos existen las entidades, estados del sistema, eventos actuales y futuros, localizaciones, recursos, atributos y variables (García Dunna, García Reyes, & Cárdenas Barrón, 2006).

- **Entidad:** es la representación de los flujos de entrada a un sistema, éste es el responsable de que el estado del sistema cambie.
- Estado del sistema: es la condición que guarda el sistema bajo estudio en un momento determinado. Éste se compone de variables de operación puntual, variable de operación acumulada y promedio.
- **Evento:** es un cambio en el estado actual del sistema, estos pueden ser eventos actuales o futuros según la temporalidad de la ocurrencia del evento.
- Localizaciones: son aquellos lugares en los que la entidad puede detenerse para que ocurra o espere algún evento.
- **Recursos:** son aquellos dispositivos, diferentes a las localizaciones, necesarios para llevar a cabo una operación.
- Atributo: es una característica de una entidad, permiten diferenciar entidades sin necesidad de generar una entidad nueva, y pueden adjudicarse al momento de la creación de la entidad, o asignarse y/o cambiarse durante el proceso.

 Variables: como lo indica su nombre son condiciones cuyos valores se crean y modifican por medio de ecuaciones matemáticas y relaciones lógicas.

2.4.1 Modelos de simulación

Como se mencionó los modelos de simulación permiten representar situaciones reales de diferentes tipos. Según algunos autores (Law & Kelton, 1999) es posible clasificar los modelos de simulación según los cambios que sufra respecto al tiempo, así se definen los modelos de simulación dinámicos y estáticos (ver Figura 17).

Las simulaciones se clasifican como estáticas donde se representa un sistema bajo un conjunto de situaciones o condiciones determinado donde la variable tiempo no es considerada relevante en el modelo. Por otro lado, la simulación dinámica corresponde aquella donde el estado del sistema que se analiza cambia respecto al tiempo, es decir, se analizan los distintos estados por los que pasa el sistema al evolucionar en el tiempo.

Así mismo los modelos pueden diferenciarse por el tipo de ecuaciones matemáticas que los componen, dado el conjunto de estados que lo componen. Se habla de modelos de simulación continuos para aquellos en los que las relaciones entre variables relevantes de la situación real se definen por medio de ecuaciones diferenciales, dado que éstas permiten conocer el comportamiento de las variables en un periodo de tiempo continuo, aquí el sistema cambia de estado constantemente. Los modelos de simulación discretos, tienen un comportamiento tal que es posible representarlos por medio de ecuaciones evaluadas en un punto determinado, dado que los cambios al sistema ocurren en ciertos instantes de tiempo en particular.

Las simulaciones discretas es posible diferenciarlas en simulaciones por eventos y simulaciones por cuantos. Con el nombre de simulación por eventos, o asíncrona, designamos el tipo de simulación dinámica discreta en la cual se controla la variable tiempo moviéndola hasta la ocurrencia del siguiente suceso (o evento). Esto implica la necesidad de controlar minuciosamente cuál es dicho próximo suceso: saber cuáles son los posibles sucesos en un futuro inmediato y cuál de ellos es el más inmediato. La simulación por cuantos, responde a una filosofía totalmente diferente. Se trata de examinar el sistema (que evoluciona en el tiempo) dejando pasar pequeños intervalos de tiempo (llamada cuanto), en los cuales se supone que, a lo sumo, un sólo suceso puede producirse.

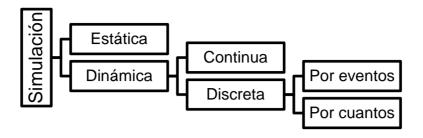


Figura 17. Modelos de simulación.

2.5 Equipos e Índices Operacionales

2.5.1 Definición del uso del tiempo

Una forma habitual para definir el tiempo se basa en los estándares ASARCO en esa materia.

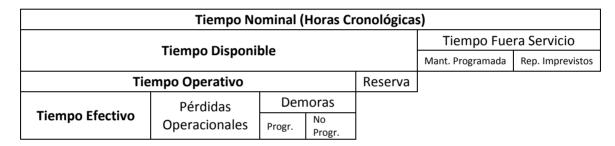


Figura 18. Definición uso del tiempo ASARCO.

- **Tiempo Nominal**: Tiempo total calendario del período de medición.
- **Tiempo Disponible:** Tiempo que el equipo está mecánicamente habilitado para trabajar.
- **Tiempo Operativo:** Tiempo durante el cual el equipo está con operador realizando alguna labor.
- **Tiempo Efectivo:** Tiempo que el equipo se encuentra realizando estrictamente la labor para la cual fue diseñado.
- **Tiempo Fuera de Servicio:** Tiempo en que el equipo no se encuentra disponible para realizar sus funciones por *"pannes"* o mantención programada.

- Reservas: Tiempo en que el equipo se encuentra mecánicamente habilitado, pero no está siendo utilizado en la operación por la falta de operador, falta de programa o de punto de trabajo (Entrada y salida de turno, chocas, evacuación por tronadura, falta de frentes de trabajo, falta de operadores, detenciones por condiciones externas, etc.)
- Pérdidas Operacionales: Tiempo operativo en los cuales el equipo no está realizando estrictamente su labor de diseño (traslados, cambio de punto de trabajo, arreglo de carpeta de rodado, etc.).
- **Demoras:** Interrupciones del proceso productivo (esperas en vaciado, esperas por imprevistos, espera por martillo operando en punto de vaciado, etc.)

Considerando lo anterior, es posible estimar:

• Disponibilidad: *D* [%]

$$D \ [\%] = \frac{\textit{Tiempo}_{\textit{Efectivo}} + \text{Demoras} + \text{Reservas} + \text{Perdidas Operacionales}}{\textit{Tiempo Nominal}} \ ;$$

Ecuación 1. Cálculo disponibilidad equipo LHD.

Utilización: U [%]

$$U [\%] = \frac{Tiempo_{Efectivo}}{Tiempo Nominal};$$

Ecuación 2.Cálculo utilización equipo LHD.

• Utilización Efectiva: $U_{Efectiva}$ [%]

$$U_{Ef} \ [\%] = \frac{Tiempo_{Efectivo}}{Tiempo \ Nominal - Fuera \ de \ Servicio} = \frac{Tiempo_{Efectivo}}{Tiempo \ Disponible} \ ;$$

Ecuación 3. Cálculo utilización efectiva equipo LHD.

• Utilización Operativa: $U_{Operativa}$ [%]

$$U_{Op} \left[\%\right] = \frac{Tiempo_{Efectivo} + Denoras + Perd.Op.}{Tiempo\ Nominal - Fuera\ de\ Servicio} = \frac{Tiempo_{Operativo}}{Tiempo\ Disponible}\ ;$$

Ecuación 4.Cálculo utilización operativa equipo LHD.

2.5.2 Producción mediante LHD

Los cálculos de los requerimientos de los equipos LHD se realizan según los siguientes parámetros:

- Capacidad de Balde: Cap_{balde}
- -Capacidad Máxima Balde [yd³]: Cap_{max}
- -Factor de conversión $\left[\frac{m^3}{yd^3}\right]$: f
- -Densidad esponjada húmeda $\left[\frac{ton}{m^3}\right]$: $\rho_{espon.hum}$
- -Factor de Llenado [%]: F_{ll}

$$Cap_{balde}\left[\frac{ton}{ciclo}\right] = Cap_{max} * f * \rho * F_{ll};$$

Ecuación 5. Cálculo capacidad de balde LHD.

Ciclos por hora efectiva: N_{ciclos}

Tiempo carguío [min]: $T_{carguío}$

Tiempo maniobras [min]: $T_{maniobras}$

Tiempo transporte (ida y vuelta) [min]: T_{trans} (El tiempo de ida y vuelta no necesariamente es igual, se considera el tiempo e la operación completa de transporte)

$$N_{ciclos} \left[\frac{ciclos}{hora_{efectiva}} \right] = \frac{T_{cargu\'io} + T_{maniobras} + T_{trans}}{60};$$

Ecuación 6. Cálculo número de ciclos equipo LHD.

Rendimiento Efectivo: Rendefectivo

$$Rend_{efectivo}\left[\frac{ton}{hora_{efectiva}}\right] = Cap_{balde} * N_{ciclos};$$

Ecuación 7. Cálculo rendimiento efectivo equipo LHD.

• Productividad anual LHD: Prod_{LHD}

Factor Operacional LHD [%]: F0

Conversión hora/día $\left[\frac{h}{dia}\right]$: 24

Conversión día/año $\left[\frac{dia}{año}\right]$: 360

$$Prod_{LHD}\left[\frac{Kton}{a\tilde{n}o}\right] = Rend_{efectivo} * FO * 24 * D * U * 360;$$

Ecuación 8. Cálculo producción equipo LHD.

• Flota anual: $Flota_{anual.LHD}$

Plan producción base húmeda $\left[\frac{Kton}{a\tilde{n}o}\right]$: $Plan_{ProdHum}$

$$Flota_{anual.LHD} = \frac{Plan_{ProdHum}}{Prod_{LHD}};$$

Ecuación 9. Cálculo flota anual de equipos LHD.

La utilización máxima considera el 100% eficiencia en asignación (sin tiempos de reservas). La utilización real es variable periodo a periodo.

3 METODOLOGÍA

Para lograr los objetivos del estudio se ha establecido seguir la siguiente metodología:

- 1) Revisión del Plan de Producción de Corto Plazo del PMCHS. Analizando en particular un Macro Bloque para el nivel 1841.
- 2) Estudiar el Modelo de simulación y su comportamiento.
- 3) Revisión de los Eventos que generan Interferencias operacionales, logrando definir su naturaleza, categorizarlos y ponderar su comportamiento.
- 4) Realización de un análisis de sensibilidad para las distintas Interferencias Operacionales y Escenarios.
- 5) Se estudiará a modo de diagnóstico un Macro Bloque del nivel 1841 bajo los escenarios definidos en la etapa anterior.
- 6) Luego de identificar la influencia de los escenarios e interferencias operacionales, se simulará el primer nivel para dos años que se encuentren en régimen productivo integrando el Nivel de Producción y el Nivel de Transporte con todos sus componentes.
- 7) Se realizará el análisis de los datos, y además se elaborará una metodología y un índice operacional para cumplir con los objetivos específicos. Aquí se debe categorizar la robustez del plan minero y las variables que influyen en el mismo.
- 8) Para finalizar se realizan las conclusiones y recomendaciones.

4 PLAN DE PRODUCCIÓN PMCHS

Para la Planificación Minera se debe considerar una importante cantidad de variables para determinar qué, cuánto, cuándo y cómo lograr eficientemente la extracción del mineral a partir del recurso minero. Esto queda definido una vez que se establece la envolvente tridimensional de las reservas extraíbles, de acuerdo al método de explotación considerado, para posteriormente realizar la correspondiente programación de la producción.

La determinación de las reservas mineras requiere la realización de un proceso que es intrínsecamente recursivo y de aproximaciones sucesivas y que en general, tiene una alta dependencia de parámetros exógenos, como lo son los precios de los commodities en evaluación.

Las principales etapas de este proceso son las siguientes:

- Validación de Modelo de bloques: Manejo de la información base.
- Determinar el material diluyente: Simulación de la dilución.
- Valorización del modelo.
- Determinación de alturas extraíbles.
- Determinación de envolventes (footprint).

Estas etapas son desarrolladas considerando inputs geomecánicos, medioambientales, económicos, geológicos, entre otros, lo que establece la visión integral que debe tener el desarrollo de la planificación minera.

Para la construcción del plan de producción es necesario contar con la siguiente información base:

- Modelo de Bloques
- Topografía
- Parámetros económicos definidos por el área de Evaluación Económica en base al modelo de negocio y orientaciones comerciales vigentes
- Información Geomecánica

Información técnica del Diseño Minero

Toda esta información en conjunto permite definir una serie de actividades cuyo resultado final se traduce en el plan de producción. La Figura 19 presenta las etapas a seguir con anterioridad a la elaboración de un plan de producción. Estas se explican a grandes rasgos de la siguiente manera:

Figura 19 Etapas previas a la construcción del plan de producción.

4.1 Planificación de Largo Plazo

El plan minero de la etapa de factibilidad del PMCHS consta principalmente de un plan de producción y un plan de preparación minera. Respecto al plan de producción, el estudio de factibilidad consideró el desarrollo del plan en periodos mensuales (corto plazo) para todos los Macro Bloques del primer nivel y periodos anuales (largo plazo) para el resto de Macro Bloques de los niveles inferiores.

El plan de preparación minera utilizado corresponde al plan determinado en las Obras Tempranas (mensual para el primer nivel de explotación y anual para los niveles inferiores), que incorpora las facilidades constructivas necesarias para la viabilidad del plan, junto a las facilidades constructivas en la etapa inicial de la preparación de los Macro Bloques, con el objetivo de que antes de iniciar las grandes obras de preparación, asegurar los sistemas de ventilación, manejo de marinas, accesos y logística acordes con la magnitud de las obras.

El plan de producción obtenido, denominado Plan de Producción Ingeniería Básica (plan IB), fue construido considerando un ramp-up de 7 años, un régimen en torno a los 140.000 [tpd] sustentable durante 29 años (base 360 días de operación por año) y una velocidad de extracción promedio del plan global de 0.4 [ton/m²-día]. Los resultados anualizados se muestran a continuación en la Figura 20.

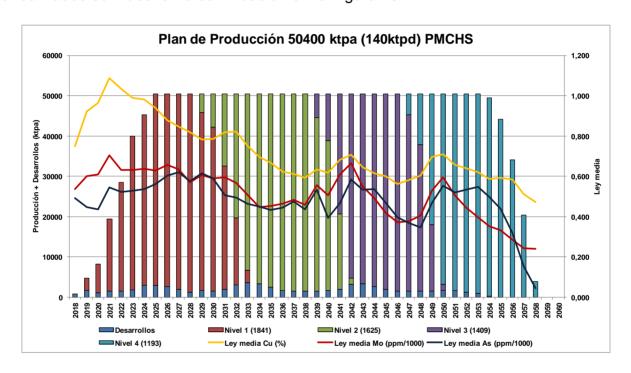


Figura 20 Plan Minero IB (Producción + Desarrollos).

4.2 Planificación de Corto Plazo

Para analizar en detalle el plan de corto plazo, se requiere contar con la base de información del largo plazo, e incorporar otros antecedentes para reducir las unidades de tiempo e incorporar condiciones operativas, logrando así generar un vínculo entre la información técnica "dura" y los parámetros promedio utilizados en el largo plazo.

Los parámetros de largo plazo corresponden a promedios en escalas amplias de tiempo (anual por ejemplo) de los parámetros que se dan en las operaciones en escalas de tiempo mucho menores.

A continuación se indican parámetros relevantes en la construcción del plan de producción de corto plazo.

- Velocidad de extracción.
- Disponibilidad de frentes productivas
- Utilización de frentes productivas
- Incorporación y cierre de puntos de extracción
- Footprint
- Radio Hidráulico
- Tasa de propagación del caving
- Política de extracción o tiraje.

Para complementar el desarrollo a continuación se detallan algunos de estos puntos.

4.2.1 Velocidad de extracción

Para la construcción del plan de corto plazo inicial que será input para estimar la capacidad productiva, se utilizó valores de velocidad de extracción para cada Macro Bloque por punto de extracción (Tabla 6), estos valores corresponden a un estimado operacional que considera disponibilidad y utilización de las frentes productivas, obtenido en el desarrollo del Plan de Obras Tempranas (Codelco VP - PMCHS, 2011).

Tabla 6 Velocidades de extracción máximas Plan de corto plazo.

Ítem	Porcentaje Extracción Columna	Velocidad Máxima [t/m²-día]
Esponjamiento		0,15
Propagación	< 20	0,20 - 0,40
Liberado	20 – 100	0,60 - 0,80

4.2.2 Estrategia de Tiraje

Según recomendaciones emanadas del área geomecánica se considera una estrategia de extracción con geometría cóncava del caving, limitada por un lado por la Falla Oeste y por otro lado con el talud del rajo. En la Figura 21 se muestra, para cada uno de los Macro Bloques considerados en la planificación de corto plazo, la geometría de propagación del caving (año 2033) antes de "romper" a superficie (en rojo se muestra la proyección 1:5 del caving que tendría cada Macro Bloque).

Una vez conectado el caving con la superficie se liberan las tasas de extracción, en este contexto y por un tema productivo, se recomienda extraer tanto como sea posible. Sin embargo, las restricciones durante esta etapa comúnmente estarán asociadas a la capacidad del sistema de manejo de minerales.

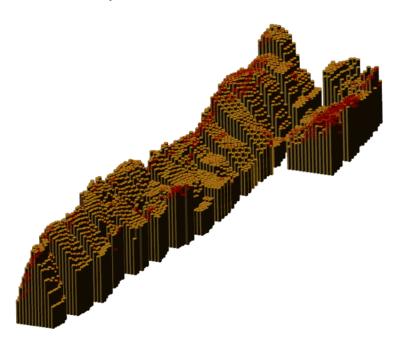


Figura 21 Geometría de propagación del Caving - Año 2032

4.2.3 Radio Hidráulico

De acuerdo a lo establecido por el área de geomecánica del proyecto, se establecieron los radios hidráulicos por macro bloque, y su equivalencia en metros cuadrados a hundir de acuerdo a un vano mínimo, estas áreas van desde 11,000 a 16,000 m² (ver Figura 82 del ANEXO B: Plan de Producción PMCHS).

Durante la socavación se debe extraer una determinada altura, producto del esponjamiento, para luego de esto, continuar con velocidad controlada hasta lograr el radio hidráulico. Esta altura es de 6 metros y se extrae a 0.15 [ton/m²dia] (36 ton/día).

La dirección del Hundimiento es posible verla en la Figura 80. Para la incorporación de área se considera una propagación del caving de 1:5, con esto, la formación del cráter inicial ocurre al 20% de extracción de la columna extraíble, para el inicio de la explotación se considera la entrada de 3 macro bloques (1841 N1-1841 N2 sin pilar entre ellos, y 1841 N4-2 macro bloque experimental) el año 2019, al año siguiente se ingresa el siguiente macro bloque experimental 1841 N5-2, para retomar la incorporación de nuevos Macro Bloques el año 2021. En la Figura 22 se muestra la macro secuencia de incorporación de área para el primer nivel.

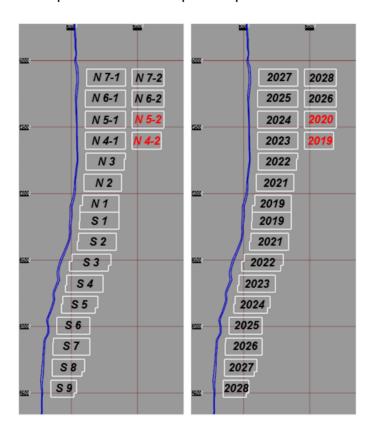


Figura 22 Macrosecuencia por MB y año Nivel 1 – Incorporación de Área nivel 1841.

5 ANÁLISIS DE VULNERABILIDADES

Todo desarrollo de un proyecto de ingeniería está asociado a una serie de posibles vulnerabilidades producto del factor de incertidumbre con el cual se debe trabajar. Los posibles aspectos en que el PMCHS puede tener un riesgo, están vinculados a distintas áreas (Construcción, Contratos, Infraestructura, Diseño, Planificación, Estimación de reservas, Interferencias Operacionales, Geomecánica, etc.).

En este capítulo se desarrollaran algunos aspectos que pueden llegar a afectar de alguna manera la Planificación Minera y Diseño del proyecto. Los aspectos que se abordan son acotados, del mismo modo, el desarrollo del PMCHS contempla una serie de medidas para mitigar los riesgos que se mencionan, pero estos no son incluidos en este estudio dado sus alcances.

5.1 Falla y Pilar Oeste

La Falla Oeste es una discontinuidad característica del yacimiento de Chuquicamata, tal como es posible ver en la Figura 11 la falla oeste delimita todas las reservas definidas en el PMCHS. El proyecto ha contemplado la existencia de un pilar denominado Pilar Oeste o en inglés *Rib Pillar*, el cual está definido por la falla oeste y el límite de la explotación del primer nivel de producción.

De acuerdo a la información recopilada de más de 50.000 m de sondaje durante etapas previas de la ingeniería del proyecto, es posible caracterizar geotécnica y estructuralmente el macizo rocoso correspondiente al Pilar Oeste.

El Pilar Oeste se emplaza mayoritariamente en el Dominio Estructural Americana en sus subdominios Americana Norte (AN), Americana Central (AC) y Americana Sur (AS). En su extremo norte, se encuentra controlado en una pequeña porción por el Dominio Zaragoza. Las UGTB que se encuentran contenidas en el Pilar Oeste son tres: Pórfido Este Sericítico (PES), Cuarzo Igual a Sericíta (Q=S) y Cuarzo Menor a Sericíta (Q<S) Para más detalle ver ANEXO A: Unidades Geotécnicas Básicas.

En base a la recopilación de varios estudios (Ferrada, 2013), referentes a la evolución de la forma del hundimiento debido a la influencia de la falla oeste y al comportamiento de la pared del rajo y su modo de falla, el autor menciona que existen dos grandes mecanismos principales de falla de la pared oeste y de su incorporación de dilución (ver Figura 23).

 El mecanismo principal corresponde al derrame gradual de material estéril desde el talud de la pared oeste del rajo. a medida que el material quebrado contenido en el cráter de hundimiento descienda producto de la extracción, ocurrirá una incorporación gradual de diluyente que irá rellenando el cráter evitando así que el talud falle desplomándose de manera violenta. Se establece entonces que la probabilidad de una falla gradual de la pared oeste es superior a la probabilidad que ocurran colapsos violentos en el talud.

• El segundo mecanismo corresponde a la incorporación temprana de material diluyente por la posible falla del Pilar Oeste y la conexión del hundimiento con la falla oeste a una baja altura de extracción.

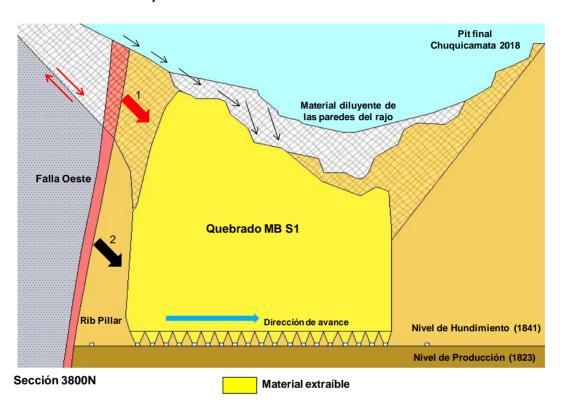


Figura 23 Principales mecanismos de falla de la pared oeste e incorporación de dilución.

En el mismo estudio se habla respecto a la propagación del caving y el flujo gravitacional, en donde los estudios coinciden en predecir un comportamiento inicialmente vertical de las líneas de flujo del tiraje en los puntos de extracción más cercanos a la falla oeste; para luego, una vez avanzada la extracción, curvarse hacia el oeste. Consecuente a este factor, se infiere que debe evitarse una extracción fuerte cercana a la falla oeste pues esto aumentaría el potencial de irrupción hacia la zona de cizalle y por tanto, una temprana entrada de material diluyente.

5.2 Estimación de la Fragmentación

Una variable que sin duda tiene un impacto trascendental en una explotación minera llevada a cabo a través de un método de hundimiento, corresponde a la fragmentación o granulometría esperada, la cual incide de forma directa en la determinación de la velocidad de extracción de cada punto, la disponibilidad de las parrillas de vaciado y el rendimiento de los equipos LHD, por mencionar las más relevantes

Para determinar la fragmentación presente en el PMCHS, se han realizado varios estudios en sus distintas etapas de ingeniería. En el trabajo del "Modelo de estimación de sobre tamaño esperado para planes de producción" (Codelco VP - PMCHS, 2011), se desarrolló un modelo de estimación de la fragmentación esperada por punto de extracción, y que permite analizar la granulometría a diferentes alturas extraídas por Macro Bloque, tomando en cuenta el compósito de las distintas Unidades Geotécnicas y el material quebrado para cada periodo del plan de producción.

La estimación granulométrica definida en el Estudio de Pre factibilidad del PMCHS está respaldado en el informe (Itasca & SRK, 2006) e (Itasca, 2009).

En las Figura 24 y Figura 25 es posible ver las curvas de fragmentación primarias y secundarias para distintas Unidades Geotécnicas Básicas, UGTB de interés económico para el PMCHS.

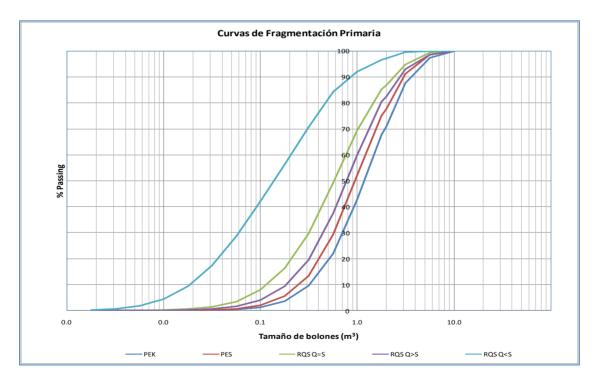


Figura 24 Curvas de Fragmentación Primaria Itasca/SRK Consulting 2006.

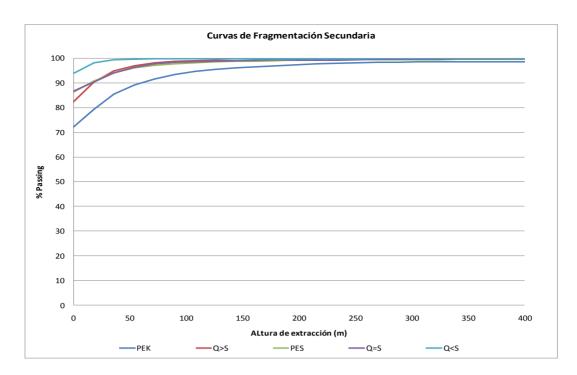


Figura 25 Curvas de Fragmentación Secundaria Itasca/SRK Consulting 2006. (2m³)

Es importante resaltar que la zona de interés económico para el PMCHS se emplaza principalmente en las unidades geotécnicas RQS, PEC, PEK y PES (ver ANEXO A: Unidades Geotécnicas Básicas.), como se muestra en la siguiente Figura 26.

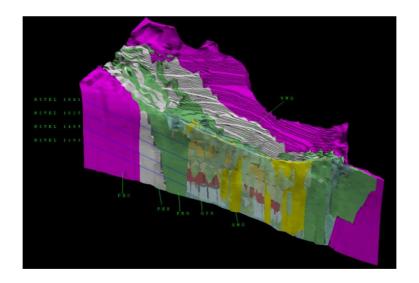


Figura 26 UGTB presente en la zona de interés económico.

Los análisis incluyeron estimar la granulometría considerando el efecto del Preacondicionamiento Mixto (FH: Fracturamiento Hidráulico y DDE: Debilitamiento Dinámico con Explosivos). La consideración de esta técnica incorporaría una reducción

granulométrica de al menos el 30% del P₈₀. Con esta reducción de tamaño se obtendrían nuevas curvas de fragmentación primarias, en donde todos los tamaños iniciales de las curvas de fragmentación son reducidos por efecto del PA.

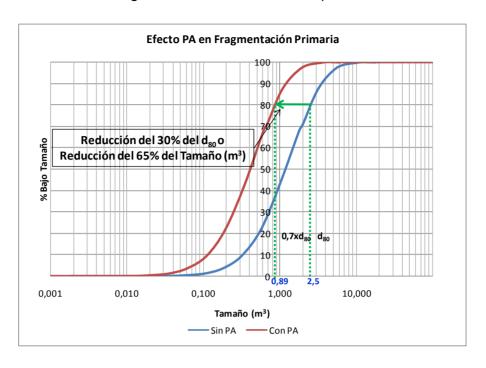


Figura 27 Impacto del PA en Estimación de Fragmentación Primaria.

Además la idea es poder integrar las curvas de fragmentación primaria y secundaria, de tal manera que entreguen finalmente información respecto al porcentaje de bajo tamaño y tamaño en metros, para diferentes alturas de extracción. En la Figura 28 se muestra la variación en el porcentaje de bajo tamaño.

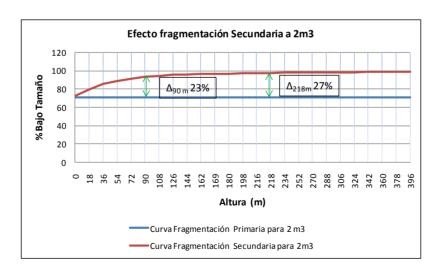


Figura 28 Efecto de la fragmentación secundaria por altura a un tamaño de corte de 2 m3

En la figura anterior es posible ver como ejemplo, que a 90 metros de altura de extracción, el porcentaje de bajo tamaño aumenta en un 23%, es decir, la nueva de fragmentación, se desplaza con respecto a la curva base un 23%, con respecto al % de bajo tamaño para el tamaño de corte 2 m³. En cuanto al tamaño, considerando el criterio de que la curva resultante sigue la misma tendencia que la curva base, existe una reducción de tamaño de un 35% (ver Figura 29). Eso implica, que de un tamaño de 2m³ disminuye a 1.3 m³.

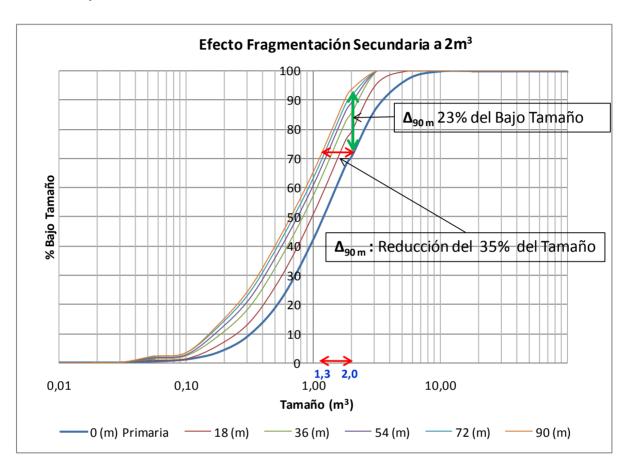


Figura 29 Curva de Fragmentación Primaria afectada por Fragmentación Secundaria

Las curvas de fragmentación resultantes para diferentes alturas de extracción, serán el producto de incorporar dos efectos. El primero, correspondiente al Pre acondicionamiento Mixto, que provoca un desplazamiento y disminución de la curva base en un 65% con respecto al tamaño volumétrico, como muestra la Figura 30 y el segundo efecto, referente a la reducción secundaria, que provoca una reducción de un 35% de tamaño, pero con respecto a la curva base con pre acondicionamiento mixto. Se generan, finalmente, distintas curvas de fragmentación para las distintas alturas de extracción, ya sea para el PEK, PES, Q<S, Q>S y Q=S.

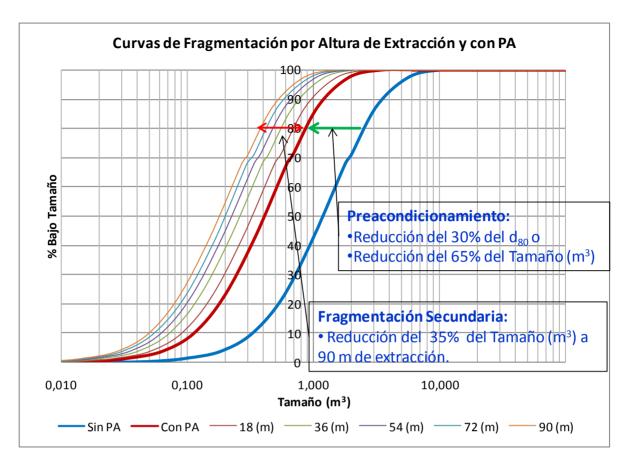


Figura 30 Curvas de fragmentación resultantes a distintas alturas de extracción para PEK.

5.2.1 Estimación sobretamaño

Para este análisis se necesita determinar los tamaños de corte que nos servirán para determinar cuáles de éstos, corresponderán a sobretamaño. En este caso, nuestros valores de corte están referidos al volumen máximo que permite el LHD de 9yd³ y las parrillas de vaciado.

Se definió que el balde del LHD admite colpas con una longitud de corte máximo de 1,5m; equivalente al 50% de su ancho. Basados en el factor de forma empírico comúnmente admitido (1,0: 0,7: 0,5), el volumen de la colpa de mayor tamaño que puede admitir un LHD de 9 yd³ está dada por la siguiente fórmula:

Volumen Máx. de Colpa LHD
$$9yd^3 = Largo * Ancho * Espesor = (1,5 * 1,0) * (1,5 * 0,7) * (1,5 * 0,5) = 1,18 m^3$$

Ecuación 10. Volumen máximo de colpa.

En el caso de las parrillas de vaciado cuya abertura estándar es de 0,9 m de ancho por 0,9 m de largo, la diagonal o mayor longitud admisible es de 1,3 m aproximadamente. De acuerdo a lo anterior el volumen de la colpa de mayor tamaño que puede pasar por la parrilla está dado por la siguiente fórmula:

Volumen Máx. de Colpa LHD
$$9yd^3 = Largo * Ancho * Espesor = (1,3 * 1,0) * (1,3 * 0,7) * (1,3 * 0,5) = 0,77 m^3$$

Gráficamente la Figura 31 muestra los tamaños de corte de interés con respecto a las curvas de fragmentación para distintas alturas.

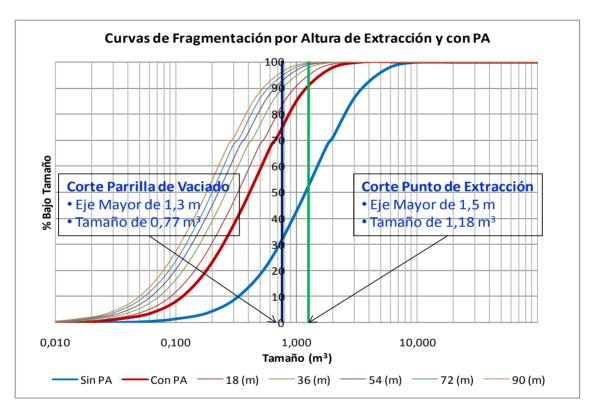


Figura 31 Curvas de fragmentación a distintas alturas con corte 0,77 y 1,18 m³

De las conclusiones del estudio de curvas granulométricas se tiene:

- i. Respecto a la fragmentación estimada, se puede apreciar que la zona norte presenta una granulometría más gruesa, que la zona centro y la zona sur. A su vez la zona centro exhibe una fragmentación levemente más gruesa que la zona sur.
- ii. Los indicadores de fragmentación primaria resultantes para la Mina Chuquicamata Subterránea son comparables con los obtenidos en operaciones de la Corporación en Chile y Palabora en Sudáfrica.

5.3 Área Colapsada

Los colapsos constituyen uno de los eventos de inestabilidad más común y relevante en las minas explotadas por métodos de hundimiento, razón por la cual, para las distintas etapas el PMCHS ha llevado a cabo estudios para evaluar el potencial de ocurrencia de dicha inestabilidad (Codelco VP - PMCHS, 2012).

La ocurrencia de un colapso obedece a una condición local de solicitación al macizo rocoso por sobre su resistencia. Luego, un colapso se manifiesta debido a una falla del macizo rocoso debido a un incremento no esperado de las cargas actuantes en el sector de ocurrencia del colapso. Desde este punto de vista, los factores que pueden originar un colapso, interactúan con el macizo rocoso de manera tal que incrementan el esfuerzo a que está sometida la infraestructura minera.

El diseño por Macro Bloques o explotación modular tiene la ventaja de aislar sectores en la eventualidad de que ocurra un colapso y así lograr gestionarlo en forma más eficiente. El presente estudio ha permitido identificar las zonas con mayor potencialidad de ocurrencia de colapsos para cada uno de los Macro Bloques del primer nivel de explotación, basados principalmente en las condiciones pre-minería y las variables de diseño minero y planificación definidas.

Según los estudios de la redistribución de esfuerzos, realizados en una condición de preparación, las zonas de potencial colapsos se encuentran aledañas a la Falla Oeste fuera del footprint. No se observan condiciones de potenciales inestabilidades al interior del footprint. En el sector Este fuera del footprint, área para emplazamiento de la infraestructura, tampoco se observan zonas de alto potencial de colapsos.

En una condición de explotación, las zonas de potencial en colapsos se encuentran aledañas a la Falla Oeste fuera del footprint al igual que el caso anterior. Se observan zonas puntuales de potencial colapso en algunos macro bloques del sector Centro del footprint (MBs S1 y S2). En la zona Sur, se observan zonas potenciales de colapsos, hacia el extremo Oeste de los macro bloques (MBs S5, S6 y S8), representando éstas menos de un 1% del área total del footprint. En ambos casos esto se debe a la presencia de la franja existente en el Centro y Sur de los Dominios Geotécnicos ACQMeS y ASQMeS, los cuales al interior del footprint presentan los menores valores de Resistencia Global de Macizo Rocoso (10 MPa). Esto último, dependerá del factor de incremento de abutment stress; en este caso este valor fue obtenido a partir de los modelos de Itasca 2009 y SRK 2012, en los cuales se observan valores de abutment stress entre 2 a 2.5 veces σν. En el sector Este, fuera del footprint, área para emplazamiento de la infraestructura, tampoco se observan zonas de alto potencial de colapsos.

El análisis de deformaciones o convergencia en las crucetas del nivel de producción en los Macro Bloques N4-2, N1S1 y S5, representativos del sector Norte, Centro y Sur del footprint respectivamente, muestra que los desplazamientos en la excavación no superarían el 2%, lo que indica una condición de bajo riesgo de colapso desde el punto de vista esfuerzos. En este sentido considerando ambos análisis por esfuerzos, la probabilidad de colapso para el nivel 1841 es baja (menos de un 5% de área afectada), a excepción del Macro Bloque S8 el cual presenta un 15% del su área expuesta a un potencial colapso. Si este resultado se compara con el estudio de benchmarking desarrollado a minas por hundimiento, donde en promedio el porcentaje de área colapsada respecto el área abierta es inferior a un 15%, el PMCHS se encuentra en una condición relativamente normal, dentro de lo esperado.

Desde el punto de vista estructural, los resultados obtenidos mediante el software JBLOCKv3.2, han permitido identificar bloques de hasta 240.000 m³. No obstante lo anterior, el número de MB con potencialidad de colapso es acotado, siendo estos el N6-2, N5-1, S2 y S9.

Por otro lado, es importante señalar que la geometría de los bloques inestables, es decir, que fallan dada las propiedades geotécnicas utilizadas, oscilan entre un área basal entre 500 y 3.000 m², lo que en porcentaje se traduce entre un 2% y un 10% aproximadamente.

Los resultados mencionados corresponden a un análisis de distribución de esfuerzo y análisis de estructuras, en la Tabla 7 se resumen y evalúa según la influencia de ambos análisis cuales son los Macro Bloques con un porcentaje del Área Potencial de Colapso (APC). La consideración promedio del APC está alrededor del 6% para el primer nivel. En la sección ANEXO C: Análisis de Vulnerabilidades, es posible ver el detalle para ambos análisis.

Tabla 7 Resumen de análisis de Área Potencial de Colapsos.

	Análisis por	Esfuerzo	Análisis por Estructuras		mente Colapsados rzo (P0=2,5*Sv)		ente Colapsados ructuras	Evaluación Final
Macro Bloques	Indice σ _{cm} /P0 P0= 2,5*Sv	% Deformación Crucetas	Índice BMI/BC	G cm/P0<0.15	0.15< Ccm/P0<0.3	Área Basal Mín.	Área Basal Máx.	
N7-1	> 0,4		0.59			890	2330	Bajo Riesgo Colapso
N7-2	> 0,4		<0.7					Bajo Riesgo Colapso
N6-1	> 0,4		<0.7					Bajo Riesgo Colapso
N6-2	> 0,4	0,21	1.03			1348	4332	Alto Riesgo Colapso
N5-1	> 0,35	0,21	1.25			976	2928	Alto Riesgo Colapso
N5-2	> 0,4		0.6			1787	3159	Bajo Riesgo Colapso
N4-1	> 0,4		0.68			872	915	Bajo Riesgo Colapso
N4-2	> 0,4		<0.7				•	Bajo Riesgo Colapso
N3	> 0,25		0.68			21	183	Riesgo Moderado Colapso
N2	> 0,2		<0.7	170	1525			Riesgo Moderado Colapso
N1S1	> 0,15	1,65	0.8	560	7145	2	93	Riesgo Moderado Colapso
S2	> 0,15		1.6	405	6010	1000	2297	Alto Riesgo Colapso
S3	> 0,2		<0.7		5630			Riesgo Moderado Colapso
S4	> 0,15		0.85	140	8575	1396	2634	Riesgo Moderado Colapso
S5	> 0,15		<0.7	445	7050	13	350	Riesgo Moderado Colapso
S6	> 0,15	0,80	<0.7	635	8065	21	158	Riesgo Moderado Colapso
S7	> 0,15	0,80	<0.7		11110			Riesgo Moderado Colapso
S8	> 0,1		<0.7	1625	12120			Alto Riesgo Colapso
S9	> 0,2		1.37			1868	3125	Alto Riesgo Colapso

5.4 Planificación de la Producción

El cumplimiento del plan de producción se puede ver expuesto a una serie de contingencias en el momento que se inicien las operaciones de la mina. Las interferencias serán distintas según la etapa de extracción en que se encuentre la mina subterránea, y en particular cada uno de los Macro Bloques. Los factores que afecten al nivel productivo no serán los mismos si el MB se encuentra en su etapa de "quiebre" o en "régimen", esto se extiende a los aspectos geomecánicos, fragmentación, fallas de equipos, interferencias operacionales, etc.

Algunos aspectos considerados en los criterios del plan de producción son desarrollados a continuación (Codelco VP - PMCHS, 2011).

5.4.1 Razón de propagación del Hundimiento

La razón de propagación del hundimiento, es la relación existente entre altura de columna de roca extraída, versus la altura de columna quebrada y/o afectada Figura 32. La determinación de este parámetro es compleja y muy variable, además requiere de una adecuada interpretación de la instrumentación geotécnica instalada en los sectores productivos. Para el caso de proyectos, se utilizan modelos conceptuales y modelos numéricos para análisis retrospectivos de manera de realizar una estimación de la propagación del hundimiento.

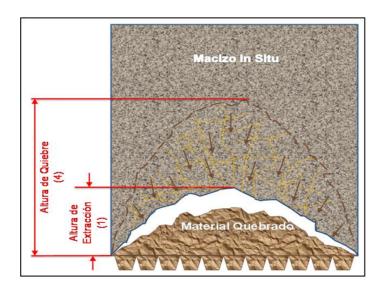


Figura 32 Esquema de la razón de propagación del caving.

En la Ingeniería Conceptual se estableció como razón de propagación entre la altura de extracción y la altura de quiebre, la razón 1:4. Sin embargo, la información vigente (Codelco VP - PMCHS, 2011) indica que el avance de la zona fracturada del hundimiento del Nivel 1841, se propagará o crecerá a una razón aproximada de 1:5 (es

decir, al 20% de extracción se considera toda la columna quebrada). En "ANEXO C: Análisis de Vulnerabilidades", Tabla 35, es posible ver una tabla Benchmarking donde se resumen la razón de propagación en diversas faenas.

La consideración de este cambio en la razón de propagación tiene directas implicancias en el plan de producción, particularmente en la incorporación de área en producción.

5.4.2 Capacidad Productiva de los Macro Bloques

En el Capítulo 4, referente al Plan de Producción del PMCHS se mencionó sobre la velocidad de extracción del proyecto, este es un parámetro relevante como indicador de productividad de la mina. Para que tenga sentido, este indicador se calcula para períodos amplios de tiempo (meses o años), sobre un área suficientemente amplia, para eliminar singularidades, como puntos no disponibles por ejemplo.

Dentro de la planificación de corto plazo no se utiliza directamente una velocidad promedio de extracción, sino que ésta es el resultado de la interacción de todas las restricciones operativas del nivel de producción y su relación con el sistema de manejo de mineral aguas abajo, además, se incorporó una política de tiraje acorde a las condiciones geométricas y de disposición de los Macro Bloques bajo al pit final del rajo

Un análisis de detalle del plan de largo plazo y corto plazo debe incorporar valores de los parámetros coherentes con las condiciones de diseño y operacionales de la faena para un horizonte de tiempo acorde con el detalle del análisis (que considere la disponibilidad y utilización de las frentes productivas, fragmentación de colpas, diseños mineros, operaciones de producción, mantenimiento y reparación de infraestructura, modelo de gestión y sistemas de turno, entre otros) y esto se traduce en la estimación de la capacidad productiva. Para estimar la disponibilidad y utilización se consideró lo siguiente:

i) Disponibilidad de Frentes Productivas

Se identificaron y evaluaron los requerimientos horarios de las principales actividades de mantenimiento, reparación y colapsos en los Macro Bloques que afectan en forma directa e indirecta a las frentes productivas del nivel de producción.

Actividades de Mantenimiento y Reparación: Se consideran las reparaciones de los puntos de extracción, las parrillas de vaciado, carpetas de rodado, piques de traspaso, silos de piques de traspaso y buzones alimentadores.

Colapsos: Se incorporan las estimaciones de pérdida de infraestructura minera realizadas en el estudio de Prefactibilidad.

ii) Utilización de Frentes Productivas

Es posible identificar y evaluar los requerimientos horarios de las principales actividades de operación, y pérdidas operacionales asociadas a las actividades de producción detalladas a continuación:

Actividades de Operación:

- Extracción-acarreo-vaciado del mineral mediante LHD de 9 yd³.
- Perforación de bolones con jumbos móviles.
- Carguío de explosivo de reducción secundaria.
- Reducción del sobre tamaño en parrillas de vaciado con matillos picadores móviles.

Pérdidas Operacionales:

- Limpieza carpeta de rodado.
- Reparación sistema de control de producción.
- Reparación y mantenimiento del sistema de drenaje.
- Muestreo de puntos de extracción.
- Inspecciones supervisión en calles de producción.
- Mediciones geomecánicas.
- Equipos en panne.
- Reparación de luminaria.
- Reparación de sistemas supresores de polvo en los puntos de vaciado.
- Tronaduras relevantes, tales como generación de bateas, socavación y preacondicionamiento del tipo Debilitamiento Dinámico con Explosivo DDE.
- Mantenimiento de sistemas de ventilación.

No disponibilidad del sistema Chancado-Correa Intermedia.

5.4.3 Política de extracción

La decisión de dónde extraer el mineral para cumplir la meta de producción puede verse bajo diferentes posibilidades. Dadas las características de diseño, leyes, presencia de la Falla Oeste, entre otros, se tiene que la política de extracción juega un rol relevante para la recuperación de mayores finos, comportamiento de la pared oeste y el punto de entrada de dilución.

Según informes técnicos (Codelco VP - PMCHS, 2011), se recomienda llevar una geometría cóncava del caving con un crecimiento avanzado cerca del centro, lo cual resulta favorable por las siguientes razones: Llevar retrasados los puntos del sector Oeste, cercano a la falla, evita una conexión temprana con la Falla Oeste en altura y llevar retrasados los puntos del sector Este, evita remover tempranamente el pie del talud Oeste y activar (desestabilizar) así el colapso de la pared Oeste.

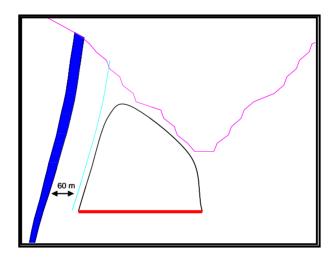


Figura 33 Geometría del caving con franja de seguridad de 60 [m] desde la falla oeste (Itasca & SRK, 2006).

6 MODELO CONCEPTUAL SIMULACIÓN

El modelo conceptual de simulación es una descripción del proceso modelado y se construye en función de la información y criterios recolectados durante el desarrollo del proyecto. Permite entender lo que se está simulando y definir los parámetros y metodología operativa dentro del alcance especificado.

El modelo de simulación fue desarrollado por la Vicepresidencia de Proyectos de CODELCO, mediante el software Promodel. Este es un modelo que contempla la simulación de los procesos en cada uno de los macro bloques del nivel 1841 y todo el sistema de Chancado y Correas respectivo.

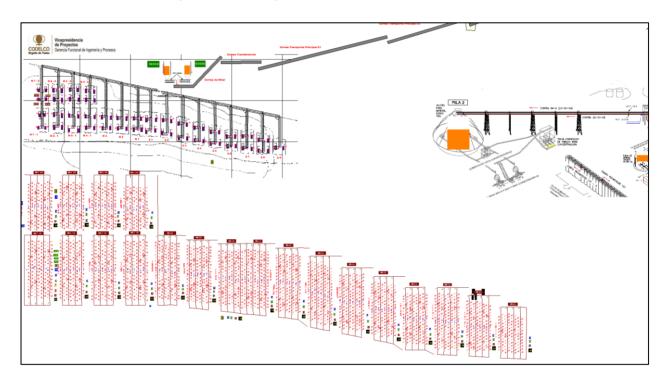


Figura 34 Vista del modelo de simulación.

Las operaciones de extracción y transporte de mineral en el nivel de producción incorporan los criterios de tráfico, asignación de tareas, operaciones de carga y descarga, incorporando los parámetros operacionales que rigen el qué hacer de los equipos LHD semiautónomos de 9 [yd³], reducción secundaria de jumbos y martillos fijos, y la cartilla de tiraje de cada Macro Bloque (MB).

Las operaciones de producción, representan el comportamiento en términos de magnitud y variabilidad del nivel de producción para cada Macro Bloque. Esta representación tiene la finalidad de determinar el nivel de cumplimiento para cada uno,

incorporando la interacción entre la producción, chancado primario y el transporte de minera.

El límite de batería está comprendido desde el Punto de extracción hasta que el mineral es entregado a la Planta fuera de la correa Overland (ver Figura 35).

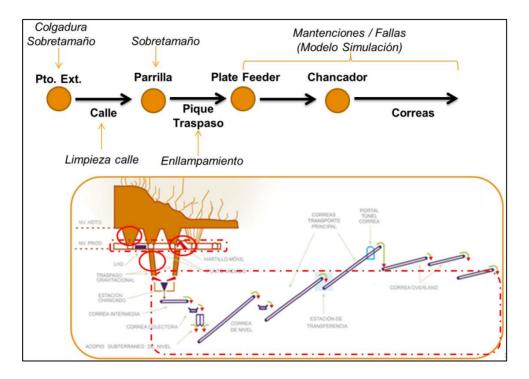


Figura 35 Componentes del Modelo y límite de batería del modelo.

Cada uno de los componentes del sistema presentará sus interferencias características. Tal como se muestra en la Figura 35 los componentes del sistema se verán expuestos a interferencias por:

- Punto de extracción: Colgaduras y Sobretamaño
- Calle (carpeta de rodado): limpieza de calles y cachorreo.
- Parrilla: Sobretamaño
- Pique de Traspaso: Enllampamiento/Trancadura
- Nivel de Transporte (Alimentador de Placas, Chancador, Correas, etc): fallas Operacionales y Mantenciones no programadas.

6.1 Parámetros Operacionales

La ingeniería básica del PMCHS definió ciertos parámetros que se definen como los del Caso Base para las simulaciones. Se tiene los siguientes parámetros operacionales:

Tabla 8 Parámetros del turno

Parámetro	Unidad	Valor
Pérdida Inicio de turno	h/Turno	0.77
Pérdida fin de turno	h/Turno	0.23
Colación	h/Turno	1
Pérdidas operacionales varias	h/Turno	0.5
Total pérdidas operacionales	h/Turno	2.5
Horas Operativas Turno	h	9.5
Duración Turno	h	12

Se tienen los siguientes parámetros para el equipo LHD:

Tabla 9 parámetros equipo LHD 9 [yd³]

Parámetro	Unidad	Valor
Tiempo de carga	minutos	0,55
Tiempo de descarga	minutos	0,22
Tiempo de maniobras	minutos	0,38
Velocidad máxima modo semiautomático	km/hora	12
Capacidad balde LHD	yd ³	9
Capacidad efectiva balde LHD	ton	10,4

Los tiempos asociados a las labores de reducción secundaria en los puntos de extracción, se muestran en la Tabla 10:

Tabla 10 Parámetros Tronadura Secundaria

MB	Unidad	Valor	
Tiempo de carguío explosivo por bolón	min/bolón	2,5	
Tiempo de traslado entre carguío de bolones	min/bolón	2,5	
Bolones reducidos por quemada	Bolones/Quemada	12	
Tiempo de carguío explosivo por quemada	min/quemada	30	
Tiempo evacuación y reingreso	min/coordinación-ventilación	10	
Carquío de bolones en media hora y 10 minutos para evacuar la frente			

Adicionalmente se consideran dos restricciones operacionales para el proceso de carguío de explosivo por condiciones de seguridad:

- a) Se inhabilitan las frentes productivas adyacentes y que pertenezcan a la misma calle de producción.
- b) Durante el primer año de extracción de los MB's, se estima que existe la posibilidad de la presencia de bolones de mayor tamaño, los cuales pueden quedar colgados en altura, provocando con ello restricciones respecto a la extracción de las frentes productivas de las calles de producción contiguas. Por lo anterior, durante este período se aplican restricciones de carguío de explosivos y extracción con LHD en las frentes aledañas tal como se muestra en la siguiente figura. (En promedio corresponde a inhabilitar 3,5 frentes en el caso de MB's con 8 frentes).

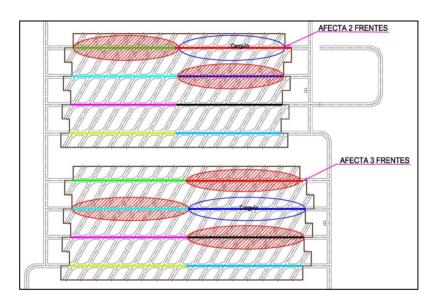


Figura 36 Frentes aledañas Caso 8 Frentes Productivas.

La reducción secundaria en los puntos de extracción se realiza cuando el 70% de los puntos de extracción han quedado no disponibles para la extracción de mineral.

Por otro lado los rendimientos y capacidades definidas para el nivel de transporte, se detallan a continuación:

i) Chancadores

Tabla 11 Listado de equipos y capacidades de diseño Chancadores.

Descripción	Capacidad de Diseño	Unidad
Alimentador de Placa Reciprocante	800	tph
Chancador de Mandíbula	800	tph

ii) Transporte Intermedio

Tabla 12 Listado de equipos y capacidades de diseño, transporte intermedio

Descripción	Capacidad de Diseño	Unidad	Comentario
Correa de Sacrificio	1.000	tph	-
Correa Intermedia	1.000	tph	1 Descarga (1 correa de sacrificio asociada)
Correa Intermedia	2.000	tph	2 Descarga (2 correa de sacrificio asociada)
Correa Intermedia	4.000	tph	4 Descarga (4 correa de sacrificio asociada)
Correa Colectora Norte	5.807	tph	-
Correa Colectora Sur	5.235	tph	-
Correa Reversible	5.807	tph	-

iii) Sistema de acopio subterráneo

Tabla 13 Listado de equipos y capacidades de diseño, acopio subterráneo

Descripción	Capacidad de Diseño	Unidad
Silos de Acopio de Nivel	6.500 c/u	Ton. vivas
Alimentador de Correa (c/u)	11.000	tph

iv) Transporte de nivel

Tabla 14 Listado de equipos y capacidades de diseño, transporte de nivel

Descripción	Capacidad de Diseño	Unidad
Correa de Nivel 1	11.000	tph
Correa de Nivel 2	11.000	tph
Correa de Nivel 3-1	11.000	tph
Correa de Nivel 3-2	11.000	tph
Correa de Nivel 4-1	11.000	tph
Correa de Nivel 4-2	11.000	tph

v) Transporte principal subterráneo

Tabla 15 Listado de equipos y capacidades de diseño, transporte principal subterráneo.

Descripción	Capacidad de Diseño	Unidad
Correa Transporte Ppal. Subterráneo 1	11.000	tph
Correa Transporte Ppal. Subterráneo 2	11.000	tph

vi) Transporte de superficie

Tabla 16 Listado de equipos y capacidades de diseño, transporte principal de superficie

Descripción	Capacidad de Diseño	Unidad
Correa Overland	11.000	tph
Silo	1.000	Ton. vivas
Alimentador de Correa (c/u)	11.000	tph

6.2 Granulometría

La Frecuencia de Colgaduras/Sobretamaños en el Punto de Extracción y la Frecuencia de Sobretamaños en el Punto de Vaciado, fueron determinadas según los estudios de las curvas granulométricas y sus dimensiones de corte (ver sección 5.2.1 Estimación sobretamaño).

En la sección ANEXO D: Modelo Conceptual es posible ver con la caracterización de la frecuencia de aparición de evento de colgadura y sobretamaño característico para los componentes del Punto de Extracción (Sobre 1.18 m³) y el sobretamaño en el punto de vaciado (Bolón en la Parrilla, Entre 0.77-1.18 m³). Cada macro bloque puede ser caracterizado debido a esta información.

6.3 Mantenciones y Fallas

Las mantenciones de los equipos del nivel productivo son aquellas que se explican más adelante en la sección 6.3.2 Simulación Mina integrada. Por otro lado, las fallas para el nivel de chancado y transporte por correas, están definidas por las funciones de falla descritas el ANEXO C: Análisis de Vulnerabilidades, sección 12.3.4 Mantenibilidad. El programa de mantenciones esta dado mensualmente por una programación como la que se muestra en ANEXO D: Modelo Conceptual, en la sección 12.4.3 Programa de Mantenciones. Estas definiciones fueron determinadas por la Ingeniería Básica del PMCHS. Se realizará dos pasos de estudio, un primer paso consiste en el diagnóstico de varios escenarios de sensibilización a nivel de un Macro Bloque, para posteriormente realizar la simulación de todo el primer nivel de la Mina integrada, es decir, tanto el Nivel productivo como el Nivel de Transporte.

6.3.1 Diagnóstico a escala de Macro Bloque

El Macro Bloque escogido para realizar la simulación de diagnóstico fue el MB 5-1 el cual presenta una largo de 311,8 [m] entre Oeste a Este y un ancho de 128 [m] de Norte a Sur, además tiene una superficie de 39.698 [m²].

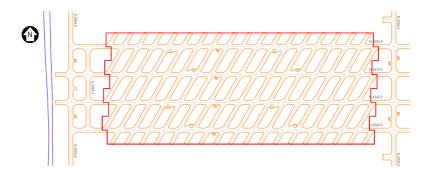


Figura 37 Vista Planta MB5-1.

Estas simulaciones tienen el objetivo de estudiar el impacto de los parámetros que se muestran en la Tabla 17, sobre la productividad a nivel de un Macro Bloque. Se sensibilizan dos características para cada parámetro, pues estos actúan directamente sobre alguna de las componentes del sistema minero. Particularmente se intervienen el punto de extracción y el punto de vaciado. Los escenarios a simular se muestran en la Tabla 17.

La sensibilización del área colapsada tiene diseñado cuatro escenarios (5%, 15%, 25% y 50%), donde se comienza a incrementar el porcentaje del área de colapso geomecánico. La implementación de este porcentaje de área colapsada que no estará disponible, se realiza mediante el cierre de puntos de extracción siguiendo una orientación desde el oeste hacia el este. Esta estrategia de cierre de puntos para el escenario en estudio, se debe porque los estudios respecto a la potencial ocurrencia de colapsos indicaban a esta zona como la de mayor vulnerabilidad (Codelco VP - PMCHS, 2012).

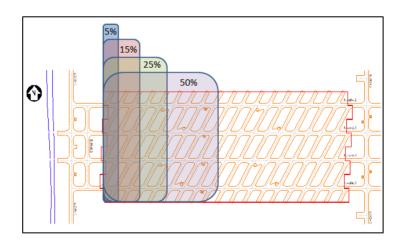


Figura 38. Estrategia de cierre de puntos de extracción par el área colapsada.

Tabla 17 Escenarios para simulación de diagnóstico.

Parámetros	Escenario	Valor	unidad	
		23		
		34		
	Tiempo reducción secundaria	45	[min]	
		56		
		68		
		3		
Reducción Colgaduras/Sobretamaño		6		
en Puntos de Extracción		12		
	Frecuencia de	19	[haldes/	
	Colgaduras/Sobretamaños	24	[baldes/ evento]	
	colgudarus) sobretamanos	29	Cventoj	
		36		
		150		
		250		
		1		
	Tiempo operación martillo	2	[min]	
Reducción Sobretamaño en Punto de		3		
Vaciado		38	[toneladas/co	
	Frecuencia sobretamaño parrilla	75	[[torieradas/co	
		125	ipa]	
Flota LHD	Configuración de equipos LHD	1 a 8	[#]	
		5	%	
Área Colapsada	Área Colapsada del Macro Bloque	15		
Ai ca colapsada	74 ca companda del Macro Bioque	25		
		50		

6.3.2 Simulación Mina integrada

La simulación de la Mina Integrada considera los parámetros base mencionados en este capítulo. La simulación se realiza para dos años durante la producción en régimen del nivel 1841, estos son el año 2027 y el 2028.

La Mantenibilidad es una característica inherente al diseño de un sistema, relacionada con la facilidad, la oportunidad, la seguridad y la economía para realizar las tareas de mantenimiento, durante la operación de la instalación. La Mantenibilidad es función del tiempo Medio Para Reparar (TMPR).

Cada uno de los componentes del sistema minero, tanto del Nivel de producción como el Nivel de Transporte tienen incorporado aspectos de Mantención Planificada y fallas inherentes a las componentes.

Los equipos del Nivel de Chancado y Transporte presentan interacción con el Nivel Productivo, por ende, el sistema minero interactúa en conjunto.

A continuación se abarcan los equipos mayores que participan en el proceso productivo del PMCHS desde que el Nivel de Producción entrega el material a los pique de traspaso. Es decir, los equipos que se describen dentro de este límite son:

- Alimentador de Placas
- Chancadores de Mandíbulas
- Correas de sacrificio
- Correas Intermedias
- Correas colectoras Norte y Sur
- Alimentadores de Correa en descarga de Silos
- Correas de Nivel
- Correa de Transferencia
- Correas Principal, tramo 1 y 2.
- Correa Overland

El detalle completo de las Fallas Operacionales y Mantenciones no programadas de todos los componentes descritos están en la sección "ANEXO C: Análisis de Vulnerabilidades: 12.3.4 Mantenibilidad".

El nivel productivo considera mantenciones programadas y criterios de falla frente a los cuales hay que realizar la reparación de la componente. De esta forma se tendrá una menor Disponibilidad de Frente Productiva.

En la sección "5.4.2 Capacidad Productiva de los Macro Bloques" se describieron algunas de las principales actividades consideradas. En la Tabla 18 es posible ver los parámetros y sus criterios más importantes del nivel productivo

Tabla 18 Parámetros y criterios de Reparaciones y Mantenciones de la Infraestructura Minera

ACTIVIDAD	DESCRIPCION	% DE COLAPSO	FRECU VALOR	JENCIA UNIDAD	DURA VALOR	ACIÓN UNIDAD
Mantenimiento	Reparación Puntos de Extracción	COLAFSO	100	kton	7	días
Nivel de	Reparación Parrillas de Vaciado		400	kton	14	días
Producción	Reparación Carpetas de Rodados		1.000	kton	15	días
Mantenimiento	Reparación Piques de traspaso		2.000	kton	30	días
Sistema de Traspaso	Reparación Buzones alimentador		1.500	kton	7	días
Colapsos Geomecánicos	Nivel 1841	6,30%				

El plan de producción objetivo o target para los años 2007 y 2008 en toneladas secas se muestra en la Tabla 19.

Tabla 19. Plan de producción años 2027 y 2028 Ingneiería Básica PMCHS.

Producción Plan		2027	2	2028
Ingeniería Básica	Producción seca [tpd]	Producción humeda [tpd]	Producción seca [tpd]	Producción humeda [tpd]
Mes1	150,737	156,766	145,141	150,947
Mes2	151,227	157,276	145,001	150,801
Mes3	151,184	157,231	144,053	149,815
Mes4	149,199	155,167	142,539	148,241
Mes5	146,985	152,865	147,446	153,344
Mes6	133,741	139,091	146,262	152,113
Mes7	125,167	130,174	146,699	152,567
Mes8	120,516	125,337	147,263	153,154
Mes9	121,607	126,472	117,919	122,635
Mes10	122,486	127,386	118,615	123,359
Mes11	122,610	127,515	119,311	124,083
Mes12	122,244	127,133	119,946	124,744
Promedio Anual	134,809	140,201	136,683	142,150

La flota de equipos LHD para los años 2027 y 2028, al igual que el porcentaje de Área Potencial de Colapso, según el estudio de Potencial ocurrencia de Colapsos (Codelco VP - PMCHS, 2012),se muestran en ANEXO D: Modelo Conceptual.

7 RESULTADOS SIMULACIONES

A continuación se presentaran los resultados de las simulaciones en dos grandes grupos, el primero referido a los resultados de las simulaciones realizadas a nivel de un solo Macro Bloque, y el otro, correspondiente a los resultados de la simulación de la mina integrada.

7.1 Simulación de Diagnóstico para un Macro Bloque

Los siguientes resultados muestran la información de las simulaciones para el Macro Bloque N5-1, sometido al efecto de las sensibilizaciones antes descritas para la reducción secundaria en el punto de extracción y reducción secundaria en la parrilla del pique de traspaso.

Las siguientes figuras presentan los resultados para dos casos según cada configuración de flota de equipos LHD, una representa los resultados considerando las fallas y mantenciones programadas del nivel de chancado y correas, y la otra no tiene el efecto de estas. A modo de simplificación, desde ahora se referirá a M&FNT, para nombrar a las Mantenciones & Fallas del Nivel de Transporte (es decir, las mantenciones y fallas del nivel de transporte y chancado). Las fallas y mantenciones propias del nivel de producción se mantienen según el caso base del modelo de simulación.

7.1.1 Reducción Secundaria en el Punto de Extracción

Los parámetros que se analizaron sobre el punto de extracción son:

i) Efecto Frecuencia de Colgaduras/Sobretamaño

La frecuencia de colgaduras media para el caso base del MB N5-1 es de 24 [baldes/evento], definiendo que el evento es una colgadura o un sobretamaño que requiere reducción secundaria en el punto de extracción. Este parámetro se sensibilizó en total para 9 escenarios: Colgaduras Media de 3, 6, 12,19, 24, 29, 36, 150 y 250 [baldes/evento] con sus respectivas distribuciones mostradas en el modelo de simulación. En la Figura 39 se muestra el resultado de sensibilizar con los parámetros antes mencionados.

La Figura 40 muestra los resultados en como varia el tiempo de ciclo al sensibilizar la frecuencia de colgaduras y/o sobretamaño en los puntos de extracción.

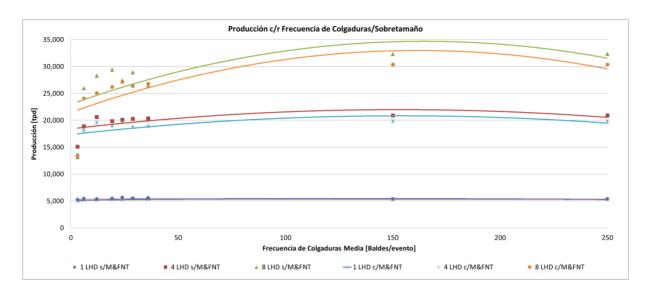


Figura 39. Producción sensibilizando la frecuencia de colgaduras.

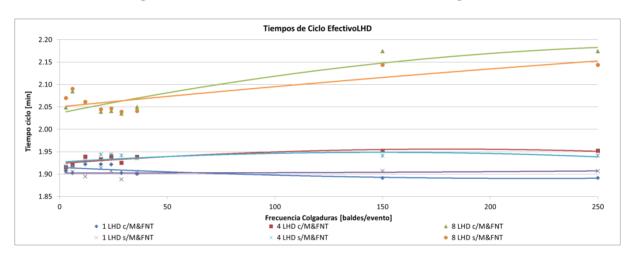


Figura 40. Tiempo de ciclo efectivo LHD sensibilizando la frecuencia de colgaduras

ii) Efecto del Tiempo de Reducción Secundaria

El tiempo que es necesario para que la cuadrilla realice el proceso completo de reducción secundaria según el Caso Base del MB 5-1 es de 45 [min], definiendo que este es el tiempo total necesario para hacer todas las operaciones de reducción secundaria para la colgadura o sobretamaño en el punto de extracción (Tiempo traslado cuadrilla, tiempo carga explosivos, tiempo quemada, evacuación y egreso). Este parámetro se sensibilizó en total para 5 escenarios, para tiempos de reducción secundaria de 23, 34, 45, 56 y 68 [min] con sus respectivas distribuciones mostradas en el modelo de simulación. Cada caso muestra los resultados bajo el escenario de 1, 4 y 8 equipos LHD funcionando en el MB. A continuación se muestran los resultados en la producción (ver Figura 41) y tiempo de ciclo (ver Figura 42), al sensibilizar el tiempo de la reducción secundaria.

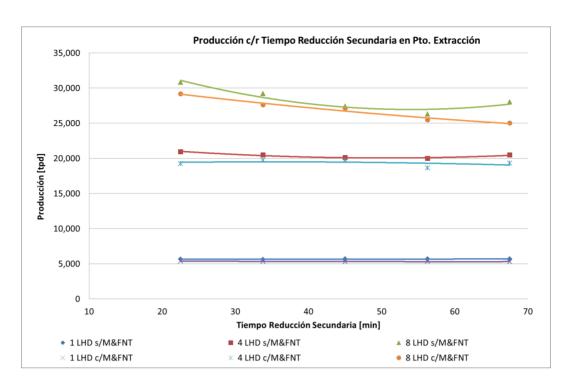


Figura 41. Producción sensibilizando el tiempo de reducción secundaria en puntos de extracción.

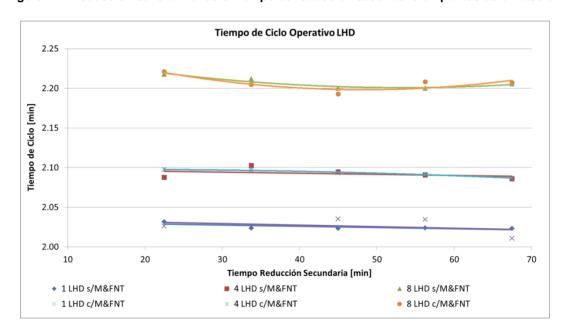


Figura 42.Tiempo de ciclo operativo sensibilizando el tiempo de reducción secundaria en puntos de extracción.

7.1.2 Reducción Secundaria en Parrilla

Los parámetros que se analizaron para sensibilizar en la componente del Punto de Vaciado (Parrilla y Martillo picador) son:

i) Efecto Frecuencia de Sobretamaño

La frecuencia de colgaduras media para el Caso Base del MB N5-1 es de 75 [ton/colpa], definiendo que el evento es la aparición de un sobretamaño que requiere reducción secundaria del martillo picador en el punto de vaciado. Este parámetro se sensibilizó en total para tres escenarios, siendo estos para sobretamaños medios de 38, 75 y 125 [ton/colpa] con sus respectivas distribuciones mostradas en el modelo de simulación. Cada caso muestra los resultados bajo el escenario de 1, 4 y 8 equipos LHD funcionando en el MB.

A continuación se muestran los resultados en la producción (ver Figura 43) y tiempo de ciclo (ver Figura 44), al sensibilizar el tiempo de la frecuencia de sobretamaño en el punto de vaciado.

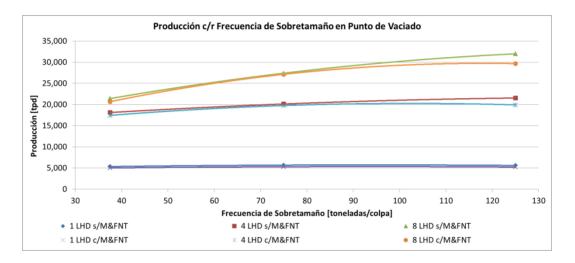


Figura 43. Producción sensibilizando la Frecuencia de Sobretamaño en el punto de vaciado.

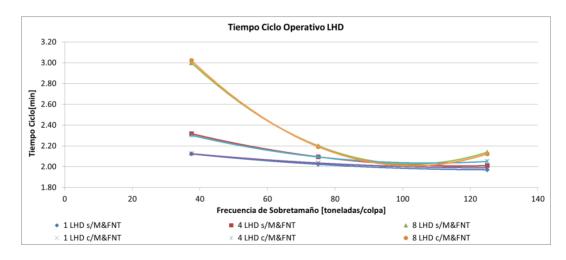


Figura 44. Tiempo ciclo operativo sensibilizando la Frecuencia de Sobretamaño en el punto de vaciado.

ii) Efecto Tiempo de Reducción Secundaria Martillo

El tiempo de reducción secundaria que es necesario para que el martillo opere en el Caso Base del MB N5-1 es de 2 [min], definiendo que este es el tiempo para que el martillo realice la conminución de la colpa y permita el libre flujo por la parrilla del punto de vaciado. Este parámetro se sensibilizó en total para tres escenarios, para tiempos de reducción secundaria de 1, 2 y 3 [min] con sus respectivas distribuciones mostradas en el modelo de simulación. Cada caso muestra los resultados bajo el escenario de 1, 4 y 8 equipos LHD funcionando en el MB.

A continuación se muestran los resultados en la producción (ver Figura 45) y tiempo de ciclo (ver Figura 46), al sensibilizar el tiempo de la frecuencia de sobretamaño en el punto de vaciado.

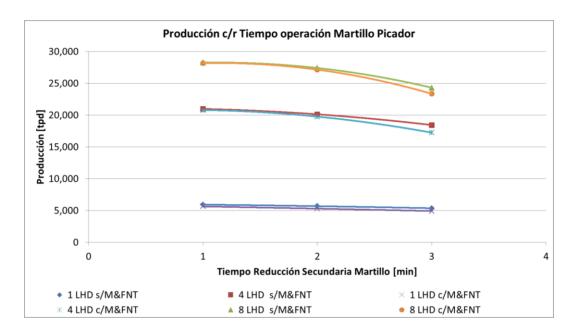


Figura 45. Producción sensibilizando el tiempo de reducción secundaria del martillo.

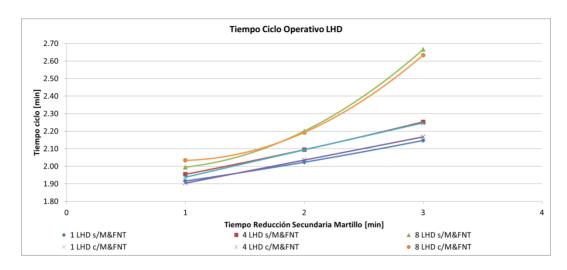


Figura 46. Tiempo de ciclo operativo sensibilizando el tiempo de reducción secundaria del martillo.

7.1.3 Número de Flota LHD

Mediante la simulación de los escenarios al sensibilizar el número de equipos LHD en el MB, es posible ver el efecto y la interacción que tiene el hecho de ir incorporando un equipo más, o bien, retirar un equipo de la flota ya designada para el Macro Bloque.

A continuación (ver Figura 47) se muestra el resultado de las simulaciones variando el número de equipos LHD, expresado en los casos con Mantenciones & Fallas del Nivel de Transporte y chancado (c/ M&FNT), y también sin dicha influencia (s/ M&FNT).

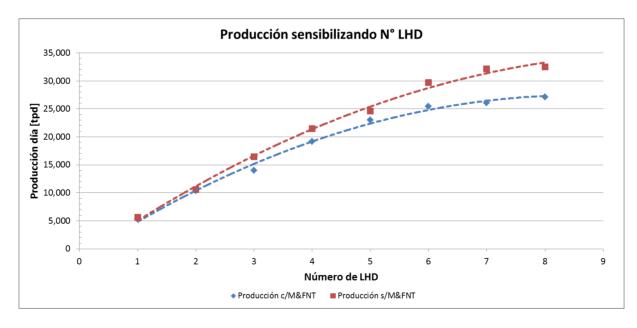


Figura 47 Producción bajo la sensibilización de la flota de equipos LHD.

7.1.4 Área Colapsada

Uno de los aspectos críticos que pueden influir en el cumplimiento del plan de producción es la eventual ocurrencia de colapsos geomecánicos. A continuación se exponen los resultados para el estudio de sensibilizar cuatro escenarios de colapso. En cada uno se asumió cierto porcentaje de Área Colapsada (AC) para el Macro Bloque en estudio: 5%, 15%, 25% y 50%. Para posteriores análisis es importante destacar que bajo el escenario de 50% del área colapsada se tiene solamente cuatro sub-calles disponibles para operar. En esta simulación se consideró el nivel productivo integrado con el nivel de transporte y chancado, es decir, bajo los efectos de mantenciones, rendimiento del nivel de transporte, fallas, etc.

En la Figura 48 es posible ver las productividades que se tienen bajo los distintos escenarios de porcentaje de área colapsada en el Macro Bloque.

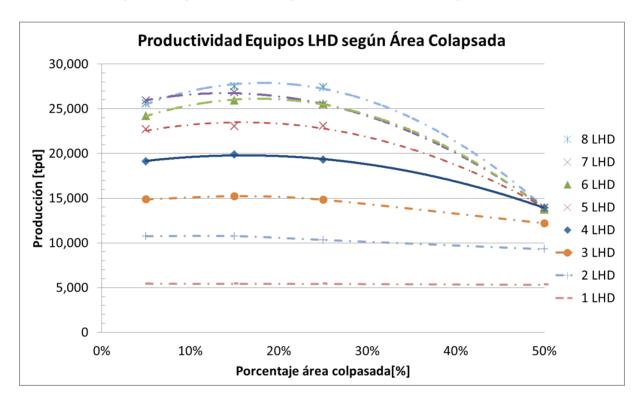


Figura 48 Producción sensibilizando el área colapsada.

De la misma forma en la Figura 49 y Figura 50, es posible ver el comportamiento que arrojan las simulaciones para el rendimiento y horas operativas de LHD, según los distintos escenarios de porcentaje de área colapsada y sensibilidad de equipos LHD.

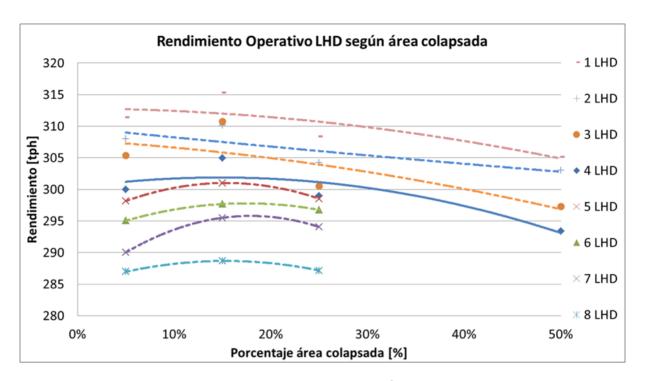


Figura 49 Rendimiento Efectivo, Caso Área Colapsada

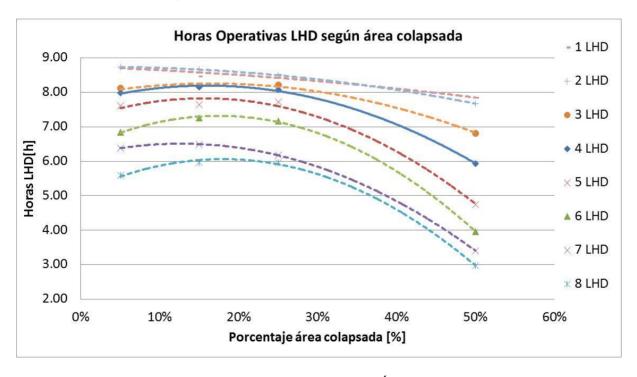


Figura 50 Horas Efectivas LHD, Caso Área Colapsada

En la Figura 51 y Figura 52 se puede apreciar los rendimientos operativos para los equipos LHD en los distintos escenarios de área colapsada.

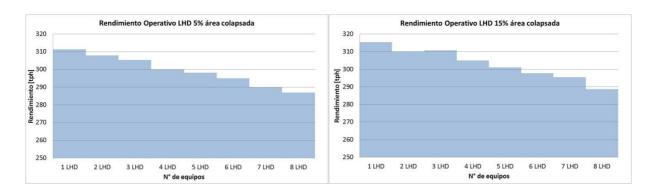


Figura 51. Rendimiento operativo LHD para 5% y 15% área colapsada.

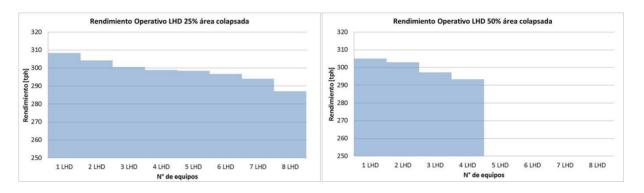


Figura 52. Rendimiento operativo LHD para 25% y 50% área colapsada.

7.2 Simulación Mina Nivel integrado

Luego de realizar las simulaciones a modo de diagnóstico para el Macro Bloque N5-1, es posible tener nociones de la influencia de los parámetros estudiados sobre el cumplimiento del plan de producción. Para lograr integrar el efecto de todas las variables sobre el plan de producción, a continuación se entregan los resultados de las simulaciones de doce meses para los años 2027 y 2028, para los cuales se elaboraron dos simulaciones en cada año.

En la Figura 53 es posible ver las curvas de producción diaria para los doce meses simulados, en los años 2027. La Producción Promedio de las simulaciones realizadas fue de 134.547 [ton/día], los otros resultados operacionales es posible verlos en la Tabla 20.

Tabla 20. Resumen índices operativos simulación integrada.

		2027			2028		Promedio
	Sim1	Sim2	Sim3	Sim1	Sim2	Sim3	Simulaciones
Producción [tpd]	135,441	133,427	134,387	134,412	134,321	135,294	134,547
Rendimiento Operativo LHD [tph]	305	304	304	303	303	303	304
Rendimiento Efectivo LHD [tph]	354	354	325	358	356	329	346
Hras. Operativas LHD [h]	7.7	7.6	6.1	7.6	7.6	7.5	7.3
Hras. Efectivas LHD [h]	6.7	6.6	5.4	6.4	6.4	6.9	6.4
Tiempo Ciclo Operativo LHD [min]	2.1	2.0	2.2	2.1	2.1	2.0	2.1
Tiempo Ciclo Efectivo LHD [min]	1.8	1.8	2.0	1.8	1.8	1.9	1.8

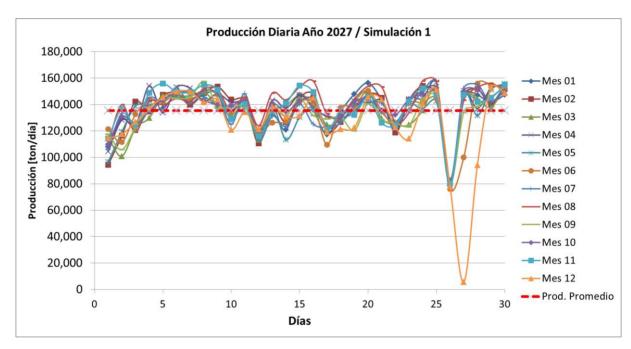


Figura 53. Producción Diaria, curvas mensuales para simulación 1, Mina Integrada Año 2027

La figura anterior muestra los resultados de producción día para los doce meses de forma paralela, esto permite ver ciertos comportamientos a una escala mensual. También se muestran los resultados de la producción mina integrada para el año 2027 y 2028, pero agrupados en una sola curva, para ver la visión anual de la producción (ver Figura 54 y Figura 55). En las curvas se indican los promedios anuales de las simulaciones respectivas.

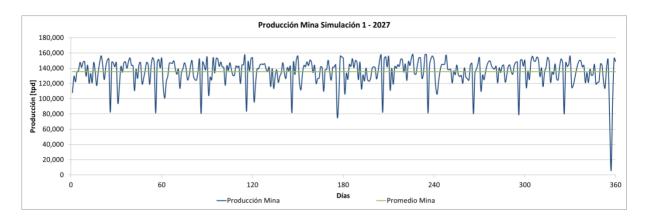


Figura 54. Producción Mina Integrada, Simulación 1, año 2027.

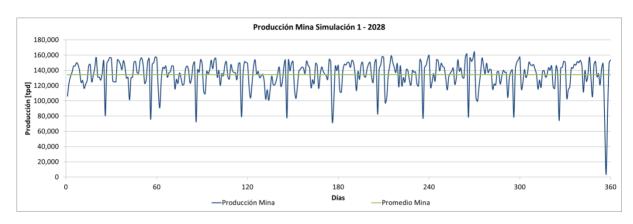


Figura 55. Producción Mina Integrada, Simulación 1, año 2028.

8 ANÁLISIS DE LAS SIMULACIONES

8.1 Análisis Diagnóstico Macro Bloque

A continuación se expone el análisis de los resultados para las simulaciones de los escenarios estudiados.

8.1.1 Sensibilización Reducción Secundaria Punto de extracción

En estas sensibilizaciones se estudió las configuraciones de 1, 4 y 8 equipos LHD. Se debe tener en consideración que según el plan de producción de Ingeniería Básica, en ningún Macro Bloque se tiene asignado más de 4 equipos LHD.

i) Efecto Frecuencia de Colgaduras/Sobretamaño

Para analizar el efecto que tiene la frecuencia de colgaduras sobre la producción del Macro Bloque se tiene una ilustración comparativa en la Figura 56, donde se colocan en paralelo la producción del Caso Base (CB) y la producción en los escenarios al sensibilizar la variable ya mencionada. Es interesante ver que para la frecuencia del CB de 24 [baldes/evento], no se muestran grandes diferencias para las configuraciones de equipos LHD simuladas (ver Tabla 21). Según las estimaciones y la comparación mostradas en la Figura 56, aproximadamente bajo los 60 [baldes/evento] (ver línea discontinua vertical azul) se tiene que la influencia de la periodicidad con que ocurre un evento de colgadura afecta negativamente sobre la producción, mostrando producciones menores a las del CB. Por otro lado, sobre esta frecuencia de 60 [baldes/evento] se comienza a tener un efecto de aumentar la producción del MB con respecto al CB, debido a la menor interferencia que se provoca en el punto de extracción.

Tabla 21. Diferencia de producción entre Caso Base v/s Frecuencia de Colgaduras y Sobretamaños

Diferencia de Producción [tpd]							
Frecuencia Colgadura Media[baldes/evento]	1 LHD	4 LHD	8 LHD				
3	319	5,978	16,552				
6	116	1,796	4,804				
12	152	206	3,147				
19	13	898	2,008				
24	-45	365	2,554				
29	-27	796	2,192				
36	-53	688	3,202				
150	66	-59	-1,535				
250	66	-59	-1,535				

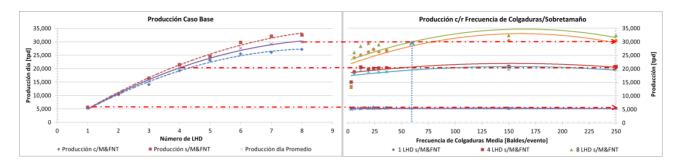


Figura 56. Comparación Caso Base v/s Frecuencia de Colgaduras y Sobretamaños.

Particularmente en las configuraciones de 1 y 4 equipos LHD, no presentan grandes diferencias entre el CB y las producciones sensibilizando la frecuencia de colgaduras, pero cabe destacar que en el caso de 4 LHD la frecuencia de 3 [baldes/evento] muestra un efecto que es importante si persiste en un periodo largo de tiempo. Es en la configuración de 8 LHD donde se muestran las diferencias más acentuadas, tanto para el efecto de disminuir o aumentar la producción. Esto permite identificar que configuraciones entre 4 y 8 equipos LHD tengan efectos más marcados frente a la variabilidad de la frecuencia con que ocurran colgaduras y/o sobretamaños.

ii) Efecto del Tiempo de Reducción Secundaria

Para analizar el efecto que tiene el tiempo de reducción secundaria sobre la producción del Macro Bloque, se tiene una ilustración comparativa en la Figura 57, donde se colocan en paralelo la producción del Caso Base (CB) y la producción en los escenarios al sensibilizar la variable ya mencionada. No se evidencia que al demorar más de 45 minutos, es decir el tiempo diseñado para el CB con la finalidad de realizar la reducción secundaria por la cuadrilla, se tenga un efecto negativo muy notorio sobre la producción. Al analizar la configuración de 4 LHD, es posible notar que ninguna diferencia en la sensibilización es superior a las 1.000 [tpd] (ver Tabla 22). Solamente sobre 8 equipos LHD se tiene producciones menores que las del CB, el mayor déficit es 3.941 [tpd] y ocurre con 56 minutos para realizar la actividad de reducción secundaria.

Tabla 22. Diferencia de producción entre Caso Base v/s Tiempo de Reducción Secundaria.

Diferencia de Producción [tpd]							
Tiempo reducción secundaria[min]	1 LHD	4 LHD	8 LHD				
23	-81	195	-178				
34	-37	182	1,420				
45	-45	365	2,554				
56	-74	988	3,941				
68	-45	397	3,292				

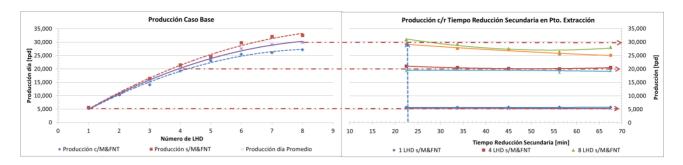


Figura 57. Comparación Caso Base v/s Tiempo de Reducción Secundaria.

8.1.2 Sensibilización Reducción Secundaria en Punto de Vaciado

En estas sensibilizaciones también se estudió las configuraciones de 1, 4 y 8 equipos LHD. Se debe tener en consideración que según el plan de producción de Ingeniería Básica, en ningún Macro Bloque se tiene asignado más de 4 equipos LHD. Cualquier configuración superior a 4 equipos LHD sería posible bajo algún caso particular o contingencia.

i) Efecto Frecuencia de Sobretamaño

Para analizar el efecto que tiene la frecuencia de sobretamaño del punto de vaciado, sobre la producción del Macro Bloque, se tiene una ilustración comparativa en la Figura 58, donde se colocan en paralelo la producción del Caso Base (CB) y la producción en los escenarios al sensibilizar la variable ya mencionada. Al ver la Tabla 23, donde se muestran las diferencias en producción entre el CB y la sensibilización de la variable, es posible ver que para la configuración de 1 LHD no existen grandes diferencias, la configuración de 4 LHD presenta una diferencia marcada en la frecuencia de 38 [ton/colpa]. Para la configuración de flota antes mencionada, se identifica que bajo las 80 [ton/colpa], la variable analizada comienza a afectar negativamente en la producción. Por otro lado, para los 8 equipos LHD se estima que el punto crítico es de las 100 [ton/colpa], bajo esta frecuencia de sobretamaño las interferencias en el punto de vaciado son tales que impactan significativamente la producción con dicha flota.

Tabla 23. Diferencia de producción entre Caso Base v/s Frecuencia de Sobretamaño.

Diferencia de Producción [tpd]							
Frec. Media Sobretamaño [ton/colpa]	1 LHD	4 LHD	8 LHD				
38	273	2,538	8,794				
75	-45	365	2,554				
125	28	-421	-999				

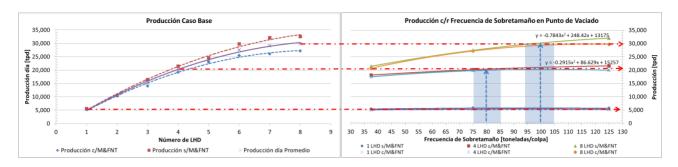


Figura 58. Comparación Caso Base v/s Frecuencia de Sobretamaño en Punto de Vaciado

Al analizar la configuración de 8 equipos LHD en la Tabla 23 y su figura correspondiente, se aprecia que allí ocurre el efecto más importante. Generando el descenso de la producción con respecto al CB, con diferencias cercanas a las 9.000 [tpd] para las 38 [ton/colpa]. Se tiende a pensar que alguna configuración intermedia entre los 4 y 8 LHD podría mostrar producciones menores a las del CB si las frecuencias oscilan entre los 80 y 100 [ton/colpa], siendo esto consecuencia de la mayor periodicidad de interferencias operacionales en los puntos de vaciado.

ii) Efecto Tiempo de Reducción Secundaria Martillo

Para analizar el efecto que tiene el tiempo de reducción secundaria del martillo picador en el punto de vaciado, sobre la producción del Macro Bloque. Para esto se tiene una ilustración comparativa en la Figura 59, donde se colocan en paralelo la producción del Caso Base (CB) y la producción en los escenarios al sensibilizar la variable ya mencionada. Analizando la Figura 59 y la Tabla 24, posible ver que con 1 LHD la influencia de la sensibilización del tiempo de operación del martillo no es significativa. Para la configuración de 4 equipos LHD, se tiene que al disminuir aproximadamente del 1,5 [min] de operación de martillo para la labor de reducción secundaria en el punto de vaciado, se tiene un efecto positivo aumentando la producción, aunque es en un incremento muy bajo. Por otro lado, la configuración de 8 LHD presento producciones menores a las del CB para las sensibilizaciones del tiempo de operación del martillo, estas diferencias van desde las 1.627 [tpd] para 1 [min] de operación, hasta las 5.998 [tpd] para los 3 [min] de operación.

Tabla 24. Diferencia de producción entre Caso Base v/s Tiempo reducción secundaria martillo.

Diferencia de Producción [tpd]							
Tiempo Operación Martillo [min]	1 LHD	4 LHD	8 LHD				
1	-339	-576	1,627				
2	-45	365	2,554				
3	309	2,469	5,998				

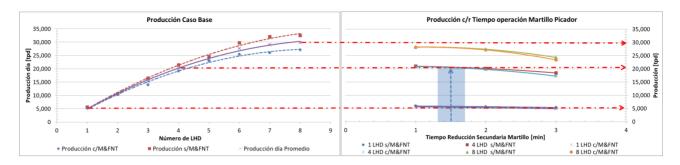


Figura 59. Comparación Caso Base v/s Tiempo de Reducción Secundaria Martillo.

8.1.3 Sensibilización Número de Flota LHD

Los resultados de esta sensibilización se utilizaran más adelante como Caso Base (CB), para compararlos con otras sensibilizaciones o escenarios, debido a que esta simulación sensibilizó la flota de equipos LHD manteniendo las otras variables según el diseño del modelo de simulación. Cabe destacar, que para estudiar la influencia de las mantenciones y fallas del nivel del chancado y transporte, es decir, aguas abajo del pique de traspaso del Nivel Productivo, se realizó la sensibilización del número de LHD para dos escenarios: 1) Considerando el efecto de mantenciones y fallas del nivel de transporte y chancado (c/M&FNT), y 2) Otro sin considerar dicho efecto (s/M&FNT).

En la Tabla 25 es posible ir comparando el aporte que realiza el hecho de ir incorporando un equipo LHD más al nivel productivo. Tanto para el escenario que considera la influencia aguas abajo del Pique de Traspaso (c/M&FNT) y a la vez bajo el escenario que no considera esta influencia (s/M&FNT), se tiene que el mayor aporte diferencial por cada equipo LHD en operación es bajo el caso que solo existe 1 equipo LHD en el MB, es hace pensar la directa influencia en las interferencias que se generan al ir incorporando un equipo más al nivel productivo del MB.

Tabla 25. Resumen del análisis de los distintos escenarios y sensibilizaciones, Caso N° LHD.

N° Equipos LHD	1 LHD	2 LHD	3 LHD	4 LHD	5 LHD	6 LHD	7 LHD	8 LHD
Producción día c/ M&FNT [ton]	5,283	10,350	13,997	19,164	22,983	25,471	26,046	27,137
Producción día s/ M&FNT [ton]	5,586	10,562	16,451	21,430	24,566	29,724	32,107	32,498
Producción día Promedio [ton]	5,435	10,456	15,224	20,297	23,775	27,598	29,077	29,817
Porcentaje de diferencia	5.4%	2.0%	14.9%	10.6%	6.4%	14.3%	18.9%	16.5%

En la Tabla 25 se calcula la Producción día Promedio, la que corresponde al promedio de las producciones con y sin M&FNT. Esta media permite representar de una forma intermedia el efecto de las mantenciones y fallas del nivel de transporte y chancado. En base a los resultados de la tabla es posible ver que la influencia de las mantenciones y fallas del nivel de transporte y chancado, tienen mayor efecto a medida que se aumenta el número de equipos LHD, mostrando variaciones en la producción del MB desde el 2,0% al 18,9%.

Al considerar la Producción día Promedio y dividirla por la flota de equipos LHD correspondiente, se obtiene los aportes de producción que realiza cada LHD según la flota de equipos que se esté analizando (ver Tabla 26). Es posible considerar estos valores como los aportes estimados que se pueden obtener al incorporar un equipo LHD más a la flota del MB, para cada caso en el que se encuentre. Es interesante analizar, por ejemplo, que para un MB en régimen que presenta 4 equipos LHD operando, si se desea incorporar un equipo más a su nivel productivo, el incremento estimado sería de aproximadamente de 4.755 [tpd]. Teniendo solamente aporte por sobre los 5.000 [tpd] cuando se tiene 1,2 ó 3 equipo LHD. Este aporte que se puede obtener es claramente decreciente a medida que se tienen más equipos operando en el nivel productivo del Macro Bloque.

Tabla 26. Aporte en producción al incorporar equipos LHD.

	1 LHD	2 LHD	3 LHD	4 LHD	5 LHD	6 LHD	7 LHD	8 LHD
Promedio Aporte por LHD[tpd]	5,435	5,228	5,075	5,074	4,755	4,600	4,154	3,727

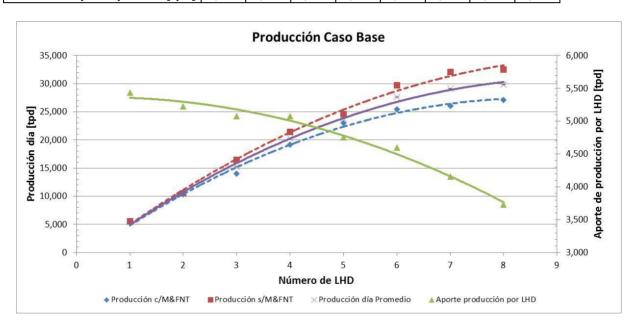


Figura 60. Producción Caso Base v/s Aporte de producción por LHD.

En la Figura 60 se resume la información para los dos escenarios en análisis y el aporte de producción por equipo LHD. Es posible ver que para ambos casos (con y sin M&FNT) las curvas de producción son crecientes, pero debido a su concavidad tienen un tendencia a estancarse levemente con las configuraciones de 7 y 8 equipos. En la gráfica también se ilustra fácilmente lo mencionado anteriormente, respecto a que el aporte que hace cada equipo LHD a medida que se aumenta el número de la flota, este va siendo cada vez menor (curva verde). Este último antecedente es lo que explica el crecimiento cóncavo de las curvas de productividad.

En la Figura 61 es posible apreciar la tendencia decreciente con la cual se comporta el rendimiento por equipo LHD al tener las diferentes combinaciones de flota LHD. Esto muestra que para poder para poder tener un Macro Bloque al máximo de capacidad productiva que muestra la simulación para este escenario, se tendrán los equipos a los menores rendimientos.

Tabla 27. Resumen rendimiento operativo N° LHD.

	1 LHD	2 LHD	3 LHD	4 LHD	5 LHD	6 LHD	7 LHD	8 LHD
Rendimiento Promedio c/M&FNT [tph]	325	329	326	323	321	316	311	303
Rendimiento Promedio s/ M&FNT [tph]	328	325	326	324	322	317	312	309
Rendimiento Promedio ambos escenarios [tph]	327	327	326	323	321	317	312	306

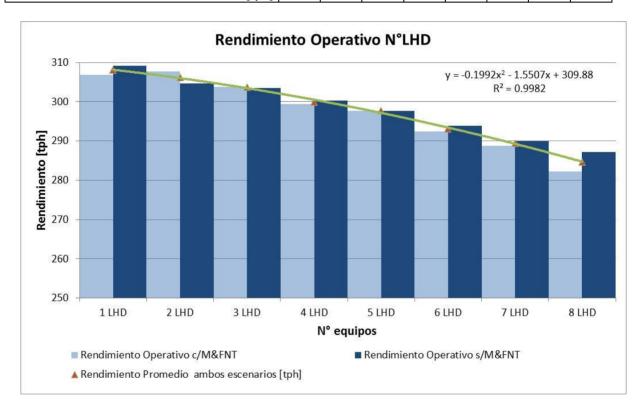


Figura 61. Rendimiento Operativo según N° LHD

8.1.4 Sensibilización Área Colapsada

En el análisis de las simulaciones del área colapsada es posible apreciar que las productividades son levemente crecientes para las configuraciones desde 3 a 8 equipos LHD formando comportamientos de curvas cóncavas, encontrando un valor máximo (ver Figura 62), para luego caer drásticamente su productividad. En la gráfica se identifican los puntos de producción óptima para las configuraciones desde 4 a 8 equipos LHD, según el porcentaje de área colapsada de la simulación, mayor detalle se

muestra en la Tabla 28 (ver ecuaciones de las curvas de regresión en ANEXO F: Análisis Simulaciones). Las curvas para las configuraciones de 1 a 3 LHD tienen comportamientos cuasi lineales, sin embargo las regresiones polinómicas son las que muestran el mejor ajuste.

Tabla 28. Puntos de producción óptima según área colapsada.

N° Equipos LHD	Porcentaje Área Colpasada Óptima [%]	Producción óptima [tpd]
8 LHD	27,885	18.2%
7 LHD	26,746	13.9%
6 LHD	26,113	17.7%
5 LHD	23,485	15.8%
4 LHD	19,787	16.0%
3 LHD	15,138	14.8%
2 LHD	10,813	1.1%
1 LHD	5,439	3.7%

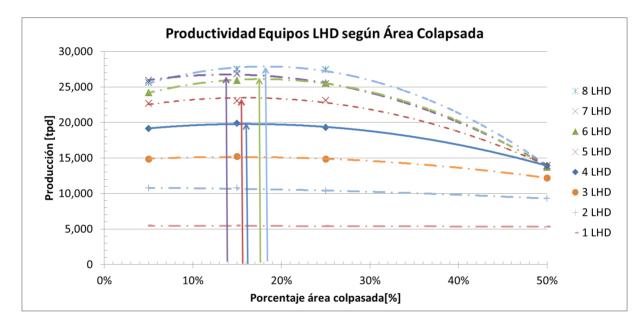


Figura 62. Punto de Producción óptima, Caso área colapsada

Al analizar independientemente cada configuración de LHD, es decir dejando fijo el número de LHD y variando el porcentaje de área colapsada, vemos que el comportamiento de productividad creciente hasta cierto punto y luego decaiga, se explica porque a medida que se cierra un porcentaje del área en el Macro Bloque según el supuesto del cierre de puntos adoptado para simular el área colapsada en el MB (los puntos de extracción fueron cerrados a partir de los más cercanos a la falla oeste, distribuidos equitativamente por las 4 calles hasta llegar a la mitad del MB), es posible apreciar que existe un momento en donde los rendimientos de los equipos LHD tienden

a ser óptimos debido a la disminución de las distancias medias de transporte en las semi-calles. Esto genera que los tiempos de ciclo sean menores y por ende es posible tener mayores ritmos se producción, pero a costa de tener un porcentaje de área colapsada sin uso y con sus riesgos geomecánicos asociados. En la Figura 63 se aprecia que posterior al 15% del área colapsada los rendimientos disminuyen. En la misma gráfica se tiene la información del Caso Base para cada escenario con los rendimientos y producciones respectivas.

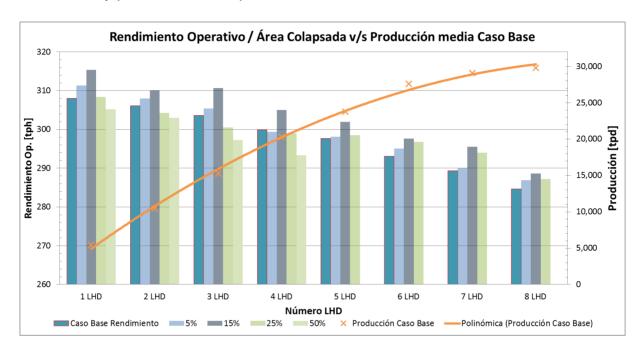


Figura 63. Rendimiento operativo según área colapsada y producción media caso base.

Por otro lado, al realizar el análisis en la Figura 63 dejando fijo el porcentaje de área colapsada y se avanza por las columnas del mismo color para ver la sensibilización al aumentar el número de LHD, se detecta que los rendimientos decrecen al incorporar más equipos LHD a la flota. Esto se explica porque al incorporar más equipos LHD al MB, esto trae consigo una serie de interferencias operacionales que generan una caída en el incremento de la productividad debido al descenso de los rendimientos.

Para complementar los análisis en la Figura 64 se ve la misma información de las simulaciones al sensibilizar el área colapsada, pero se contrasta con las Horas Operativas del Caso Base. El comportamiento observado muestra que al incrementar la configuración de equipos LHD, las Horas operativas del LHD disminuyen, lo cual explica la disminución en los rendimientos.

Las gráficas anteriores son interesantes dado que permiten comparar la información obtenida en los escenarios de simulación y contrastarlas con un determinado Caso Base.

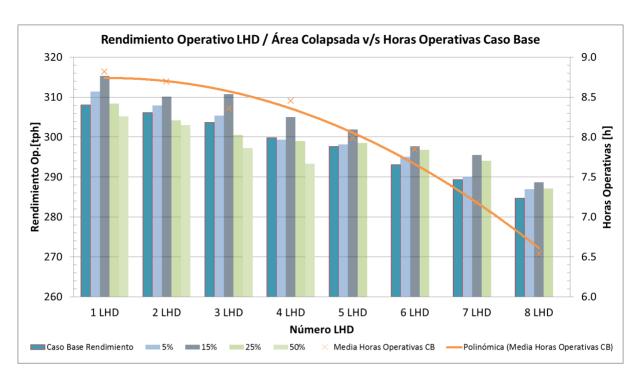


Figura 64. Rendimiento operativo según área colapsada y horas operativas caso base.

Un análisis interesante que se desprende de esta información, es poder realizar una asignación de equipos LHD bajo la contingencia que ocurra un colapso geomecánico y se comprometa un porcentaje del área del Macro Bloque. Para esto es posible considerar los datos obtenidos de la simulación donde se sensibiliza el área colapsada a diferentes configuraciones de equipos LHD y determinar el número de equipos LHD necesarios para cumplir con la producción "esperada" (la información del Caso Base), es decir, ocupamos la información del Rendimiento Operativo y Horas Operativas de los escenarios del área colapsada, junto con la información de la producción promedio del caso base que sensibiliza el número de equipos LHD (siendo esta la Producción "esperada", ver Tabla 25).

A continuación, se plantea la forma de estimar el número de equipos LHD, y en la Tabla 29 se muestran los resultados de las asignaciones de equipos siguiendo este razonamiento.

$$N^{\circ} \ Equipos \ LHD = \frac{Producci\'{o}n \ promedio_{Macro \ Bloque} \left[\frac{ton}{d\'{i}a}\right]}{Rendimiento \ Operativo_{LHD} \left[\frac{ton}{h}\right] * Horas \ Operativas_{LHD} \left[\frac{h}{turno}\right] * 2 \left[\frac{turno}{d\'{i}a}\right]}$$

Ecuación 11. Número de equipos LHD

Tabla 29. Asignación de equipos LHD según escenario de área colapsada.

da	N° LHD asignado [#]	1 LHD	2 LHD	3 LHD	4 LHD	5 LHD	6 LHD	7 LHD	8 LHD
psa	5%	1.0	1.9	3.1	4.2	5.2	6.8	7.9	9.3
Colapsada [%]	15%	1.0	1.9	3.0	4.1	5.2	6.4	7.6	8.7
Área (25%	1.0	2.0	3.1	4.2	5.2	6.5	8.0	8.7
Ár	50%	1.2	2.2	3.8	5.8	N/A	N/A	N/A	N/A

i) Asignación mediante gráficos.

La asignación del número de equipos LHD muestra que no siempre será posible cumplir con la producción, todo esto bajo una configuración de equipos LHD y el escenario de una eventual pérdida de área productiva debido a un colapso. En la Figura 65 se aprecia un diagrama gráfico (escenario 25% área colapsada) para poder estimar en dos pasos la flota que satisface el cumplimiento de la producción. En el ejemplo se ve que para la configuración de 4 LHD, y según su rendimiento operativo de dicha flota, además de las horas operativas que arrojada la simulación, se tiene que es necesario de 4,2 equipos LHD para cumplir la producción, en otras palabras, durante algunas horas de la producción se debe agregar un quinto equipo LHD para lograr la producción del caso base.

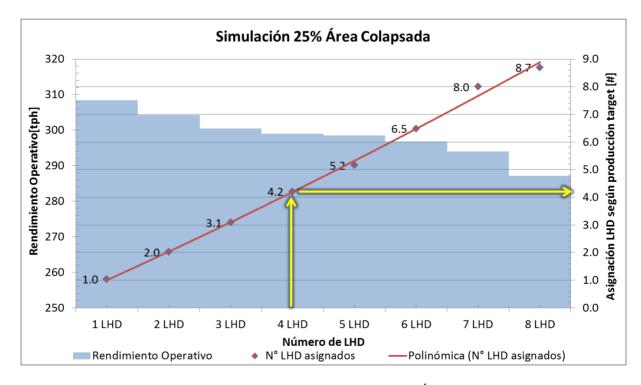


Figura 65. Asignación de LHD bajo escenario 25% Área Colapsada.

Se debe tener claro que la cantidad máxima de equipos asignable por diseño a un MB es de 8 equipos LHD, los análisis están basados en las configuraciones que el modelo

de simulación permite. Este método de asignación es una estimación que sirve de guía para la planificación del corto plazo, pues sirve para tener un acercamiento de la gravedad del efecto que tiene la pérdida de área productiva, cuál sería la necesidad de equipos LHD y bajo que rendimientos estos estarían trabajando. Se debe tener en cuenta que incorporar un equipo más puede traer mayores interferencias operacionales, y por ende, un menor aporte incremental en la producción que el esperado, lo cual no está directamente incorporado en el cálculo de la asignación.

El análisis expuesto es posible llevarlo a una mayor cantidad de relaciones con los datos de las simulaciones para cada escenario de área colapsada. La Figura 66 muestra cuatro gráficos que funcionan conjuntamente como un ábaco de datos para las ocho configuraciones de equipos LHD. Para entender su aplicación se deben seguir los siguientes pasos:

- El gráfico en el cuadrante superior-izquierdo es el mismo que la Figura 65, se selecciona una configuración de equipos LHD, con esto los puntos entregan una asignación de equipos LHD necesaria para poder cumplir el plan de producción objetivo a pesar de tener cierto porcentaje de área colapsada,
- Luego con este in-put es posible ingresar a gráfica del cuadrante superiorderecho, aquí los puntos nos entregan la cantidad de Horas Operativas para la configuración seleccionada.
- 3) Tomando el ejemplo de la Figura 66, para lograr la producción diaria se deben asignar 4,2 equipos LHD. La interpretación de esto quiere decir que cierta cantidad de horas operativas puede operar con 4 equipos, pero necesariamente se debe incorporar un quinto equipo en algún momento para cumplir el plan. Las flechas verdes del ejemplo, muestran las Horas Operativas que deben ser usadas para la configuración y el periodo de tiempo en que funcionen 5 equipos LHD.
- 4) Las Horas Operativas obtenidas, permiten ingresar al tercer gráfico del cuadrante inferior-derecho, donde es posible obtener la producción diaria que arrojan las simulaciones con dichos parámetros operaciones y configuraciones de equipos.
- 5) Por último, el gráfico del cuadrante inferior-izquierdo permite tener una estimación de: la Producción anual bajo el escenario del área colapsada correspondiente al ábaco (se ingresa por el eje de los equipos LHD y en la columna celeste se toma el valor que sigue la línea discontinua en el eje de la izquierda), la Producción diaria de la simulación del área colapsada (se ingresa por el eje de los equipos LHD y en la columna azul se continua con la línea continua naranja), y además se muestra la referencia del Promedio de Oportunidad de Producción, el cual es equivalente al promedio de producción del Caso Base.

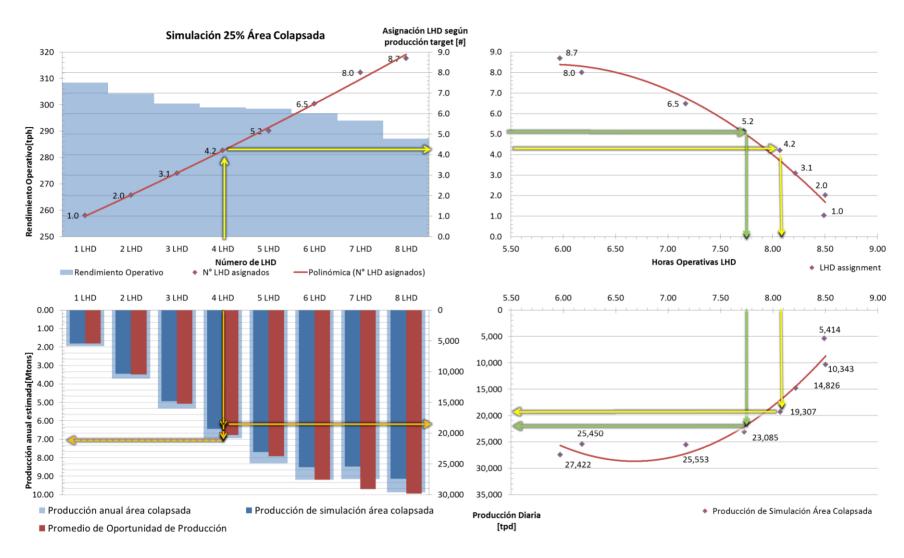


Figura 66. Metodología gráfica de asignación de equipos LHD, escenario 25% área colapsada

ii) Asignación analítica.

Ya habiendo entendido que el escenario del área colapsada puede colocar en riesgo el cumplimiento del plan de producción, y por ende, para poder cumplir con este objetivo puede ser necesario incorporar un equipo adicional a la configuración original por algún periodo de tiempo. Por lo tanto, se tendrá una cantidad de días con los cuales se operará con la configuración original y habrá otra cantidad de días que se tendrá un equipo más que la configuración inicial, todo esto con la finalidad de cumplir la producción. Teniendo estas consideraciones, se entiende que, por ejemplo, habrá una producción contribuida por 4 equipos LHD que trabajaron ciertos días y habrá otro aporte a la producción que será producto de 5 equipos LHD que trabajaron otra cantidad de días. Con la Ecuación 11 se obtiene la Producción para cierta configuración de equipos LHD, el rendimiento y horas operativas correspondientes. Al considerar esta ecuación y teniendo el número de días del análisis o caso estudio, por ejemplo, si se estima que el área colapsada estará cerrada durante doce meses, es posible definir las siguientes ecuaciones.

- N_{LHD} : N°Equipos LHD
- $D_{N,LHD}$: Días de operación con N Equipos LHD
- $Prod.N\ LHD_{MB}$: $Producción\ promedio\ en\ un\ determinado\ período\ por\ N\ LHD\left[rac{ton}{a\~no}
 ight]$
- PC LHD_{MB}: Producción Conjunta por aporte de configuración de N y N + 1 LHD, en $D_N + D_{N+1}$ días.
- $R_{N LHD}$: Rendimiento Operativo de N equipos LHD $\left[\frac{ton}{h}\right]$
- $HOp_{N\ LHD}$: Horas Operativas de N equipos LHD $\left[\frac{h}{turno}\right]$

$$Prod.N LHD_{MB} = N_{LHD} * R_{N LHD} * HOp_{N LHD} * 2 * D_{N LHD};$$

Ecuación 12. Producción en D días para N equipos LHD.

$$D_N + D_{N+1} = Período de análisis = 360;$$

Ecuación 13. Período del análisis.

$$PC\ LHD_{MB} = (N_{LHD} * R_{N\ LHD} * HOp_{N\ LHD} * 2 * D_{N\ LHD}) + (N + 1_{LHD} * R_{N+1\ LHD} * HOp_{N+1\ LHD} * 2 * D_{N+1\ LHD});$$

Siguiendo con el ejemplo anterior del 25% del área colapsada y la configuración de 4 LHD, se tiene que es conocida la información de las simulaciones (ver Tabla 30) y utilizando la Ecuación 13 y Ecuación 14, es posible determinar los días de operación que se debe trabajar con la configuración original y cuantos días con el equipo LHD adicional.

Tabla 30. Parámetros para ejemplo de la metodología analítica.

	Caso Base	Promedio	Simulación 25% Área Colapsada		
	4 LHD	5 LHD	4 LHD	5 LHD	
Producción Dia [tpd]	20,297	23,775	19,307	23,085	
Rendimiento Operacional [tph]	300	298	299	299	
Horas Operativas [h]	8.5	8.0	8.1	7.7	
Producción Anual [Mtons]	7.31	8.56	6.95	8.31	

Tabla 31. Resultados mediante metodología analítica.

	4 LHD	5 LHD
Días de operación [días]	264	96
Horas de operación LHD [h]	4,260	1,483

En la Tabla 31 se muestran los días de operación necesarios, o bien, las horas de operación necesarias que se le deben asignar a cada configuración de equipos LHD, de tal forma de lograr la producción objetivo de 7,31 [Mton]. Para este ejemplo, se deben asignar 1.483 horas operativas (96 días) con 5 equipos LHD bajo sus parámetros de rendimiento y horas operativas, y 4.260 horas (264 días) con una configuración de 4 equipos LHD. De esta forma la información obtenida de la simulación donde se sensibiliza el área colapsada, sirve para analizar y enfrentar eventuales problemas por perdidas de área productiva debido a colapsos geomecánicos.

8.2 Análisis Mina Integrada

En base a los resultados obtenidos de la simulación de la mina integrada, es posible ver que se obtiene cerca de 134.400 [ton/día] como promedio mensual en la producción de un año. Este nivel productivo estaría por debajo del cumplimiento del Ritmo Objetivo de 140.000 [ton/día].

8.2.1 Incorporación equipos adicionales

A modo de análisis se realiza dos simulaciones anuales más para el año 2028 pero incorporando dos equipos LHD a Macro Bloques que prontamente pasarán a explotación en régimen. Como se analizó anteriormente, es esperable que la incorporación de un LHD a un Macro Bloque haga un aporte incremental en la

producción cercano a las 5.000 [ton/día], sujeto a una variabilidad estimada desde los 5.500 a 3.700 [ton/día]. Los resultados de la simulación se entregan en la Figura 67, para ver el otro gráfico de producción ver la Figura 101 en la sección ANEXO F: Análisis Simulaciones, mientras que los resultados detallas e índices operacionales es posible verlos en la sección ANEXO E: Resultados Simulaciones.

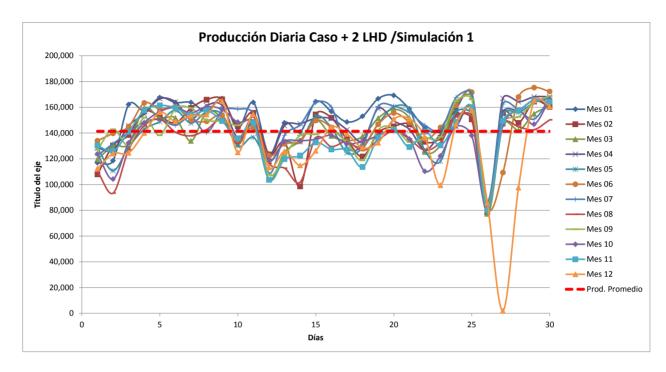


Figura 67 Producción Diaria Simulación Mina Integrada Año 2028 más 2 LHD, Simulación 1

La incorporación de estos dos equipos LHD, permitió que la producción promedio mensual llegara a los 141,706 [ton/día]. Es importante destacar que este valor está sujeto a una alta variabilidad debido a dispersión de los datos mostrada en los análisis de diagnóstico.

8.2.2 Fluctuaciones en la producción

Mediante las fluctuaciones y la presencia de grandes descensos productivos, como el del mes 12 ocurrido el día 27, es posible mencionar que la influencia de las mantenciones programadas del Nivel de Transporte (en especial la mantención de la correa de nivel) repercutirá fuertemente en la capacidad productiva en el corto plazo.

En la Figura 68 es posible ver que el efecto de los grandes descensos en producción se debe a las mantenciones. Principalmente a las mantenciones de las correas colectora, de nivel y principal. Pero también, existen otras mantenciones en los respectivos niveles de chancado y correas de los Macro Bloques, donde existen descensos productivos debido a la menor disponibilidad de horas operativas en dichos Macro Bloques.

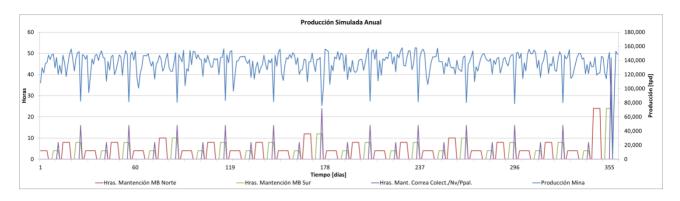


Figura 68. Producción mina v/s Horas de Mantenciones.

Los resultados de las simulaciones a nivel diario presentan una alta dispersión, pues los datos de las producciones tienen una gran variabilidad con la producción objetivo y producción media de la simulación. Este fenómeno se ve absorbido cuando la producción se analiza a una escala anual. En la Figura 69 se tiene la producción de la mina mediante la simulación del año 2027, complementando esta ilustración en la Tabla 32 se entrega el resumen de la dispersión de la producción de la mina El Teniente (Codelco - División El teniente, 2003), para el periodo comprendido entre el 2003 y 2009 (Para más detalle ver ANEXO F: Análisis Simulaciones). Analizando los datos se identifica que la variabilidad que presenta el modelo de simulación no es más dispersa que la información real de una mina de Block caving como El Teniente. La Figura 69 y Figura 70, permiten visualizar de mejor manera que los comportamientos de la producción a nivel anual son similares.

Este análisis cobra importancia para validar los datos de la simulación y su dispersión, pues en la vida real, la operación minera presenta una dispersión siempre menor que la producción objetivo. Para este modelo de simulación se puede ver que el comportamiento de la producción anual es muy cercano a la realidad.

Tabla 32. Resumen dispersión datos c/r plan objetivo.

Dispersión c/r Plan	Mina El Teniente	Simulación PMCHS
Promedio	-6%	-4%
Max.	6%	1%
Min	-45%	-11%

Figura 69. Producción Mina Simulación 2027.

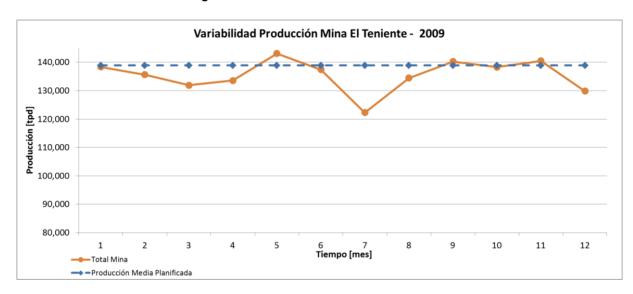


Figura 70. Producción Mina El Teniente, Año 2029.

8.3 Impacto de la gestión de flota y horas efectivas

Los resultados de la simulación para el caso de la mina integrada, son producto de la estructura del modelo de simulación, la definición de los parámetros y la propiedad estocástica de las variables. Una característica que no está incorporada en el modelo de simulación es optimizar los procesos en base a los eventos particulares que ocurran.

Con la finalidad de identificar opciones de optimización sobre los resultados, mediante el siguiente análisis se busca hacer gestión sobre la disponibilidad del área productiva y las Horas Disponibles (HD) de la flota de equipos LHD que entrega la simulación. Se

realizó un análisis de datos enfocado en identificar las horas operativas y horas de reserva de LHD que pueden ser asignadas a otros Macro Bloques (MB). A modo de recuerdo, el tiempo operativo tiene tres componentes (ver Figura 71): Horas Efectivas (HE), Pérdidas Operacionales (PO) y Demoras. Para hacer esta gestión, es de interés las Horas Efectivas y Horas de Reserva que se encuentren bajo los promedios de los resultados de la simulación.

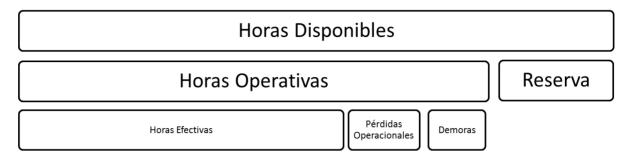


Figura 71. Distribución del tiempo disponible (ASARCO) y sus divisiones.

Un camino para gestionar estas horas es identificar los Macro Bloques que tienen Horas Efectivas menor al promedio. Mediante las simulaciones se conocen todas las HE de los MB operativos, y de estas se obtienen los valores promedios. Al tener como referencia las HE promedio de cada MB para un año de simulación, es posible ver que los MB en mantención presentan HE bajo las medias. Por lo tanto, se puede definir una "Oportunidad de Horas Efectivas" (OHE), que en otras palabras son las HE de LHD potenciales que están disponibles para otros MB, esta es una oportunidad de asignar el equipo LHD en un área disponible (sin mantención), pero no necesariamente la totalidad de estas horas se conviertan en HE. Las OHE son resultado de la diferencia entre el promedio anual de las HE del Macro Bloque con respecto a las HE del día analizado (ver Ecuación 15), en este caso serían los días en mantención programada (No se consideran los días de mantenciones de las Correas Colectoras, Transporte de Nivel y Transporte Principal, dado que estas mantenciones detienen todos los MB). En la Figura 72 es posible ver esquemáticamente esta diferencia. Las OHE son horas de equipos LHD para asignar en otros Macro Bloques disponibles, como se muestra en la figura donde se asigna una cantidad de OHE de LHD del MB N5-1 al MB S2.

Oportunidad HE_{dia} (OHE) = Promedio Anual HE MB - HE_{dia}

Ecuación 15. Oportunidad de Horas Efectivas.

En este análisis se consideró también el hecho de mejorar las Horas Operativas mediante la reducción de las Horas de Reserva excesivas. Las Horas de Reserva (HR) de ciertos Macro Bloques podrían transformarse en Horas Operativas, y por ende en nuevas Horas Efectivas generadas por una gestión sobre la operación. Todo bajo la consideración que los MB no se encuentren en mantención de su nivel de chancado y correas. Para esto se inspeccionó los MB que tuviesen más de 2,5 Horas de Reserva,

dado que esta cifra es el tiempo de reserva asignado por el modelo de simulación, por ende es el mínimo de HR que deben tener los MB y en estas horas no es posible hacer gestión (es el tiempo reservado por el modelo para inicio de turno, fin de turno, colación y una cantidad de pérdidas operacionales asignadas). De manera similar al análisis de la Oportunidad de Horas Efectivas, es posible definir una "Oportunidad de Horas de Reserva" (OHR), que en otras palabras son las HR sobre las que se podría hacer gestión para que dejen de ser Horas de Reserva y pasen a ser Horas Operativas. Como se mencionó antes solo es posible ocupar para el análisis los MB que tengan HR mayores que 2,5 [h], y para estimar las OHR se calcula la diferencia entre el promedio anual de HR del Macro Bloque con respecto a las HR del día analizado para el Macro Bloque sin mantención (ver Ecuación 16). A esta diferencia se le resta 1 [h] para incorporar una perdida debido a esta gestión, es decir, no se considera un 100% de eficiencia en la gestión de horas. En la Figura 72 es posible ver esquemáticamente esta diferencia horaria.

*Oportunidad HR*_{día}
$$(OHR) = (HR_{día} - 2.5) - 1$$

Ecuación 16. Oportunidad de Horas de Reserva.

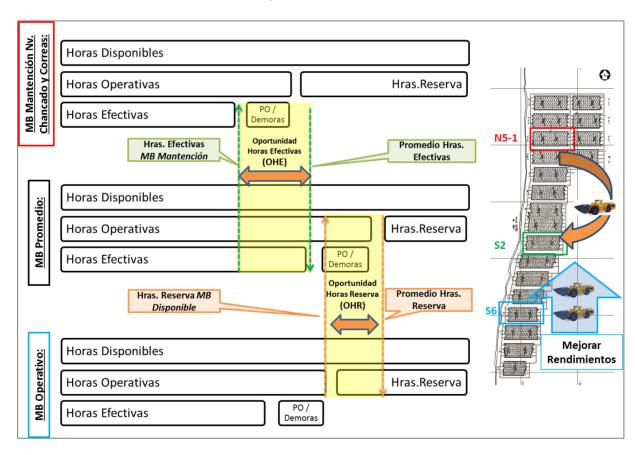


Figura 72. Esquema de OHE y OHR.

Entonces, luego de tener identificadas las OHE en un MB en mantención del nivel de chancado & correas, es posible afirmar que existen horas de equipos LHD para asignar y relocalizar el equipo en otro Macro Bloque, generando un aporte en la producción en vez de estar detenido debido a las mantenciones. Tal como se ejemplifica en la Figura 72, el MB N5-1 se encuentra en mantención del nivel de chanchado y correas, y a la vez, tiene una cantidad de *Oportunidad de Horas Efectivas* de equipos LHD que pueden ser asignadas al MB S2.

Por otro lado, luego de ser identificadas las OHR estas se pueden materializar en Horas Efectivas de LHD llevando a cabo planes de gestión de los recursos y optimización de los rendimientos. Tal como se muestra en la figura anterior, el MB S6, mediante la mejora de los rendimientos e interferencias, se podría hacer gestión de las OHR del MB S6. El objetivo es que parte de estas horas el equipo deje de estar sin uso, pues se encuentra totalmente habilitado (siempre sin tocar las 2,5 horas por diseño, más 1 hora considerada por conceptos de ineficiencias). Es importante mencionar que no necesariamente todas las OHR serán aprovechadas en su totalidad, lo mismo para las OHE.

En la Figura 73 se explica mediante un diagrama de flujo el algoritmo para realizar el análisis de los datos de estas Oportunidades de Horas.

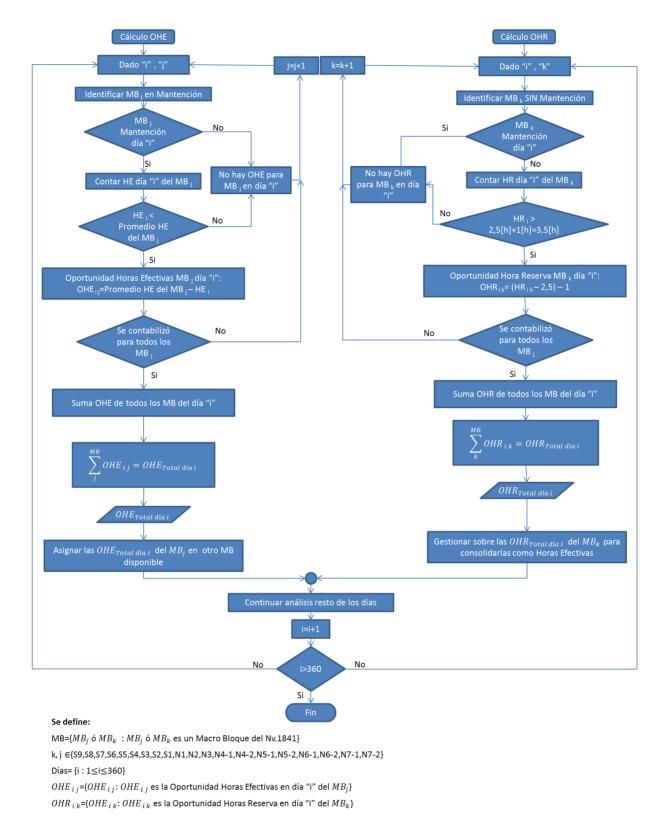


Figura 73. Diagrama de flujo del proceso de análisis de OHE y OHR.

A continuación se muestran los resultados del análisis de gestión de horas, para las simulaciones de la mina integrada. Se trabajó sobre tres simulaciones para los años 2027 y 2028.

Los valores obtenidos de la Oportunidad de Horas Efectivas y la Oportunidad de Horas de Reserva, son parámetros que caracterizan la distribución de horas de los LHD para determinado MB en un determinado día. Para materializar la gestión de estas horas, se debe multiplicar este parámetro con el rendimiento efectivo característico del MB y por el número de equipos sobre los que se asignaran las horas. La suma de todas estas horas corresponderá a las OHE u OHE del total de la mina para el período en análisis.

$$OHE\ Total\ Mina = \sum_{i}^{360} (OHE_{i\ MB} * Rendimiento\ Ef._{MB} * N^{\circ}\ LHD_{MB});$$

Ecuación 17. Cálculo OHE total mina.

$$OHR\ Total\ Mina = \sum_{i}^{360} (OHR_{i\ MB}*Rendimiento\ Ef._{MB}*N^{\circ}\ LHD_{MB});$$

Ecuación 18. Cálculo OHE total mina.

En la Tabla 33 se tienen los promedio de las OHE y OHE total mina para el año de simulación respectivo. El promedio de las OHE está en las 365 horas, mientras que para las OHR es de 4.186 horas. Como se aprecia en las Figura 74 y Figura 75, las OHR son más de diez veces mayores que las OHE, entendiendo que esto ocurre porque las OHE solo se identifican sobre MB en mantención mientras que las OHR se identifican en todo momento. En las gráficas también se muestran las horas necesarias para poder cumplir el plan de producción estipulado por la Ingeniería Básica y para tener un ritmo promedio de 145.000 [tpd]. Es posible ver que si se considera únicamente las OHE no se lograrían cumplir estos objetivos, por lo que se desprende que es necesario lograr gestionar tanto las OHE y OHR. De todas formas, también es posible concluir que no necesariamente se deben concretar el 100% de estas horas de oportunidad, pues son más de lo necesario, por lo que logrando gestionar un porcentaje de estas se llegaría a los objetivos mostrados. (Ver el resto de los gráficos en ANEXO F: Análisis Simulaciones).

Tabla 33. Resumen promedio por simulación para OHE y OHR Total Mina.

		2027			2028		Promedio
	Sim 1	Sim 2	Sim 3	Sim 1	Sim 2	Sim 3	Simulaciones
OHE Total Mina [h]	373	371	352	363	348	382	365
OHR Total Mina [h]	4,060	4,410	4,388	4,290	4,250	3,718	4,186
Premedio año OHE		365			364		
Premedio año OHR		4,286			4,086		

OHE y OHR v/s Horas de planes objetivos 6,000 5,000 4,000 Horas[h] 2,000 0 3 6 10 11 Período simulación [meses] OHE Total Mina → OHR Total Mina ----Hra. Necesarias target 145.000 tpd ----- Hra. Necesarias Plan 2027

Figura 74. Gráfico de Oportunidad de Horas Efectivas y Reserva, Año 2027-Simuación 1.

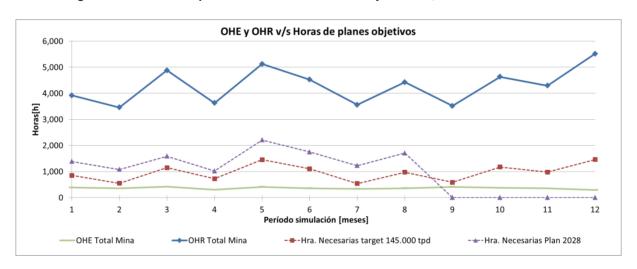


Figura 75. Gráfico de Oportunidad de Horas Efectivas y Reserva, Año 2028-Simuación 1.

En la Figura 76 se muestra en línea negra la producción para la simulación de la mina integrada del año 2027, la línea discontinua roja indica la capacidad máxima de producción del sistema minero para el PMCHS, la línea amarrilla es el plan de producción de Ingeniería Básica para el año determinado y los segmentos apilados de

colores corresponden a las *Oportunidades de Producción* si se gestionara cierto porcentaje de las OHE y OHR.

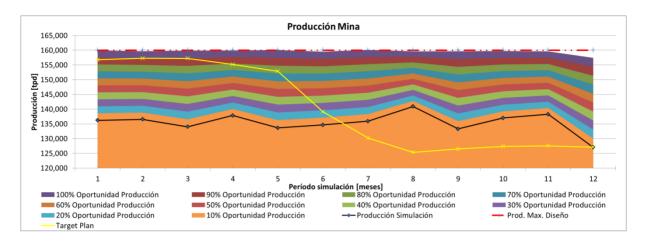


Figura 76. Gráfico Producción Mina según el aporte de OHE y OHR, Año 2027-Simuulación 1.

En base al análisis de la gestión de horas efectivas y de reserva, se logra concluir que materializando el 30% del total de las OHE y OHR, es posible lograr una producción promedio anual que maneje márgenes cercanos a las 140.000 [tpd]. Según el plan de producción de la Ingeniería Básica del proyecto, para el año 2027 se tiene una producción promedio (base húmeda) de 140.201 [tpd], con valores variables mes a mes tal como refleja la línea amarilla de la Figura 76, por lo que el cumplimiento del plan es posible concretarlo mediante la gestión de la Oportunidad de Horas Efectivas y de Reserva.

Otra manera de interpretar esta Oportunidad de Producción es como se muestra en la Figura 77, y su respectivo acercamiento a una escala de 30 días en la Figura 78. Aquí se visualiza en las barras la producción color verde, el incremento de producción que se puede incorporar al plan día a día si se hace la gestión antes expuesta.

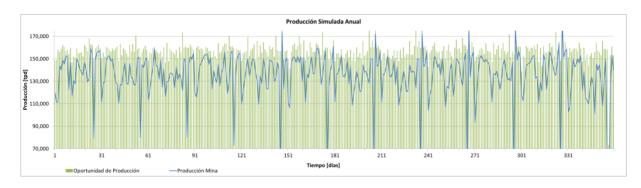


Figura 77. Gráfico Oportunidad de producción, Año 2028 - Simulación 1.

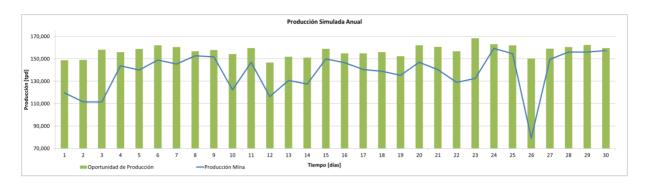


Figura 78. Gráfico Oportunidad de producción para un mes, Año 2028 - Simulación 1.

8.4 Clasificación de robustez

Los análisis anteriores permiten cuantificar el impacto de las variables que interfieren en el cumplimiento productivo del sistema minero. Para calificar cada aspecto, a continuación se presenta una clasificación que categoriza las variables y escenarios que se estudiaron en las simulaciones.

Las variables clasificadas son:

- Frecuencia de colgaduras y/o sobretamaños en el punto de extracción.
- Tiempo de reducción secundaria en el punto de extracción.
- Frecuencia de sobretamaño en el punto de sobretamaño en el punto de vaciado.
- Tiempo de operación del martillo en el punto de vaciado.
- Área colapsada del Macro Bloque.

Además se calificó los siguientes escenarios:

- Simulación Mina Integrada, con los parámetros de diseño del caso base.
- Simulación Mina Integrada, con la materialización del 30% de la OHE u OHR.

Con los datos de las simulaciones se calculó la confiabilidad de cumplir el plan de producción del caso base para las variables estudiadas en el diagnóstico del macro Bloque, y la confiabilidad de cumplir el plan de producción objetivo para los escenarios de la mina integrada. Se consideró la muestra de todas las sensibilizaciones para las variables correspondientes.

$$Confiabilidad \ producci\'on = \frac{N^{\circ} datos \ que \ cumplen \ plan \ de \ producci\'on}{N^{\circ} datos \ total \ de \ la \ muestra}$$

Ecuación 19. Confiabilidad del cumplimiento del plan de producción.

Además se definió un Índice de Robustez, el cuál mide el impacto de la variable sensibilizada sobre el nivel productivo, o bien, el comportamiento integrado de las variables aleatorias sobre el sistema minero al estudiar la simulación integrada. Para medir el impacto, se determina la diferencia entre la capacidad de producción máxima por LHD que arrojan las simulaciones posteriormente a gestionar el 100% de las OHE y OHR (Ovalle, Mass Caving Maximun Production Capacity, 2012), versus el aporte de la producción media de los equipos LHD del caso estudiado (ya sea a nivel de un Macro Bloque o del total de la mina).

$$\text{Indice de Robustez [\%]} = \frac{\left(Producci\'on\ M\'ax.\ LHD - \frac{Producci\'on\ Media_{MB/Mina}}{N^{\circ}\ LHD_{MB/Mina}} \right)}{Producci\'on\ M\'ax.\ LHD} * 100$$

Ecuación 20. Índice de robustez.

Estos indicadores fueron aplicados para la sensibilización de las variables con 4 equipos LHD y la simulación de la mina integrada. Los resultados de la clasificación se muestran en la Tabla 34 y Figura 79. Mediante esta gráfica es posible calificar el impacto de las variable sensibilizadas, o bien, el impacto de las variables aleatoria según el modelo de simulación del caso base (medido por el índice de robustez) y la confiabilidad de cumplir el plan de producción objetivo bajo el escenario analizado.

Es posible ver que la influencia de la frecuencia de colgaduras tiene un alto impacto en la productividad pero con confiabilidad de 57% para cumplir el plan de producción. El tiempo de reducción secundaria en el punto de extracción, también muestra tener una confiabilidad del 67% para cumplir el plan de producción y además con un bajo impacto sobre la producción al sensibilizar esta variable. La situación del área colapsada muestra tener un alto impacto sobre la producción y además presentar una baja confiabilidad para el cumplimiento del plan. Además, se tiene que tanto la frecuencia de sobretamaño en el punto de vaciado y el tiempo de operación del martillo en el punto de vaciado, presentan bajas confiabilidades y un bajo impacto en la producción.

Por otro lado, la simulación de la mina integrada muestra tener una confiabilidad del 43%, donde la menor producción tiene un bajo impacto comparativamente con el plan de producción objetivo. Igualmente importante, la simulación de la mina integrada que considera la incorporación de las OHE y OHR, tiene una confiabilidad de 62%, donde además las variables que generan interferencias operativas tienen un bajo impacto sobre la producción.

Considerando como parámetros de referencia los índices estudiados, se genera una clasificación donde los índices definidos se encuentran en los ejes del recuadro. Una buena condición de robustez está dada por ubicar las clasificaciones en el cuadrante inferior derecho, es decir, donde se tiene una confiabilidades sobre 55%para cumplir el plan de producción y donde las variables que influyen en las demoras operacionales tienen un bajo impacto sobre la productividad, bajo 20% de impacto. Este rango es únicamente para comparar los parámetros y simulaciones entre entre sí.

Tabla 34. Resumen de la confiabilidad e índice de robustez para las variables y escenarios.

Variable	Confibilidad producción [%]	Índice de Robustez [%]
Frecuencia Colgaduras/ Sobretamaño	57%	33%
Tiempo de reducción secundaria punto de extracción	69%	6%
Frecuencia de sobretamaño en punto de vaciado	49%	17%
Tiempo de operación martillo	47%	16%
Área Colapsada	47%	34%
Simulación Mina Integrada	43%	16%
Simulación Mina Integrada con 30% OHE y OHR	62%	11%

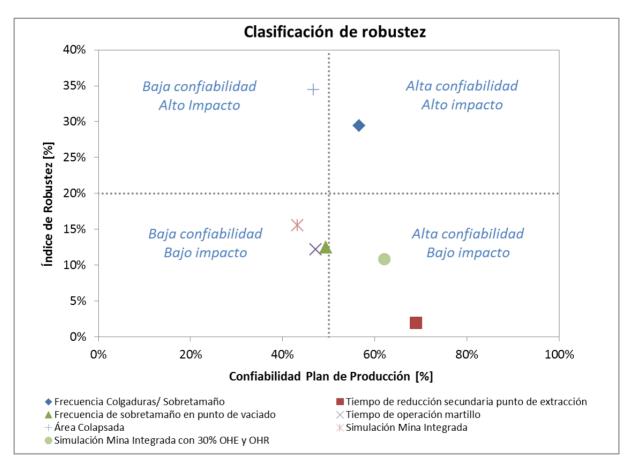


Figura 79. Clasificación de robustez.

9 CONCLUSIONES Y RECOMENDACIONES

Según el objetivo principal del estudio, respecto de evaluar el nivel de robustez del plan minero del Proyecto Mina Chuquicamata Subterránea es posible concluir que el plan de producción puede tener una media anual que fluctúe entre márgenes cercanos a las 140.000 [tpd], siempre y cuando se realice gestión sobre la flota de equipos LHD y de las horas efectivas de los mismos. Para abordar con más detalle los distintos aspectos analizados se concluye por separado el análisis a nivel del macro bloque y el de la mina integrada.

Del análisis a nivel de un Macro Bloque, se realizó una serie de escenarios para el Macro Bloque N5-1, enfocando el estudio de las interferencias operacionales en dos componentes del nivel de producción: el punto de extracción y el punto de vaciado.

En el punto de extracción se logró identificar que para frecuencia de colgaduras bajo los 60 [baldes/evento] se comienza a afectar negativamente la producción para un Macro Bloque en régimen con 4 equipos LHD. Para configuraciones de más equipos LHD este efecto comienza a ser aún más marcado y principalmente con frecuencias de colgadura bajo los [baldes/evento]. Por otro lado el efecto del tiempo en que se demora en realizar la reducción secundaria en los puntos de extracción colgados o con sobretamaño, no provoca gran influencia en la producción, si este tiempo se extiendo por cerca de 60 minutos el impacto sobre la producción es menor a 4.000 [tpd] en una configuración de 4 LHD. Como resultado de esto también se concluye que si se mejora la condición granulométrica del material, y por ende ocurrieran menos colgaduras/sobretamaños no se tendría un gran efecto positivo sobre la producción. Del mismo modo si se mejoran los tiempos de la cuadrilla de reducción secundaria, el incremento productivo que s se puede ganar no es significativo.

En base a los análisis realizados sobre las interferencias en el punto de vaciado, se tiene que la frecuencia de aparición del sobretamaño en la parrilla, bajo una configuración de 4 LHD, tiene un impacto negativo particularmente cercano al valor de las 38 [toneladas/colpa] con un déficit de 2.538 [tpd] debido a este efecto. Para configuraciones entre los 4 y 8 LHD, se espera un impacto negativo sobre la producción cuando las frecuencias de sobretamaño están entre las 80 y 100 [ton/colpa]. Así mismo, el efecto del tiempo de reducción secundaria del martillo para el sobretamaño muestra que para la configuración de 4 equipos LHD, se tiene que al disminuir aproximadamente del 1,5 [min] de operación de martillo, existe un efecto positivo aumentando la producción pero de manera muy reducida, llegando a ser poco relevante el efecto de tardar 1 minuto realizando esta labor. En consecuencia, el efecto del tiempo de operación del martillo picador no permitiría ganar producción al optimizar su operación, mientras que la frecuencia de sobretamaño tampoco genera un gran impacto positivo si se mejora la granulometría.

El impacto más marcado corresponde a la influencia de las mantenciones y fallas del nivel de transporte y chancado, mostrando mayor efecto a medida que se aumenta el número de equipos LHD, con variaciones en la producción del Macro Bloque desde el 2,0% al 18,9%. Particularmente para 4 equipos LHD, su efecto sobre la producción es de una diferencia del 10,6%. Este efecto fue evaluado a una escala de 30 días.

Frente a las distintas combinaciones de equipos LHD posibles para un Macro Bloque, es posible ver que los rendimientos por equipo disminuyen a medida que la flota se incrementa. Esto trae como consecuencia que el aporte debido a incorporar un equipo LHD adicional en la configuración original, vaya siendo menor a medida que la flota original es mayor. Al tener 4 LHD, y querer incorporar un quinto equipo la productividad por equipo disminuye desde los 5.074 hasta los 4.755 [tpd] por LHD. Este comportamiento es generado por el incremento de las interferencias operacionales que trae consigo incorporar más equipos en el área productiva.

Bajo un escenario de tener área colapsada geomecánicamente, siguiendo el comportamiento descrito en este estudio, se evidenció que al aumentar el porcentaje de área colapsada, los niveles productivos para las distintas configuraciones de LHD tienden a un nivel "óptimo" de producción. Situándose entre el 14% y 18% del área colapsada, según el número de equipos LHD. Cuando el porcentaje de área colapsada, supera este punto, la producción cae drásticamente. Este fenómeno ocurre porque al cerrar puntos de extracción por estar colapsados geomecánicamente, los tiempos de ciclo de los equipos disminuyen, y por ende, mejoran sus rendimientos. En contraste con esto, al superar dicho porcentaje de área colapsada comienza a comprometerse infraestructura relevante para el proceso productivo, pues comienzan a cerrarse los puntos de vaciado y generando mayores interferencias operacionales. Cabe destacar que mediante la simulación bajo escenarios de área colapsada, la herramienta de simulación sirve para generar metodologías de análisis del rendimiento, permitiendo realizar gestión de equipos frente a eventuales pérdidas de área productiva, con el objetivo de lograr cumplir con el plan de producción.

De la misma forma, la simulación de la mina integrada permitió analizar la robustez del plan minero. Las simulaciones con las definiciones del modelo de simulación descritas en este estudio, mostraron que la producción estaría cercana a los 134.547 [tpd] aproximadamente. Al incorporar dos equipos LHD a la flota total de la mina, se obtuvo que la producción promedio llegara a los 141.706 [tpd]. Esta medida trae la consecuencia de que debe incrementarse la flota operativa desde 30 a 32 equipos LHD, y por consiguiente, una mayor inversión.

La alternativa de realizar gestión de las horas efectivas y de reserva permite concluir que materializando el 30% del total de la Oportunidad de Horas Efectivas y de Reserva, es posible lograr una producción promedio anual que maneje márgenes cercanos a las 140 [Ktpd] con una confiabilidad del 66%. Para obtener confiabilidades mayores se debe integrar, por ejemplo, el 50% de las OHE y OHR teniendo como resultado un 81%

de confiabilidad en el cumplimiento de las 140 [ktp] a escala anual. Al lograr captar un mayor porcentaje de esta oportunidad de horas, se puede llegar a niveles cercanos de la capacidad máxima de diseño en el caso particular de materializar el 100%. Por último, el hecho de realizar gestión de las horas disponibles en los equipos y asignar a los mismos óptimamente según las contingencias de la producción, muestra ser una herramienta muy potente para identificar posibles holguras que no están consideradas en el planteamiento original.

La robustez del diseño minero muestra poca variabilidad de la capacidad productiva frente las distintas condiciones expuestas al modelo de simulación. La principal vulnerabilidad identificada en las simulaciones está en el riesgo que estas mostraron al no lograr cumplir el plan de producción bajo las consideraciones de diseño, siendo posible solamente llegar a la producción objetivo si se realiza gestión sobre los recursos. Los parámetros que presentan el mayor impacto negativo sobre la producción son la frecuencia de colgaduras y sobretamaños en el punto de extracción y el porcentaje de área con colapso geomecánico.

Finalmente, en vista de los resultados obtenidos en las simulaciones, se concluye que los modelos de simulación son una herramienta muy útil para el estudio de sistemas mineros que presentan mucha incertidumbre en su diseño, pues permite identificar las vulnerabilidades y oportunidades de beneficio previo a la puesta en marcha de los proyectos. Pudiese ser de mucha utilidad la aplicación de modelos de simulación para los niveles de producción inferiores, en especial en los periodos donde se tenga interacción con niveles superiores. Otra característica que puede agregar valor a las simulaciones, es interactuar el modelo de simulación con el modelo de bloques o una heurística que interprete el flujo de material que se extrae.

Aspectos a destacar son:

- El diseño de cuatro calles paralelas, que se subdividen en un total de 8 semicalles de tal forma de que en cada Unidad Básica de Explotación es posible tener hasta 8 equipos LHD.
- Cada Macro Bloque cuenta con 8 piques de traspaso, permitiendo la independencia en la descarga del material de cada semi-calle. Los Macro Bloques cuentan con dos chancadores de mandíbula, donde convergen 4 de los piques de traspaso sobre cada uno, de esta forma se tiene mayor confiabilidad en el sistema.
- La conexión por el lado este y oeste entre los Macro Bloques, permite el ingreso y el traslado de equipos de manera más flexible.

- La independencia entre las Unidades Básicas de explotación, los Macro Bloques, permite una flexibilidad operacional y de planificación.
- El diseño de tener 8 semi-calles permite tener cierta flexibilidad al momento de realizar reducciones secundarias, de tal forma de solamente dejar no disponible 3 semi-calles durante esta labor, y no toda la unidad productiva.

10 GLOSARIO

AC: Área Colapsada

DDE: Debilitamiento Dinámico con Explosivos

DDE: Debilitamiento Dinámico con Explosivos.

FA: Fracturamiento Hidráulico

FA: Fracturamiento Hidráulico.

HE: Horas Efectivas.

HO: Horas Operativas.

HR: Horas de Reserva.

IRMR: In-Situ Rock Mass Rating

LHD: Load Haul Dump.

M&FNT: Mantenciones & Fallas del Nivel de Transporte.

MB: Macro(s) Bloque(s)

OHE: Oportunidad de Horas Efectivas.

OHR: Oportunidad de Horas de Reserva.

PA: Pre-acondicionamiento

PMCHS: Proyecto Mina Chuquicamata Subterránea

PO: Problemas Operacionales.

RMR: Rock Mass Rating

Tpa: Toneladas por año.

Tpd: Toneladas por día.

UGTB: Unidad Geotécnica Básica

11 BIBLIOGRAFÍA

- Brown, E. T. (2002). Block Caving Geomechanics. Queensland, Australia: JKMRC.
- Chacón, J., Göpfert, H., & Ovalle, A. (2004). Thirty years evolution of block caving. *Massmin 2004*, (págs. 387-392). Santiago Chile.
- Chang Ja, K. (2009). Diseño y evaluación técnico económica de un nuevo sistema de cargío y transporte para la minería de hundimiento. *Memoría para optar al Título de Ingeniero Civil de Minas*. Santiago, Chile: Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas.
- Chitombo, G. P. (2010). Cave mining 16 years after Laubscher's 1994 paper 'Cave mining state of the art'. *Caving 2010*, (págs. 45-61). Perth, Australia.
- Codelco División El teniente. (2003). Principales indicadores de gestión producción años 2003-2009. *Informe superintendencia gestión producción*. Rancagua, Chile: Gerencia Recursos Mineros y Desarrollo.
- Codelco Norte Superintendencia de Geotecnia. (2009). Caracterización Geotécnica Estructural Proyecto Mina Chuquicamata Subterránea. Delineamiento para Ingeniería Básica. Informe Técnico.
- Codelco VP PMCHS. (2010). *Criterios Geomecánicos Para el Dimensionamiento de Macro Bloques PMCHS*. Informe Técnico.
- Codelco VP PMCHS. (2011). Criterios del Plan de Producción. Informe Técnico, Santiago.
- Codelco VP PMCHS. (2011). Integración de Reservas Ingeniería Básica. Informe Técnico.
- Codelco VP PMCHS. (2011). Modelo de estimación de sobre tamaño esperado para planes de producción. Informe técnico, Santiago.
- Codelco VP PMCHS. (2012). Análisis de la Capacidad Productiva del Plan de Producción de Ingeniería Básica. Informe Técnico.
- Codelco VP PMCHS. (2012). Calibración y validación del índice GSI 1er Nivel de Explotación. Informe Técnico.
- Codelco VP PMCHS. (2012). *Modelamiento de la Confiabilidad y Disponibilidad.* Santiago: CODELCO.
- Codelco VP PMCHS. (2012). Potencial Ocurrencia de Colapsos, Primer Nivel de explotación 1841. Santiago: CODELCO.

- Codelco VP PMCHS. (2012). Requerimientos Plan de Producción Ingeniería Básica. Informe Técnico.
- Ferrada, M. (2013). Recuperación Pilar Oeste Proyecto Mina Chuquicamata Subterránea. *Memoría para optar al Título de Ingeniero Civil de Minas*. Santiago, Chile: Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas.
- García Dunna, E., García Reyes, H., & Cárdenas Barrón, L. E. (2006). Simulación y análisis de sistemas con ProModel (Primera ed.). México: Pearson Educación.
- Hall, B. E. (2000). Simulation Modelling of Mining Systems. *Massmin 200*, (págs. 83-95). Brisbane, Australia.
- Horsley, T. (2002). *Dollar Driven Mine Planning: The Corporate Perspective to Operational Mine Planning.* Brisbane: Australian Mining Consultants Pty Ltd.
- Itasca & SRK. (2006). Complementary Geotechnical Studies for Conceptual Design of an Undergroung Mine at Chuquicamata. Informe Técnico.
- Itasca. (2009). Chuquicamata Underground Project, Geotechnical Update. Informe Técnico.
- Laubscher, D. (2000). A Practical Manual on Block Caving. Brisbane, Australia: (ICS) JKMRC,.
- Law, A. M. (2009). How to build valid and credible simulation models. *Proceeding of the 2009 Winter Simulation Conference*, 24-33.
- Law, A., & Kelton, D. (1999). Simulation Modeling and Analysis. McGraw-Hill Higher Education.
- Le-Faux, R. (s.f.). Manejo de materiales en explotaciones subterráneas. *Apuntes del curso MI75G*. Santiago, Chile: Universidad de Chile, facultad de Ciencias Físicas y Matemáticas, Departamento de Ingeniría de Minas.
- Ovalle, A. (2012). Mass Caving Maximun Production Capacity. *Massmin 2012*. Sudbury, Canada.
- Ovalle, A., & Pesce, J. (2004). Production capacity of a mass caving. *Massmin 2004*, (págs. 75-78). Santiago Chile.
- Rubio Esquivel, E. A. (2006). Block cave mine infrastructure reliability applied to production planning. *Tesis Ph. D.* Vancuver, Canadá: The University of British Columbia. The Faculty of Graduate Studies (Mining Engineering).
- Troncoso, S. H. (2006). Simulación del impacto de interferencias operacionales para la planificación de producción. *Memoría para optar al Título de Ingeniero Civil de Minas*. Santiago, Chile: Universiad de Chile, Facultad de Ciencias Físicas y Matemáticas.

- Troncoso, S. H. (2009). Confiabilidad de programas de producción en sistemas mineros subterráneos complejos. *Tesis para optar al Grado de Magíster en Minería*. Santiago, Chile: Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas.
- Yarmuch, J. L. (2012). Simulación del sistema de carguío y transporte mina Chuquicamata. Tesis para optar al Grado de Magíster en Minería. Santiago, Chile: Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas.

12 ANEXOS

12.1 ANEXO A: Unidades Geotécnicas Básicas.

La nomeclaura usada en las siguientes tablas es:

RQD: Rock Quality Designation. Calidad de la roca medida en sondajes.

FF: Frecuencia de fractura por metro calculada desde sondajes.

GSI: Geological Strenght Index. Calculado desde sondajes.

IRS_{PLT}: Resistencia calculada a partir del Is₅₀ (PLT)¹.

12.1.1 UGTB Granodiorita Fortuna

Parámetro Geotécnico (UGTB GDF)	Menor	Valor de Media	Mayor
RQD	74	85	96
FF	4	6	8
IRS _{PLT}	41	120	199

12.1.2 UGTB Zona Cizalle Moderado

Parámetro Geotécnico (UGTB ZCM)	Menor	Valor de Media	Mayor
RQD	74	81	87
FF	6	7	9
IRS _{PLT}	19	69	119

12.1.3 UGTB Zona Cizalle Intenso

Parámetro Geotécnico (UGTB ZCI)	Menor		Mayor
		Media	

¹ El ensayo PLT (Point Load Test) utilizado en mecánica de rocas es un método aceptado para el cálculo del índice de resistencia de la roca (Is), este índice puede ser correlacionado con la resistencia de compresión uniaxial (UCS).

RQD	23	42	61
FF	8	12	17
IRS _{PLT}	3	22	40

12.1.4 UGTB Zona Pórfido Este Sericítico

Parámetro Geotécnico (UGTB PES)	Menor	Valor de Media	Mayor
RQD	94	97	100
FF	2	3	4
IRS _{PLT}	34	98	162

12.1.5 UGTB Zona Pórfido Este Potásico

Parámetro Geotécnico (UGTB PEK)	Menor	Valor de Media	Mayor
RQD	90	96	100
FF	1	3	4
IRS _{PLT}	47	115	182

12.1.6 UGTB Zona Pórfido Este Clorítico

Parámetro Geotécnico (UGTB PEC)	Menor	Valor de Media	Mayor
RQD	96	98	100
FF	1	2	3
IRS _{PLT}	36	79	122

12.1.7 UGTB Metasedimentos

Parámetro Geotécnico (UGTB MET)	Menor	Valor de Media	Mayor
RQD	30	49	67
FF	10	13	17
IRS _{PLT}	37	68	99

12.1.8 UGTB Granodiorita Elena Sur

Parámetro Geotécnico (UGTB GES)	Menor	Valor de Media	Mayor
RQD	63	71	79
FF	8	9	11
IRS _{PLT}	81	143	205

12.1.9 UGTB Brecha Entre Fallas

Parámetro Geotécnico (UGTB BEF)	Menor	Valor de Media	Mayor
RQD	68	78	88
FF	2	5	8
IRS _{PLT}	14	36	58

12.1.10 UGTB Cuarzo Mayor Sericíta

Parámetro Geotécnico (UGTB Q>S)	Menor	Valor de Media	Mayor
RQD	94	97	100
FF	1	2	3
IRS _{PLT}	40	86	132

12.1.11 UGTB Cuarzo Igual Sericíta

Parámetro Geotécnico (UGTB Q=S)	Menor	Valor de Media	Mayor
RQD	94	97	100
FF	1	3	4
IRS _{PLT}	13	49	86

12.1.12 UGTB Cuarzo Menor Sericíta

Parámetro Geotécnico (UGTB Q <s)< th=""><th>Menor</th><th>Valor de Media</th><th>Mayor</th></s)<>	Menor	Valor de Media	Mayor
RQD	30	58	87
FF	2	10	18

IRS _{PLT}	16	27	38
· <u>-</u> ·			1

12.2 ANEXO B: Plan de Producción PMCHS

12.2.1 Orientación y sentido de avance de Hundimiento por Macro Bloque.

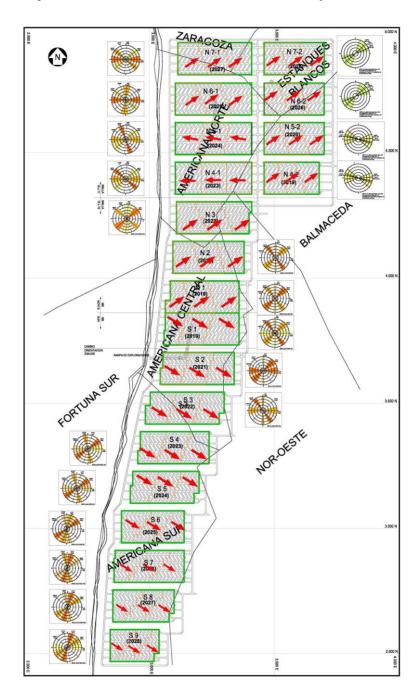


Figura 80 Orientación y sentido de avance de Hundimiento por Macro Bloque

12.2.2 Plan de Producción IB

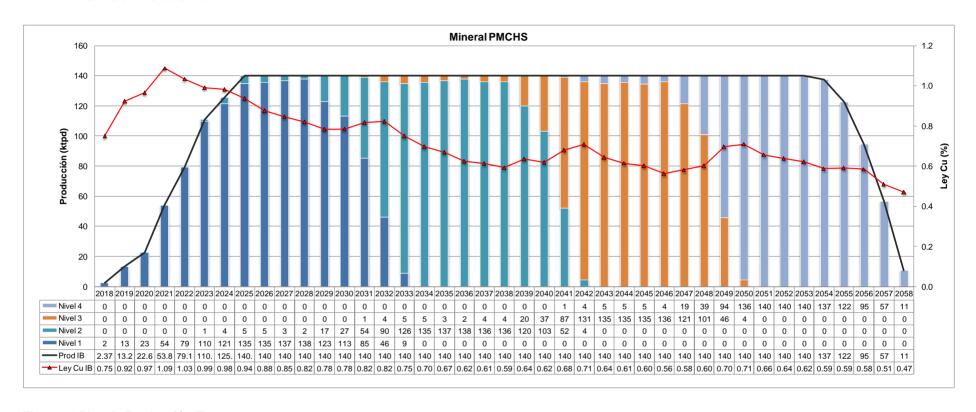


Figura 81 Plan de Producción IB.

12.2.3 Rh-vano y áreas a hundir por Macro Bloque

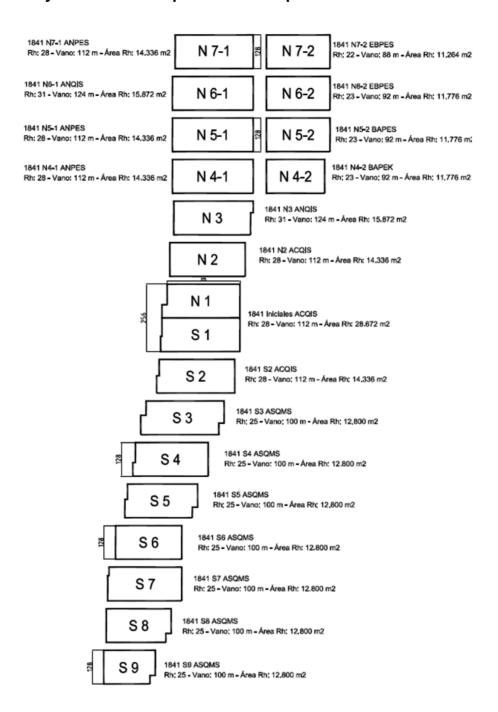


Figura 82 Rh-vano y áreas a hundir por Macro Bloque.

12.3 ANEXO C: Análisis de Vulnerabilidades

12.3.1 Benchmarking razón de propagación del hundimiento.

Tabla 35 Resumen de Razones de Propagación desde Minas en Operación (Sainsbury, 2010).

Operación	Método de Hundimiento	Razón de Propagación	Referencia
El Teniente, Chile	Panel	1:5	Villegas (2009, written comm.)
Henderson Mine, Colorado, USA	Panel	1:7	Board and Pierce (2009)
Grace Mine, Pennsylvannia, USA	Panel	1 : 8.2	Sainsbury (2005)
Deep Ore Zone Mine, Indonesia	Block	1 : 6-10	Szwedzicki et al. (2005)
Kimberley Mines, South Africa	Block	1 : 6-12	Guest (2009, written comm.)
Lakeshore Mine, Arizona, USA	Block	1 : 10	Panek (1984)
Questa Mine, New México, USA	Block	1:10	Gilbride et al. (2005)
San Manuel, Arizona, USA	Block	1 : 10	Gilbride et al. (2005)
Athens Mine, Michigan, USA	Block	1 : 14	Boyum (1961)
Palabora Mine, South Africa	Block	1 : 15	Sainsbury et al. (2005)
Northparkes Lift 2 Mine, Australia	Block	1:20	Pierce et al. (2006)
Australian Coal Mines	Longwall	1 : 8.9	UNSW (1995)
Chinese Coal Mine	Longwall	1:31.1	Liu (1981)

12.3.2 Área Colapsada: Análisis por Esfuerzos I

Tabla 36 Distribución de Área para Índice σ_{cm} /P0 para cada Macro Bloque en los diferentes casos modelados.

- 5017						
	Rango	APC ¹ / Á	APC¹ / Área Total de Macro bloques para los casos evaluados (%)			
Nivel	σ _{cm} / P ₀	$P_0 = \sigma_v$	$P_0 = 1.5 \times \sigma_v$	$P_0 = 2.0 \times \sigma_v$	$P_0 = 2.5 \times \sigma_v$	
	< 0,15	0,00	0,00	0,04	0,58	
1841	0,15 - 0,30	0,00	1,84	6,91	41,03	
	>0,30	100,00	98,16	93,05	58,40	

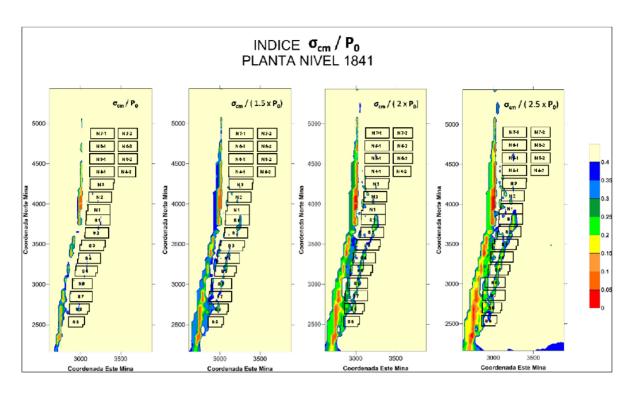


Figura 83 Planta Índice σ_{cm} /P0 para los distintos escenarios de esfuerzo, Macro Bloques Nivel 1841.

12.3.3 Área Colapsada: Análisis de Bloques Inestables

Macro	Macro Bloque Critico Exposición a Bloques Inestables		Plague Critico	les	BMI Aprox.		
Bloques	(m3)	< 100.000 m3	> 100.000 m3	> 140.000 m3	> 230.000 m3	(m3)	Evaluación Final
N7-1	230.000	X	X			136.000	Bajo Riesgo Colapso
N7-2	230.000					-	Bajo Riesgo Colapso
N6-1	140.000					-	Bajo Riesgo Colapso
N6-2	230.000	Х	X	Х	X	238.000	Alto Riesgo Colapso
N5-1	140.000	Х	X	Х		175.000	Alto Riesgo Colapso
N5-2	230.000	X	X	X		138.000	Bajo Riesgo Colapso
N4-1	140.000	X				95.000	Bajo Riesgo Colapso
N4-2	230.000					-	Bajo Riesgo Colapso
N3	140.000	X				95.000	Bajo Riesgo Colapso
N2	100.000					-	Bajo Riesgo Colapso
N1S1	100.000	X				80.000	Riesgo Medio Colapso
S2	100.000	X	X	X		160.000	Alto Riesgo Colapso
S3	100.000					-	Bajo Riesgo Colapso
S4	100.000	X				85.000	Riesgo Medio Colapso
S5	100.000					-	Bajo Riesgo Colapso
S6	100.000					-	Bajo Riesgo Colapso
S7	100.000					-	Bajo Riesgo Colapso
S8	100.000					-	Bajo Riesgo Colapso
S9	100.000	Х	X	X		137.000	Alto Riesgo Colapso

Figura 84 Resumen exposición de bloques inestables por cada Unidad de Explotación (BMI: Bloque Máximo inestable).

12.3.4 Mantenibilidad

Tabla 37 parámetros de Confiabilidad, Mantenibilidad y Disponibilidad Equipos principales

Chan de Caulon	TMEF	TMPR	Disponibilidad	TMEI	TMPI	Disponibilidad	Disponibilidad
Clase de Equipo	[horas]	[horas]	Inherente	[horas]	[horas]	Programada	Total
Alimentador	611,7	2,3	99,6%	313,8	6,2	98,1%	97,7%
Chancador de Mandíbulas	464,4	5,9	98,7%	517,1	22,9	95,8%	94,6%
Correa Colectora	839,3	5,9	99,2%	310,4	9,6	97,0%	96,3%
Correa de Nivel	808,0	4,6	99,4%	320,9	11,4	96,6%	96,0%
Correa de Sacrificio	301,8	3,2	98,9%	313,8	6,2	98,1%	97,0%
Correa de Transferencia	839,3	5,9	99,2%	326,2	6,2	98,2%	97,5%
Correa Intermedia	839,3	5,9	99,2%	310,4	9,6	97,0%	96,3%
Correa Overland 1	366,7	1,3	99,6%	320,9	11,4	96,6%	96,2%
Correa Overland 2	366,7	1,3	99,6%	320,9	11,4	96,6%	96,2%
Correa Principal 1	366,7	1,3	99,6%	320,9	11,4	96,6%	96,2%
Correa Principal 2	366,7	1,3	99,6%	320,9	11,4	96,6%	96,2%
Plate Feeder	945,9	5,6	99,3%	610,4	6,7	98,9%	98,3%

Tabla 38 Fallas Operacionales Alimentador de Placas

Ítem	Falla Operacional	Tiempo Entre Fallas [h]	Tiempo para Reparar [h]
1	Atollo	58 + WEIB(539; 0,931)	LOGN(1,47; 2,82)

Tabla 39 Fallas Operacionales Chancador de Mandíbula.

Ítem	Falla Operacional	Tiempo Entre Fallas [h]	Tiempo para Reparar [h]
1	Atollo en chancador	545 + EXPO(1420)	WEIB(4,14; 0,422)

Tabla 40 Mantenciones No Programadas Alimentador de Placas.

Ítem	Mantención no Programada	Tiempo Entre Fallas [h]	Tiempo para Reparar [h]
1	Falla unidad hidráulica	236 + WEIB(2130; 0,494)	LOGN(0,987; 1,54)
2	Pernos estructura sueltos o cortados	241 + GAMM(599; 0,19)	0,19 + LOGN(0,505; 0,558)
3	Estructura Dañada	1270 + WEIB(208; 0,215)	3 + LOGN(2,49; 6,28)
4	Unidad Hidráulica Dañada	501 + 2040* BETA(0,19; 0,169)	1 + 13* BETA(0,356; 0,696)
5	Base Cilindro Rota	351 + WEIB(1570; 0,358)	WEIB(8,05; 0,919)
6	Pernos Sueltos Base cilindro hidráulico	UNIF(1490, 3310)	1 + 6.72 * BETA(0,606; 0,747)
7	Falla sistema de control	265 + EXPO(1860)	0,1 + BETA(0,184; 0,3)

Tabla 41 Mantenciones No Programadas Chancador de Mandíbulas

Ítem	Mantención no Programada	Tiempo Entre Fallas [h]	Tiempo para Reparar [h]
1	Cambio o giro de mandíbula	UNIF(1700; 3020)	33+47*BETA(0,747; 0,31)
2	Ajuste de setting	143 + LOGN(1450; 4680)	WEIB(1,43; 0,891)
3	Pernos de mandíbula sueltos	754 + EXPO(693)	UNIF(1; 11)
4	Pernos de cuña sueltos	TRIA(917; 3000; 3230)	0,999 + EXPO(2,82)
5	Falla sensores	UNIF(3840, 5400)	6 * BETA(0,429; 0,749)
6	Falla motor sistema motriz	1630 + EXPO(2590)	TRIA(1,45; 1,95; 2)
7	Falla correas trapezoidales	3260 + EXPO(2400)	UNIF(3; 24)
8	Falla Sistema de Lubricación	1410 + 2720*BETA(0,116; 0,113)	0,999 + WEIB(0,154; 0,245)

Tabla 42 Fallas Operacionales Correa de Sacrificio.

Ítem	Falla Operacional	Tiempo Entre Fallas [h]	Tiempo para Reparar [h]
1	Descarga no uniforme	101+GAMM(4330; 0,458)	LOGN(2,68; 2,52)

Tabla 43 Fallas Operacionales Correa Intermedia.

Ítem	Falla Operacional	Tiempo Entre Fallas [h]	Tiempo para Reparar [h]
1	Activación Sensor de Ruptura	24+WEIB(888; 0,363)	0,06+ LOGN(0,783; 0,067)
2	Atollo en Chute	23+ WEIB(238; 0,574)	WEIB(0,658; 1,37)

Tabla 44 Fallas Operacionales Correa Colectora.

Ítem	Falla Operacional	Tiempo Entre Fallas [h]	Tiempo para Reparar [h]		
1	Activación Sensor de Ruptura	24+WEIB(888; 0,363)	0,06+ LOGN(0,783; 0,067)		
2	Atollo en Chute	23+ WEIB(238; 0,574)	WEIB(0,658; 1,37)		

Tabla 45 Mantención No Programada Correa de Sacrificio

Ítem	Mantención no Programada	Tiempo Entre Fallas [h]	Tiempo para Reparar [h]	
1	Descarga no uniforme	Descarga no uniforme 101+GAMM(4330; 0,458)		
2	Desconexión tacómetro	TRIA(1220; 2440; 2950)	UNIF(0,1; 0,9)	
3	Desgaste cinta 128+WEIB(39,7; 0,255)		5,85*BETA(0,509; 0,893)	
4	Fuera de servicio	1+WEIB(79,8; 0,409)	0,25+2,75*BETA(0,449; 0,538)	
5	Rotura cinta	12+WEIB(542; 0,317)	12*BETA(0,192; 0,529)	
6	Otros 10+2700*BETA(0,262; 0,292) WEIB(2; 105)			

Tabla 46 Mantención No Programada Correa Intermedia.

Ítem	Mantención no Programada	Tiempo Entre Fallas [h]	Tiempo para Reparar [h]		
1	Falla en VDF	WEIB(201; 0,71)	GAMM(0,566; 1,31)		
2	Cambio de Pull Cord	EXPO(132)	0,31+ 0,21*BETA(0,714; 0,576)		
3	Cambio Mesa de Impacto	216+ WEIB(511; 0,627)	0,23+ LOGN(0,83; 0,69)		
4	Cambio Polines de Retorno	5+ WEIB(488; 0,544)	LOGN(0,548; 0,436)		
5	Corte de Correa	1,54E3+ 4,68E3*BETA(0,117; 0,114)	0,63+ 0,371*BETA(0,495; 0,198)		
6	Reparación de Chute	168+EXPO(1,59E3)	UNIF(1; 8)		
7	Otras fallas eléctricas	allas eléctricas UNIF(216; 3,36E3) 8*BETA(0,527; 0,7			

Tabla 47 Fallas Operacionales Correas de Nivel

Ítem	Falla Operacional	Tiempo Entre Fallas [h]	Tiempo para Reparar [h]		
1	Activación sensor de ruptura	24 + WEIB(888; 0,363)	0,06 + LOGN(0,0783; 0,067)		
2	Atollo en chute	23 + WEIB(238; 0,574)	WEIB(0,658; 1,37)		

Tabla 48 Mantenciones No Programadas Correas de Nivel.

Ítem	Mantención no Programada	ención no Programada Tiempo Entre Fallas [h]		
1	Falla en VDF	WEIB(201; 0,71)	GAMM(0,566; 1,37)	
2	Cambio de pull cord	EXPO(132)	0,31 + 0,21 * BETA(0,714; 0,576)	
3	Cambio mesa impacto	216 + WEIB(511; 0,627)	0,23 + LOGN(0,83; 0,69)	
4	Cambio polines de retorno	24 + WEIB(355; 0,461)	0,34 + EXPO(0,353)	
5	Corte de correa	Corte de correa 1540 + 4480 * BETA(0,117; 0,114)		
6	Falla alimentación correa	1540 + 2450 * BETA(0,159; 0,131)	6 * BETA(0,0212; 0,0228)	
7	Reparación de chute	168 + EXPO(1590)	UNIF(1; 8)	
8	Retiro polin de retorno	23 + GAMM(4140; 0,386)	EXPO(0,309)	
9	Otras fallas eléctricas	23 + EXPO(2,38e3)	LOGN(2,28; 4,21)	

Tabla 49 Fallas Operacionales Transporte Principal Subterráneo

Ítem	Falla Operacional	Tiempo Entre Fallas [h]	Tiempo para Reparar [h]		
1	Activación sensor de ruptura	24 + WEIB(888; 0,363)	0,06 + LOGN(0,0783; 0,067)		
2	Atollo en chute	23 + WEIB(238; 0,574)	WEIB(0,658; 1,37)		

Tabla 50 Mantenciones No Programadas Transporte Principal Subterráneo.

Ítem	Mantención no Programada	Tiempo Entre Fallas [h]	Tiempo para Reparar [h]
1	Falla en VDF	WEIB(201; 0,71)	GAMM(0,566; 1,37)

2	Cambio de pull cord EXPO(132) 0,31 + 0,21 * BETAI				
3	Cambio mesa impacto	216 + WEIB(511; 0,627)	0,23 + LOGN(0,83; 0,69)		
4	Cambio polines de retorno	Cambio polines de retorno 24 + WEIB(355; 0,461) 0,34			
5	Corte de correa	1540 + 4480 * BETA(0,117; 0,114)	0,63 + 0,371 * BETA(0,495; 0,198)		
6	Falla alimentación correa	1540 + 2450 * BETA(0,159; 0,131)	6 * BETA(0,0212; 0,0228)		
7	Reparación de chute 168 + EXPO(1590)		UNIF(1; 8)		
8	Retiro polin de retorno	23 + GAMM(4140; 0,386)	EXPO(0,309)		
9	Otras fallas eléctricas 23 + EXPO(2,38e3) LOGN(2,28				

12.4 ANEXO D: Modelo Conceptual

12.4.1 Frecuencia de generación de bolones 0.77-1.18 m3

Tabla 51 Frecuencia bolones entre 0.77- 1.18 m3

MB		Frecuencia de generación de bolones 0.77-1.18 m3 (ton/bolon)						Bolones 0.77-	Producción MB
				Año en produc	ción	•		1.18 m3 (ton)	(ton)
	Periodo 1	Periodo 2	Periodo 3	Periodo 4	Periodo 5	Periodo 6-7	Promedio	1.18 m3 (ton)	(ton)
N1	49	49	120	166	135	0	103	207,110	21,354,840
S1	56	50	123	145	131	0	102	209,618	21,460,027
N4-2	82	24	32	53	128	46	49	297,506	14,615,774
N5-2	86	24	35	67	155	50	55	289,049	16,036,605
N2	50	50	127	131	79	0	89	253,316	22,419,625
S2	49	51	118	160	78	0	91	256,037	23,303,106
N3	53	57	166	159	83	58	95	294,078	27,820,961
S3	60	42	91	140	64	65	76	373,701	28,233,246
N4-1	151	238	370	81	63	59	87	313,565	27,375,165
S4	70	75	139	148	66	49	82	311,796	25,694,020
N5-1	251	201	64	56	73	189	84	329,084	27,565,445
S5	190	161	91	56	57	114	78	349,809	27,138,596
N6-1	57	54	50	70	265	133	87	325,715	28,229,777
S6	89	59	54	54	135	98	75	341,207	25,589,884
N6-2	103	74	40	60	0	0	56	231,192	13,012,851
S7	68	48	42	98	151	68	74	358,021	26,623,664
N7-1	45	45	67	111	68	53	65	412,607	26,809,109
S8	70	43	75	147	113	50	77	325,719	25,191,743
N7-2	35	31	59	83	21	0	46	416,128	19,094,196
S9	59	81	133	188	100	69	96	171,641	16,421,239
Media	62	56	79	92	80	66	75	334,492	24,922,881

MB Típicos para		Frecuencia de generación de bolones Sobre 1.18 m3 (ton/bolon)							Producción MB
niveles inferiores		Año en producción						Sobre 1.18 m3	(ton)
	Periodo 1	Periodo 2	Periodo 3	Periodo 4	Periodo 5	Periodo 6-7	Promedio	(ton)	(ton)
Norte	45	45	67	111	68	53	66	378,522	25,000,000
Sur	56	50	123	145	131	131	104	239,958	25,000,000
Plan típico (Mt/a)	1.6	2.9	4.9	6.5	5.6	3.5			25,000,000

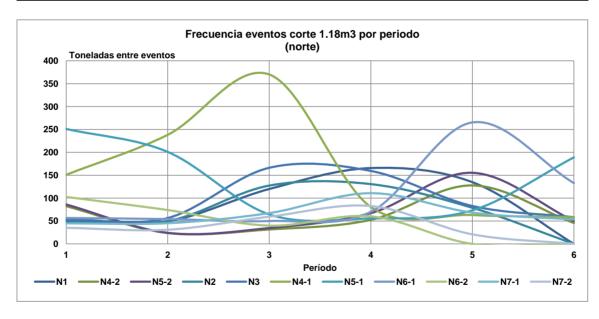


Figura 85 Frecuencia bolones entre 0.77- 1.18 m3 MB Norte

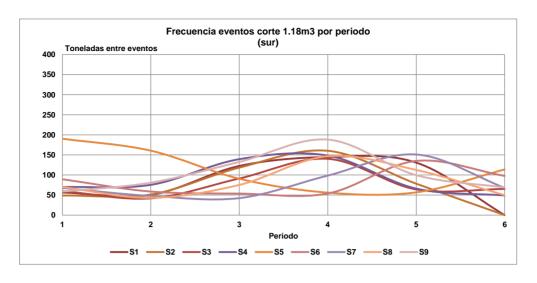


Figura 86 Frecuencia bolones entre 0.77- 1.18 m3 MB Sur

12.4.2 Frecuencia de generación de bolones sobre 1.18 m3

Tabla 52 Frecuencia bolones sobre 1.18 m3

MB		Frecuen	cia de generac	ión de bolones	Sobre 1.18 n	n3 (ton/bolon)		Bolones	Producción MB
				Año en produc	ción			Sobre 1.18 m3	(ton)
	Periodo 1	Periodo 2	Periodo 3	Periodo 4	Periodo 5	Periodo 6-7	Promedio	(ton)	(ton)
N1	87	107	492	935	596	0	314	67,942	21,354,840
S1	119	106	438	792	617	0	320	67,015	21,460,027
N4-2	186	50	98	230	480	#¡DIV/0!	222	65,959	14,615,774
N5-2	213	55	131	297	708	#¡DIV/0!	277	57,916	16,036,605
N2	100	133	605	568	272	0	289	77,658	22,419,625
S2	87	105	422	883	326	0	276	84,571	23,303,106
N3	121	186	837	1054	333	188	358	77,792	27,820,961
S3	103	91	391	669	206	258	237	118,932	28,233,246
N4-1	865	1551	1551	299	229	144	294	93,109	27,375,165
S4	195	300	771	905	225	114	278	92,407	25,694,020
N5-1	915	915	203	164	220	1343	273	101,075	27,565,445
S5	1270	897	404	168	141	674	252	107,587	27,138,596
N6-1	184	162	148	294	494	494	312	90,588	28,229,777
S6	307	164	154	126	729	400	227	112,610	25,589,884
N6-2	429	234	115	188	0	0	172	75,557	13,012,851
S7	190	126	93	402	829	236	230	115,998	26,623,664
N7-1	110	107	196	468	205	144	186	144,193	26,809,109
S8	219	87	238	879	553	152	248	101,395	25,191,743
N7-2	72	87	249	282	51	0	133	143,260	19,094,196
S9	145	325	869	1337	478	271	393	41,747	16,421,239
Media	149	149	282	352	279	254	251	99,162	463,989,872

MB Típicos para		Frecuen	cia de generac	ión de bolone:	s Sobre 1.18 r	n3 (ton/bolon)		Bolones	Producción MB
niveles inferiores				Año en produc	cción			Sobre 1.18 m3	(ton)
	Periodo 1	Periodo 2	Periodo 3	Periodo 4	Periodo 5	Periodo 6-7	Promedio	(ton)	(ton)
Norte	110	107	196	468	205	144	189	131,984	25,000,000
Sur	119	106	438	792	617	617	335	74,616	25,000,000
Plan típico (Mt/a)	1.6	2.9	4.9	6.5	5.6	3.5			25.000.000

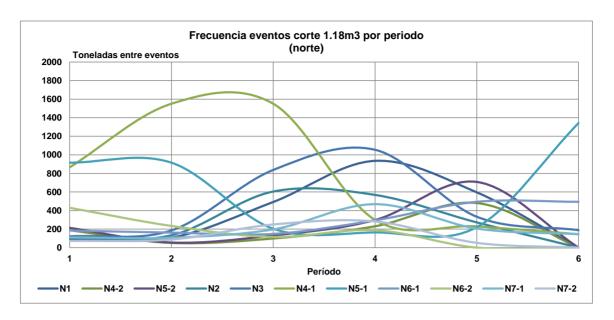


Figura 87 Frecuencia de generación de bolones sobre 1.18 m3 MB Norte

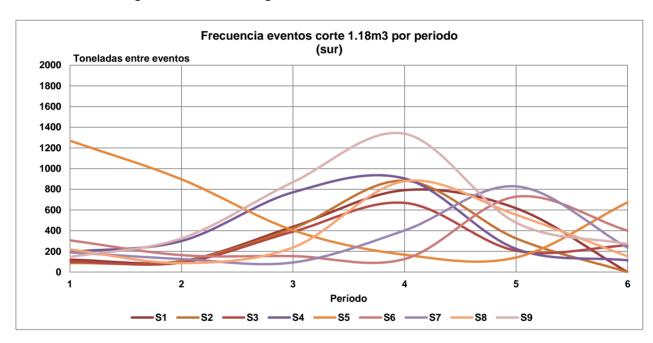


Figura 88 Frecuencia de generación de bolones sobre 1.18 m3 MB Sur

12.4.3 Programa de Mantenciones

Tabla 53 Planificación mensual de las mantenciones de los componentes del Nivel de Transporte y Chancado.

Nivel	Facility										Me	s 1									
Nivei	Equipo	Día 1	Día 2	Día 3	Día 4	Día 5	Día 1	Día 2	Día 3	Día 4	Día 5	Día 1	Día 2	Día 3	Día 4	Día 5	Día 1	Día 2	Día 3	Día 4	Día 5
	Alimentador de Placa 1	3										3									
	Chancador de Mandíbula 1	3										8									
Nivel de Chancado	Correa de Sacrificio 1	3										6									
	Alimentador de Placa 2	3										3									
Macrobloque 1	Chancador de Mandíbula 2	3										8									
	Correa de Sacrificio 2	3										6									
	Correa Intermedia	3										8									
	Alimentador de Placa 1	3										3									
	Chancador de Mandíbula 1	3										8									
Nivel de Chancado	Correa de Sacrificio 1	3										6									
	Alimentador de Placa 2	3										3									
Macrobloque 2	Chancador de Mandíbula 2	3										8									
	Correa de Sacrificio 2	3										6									
	Correa Intermedia	3										8									
	Alimentador de Placa 1		3										3								
	Chancador de Mandíbula 1		3										8								
Nivel de Chancado	Correa de Sacrificio 1		3										6								
Macrobloque 3	Alimentador de Placa 2		3										3								
iviacrobioque 3	Chancador de Mandíbula 2		3										8								
	Correa de Sacrificio 2		3										6								
	Correa Intermedia		3										8								
	Alimentador de Placa 1		3										3								
	Chancador de Mandíbula 1		3										8								
Nivel de Chancado	Correa de Sacrificio 1		3										6								
Macrobloque 4	Alimentador de Placa 2		3										3								
iviaci obioque 4	Chancador de Mandíbula 2		3										8								
	Correa de Sacrificio 2		3										6								
	Correa Intermedia		3										8								

Nivel	Environ					•					Mes 1									
Nivei	Equipo	Día 2	Día 3	Día 4	Día 5	Día 1	Día 2	Día 3	Día 4	Día 5	Día 1	Día 2	Día 3	Día 4	Día 5	Día 1	Día 2	Día 3	Día 4	Día 5
	Alimentador de Placa 1		3										3							
	Chancador de Mandíbula 1		3										8							
Nivel de Chancado	Correa de Sacrificio 1		3										6							
	Alimentador de Placa 2		3										3							
Macrobloque 5	Chancador de Mandíbula 2		3										8							
	Correa de Sacrificio 2		3										6							
	Correa Intermedia		3										8							
	Alimentador de Placa 1		3										3							
	Chancador de Mandíbula 1		3										8							
Nivel de Chancado	Correa de Sacrificio 1		3										6							
Macrobloque 6	Alimentador de Placa 2		3										3							
Macrobioque o	Chancador de Mandíbula 2		3										8							
	Correa de Sacrificio 2		3										6							<u></u>
	Correa Intermedia		3										8							
	Alimentador de Placa 1			3	3									3	3					
	Chancador de Mandíbula 1			3	5									8	5					
Nivel de Chancado	Correa de Sacrificio 1			3	3									6	5					
Macrobloque 7	Alimentador de Placa 2			3	1									3	1					<u></u>
Macrobioque 7	Chancador de Mandíbula 2			3	3									8	3					
	Correa de Sacrificio 2			3	1									6	i					<u></u>
	Correa Intermedia			3	1									8	1					<u></u>
	Alimentador de Placa 1			3	3									3	3					
	Chancador de Mandíbula 1			3	1									8	1					<u></u>
Nivel de Chancado	Correa de Sacrificio 1			3										6	i					
Macrobloque 8	Alimentador de Placa 2			3										3						<u> </u>
was obloque o	Chancador de Mandíbula 2			3										8						<u> </u>
	Correa de Sacrificio 2			3										6						
	Correa Intermedia			3	1									8						<u></u>

A11 1											Mes 1									
Nivel	Equipo	Día 2	Día 3	Día 4	Día 5	Día 1	Día 2	Día 3	Día 4	Día 5	Día 1	Día 2	Día 3	Día 4	Día 5	Día 1	Día 2	Día 3	Día 4	Día 5
	Alimentador de Placa 1				3										3					
	Chancador de Mandíbula 1				3										8					
Nivel de Chancado	Correa de Sacrificio 1				3										6					
Macrobloque 9	Alimentador de Placa 2				3										3					
ivacrobioque 9	Chancador de Mandíbula 2				3										8					
	Correa de Sacrificio 2				3										6					
	Correa Intermedia				3										8					
	Alimentador de Placa 1				3										3					
	Chancador de Mandíbula 1				3										8					
Nivel de Chancado	Correa de Sacrificio 1				3										6					
Macrobloque 10	Alimentador de Placa 2				3										3					
Macrobioque 10	Chancador de Mandíbula 2				3										8					
	Correa de Sacrificio 2				3										6					
	Correa Intermedia				3										8					
	Alimentador de Placa 1					3										3				
	Chancador de Mandíbula 1					3										8				
Nivel de Chancado	Correa de Sacrificio 1					3										6				
Macrobloque 11	Alimentador de Placa 2					3										3				
Wacrobioque 11	Chancador de Mandíbula 2					3										8				
	Correa de Sacrificio 2					3										6				
	Correa Intermedia					3										8				
	Alimentador de Placa 1					3										3				
	Chancador de Mandíbula 1					3										8				
Nivel de Chancado	Correa de Sacrificio 1					3										6				
Macrobloque 12	Alimentador de Placa 2					3										3				
Macrobioque 12	Chancador de Mandíbula 2					3										8				
	Correa de Sacrificio 2					3										6				
	Correa Intermedia					3										8				

NO I	Feeder										Mes 1									
Nivel	Equipo	Día 2	Día 3	Día 4	Día 5	Día 1	Día 2	Día 3	Día 4	Día 5	Día 1	Día 2	Día 3	Día 4	Día 5	Día 1	Día 2	Día 3	Día 4	Día 5
Nivel de Chancado	Correa Intermedia					3										8				
Correas Colectoras	Correa Colectora Norte									8										10
	Correa Colectora Sur									8										10
	Correa Reversible									0										0
	Correa de Nivel									6										16
Transporte de Nivel																				
Transporte de Niver																				
	Correa Transporte Principal Subterráneo 1									8										16
Transporte Principal	Correa Transporte Principal Subterráneo 2									8										16
Transporte Principal	Correa Transporte Principal Superficie 1									8										16
	Correa Transporte Principal Superficie 2									8										16

12.4.4 Flota de Equipo y APC

Tabla 54. Flota de equipos LHD 2027 y Porcentaje de Área Potencial de Colapso.

2027	N7-1	N6-2	N6-1	N5-2	N5-1	N4-1	N3	S3	S4	S5	S6	S7	S8
N° LHD	1	2	2	1	4	4	2	2	4	4	2	1	1
% APC	0%	9%	0%	0%	5%	0%	6%	0%	6%	4%	7%	0%	10%

Tabla 55. Flota de equipos LHD 202 y Porcentaje de Área Potencial de Colapso.

2028	N7-2	N7-1	N6-2	N6-1	N5-1	N4-1	S4	S5	S6	S7	S8	S9
N° LHD	1	2	2	4	4	3	2	4	3	2	2	1
% APC	0%	0%	9%	0%	5%	0%	6%	4%	7%	0%	10%	10%

12.5 ANEXO E: Resultados Simulaciones

12.5.1 N° LHD

Tabla 56 Tiempo ciclo escenario c/Mantenciones

Tiempo Ciclo			1 LHD	2 LHD	3 LHD	4 LHD	5 LHD	6 LHD	7 LHD	8 LHD
T ciclo medio	[min]	Tc	2.04	2.03	2.05	2.08	2.10	2.13	2.16	2.21
Tiempo Espera por pique (martillo+pique lleno)	[min]	Te_p	0.11	0.13	0.14	0.15	0.15	0.16	0.16	0.15
Tiempo Espera por operador	[min]	Te_op	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tiempo de carga	[min]	Tcarg	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
Tiempo de descarga	[min]	Tdes	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22
Tiempo de viaje	[min]	Tv	1.20	1.18	1.20	1.22	1.23	1.26	1.29	1.34

Tabla 57 Tiempo ciclo escenario s/Mantenciones

Tiempo Ciclo			1 LHD	2 LHD	3 LHD	4 LHD	5 LHD	6 LHD	7 LHD	8 LHD
T ciclo medio	[min]	Tc	2.02	2.05	2.06	2.08	2.10	2.12	2.15	2.17
Tiempo Espera por pique (martillo+pique lleno)	[min]	Te_p	0.12	0.13	0.14	0.15	0.16	0.16	0.15	0.15
Tiempo Espera por operador	[min]	Te_op	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tiempo de carga	[min]	Tcarg	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
Tiempo de descarga	[min]	Tdes	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22
Tiempo de viaje	[min]	Tv	1.19	1.20	1.20	1.21	1.22	1.25	1.28	1.30

Tabla 58 Promedio de producciones para Caso N° LHD (Considera Producción media c/Mant & S/Mant)

	1 LHD	2 LHD	3 LHD	4 LHD	5 LHD	6 LHD	7 LHD	8 LHD
Promedio producción [tpd]	5,435	10,456	15,224	20,297	23,775	27,598	29,077	29,817

12.5.2 Área Colapsada

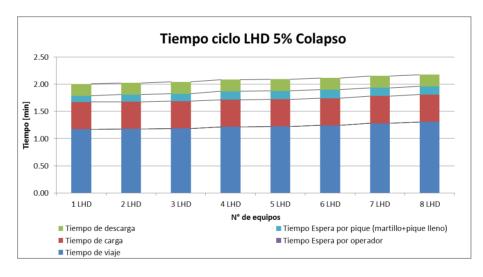


Figura 89. Tiempo ciclo 5% AC.

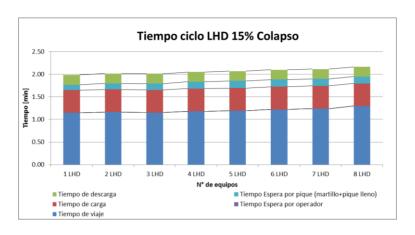


Figura 90. Tiempo ciclo 15% AC.

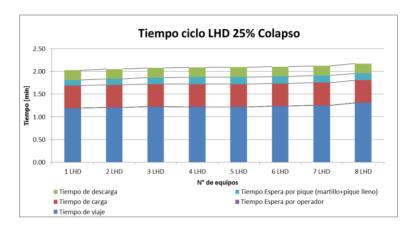


Figura 91. Tiempo ciclo 25% AC.

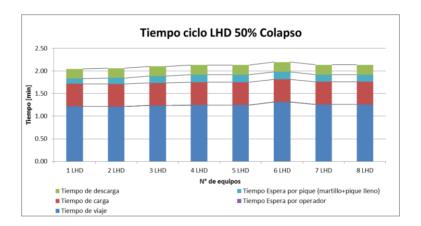


Figura 92. Tiempo ciclo 50% AC.

12.5.3 Mina Integrada

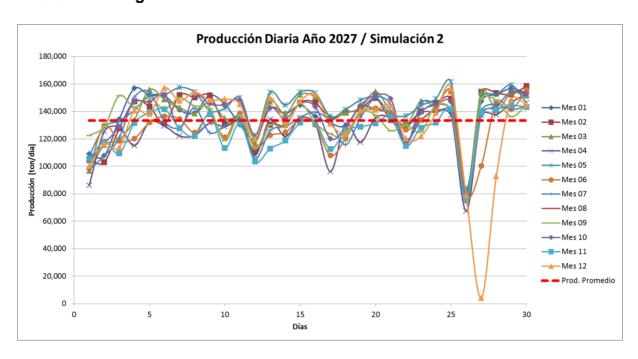


Figura 93. Producción Diaria, curvas mensuales para simulación 2, Mina Integrada Año 2027

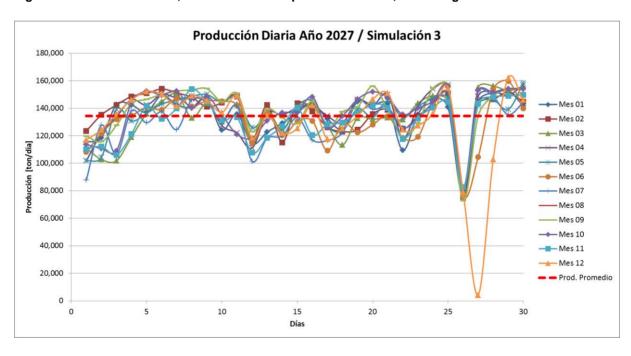


Figura 94. Producción Diaria, curvas mensuales para simulación 3, Mina Integrada Año 2027

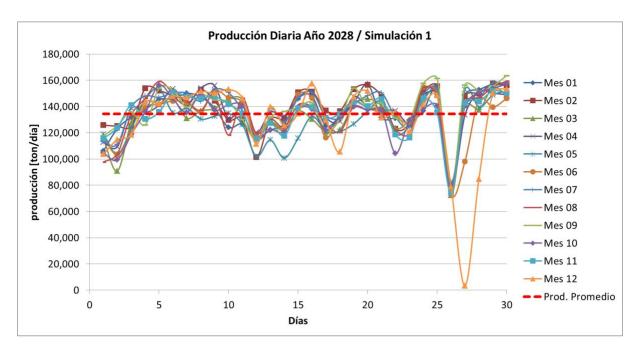


Figura 95. Producción Diaria, curvas mensuales para simulación 1, Mina Integrada Año 2028.

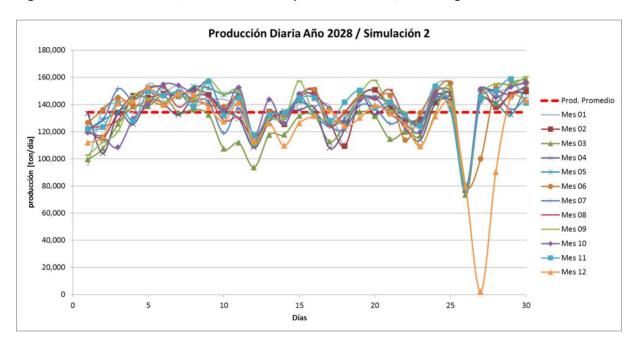


Figura 96. Producción Diaria, curvas mensuales para simulación 2, Mina Integrada Año 2028

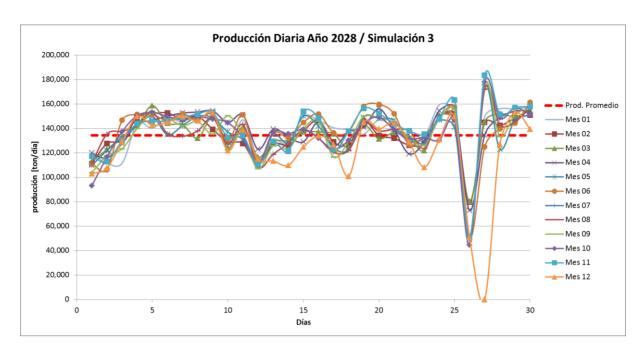


Figura 97. Producción Diaria, curvas mensuales para simulación 3, Mina Integrada Año 2028

Tabla 59 Información simulación 2 año 2027

Sim2													
Producción [tpd]	Mes 01	Mes 02	Mes 03	Mes 04	Mes 05	Mes 06	Mes 07	Mes 08	Mes 09	Mes 10	Mes 11	Mes 12	Producción Media anual [tpd]
1	108,867	104,582	96,574	86,143	107,806	98,758	97,594	122,460	122,460	104,354	105,498	100,100	104,600
2	107,640	103,085	115,679	125,310	128,638	129,553	107,557	128,980	128,980	116,657	117,832	116,303	118,851
3	134,378	127,733	119,402	128,606	133,162	118,435	121,004	151,518	151,518	128,856	109,481	113,651	128,145
4	156,790	147,295	133,879	115,097	141,086	120,307	150,342	143,238	143,238	146,692	131,633	140,702	139,192
5	151,778	143,541	155,896	132,236	151,746	132,028	154,190	149,968	149,968	147,129	139,079	138,278	145,486
6	151,445	131,238	148,710	129,386	152,329	136,458	132,527	141,856	141,856	152,256	141,554	157,144	143,063
7	141,024	151,975	142,958	122,138	157,394	134,503	128,294	149,937	149,937	127,826	127,629	147,774	140,116
8	138,923	150,238	138,486	122,418	154,128	124,758	142,480	143,935	143,935	151,913	121,909	154,014	140,595
9	151,882	151,611	146,983	131,498	140,587	138,143	124,467	142,157	142,157	145,444	137,894	148,294	141,760
10	145,194	130,790	135,054	128,887	142,262	121,150	129,646	118,830	118,830	144,893	113,350	148,949	131,486
11	130,229	132,205	134,233	133,120	150,072	138,611	135,460	137,238	137,238	148,023	131,508	145,319	137,771
12	119,579	110,698	117,239	108,306	122,741	113,901	105,903	113,692	113,692	120,692	103,542	120,297	114,190
13	142,480	130,312	147,025	134,191	153,816	122,606	126,038	130,208	130,208	142,719	112,954	149,718	135,190
14	138,372	130,156	138,372	121,711	144,539	124,821	128,856	128,865	128,865	134,857	118,716	132,142	130,856
15	144,487	146,401	152,277	135,314	154,118	133,994	135,730	145,517	145,517	145,974	131,726	147,462	143,210
16	136,458	146,245	150,415	130,801	153,431	130,385	139,516	131,622	131,622	143,437	132,080	152,474	139,874
17	131,466	134,451	136,146	96,262	136,261	107,869	132,590	123,593	123,593	120,037	112,549	131,092	123,826
18	129,501	139,350	138,871	130,894	141,461	120,151	115,783	121,856	121,856	128,253	126,318	124,550	128,237
19	143,926	141,419	142,719	117,520	148,231	138,466	135,574	139,359	139,359	144,227	128,794	140,546	138,345
20	141,492	149,718	154,471	135,439	150,259	142,345	150,270	137,259	137,259	152,027	131,394	141,055	143,582
21	138,767	133,713	139,984	134,638	138,414	137,738	145,080	125,913	125,913	149,313	136,302	144,362	137,511
22	129,303	130,156	130,250	118,539	136,791	126,537	115,014	130,322	130,322	116,938	114,743	120,151	124,922

	_							_		_			
23	139,277	140,192	147,514	133,567	144,238	133,775	145,974	125,184	125,184	139,402	128,170	121,815	135,358
24	139,506	146,203	144,404	140,858	149,219	142,459	145,506	145,059	145,059	144,820	131,882	138,830	142,817
25	140,088	149,198	154,814	137,270	161,450	154,138	140,806	141,044	141,044	146,942	141,513	156,946	147,104
26	79,633	77,782	82,274	67,506	83,824	79,591	80,246	75,566	75,566	74,474	75,764	78,884	77,593
27	147,212	154,367	154,003	137,145	150,249	100,246	140,348	149,261	149,261	137,530	139,069	4,035	130,227
28	152,318	153,338	140,899	137,540	152,298	146,910	145,215	148,147	148,147	143,603	141,471	92,706	141,883
29	156,614	152,464	153,587	146,567	159,307	141,773	141,315	136,302	136,302	154,586	144,498	148,855	147,681
30	153,452	158,538	151,434	152,786	146,016	155,563	144,071	144,861	144,861	152,734	143,198	144,695	149,351
	0	0	0	0	0	0	0	0	0	0	0	Promedio	133,427
Rendimiento Ef. LHD [tph]	Mes 01	Mes 02	Mes 03	Mes 04	Mes 05	Mes 06	Mes 07	Mes 08	Mes 09	Mes 10	Mes 11	Mes 12	Media
2028	357.3322	357.3322	357.3322	355.3815	353.0234	354.9352	353.1752	347.6627	354.674	347.848	350.4325	350.4324615	353.3
Hras. Operativas LHD [h]	Mes 01	Mes 02	Mes 03	Mes 04	Mes 05	Mes 06	Mes 07	Mes 08	Mes 09	Mes 10	Mes 11	Mes 12	Media
2028	7.72	7.56	7.81	7.25	8.01	7.33	7.55	7.63	7.73	7.94	7.27	7.14	7.6
Hras. Efectivas LHD [h]	Mes 01	Mes 02	Mes 03	Mes 04	Mes 05	Mes 06	Mes 07	Mes 08	Mes 09	Mes 10	Mes 11	Mes 12	Media
2028	6.72	6.60	6.81	6.37	6.97	6.44	6.57	6.75	6.79	6.88	6.43	6.36	6.6
									•	•			
Tiempo Ciclo Operativo LHD [min]	Mes 01	Mes 02	Mes 03	Mes 04	Mes 05	Mes 06	Mes 07	Mes 08	Mes 09	Mes 10	Mes 11	Mes 12	
		2.02	2.02	2.01	2.06	2.04	2.05	2.06	2.03	2.08	2.02	2.02	2.0
2028	2.03	2.03	2.03	2.01	2.00	2.01		2.00	2.03		2.02	2.02	
2028	2.03	2.03	2.03	2.01	2.00	2.01	2.00	2.00	2.03	2.00	2.02	2.02	
Z028 Tiempo Ciclo Efectivo LHD [min]	2.03 Mes 01	2.03 Mes 02	2.03 Mes 03	2.01 Mes 04	Mes 05	Mes 06	Mes 07	Mes 08	Mes 09	Mes 10	Mes 11	Mes 12	

Tabla 60 Información simulación 1 año 2027

Sim1													
Producción [tpd]	Mes 01	Mes 02	Mes 03	Mes 04	Mes 05	Mes 06	Mes 07	Mes 08	Mes 09	Mes 10	Mes 11	Mes 12	Producción Media anual [tpd]
1	108,108	94,318	114,982	104,458	96,470	121,493	106,132	110,999	117,478	109,897	114,244	114,670	109,437
2	129,542	116,532	100,880	128,326	119,257	111,540	133,276	139,994	105,862	131,030	136,521	117,489	122,521
3	122,335	142,324	122,242	124,790	138,975	132,735	125,372	119,038	122,938	124,935	125,133	126,849	127,306
4	135,273	134,763	129,854	154,128	139,308	143,790	145,038	142,428	137,311	135,210	149,053	137,124	140,273
5	137,051	147,285	146,546	133,848	144,654	141,908	142,386	139,776	144,872	143,946	155,823	145,454	143,629
6	147,774	148,439	146,869	153,015	145,506	148,418	152,630	144,685	144,934	148,554	149,718	150,041	148,382
7	141,159	139,932	146,463	152,391	144,903	143,478	140,764	142,480	145,496	149,438	149,396	149,822	145,477
8	147,815	148,741	149,614	142,428	145,933	150,862	150,249	151,892	157,466	143,094	154,794	141,669	148,713
9	148,751	153,525	139,038	148,190	139,048	147,555	148,127	151,466	138,570	139,963	151,226	143,770	145,769
10	129,418	143,801	132,174	141,700	135,543	134,212	124,925	134,815	138,237	138,882	129,033	120,962	133,642
11	144,092	143,343	138,580	141,107	141,294	143,957	148,148	145,621	138,362	142,449	140,379	134,254	141,799
12	120,224	110,521	113,516	117,634	116,033	120,276	112,778	124,010	120,630	120,692	115,908	121,347	117,797
13	133,182	138,570	134,586	143,114	139,464	126,329	131,092	148,741	136,469	140,317	135,013	138,507	137,115
14	121,004	126,547	139,110	136,999	113,474	127,182	123,375	143,593	131,633	134,430	141,076	130,780	130,767
15	147,410	145,205	147,108	147,170	130,302	142,022	140,244	153,275	144,310	142,834	154,294	131,643	143,818
16	135,980	147,503	141,138	138,497	137,758	140,878	125,154	157,799	131,789	144,082	149,448	145,101	141,261
17	117,312	119,850	124,748	130,832	121,524	109,637	122,970	132,943	129,095	122,034	121,441	119,174	122,630
18	134,815	126,714	129,470	130,562	129,459	137,613	126,173	132,194	130,530	130,395	135,294	121,472	130,391
19	147,930	136,770	142,386	142,802	133,921	138,632	139,402	144,362	120,255	142,282	132,257	122,398	136,950
20	156,291	147,846	150,072	140,982	147,337	150,446	141,856	153,868	140,535	144,279	145,652	145,662	147,069
21	143,749	145,007	129,459	142,657	134,150	135,512	140,878	153,369	128,492	135,678	126,256	143,884	138,258
22	125,091	118,799	124,935	119,870	126,558	124,332	125,965	126,828	126,381	132,298	124,602	122,710	124,864

				i	1	i	1	1	1	i	•	1	i
23	142,095	143,426	124,665	144,123	140,785	141,201	136,417	134,077	124,342	143,967	142,563	114,088	135,979
24	150,446	153,993	135,533	144,560	136,583	141,388	150,311	158,028	144,404	147,690	152,339	140,743	146,335
25	152,516	147,888	150,810	156,686	142,563	144,529	157,258	157,664	146,463	148,221	146,786	151,174	150,213
26	82,368	81,390	80,621	83,470	81,598	76,190	82,181	81,328	80,382	78,811	80,018	77,948	80,525
27	148,190	147,482	148,200	148,210	147,482	100,090	152,162	143,302	134,014	150,030	147,337	5,554	131,004
28	147,160	151,736	144,040	136,770	131,747	155,927	155,220	152,859	138,622	151,445	142,366	94,266	141,846
29	141,877	140,358	138,008	152,578	151,330	154,752	141,596	156,021	145,922	142,761	145,090	153,036	146,944
30	147,451	153,150	154,367	153,754	155,698	152,776	155,168	150,311	153,566	150,062	155,116	148,720	152,512
		0	0	0	0	0	0	0	0	0	0	Promedio	135,441
Rendimiento Ef. LHD [tph]	Mes 01	Mes 02	Mes 03	Mes 04	Mes 05	Mes 06	Mes 07	Mes 08	Mes 09	Mes 10	Mes 11	Mes 12	Media
2028	354	351	338	348	355	351	355	368	358	354	348	374	354.4
2020	337	331	330	5	3	331	3	300	5	5	340	3/4	33 11 1
2020	334	331	330	340	333	331	333	308	338	334	340	3/4	33 1
Hras. Operativas LHD [h]	Mes 01	Mes 02	Mes 03	Mes 04	Mes 05	Mes 06	Mes 07	Mes 08	Mes 09	Mes 10	Mes 11	Mes 12	Media
												•	
Hras. Operativas LHD [h]	Mes 01	Mes 02	Mes 03	Mes 04	Mes 05	Mes 06	Mes 07	Mes 08	Mes 09	Mes 10	Mes 11	Mes 12	Media
Hras. Operativas LHD [h]	Mes 01	Mes 02	Mes 03	Mes 04	Mes 05	Mes 06	Mes 07	Mes 08	Mes 09	Mes 10	Mes 11	Mes 12	Media
Hras. Operativas LHD [h] 2028	Mes 01 7.69	Mes 02 7.65	Mes 03 7.60	Mes 04 7.99	Mes 05 7.61	Mes 06 7.70	Mes 07 7.76	Mes 08 8.00	Mes 09 7.43	Mes 10 7.69	Mes 11 7.90	Mes 12 7.10	Media 7.7
Hras. Operativas LHD [h] 2028 Hras. Efectivas LHD [h]	Mes 01 7.69 Mes 01	Mes 02 7.65 Mes 02	Mes 03 7.60 Mes 03	Mes 04 7.99 Mes 04	Mes 05 7.61 Mes 05	Mes 06 7.70 Mes 06	Mes 07 7.76 Mes 07	Mes 08 8.00 Mes 08	Mes 09 7.43 Mes 09	Mes 10 7.69 Mes 10	Mes 11 7.90 Mes 11	Mes 12 7.10 Mes 12	Media 7.7 Media
Hras. Operativas LHD [h] 2028 Hras. Efectivas LHD [h]	Mes 01 7.69 Mes 01	Mes 02 7.65 Mes 02	Mes 03 7.60 Mes 03	Mes 04 7.99 Mes 04	Mes 05 7.61 Mes 05	Mes 06 7.70 Mes 06	Mes 07 7.76 Mes 07	Mes 08 8.00 Mes 08	Mes 09 7.43 Mes 09	Mes 10 7.69 Mes 10	Mes 11 7.90 Mes 11	Mes 12 7.10 Mes 12	Media 7.7 Media
Hras. Operativas LHD [h] 2028 Hras. Efectivas LHD [h] 2028	Mes 01 7.69 Mes 01 6.69	Mes 02 7.65 Mes 02 6.76	Mes 03 7.60 Mes 03 6.77	Mes 04 7.99 Mes 04 6.91	Mes 05 7.61 Mes 05 6.66	Mes 06 7.70 Mes 06 6.63	Mes 07 7.76 Mes 07 6.74	Mes 08 8.00 Mes 08 7.00	Mes 09 7.43 Mes 09 6.47	Mes 10 7.69 Mes 10 6.69	Mes 11 7.90 Mes 11 6.97	Mes 12 7.10 Mes 12 6.02	Media 7.7 Media
Hras. Operativas LHD [h] 2028 Hras. Efectivas LHD [h] 2028 Tiempo Ciclo Operativo LHD [min]	Mes 01 7.69 Mes 01 6.69	Mes 02 7.65 Mes 02 6.76	Mes 03 7.60 Mes 03 6.77 Mes 03	Mes 04 7.99 Mes 04 6.91	Mes 05 7.61 Mes 05 6.66 Mes 05	Mes 06 7.70 Mes 06 6.63	Mes 07 7.76 Mes 07 6.74 Mes 07	Mes 08 8.00 Mes 08 7.00	Mes 09 7.43 Mes 09 6.47 Mes 09	Mes 10 7.69 Mes 10 6.69	Mes 11 7.90 Mes 11 6.97	Mes 12 7.10 Mes 12 6.02 Mes 12	Media 7.7 Media 6.7
Hras. Operativas LHD [h] 2028 Hras. Efectivas LHD [h] 2028 Tiempo Ciclo Operativo LHD [min]	Mes 01 7.69 Mes 01 6.69	Mes 02 7.65 Mes 02 6.76	Mes 03 7.60 Mes 03 6.77 Mes 03	Mes 04 7.99 Mes 04 6.91	Mes 05 7.61 Mes 05 6.66 Mes 05	Mes 06 7.70 Mes 06 6.63	Mes 07 7.76 Mes 07 6.74 Mes 07	Mes 08 8.00 Mes 08 7.00	Mes 09 7.43 Mes 09 6.47 Mes 09	Mes 10 7.69 Mes 10 6.69	Mes 11 7.90 Mes 11 6.97	Mes 12 7.10 Mes 12 6.02 Mes 12	Media 7.7 Media 6.7
Hras. Operativas LHD [h] 2028 Hras. Efectivas LHD [h] 2028 Tiempo Ciclo Operativo LHD [min] 2028	Mes 01 7.69 Mes 01 6.69 Mes 01 2.04	Mes 02 7.65 Mes 02 6.76 Mes 02 2.05	Mes 03 7.60 Mes 03 6.77 Mes 03 2.08	Mes 04 6.91 Mes 04 2.08	Mes 05 7.61 Mes 05 6.66 Mes 05 2.04	Mes 06 7.70 Mes 06 6.63 Mes 06 2.08	Mes 07 7.76 Mes 07 6.74 Mes 07 2.05	Mes 08 8.00 Mes 08 7.00 Mes 08 2.08	Mes 09 7.43 Mes 09 6.47 Mes 09 2.02	Mes 10 7.69 Mes 10 6.69 Mes 10 2.04	Mes 11 7.90 Mes 11 6.97 Mes 11 2.09	Mes 12 7.10 Mes 12 6.02 Mes 12 2.01	Media 7.7 Media 6.7

Tabla 61 Información simulación 2 año 2028

Sim2													
Producción [tpd]	Mes 01	Mes 02	Mes 03	Mes 04	Mes 05	Mes 06	Mes 07	Mes 08	Mes 09	Mes 10	Mes 11	Mes 12	Producción Media anual [tpd]
1	95,097	120,733	99,455	133,328	121,784	126,775	122,460	122,969	102,721	119,361	122,033	111,893	116,551
2	137,113	115,616	107,733	103,958	128,638	136,084	128,980	124,176	112,257	115,834	123,385	116,314	120,841
3	140,577	133,962	125,684	133,224	134,617	145,193	151,518	128,606	120,255	108,316	141,222	140,691	133,655
4	134,253	146,473	138,486	125,402	143,166	139,079	143,238	145,786	146,546	129,510	127,826	142,345	138,509
5	155,282	145,267	138,840	143,072	152,568	142,542	149,968	151,662	144,497	139,681	149,791	152,755	147,160
6	149,520	147,794	146,640	140,420	152,599	139,941	141,856	152,817	141,803	154,699	146,608	139,599	146,191
7	153,451	146,608	133,899	132,402	145,318	146,453	149,937	138,267	146,431	153,919	149,115	148,470	145,356
8	139,963	150,914	136,354	145,340	153,160	143,135	143,935	146,452	143,883	149,406	138,673	147,097	144,859
9	142,573	147,169	132,402	146,587	152,027	139,858	142,157	145,225	157,757	157,174	157,018	137,664	146,468
10	143,883	134,420	107,515	135,272	147,441	138,465	118,830	128,106	147,794	135,231	131,955	127,358	133,022
11	136,156	146,202	111,758	129,615	147,117	143,852	137,238	130,291	150,019	152,464	144,996	141,231	139,245
12	108,014	110,821	93,621	108,315	109,626	111,061	113,692	115,533	110,343	117,603	117,582	113,110	110,777
13	127,701	134,815	117,561	127,285	133,099	134,836	130,208	130,385	129,885	143,655	132,173	126,006	130,634
14	128,762	125,424	117,915	135,095	132,735	130,759	128,865	133,774	129,542	125,621	134,128	109,730	127,696
15	140,649	146,629	131,633	135,907	142,396	146,899	145,517	145,610	157,175	147,919	144,549	126,297	142,598
16	138,913	149,916	131,622	137,446	134,315	151,049	131,622	147,004	131,081	146,286	144,757	131,622	139,636
17	139,131	127,805	112,631	108,046	125,226	127,483	123,593	123,499	129,594	136,958	128,252	136,094	126,526
18	109,834	109,491	123,874	121,586	129,802	134,337	121,856	134,419	126,807	126,807	141,679	123,957	125,371
19	146,671	144,716	134,680	147,003	145,308	145,922	139,359	146,473	147,586	142,865	150,311	130,156	143,421
20	149,416	150,904	131,290	132,621	145,340	144,747	137,259	144,019	157,674	144,871	137,571	139,464	142,931
21	140,483	137,010	114,608	138,975	141,533	146,618	125,913	150,810	135,574	133,172	141,669	133,411	136,648
22	128,159	128,814	119,829	122,450	130,675	113,786	130,322	129,885	134,202	125,943	132,018	125,206	126,774

	_										-		
23	131,778	129,095	117,218	113,879	127,483	133,744	125,184	126,308	109,969	119,766	124,269	109,242	122,328
24	155,189	141,523	145,028	141,138	148,542	150,384	145,059	149,791	133,619	147,576	153,358	131,165	145,198
25	154,460	142,428	147,680	147,264	136,146	155,688	141,044	149,167	151,923	140,837	140,514	140,899	145,671
26	79,955	76,773	73,476	77,688	79,404	80,350	75,566	76,908	80,225	78,041	78,354	79,570	78,026
27	150,186	144,414	144,123	148,407	142,199	100,121	149,261	148,615	146,358	151,299	145,049	2,100	131,011
28	149,738	138,101	140,733	150,134	141,169	152,589	148,147	136,572	155,376	145,090	150,145	90,147	141,495
29	152,505	147,367	155,490	147,368	132,360	154,357	136,302	148,075	154,481	152,880	158,610	145,589	148,782
30	157,310	149,489	158,724	153,868	154,065	155,792	144,861	152,225	160,337	156,021	141,336	142,875	152,242
												Promedio	134,321
	1												
Rendimiento Ef. LHD [tph]	Mes 01	Mes 02	Mes 03	Mes 04	Mes 05	Mes 06	Mes 07	Mes 08	Mes 09	Mes 10	Mes 11	Mes 12	Media
2028	345.177	347.2407	353.3577	356.441	358.5596	364.4563	356.0063	356.0063	353.8039	360.8549	362.8918	356.6340944	356.0
Hras. Operativas LHD [h]	Mes 01	Mes 02	Mes 03	Mes 04	Mes 05	Mes 06	Mes 07	Mes 08	Mes 09	Mes 10	Mes 11	Mes 12	Media
2028	7.79	7.83	7.28	7.46	7.63	7.53	7.53	7.56	7.68	7.66	7.71	7.13	7.6
Hras. Efectivas LHD [h]	Mes 01	Mes 02	Mes 03	Mes 04	Mes 05	Mes 06	Mes 07	Mes 08	Mes 09	Mes 10	Mes 11	Mes 12	Media
2028	6.73	6.72	6.17	6.32	6.48	6.35	6.39	6.45	6.58	6.45	6.43	5.94	6.4
Tiempo Ciclo Operativo LHD [min]	Mes 01	Mes 02	Mes 03	Mes 04	Mes 05	Mes 06	Mes 07	Mes 08	Mes 09	Mes 10	Mes 11	Mes 12	
2028	2.10	2.11	2.08	2.08	2.07	2.04	2.08	2.08	2.06	2.07	2.04	2.07	2.1
Tiempo Ciclo Efectivo LHD [min]	Mes 01	Mes 02	Mes 03	Mes 04	Mes 05	Mes 06	Mes 07	Mes 08	Mes 09	Mes 10	Mes 11	Mes 12	
2028	1.82	1.82	1.78	1.76	1.76	1.74	1.77	1.77	1.78	1.75	1.74	1.76	1.8
	1.02	1.02	2.70	1170	1170		±1,7,		2.,, 0	217.0	,,	20	1.0

Tabla 62 Información simulación 1 año 2028

Sim1													
Producción [tpd]	Mes 01	Mes 02	Mes 03	Mes 04	Mes 05	Mes 06	Mes 07	Mes 08	Mes 09	Mes 10	Mes 11	Mes 12	Producción Media anual [tpd]
1	106,184	125,778	115,336	112,767	118,986	116,635	112,902	97,698	117,738	104,478	115,616	103,771	112,324
2	123,146	125,070	90,823	109,335	103,698	103,167	111,269	103,979	125,215	99,330	123,915	114,826	111,148
3	131,809	125,111	127,472	138,652	122,949	119,496	139,297	133,463	135,948	118,622	141,003	118,372	129,350
4	137,570	153,867	143,769	135,501	145,058	139,141	147,908	146,182	126,017	135,813	130,634	143,270	140,394
5	145,464	152,276	142,188	141,044	153,805	141,553	147,097	159,130	154,023	156,259	135,824	142,604	147,606
6	145,745	147,825	145,485	153,358	135,261	144,268	150,332	150,508	152,411	145,891	150,644	147,992	147,477
7	149,998	141,045	131,070	142,229	138,694	142,895	150,342	143,654	139,453	135,428	147,346	146,899	142,421
8	147,336	152,796	136,687	154,002	130,489	135,938	143,956	137,144	149,229	149,499	146,255	151,631	144,580
9	138,871	144,321	138,496	155,885	132,672	152,100	153,181	148,741	145,028	137,217	147,596	149,988	145,341
10	124,123	129,656	145,933	130,987	134,877	146,640	150,497	118,216	143,395	141,283	141,752	153,067	138,369
11	126,786	130,790	145,090	139,870	126,151	143,145	136,562	146,203	130,135	140,690	134,378	146,275	137,173
12	116,354	101,368	115,762	120,140	102,065	117,187	113,297	119,391	114,379	115,408	115,398	111,456	113,517
13	122,012	130,353	128,222	135,720	114,535	127,711	138,590	130,562	131,643	122,283	127,316	139,765	129,059
14	126,734	130,988	122,906	132,808	100,641	122,584	128,211	124,446	136,167	120,671	117,603	125,507	124,105
15	146,047	150,768	136,458	146,650	115,762	149,188	146,505	141,315	139,110	137,883	138,694	134,524	140,242
16	147,763	151,475	130,458	151,361	132,496	146,411	150,706	139,557	142,823	138,038	139,516	157,466	144,006
17	125,091	136,946	120,754	131,674	121,108	116,427	133,192	127,160	121,596	122,044	131,019	129,781	126,399
18	132,943	136,530	122,283	128,606	121,004	133,723	131,154	120,681	130,238	131,653	134,514	105,455	127,399
19	142,958	153,098	141,471	147,482	126,775	144,434	141,814	139,765	153,889	139,901	143,478	147,222	143,524
20	156,978	156,478	145,703	139,973	136,479	138,902	148,272	137,405	139,038	137,363	140,202	151,766	144,047
21	131,570	147,451	140,473	137,134	143,946	135,273	150,446	137,956	143,031	137,206	145,704	131,643	140,153
22	131,133	123,032	123,292	136,687	119,277	133,088	131,976	122,116	131,424	104,363	118,653	135,792	125,903

23	127,296	127,015	129,917	127,826	124,914	128,263	124,352	119,516	130,000	129,552	116,375	120,869	125,491
24	136,832	151,423	147,014	148,865	144,435	154,741	149,333	154,512	157,581	138,206	146,223	141,773	147,578
25	151,632	155,448	150,768	149,551	152,994	150,675	153,920	148,501	161,345	140,545	135,314	148,626	149,943
26	80,454	75,712	72,290	79,050	77,531	73,174	82,670	76,897	78,530	78,530	74,131	78,717	77,307
27	148,533	147,690	140,909	133,494	152,931	98,207	140,805	143,166	156,374	140,400	142,916	3,359	129,065
28	152,786	149,957	137,426	151,382	139,360	145,578	146,712	146,546	151,798	150,685	143,801	84,698	141,727
29	156,884	157,663	154,221	150,248	148,792	139,599	158,194	154,627	155,656	153,712	151,819	150,030	152,620
30	155,792	156,385	148,865	148,990	151,757	146,140	156,696	159,483	163,592	157,310	150,435	153,493	154,078
												Promedio	134,412
Rendimiento Ef. LHD [tph]	Mes 01	Mes 02	Mes 03	Mes 04	Mes 05	Mes 06	Mes 07	Mes 08	Mes 09	Mes 10	Mes 11	Mes 12	Media
2028	352	350	377	371	356	362	368	368	349	343	347	353	357.9
Hras. Operativas LHD [h]	Mes 01	Mes 02	Mes 03	Mes 04	Mes 05	Mes 06	Mes 07	Mes 08	Mes 09	Mes 10	Mes 11	Mes 12	Media
2028	7.64	7.69	7.38	7.58	7.37	7.45	7.74	7.60	7.81	7.57	7.57	7.19	7.6
Hras. Efectivas LHD [h]	Mes 01	Mes 02	Mes 03	Mes 04	Mes 05	Mes 06	Mes 07	Mes 08	Mes 09	Mes 10	Mes 11	Mes 12	Media
2028	6.52	6.64	5.97	6.36	6.29	6.36	6.46	6.36	6.74	6.59	6.57	6.14	6.4
Tiempo Ciclo Operativo LHD [min]	Mes 01	Mes 02	Mes 03	Mes 04	Mes 05	Mes 06	Mes 07	Mes 08	Mes 09	Mes 10	Mes 11	Mes 12	
2028	2.09	2.08	1.94	2.03	2.10	2.06	2.06	2.08	2.08	2.10	2.09	2.09	2.1
		ı											
Tiempo Ciclo Efectivo LHD [min]	Mes 01	Mes 02	Mes 03	Mes 04	Mes 05	Mes 06	Mes 07	Mes 08	Mes 09	Mes 10	Mes 11	Mes 12	

Tabla 63 Información simulación 1 año 2028 más 2 LHD

Sim1													
Producción [tpd]	Mes 01	Mes 02	Mes 03	Mes 04	Mes 05	Mes 06	Mes 07	Mes 08	Mes 09	Mes 10	Mes 11	Mes 12	Producción Media anual [tpd]
1	116,916	107,858	119,506	128,460	128,294	134,014	122,574	110,230	127,035	123,760	130,343	112,454	121,787
2	118,560	130,228	130,062	126,724	110,760	139,734	131,747	93,319	142,948	104,229	126,068	124,050	123,202
3	162,188	138,434	131,414	145,662	129,115	144,954	140,441	127,057	130,363	132,381	140,982	124,550	137,295
4	157,185	156,717	159,337	154,668	143,010	163,373	148,501	145,724	151,985	147,898	157,403	140,004	152,151
5	167,554	152,963	151,424	166,586	148,876	158,558	150,540	150,768	138,267	156,676	161,481	156,156	154,987
6	163,685	147,835	151,756	164,184	157,663	160,388	146,088	140,639	158,859	159,847	159,441	148,979	154,947
7	163,789	159,390	133,847	151,017	147,742	150,154	152,588	137,914	159,276	155,677	153,899	153,452	151,562
8	156,790	165,952	156,530	161,335	156,353	149,052	140,337	142,729	150,009	160,368	157,372	154,315	154,262
9	166,805	166,233	151,215	161,418	154,262	153,628	157,071	150,259	149,250	158,288	149,271	164,818	156,877
10	143,675	145,422	131,403	136,281	129,906	134,013	158,621	131,861	145,984	148,502	135,875	124,965	138,876
11	163,830	155,688	145,849	147,545	136,656	144,258	154,991	152,433	149,146	148,668	147,773	154,533	150,114
12	123,781	123,229	104,124	121,617	117,759	122,522	108,887	116,625	107,681	119,049	103,729	113,338	115,195
13	148,002	132,818	125,215	145,735	132,735	131,508	138,299	112,705	122,595	133,463	119,704	125,809	130,716
14	140,878	98,498	134,118	147,274	133,078	133,712	146,452	101,930	138,122	133,973	122,459	114,857	128,779
15	164,403	154,419	150,259	151,486	153,150	149,707	163,581	136,334	138,975	135,065	132,703	126,245	146,361
16	156,790	151,840	137,727	151,111	144,216	144,393	160,097	129,459	141,856	138,320	127,254	144,549	143,968
17	148,595	135,023	134,118	142,584	124,644	133,369	128,929	133,463	132,537	131,903	126,837	139,286	134,274
18	153,004	121,711	137,415	133,983	128,274	129,968	130,738	126,402	118,747	133,390	113,589	128,585	129,650
19	166,680	140,265	151,549	159,057	146,993	146,785	160,700	134,659	142,386	137,987	136,468	132,516	146,337
20	169,239	145,163	158,413	149,500	160,305	155,563	160,887	141,606	144,227	142,199	142,178	150,851	151,678
21	158,745	146,910	151,642	142,875	158,246	148,356	155,947	135,398	132,995	135,377	129,053	151,028	145,548
22	143,842	133,255	125,257	126,890	126,256	135,512	146,006	126,630	136,010	110,250	141,065	136,729	132,308
23	141,491	136,323	130,842	138,715	118,123	144,362	142,459	133,016	136,999	122,272	130,363	99,465	131,202

	-	1						1		ı		ı	i i
24	158,797	154,565	163,300	145,101	156,426	161,460	167,700	152,672	165,048	145,329	148,740	146,754	155,491
25	171,548	150,592	167,991	159,037	154,232	171,724	170,414	152,922	166,119	138,049	160,055	157,622	160,025
26	86,278	78,260	77,240	81,848	79,903	82,337	87,110	82,638	84,947	80,621	80,246	85,758	82,266
27	156,218	155,563	147,232	166,971	154,616	109,324	162,438	147,306	147,919	146,370	149,375	1,924	137,105
28	157,508	147,877	141,938	164,215	156,000	167,960	157,737	144,715	152,526	157,612	157,507	97,635	150,269
29	165,506	164,694	154,950	168,095	163,602	175,292	150,924	142,636	163,914	146,806	165,682	165,152	160,604
30	161,106	160,232	160,742	168,209	167,180	172,245	167,170	150,279	168,667	166,441	164,309	160,680	163,938
												Promedio	141,392
Rendimiento Ef. LHD [tph]	Mes 01	Mes 02	Mes 03	Mes 04	Mes 05	Mes 06	Mes 07	Mes 08	Mes 09	Mes 10	Mes 11	Mes 12	Media
2028	350	347	355	341	345	343	345	345	337	344	349	358	346.6
Hras. Operativas LHD [h]	Mes 01	Mes 02	Mes 03	Mes 04	Mes 05	Mes 06	Mes 07	Mes 08	Mes 09	Mes 10	Mes 11	Mes 12	Media
2028	7.81	7.21	7.30	7.75	7.36	7.59	7.72	6.91	7.51	7.19	7.32	6.76	7.4
Hras. Efectivas LHD [h]	Mes 01	Mes 02	Mes 03	Mes 04	Mes 05	Mes 06	Mes 07	Mes 08	Mes 09	Mes 10	Mes 11	Mes 12	Media
2028	6.84	6.37	6.26	6.90	6.53	6.77	6.81	6.30	6.68	6.43	6.37	5.85	6.5
Tiempo Ciclo Operativo LHD [min]	Mes 01	Mes 02	Mes 03	Mes 04	Mes 05	Mes 06	Mes 07	Mes 08	Mes 09	Mes 10	Mes 11	Mes 12	
2028	2.04	2.06	2.02	2.07	2.06	2.08	2.06	2.07	2.07	2.03	2.05	2.03	2.1
	-												
Tiempo Ciclo Efectivo LHD [min]	Mes 01	Mes 02	Mes 03	Mes 04	Mes 05	Mes 06	Mes 07	Mes 08	Mes 09	Mes 10	Mes 11	Mes 12	
2028	1.79	1.81	1.78	1.85	1.83	1.84	1.83	1.86	1.86	1.82	1.80	1.76	1.8
													-

Tabla 64 Información simulación 2 año 2028 más 2 LHD

Sim2													
Producción [tpd]	Mes 01	Mes 02	Mes 03	Mes 04	Mes 05	Mes 06	Mes 07	Mes 08	Mes 09	Mes 10	Mes 11	Mes 12	Producción Media anual [tpd]
1	114,950	114,950	130,571	123,884	118,269	122,147	120,983	109,231	143,363	115,450	127,306	118,934	121,670
2	125,746	125,746	145,225	125,029	123,812	116,802	130,166	132,413	146,213	114,857	124,041	119,787	127,486
3	142,438	142,438	129,521	143,405	132,599	134,804	127,358	118,954	143,811	153,338	123,063	146,296	136,502
4	144,071	144,071	164,788	153,721	146,067	135,636	144,081	135,511	168,292	154,377	143,291	164,725	149,886
5	160,949	160,949	161,937	155,605	157,361	153,628	156,239	135,865	167,824	168,167	160,586	161,948	158,422
6	143,551	143,551	146,577	163,362	154,097	157,248	162,624	146,213	141,388	164,361	154,501	145,755	151,936
7	151,954	151,954	152,349	161,719	143,561	162,645	153,306	153,420	165,807	156,582	160,128	161,979	156,284
8	159,088	159,088	153,192	156,613	155,313	157,882	142,375	143,145	159,151	165,266	157,841	159,473	155,702
9	157,819	157,819	159,702	154,210	156,332	154,658	144,456	148,334	163,134	171,079	166,899	163,175	158,135
10	134,908	134,908	144,061	138,579	149,209	153,493	121,992	129,469	158,100	155,438	136,530	128,398	140,424
11	136,447	136,447	152,401	145,932	155,875	152,640	150,145	137,602	148,761	157,040	153,576	143,811	147,557
12	114,555	114,555	114,202	103,646	122,782	112,725	115,262	106,132	119,849	122,668	121,024	112,372	114,981
13	136,833	136,833	140,629	133,817	145,309	130,894	134,274	118,913	134,243	147,544	141,356	132,204	136,071
14	135,730	135,730	122,429	140,171	137,571	132,423	131,466	117,863	139,422	141,107	145,433	120,224	133,297
15	150,737	150,737	162,978	148,169	156,519	136,344	145,443	119,860	147,440	168,116	160,825	136,853	148,668
16	144,830	144,830	165,349	147,420	152,890	146,577	152,287	147,627	137,758	161,439	151,933	146,483	149,952
17	135,751	135,751	143,697	139,485	148,033	143,322	122,189	131,518	118,383	134,825	134,087	136,458	135,292
18	122,979	122,979	129,053	140,473	130,946	138,070	135,324	112,995	131,393	141,596	130,302	132,111	130,685
19	141,513	141,513	142,718	127,130	143,655	151,974	153,982	128,117	142,448	157,768	152,276	150,311	144,450
20	151,767	151,767	150,903	154,305	160,222	158,152	151,662	144,976	153,171	149,573	148,252	144,175	151,577
21	152,890	152,890	159,369	151,372	161,678	162,032	146,182	140,847	137,082	146,422	156,925	142,594	150,857

Hras. Efectivas LHD [h]	Mes 01	Mes 02	Mes 03	Mes 04	Mes 05	Mes 06	Mes 07	Mes 08	Mes 09	Mes 10	Mes 11	Mes 12	Media
		-											
2028	7.30	7.30	7.54	7.49	7.29	7.27	7.24	6.75	7.51	7.66	7.38	6.85	7.3
Hras. Operativas LHD [h]	Mes 01	Mes 02	Mes 03	Mes 04	Mes 05	Mes 06	Mes 07	Mes 08	Mes 09	Mes 10	Mes 11	Mes 12	Media
	300.7300	300.7300	3 1010 130	330.273	330.273	330.273	330.273	330.273	01110071	330.0070	33 113 133	00 110 100120	302.12
2028	360.7908	360.7908	348.0493	350.275	350.275	350.275	350.275	350.275	344.6574	350.0876	354.5455	354.5455129	352.1
Rendimiento Ef. LHD [tph]	Mes 01	Mes 02	Mes 03	Mes 04	Mes 05	Mes 06	Mes 07	Mes 08	Mes 09	Mes 10	Mes 11	Mes 12	Media
												Tromedio	142,013
30	102,723	102,723	103,010	130,330	130,020	100,130	101,220	131,370	101,302	100,030	103,133	Promedio	142,015
30	162,729	162,729	163,810	156.956	150,020	168.136	164.226	134.378	164,382	160,056	169,499	160,004	159,744
29	146,557	146,557	163,955	166,962	155,999	160,742	166,909	145,870	159,858	146,764	164,434	154,013	156,552
28	164,423	164,423	160,752	154,231	151,257	159,827	158,381	140,992	151,475	154,907	150,030	102,845	151,129
27	154,866	154,866	146,494	161,137	157,892	102,408	160,597	139,547	160,107	160,929	150,103	2,725	137,639
26	75,992	75,992	80,704	86,923	79,102	89,398	86,996	80,413	82,430	83,158	77,053	84,520	81,890
25	150,425	150,425	163,581	165,474	164,922	157,830	170,383	153,379	162,905	154,731	153,514	164,268	159,320
24	154,846	154,846	164,111	150,383	153,171	148,127	156,250	143,332	148,085	145,589	151,974	149,791	151,709
23	126,411	126,411	135,096	129,396	133,744	134,357	140,545	119,735	132,621	136,718	134,773	110,614	130,035
22	127,295	127,295	134,097	143,343	141,398	128,523	135,554	125,402	119,724	143,978	130,926	133,785	132,610

Hras. Efectivas LHD [h]	Mes 01	Mes 02	Mes 03	Mes 04	Mes 05	Mes 06	Mes 07	Mes 08	Mes 09	Mes 10	Mes 11	Mes 12	Media
2028	6.29	6.29	6.66	6.51	6.47	6.42	6.51	6.00	6.65	6.74	6.42	5.98	6.4

Tiempo Ciclo Operativo LHD [min]	Mes 01	Mes 02	Mes 03	Mes 04	Mes 05	Mes 06	Mes 07	Mes 08	Mes 09	Mes 10	Mes 11	Mes 12	
2028	1.99	1.99	2.04	2.02	2.02	2.02	2.02	2.02	2.06	2.03	2.03	2.03	2.0

Tiempo Ciclo Efectivo LHD [min]	Mes 01	Mes 02	Mes 03	Mes 04	Mes 05	Mes 06	Mes 07	Mes 08	Mes 09	Mes 10	Mes 11	Mes 12	
2028	1.76	1.76	1.80	1.79	1.79	1.79	1.79	1.79	1.82	1.79	1.77	1.77	1.8

12.6 ANEXO F: Análisis Simulaciones

12.6.1 Sensibilización Reducción Secundaria Punto de extracción

Tabla 65 Diferencia de la producción del efecto M&FNT para la frecuencia de colgaduras.

Diferencia % (error relativo) Prod	Diferencia % (error relativo) Producción [tpd]										
Frecuencia Colgadura Media[baldes/evento]	1 LHD	4 LHD	8 LHD								
3	5.8%	10.1%	-2.0%								
6	5.6%	3.9%	7.4%								
12	4.0%	5.1%	11.4%								
19	2.7%	4.6%	10.8%								
24	6.9%	1.8%	1.0%								
29	1.5%	7.7%	8.7%								
36	4.5%	7.4%	-1.5%								
150	1.8%	5.2%	6.0%								
250	1.8%	5.2%	6.0%								

Tabla 66. Diferencia de la producción del efecto M&FNT para el tiempo de reducción secundaria.

Diferencia % (error relativo) Producción [tpd]										
Tiempo Red. Sec. [min]	1 LHD	4 LHD	8 LHD							
23	4.9%	8.1%	5.3%							
34	5.2%	3.5%	5.5%							
45	6.9%	1.8%	1.0%							
56	5.9%	6.6%	3.2%							
68	6.9%	5.6%	10.7%							

12.6.2 Sensibilización Reducción Secundaria en Punto de Vaciado

Tabla 67. Diferencia de la producción del efecto M&FNT para la frecuencia de sobretamaño.

Diferencia % (error relativo) Producción [tph]											
Producción [tpd]	1 LHD	4 LHD	8 LHD								
38	6.5%	3.7%	3.4%								
75	6.9%	1.8%	1.0%								
125	6.8%	7.6%	7.2%								

Tabla 68. Diferencia de la producción del efecto M&FNT para el tiempo de reducción secundaria del martillo.

Diferencia % (error relativo) Producción [tpd]										
Tiempo Operación martillo [min]	1 LHD	4 LHD	8 LHD							
1	4.9%	0.9%	0.3%							
2	6.9%	1.8%	1.0%							

3 8.3% 6.5% 3.9%

12.6.3 Sensibilización Número de Flota LHD

Tabla 69. Resumen rendimiento efectivo N° LHD.

	1 LHD	2 LHD	3 LHD	4 LHD	5 LHD	6 LHD	7 LHD	8 LHD
Rendimiento Promedio c/M&FNT [tph]	307	308	304	299	298	292	289	282
Rendimiento Promedio s/M&FNT [tph]	309	305	304	300	298	294	290	287
Rendimiento Promedio ambos escenarios [tph]	308	306	304	300	298	293	289	285

12.6.4 Asignación de equipos. Caso área colapsada

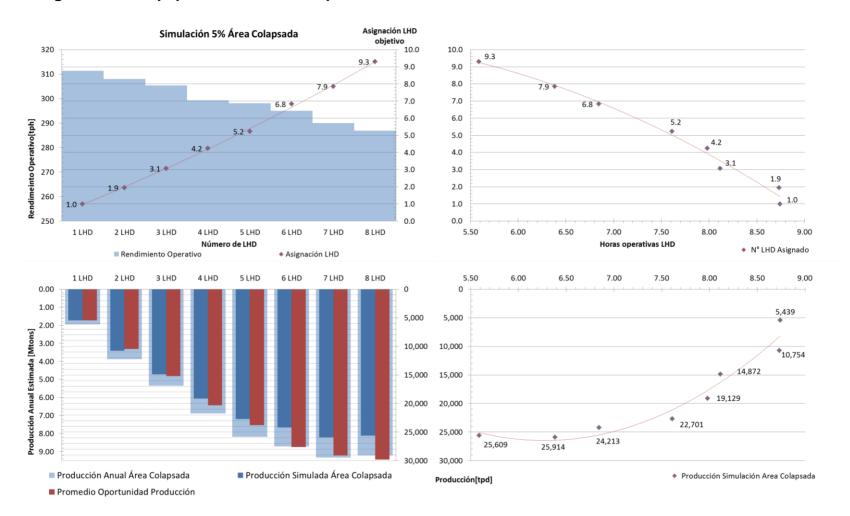


Figura 98. Metodología gráfica de asignación de equipos LHD, escenario 5% área colapsada 146

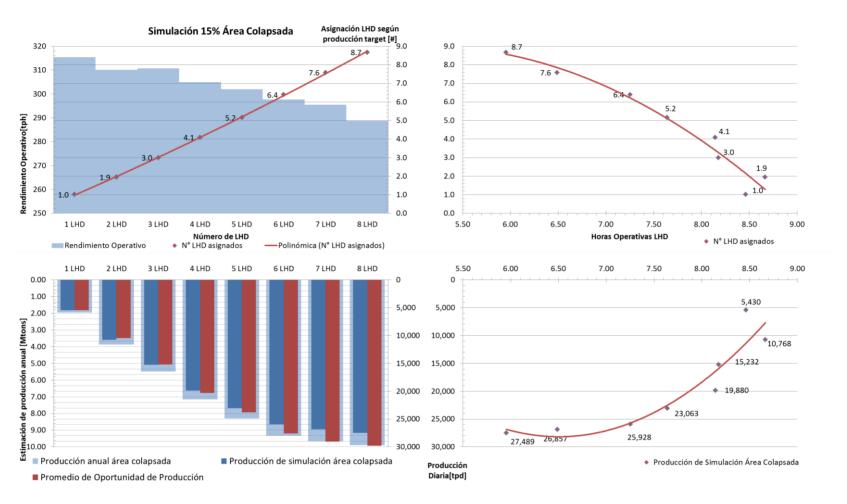


Figura 99. Metodología gráfica de asignación de equipos LHD, escenario 15% área colapsada

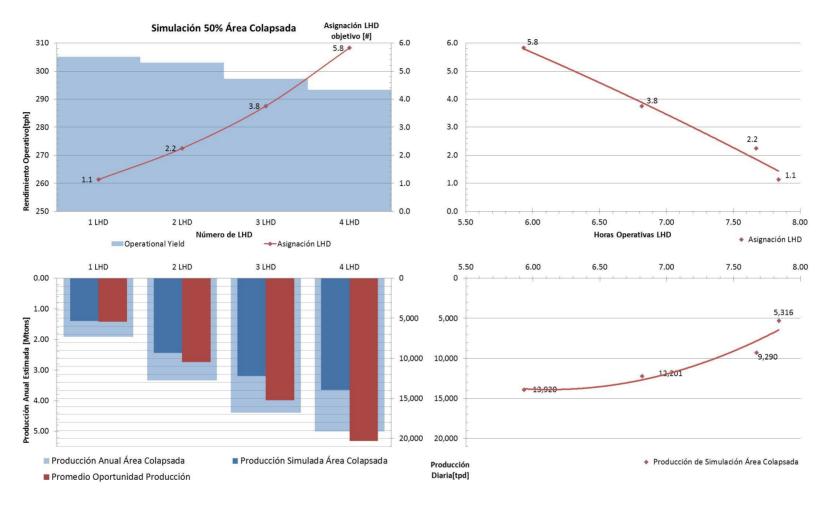


Figura 100. Metodología gráfica de asignación de equipos LHD, escenario 50% área colapsada

Tabla 70. Ecuaciones de regresiones para curvas del análisis del área colapsada.

N° Equipos LHD	Ecuación de la regresión	Coeficiente de correlación
8 LHD	y = -137439x2 + 49893x + 23357	$R^2 = 0.9991$
7 LHD	y = -98605x2 + 27449x + 24836	$R^2 = 0.9998$
6 LHD	$y = -119161x^2 + 42300x + 22359$	$R^2 = 0.9999$
5 LHD	$y = -81366x^2 + 25682x + 21458$	$R^2 = 0.9953$
4 LHD	$y = -50903x^2 + 16318x + 18479$	$R^2 = 0.9993$
3 LHD	$y = -23808x^2 + 7058x + 14615$	$R^2 = 0.9975$
2 LHD	$y = -5889.2x^2 - 123.79x + 10815$	$R^2 = 0.9877$
1 LHD	$y = -571.34x^2 + 42.689x + 5437.9$	$R^2 = 0.9996$

12.6.5 Mina Integrada

Tabla 71. Resumen índices operativos simulación integrada, + 2 LHD.

	Sim1	Sim2
Producción [tpd]	141,392	142,015
Rendimiento Op. LHD [tph]	300	304
Rendimiento Ef. LHD [tph]	347	352
Hras. Operativas LHD [h]	7.4	7.3
Hras. Efectivas LHD [h]	6.5	6.4
Tiempo Ciclo Operativo LHD [min]	2.1	2.0
Tiempo Ciclo Efectivo LHD [min]	1.8	1.8

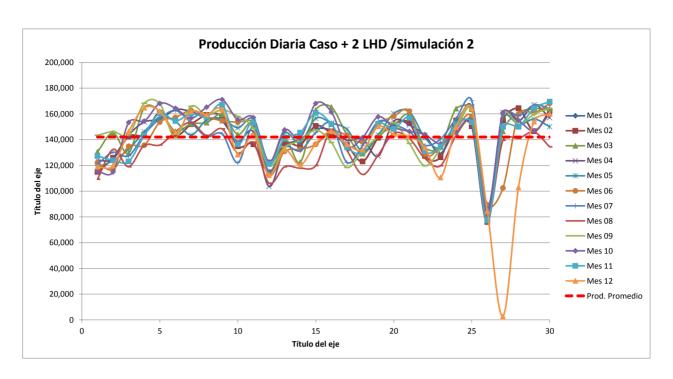


Figura 101 Producción Diaria Simulación Mina Integrada Año 2028 más 2 LHD, Simulación 2.

Tabla 72. Dispersión de la producción c/r plan objetivo para mina El Teniente y simulación PMCHS.

	rsión c/r Plan	Mes 1	Mes 2	Mes 3	Mes 4	Mes 5	Mes 6	Mes 7	Mes 8	Mes 9	Mes 10	Mes 11	Mes 12	•
	2009	3%	1%	-2%	-1%	6%	2%	-9%	0%	4%	3%	5%	-3%	Prome dio
ıte	2008	-11%	-10%	-8%	-37%	-45%	-14%	-6%	-10%	-9%	-9%	-1%	1%	-6%
Teniente	2007	-5%	-3%	2%	-1%	1%	-3%	-22%	-17%	-2%	-5%	1%	-5%	Max.
EI Te	2006	-9%	-1%	1%	-4%	-1%	-6%	-3%	-3%	-1%	-6%	0%	4%	6%
Mina	2005	-3%	2%	3%	5%	1%	-1%	6%	0%	3%	-2%	0%	0%	Min
2	2004	-11%	-10%	-9%	-10%	0%	-5%	0%	-2%	3%	1%	-2%	5%	-45%
	2003	-30%	-22%	-17%	-17%	-18%	-19%	-25%	-16%	-18%	-7%	-6%	-10%	,
S	Sim 1	-3%	-2%	-4%	-2%	-5%	-4%	-3%	1%	-5%	-2%	-1%	-9%	Prome dio
MCF	Sim 2	-3%	-2%	-4%	-2%	-5%	-4%	-3%	1%	-5%	-2%	-1%	-9%	-4%
ón P	Sim 3	-4%	-2%	-5%	-2%	-3%	-7%	-8%	-3%	-4%	-2%	-7%	-7%	Max.
llacio	Sim 1	-3%	-1%	-5%	-2%	-8%	-5%	-1%	-4%	-1%	-6%	-4%	-8%	1%
Simulación PMCHS	Sim 2	-2%	-3%	-10%	-6%	-2%	-2%	-4%	-2%	-2%	-2%	-2%	-11%	Min
	Sim 3	-1%	-3%	-3%	-1%	-4%	-1%	-4%	-4%	-3%	-3%	-1%	-11%	-11%

Figura 102. Producción Mina El Teniente, Período 2003-2008.

12.6.6 Análisis de Oportunidad de Horas Efectivas y de Reserva

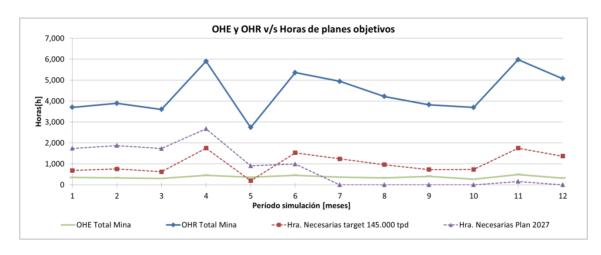


Figura 103. Gráfico de Oportunidad de Horas Efectivas y Reserva, Año 2027-Simulación 2.

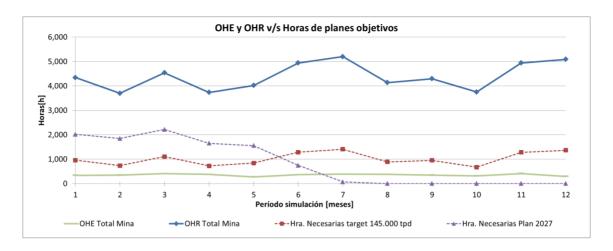


Figura 104. Gráfico de Oportunidad de Horas Efectivas y Reserva, Año 2027-Simulación 3.

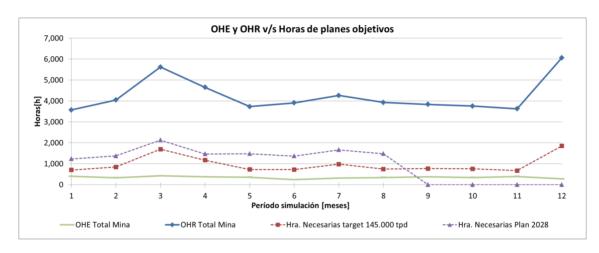


Figura 105. Gráfico de Oportunidad de Horas Efectivas y Reserva, Año 2028-Simulación 2.

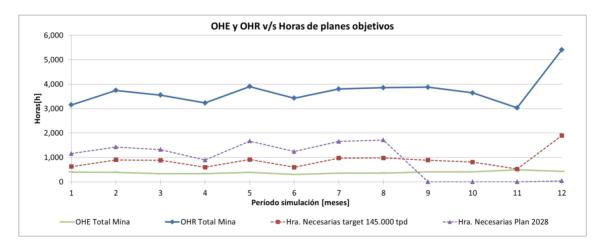


Figura 106. Gráfico de Oportunidad de Horas Efectivas y Reserva, Año 2028-Simulación 3.

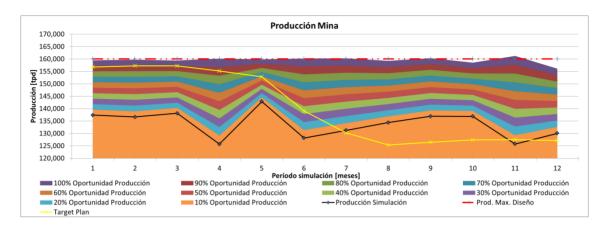


Figura 107. Gráfico Producción Mina según el aporte de OHE y OHR, Año 2027-Simulación 2.

Figura 108. Gráfico Producción Mina según el aporte de OHE y OHR, Año 2027-Simulación 3.

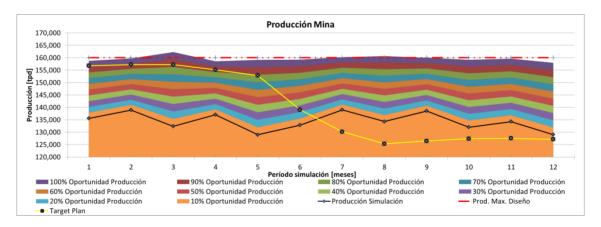


Figura 109. Gráfico Producción Mina según el aporte de OHE y OHR, Año 2028-Simulación 1.

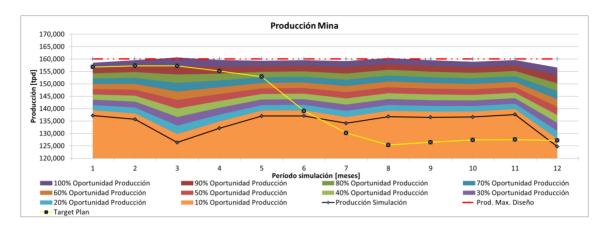


Figura 110. Gráfico Producción Mina según el aporte de OHE y OHR, Año 2028-Simulación 2.

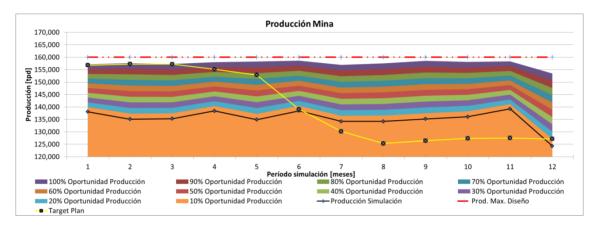


Figura 111. Gráfico Producción Mina según el aporte de OHE y OHR, Año 2028-Simulación 3.

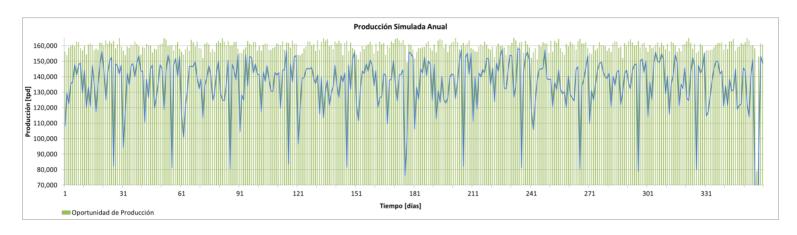


Figura 112. Gráfico Oportunidad de producción, Año 2027 - Simulación 1.

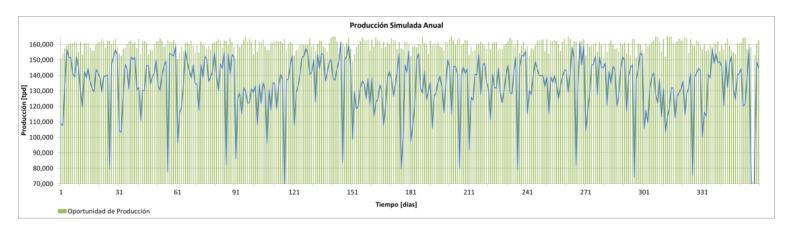


Figura 113. Gráfico Oportunidad de producción, Año 2027 - Simulación 2.

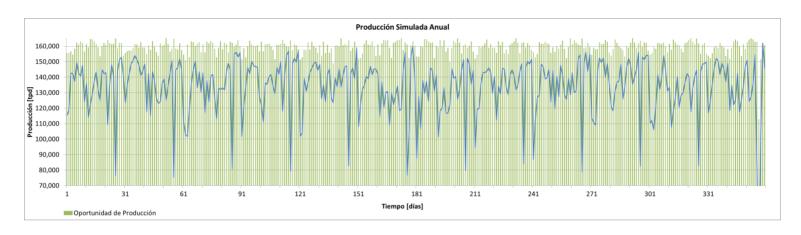


Figura 114. Gráfico Oportunidad de producción, Año 2027 - Simulación 3.

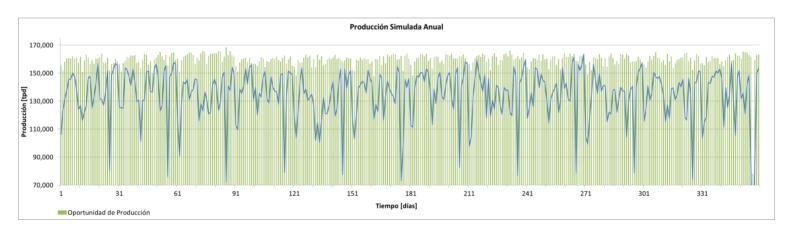


Figura 115. Gráfico Oportunidad de producción, Año 2028 - Simulación 1.

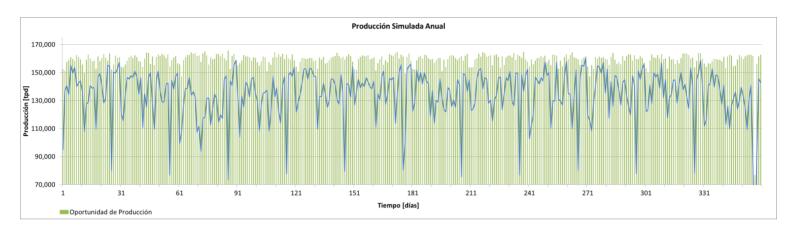


Figura 116. Gráfico Oportunidad de producción, Año 2028 – Simulación 2.

Tabla 73. Estadistica descriptiva Producción Simulación Mina Integrada.

Estadistica Desc	riptiva
Media	134,490.67
Error típico	406.66
Mediana	138,918.00
Moda	137,930.00
Desviación estándar	18,899.95
Varianza de la muestra	357,208,097.15
Curtosis	8.13
Coeficiente de asimetría	-2.10
Rango	183,490.00
Mínimo	0.00
Máximo	183,490.00
Suma	290,499,848.60
Cuenta	2,160.00
Nivel de confianza(95.0%)	797.49

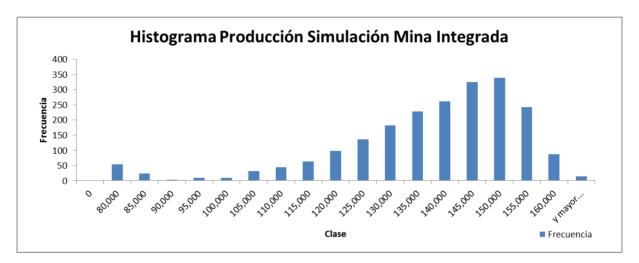


Figura 117. Histograma Producción Simulación Mina Integrada.

Tabla 74. Estadistica descriptiva Producción Simulación Mina Integrada c/ 30% OHE+OHR.

Estadistica Descriptiva	
Media	141,902.99
Error típico	302.99
Mediana	145,304.15
Moda	#N/A
Desviación estándar	14,081.88
Varianza de la muestra	198,299,253.57
Curtosis	13.38
Coeficiente de asimetría	-2.51
Rango	161,853.60
Mínimo	22,012.21
Máximo	183,865.81
Suma	306,510,455.06
Cuenta	2,160.00
Nivel de confianza(95.0%)	594.19

Figura 118. Histograma Producción Simulación Mina Integrada c/ 30% OHE+OHR.

Tabla 75. Estadistica descriptiva Producción Simulación Mina Integrada c/ 50% OHE+OHR

Estadistica Descriptiva	
Media	146,844.53
Error típico	237.46
Mediana	149,528.59
Moda	#N/A
Desviación estándar	11,036.02
Varianza de la muestra	121,793,714.14
Curtosis	22.85
Coeficiente de asimetría	-3.15
Rango	147,429.33
Mínimo	36,687.02
Máximo	184,116.35
Suma	317,184,192.70
Cuenta	2,160.00
Nivel de confianza(95.0%)	465.67

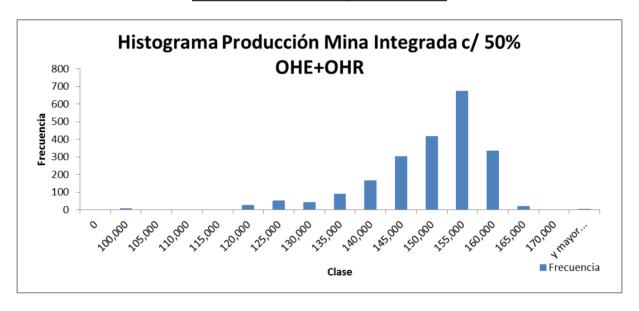


Figura 119. Histograma Producción Simulación Mina Integrada c/ 50% OHE+OHR.