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1. RESEARCH PROBLEM 

 

 Studying children’s language acquisition in natural settings is not cost and 

time effective. Therefore, language acquisition may be studied in an artificial setting 

reducing the costs related to this type of research. By artificial, I do not mean that 

children will be placed in an artificial setting, first because this would not be ethical 

and second because the problem of the time needed for this research would still be 

present. Thus, by artificial I mean that the tools of simulation found in artificial 

intelligence can be used. Simulators as artificial neural networks (ANNs) possess 

the capacity to simulate different human cognitive skills, as pattern or speech 

recognition, and can also be implemented in personal computers with software 

such as MATLAB, a numerical computing software. ANNs are computer simulation 

models that try to resemble the neural processes behind several human cognitive 

skills. There are two main types of ANNs: supervised and unsupervised. The 

learning processes in the first are guided by the computer programmer, while the 

learning processes of the latter are random.  

The purpose of this research was to simulate the acquisition of six English 

grammatical structures in affirmative mood, the base form, the third person 

singular, present participle, regular past, irregular past and past participle, in two 

ANNs with different learning strategies. The contrast among these two ANNs may 

help us to discern which of these might be more useful to simulate and study the 

process of language acquisition based on the simulated human cognitive skills.  

The above mentioned grammatical structures were implemented because 

the language learning potential of ANNs is limited when compared to human 

learning.  Elman (1993) suggests that when it comes to language related skills, 

ANNs have to start small in order to be successful. If they are presented with all 

the input children receive, the results are disastrous. The acquisition of English 

past tense has been studied before with contrasting results but always with one 
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critique made by innatists: connectionist models are not able to have the exact 

same performance as children do.  

Rumelhart and McClelland (1986) and MacWhinney and Leinbach (1991) 

devised connectionist models that tested the acquisition of the English past tense 

based on the phonological production of past tense forms from a base form. Their 

results were contrasted with the performance of children achieving similar results 

as human subjects, especially in the case of regular past tense formation in 

training, but very dissimilar results on irregular past tense formation in training and 

tests that involved regular past tense production.  

Following Elman’s suggestions, the connectionist model studied here will not 

involve production of past tense. Instead, it will focus on the ability of ANNs to 

perceive a verb form and classify it into one distinctive class.  
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2. RESEARCH QUESTIONS: 

 

1. Which is the learning potential of a supervised ANN when it has to learn to 

classify the base form, third person singular, present participle, past 

participle, regular past, and irregular past in the indicative mood of English? 

 

2.  Which is the learning potential of an unsupervised ANN when it has to learn 

to classify the base form, third person singular, present participle, past 

participle, regular past, and irregular past in the indicative mood of English? 

 

3. Is there a significant difference in the classification potential of the base 

form, third person singular, present participle, past participle, regular past, 

and irregular past in the indicative mood of English in this two ANNs? 

 

4. Is there a significant difference in the learning potential of a supervised ANN 

and an unsupervised ANN when the amount of verb forms is reduced from 

six, to four and then to three? 

 

5.  Which of these two ANNs assimilate a learning potential similar to that of a 

human? 
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3 OBJECTIVES 

3.1 GENERAL OBJECTIVE: 

1. To determine which type of ANN, supervised or unsupervised, is more suited 

for the task of simulating the process of learning the base form, third person 

singular, present participle, past participle, regular past, and irregular past in 

the indicative mood of English. 

 

3.2 SPECIFIC OBJECTIVES: 

1.1 To identify the learning potential of the base form, third person singular, 

present participle, past participle, regular past, and irregular past in English 

by simulating these instances in a supervised ANN. 

 

1.2 To identify the learning potential of the base form, third person singular, 

present participle, past participle, regular past, and irregular past in English 

by simulating these instances in an unsupervised ANN. 

 

1.3 To identify the limits of the learning potential of verb forms in English by 

simulating these instances in a supervised ANN and an unsupervised ANN. 

 

1.4 To contrast the classification potential of the base form, third person 

singular, present participle, past participle, regular past, and irregular past in 

English of a supervised ANN with an unsupervised ANN. 
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4. THEORETICAL FRAMEWORK  

4.1 THE HISTORY OF ARTIFICIAL NEURAL NETWORKS 

Artificial Neural Networks (ANNs) now belong to the field of Artificial 

Intelligence (AI), which can be roughly defined as “the study and design of 

intelligent agents”1. AI is immersed in the broad field of computer sciences which 

means that ANNs are also part of this field. This is not entirely true because ANNs 

did not always belong to the field of computer science. At first, they were created 

as a hypothesis of what happened in the brain when different processes were 

occurring. In this sense, the first approaches to ANNs came from psychology with 

the work of McCulloch and Pitts (1943), Hebb (1949) and Rosenblatt (1957). As a 

theory of mind, ANNs can be useful if they are used to test and analyze the 

theories that try to explain how the different processes in our brain occur. As a 

means for creating intelligent systems, ANNs have improved the systems of voice 

recognition, pattern recognition, finance and weather forecast. 

In the following subsections, the first steps of ANNs as a theory of mind will 

be reviewed. Then, a brief summary of ANNs’ computer-related applications will be 

provided. Finally, ANNs will be related to the philosophical theories of 

connectionism and emergentism.    

 

4.1.1 EARLY YEARS. 

 McCulloch and Pitts (1943) were the first to apply the concept of artificial 

neuron to understand the processes that occurred in the brain. In their paper ‘A 

logical calculus of the ideas immanent in nervous activity”, they stated the 

foundations to a field that would flourish for three decades before Minsky and 

Papert (1969) almost destroyed the field of artificial neural networks by making 

explicit its main flaws.  

                                                      
1
 Poole, Mackworth and Goebel 1998, 1. 
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In order to arrive to the idea of ANNs, McCulloch and Pitts spent several 

years working in psychology and biophysics respectively. After meeting, they 

realized that they shared some ideas on how biological neural networks work in the 

brain based on inputs gathered from the environment to produce outputs. Knowing 

that they were working on a first theory of mind and brain, they defined a set of 

simple conjectures about the conduct and performance of biological neural 

networks.  

Before giving a review of the way an ANN works it is necessary to introduce 

some of the technical terminology used by the first researchers in this field. First, 

we need to understand the notion of input which can be defined as the information 

provided by the researchers or the environment. ANNs can learn by interacting with 

the input provided by the researchers or the environment. This interaction 

produces output, an outcome, which may or may not be right depending on the 

expected results. The output is produced if the stimulus created reaches a certain 

threshold; if the output is produced, the stimulus is deemed as excitatory; if no 

output is produced or if it does not correspond to the expected outcome, the 

stimulus is deemed as inhibitory. Finally, as ANNs resemble biological neural 

networks, we can also talk about synapse. Synapse is a junction by which 

electrical or chemical signals are passed from one neuron to another neuron or 

cell. The synaptic strength between an axon A and an axon B is called weight. 

McCulloch and Pitts article is framed in the field of mathematical or 

predicate logic. In order to understand their work, it is necessary to introduce some 

of the notations used by them. First there is the notion of predicate. In simple 

terms, a predicate is any statement that can be assigned the values true or false. 

Two or more predicates can be connected by means of logical functions such as 

AND, OR or NOT. The logical function AND is also known as logical conjunction. 

This function is an operation that holds the value true if all its predicates are true. 

The logical function OR is also known as logical disjunction. In this operation the 

true value can be hold if one or more of its predicates are true. Finally, we have the 
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logical function NOT which is also known as logical negation. This logical operation 

holds the value true if its predicate is false. 

McCulloch and Pitts argued that their ANN could compute any logical 

expression by using the logical functions mentioned above. In order to do so, they 

defined a predicate or predicates that by means of logical functions would held the 

values true or false. If the value was true the artificial neuron would fire a signal to 

produce an output. The following figure shows the ANNs that accomplished the 

functions mentioned above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Graphic representation of the Boolean functions AND, OR and 

NOT in an ANN. 
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The basic ANN described by McCulloch and Pitts had a finite threshold and 

the input, based on its weight, could generate an excitatory or inhibitory stimuli. 

This first approach to artificial neural networks did not take into account the notions 

of memory and learning which would be introduced later by Donald Hebb (1949).  

Although they claimed that in their paper they were presenting results for the 

research based on their theory, their conclusions were not reached by the 

researchers in that period of time because part of them was deemed as obscure: 

“The present article is partly an exposition of their results; but we 

found the part of their [McCulloch and Pitts'] paper dealing with 

arbitrary nerve nets obscure, so we have proceeded independently 

there.” (Kleene, 1956:4) 

Nonetheless, the importance of McCulloch and Pitts’ work has to be 

acknowledged. Their simplification of neural networks to compute different 

phenomena allowed researchers from different fields to theorize and study a theory 

of mind and brain.   

As stated above, their model was highly simplified, particularly because they 

did not have the technological resources that are available to us today. However, 

their theoretical work prepared the ground for the implementation of ANNs, such as 

Hebb’s notions of memory and learning (1949) and Rosenblatt’s Perceptron (1957) 

which was the first prototype of ANN’s pattern recognition. 

Noticing how simplified the first model of artificial neural networks was, Hebb 

theorized that ANNs could learn by means of the connections they established 

among themselves. These connections were not meant to be fixed because the 

constant firing of an excitatory stimulus would improve of the ‘efficiency’ of this 

network: 

“When an axon of cell A is near enough to excite a cell B and 

repeatedly or persistently takes part in firing it, some growth process 
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or metabolic change takes place in one or both cells such that A’s 

efficiency, as one of the cells firing B, is increased.” (Hebb, 1949: 62)   

 

This learning process through modification can be considered as memory 

because the axons of the ANNs recall the frequency of firing between ANNs. 

Hebb’s work has had consequences that influenced further research on this 

subject.  

Although Hebb’s theory of learning and memory was not described 

completely to be analyzed, it inspired a new of line of research in ANNs. One of the 

people inspired by Hebb’s theory was Frank Rosenblatt who in 1957 invented an 

ANN named perceptron. Rosenblatt tried to implement a type of intelligent system 

that would emulate the way in which the human eye works to classify different 

classes of objects. At first, the perceptron would classify very simple objects as part 

of its learning process. After the learning process had started, the perceptron would 

learn to classify complex objects by readjusting the weights that would trigger an 

inhibitory or excitatory stimulus. The readjustment was a random process based on 

the laws of probability. It is said that the learning process found in Rosenblatt 

perceptron is founded on Hebb’s notions because the perceptron learnt by 

reinforcing its connections and by modifying its weights.   

Figure 2 shows the resemblance between a perceptron and human eye. 

Each artificial neuron finds the objects which are similar from a set of objects and 

classifies them. 
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Figure 2. Graphic representation of the resemblance of a human eye and a 

perceptron. 

As noted above, the perceptron can classify simple classes of objects, which 

does not necessarily mean that it could perceive and classify reality as human do. 

This shortcoming and the ones found on previous research were not noticed by the 

researchers in the first years of ANNs. In fact, McCulloch and Pitts, Hebb and 

Rosenblatt overestimated the potential of ANNs. One of these claims boldly states 

that the perceptron reached a potential similar to the human brain: 

“It seems clear that the Class C’ perceptron introduces a new kind of 

information processing automaton: for the first time we have a 

machine which is capable of having original ideas” (Rosenblatt, 1959: 

449) 

 These types of claims and the lack of evidence to support them would 

eventually lead to the downfall of the research in ANNs. Minsky and Papert 

published their book ‘Perceptrons’ after an exhaustive analysis of the potential of 

perceptrons. As stated above, researchers at that time had high expectations for 

this type of ANNs. Unfortunately, Minsky and Papert’s work would deter research 

in the field of ANNs for more than a decade.  
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 Their analysis began by stating the different orders of the functions ANNs 

could compute. AND, OR and NOT are functions that compute first-order 

predicates which do not allow the use of predicates or functions as arguments. 

Rosenblatt’s perceptron was supposed to classify objects into sets using a different 

function called exclusive-or (XOR). This function holds true when one of the 

predicates is true while the other is false. This differs from the first-order disjunction 

because OR holds true if at least one of the predicates is true. Trying to compute 

more than two inputs with a perceptron and an XOR function would be doomed to 

failure because at least one of the inputs would be too large for the perceptron to 

compute. Thus, Minsky and Papert’s work showed that perceptron could classify if 

the amount of the objects or the size of the area was small. This clearly crushed 

the previous ideas about perceptrons and ANNs in general, showing that they 

could not process the amount of information the researchers claimed they could. 

 Not only did Minsky and Papert provided solid arguments to doubt the 

classification potential perceptrons were claimed to have; they also questioned the 

claims about their learning memory. As the number of predicates raised, the 

number of artificial neurons and connections raised as well. This meant that for 

perceptrons to compute the classification problem of n-objects, they would have to 

have an n-number of artificial neurons eventually making the automaton crash.    

 After Minsky and Papert’s book was published, research in the field of ANNs 

became unpopular and funding was hard 

 Since McCulloch and Pitt’s and Rosenblatt’s ANNs, and the debacle brought 

by Minsky and Papert the manner in which ANNs learn has been improved and 

tested by the new technologies that have been developed.  
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4.1.2 THE REBIRTH OF ANNS. 

 

In 1982, John Hopfield published a series of papers on what he called 

‘Hopfield networks’. These are networks of ANNs with binary thresholds whose 

values can be updated after each iteration. Units in these networks are 

symmetrically connected to other neurons, i.e. the same number of connections for 

every unit. Also, no unit can be connected with itself. Hopfield (1982) found that 

this avoids chaotic behavior in his networks. The connection among units allows 

the network to have memory. In this sense, this ANN can be tested after being 

trained by giving it faulty data, and if the ANN learnt properly, it will be able to 

reconstruct the data from its memory. These two characteristics, updating and 

memory, were crucial to the rebirth of this field. 

In 1982 as well, Teuvo Kohonen developed a self-organizing map (SOM), a 

type of ANN that uses an unsupervised learning algorithm. SOMs consist of 

neurons which are related to a weight vector with the same dimension as the input. 

Each neuron is given a position in a two-dimensional map space. The training data 

is presented iteratively to ensure that only one neuron of the map is associated to 

one weight vector. This first step, account for the training of the ANN. The testing 

phase is called mapping (Kohonen, 1982). In this phase, new data is used as input 

and the SOM classifies each new input based on the distance, i.e. how similar or 

different they are, between its weight vector and the one found in the map. As in 

the case of Hopfield networks, SOMs can be updated and have the ability to match 

new input to a position in the map space based on its resemblance. This means 

that SOM can generalize, i.e. classify input that has not been used before properly. 

Finally, the rebirth of ANNs is mostly associated to the use of the back 

propagation algorithm. Back propagation means that the error, i.e. the difference 

between the desired output and the output produced by the ANN, is propagated 

backwards to be taken into account in the next iteration of training. This is a type of 

supervised learning network because there is a desired output. Training in back 
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propagation networks is divided in two parts. First, the input is propagated through 

the network to produce an output. Then, this output is compared to the desired 

output to produce the difference between them. Second, this difference is used to 

update the initial weights of the neurons to finds ones that minimize the difference 

between the produced output and the desired output. ANNs that use back 

propagation are able to solve nonlinearly separable problems as the ones 

presented by Minsky and Papert (1969) which overwhelmed perceptrons at their 

time. In order to minimize the difference between outputs, an extra layer of 

neurons, a hidden layer, has to be programmed as well. In the XOR problem, the 

hidden neuron is in charge of computing the inputs to solve this problem that once 

defeated ANNs. 

 

4.1.3 SOME USEFUL NOTATIONS USED IN ANNS. 

 

 This section will introduce some of the notation used in this field which will 

be put into used in section 4.1.5 where two examples of ANNs are given. 

Activation function: It is a mathematical algorithm that describes the relationship or 

mapping from input to output. There are different types of functions being some of 

them the following: 

 

Figure 3. Examples of activation functions.1 

                                                      
1
http://www5.in.tum.de/wiki/index.php/File:Activation_functions.PNG 
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Cross entropy: it is a way to measure the error in which the distance between the 

target output and the output is measured. In this particular way of measuring the 

error, the output represents the probability of a particular class of being true for an 

input. 

Epoch: it is when all the training patterns have been run once. 

Underfitting: it is when the ANN does not learn the training patterns and cannot 

classify properly. 

Overfitting: it is when the ANN learns the training patterns in such a way that if new 

data does not fit the training patterns completely, it is not able to classify them 

correctly. 

Generalization: the capability of the network to correctly classify patterns it has not 

seen before. 

Overshoot: it is when the output exceeds its target. 

Learning rate (eta): it is a parameter that states the speed at which an ANN learns. 

For-loop: a statement that permits a code to be executed iteratively. 

  

4.1.4 CONSIDERATIONS ABOUT THE TRAINING. 

 

Ideally, an ANN after training has to be able to match its inputs into the 

desired output. Unfortunately, sometimes that is not the case or perfectly matching 

inputs into outputs may produce overfitting which has to be avoided. Therefore, the 

training has to be stopped at some point. This is a decision that has to be taken 

beforehand and has to be encoded in the code that trains the ANN.  

First, the amount of epochs needed to successfully train the network. This 

decision, in the same manner as the ones which are going to be discussed later, 



15 

 

 

depends on the type of ANN, the activation function being used and experience. A 

small amount of epochs may produce underfitting, whereas a large one might be 

unnecessary because the ANN has already learnt or it has not learnt yet but no 

further improvement can be done. Furthermore, depending on the amount of 

computations in the code, a certain amount of epochs might take too long to be 

reached. 

Second, if the error in the validation sets starts to rise, that is a good 

indicator that no further improvement in training can be done. Specially, because 

there is a correlation between the validation error rising and a decrease in the 

generalization capability of the network. 

Third, a small amount of error can be allowed so as to have good 

generalization. As stated above, the decision on how small an error can be 

depends on the type of network and the experience of the programmer.  

 

4.1.5 TWO IMPLEMENTATIONS OF ANNS. 

 

In this section, two implementations of ANNs are going to be thoroughly 

presented and discussed to exemplify their real world and psychological 

applications, and their coding and architecture. Both of these implementations 

were assessments in two modules of the MA in Philosophy of Mind and Cognitive 

Science I studied at the University of Birmingham during 2012 and 2013. 

The first ANN is related to a psychological application. Its task is to simulate 

how biased competition works in visual search. The aim of this assessment was to 

test the notion that visual search is biased in nature. This notion is based on the 

work of Desimone and Duncan (1995). First, humans have a “limited capacity for 

processing information” (1995:193). This means that if we pay attention to an 

object, the available attention to notice others is reduced. Second, we have “the 

ability to filter out unwanted information” (1995:193). This process is known as 



16 

 

 

selectivity. This means that when we notice attended stimuli, we are mostly 

unaware of unattended stimuli. Based on these two premises, they state that inputs 

have to compete for attention and that this competition is biased. The bias favors 

stimuli that are pertinent for the current situation. The mechanisms underlying the 

biased competition theory are based on bottom-up and top-down biases. On the 

former, as an example, it is easy to find a target in a group of homogenous 

distractors. On the latter, stimuli can be biased by our previous knowledge of what 

is relevant for the situation.   

 

4.1.5.1 PSYCHOLOGICAL IMPLEMENTATION OF VISUAL SEARCH. 

 

Hickey and Theeuwes (2011) consider that biased competition is carried out 

by inhibition produced by neurons. Furthermore, they state that competition 

through inhibition can be deemed as “visual attention” (2011:2054). 

Wolfe (1998) also presents a model in which bottom-up processes work 

side-by-side with top-down processes. For him, there is always a first pre-attentive 

stage in which the different stimuli are activated based on the features they have. 

After this, a top-down mechanism based on the knowledge of the target is 

activated. Finally, each stimulus receives a ranking from the highest to the lowest 

based on the combination of both processes. The ranking serves to signal the 

places that require attention. In this model, visual search would go from the highest 

salience stimulus in descending order until the target is found or stop if the 

remaining stimuli do not reach a certain threshold. If the features of the target 

become closer with the ones of the distractors, the target might lose its ranking and 

serial searches would have to be done. On this matter, Trappenberg (2010) 

considers that serial search is apparent in nature and that its role is active once 

there is an “intense conflict-resolution demand in the recognition process.” 

(2010:295). For him, parallel search is the main mechanism involved in visual 

search (Trappenberg, 2010). 
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Some of the shortcomings of Wolfe’s model are noted by Heinke and 

Humpreys (2005). The first is that the “serial search is not implemented in a 

manner consistent with the connectionist architecture of the earlier stages of the 

model” (2005:9). The second is the model’s inability to group visual features. This 

means that in order to distinguish stimuli from distractors they have to be 

considerably different according to the relevant features of that specific task. 

Moreover, in the case that a target is grouped with distractors, it can become 

difficult to detect it and a distractor may be perceived as having a higher ranking. 

Wolfe (1998) also notes that there is not a clear distinction between these 

parallel and serial search processes because different tasks of visual search can 

be explained by both processes depending on the degree of complexity of the task. 

For example, a feature search, which is in principle a parallel mechanism, can 

become a serial mechanism if the distractor is more similar to the target or if 

distractors are heterogeneous (1998:20). In this sense, he describes searches 

based on their reaction time (RT). Based on the visual task, a search can be 

efficient if the search slopes, which relate the RT to the number of distractors 

present (Heinke and Humpreys, 2005:2), are near zero msec/item whereas a 

search would be inefficient if the slopes are near 20 msec/item. 

Trappenberg (2010) noted that the reaction time (RT) of visual search is not 

affected by the amount of distractors when they are very different from the target. 

On the other hand, the RT of visual search is indeed affected by the number of 

distractors when they are similar to the target. 

In order to support the biased competition theory, a computer simulation of 

visual theory was carried out in MATLAB. First, a winner-take-all (WTA) network 

was set up. In this type of network, inputs compete to be activated (Trappenberg, 

2010). To do so, all the inputs are connected to a strong inhibitory node that 

feedbacks and update the inputs. This is a recursive process that eventually 

activates only one neuron, the one with the strongest input. The number of 
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iterations or time steps necessary to reach a winner depends on how strong the 

competing inputs are. This is similar to Desimone’s and Duncan’s (1998) theory 

because stimuli compete for visual attention. In order to calculate how efficient 

visual search is in this simulation, the number of time steps necessary to reach a 

clear winner is used as input for a function that calculates the reaction time slopes. 

The number of time steps spent on each item decides if the search was efficient or 

not.       

In this particular simulation, two matrixes were used as input. On the one 

hand, the first matrix had low saliency (LS) distractors, this means that the target 

popped out easily. On the other hand, the second matrix had high saliency (HS) 

distractors; this means that the distractors were similar to the target making the 

visual search more difficult. Each matrix was composed of four items. In order to 

set the RTs to calculate the slopes for each matrix, thresholds were predetermined. 

For both matrixes the threshold was 0.7. This means that at the moment one 

neuron reached that threshold, it would be declared the winner. As noted by Wolfe 

(1998), we can set the threshold based on the needs of the experiment: a 

conservative threshold would minimize errors whereas a liberal one would 

minimize RTs. After the RTs for both matrixes were found, a new distractor was 

added to each matrix and the WTA network was run again. After this, the process 

repeated one more time. The purpose of adding distractors was to test if the RT of 

the network increased or not.  

Having the RTs for the sets of matrixes, a function that calculates the slopes 

was run. This function needs at least two RTs and two numbers of items. The 

results for the LS and HS matrixes are presented as follows. 
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Figure 4. Comparison between the Reaction Time and the number of items 

for the Low Saliency matrix and the High Saliency matrix. 

As it was expected, the RTs and slopes were lower when visual search was 

performed in the LS distractors matrix. The RT for the four item LS matrix was 106; 

107 when an extra item was added; and 115 when two extra items were added. 

The search slope was 4.5 time steps per item. 

In contrast, the RTs and slopes were higher when visual search was 

performed in the HS distractors matrix. The RT for the four item HS matrix was 

332; 396 when an extra item was added; and 443 when two extra items were 

added. The search slope was 55.5 time steps per item.  

The results of these simulations support the biased-competition model 

because the distractors found in the matrixes are not paid attention to, i.e. they are 

not activated, by the inhibitory feedback mechanism in the WTA network. This 

mechanism, after a series of time steps, picks out the most salient item. After each 

time step, less activation is given to the irrelevant items until the target is the only 

item being activated. This process of activation is quite efficient when the matrix 

has LS distractors with a search slope of 4.5 time steps per item. Although search 
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becomes inefficient when the matrix has HS distractors, the winner item is picked 

out by a biased process since the distractors are inhibited after each time step.   

The inhibition process found in the WTA network acts as the bias found in 

the biased competition model. This inhibition is founded on experimental data as 

stated by Trappenberg (2010) and Hickey and Theeweus (2011). This network 

cannot be used as a simulation of the guided search model since no ranking is 

created and only one location is picked out to be paid attention. 

One of the shortcomings of this simulation is that it was predicted that after 

each time we added a LS distractor, the RT should not increase (Trappenberg, 

2010:294). Unfortunately, this was the case. Nonetheless, the increase of the RTs 

after adding LS distractors was not dramatic. If instead of having an extra LS 

distractor, the matrix had an empty location, a zero in this case, the RT did not 

increase. Another shortcoming is the fact that the bias of the simulation is directed 

towards the less salient items having a strong bottom-up component. This would 

leave aside top-down processes that can also bias visual search.  

 

4.1.5.2 OPTICAL CHARACTER RECOGNITION. 

 

The second ANN is related to a real world application. Its task was to 

perform optical recognition of handwritten digits. The aim of this assessment was 

to compare the performance of an ANN that underwent two different types of 

training: online and batch training. In online training, the weights are updated 

immediately after each instance is used for training. Whereas, in batch training, the 

weight update is performed after all the weight changes are added up once all the 

examples from the training set have been presented. 

 

The data set used in this implementation comes from the UCI Machine 

Learning Repository [http://archive.ics.uci.edu/ml]. The inputs came from forms 
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filled by 43 individuals. These images were pre-processed and the result for each 

image was a 1 by 65 matrix, in which the first 64 elements were integers, numbers 

that can be written without a decimal component,  ranging from 0 to 16 and 65th 

element was the class that the matrix belonged to. 

This data set is composed of 3823 instances for the training set and 1797 

instances for the testing set. Each instance has 64 input attributes and 1 class 

attribute. Input attributes are integers that range from 0 to 16. The class attribute 

range from 0 to 9.The class distribution for the training set is presented in Table 1 

and the class distribution for the testing set is presented in Table 2. 

Table 1. Class distribution of training set 

Class Instances 

0 376 

1 389 

2 380 

3 389 

4 387 

5 376 

6 377 

7 387 

8 380 

9 382 

 

Table 2. Class distribution of testing set 

  

 

 

 

 

 

Class Instances 

0 178 

1 182 

2 177 

3 183 

4 181 

5 182 

6 181 

7 179 

8 174 

9 180 
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 The architectural design of this ANN is described as follows. It composed of 

64 input neurons, 30 hidden layer neurons and 10 output neurons. The activation 

function we used for the hidden layer was the sigmoid function and the activation 

function for the output neurons was the softmax function. Based on (Gurney, 1997; 

Haykin, 1999) a suitable architecture for this kind of network would include the 

sigmoid function in the hidden layer and the softmax function in the output layer. 

Namely, the reason why I used the softmax function is because it is best suited to 

deal with more than two classes. In this case, the task involved classifying the 

inputs into one of ten classes. 

 As discussed in section 4.1.4, the training of an ANN has to be stopped 

based on several considerations. These considerations are not completely 

theoretical because they also depend on experience and the type of ANN. The first 

consideration is the computation time required to successfully train a network. In 

this case, after some experimentation it could be seen that the base network 

performed well after 30 epochs, therefore 100 epochs seemed a reasonable time. 

The second consideration was to avoid overfitting. It was decided that if the 

validation error was higher than the minimum validation error computed to that 

epoch, for ten consecutives epochs, the training algorithm should stop. The third 

consideration was the performance goal. In case the total cross entropy error of the 

training set is below a certain number, the training should stop because the 

algorithm has converged and there is no need to continue with the training. 

For building the neural network with online training, the design was based 

on John Bullinaria’s Step by Step Guide to Implementing a Neural Network in C. 

He is a senior lecturer at the University of Birmingham and has implemented 

several ANNs to model brain damage and language processing tasks.   

The main difference is that the network for the current simulation was built in 

MATLAB. Firstly, I created a for-loop to train the network for 100 epochs. Secondly, 

I uploaded both training and testing sets. The training set was split in a 7:3 ratio; 
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the latter was used for validation. Thirdly, the parameters for the network were set: 

J, the number of neurons in the hidden layer was set to 30; m, the shape of the 

slope for the sigmoid, was 0.01; s, the bias for the sigmoid, was 0; eta, the learning 

rate, was 0.7; the maximum amount of epochs was 100; the maximum amount of 

epochs that the net could fail was 10; two matrixes were set for the errors of the 

training and validation sets; two random weight matrixes were set for the 

connections from the input units to the hidden layer and from the hidden layer to 

the output layer; a counter was set up in 0; and both the total error and the 

minimum error were set to infinity. Next step was to initialize the weight as two 

random matrixes, one for the connections from the input units to the hidden layer 

and other from the hidden layer to the output layer. Then a for-loop was created to 

train the network for 100 epochs. Another for-loop was added to present all of the 

training examples. Then the output, the error and the weight updates were 

computed for each layer. After the weight updates, the validation check was 

implemented as the computation of the network output for each validation 

examples and the validation error check. Finally, when the training stopped, the 

performance was calculated for the testing set. 

The pseudo code I used is presented in Appendix 1. It is slightly different for 

both types of training. The difference will be explained below. 

The first network had 30 weight connections with the hidden layer and the 

hidden layer had 10 connections to the output units. The number of hidden units 

and therefore the number of connections for online training was later changed for 

one of the experiments. 

There are two main differences in architecture between the network with 

online training and the one with batch training. The first difference was already 

explained previously. Namely, in batch training all the weight changes are summed 

once all the examples from the training set have been presented. After that, the 

weight update is performed. The second main difference is a consequence of the 
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previous one. The learning rate for batch training has to be lower than online 

training (Wilson and Martinez, 2003). Otherwise it may overshoot. That is why the 

learning rate of batch training is divided by the amount of training examples. For 

the hidden layer a smaller learning rate was used. This is based on the following. 

After several attempts with one eta, the learning process was slow. Therefore, a 

second eta was introduced and adjusted to avoid overshooting and to have an 

efficient training process.  

After the weights were updated and the stopping criterions were met, the 

testing set was run. In order to decide if the classification was carried out well, a 

0.5 error was tolerated. This means that if the output was 0.5 or bigger, then it 

would be considered as 1. Otherwise, it would be considered as 0. 

For this assessment, I decided to experiment with online training and batch 

training. The idea behind this is to compare the performance of both types of 

training for this task. Then, I also experimented with 3 different learning rates: 

0.0.7, 0.7 and 7. To conclude with the experiments, I changed the amount of 

neurons of the hidden layer 4 times: 5, 15, 30 and 45. 

The results of these three experiments are presented below. Each 

experiment is accompanied by graph showing the performance of the network. 
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The graph below shows the training error for both trainings. 

 

Figure 5. Training error for online training and batch training. 

This graph shows that the training error decreases quite fast for the online 

training. Although, there is a considerable decrease for batch training, we can see 

that more epochs are needed to keep improving the training of the network. 

 

 

 

 

 

 



26 

 

 

The graph below shows the validation error for both trainings. 

 

 Figure 6. Validation error for online training and batch training. 

In this graph we can see that few adjustments were done to the weights of 

online training after validation took place. In contrast, a great amount of 

adjustments were made for batch training, and as in the training, more epochs 

would be needed to improve the network. 
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The graph below shows the training error for online training with different 

etas. 

 

Figure 7. Training error for online training with different learning rates. 

We can see that the training error for an eta of 7 is abruptly stopped to avoid 

overfitting. Meanwhile, more epochs are needed to train the network with an eta of 

0.07. 
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The graph below shows the validation error for online training with different 

etas. 

 

Figure 8. Validation error for online training with different learning rates. 

As we can see, the weight changes for an eta of 7 oscillate drastically until 

they are stopped abruptly. This correlates with the situation described previously. 

For an eta of 0.07, more epochs are necessary to improve training. 

Comparing these three variations, we can see quite different results. With an 

eta of 0.07, more epochs are needed to train the network. Whereas with an eta of 

7, less epochs were done to avoid overfitting. A lower eta reduces standard 

deviation, while a higher eta increases it. 
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The graph below shows the training error for batch training with different eta. 

 

Figure 9. Training error for batch training with different learning rates. 

From this graph we can immediately tell that the lower etas need more 

epochs to train the network. On the other hand, the highest eta overshoots the 

network giving it a poor performance rate. 
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The graph below shows the validation error for batch training with different 

eta. 

 

Figure 10. Validation error for batch training with different learning rates. 

The same situation described above occurs for the validation error. The 

lower etas need more epochs to improve the training of the network whereas the 

highest eta overshoots and stops abruptly. 

The comparison of these three variations shows the following results. The 

best mean performance rate is the one of eta1 0.7 and eta2 0.1. If we reduce both 

etas, more epochs are needed to reach optimal training. This is explained because 

more epochs are needed to train the network. If we increase both etas to 7 and 1, 

respectively, the results are disastrous. This is explained by overshooting, since 

the sigmoid was saturated before the learning had even started. Reducing and 

increasing the eta had a negative effect for standard deviation because it 
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increased. This can be explained because the lowest eta needed more training 

epochs and the highest eta because its validation failed. 

Thus, increasing the eta for both online and batch training does not have 

positive results, especially for batch training.  

When changing etas for both trainings, there is a tendency for the mean 

epoch to drop, especially when trained with a high eta. This can be explained by 

the abrupt stop provoked by overshooting. 

The graph below shows the training error for online training with different 

neurons in the hidden layer. 

 

Figure 11. Training error for online training with different amounts of hidden 

units in the hidden layer. 
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As we can see, with 5 neurons the training error stops decreasing abruptly 

because the training stops. With 15 neurons, more epochs are needed to train the 

network. Finally, with 30 and 45 neurons similar training results are achieved. 

The graph below shows the validation error for online training with different 

neurons. 

 

Figure 12. Validation error for online training with different amounts of 

hidden units in the hidden layer. 

On this graph, we can see once again that with 5 neurons, weight changes 

end abruptly, the validation error increases and the validation fail criterion is met 

before than in the other configurations. For 15, more epochs are needed to 

improve training and for 30 and 45 neurons, a similar amount of epochs is needed. 

After comparing these four variations, we can see that the mean 

performance rate and the overall classification rate improve by adding more 
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neurons. Nonetheless, this improvement does not increase steeply and adding 

more neurons may put extra strain on the computing. 

Based on the three experiments, it can be concluded that varying the type of 

training, the learning rate and the amount of neurons in the hidden layer does have 

an effect on the performance of the classification of digits. 

Online training has a better overall performance than batch training and it 

also has a better performance when the eta is increased or decreased. The 

increasing of eta in batch training has terrible results for classification drastically 

impoverishing its performance rate. 

Increasing the amount of neurons on the hidden layer does show an 

improvement in performance but it is not a sharp increase. It is worth keeping this 

in mind since increasing the amount of neurons in the hidden layer increases the 

amount of computations (Heaton, 2008), which can be time consuming, increasing 

the time needed to train the network. 

Interestingly, 0 was the digit that was best classified in all except one of the 

simulations and 8 was the most poorly classified digit regardless the type of 

training, the eta and the amount of neurons. 

 

4.1.6 A PHILOSOPHICAL SIDE NOTE OF BOTH IMPLEMENTATIONS. 

 

 At a first glance it is quite obvious how different both implementations are. 

Firstly, both of them are related to distinct fields, the first implementation to 

psychology and the second one to a task that has practical yet not psychological 

applications. Secondly, the degree of description of their architectural design and 

complexity was different as well. The visual search ANN needed few algorithms, 

parameters and lines of code to perform its task, whereas the optical recognition 
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ANN needed a considerable amount of these. Finally, how to interpret the results of 

each ANN has to be considered as well. The results of the optical recognition ANN 

are interpretable under the light of a real world image that was encoded into a 

matrix that was then classified into a number. There is little room to interpretation 

here: if the training process was successful, then the output number should 

correspond to the image, in this case coded data, used as input.  In contrast, the 

simulation for visual search serves its purpose as long as it is interpreted in a 

certain way. As such, it is not a real simulation of visual search, it is only a 

simplification of what would happen in the real world if instead of high and low 

values we had, let us say, bright and dark colors. Nonetheless, its usefulness to 

support different theoretical approaches to a phenomenon cannot be discarded. 

 

4.2 A BRIEF ACCOUNT OF THE ACQUISITION OF THE ENGLISH PAST TENSE. 

 

Research concerning the stages children go through to acquire the English 

past tense has pinpointed three stages of acquisition with continuous and stable 

transitions between them (Berko, 1958; Brown, 1973; Kuczaj, 1977; Marcus et al., 

1992). In the first stage, the production of past tense forms by children is rare. The 

past tense forms that are produced are the ones that are most frequently found in 

adult speech (Westermann, 2000) and the majority of them are irregular. It is to be 

expected that children correctly use the forms ‘came’, ‘knew’, ‘looked’, ‘took’, and 

‘went’, not marking past tense for other verbs. Considering the fact that most verbs 

that children use at this stage are irregular, there is no evidence to describe past 

tense inflection based on a rule. 

In the second stage, which starts at around 29 months of age, children 

produce an increasing number of past tense forms. New past tense forms are 

produced, being most of them examples of the regular past tense. 
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At this stage, indications of a linguistic rule for past tense formation emerge. 

The first piece of evidence to consider the emergence of a linguistic rule comes 

from experiments in which children were able to produce the past tense for 

pseudo-words, as in the case of ‘rick’, in which the children used the past tense 

‘ricked’ (Berko, 1958). The second piece of evidence is related to the phenomenon 

known as overregularization, which starts occurring at this stage. This means that 

the irregular past tense forms which were produced correctly in the first stage are 

corrected in order to comply with the regular past tense form. Utterances such as 

‘comed’, or ‘camed’ might be produced. These utterances occur simultaneously 

with the correct past tense form and none of them is predominant. 

This stage can last as far as the school age, with a decreasing rate of 

overregularizations. Highly frequent irregular past tense forms in parental speech 

are less overregularized that low frequency irregular past tense forms (Marcus et 

al., 1992) 

In the third stage, children produce both regular and irregular forms 

correctly. Nonetheless, regularizations and overregularizations can occur 

sometimes. An instance of regularization would be the case of verbs with two past 

tense forms such as ‘burn’, in which the regular past tense form ‘burned’ and the 

irregular past tense form ‘burnt’ are both acceptable. 

These three developmental stages are referred to as U-shaped learning. 

This name is given because of the learning curve found in the acquisition of past 

tense in which irregular forms are produced correctly, then are overregularized and 

finally are produced correctly once more. 

 

4.3 MODELLING THE ACQUISITION OF THE ENGLISH PAST TENSE. 

 

Most models of English past tense acquisition have focused on this distinct 

learning curve. This section presents a survey of different models that have aimed 
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to represent U-shaped learning. Namely, the focus will be on two neural networks 

models that have claimed to represent the experimental data discussed above. 

The first model has historical importance because it was the first model that 

claimed to have learnt the English past tense without resorting to implicit rules. The 

second model is of importance because it was the first one to implement the 

learning process based on the frequency of words, test them against experimental 

data beyond U-shaped learning and the dataset used on this model has been used 

by different ANN models both in psychological and real world applications (Bybee, 

1995; Anderson, 2009; Smith, 2011). 

 

4.3.1 RUMELHART AND MCCLELLAND’S MODEL. 

 

In 1986, Rumelhart and McClelland presented a model that, in their opinion, 

acquired the English past tense based on the psychological data at hand. This 

meant that they were able to program an ANN that in the process of learning the 

English past tense showed the same U-shaped learning development as children. 

This model was composed of a simple pattern associator network similar to 

Kohonen’s map (Section 4.1.2), which learnt the relationship between the base 

form of the verb and the past tense form (Rumelhart and McClelland, 1986). 

Unfortunately, this model had to endure strong criticisms regarding its 

implementation and its real capability to account for experimental data. The most 

relevant criticism is related to U-shaped learning. Pinker and Prince (1988) after 

thoroughly analyzing this model reached the conclusion that U-shaped learning 

was reached due to the manipulation of input data. The input used to train this ANN 

was uneven. First, only the ten most frequent verbs were used as input, being eight 

of them irregular. On the second phase of training, 410 new verbs were added as 

input. 80% of these verbs were regular. This abrupt increase of regular verbs as 

inputs explains why this ANN started to overregularize the irregular verbs that 
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learnt on the first stage of training. Considering that this model tried to fit 

experimental data, it also had to take into account the fact that regular verbs 

account for around 45-60% of verbs produced in children’s speech. Furthermore, 

this proportion is stable and does not undergo sudden changes (Marcus et al., 

1992). 

Also, the generalization capabilities of this model had a rather high error rate 

for regular verbs. Around 30% of the regular test verbs were produced incorrectly, 

which is implausible when compared to the experimental data (Pinker and Prince, 

1988). 

 Regardless these criticisms, Rumelhart and McClelland’s model is important 

because it paved the way for ANNs to be used as means to model experimental 

data on linguistics settings. 

 

4.3.2 MACWHINNEY AND LEINBACH’S MODEL. 

 

 In 1991, MacWhinney and Leinbach advanced on Rumelhart and 

McClelland’s model and presented an ANN which relied on the backpropagation 

algorithm to learn the English past tense (Section 4.1.5.2). The advantage of using 

such algorithm as learning mechanism is that the use of hidden units improved the 

representations that the ANN could make of input (Hinton, 2007; Huynh and 

Reggia, 2011). Moreover, MacWhinney and Leinbach used as input a more 

realistic training corpus which coincided with the actual frequencies of English 

verbs. This corpus was presented in the training stage according to their frequency 

of occurrence: the most frequent words were presented at each epoch, while the 

less frequent were presented at every 700th epoch. By doing so, the abrupt 

increase of input without a methodological and experimental reason, as in the 

previous model, was avoided.  
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 This model, during training, produced the past tense for all the regular verbs 

in the training set, which meant a considerable improvement when compared to 

Rumerlhart and McClelland’s model. However, it failed, first, to learn 9.7% of the 

irregular verbs in the training set and, second, to account for learning curve present 

in children’s acquisition of the English past tense.  

 This ANN was tested using 13 untrained irregular verbs, which in 

Westermann‘s (2000) opinion is misleading because irregular verbs past tense 

cannot be predicted. He suggested that this kind of model should be tested against 

pseudo-words, which also had been tested on humans, and then compare both 

performances. At the time this model was presented, such pseudo-words and 

experimental data did not exist. MacWhinney (1993) presented a revised and 

simplified version of this model which was tested against a corpus of pseudo-words 

created and tested by Prasada and Pinker (1993).  

 Prasada and Pinker (1993) created a set of pseudo-words to investigate the 

inflection of novel words. In the case of pseudo-verbs, they were divided in 

irregular and regular-like, each composed of three classes: prototypical, 

intermediate and distant. Pseudo verbs were similar to existing verbs in different 

degrees, being prototypical the most similar and distant the least similar. The 

experimental data gathered after presenting the pseudo verbs to human subjects 

showed, on the one hand, that there is a tendency to inflect pseudo-regulars as 

regular, which is independent of their similarity to existing regulars. On the other 

hand, the tendency to inflect pseudo-irregular verbs as irregular is reduced as the 

similarity with existing irregular verbs decreases. 

 In order to test the generalization skills of acquisition models, the inflection 

of distant regular-like pseudo verbs has to be tested. In this case, a regular 

inflection has to be produced regardless the similarity to existing verbs. This would 

prove that the regular case has been learnt as the default inflection of novel cases. 
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The revised model performance was deemed as humanlike for its capacity 

to produce regular forms for distant pseudo-regulars (MacWhinney, 1993). 

Unfortunately, these results are based on an optimistic projection of the results that 

the network was producing at 4,200 epochs, although it was trained for 24,000 

epochs. Furthermore, the revised model produced 90% of the irregular verbs in the 

training stage. Ideally, the model should be able to produce all the irregular verbs in 

the training set correcting and at the same time be able to produce the regular 

inflection for novel words. 

 

4.4 THE INNATENESS OF LANGUAGE. 

 

Chomsky on his critique of Skinner’s Verbal Behaviour (1959) argued that 

conditioning was not the appropriate approach to explain language acquisition. 

First, acquiring a language does not depend entirely on environmental phenomena. 

Second, conditioning would not be able to produce all the possible expressions of 

a person’s linguistic behaviour because that would mean that a person should be 

exposed to and trained in a vast if not infinite number of sentences to be able to 

use words and then sentences properly. Such situation is highly unlikely because 

of the input children receive and because we can produce and understand new 

utterances almost effortlessly. This ability of being able to acquire a language 

regardless the poverty of the stimulus humans are exposed to is central to the 

notion that language is innate. For Chomsky, mastery of a language involves 

knowing its grammar.  

On Aspects of the Theory of Syntax (1965), Chomsky argues that the data 

children are exposed is highly impoverished, first, because they compose only a 

small sample of the infinite number of sentences that can be produced by natural 

language and, second, because they do not comprise the ill-formed sentences 

needed to create prototypes of ungrammatical sentences. Chomsky suggests that 
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the Universal Grammar (UG) supplies constraints that help children avoid the 

production of ill-formed sentences and allow native speakers to recognize 

grammatical sentences from ungrammatical ones. As such, humans are born with 

a built-in language acquisition device (LAD) which prevents children from 

wandering around an infinite number of grammars before reaching the specific 

grammar of their language.  

 Putnam (1967) presents a set of empirical and alleged facts that support the 

notion of innateness in language. First, children learn their native language with 

remarkable ease in a short period of time. Being exposed to a language is all they 

need to acquire a language and no explicit instruction is needed. Second, as 

Chomsky (1959) noted on his critique of Skinner, there is no need for 

reinforcement to learn a language. Third, language acquisition does not depend on 

the IQ of children. Fourth, the existence of linguistic universals, common features 

to all languages, is a consequence of innateness and UG. Finally, and this would 

count as a pseudo argument, how could we account for a task as difficult as 

language acquisition without the help of an innate component? 

 Further arguments for the innateness of language are the following. First, 

the existence of Broca’s and Wernicke’s areas in which language is produced and 

understood respectively. The specialization of both areas and the language 

impairment due to damage to those areas (Radanovic and Mansur, 2011) would 

lead us to think that the language faculty or the LAD is located around these areas. 

Chomsky (2000) prefers to remain sceptical about these statements and consider 

that more investigation is needed to assert that the language faculty is pinpointed 

in Broca’s or Wernicke’s areas or in a different area. If conclusive evidence for a 

specialized area of the brain exclusively dedicated to language appears, the area 

could be deemed as the organ of language (Chomsky, 2000). Although Chomsky’s 

scepticism, the existence, evolution and specialization of such areas highlight the 

importance of language as a human skill and may serve as a counterargument for 
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people who consider language a by-product or emergent behaviour of neural 

activity.  

 Second, there is evidence of genetically determined systems in mammals, 

such as the visual system that require external appropriate stimuli to be developed 

and prevent deterioration.  An example of this would be the visual system of cats 

(Chomsky, 2000). If kittens do not receive certain light stimulus, the structures in 

the striate cortex start to deteriorate. Moreover, if they receive one type of visual 

stimulus, only vertical or horizontal lines, the cells in the striate cortex would 

distribute in different manners depending on the stimulus. Therefore, there are 

systems that are innate but need stimulation to function. This would be the case of 

language acquisition: all of us are born with the innate skill to acquire a language 

without instruction but we need to be exposed to it. The time frame for exposure is 

not an idiosyncratic matter: language acquisition can occur up to puberty in which 

our acquisition skills deteriorate. This is known as the critical period of acquisition.  

 Third, the innateness of language can be built specifically or as a 

combination of different aspects of the brain.  An example of a property specific to 

language which is not found elsewhere in the natural world is the property of 

discrete infinity. This property presupposes that we can have sentences with an 

infinite and not determined number of complete words, this means, we have 

sentences of six or seven words but not sentences with six and a half words 

(Chomsky, 2000). Nonetheless, it may be the case that a language property is built 

on other systems which have a different primary function. An example of this would 

be to ask if our tongue and teeth evolved in such way so that we could produce 

language or if it evolved first to eat certain foods and then the range of sounds that 

we could produce adapted to the existent architecture of the human body. 

 Chomsky et al. (2002) revisited the idea of innateness in language and 

contrasted it to two approaches to relate it to the brain. The first approach is related 

to emergentism and posits the idea that language, as mental things, is an 
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emergent property of the brain. These emergent properties are produced by 

interactions between lower level events, synapses or neural networks. 

Unfortunately, the interactions have not been understood yet. Chomsky et al. 

(2002) consider that language is not an emergent property of the brain, and that 

once the right physical properties, the right synapses or neural networks, are 

found, the need to rely on emergent properties with obscure principles would 

disappear. 

The second approach presents four perspectives to study animal and 

human language. These four perspectives are: mechanistic, search the 

mechanisms, psychological and/or physiological, that implement language; 

ontogenetic, find the genetic and environmental factors related to language; 

functional, find the evolutionary advantages that language presents for humans; 

and phylogenetic, find the evolutionary history of humans as species and compare 

language to different past features. Chomsky et al. (2002) consider that Hauser 

(1996) presents this approach clearly and evaluate his arguments. Regarding the 

first perspective, Hauser does not cover mechanisms at all, being the same case 

for the functional perspective. Furthermore, and this relates to the first two 

perspectives, Hauser consider that studying the psychological and physiological 

aspects of language are irrelevant to the formal study of language. Therefore, the 

first two perspectives are abandoned for human language. Language as an 

adaptive function is not consider for functions such as mating, survival and so on 

because Hauser regards language not as a system of communication but as a 

means to express thought.  

Finally, the third approach is related to innateness and involves the notion 

that there are specialized mechanisms in the brain to learn in specific ways. In this 

sense, for language acquisition to happen, the existence of a language organ is 

needed. Chomsky et al. (2002) consider that this approach is sound and further 

argue that even behaviourists assume the existence of an innate mechanism to 

distinguish linguistic material from the rest of stimuli. 
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All in all, Chomsky is reluctant to consider that language is not innate, a by-

product of our evolution or an emergent property of lower level phenomena. His 

views are challenged by what is known as connectionism and emergentism and 

the following sections present the arguments of these two approaches to learning 

and, particularly, language acquisition.  

 

4.5 CONNECTIONISM AND EMERGENTISM. 

 Connectionism is a philosophical theory which tries to explain some of the 

mental process which occur in the brain by means of interconnected neurons or 

networks of neurons. Fodor and Pylyshyn (1988) in a critical analysis of 

connectionism stated that a natural or artificial system can evolve and self-organize 

itself without having to resort to memorization. Connectionist models are seen as 

“networks consisting of very large numbers of simple but highly interconnected 

“units” (1988: 4). 

  

The most common way to represent these networks and their underlying 

processes are through ANNs. The connections of the artificial neurons resemble 

synapse. Synapse is a junction by which electrical or chemical signals are passed 

from one neuron to another neuron or cell. For ANNs to process an input, an 

activation threshold has to be reached which triggers the connections in the 

artificial neurons producing an output. Programmers train ANN to process the input 

to obtain certain outputs. The training may differ depending on the algorithm and 

the mathematical instructions that are used to solve a problem.  The main idea of 

supervised training is that exemplar inputs, typical or best examples of a 

phenomenon, are introduced into the ANN and then exemplar outputs are 

introduced as well. This way, the ANN recognizes a pattern that is reinforced. As 

Bates et al (1998) described it:  
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“Networks would be exposed to examples of a target behavior (for 

example, the appropriate responses to a set of varied stimuli). 

Through learning, the network would learn to adjust the weights in 

small incremental steps in such a way that over time, the network’s 

response accuracy would improve.” (1998: 5-6)      

 As seen in section 4.1.5, connectionist models may vary on the algorithm 

they use as an activation function, the number of input and output nodes, the 

nature of the input (inhibitory or excitatory) and the connections among them. 

Nonetheless, they remain analogous to simple neurons. Elman (2001) notices that 

there are three key features in the way ANNs operate. First, the activation function 

is nonlinear. This means that ANNs have a probabilistic nature in which the units 

may fire under certain conditions whereas in other they would remain in their 

resting state. Second, the knowledge of the network is represented in the 

connections between units and the weights the connections have. Third, there are 

no symbolic representations. The representation of stimuli presented as input 

would depend on the pattern of activation between units. This means that a word 

can be represented by only one unit or a complete set of them.   

 He also notices that at first the weight of the connections was changed 

manually, but now there are different algorithms to solve different tasks. This 

means that the weights needed for a specific ANN could be self-programmed. 

Moreover, learning is carried out by induction, as stated above, in which exemplar 

inputs and outputs are presented to the network.  

 Connectionism presents itself as an alternative to innatist symbolic models 

that completely rely on knowledge hardwired in the brain. The main reasoning 

behind this proposal is that innateness is confused with domain specificity, species 

specificity, localization and learnability (Bates et al. 1998). The first claim is that 

language is so particular, when compared to other abilities that we share with 

different animals, that it must be innate. The second claim is that we are the only 



45 

 

 

species that has this particular kind of language, so it must be part of our genes. 

The third claim assumes that since particular parts of brain, such as Broca’s and 

Wernicke’s area, are involved in language, then it must be innate. Finally, the fourth 

claim states that learning a language is so difficult and nonetheless children are 

able to do it easily without instruction, then again, language must be innate.  

Bates et al. (1998) breakdown each of these claims to prove that in some 

cases a nativist and a connectionist/emergentist explanation could produce the 

same result. First, on the subject of domain specificity, they consider four levels 

related to it: behavioral, representational, mental/neural processes and genetic. 

Regarding behavioral specificity, language is different from other cognitive systems 

because of the type of task it has to solve: “mapping a hyperdimensional meaning 

space onto a low-dimensional channel” (MacWhinney and Bates, 1989). This 

meaning space includes experiences shared by all humans and human language 

is constrained by information processing, such as memory. If we consider such 

factors, the possible solutions to this problem are limited. Therefore, behavioral 

specificity can serve as an argument for UG and innateness, but also for emergent 

properties. Concerning representational specificity, all knowledge representations 

are stored in our brain whether they are innate or not. Thus, representational 

specificity does not help any of the two positions. Regarding the specificity of 

mental/neural processes, the question arises whether language can be learned by 

a system which is not designed for learning it. This question has not been settled 

but evidence from plastic reorganization in children with focal or left hemisphere 

brain injuries shows that in the absence of the areas commonly involved in 

language acquisition, the brain is able to reorganize and learn it as normal children 

do (Stiles, 2000; Jonhston, 2009). Concerning genetic specificity, genetic disorders 

as specific language impairment (SLI) are used as an argument for the innateness 

of language. However, research on SLI shows that it is often accompanied by other 

disorders that could explain the impairment of language. As such, domain 

specificity does not serve as a strong argument for the innateness of language. 
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Second, on the subject of species specificity, there are more domains which 

are specific to humans, such as basketball and online dating, but that does not 

mean we are hardwired for such domains. Furthermore, we share neural circuitry 

with species very different from ours, such as rats, which are disposed before 

becoming functional. Therefore, the fact we are the only species that has skill does 

not mean it is innate. 

Third, on the subject of localization, all knowledge, innate or learned, 

assumes that it is localized in the brain. It does not matter if the localization is 

universal or variable. This is proven by arguments as brain plasticity named above 

in which the brain reorganizes itself when there are focal lesions in children. 

Fourth, on the subject of learnability, it is quite remarkable how children are 

able to learn a language when the data they receive might be incomplete, it does 

not cover the whole range of linguistic possibilities and lacks negative examples. 

This serves as a proof that language acquisition is innate otherwise this task could 

not be carried out. Nonetheless, simulations have been able to learn grammars 

without resorting to hardwired symbolic knowledge and only relying in a learning 

algorithm and different sets of conditions such as increasing memory at certain 

periods of time to learn complex structures.        

O’Grady (2008) states an interesting remark: “the purpose of emergentism is 

not to refute nativism; it is to devise a better version of the innateness hypothesis.” 

(O’Grady, 2008:630). This is true because connectionism and emergentism rely on 

innate structures such as neural networks to posit their theories. The difference is 

they argue for emergent properties of the interaction between different neural 

networks, and the environment. Therefore, they are not searching for the specific 

language organ; rather they are working on finding the interactions of low level 

events that can produce emergent properties such as language.  
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5. METHODOLOGY. 

In this section the methodology to simulate the acquisition of simple present, 

and regular and irregular past will be described. First, a description of the datasets 

used in each simulation is provided. Second, a succinct description of the 

architecture of each network is given. Finally, the experiments to test the 

generalization skills of each network are described. 

5.1 DATASET. 

The dataset used for these simulations were provided by Professor 

MacWhinney in a private communication. According to the information provided in 

the readme files, this dataset is the same he and Leinbach used in 1991. 

Therefore, the description of the dataset is provided according to their 1991 article. 

In case the dataset differs, this will be stated. 

MacWhinney’s and Leinbach’s dataset (1991) was built based on Francis 

and Kucera (1982) corpus of English. This corpus included the frequency of 

English words. The base set MacWhinney and Leinbach used included the 6949 

most frequent verb forms, which included present, third person singular, present 

participle, past and past participle of both regular and irregular verbs.  These forms 

were inflected from 2161 verbs. Taking into consideration the problems Rumelhart 

and McClelland (1986) encountered when simulating homophones and multiple 

forms, such as the past tense forms ‘dreamed’ and ‘dreamt’, MacWhinney and 

Leinbach eliminated the less common forms. Furthermore, to reduce the stress on 

the network, “all the forms that had more than three syllables, consonantal 

phonemes in a row, or more than two vocalic phonemes in a row were also 

removed” (MacWhinney and Leinbach, 1991). After these modifications to the 

original base set, 6090 forms, inflected from 2062 verbs were used as corpus for 

simulation. This corpus was divided once more to create a testing corpus. This 

testing corpus was formed of the least frequent 10% of the regular verbs, and the 

least frequent 10% of the irregular verbs. The training corpus was formed of 5481 
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forms. The training set comprised 118 irregular past tense forms, which is not the 

complete set of irregular verbs in English. Nonetheless, these are the most 

frequent irregular verbs.  The list of irregular verbs is in Appendix 2. 

The dataset that Professor MacWhinney provided me included 5772 verbs 

forms in the training set, 614 regular forms and 27 irregular forms, and 60 pseudo 

words for testing. The training set is in Appendix 3, the regular form testing set is in 

Appendix 4, the irregular form testing set is in Appendix 5, and the pseudo words 

testing set is in Appendix 6. These three sets were used without any modifications 

to test the acquisition and classification potential of eight verb forms: base form, 

present participle, third person singular, regular past, irregular past, regular past 

participle, irregular past participle and irregular third person singular. The last form 

had only one instance that appeared in the training set. It is the word ‘says’ and no 

reason is provided for such classification.  

These datasets were modified to test the acquisition and classification 

potential of four and three verb forms. In the case of four form classification, the 

focuses were the base form, the third person singular, regular past and irregular 

past. Therefore, the present participle, the regular past participle and the irregular 

past participle were eliminated from the original dataset. The rationale behind this 

is that reducing the number of grammatical structures to be learned could reduce 

the amount of computations and the stress of the task. After the modifications were 

carried out, the training set was conformed of 3283 verb forms, the regular testing 

set was conformed of 478 verb forms, and the irregular testing set was conformed 

12 verb forms.   

In the case of three form classification, the training and testing sets were 

conformed of the same amount of verbs as the training and testing sets for four 

form classification. The only difference between these two forms of classification is 

the output produced. For three form classification, the base form and the third 

person singular are treated as present. This means that every time the network is 



49 

 

 

provided with a base form or the third person singular as input, it will produce, 

ideally, the same code as output. For four form classification, the base form and 

the third person singular are treated as distinct instances and are produced as 

output with different codes. 

 

5.1.1 CODING OF THE INPUT. 

The training files provided by Professor MacWhinney are coded in the 

following manner. First, 433 numbers represent the coded form of the input. These 

numbers are instances of 1 or 9. Then, the written form of the verb form is provided 

followed by a letter and a binary number. The letters represented the verb form of 

the written form and the binary number if the form was regular (0) or irregular (1). 

The letter ‘b’ represents the base form; the letter ‘z’, third person singular; ‘g’, the 

present participle; ‘d’, the past; and ‘n’, the past participle. The following is an 

example of the coding of the verb ‘upset’: 

1111111111111111111111111111111111111111111111111111111111111111111111111111
11111111191119111111111111191111111111911111911111111191111991111111111111
111111111191111111111111111111111111111111111111111111111111111191111111111
1111111111111111111111111111111111111111111111111111111111111111111111111111
11191119111111111111191111111111911111911111111191111991111111111111111111
1111911111111111111111111111111111111111111111111111111111  upset-b-0 
 

Figure 1. Coding for the base form of the verb ‘upset’. 

   

5.1.2 CODING OF THE OUTPUT. 

 The coding of the output varied depending on the amount of classes to be 

classified. For the eight class classification task, each output was composed of 

eight binary numbers. The network used for this task forced the output vector to be 

only activated in one element. Therefore, only one element of the vector could be 1 

whereas the rest of the elements had to be 0. For example, the verb form ‘upset’ is 
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the base form of the verb and it would be coded as 1,0,0,0,0,0,0,0 for the eight 

class classification task; 1,0,0,0 for four classes; and 1,0,0 for three classes. The 

tables below provide the coding of the output depending on the class they classify. 

Table 1. Output coding for eight classes 

Class Ouput Code 

Base form (-d-0) 1,0,0,0,0,0,0,0 

Present participle (-g-0) 0,1,0,0,0,0,0,0 

Third person singular (-z-0) 0,0,1,0,0,0,0,0 

Regular past participle (-n-0) 0,0,0,1,0,0,0,0 

Regular past (-d-0) 0,0,0,0,1,0,0,0 

Irregular past (-d-1) 0,0,0,0,0,1,0,0 

Irregular past participle (-n-1) 0,0,0,0,0,0,1,0 

Irregular third person singular (-z-1) 0,0,0,0,0,0,0,1 

 
 
Table 2. Output coding for four classes 

Class Ouput Code 

Base form (-d-0) 1,0,0,0 

Third person singular (-z-0) 0,1,0,0 

Regular past (-d-0) 0,0,1,0 

Irregular past (-d-1) 0,0,0,1 
 
 
Table 3. Output coding for three classes 

Class Ouput Code 

Present (-d-0) (-z-0) 1,0,0 

Regular past (-d-0) 0,1,0 

Irregular past (-d-1) 0,0,1 

 

 

5.2 ARCHITECTURE OF THE NETWORKS. 

5.2.1 ARCHITECTURE OF THE BACK PROPAGATION NETWORK. 

 In order to find the best architecture for the back propagation network that 

would carry the supervised learning classification task, different configurations 

were tested. First, a multi-layered network with one hidden layer was built. It had 

433 input units in the input layer, 200 hidden units in the hidden layer, and the 

output units in the output layer varied according to the classes: 3, 4 or 8. 
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MacWhinney and Leinbach (1991) used a similar architecture, with two hidden 

layers and 200 units in each of them. 

 This network was built using the Neural Network toolbox of Matlab. This 

toolbox is a package of built-in functions and applications used for modeling 

complex nonlinear systems. It can be started by typing ‘nnstart’ on the command 

window in the workspace of Matlab. A new window opens in which we have options 

for the task we want to accomplish. Once the task has been selected, in the case 

of pattern recognition, the input and output datasets for training have to be 

uploaded. In the case of clustering, only the input dataset for training has to be 

uploaded. Next, the input is divided into training, validation and testing set. The 

percentages for each set can be changed directly here. Then, the amount of 

hidden neurons in the hidden layer is defined. When using this toolbox from 

‘nnstart’, it is not possible to add more hidden layers. Nonetheless, this can be 

done manually. Finally, the network can be trained and plots related to the 

efficiency of the network are created.  

The results for this network were below the expectations for each of the 

classification tasks (Pinker and Prince, 1988; Westermann, 2000). For the eight 

class classification task, this first network was able to train correctly but had an 8% 

of classification error when it was tested with the regular test set. For the three 

class classification task and the four class classification task, the network 

performed perfectly in training and testing. 
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Figure 2. Representation of the architecture of the back propagation network 

with one hidden layer. 

 Considering that the performance of the network is expected to be 100% in 

training and regular forms testing, a second hidden layer was added in an attempt 

to improve the classification potential of this network. 

 MacWhinney and Leinbach (1991) implemented a two-hidden layer back 

propagation network with 200 hidden units in each hidden layer. Considering that 

his model was built more than 20 years ago using a different simulator (PlaNet, 

which was not available online), the decision was made to start with less units in 

the hidden layers. The first tests were done using 25 units in each hidden layer 

achieving results below the expectations in both training and testing. The amount 

of units was doubled, 50 units in each hidden layer, and that produced the 

expected results. 

 This pattern recognition network was initialized using the function 

‘patternnet’. In this case, the following was typed into the command window: 

Net=patternnet([50 50]); 

 By typing this, a pattern recognition net is initialized. The numbers inside the 

square brackets define the amount of hidden units and the number of hidden 

layers. In this case, this network has 50 hidden units and two hidden layers. Then, 

the input and output are uploaded using the function ‘dlmread’, which imports data 
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from text into a matrix. Next, the network was trained using the function ‘train’, as 

follows: 

Net=train(net, input’,output’); 

 This produces a window similar to the one in the toolbox in which the plots 

can be visualized. 

 

Figure 3. Representation of the architecture of the back propagation network 

with two hidden layers.  

The codes to run the four simulations related to the back propagation 

network are in Appendix 7. 

 

5.2.2 ARCHITECTURE OF THE SELF-ORGANIZING MAP (SOM) NETWORK.  

 A SOM comprises a competitive layer, similar to the one presented in 

section 4.1.5.1. This type of network can classify multidimensional vectors based 

on the number of neurons in the competitive layer (Trappenberg, 2010). The output 

of this network is an approximate two dimensional topology of the classes present 

in the data set. According to the Mathworks webpage, the SOM network has “a 

preference (but not a guarantee) of assigning the same number of instances to 

each class” (Mathworks, 2013). 
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Figure 4. The Architecture of a SOM network.  

The code to run the SOM network is in Appendix 8. 

5.3 THE EXPERIMENTS. 

 The experiments in this section are related to the back-propagation network 

and not to the SOM network. The reason for this is that the SOM network cannot 

be tested on the same parameters as a back propagation network (Gurney, 1997; 

Haykin, 1999). SOMs are networks that group data based on their similarity and, 

as such, they can give an idea on how the different verb forms are grouped but 

these results cannot be compared with expected output and therefore may not 

represent the distribution of inputs. Nonetheless, plots related to the SOM network 

are provided to visualize the clustering it achieved.  

 

5.3.1 FIRST EXPERIMENT: TRAINING OF THE NETWORK. 

 The training of the three different back propagation networks is the first 

experiment. The networks have to be able to correctly classify the verb forms given 

in training. A 100% of accuracy is a must according to Pinker and Prince (1988). 

The network stops training once generalization stops improving based on the 

validation checks performed with the validation set or if a certain threshold is 

reached (Gurney, 1997; Haykin, 1999). The fact that the network has stopped 

training and reduced the distance between the expected output and the produced 

output does not entail that, first, it can classify correctly the training, validation and 

testing set, and, second, that it will generalize well to new inputs. Therefore, the 
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confusion plot produced once training has stopped is a visualization of the 

accuracy of the network. 

 

 

Figure 5. Example of a confusion plot.   

 

5.3.2 SECOND EXPERIMENT: U-SHAPED LEARNING 

 ANNs have to be able to replicate the experimental data in order to be of 

any interest as a psychology modeling tool. The classification task can be 

accomplished by a Python, a computer language, program in which the 

programmer explicitly states the rule for regular past in English. This would 

certainly serve as an argument for innateness and symbolic rules but it would 

completely defeat the purpose of connectionist models. Therefore, connectionist 

models have to replicate the u-shaped learning discussed in section 4.2. The 
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training state plot produced after the network has stopped training can serve as a 

measure of the learning curve of the network. This plot shows how the error, the 

difference between the desired output and the actual output, is reduced along a 

gradient. In some instances the error can increase as in the case of 

overregularization. 

 

5.3.3 THIRD EXPERIMENT: GENERALIZATION OF NEW INPUT. 

 Pinker and Prince (1988) criticized Rumelhart’s and McClelland’s model 

(1986) because it was not able to generalize instances of regular and irregular 

verbs that were not introduced as input for training. They state that a model of past 

tense acquisition has to be able to at least generalize the regular verbs as regular 

verbs. Therefore, after the training of the network stopped, regular and irregular 

past tense forms were introduced as input to run some extra tests on the 

classification potential of the network.  

 

5.3.4 FOURTH EXPERIMENT: GENERATIVE SIMPLIFIED MODEL.  

 The task performed by MacWhinney’s and Leinbach’s network (1991) 

cannot be compared, in terms of difficulty, to the task performed here. They 

codified phonemes and expected their network to produce different forms based on 

the base form. The network presented above classified codified words into classes. 

These are two completely different tasks with a different degree of difficulty. 

Therefore, a fourth experiment was set up.  In this experiment, only base forms 

were presented to the network. The goal was to produce as output a binary code 

that stated if the verb used as input would have a regular past tense form [1,0] or 

an irregular past tense form [0,1]. To test the generalization potential of this 

network, two extra tests were implemented. First, a dataset composed of regular 

base forms was provided and the network was expected to produce [1,0] as output 
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for each base form. Second, a set of pseudo words from the Prasada and Pinker 

corpus (1993) was presented as input to the network. This corpus was composed 

of pseudo base forms, both regular and irregular, and the goal was for the network 

to produce the correct output depending on the input.  

1308 base forms with a regular past tense form and 148 base forms with an 

irregular past tense form were used as input for training. For the regular past tense 

form test, 336 base forms were used as input. For the pseudo words test, 60 

pseudo words were used as input. 

This is a back propagation network with five hidden layers and 200 hidden 

units in each layer. 

 This experiment is conceptually similar to the one devised by MacWhinney 

and Leinbach. Nonetheless, it is important to keep in mind that the network studied 

in this dissertation is not a generative model that produces aural output or provides 

the past tense form in a graphic manner. This is a simplified model that provides a 

theoretical approach to language acquisition. 
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6. RESULTS. 

 In this section the results of each experiment are presented. They are 

presented following the order of the experiments stated above.  

 

6.1 RESULTS OF THE FIRST EXPERIMENT: TRAINING OF THE NETWORK. 

 As stated on the previous section, the confusion plot presents itself as a 

good manner to measure the effectiveness of training based on percentages.  

Therefore, for each classification task, the confusion plot and its results are 

presented. 

 

6.1.1 EIGHT CLASS CLASSIFICATION TASK. 

 Figure 18 presents the confusion plot for the eight class classification task 

after training finished. 
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Figure 1. Confusion plot for eight class classification.  

In this plot, the green percentage represents the percentage of correct 

classifications and the red percentage the percentage of incorrect classifications. 

Because there are eight classes, the confusion matrices are crowded and not all 

the numbers are easily perceived. Nonetheless, what is relevant about this plot is 

the blue percentage presented at the lower right corner of each confusion matrix. 
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In this particular plot, it can be seen that in the training, validation and testing of 

this network, the classification was a 100% correct.  

 According to Pinker and Price (1988), these results are a prerequisite to 

even consider that a connectionist model can be an accurate model of language 

acquisition. 

 

6.1.2 FOUR CLASS CLASSIFICATION TASK. 

 Figure 19 presents the confusion plot for the four class classification task 

after training finished. 

 

Figure 2. Confusion plot for four class classification. 
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 In this particular plot, all the percentages and amount of instances correctly 

and incorrectly classified can be easily seen. As an overall consideration, the 

network classified all of the inputs correctly during training. Although there is one 

instance which was misclassified, this does not affect the overall percentage of the 

network.   

6.1.3 THREE CLASS CLASSIFICATION TASK. 

 Figure 20 presents the confusion plot for the three class classification task 

after training finished. 

 

 

Figure 3. Confusion plot for three class classification. 
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 As in the case of four class classification, only one instance was 

misclassified but this did not affect the overall score of this network, which was a 

100% of correct classifications. If it had been the case that the number of 

misclassifications were larger, and therefore relevant, it would have been 

interesting to see at which stage the misclassification occurred and between which 

classes. In both cases, both misclassifications occurred at the training stage and 

both of them were classified as present when they should have been classified as 

regular past. 

 In conclusion, the three types of classification complied with the prerequisite 

imposed by Pinker and Prince (1988) that stated that as a first stage, the network 

had to classify all of the inputs correctly. 

 

6.2 RESULTS OF THE SECOND EXPERIMENT: U-SHAPED LEARNING. 

 In this section the training state plots and their results for each classification 

task are presented. 

6.2.1 EIGHT CLASS CLASSIFICATION TASK. 

 Figure 21 presents the training state plot for the eight class classification 

task after training had stopped. 
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Figure 4. Training state plot for the eight class classification task. 

 There are two graphs in this figure. The first one shows how the error 

decreased along the gradient and the second one shows the validation checks, 

which check if any new improvements can be done to the training and when to stop 

training. For the purposes of U-shaped learning discussion, the first graph is very 

relevant. It shows how the error decreases or increases as training goes by. Ideally, 

the error should only decrease but, as the connection weights are shifting to find 

the best possible configuration, error may increase. In the graph we can see that 

the error began at roughly 100 and by the 210th epoch, it has decreased to roughly 

10-6. To reach that point the error decreased and increased in small steps until 

there was no new improvement to make. This shows that at an n epoch, the 

network was doing better than at an n+1 epoch, showing that mistakes can be 

done although at a previous stage that mistake was non-existent. 
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6.2.2 FOUR CLASS CLASSIFICATION TASK. 

 Figure 22 presents the training state plot for the four class classification task 

after training had stopped. 

 

Figure 5. Training state plot for the four class classification task. 

In this graph, the error is decreased in the same manner as described 

above, this means that to reach the lowest error possible, the connection weights 

had to be rearranged to different values and this made the error decrease and 

increase at different epochs. This resembles the stages at which children go 

through to acquire past tense as seen in section 4.2. In this case the error started 

at 100 and it was decreased to roughly 10-2 at the 61st epoch. For the four class 

classification task, the training stopped because there were six validation checks, 

which means that the error increased repeatedly instead of decreasing. 
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6.2.3 THREE CLASS CLASSIFICATION TASK. 

 Figure 23 presents the training state plot for the three class classification 

task after training had stopped. 

 

Figure 6. Training state plot for the three class classification task. 

 The three class classification task performs in a manner similar to the four 

class classification task. The error was decreased from 100 to roughly 10-3 at the 

65th epoch. Also, the training was stopped because there were six validation 

checks, showing that the error was increasing repeatedly instead of decreasing.  

 All in all, depending on the amount of classes to be classified, the error 

decreases reaching different values. What is common to all networks is the fact 

that on the way to reaching the lowest possible error by shifting connections 

weights, the error increases and decreases at different epochs regardless of the 

epoch in which the training is. This means that it can be the case that at time 1 the 

network performs better than at time 2 or 3. 
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6.3 THIRD EXPERIMENT: GENERALIZATION OF NEW INPUT. 

 As stated in section 4.2, Pinker and Prince (1988) and Prasada and Pinker 

(1993) consider that there are two tests that connectionist models have to pass 

after training. The first one is to be able to recognize new input as regular or 

irregular forms. The second one is see their behaviour regarding pseudo words. 

The third experiment is related to the former and the fourth experiment to the latter. 

Therefore, in this section the results related to the generalization of new input are 

presented. 

 In order to test the new input, the function ‘train’ is used as follows: 

Sim(net, testinput) 

 Where ‘net’ stands for the trained network and ‘testinput’ for the new input. 

The results of that simulation are compared to the output expected for the new 

input. Before doing that, the results are normalized by subtracting an amount and 

then being rounded with the ‘ceil’ function to the closest integer, number that can 

be expressed without a fractional component. The reason behind this is that the 

produced output matrix is conformed of elements which are not integers. By doing 

this, the highest element is the only element that becomes relevant for the 

comparison.  

After this, a matrix is created as a result. If the elements of the matrix are 

zero, it means that there is no difference between the produced output and the 

expected output and that the new inputs were correctly classified. An if-statement 

is included to transform the elements that are 0 into 1 and the elements that are 1 

into 0. These new elements are summed to produce the amount of correct 

classifications. 
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6.3.1 EIGHT CLASS CLASSIFICATION TASK. 

  In this classification task the amount of regular inputs was 614 and the 

amount of irregular inputs 27. After the new simulation was carried out both regular 

and irregular inputs were classified correctly. These results show that this network 

is able to perfectly generalize to new inputs. 

6.3.2 FOUR CLASS CLASSIFICATION TASK. 

  In this classification task the amount of regular inputs was 478 and the 

amount of irregular inputs 12. As in previous classification task, this network was 

able to correctly classify both regular and irregular inputs.  

6.3.3 THREE CLASS CLASSIFICATION TASK. 

 In this classification task the amount of regular inputs was 478 and the 

amount of irregular inputs 12. As in the previous classification tasks, this network 

was able to correctly classify both regular and irregular inputs. 

 In conclusion, the three networks were able to classify new input, complying 

with the conditions stated by Pinker and Prince (1988). 

 

6.4 FOURTH EXPERIMENT: GENERATIVE SIMPLIFIED MODEL.   

 As stated in in section 6.3.4, the networks above are not generative in the 

sense that they do not produce output as Rumelhart’s and McClelland’s (1986) and 

MacWhinney’s and Leinbach’s (1991) networks did. However, the back 

propagation network can be used to produce a very simplified version of the 

previous models. Furthermore, with this kind of network pseudo words could be 

tested as well. 

 In this experiment, the tests performed after training are related to the 

production of regular past tense form from new inputs and the correct production of 
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regular or irregular past tense forms from a corpus of pseudo words. Ideally, this 

network would have to be able to produce the correct matrix depending if the input 

would have a regular past tense form [1,0] or an irregular paste tense form [0,1]. 

Then, for the new inputs, all of them regular base forms, the network should 

produce the regular past tense matrix. Finally, the pseudo words should receive an 

output according to their resemblance to regular base forms or irregular base 

forms. 

 As stated on section 6.3.4, the initial training input was composed of 1456 

base forms, 148 of them have an irregular past tense form and 1308 of them have 

a regular past tense form. The first network was composed of 200 hidden units and 

2 hidden layers. The training results were quite disastrous for irregular past tense: 

0% of correct outputs. Increasing the number of hidden units and layers only 

improved the percentage of correct outputs related to regular past tense but not the 

percentage of correct outputs related to irregular past tense. Considering that the 

amount of base forms that have an irregular past tense form was 10% of the total 

input dataset, there is one possible cause for the results the network was 

producing: the amount of irregulars is too small. To solve this problem, more input 

had to be supplied to the network. Considering that the amount of irregular forms 

was small compared to the regular forms, MacWhinney and Leinbach (1991) used 

a procedure in which the most frequent verbs were presented repeatedly during 

training. Therefore, the decision was made to increase the number of base forms 

with an irregular past tense form. The procedure was to copy the 148 irregular 

base forms two times, increasing the presence of irregular base forms to 444. After 

doing this, the results for irregular base forms increased considerably.  

6.4.1 TRAINING OF THE NETWORK. 

 The task of knowing the past tense form based on the base form did not 

have the same results as the classification tasks. Figure 24 presents the confusion 

plot for this network after training stopped. 
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Figure 7. Confusion plot for the present_past network. 

 As we can see on this figure, the network had an overall performance of 

95.5%, being the highest percentage of correct instances for base forms with 

regular past tense (98.1%). The base forms with an irregular past tense were given 

the correct output more than 90% of the time. These results are below the 

expectations set by Pinker and Prince (1988) discussed in past sections. 

6.4.2 GENERALIZATION OF NEW INPUT. 

 Out of the 336 regular inputs, 32 were produced with incorrect output. This 

is to be expected considering that at training the network was not able to produce 
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the expected output for all the inputs. These results as well are below the 

expectations set by Pinker and Prince (1988). 

6.4.3 PSEUDO WORDS TEST. 

 Out of the 60 pseudo words, 27 were produced with incorrect output. This 

means that almost 50% of outputs differed with the expected outputs. 17 of the 

pseudo words with incorrect output resembled irregular base forms and 10 

resembled regular base forms. According to Westermann (2000), these results are 

below the human subject performance. 

 

6.5 THE SOM SIMULATION. 

 As stated on section 5.2.2, SOM networks are perfect for clustering data 

based on their similarities. These networks learn in an unsupervised manner, 

meaning that there is no expected output. The following figures show how the input 

for the eight class classification task clustered  

 

Figure 8. SOM neighbour weight distances for the eight class input. 
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 The figure above shows the connections between neighbouring neurons. 

The grey blue patches are the neurons and the red lines the connections to their 

neighboring neurons. The color of each connection represents how close the 

neuron’s weight is to its neighbors. Red is the strongest positive connection, blue, 

the strongest negative connection and black, no connection at all.  

 

Figure 9. Sample hits for the eight class input. 

 This figure shows the amount of inputs that were clustered in each neuron.   

 Unfortunately, from the clustering of the inputs, there is no way to 

differentiate between discrete classes as in the case of the back propagation 

network. Especially, because the clustering can be done in different manners 

(Haykin, 1999, Trappenberg, 2010). It might be the case that the SOM network 

focused on the stems of the words to cluster them or in the prefixes or affixes. 

What is positive about these networks is the fact that different inputs, in this case, 

words that may or may not have related features, can be grouped together without 

an explicit rule. 
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7. DISCUSSION 

 In this section, the results presented in section 6. will be discussed in detail, 

focusing on the implications such results have for connectionist models, innatism 

and language acquisition. 

7.1 TRAINING OF THE NETWORKS. 

Regarding the back propagation classification models, the training of the 

network was successful in the sense that they were able to classify the training 

inputs correctly. The amount of classes involved in the task did not posit any 

trouble to the successful training of each network. The only improvement that could 

be stated is that the amount of time needed to train each network was proportional 

to the amount of classes but this is not relevant, especially because the amount of 

time needed to train the networks was less than 20 seconds. 

This suggests something interesting. Classification of forms might not be a 

demanding task and, therefore, the difficulty of it does not increase as the amount 

of classes increases.    

These results show that the ability to classify verb forms into different 

classes can be easily acquired by simple back propagation networks. 

 

7.2 U-SHAPED LEARNING. 

The training of the networks does not show a smooth and linear reduction of 

the error in order to achieve the expected output. The error increases and 

decreases as epochs go by and the weights are shifted in order to find the best 

possible configuration. If we are to consider U-shaped learning as presented in 

section 4.2, the networks are not able to produce this curve of learning because 

there should have been no error at all at first, then, the error should have increased 

sharply to then sharply decrease. According to Westermann (2000), the inability to 
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produce u-shaped learning as described above is a proof that previous 

connectionist models failed to acquire the English past tense as children do. 

Therefore, that would mean that the back propagation networks used in this 

research failed. Nonetheless, when MacWhinney and Leinbach (1991) addressed 

the critiques made by Pinker and Prince (1988), they noted that there is no 

experimental evidence to state that U-shaped learning affects all the verbs in the 

same manner at the same time (MacWhinney, 1974; Kuczaj, 1977); Derwing, 

1979; Derwing and Baker, 1979). Marcus et al. (1992) concluded after using the 

data from three different corpora that there is little evidence for across-the-board U-

shaped learning in past tense acquisition. Alternatively, it is the case that different 

verbs have different U-shaped learning curves. Some of them have a strong u-

shaped learning, other a weaker version and others none at all.  

The evidence above can serve as an explanation why the error increases 

and decreases in training. As different verbs have different learning curves, the 

weights are increased and decreased at different rates producing errors as new 

verbs are in the process of being learnt.     

This evidence, which was not considered by critiques to connectionist 

models, also serves as a proof that the back propagation networks are able to 

perform similarly as human subjects. 

. 

7.3 GENERALIZATION TO NEW INPUT. 

 The fact that the network was successful at the training process does not 

mean that it has learnt correctly. It may be the case that the network memorized 

the training dataset. The manner to test this is by presenting new input to the 

network. The inputs that were presented to test the generalization potential of the 

network were one set of infrequent regulars and one set of infrequent irregulars.  
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 The three back propagation networks generalized correctly the two datasets. 

There were no misclassifications and, as in the same case with training, the 

amount of classes did not increase the difficulty of the task at all. Westermann 

(2000) suggests that it is misleading to test using irregular verbs because they are 

not predictable at all. The fact that the three networks are able to classify irregulars 

correctly further suggests that classification is not a very demanding task. This 

works as an argument for the implementation of the last experiments, whose 

results are discussed in 7.4. 

 Although the ability to classify irregulars cannot be accounted for because of 

their unpredictable and idiosyncratic nature, the correct classification of regulars is 

to be expected. The three back propagations networks discussed here are able to 

produce such classification for all the regulars without a problem.  

 In conclusion, the three networks were able to perform perfectly regardless 

of the amount of verb forms even in tests in which error may have been expected. 

Compared to previous results with generative connectionist models, these results 

suggest that classification is a less demanding and easier task than production of 

language. The experiments with the generative simplified model which uses the 

same learning algorithm as the back propagation networks of the classification task 

can shed light on this matter.    

 

7.4 GENERATIVE SIMPLIFIED MODEL. 

The last back propagation network received as input base forms that had a 

regular past tense form and base forms what had an irregular past tense form. As 

stated in section 6.3.4, this is a very simplified version of the generative models 

devised by Rumelhart and McClelland (1986) and MacWhinney and Leinbach 

(1991). Also, the amount of base forms with irregular past tense was increased as 

stated in section 6.4, in order to provide the network with enough inputs. 
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7.4.1 TRAINING OF THE GENERATIVE SIMPLIFIED MODEL. 

After training stopped, almost a 100% of the regulars and 90% of the 

irregulars were produced correctly. These results are similar to the ones reached 

by MacWhinney and Leinbach. Unfortunately, Westermann (2000) following 

Pinker’s and Prince’s critique (1988), considers that the results reached by 

MacWhinney and Leinbach and the fact that they could not account for the 

traditional view of u-shaped learning ‘do not make it a realistic model of child past 

tense acquisition’(Westermann, 2000:98).  

This network was trained with different possible configurations in an attempt 

to improve the training results and reached a 100% of correct outputs for both 

types of base forms but these efforts resulted fruitless being the best possible 

results the ones being discussed here. Therefore, according to the critiques 

against connectionist models of language acquisition, the generative simplified 

model is not able to completely model English past tense acquisition in the training 

stage. 

 

7.4.2 U-SHAPED LEARNING IN THE GENERATIVE SIMPLIFIED MODEL. 

Regarding u-shaped learning, as it was done on the results section, the 

training state plot of the network provides us with a graphic means to see how the 

error in performance increased or decreased as training occurred.   

The following graph shows the training state for the generative simplified 

model discussed here. 
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Figure 1. Training state of the generative simplified model. 

 The learning curve in this graph shows a dramatic reduction of the error of 

the network on the first epochs of training. Then the error increases to decrease 

again. If this had been the only curve, then this would have complied with the 

traditional perspective of u-shaped learning for past tense acquisition. 

Nonetheless, as MacWhinney and Leinbach (1991) noted, literature on the subject 

of U-shaped learning in English past tense acquisition shows that there is no 

across-the-board U-shaped learning for verbs. That can explain why in the 

generative simplified model there are sharp increases and decreases in error, 

small increases and decreases and stable states during training.  

 According to this, the learning curves found in the generative simplified 

model show a performance similar to human subjects, successfully modeling u-

shaped learning. 
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7.4.3 REGULAR PAST TENSE TEST. 

Following Westermann (2000) considerations, this model was tested against 

regular base forms and pseudo words. There was no irregular test because 

irregular past tense forms cannot be predicted. 

In the regular test, for 90% of the verbs, the outputs were produced 

correctly.  

These results suggest that a generative simplified model is not able to 

emulate human performance thoroughly. At least, in 90% of the cases it will 

produce the output a human subject is expected to produce. It may be that the 

cases in which the produced output differed with the expected outputs are 

instances of verbs that fall on the category of distant regular or irregular verbs. In 

fact, this seems to be the situation. Especially since the regular test was composed 

of the least frequent regular verbs. For example, the vowel elements in the base 

form ‘blind’ are similar to the vowel elements of the base form ‘grind’, which has an 

irregular past tense. Therefore, the network might treat it as an irregular. The same 

can be said about ‘wing’, ‘stink’, ‘sight’ to name a few. Prasada and Pinker (1993) 

note that this is in fact true for human subjects, being the case that novel verbs can 

be treated as irregular verbs based on the global similarity between them.  

It can also be the case that verbs with same spelling but different past tense 

form. This is the case of the verb ‘bind’ that appears first as a base form with an 

irregular past tense form in the training dataset but also as base form in the regular 

test dataset. The same can be said about ‘string’, ‘grind’ to name a few. 

 

7.4.4 PSEUDO WORDS TEST. 

In the pseudo words test the results show there is a tendency for 

overregularization because 17 of the 30 irregular pseudo verbs were treated as 
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regular. Nonetheless, 27 out of 60 forms presented as input were not given the 

expected output. 

Prasada and Pinker (1993) on their study of the generalization of irregular 

and regular verbs prepared and used the set of pseudo words used in this 

simulation. They found varying degrees of responses which depended on the 

similarity the pseudo words had with existing verbs, as discussed in section 4.3.2. 

Furthermore, the responses were not the same for all the subjects. For example, 

for one distant regular pseudo verb there were combinations of regular and 

irregular inflexions such as adding the suffix –ed and also changing a vowel in the 

verb. In the case of distant irregular pseudo verbs, the subjects tended to 

regularize the verbs. These two findings can explain why there were almost 50% of 

wrong outputs and why most of them should have had an irregular past tense form. 

All in all, the generative simplified model is able to comply with the 

experimental data of human subjects for u-shaped learning, regular generalization 

and the inflection of pseudo words. The only problem is that in the training stage it 

should have provided the correct output in all instances of regular and irregular 

verbs. Nonetheless, that problem could be solved with a larger training dataset or 

with a longer span of training, especially because human subjects overregularize 

verbs both in childhood and adulthood (Marcus et al., 1992).  
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8. CONCLUSIONS 

The purpose of this thesis was to study the acquisition of the English past 

tense in order to provide new arguments for the discussion of nature v/s nurture. 

So far, connectionist models have been disregarded because they have not been 

able to mimic human performance entirely as in the case of MacWhinney’s and 

Leinbach’s model or because there were methodological issues and 

inaccurateness when compared to human performance as in the case of 

Rumelhart’s and McClelland’s model (Pinker and Prince, 1988; Prasada and 

Pinker, 1993; Westermann, 2000).  

In order to study the acquisition of the English past tense by connectionist 

models, two ANNs were built. The first one was a back propagation network with 

supervised learning. This meant that the expected output was provided so that the 

network could compare how different was the produced output from the expected 

output to decrease the difference and learn. The second one was a self-organizing 

map with unsupervised learning. This meant that the network learnt from the 

similarities between the input and learnt how to cluster them. 

Unfortunately, the self-organizing map was not designed for the task of 

classification or simplified production. Although, the network was able to cluster the 

input into different classes, these could not be compared to the classes provided 

by the MacWhinney and Leinbach (1991) corpus. As a suggestion, a SOM could 

cluster the initial input and feed it to a back propagation network with the intention 

to test how that kind of network could work. 

The task of classifying according to predefined classes immediately 

excluded the learning potential of the SOM network. Because of that, the 

experiments and the discussion focused on the back propagation network and the 

generative simplified model. This immediately led to the conclusion that a 

supervised network was better suited for the task of classification and simplified 

production for the type of inputs and outputs used in this research. 
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The results of both the classification and generative networks suggest the 

following: classification is an easier task than production. This conclusion is based 

on the easiness with which the classification model was able to pass all tests and 

the difficulties that the generative simplified model had in the training stage and 

regular test to provide the expected outputs. The classification model, regardless 

the amount of classes, was able to pass all tests as the critiques of connectionist 

models required, except for U-shaped learning.  

U-shaped learning as considered traditionally involves a first stage of correct 

usage, followed by a sharp decrease in performance, particularly for irregular 

verbs. Finally, the proper production of both regular and irregular forms is reached. 

Both models did not show this across-the-board U-shaped learning, making them 

not realistic models of English past tense acquisition. This would be true only if the 

traditional perspective of U-shaped learning is taken. As Marcus et al. (1992) 

concluded after an extensive research of English past tense acquisition in children, 

there is no evidence that across-the-board U shaped learning occurs. Rather, it is 

the case that different verbs have different stages of acquisition: some of them 

show a strong version of u-shaped learning, others a weak version and other none 

at all. This evidence suggests that the learning curves showed by both the 

classification and generative model are plausible in human performance. 

Moreover, the problems the generative simplified model had in the regular 

test particularly can be accounted by the nature of the input. Some of the 

infrequent regular verbs used in this test had a frequent irregular counterpart. 

While others were distant regulars, and, as Prasada and Pinker (1993) have 

shown, could be treated as irregular verbs. This could also work the other way 

around: distant irregular verbs could be treated as regular verbs. This was the case 

for several verbs in the pseudo words tests. Consequently, even the generative 

simplified model could serve as model of English past tense acquisition. The only 

problem the network has to overcome is the correct production of expected outputs 

in the training stage. Unfortunately, the amount of base forms with an irregular past 
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tense form was not enough to provide the network with all the examples needed. 

Nonetheless, as noted in previous sections, the performance in training was 98% 

for base forms with a regular past tense form and around 90% for base forms with 

an irregular past tense form. It could be the case for irregulars that they were 

overregularized which is a phenomenon that occurs in both children and adults 

(Marcus et al., 1992).     

 

 This conclusion leaves an open question and room for future research: Can 

it be that classification develops first in the brain in order to produce the correct 

instances? Modularity in the brain has been discussed by Fodor (1983) and the 

evidence of Broca’s and Wernicke’s areas shows that there are specialized areas 

in the brain that deal with linguistic knowledge in different ways.  A simulation can 

be built in which the output of a classification network or a SOM network is given to 

a generative network to produce outputs to test this statement. However, these 

results have to be compared to the performance of human subjects; otherwise, 

they would not represent language acquisition. 

Likewise, custom made algorithms and implementations for this task could 

be made in order to provide a completely realistic network which is provided with 

the same language that children receive and produce vocalizations as output.  

 

8.1 LIMITATIONS OF THIS RESEARCH 

The models studied here provide evidence for the notion that a UG is not 

hard wired into our brains because these models were able to perceive the classes 

and produce the relevant output without the need for rules.  Certainly, this 

statement has to be considered cautiously because of the following reasons. First, 

not all the input children receive is presented to the networks. As Elman (1993) has 

shown, when ANNs are presented with an approximation of the whole range of 
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sentences children are exposed to, their learning potential sharply decreases due 

to memory constraints. 

Second, these models do not produce outputs by means of vocalizations.  

A stronger learning algorithm and more advanced implementations would be 

needed to achieve this task, completely emulating human behavior. For the time 

being, the simplified models presented here provide us with tools to study linguistic 

knowledge theoretically, using ANNs as a psychological tool. 
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B. APPENDIX 2:  
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ate 

awoke 

beat 

became 

bent 

bled 

blew 

bore 

bought 

bound 

broke 

brought 

built 

burst 

came 

cast 

caught 

chose 

clung 

cost 

crept 

cut 

dealt 

drank 

drew 

drove 

dug 

fed 

fell 

felt 

fled 

flew 

flung 

forgave 

forgot 

LIST OF IRREGULAR 

VERBS  

 

fought 

found 

froze 

gave 

got 

grew 

ground 

heard 

held 

hid 

hit 

kept 

knew 

laid 

led 

left 

lent 

let 

lost 

made 

meant 

met 

overcame 

put 

quit 

ran 

rang 

read 

rode 

rose 

said 

sang 

sank 

sat 

saw 

 

 
 
 

sent 
set 
shed 
shone 
shook 

shot 

shut 

slept 

slid 

sold 

sought 

spat 

spent 

split 

spoke 

sprang 

spread 

spun 

stole 

stood 

strode 

strove 

struck 

stuck 

swam 

swept 

swore 

swung 

taught 

thought 

thrust 

told 

took 

tore 

understood 

underwent 

 



91 

 

 

upheld 

upset 

went 

wept 

wet 

withdrew 

woke 

wore 

wound 

wove 

wrote 
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B. APPENDIX 3:  
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G. APPENDIX 7: CODE TO RUN THE BACK PROPAGATION SIMULATIONS. 
 
7.1 Code to run the eight class classification task 
 
input=dlmread('class_8_input.txt'); 
output=dlmread('class_8_ouputoutput.txt'); 
net=patternnet([50 50]); 
net=train(net,input',output'); 
testinput=dlmread('class_8_inputreg_test.txt'); 
testinput=testinput(1:614,1:433); 
y=sim(net,testinput'); 
y=y-0.5; 
y=ceil(y); 
testoutput=dlmread('class_8_outputreg_test.txt'); 
outputmatrix=zeros(614,1); 
for t=1:614 

error_t=abs(y'-testoutput); 
if error_t==0; 

outputmatrix(t)=1; 
else 

outputmatrix(t)=0; 
end 

end 
sum(outputmatrix) 
 
 
testinput_irreg=dlmread('class_8_inputirreg_test.txt'); 
yireg=sim(net,testinput_irreg'); 
yireg=yireg-0.5; 
yireg=ceil(yireg); 
testoutput_irreg=dlmread('class_8_outputirreg_test.txt'); 
outputmatrix_irreg=zeros(27,1); 
for t=1:27 

error_t1=abs(yireg'-testoutput_irreg); 
if error_t1==0; 

outputmatrix_irreg(t)=1; 
else 

outputmatrix_irreg(t)=0; 
end 

end 
sum(outputmatrix_irreg) 
 
 
 
 



151 

 

7.2 Code to run the four class classification task 
 
input=dlmread('class_4_input.txt'); 
output=dlmread('class_4_output.txt'); 
net=patternnet([50 50]); 
net=train(net,input',output'); 
testinput=dlmread('class_4_inputreg_test.txt'); 
testinput=testinput(1:478,1:433); 
y=sim(net,testinput'); 
y=y-0.5; 
y=ceil(y); 
testoutput=dlmread('class_4_outputreg_test.txt'); 
outputmatrix=zeros(478,1); 
for t=1:478 

error_t=abs(y'-testoutput); 
if error_t==0; 

outputmatrix(t)=1; 
else 

outputmatrix(t)=0; 
end 

end 
sum(outputmatrix) 
 
 
testinput_irreg=dlmread('class_4_inputirreg_test.txt'); 
yirreg=sim(net,testinput_irreg'); 
yirreg=yirreg-0.5; 
yirreg=ceil(yirreg); 
testoutput_irreg=dlmread('class_4_outputirreg_test.txt'); 
outputmatrix_irreg=zeros(12,1); 
for t=1:12 

error_t1=abs(yirreg'-testoutput_irreg); 
if error_t1==0; 

outputmatrix_irreg(t)=1; 
else 

outputmatrix_irreg(t)=0; 
end 

end 
sum(outputmatrix_irreg) 
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7.3 Code to run the three class classification task 
 
input=dlmread('class_3_input.txt'); 
output=dlmread('class_3_output.txt'); 
net=patternnet([50 50]); 
net=train(net,input',output'); 
testinput=dlmread('class_3_inputreg_test.txt'); 
testinput=testinput(1:478,1:433); 
y=sim(net,testinput'); 
y=y-0.5; 
y=ceil(y); 
testoutput=dlmread('class_3_outputreg_test.txt'); 
outputmatrix=zeros(478,1); 
for t=1:478 

error_t=abs(y'-testoutput); 
if error_t==0; 

outputmatrix(t)=1; 
else 

outputmatrix(t)=0; 
end 

end 
sum(outputmatrix) 
 
 
testinput_irreg=dlmread('class_3_inputirreg_test.txt'); 
yirreg=sim(net,testinput_irreg'); 
yirreg=yirreg-0.5; 
yirreg=ceil(yirreg); 
testoutput_irreg=dlmread('class_3_outputirreg_test.txt'); 
outputmatrix_irreg=zeros(12,1); 
for t=1:12 

error_t1=abs(yirreg'-testoutput_irreg); 
if error_t1==0; 

outputmatrix_irreg(t)=1; 
else 

outputmatrix_irreg(t)=0; 
end 

end 
sum(outputmatrix_irreg) 
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7.4 Code to run the generative simplified model 
 
input=dlmread('present_input.txt'); 
output=dlmread('past_output.txt'); 
net=patternnet([200 200 200 200 200]); 
net=train(net,input',output'); 
testinput=dlmread('present_inputreg_test.txt'); 
y=sim(net,testinput'); 
y=y-0.5; 
y=ceil(y); 
testoutput=dlmread('past_output_regtest.txt'); 
outputmatrix=zeros(336,1); 
for t=1:336 

error_t=abs(y'-testoutput); 
if error_t==0; 

outputmatrix(t)=1; 
else 

outputmatrix(t)=0; 
end 

end 
sum(outputmatrix) 
 
 
pseudotest_input=dlmread('pseudotest_input.txt'); 
ytest=sim(net,pseudotest_input'); 
ytest=ytest-0.5; 
ytest=ceil(ytest); 
pseudotest_output=dlmread('pseudotest_output.txt'); 
outputmatrix_pseudo=zeros(60,1); 
for t=1:60 

error_t1=abs(ytest'-pseudotest_output); 
if error_t1==0; 

outputmatrix_pseudo(t)=1; 
else 

outputmatrix_pseudo(t)=0; 
end 

end 
sum(outputmatrix_pseudo) 
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H. APPENDIX 8: CODE TO RUN THE SOM NETWORK. 
 
input=dlmread('class_8_input.txt'); 
net=selforgmap([8 8]); 
net=train(net,input); 
 



 


