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�Un día bien, otro mal, no hay mal que por bien no venga,

el que quiere andar ya sabe que llevar la sombra cuesta. �

Armando Tejada Gómez
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Resumen

El objetivo de este trabajo es explorar el comportamiento de los procesos de rami�cación
evolucionando a tiempo y estados continuos, y encontrar representaciones para su trayectoria
y su genealogía.

En el primer capítulo se muestra que un proceso de rami�cación condicionado a no ex-
tinguirse es la única solución fuerte de una ecuación diferencial estocástica conducida por un
movimiento Browniano y una medida puntual de Poisson, más un subordinador que repre-
senta la inmigración, dónde estos procesos son mutuamente independientes. Para esto se usa
el hecho de que es posible obtener la ley del proceso condicionado a partir del proceso original,
a través de su h-transformada, y se da una manera trayectorial de construir la inmigración a
partir de los saltos del proceso.

En el segundo capítulo se encuentra una representación para los procesos de rami�cación
con crecimiento logístico, usando ecuaciones estocásticas. En particular, usando la de�nición
general dada por A. Lambert, se prueba que un proceso logístico es la única solución fuerte de
una ecuación estocástica conducida por un movimiento Browniano y una medida puntual de
Poisson, pero con un drift negativo fruto de la competencia entre individuos. En este capítulo
se encuentra además una ecuación diferencial estocástica asociada con un proceso logístico
condicionado a no extinguirse, suponiendo que éste existe y que puede ser de�nido a través
de una h-transformada. Esta representación muestra que nuevamente el condicionamiento
da origen a un término correspondiente a la inmigración, pero en este caso dependiente de la
población.

Por último, en el tercer capítulo se obtiene una representación de tipo Ray-Knight para
los procesos de rami�cación logísticos, lo que da una descripción de su genealogía continua.
Para esto, se utiliza la construcción de árboles aleatorios continuos asociados con procesos de
Lévy generales dada por J.-F. Le Gall e Y. Le Jan, y una generalización del procedimiento
de �poda� desarrollado por R. Abraham, J.-F. Delmas. Este resultado extiende la repre-
sentación de Ray-Knight para procesos de difusión logísticos dada por V. Le, E. Pardoux y
A. Wakolbinger.
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Abstract

The aim of this Ph.D. thesis is to explore the behaviour of continuous-state population
processes that evolve over continuous time, and to �nd some pathwise and genealogical
representations for such processes.

In the �rst chapter, it is shown that a (sub-)critical continuous-state branching process
conditioned to be never extinct is the unique strong solution to a stochastic di�erential
equation driven by a Brownian motion and a Poisson point measure, plus an independent
subordinator accounting for immigration, and these objects are mutually independent.To
this end, the fact that the law of the conditioned CSBP is obtained from the one of the non
conditioned process by means of an explicit h-transform is used, and an explicit mechanism
to build the immigration term appearing in the conditioned process is given, by randomly
selecting jumps of the original one.

In the second chapter, a representation for logistic branching process is found using
stochastic di�erential equations. In particular, Lambert's general de�nition [36] is used to
characterize them as the unique strong solution of a stochastic di�erential equation driven
by a Brownian motion and a Poisson point measure with a negative drift, resulting from
negative interactions between each pair of individuals in the population. Also, under the
assumption that a logistic branching process conditioned to be never extinct exists and can
be de�ned trough a h-transform, a stochastic di�erential equation associated is found. Such
representation shows again an immigration term, that it is density-dependent in this case.

In the third chapter, a Ray-Knight representation for logistic branching processes is es-
tablished, giving a description of its continuous genealogy. To this end, the construction of
continuum random trees associated with general Lévy processes given by J.-F. Le Gall and
Y. Le Jan and a generalization of the pruning procedure developed by R. Abraham and J.-F.
Delmas are used. The main result presented in this last chapter extends the Ray-Knight
representation for logistic Feller difussion given by V. Le, E. Pardoux and A. Wakolbinger.
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Introduction

The aim of this Ph.D. thesis is to explore the behaviour of continuous-state population
processes that evolve over continuous time. In nature, competition for limited resources
regulates the growth of these populations, and their behaviour varies according to whether
they are isolated or not. Therefore, study their genealogy and possible extinction is an issue
of great interest for various sciences, especially biology (see [29, 37, 16, 39, 7]).

In population biology, the most simple process modeling the dynamics of a population is
the Malthusian process. If Yt ∈ [0,∞) denotes the total number of individuals at time t, then
the Malthusian process satis�es dYt = bYtdt, where b is the mean birth-death balance per
individual and per time unit. The solutions are straightforward exponential functions and
when b > 0, they rapidly go to∞, proving useless for long-term models. Moreover, this model
does not allow populations with positive growth to become extinct. This elementary model
has a random counterpart, called the branching process, where populations may have positive
(expected) growth and become extinct. In their discrete time and discrete state-space form,
branching processes were introduced by Lord Francis Galton and Irénée-Jules Bienaymé in
1873. The so-called Bienaymé-Galton-Watson (BGW) process is a Markov chain, where time
steps are the nonoverlapping generations, with individuals behaving independently from one
another and each giving birth to a (random) number of o�spring (belonging to the next
generation). These (random) o�spring all have the same probability distribution. Here,
the mean growth is geometric, but the process evolves randomly through time, eventually
dying out or tending to ∞, with probability 1. In 1958, M. Jirina [32] de�ned continuous-
state branching processes (CSBP). Later, J. Lamperti [36] showed that they can be obtained
as scaling limits of a sequence of Galton-Watson processes, and established a one-to-one
correspondence between CSBPs and spectrally positive Lévy processes via a random time
change. The de�nition of branching processes in this context was generalized by K. Kawazu
and S. Watanabe [33] to model populations with immigration (CBI).

From an ecological standpoint, the BGW-process shares with the Malthusian process the
shortcoming of being able to go to ∞. In the deterministic case, a celebrated improvement
of the Malthusian process is the logistic process, characterized by the ordinary di�erential
equation dYt = bYtdt − cY 2

t dt, for t > 0, where c > 0. It is an elementary combination of
geometric growth for small population sizes and a quadratic density-dependent regulatory
mechanism. The main advantage of this model is that Yt converges to a �nite limit as t→∞,
namely, b/c (if b > 0) or 0 (if b ≤ 0). On the other hand, this model does not allow the
population to evolve once it has reached its stable state. A natural continuation will then
be for us to replace geometric growth in the logistic equation by random branching (random
growth with geometric mean). Alternatively, this can be seen as improving the branching
process by, loosely speaking, adding a quadratic regulatory term to it (and thus prevent it
from going to ∞). This kind of processes were introduced by R.B. Campbell [14] in the
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Introduction

context of continuous-state and continuous-time processes. In this case, branching processes
with logistic growth (LBPs) were de�ned in a general form by A. Lambert [36] by means
of a Lamperti transformation on Ornstein-Uhlenbeck processes driven by general spectrally
positive Lévy process. The global behavior of the population can be intuitively understood
as the result of standard branching behavior, plus a pairwise competition among individuals,
resulting in an individual death rate increased by an amount that is proportional to the total
instantaneous population descending from the original one.

The study of this kind of population processes has revealed deep connexions between the
stochastic di�erential equations that describe the evolution of such branching populations,
and continuous time processes of a di�erent nature that can be used to code their genealogies.

In the �rst chapter of this work, SDEs are used as a tool to describe the paths of (sub)critic
continuous-state branching processes conditioned to never extinct. CSBPs conditioned to
stay positive were �rst studied in the continuous-state framework by S. Roelly and A. Rouault
[54], who proved that there is a well de�ned probability measure for this case and, under this
measure, a CSBP has the same law as a CBI, where the immigration corresponds to an in-
dependent subordinator (i.e. a Lévy process with no negative jumps). In the particular case
of a (sub)-critical CSBP, it is well known that such conditioned CSBP corresponds to a CBI
with particular immigration mechanisms (see [54]). Thus, using general results and tech-
niques developed in some of the aforementioned works (see [17, 25]), was possible to obtain
such representation in a direct way, by using the fact that the law of the conditioned CSBP
is obtained from the one of the non conditioned process by means of an explicit h-transform.
It is shown that under the law of a (sub-)critical continuous-state branching process condi-
tioned to be never extinct, the process is the unique strong solution to a stochastic di�erential
equation driven by a Brownian motion and two Poisson point measures and these objects
are mutually independent. The relation between the original law and the conditioned law,
together with the spine or immortal particle picture of the conditioned process ([40, 23]),
suggest that one should be able to identify, after a measure change, copies of the original
driving random processes and an independent subordinator accounting for immigration. The
stochastic di�erential equation describes an explicit mechanism to build the immigration
term appearing in the conditioned process, by randomly selecting jumps of the original one.
This work has already been published [24].

In the second chapter some SDE representations for LBP are studied. In particular,
Lambert's de�nition [36] for general logistic branching processes is used to characterize them
as the unique solution of a stochastic di�erential equation.

Also, the LBP conditioned to non extinction is studied. Unlike the CSBP case, the
branching property is not longer true and it is unknown, in general, if there exists such
conditioned process (and if it can be de�ned through an h-transform, as in the CSBP case
-see [48]-). Results in that sense are only known for the logistic Feller di�usion case, thanks
to the renowned work of Cattiaux et. al. [15]. In the general case, the study of this problem
requires the use of spectral theory of jump processes, and will not be addressed in this
dissertation. However, it is still of interest to describe the dynamics of such conditioned
process. Under the assumption that a function h exists that allows one to obtain the law of
the conditioned LBP from the one of the non conditioned process by means of an h-transform,
the same arguments as in the CSBP case can be applied. Some results are obtained, which
shed some light on the pathwise properties of this kind of processes.

2



In the third chapter of this dissertation, a Ray-Knight representation for LBP is estab-
lished. At �rst sight, the continuous-state branching process with logistic growth does not
lend itself to a Ray-Knight representation, because the competition between individuals de-
stroys the �branching property�, i.e. the independence in the reproduction. The lack of
independence between the individuals of the populations modeled by such processes prevents
the application of standard tools of excursion theory and of continuous random trees to
suitably de�ne the genealogy of such processes, and new points of view must be developed.
The use of excursion theory to describe the genealogy of the process start with Kiyosi Itô
[30, 31]. He introduced the Poisson point process of excursions of a Markov process from
a regular point, inspired by the ideas of P. Lévy [44] in the case of linear Brownian mo-
tion. Itô excursion theory has many important applications, since it is a fundamental tool
in the analysis of Lévy processes and for studying the asymptotic properties of large random
trees, which are deeply connected with branching processes. Around 1990, Davis Aldous
constructed a continuum random tree (CRT) as the tree coded by a normalized Brownian
excursion [5, 6]. This relationship between exploration and mass excursion had appeared
earlier in the classical second Ray-Knight theorem ([52], [34], see [53]) as a connection be-
tween Brownian excursions (described by Itô's excursion measure) and excursions of Feller's
branching di�usion. In informal terms, this theorem says that: The time which a (suitably
stopped) re�ected Brownian motion spends near level t (and which is formally captured by its
local time at t), viewed as a process in t, is a Feller branching di�usion. So, the excursions of
re�ected Brownian motion can be understood as exploration paths of the trees of descendants
of the ancestors of the population at time t = 0, with the local time at height t measuring
the population size at time t.

This same idea was generalized by T. Duquesne and J.-F. Le Gall [43] for general Lévy
processes. In their work, given a Lévy process X with characteristic exponent ψ, they de�ned
a suitable height process H and proved that the process of local times of H at a �xed time is
a CSBP. The de�nition of the corresponding excursions, their heights and their local times
at each level, which are needed in order to state a Ray-Knight theorem in that setting, is
much more involved than in the di�usion case, with no simple (say, �nite dimensional or
SDE-like) representation of a Markov process coding the genealogy. Their result therefore
required to use of the so-called exploration process, introduced by J.-F. Le Gall and Y. Le
Jan [43], which codes the continuum random trees embedded in a spectrally positive Lévy
processes X, or Lévy-CRT. Extensions of the Ray-Knight theorem and related genealogical
descriptions have since then been obtained for more complex models with branching type
behavior, such as super processes and branching processes with immigration, [2, 1, 9], and
have been used in the study of several properties of these processes.

Later, V. Le, E. Pardoux and A. Wakolbinger ([42], see also [49] ) give another general-
ization of Ray-Knight result, for the Feller branching di�usion with logistic growth. As in
the classical Ray-Knight representation, the excursions of such process are understood as the
exploration paths of the trees of descendants of the ancestors at time t = 0, and the local time
of the process at height s measures the population size at time t. Their key idea to de�ne a
genealogy is to think of the individuals as being arranged �from left to right� (as given by the
exploration time), and decree that interaction between them takes place through �pairwise
�ghts� that are always won by the individual �to the left�, hence lethal for the individual �to
the right�. Deaths following pairwise �ghts lead in the exploration process of the genealogical
forest to a downward drift, proportional to the amount of mass (or local time units) seen to
the left of the individual encountered at each exploration time. In this way, excursions which
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Introduction

come later in the exploration time tend to be smaller (trees to the right are �under attack
from those to the left�).

The main purpose of the this last chapter is to extend the previous Ray-Knight repre-
sentations and genealogical descriptions to LBP associated with general spectrally positive
Lévy process with (sub)critical mechanism. To this end, a family of generalized marked ex-
ploration processes and correspondent pruned local time processes are constructed, using a
Poisson Lévy snake in two dimensions, in a more general way that was done by Abraham
and Delmas to prune a Lévy-CRT at constant rate [3]. Through a �x point argument, a lim-
iting progressively marked exploration process (ρ,m∗) and an associated local times process
(Lat (m

∗) : a ≥ 0, t ≥ 0) are obtained. This new local time process correspond to the local
times of the original Lévy-CRT, coded by the exploration process, erased at a rate depending
on the population �on the left�, at each instant and height. While this idea was inspired by
the work of Pardoux and Wakolbinger [42, 50] for the Feller di�usion with logistic growth, the
general case presents other challenges, since the height process in this case is not Markovian.
Furthermore, the result obtained is not only in law but also allows to obtain the desired
representation from a Lévy tree coded by a exploration process in a pathwise manner. The
�nite-dimensional laws of the associated pruned local times read at increase times of the local
time at level 0 are identi�ed as the �nite-dimensional laws of a LBP. For this identi�cation,
a discretization of this process is used, whose law coincides with the law of a stochastic �ow
studied by Dawson-Li [18] pruned piecewise in a path-dependent way. This last chapter is
a joint work with Professor Julien Berestycki, as a result of two stays in the Laboratoire of
Probabilités et Modèles Aléatoires of Université Pierre et Marie Curie (Paris VI).
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Chapter 1

On SDE associated with CSBP

conditioned to never be extinct

This chapter is largely based on the paper On SDE associated with continuous-state branch-
ing processes conditioned to never be extinct , with J. Fontbona, published in the volume
17�49 of ELECTRONIC COMMUNICATIONS in PROBABILITY in 2012 [24].

1.1 Introduction and preliminaries

Stochastic di�erential equations (SDE) representing continuous-state branching processes
(CSBP) or CSBP with immigration (CBI) have attracted increasing attention in the last
years, as powerful tools for studying pathwise and distributional properties of these processes
as well as some scaling limits, see e.g. Dawson and Li [17, 18], Lambert [38], Fu and Li [25]
and Caballero et al. [13]. In this chapter, we are interested in SDE representations for (sub)-
critical CSBP conditioned to never be extinct. It is well known that such conditioned CSBP
correspond to CBIs with particular immigration mechanisms (see [54]). Thus, it is possible
to obtain SDE representations for them by using general results and techniques developed in
some of the aforementioned works, see [25, 17]. However, our goal is to directly obtain such
representation by rather using the fact that the law of the conditioned CSBP is obtained
from the one of the non conditioned process, by means of an explicit h-transform. This
relation between the two laws, together with the �spine� or immortal particle picture of the
conditioned process [54, 23], suggest that one should be able to identify, after measure change,
copies of the original driving random processes and an independent subordinator accounting
for immigration. Our proof will show how to obtain these processes by using Girsanov
theorem and an enlargement of the probability space in order to select by a suitable marking
procedure those jumps of the original (non conditioned) process that will constitute (or will
not) the immigrants. The enlargement of the probability space and the marking procedure
are both inspired in a construction of Lambert [38] on stable Lévy processes. They are also
reminiscent of the sized biased tree representation of measure changes for Galton-Watson
trees (Lyons et al. [47]) or for branching Brownian motions (see e.g. Kyprianou [35] and
Englänger and Kyprianou [22]), but we do not aim at fully developing those ideas in the
present framework. In a related direction, using the look-down particle representation of
CSBP of Donnelly and Kurtz [20], Hénard obtains in a recently posted article [28] the same
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Chapter 1. On SDE associated with CSBP conditioned to never be extinct

SDE description of the conditioned CSBP. Our proof of the SDE representation contains less
information about the process, but in turn is much simpler. The reader is also referred to
[19, 41, 46] for further recent developments on representations of CSBP and their conditioned
versions.

We start by recalling some de�nitions and results about CSBP and Lévy processes, fol-
lowing Kyprianou's book [35, Ch. 1,2 and 10]. Then, we remind their relationship through
the Lamperti transform, following Kyprianou [35, Ch. 10] and Caballero et al. [13].

1.1.1 Continuous-state branching processes

A continuous-state branching process (CSBP) with probability laws given the initial state
{Px : x ≥ 0} is a càdlàg [0,∞)-valued strong Markov processes Y = (Yt : t ≥ 0) satisfying
the branching property. That is, for any t ≥ 0 and y1, y2 ∈ [0,∞), Yt under Py1+y2 has the
same law as the independent sum Y

(1)
t + Y

(2)
t , where the distribution of Y (i)

t is equal to that
of Yt under Pyi for i = 1, 2. Usually, Yt represents the population at time t descending from
an initial population x. The law of Y is completely characterized by its Laplace transform

Ex(e−θYt) = e−xut(θ), ∀x > 0, t ≥ 0,

where u is a di�erentiable function in t satisfying
∂ut
∂t

(θ) + ψ(ut(θ)) = 0

u0(θ) = θ,
(1.1)

and ψ is called the branching mechanism of Y , which has the form

ψ(λ) = −q − αλ+
1

2
σ2λ2 +

∫
(0,∞)

(e−λx − 1 + λx1{x<1})Π(dx) λ ≥ 0, (1.2)

for some q ≥ 0, α ∈ R, σ ≥ 0 and Π a measure supported in (0,∞) such that∫
(0,∞)

(1 ∧ x2)Π(dx) < ∞.

In particular, ψ is the Laplace exponent of a spectrally positive Lévy process, i.e. one with no
negative jumps. Since clearly, Ex(Yt) = xe−ψ

′(0+)t, de�ning ρ := ψ′(0+) one has the following
classi�cation of CSBPs :

� subcritical if ρ > 0,

� critical if ρ = 0, and

� supercritical if ρ < 0,

according to whether the process will, on average, decrease, remain constant or increase.
In the following, we will assume that Y is conservative, i.e. ∀ t > 0, Px(Yt <∞) = 1. By

Grey [26], this is true if and only if ∫
0+

dξ

|ψ(ξ)|
=∞,

6



1.1. Introduction and preliminaries

so it is su�cient to asume

ψ(0) = 0 and |ψ′(0+)| <∞.

From now on, we also assume that Z is a (sub-)critical CSBP with branching mechanism ψ
which satis�es

ψ(∞) =∞ and
∫ ∞ dξ

ψ(ξ)
<∞. (1.3)

Under these previous conditions, the process does not explode and there is almost surely
extinction in �nite time.

1.1.2 Lévy Processes and their connection with continuous-state

branching processes

A Lévy process X = (Xt : t ≥ 0) is a process which possesses the following properties:

i). The paths of X are P-a.s. right continuous with left limits.

ii). P(X0 = 0) = 1.

iii). For 0 ≤ s ≤ t, Xt −Xs is equal in distribution to Xt−s. (Stationary Increments)

iv). For 0 ≤ s ≤ t, Xt −Xs is independent of {Xu : u ≤ s}. (Independent Increments)

A Lévy process X with characteristic exponent ψ can be identi�cated as the independent
sum of three processes:

Theorem (Lévy-Itô descomposition). Given any a ∈ R, σ ≥ 0 and a measure Π concentrated
on R\{0}, satisfying ∫

R
(1 ∧ x2)Π(dx) <∞,

there exists a probability space on which three independent Lévy processes exist, X(1), X(2) y
X(3), where X(1) is a linear Brownian motion with drift given by

X
(1)
t = σBt + αt;

X(2) is a compound Poisson process given by

X
(2)
t =

Nt∑
i=1

ξi,

where (Nt : t ≥ 0) is Poisson process with rate Π(R\(−1, 1)), and (ξi : i ≥ 1) are i.i.d. r.v.
with distribution Π(dx)/Π(R\(−1, 1)) concentrated on {x : |x| ≥ 1}; and X(3) is a square
integrable martingale with an almost surely countable number of jumps on each �nite time
interval which are of magnitude less than unity and with characteristic exponent given by

ψ(3)(θ) =

∫ 1

0

(1− e−θx − θx)Π(dx).

The measure Π is called the Lévy (characteristic) measure.
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Chapter 1. On SDE associated with CSBP conditioned to never be extinct

Then, given X a spectrally positive Lévy process with initial position x ≥ 0, using the
Lévy-Itô descomposition one can write

Xt = x+ αt+ σBX
t +

∫ t

0

∫ ∞
1

rNX(ds, dr) +

∫ t

0

∫ 1

0

rÑX(ds, dr), (1.4)

where α is a real number, σ ≥ 0, BX is a un Brownian motion and NX is an independent
Poisson measure on [0,∞)×(0,∞] with intensity measure dt×Π(dr), with ÑX the associated
compensated measure, satisfying∫ t

0

∫ 1

0

rÑX(ds, dr) := lim
ε→0

[∫ t

0

∫ 1

ε

NX(ds, dr)−
∫ t

0

∫ 1

ε

dsΠ(dr)

]

1.1.3 Lamperti representation of continuous-state branching pro-

cesses

In [40], Lamperti established a one-to-one correspondence between CSBPs and spectrally
positive Lévy processes via a random time change. The correspondence at the level of laws
was also proved by Silverstein [55] by analytic methods, and a proof in the conservative case
by discrete (probabilistic) approximation was given in [27]. We refer the reader to [13] for
self-contained modern proofs of this result in the general case. Given a Lévy process X as
above, Lamperti's construction states that the process

Y := (Yt = Xθt∧T0 : t ≥ 0),

where T0 = inf{t > 0 : Xt = 0} and θt = inf
{
s > 0 :

∫ s
0

du
Xu

> t
}
, is a continuous-state

branching process with branching mechanism ψ and initial value Y0 = x. Conversely, given
Y = (Yt : t ≥ 0) a CSBP with branching mechanism ψ, such that Y0 = x > 0, we have that

X := (Xt = Yϕt∧T : t ≥ 0),

where T = inf{t > 0 : Yt = 0} and ϕt = inf
{
s > 0 :

∫ s
0
Yudu > t

}
, is a Lévy process with

no negative jumps, stopped at T0 and satisfying ψ(λ) = log IE(e−λX1), with initial position
X0 = x. Relying on this relationship, Caballero et al. [13, Prop 4] provide a pathwise
description of the dynamics of a CSBP: given a version of the process (Yt, t ≥ 0) on some
probability space, there exist in an enlarged probability space a standard Brownian motion
BY and an independent Poisson measure NY on [0,∞) × (0,∞) × (0,∞) with intensity
measure dt× dν × Π(dr) such that

Yt = x+ α

∫ t

0

Ysds+ σ

∫ t

0

√
YsdB

Y
s +

∫ t

0

∫ Ys−

0

∫ ∞
1

rNY (ds, dν, dr)

+

∫ t

0

∫ Ys−

0

∫ 1

0

rÑY (ds, dν, dr),

(1.5)

where ÑY is the compensated Poisson measure associated with NY .
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1.2 CSBPs conditioned to be never extinct as solutions

of SDEs

1.2.1 CSBP conditioned to be never extinct

Branching processes conditioned to stay positive were �rst studied in the continuous-state
framework by Roelly and Rouault [54], who proved that for Z satisfying the above conditions,

P↑x(A) := lim
s↑∞

Px(A|T > t+ s), A ∈ σ(Ys : s ≤ t) (1.6)

is a well de�ned probability measure which satis�es

P↑x(A) = E(1Ae
ρtYt
x

).

In particular, P↑x(T < ∞) = 0, and (eρtYt : t ≥ 0) is a martingale under Px. Note that P↑x
is the law of the so-called Q-process (for an in-depth look at these processes, we refer the
reader to [38], [48] and references therein). They also proved that (Y,P↑) has the same law
as a CBI with branching mechanism ψ and immigration mechanism φ(θ) = ψ′(θ)− ρ, θ ≥ 0.
This means that (Y,P↑) is a càdlàg [0,∞)-valued process, such that for all x, t > 0 and θ ≥ 0

E↑x(e−θYt) = exp{−xut(θ)−
∫ t

0

φ(ut−s(θ))ds},

where ut(θ) is the unique solution to (1.1). Note also that φ is the Laplace exponent of a
subordinator. We call subordinators to Lévy processes whose paths are almost surely non-
decreasing. For θ ≥ 0,

φ(θ) = dθ +

∫
(0,∞)

(1− e−θx)Λ(dx),

where Λ is a measure concentrated on (0,∞), satisfying
∫

(0,∞)
(1 ∧ x)Λ(dx) <∞.

1.3 Main Result

The work of Roelly and Rouault is the key for the study of CSBP conditioned on non-
extinction, but we seek a more explicit description for the paths of Y under P↑. To this end,
we shall prove that (Y,P↑) has a SDE representation, which agrees with the interpretation
of a CSBP conditioned on non-extinction as a CBI, but also gives us a pathwise description
for the conditioned process. In particular, this result extends Lambert's results for the stable
case [38, Theorem 5.2] (see below for details) as well as equation (1.5).

Theorem 1.1. Under P↑, the process Y is the unique strong solution of the following stochas-
tic di�erential equation:

Yt = x+ α

∫ t

0

Zsds+ σ

∫ t

0

√
YsdB

↑
s +

∫ t

0

∫ Ys−

0

∫ ∞
1

rN↑(ds, dν, dr)

+

∫ t

0

∫ Ys−

0

∫ 1

0

rÑ↑(ds, dν, dr) +

∫ t

0

∫ ∞
0

rN?(ds, dr) + σ2t,

(1.7)
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Chapter 1. On SDE associated with CSBP conditioned to never be extinct

where (B↑t : t ≥ 0) is a Brownian motion, N↑ and N? are Poisson measures on [0,∞)×(0,∞)2

and [0,∞)× (0,∞) with intensities measures ds× dν ×Π(dr) and ds× rΠ(dr), respectively,
and these objects are mutually independent (as usual, Ñ↑ stands for the compensated measure
associated with N↑). Moreover, given a solution to (1.5) in some �ltered probability space
(Ω,F , (Ft),P), the processes B↑, N↑ and N? can be explicitly constructed by a change of
measure in an enlargement of (Ω,F , (Ft)) by an independent i.i.d. sequence of uniform
random variables in [0, 1].

This result implies that we can recover Y conditioned on non-extinction as the solution of
a SDE driven by a copy of BY , a copy of NY , and a Poisson random measure with intensity
ds × rΠ(dr), plus a drift. (Notice that taking out the last two terms, corresponding to a
subordinator with drift, one again obtains equation (1.5).)

1.4 Relations to previous results

1.4.1 Stable processes

As pointed out before, the result above is based in the work of Lambert, and we can recover
his result using equation (1.7). We consider the case when X is a spectrally positive α-
stable process, 1 < α ≤ 2, that is a Lévy process with Laplace exponent ψ proportional to
λ→ λα. In particular, ρ = 0 (critical case). In this case, Lambert showed that the associated
Q-process is the solution of a certain SDE, which enlightens the immigration mechanism.

Theorem 1.2 (Theorem 5.2 in [38]). The branching process with branching mechanism ψ is
the unique solution in law to the following SDE

dYt = Y
1/α
t− − dXt, (1.8)

where X is a spectrally positive α-stable Lévy process with Laplace exponent ψ. Moreover,
the branching process conditioned to be never extinct is solution to

dYt = Yt−dXt + dσt, (1.9)

where σ is an (α− 1)-stable subordinator with Laplace exponent ψ′, independent of X.

We show that Lambert's SDE representation of stable branching processes can be seen
as a special case of Theorem 1.1.

Let X be a spectrally positive α-stable process with characteristic exponent ψ and char-
acteristic measure Π(dr) = kr−(α+1)dr, where k is some positive constant and 1 < α ≤ 2.
Let Y be the branching process with branching mechanism ψ. Thanks to Theorem 1.1 we
know that, under P↑, Y satis�es the following stochastic di�erential equation:

Yt = x+

∫ t

0

∫ Ys−

0

∫ ∞
1

rN↑(ds, dν, dr) +

∫ t

0

∫ Ys−

0

∫ 1

0

rÑ↑(ds, dν, dr)

+

∫ t

0

∫ ∞
0

rN?(ds, dr),

(1.10)

where N↑ is a Poisson random measure with intensity ds × dν × Π(dr) and N? is an inde-
pendent Poisson random measure with intensity ds× rΠ(dr).
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Now, we de�ne

θn :=
r↑n1{ν↑n≤Ytn−}

Y
1/α
tn−

,

where ((tn, ν
↑
n, r
↑
n) : n ∈ N) are the atoms of N↑. We claim that, under P↑, ((tn, θn) : n ∈ N)

are atoms of a Poisson random measure N ′ with intensity ds × Π(du). Indeed, for any
bounded non-negative predictable process H, and any positive bounded function f vanishing
at zero,

Mt :=
∑
tn≤t

Htnf(θn)−
∫ t

0

Hsds

∫ ∞
0

∫ ∞
0

f
(
r/Y 1/α

s

)
1{ν≤Ys}Π(dr)dν

is a martingale. If we change variables, the particular form of Π implies that

Mt =
∑
tn≤t

Htnf(θn)−
∫ t

0

Hsds

∫ ∞
0

f(u)Π(du).

Taking expectations, our claim follows thanks to Lemma 1.4 below. Since∑
tn≤t

r↑n1{ν↑n≤Ytn−}
=
∑
tn≤t

Y
1/α
tn− θn,

we can rewrite (1.10) as

Yt = x+

∫ t

0

∫ ∞
1

Y
1/α
s− uN ′(ds, du) +

∫ t

0

∫ 1

0

Y
1/α
s− uÑ ′(ds, du) +

∫ t

0

∫ ∞
0

rN?(ds, dr).

De�ning

Xt :=

∫ t

0

∫ ∞
1

uN ′(ds, du) +

∫ t

0

∫ 1

0

uÑ ′(ds, du),

by the Lévy-Ito decomposition it is easy to see that X is an α-stable Lévy process with
characteristic exponent ψ. Similarly,

St :=

∫ t

0

∫ ∞
0

rN?(ds, dr)

is seen to be an (α − 1)-stable subordinator. Independence of X and S is granted by con-
struction, because the two processes do not have simultaneous jumps. Thus, we have

dYt = Y
1/α
t dXt + dSt,

which corresponds to equation (1.9) in Lambert's result.

1.4.2 CSBP �ows as SDE solutions

A family of CSBP processes Y = (Yt(a) : t ≥ 0, a ≥ 0) allowing the initial population
size Y0(a) = a to vary, can be constructed simultaneously as a two parameter process or
stochastic �ow satisfying the branching property. This was done by Bertoin and Le-Gall [10]
by using families of subordinators. In [11, 12] they later used Poisson measure driven SDE
to formulate such type of �ows in related contexts, including equations close to (1.5). In the
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Chapter 1. On SDE associated with CSBP conditioned to never be extinct

same line, Dawson and Li [18] proved the existence of strong solutions for stochastic �ows
of continuous-state branching processes with immigration, as SDE families driven by white
noise processes and Poisson random measures with joint regularity properties.

In particular, suppose σ ≥ 0 and a real constants and v → γ(v) is a non-negative and
non-decreasing continuous function on [0,∞). Let W (ds, du) be a white noise process on
(0,∞)2 based on the Lebesgue measure ds × du. Let N(ds, dν, dr) be a Poisson random
measure on (0,∞)3 with intensity ds × dν × Π(dr) independent of W (ds, du). It is shown
in [18] that for any v ≥ 0 there is a pathwise unique non-negative solution of the stochastic
equation

Zt(v) = v + σ

∫ t

0

∫ Zs−(v)

0

W (ds, du) +

∫ t

0

[γ(v)− αZs(v)] ds+

∫ t

0

∫ Zs−(v)

0

∫ ∞
0

rÑ(ds, dν, dr),

and each solution Z(v) = (Zt(v) : t ≥ 0) is a continuous-state branching process with
immigration (CBI-process), so it is natural to call the two-parameter process (Zt(v) : t ≥
0, v ≥ 0) a �ow of CBI-processes. Moreover, the family of two-parameter processes (Yt(v) :
t ≥ s, v ≥ 0) has a version with the following properties:

(i) for each v ≥ 0, t→ Zt(v) is a càdlàg process on [0,∞) and solves (3.67);

(ii) for each t ≥ 0, v → Zt(v) is a non-negative and non-decreasing càdlàg process on
[0,∞).

The stochastic equation above is close to equation (1.7), the main di�erence being the im-
migration behavior which in their case only covers linear drifts. For simplicity reasons our
result is presented in the case of a Brownian motion and Poisson measure driven SDE, but
our arguments can be extended to the white-noise and Poisson measure driven stochastic
�ow considered (in absence of immigration) in [18].

1.5 Proof of the main theorem

This result was inspired for the work of Lambert [38]. In his work, a suitable marking
of Poisson point processes was used to �rstly construct a stable Lévy process, conditioned
to stay positive, out of the realization of the unconditioned one. After time-changing the
author takes advantage of the scaling property of α-stable processes to derive an SDE for the
branching process. Our proof is inspired in his marking argument but in turn it is carried
out directly in the time scale of the CSBP. For the proof, we will need the following version
of Girsanov's theorem (c.f. Theorem 37 in Chapter III.8 of [51]):

Theorem 1.3. Let (Ω,F , (Ft),P) be a �ltered probability space, and let M be a P-local mar-
tingale with M0 = 0. Let P? be another probability measure absolutely continuous with respect
to P, and let Dt = E(dP

?

dP

∣∣
Ft

). Assume that 〈M,D〉 exists for P. Then At =
∫ t

0
1

Ds−
d〈M,D〉s

exists a.s. for the probability P?, and Mt − At is a P?-local martingale.

The following well-known characterization of Poisson point processes will also be useful:

Lemma 1.4. Let (Ω,F , (Ft),P) be a �ltered probability space, (S,S, η) an arbitrary σ-�nite
measure space, and {(tn, δn) ∈ R+ × S} a countable family of random variables such that
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1.5. Proof of the main theorem

{tn ≤ t, δn ∈ A} ∈ Ft for all n ∈ N, t ≥ 0 and A ∈ S and, moreover,

E

[ ∑
n:tn≤t

Ftng(δn)

]
= E

 t∫
0

Fsds

∫
S

g(x)m(dx)

 (1.11)

for any nonnegative predictable process Fs and any nonnegative measurable function g : S →
R. Then, (tn, δn)n∈N are the atoms of a Poisson random measure N on R+×S with intensity
dt×m(dx).

Proof. Writing

e

∑
tn≤t

f(δn))

=
∑
n:tn≤t

[ ∏
k:tk<tn

ef(δk)

]
(ef(δn) − 1)

=
∑
n:tn≤t

[
e

∑
k:tk<tn

f(δk)
]

(ef(δn) − 1),

we get from (1.11) that

E
[
e

∑
n:tn≤t

f(δn)
]

=

t∫
0

E
[
e

∑
k:tk<s

f(δk)
]
ds

∫
S

(ef(x) − 1)m(dx),

since Fs :=
∏
tk<s

ef(δk) is a predictable process. Solving this di�erential equation yields

E
[
e

∑
tn≤t

f(δn)
]

= exp

−t∫
S

(1− ef(x))m(dx)

 ,

and the statement follows by Campbell's formula (see for example Theorem 2.7 in [35]).
Proof of Theorem 1.1. We will prove that under the laws P↑x the process Y in equation
(1.5) is a weak solution of (1.7). Pathwise uniqueness, which classically implies also strong
existence, will then be shown as in [25].

We write B = BY and N = NY for the processes in (1.5), and we denote by (Ft) the
�ltration

Ft := σ(Bs, (rn, νn)1(tn≤s);n ∈ N, s ≤ t),

where ((tn, rn, νn) ∈ [0,∞)× (0,∞)× (0,∞))n∈N are the atoms of the Poisson point process
N . We will use the absolute continuity of P↑ w.r.t. P with Radon-Nikodym densityDt = eρtYt

x
,

applying Theorem 1.3 to the process (Bt : t ≥ 0) and, indirectly, to the Poisson random
measure N and its compensated measure.

Dealing with the di�usion part is standard since d〈D,B〉t = eρt

x
σ
√
Ytdt, so that

B↑t := Bt −
∫ t

0

d〈D,B〉s
Ds

= Bt − σ
∫ t

0

Y
− 1

2
s ds

is a Brownian motion under P↑ by Theorem 1.3.
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Chapter 1. On SDE associated with CSBP conditioned to never be extinct

We next study the way the Poisson random measure N is a�ected by the change of
probability, which is the main part of the proof. Enlarging the probability space and �ltration
if needed, we may and shall assume that there is a sequence (un)n≥1 of independent random
variables uniformly distributed on [0, 1], independent of B and N and such that un1{tn≤t} is
Ft-measurable. De�ne random variables (∆n, δn) ∈ [0,∞)2 × [0,∞) by

(∆n, δn) :=


((0, 0), rn1{νn≤Zt−n }

) if un >
Dtn−

Dtn

=
Ytn−
Ytn

and Ytn > 0,

((rn, νn), 0) if un ≤
Dtn−

Dtn

and Ytn > 0,

((0, 0), 0) if Ytn = 0.

Let fR,ε be a nonnegative measurable function such that for �xed R ≥ 0 and 0 < ε ≤ 1, and
all (r, ν, s),

� fR,ε((r, ν), s) = 0 when ν ≥ R,

� fR,ε((r, ν), s) = 0 when r < ε, and

� fR,ε((0, 0), 0) = 0.

For any non-negative predictable process F we then have (using the third property of fR,ε to
pass to the second line)

∑
tn≤t

FtnfR,ε(∆n, δn)

=
∑
tn≤t

FtnfR,ε

(
(0, 0), rn1{νn≤Zt−n }

)
1{

un>
Ytn−
Ytn

} +
∑
tn≤t

FtnfR,ε((rn, νn), 0)1{
un≤

Ytn−
Ytn

}
=
∑
tn≤t

FtnfR,ε((0, 0), rn)1{νn≤Ytn−}1
{
un>

Ytn−
Ytn

} +
∑
tn≤t

FtnfR,ε((rn, νn), 0)1{
un≤

Ytn−
Ytn

}.

Therefore, since 1− Ytn−
Ytn

=
rn1{νn≤Ytn−}

Ztn
, by the compensation formula the process

St :=
∑
tn≤t

FtnfR,ε(∆n, δn)−
∫ t

0

dsFs

∫ ∞
0

∫ ∞
0

fR,ε((0, 0), r)
r1{ν≤Ys}

Ys + r1{ν≤Ys}
xΠ(dr)dν

−
∫ t

0

dsFs

∫ ∞
0

∫ ∞
0

fR,ε((r, ν), 0)
Ys

Ys + r1{ν≤Ys}
Π(dr)dν
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is a pure jump martingale under P. The quadratic covariation of S and D is thus given by

[S,D]t =
∑
tn≤t

(Stn − Stn−)

(
eρtn

x
Ytn −

eρtn−

x
Ytn−

)
=
∑
tn≤t

FtnfR,ε(∆n, δn)
eρtn

x
rn1{νn≤Ytn−}

=
∑
tn≤t

FtnfR,ε((0, 0), rn)
eρtn

x
rn1{νn≤Ytn−}1

{
un>

Ytn−
Ytn

}

+
∑
tn≤t

FtnfR,ε((rn, νn), 0)
eρtn

x
rn1{νn≤Ytn−}1

{
un≤

Ytn−
Ytn

}.

By the compensation formula, the conditional quadratic covariation of S and D is then given
by

〈D,S〉t =

∫ t

0

ds
eρs

x
Fs

∫ ∞
0

∫ ∞
0

fR,ε((0, 0), r)
r1{ν≤Ys}

Ys + r1{ν≤Ys}
rΠ(dr)dν

+

∫ t

0

ds
eρs

x
Fs

∫ ∞
0

∫ ∞
0

fR,ε((r, ν), 0)
Ys

Ys + r1{ν≤Ys}
r1{ν≤Ys}Π(dr)dν.

Using Theorem 1.3 we see that the process

S↑t := St −
∫ t

0

∫ ∞
0

∫ ∞
0

FsfR,ε((0, 0), r)
r1{ν≤Ys}

Ys + r1{ν≤Ys}

r

Ys
Π(dr)dνds

−
∫ t

0

∫ ∞
0

∫ ∞
0

FsfR,ε((r, ν), 0)
Ys

Ys + r1{ν≤Ys}

r1{ν≤Ys}
Ys

Π(dr)dνds

is a (Ft)-martingale under P↑. By de�nition of S and noting that
∫∞

0
r
Ys
1{ν≤Ys}dν = r, we

get

S↑t =
∑
tn≤t

FtnfR,ε(∆n, δn)−
∫ t

0

dsFs

∫ ∞
0

∫ ∞
0

[
fR,ε((0, 0), r)

r

Ys
1{ν≤Ys} + fR,ε((r, ν), 0)

]
Π(dr)dν

=
∑
tn≤t

FtnfR,ε(∆n, δn)−
∫ t

0

dsFs

[∫ ∞
0

fR,ε((0, 0), r)rΠ(dr) +

∫ ∞
0

∫ ∞
0

fR,ε((r, ν), 0)

]
dΠ(dr)ν.

Since E↑(S↑t ) = E↑(S↑0) = 0, this implies

E↑
[∑
tn≤t

FtnfR,ε(∆n, δn)

]
= E↑

[∫ t

0

dsFs

∫ ∞
0

fR,ε((0, 0), r)rΠ(dr)

]
+ E↑

[∫ t

0

dsFs

∫ ∞
0

∫ ∞
0

fR,ε((r, ν), 0)Π(dr)dν

]
.

By standard arguments, this formula is also true for any nonnegative function f such that
f((0, 0), 0) = 0. Using Lemma 1.4 we then see that (tn,∆n)n≥0 and (tn, δn)n≥0 are under P↑
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the atoms of two Poisson point processes N↑ and N?, with intensity measures dt×dν×Π(dr)
and dt×rΠ(dr) on [0,∞)×(0,∞)×(0,∞) and [0,∞)×(0,∞), respectively. By construction,
N↑ and N? are independent because they never jump simultaneously. Now set

Jt :=

∫ t

0

∫ Zs−

0

∫ ∞
1

rN(ds, dν, dr) =
∑
tn≤t

rn1{νn≤Ytn−}1{rn≥1}.

From the de�nition of (∆n, δn)n∈N, and writing ∆
(i)
n for the i−th coordinate of ∆n, i = 1, 2,

we have

Jt =
∑
tn≤t

∆(1)
n 1{∆(2)

n ≤Ytn−}
1{∆(1)

n ≥1} +
∑
tn≤t

δn1{δn≥1}

=

∫ t

0

∫ Ys−

0

∫ ∞
1

rN↑(ds, dν, dr) +

∫ t

0

∫ ∞
1

rN?(ds, dr).

Finally, we observe that for given 0 < ε < 1, the process

M̃
(ε)
t :=

∫ t

0

∫ Ys−

0

∫ 1

ε

rN(ds, dν, dr)−
∫ t

0

∫ Ys−

0

∫ 1

ε

rΠ(dr)dνds

=
∑
tn≤t

rn1{νn≤Ytn−}1{ε<rn<1} −
∫ t

0

∫ Ys

0

∫ 1

ε

rΠ(dr)dνds

is a P-martingale which converges in the L2(P) sense when ε→ 0 to M̃t :=
∫ t

0

∫ Ys−
0

∫ 1

0
rÑ(ds, dν, dr).

In terms of (∆n) and (δn), we can write

M̃ (ε) =

(∑
tn≤t

∆(1)
n 1{∆(2)

n ≤Ytn−}
1{ε<∆

(1)
n <1} −

∫ t

0

∫ Ys

0

∫ 1

ε

rΠ(dr)dνds

)
+
∑
tn≤t

δn1{ε<δn<1}

=

(∫ t

0

∫ Ys−

0

∫ 1

ε

rN↑(ds, dν, dr)−
∫ t

0

∫ Ys

0

∫ 1

ε

rΠ(dr)dνds

)
+

∫ t

0

∫ 1

ε

rN?(ds, dr).

(1.12)

Thanks to [35, Theorem 2.10], the L2(P↑) limit as ε → 0 of the P↑-martingale given by the
expression in the third line of (1.12) exists, and equals the P↑-martingale∫ t

0

∫ Ys−

0

∫ 1

0

rÑ↑(ds, dν, dr),

where Ñ↑ is the compensated measure associated with N↑. Also, as
∫∞

0
(1 ∧ x2)Π(dx) <∞,

by [35, Theorem 2.9] the last term of (1.12) converges P↑-a.s. as ε→ 0, and so we have

M̃t =

∫ t

0

∫ Ys−

0

∫ 1

0

rÑ↑(ds, dν, dr) +

∫ t

0

∫ 1

0

rN?(ds, dr) P↑ − a.s.

Bringing all parts together, we have shown that Y satis�es under P↑ the desired SDE, except
for the independence of the processes B↑ and (N↑, N?), which we establish in what follows.
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1.5. Proof of the main theorem

Let ζ ∈ R, λk, γk ∈ R+, m ∈ N and k ∈ {1, ...,m}, and consider (Wk)
m
k=1 and (Vk)

m
k=1 dis-

joint subsets of (0,∞)×(0,∞) and (0,∞) respectively, such that
∫
Wk

Π(dr)dν and
∫
VK
rΠ(dr)

are �nite. Set
F (x, y1, .., ym, z1, .., zm) := eζxe−

∑m
k=1 λkyke−

∑m
k=1 γkzk .

Applying Itô's formula to the semimartingale

Xt =
(
B↑t , N

↑((0, t]×W1), .., N↑((0, t]×Wm), N?((0, t]× V1), .., N?((0, t]× Vm)
)
,

we obtain for 0 ≤ s ≤ t that

F (Xt)− F (Xs) =

∫ t

s

ζF (Xu)dB
↑
u +

ζ2

2

∫ t

s

F (Xu)du+
∑
s<tn≤t

F (Xtn)− F (Xtn−)

+
∑
s<tn≤t

m∑
j=1

[
λjF (Xtn−)1{∆n∈Wj} + γjF (Xtn−)1{δn∈Vj}

]
−

m∑
j=1

∫ t

s

∫
Wj

λjF (Xu−)N↑(du, dν, dr)−
m∑
j=1

∫ t

s

∫
Vj

γjF (Xu−)N?(du, dr)

=

∫ t

s

ζF (Xu)dB
↑
u +

ζ2

2

∫ t

s

F (Xu)du+
∑
s<tn≤t

F (Xt−n
)f(∆n, δn),

(1.13)
where the second and third lines canceled out by de�nition of the integrals with respect to
N? and N↑, and where the notation

f((r, ν), s) := e
−

m∑
k=1

λk1{(r,ν)∈Wk}−
m∑
k=1

λk1{s∈Vk} − 1

was used in the last term of the fourth line. Using the fact that f((0, 0), 0) = 0 and previous
arguments, we can show that the process∑
tn≤t

F (Xtn−)f(∆n, δn)−
∫ t

0

F (Xu)du

[∫ ∞
0

∫ ∞
0

f((r, ν), 0)Π(dr)dν +

∫ ∞
0

f((0, 0), r)rΠ(dr)

]
is a P↑-martingale with respect to Ft. Since the sum of the two integrals in square braquets
is equal to

m∑
k=1

[∫
Wk

(e−λk − 1)Π(dr)dν +

∫
Vk

(e−γk − 1)rΠ(dr)

]
,

we deduce from the latter and (1.13) that

F (Xt)− F (Xs)−
∫ t

s

F (Xu)du

(
ζ2

2
+

m∑
k=1

[∫
Wk

(e−λk − 1)Π(dr)dν +

∫
Vk

(e−γk − 1)rΠ(dr)

])

is a martingale increment. Multiplying it by F ((Xs))
−11A for A ∈ Fs, taking expectation,

and using then Gronwall's lemma, we conclude that

E↑ [F (Xt −Xs)1A] = P↑(A)e
(t−s)

[
ζ2

2
+

m∑
k=1

∫
Wk

(e−λk−1)Π(dr)dν+
m∑
k=1

∫
Vk

(e−γk−1)rΠ(dr)

]
.
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Chapter 1. On SDE associated with CSBP conditioned to never be extinct

This means that under P↑, Xt is a multidimensional Lévy process with respect to Ft with
independent coordinates and implies the independence of B↑ and (N↑, N?).

We now establish the pathwise uniqueness of solutions following the ideas of Fu and Li
[25]. Let B↑, N↑ and N? be independent processes as before. Let (Y

(1)
t ) and (Y

(2)
t ) be two

solutions of (1.7) with deterministic initial values, and set ζt := Y
(1)
t − Y (2)

t for t ≥ 0. Then,
we have

ζt = ζ0 +

∫ t

0

α
(
Y (1)
s − Y (2)

s

)
ds+

∫ t

0

σ

(√
Y

(1)
s −

√
Y

(2)
s

)
dB↑s

+

∫ t

0

∫
U0

r
(
1{ν<Y (1)

s }
− 1{ν<Y (2)

s }

)
N↑(ds, dν, dr)

+

∫ t

0

∫
U1

r
(
1{ν<Y (1)

s }
− 1{ν<Y (2)

s }

)
Ñ↑(ds, dν, dr),

(1.14)

where U0 = [0,∞)× [1,∞) and U1 = [0,∞)× (0, 1).
The idea is to construct now a suitable sequence of C2 functions {φk} that approximate

the function |x|, and to prove then that E [φk(ζt)] = 0 for each t ≥ 0 with help of Itô's
formula.

First, we establish some notation that will be needed in the sequel:

� Let us de�ne the constant K := |α|+M , where
∫∞

1
rΠ(dr) = M <∞. Observe that

|αx|+
∫ ∞

0

∫ ∞
1

r1{ν<x}Π(dr)dν = Kx.

� Set L(x) := (σ2 + I)(x), where I =
∫ 1

0
r2Π(dr). Then, the function L satis�es

vσ2x+

∫ ∞
0

∫ 1

0

r21{ν<x}dνΠ(dr) = σ2x+ x

∫ 1

0

r2Π(dr) = L(x).

� Let β(z) := (|α| + M)z. This function satis�es
∫

0+
β(z)−1dz = ∞ and, if we suppose

without losing generality that y ≤ x, we have

|α(x− y)|+
∫ ∞

0

∫ ∞
1

r1{y<ν<x}Π(dr)dν = β(x− y). (1.15)

� We de�ne the function %(x) := [σ2 + I]
√
x, where I =

∫ 1

0
r2Π(dr). Note that, if y ≤ x,

then

σ2(
√
x−√y)2 +

∫ ∞
0

∫ 1

0

r21{y<ν<x}Π(dr)dν = σ2(
√
x−√y)2 + (x− y)I

≤ %(x− y).

(1.16)

Now, �x a sequence (ak)k≥1 such that ak = ak−1e
−k[σ2+I]2 and a0 = 1. Note that ak → 0+

decreasingly and
∫ ak−1

ak
%(z)−2dz = k for k ≥ 1. Let z 7→ ψk(z) be a non-negative continuous

function on R which has support in (ak, ak−1), satis�es 0 ≤ ψk(z) ≤ 2k−1%(z)−2 for ak <
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1.5. Proof of the main theorem

z < ak−1, and
∫ ak−1

ak
ψk(z)dz = 1. For each k ≥ 1, we de�ne the non-negative and twice

continuously di�erentiable function

φk(x) =

∫ |x|
0

dy

∫ y

0

ψk(z)dz, x ∈ R.

The sequence (φk) has the following properties:

i). φk(x)→ |x| non-decreasingly as k →∞, since for all y ≥ 0,
∫ y

0
ψk(z)dz ↗ 1;

ii). 0 ≤ φ′k(x) ≤ 1 for x ≥ 0 and −1 ≤ φ′k(x) ≤ 0 for x ≤ 0;

iii). φ′′(x) ≥ 0 for x ∈ R, and φ′′k(x− y)[σ
√
x− σ√y]2 → 0 (k →∞), uniformly in x, y;

iv).

0 ≤
∫
U1

Dl(r,ν;x,y)φk(x− y)Π(dr)dν ≤ 1

k[σ2 + I]

∫ 1

0

r2Π(dr)→k→∞ 0,

uniformly in x, y ≥ 0, where l(r, ν; , x, y) = r
[
1{ν<x} − 1{ν<y}

]
.

Property iii.) is true by (3.84). Indeed,

φ′′k(x− y)[σ
√
x− σ√y]2 ≤ ψk(|x− y|)%(|x− y|)2 ≤ 2/k.

Also, by Taylor's expansion,

Dhφk(ς) := φk(ς + h)− φk(ς)− φ′k(ς)h

= h2

∫ 1

0

φ′′k(ς + th)(1− t)dt

= h2

∫ 1

0

ψk(|ς + th|)(1− t)dt;

and the monotonicity of z 7→ %(z) implies

0 ≤ Dhφk(ς) ≤ 2k−1h2

∫ 1

0

%(|ς + th|)−2(1− t)dt ≤ k−1h2%(|ς|)−2

for ςh ≥ 0. Since x 7→ r1{ν<x} is non-decreasing, for x, y ≥ 0 we can use the previous
inequalities and (3.84) to prove property iv.).

We now deduce the pathwise uniqueness for equation (1.7). Let τm = inf{t ≥ 0 : Y
(1)
t ≥

m or Y (2)
t ≥ m}, m ≥ 1. By (1.14) and Itô's formula,

φk(ζt∧τm) = φk(ζ0) +

∫ t∧τm

0

φ′k(ζs)α
(
Y (1)
s − Y (2)

s

)
ds+

1

2

∫ t∧τm

0

σ2φ′′k(ζs)

[√
Y

(1)
s −

√
Y

(2)
s

]2

ds

+

∫ t∧τm

0

σφ′k(ζs)

(√
Y

(1)
s −

√
Y

(2)
s

)
dB↑s

+

∫ t∧τm

0

∫
U0

φ′k(ζs−)l(Y (1)
s , Y (2)

s )N↑(ds, dν, dr)

+

∫ t∧τm

0

∫
U1

φ′k(ζs−)l(Y (1)
s , Y (2)

s )Ñ↑(ds, dν, dr)

+
∑
s≤t

[φk(ζs)− φk(ζs−)− φ′k(ζs−)∆ζs] ,
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Chapter 1. On SDE associated with CSBP conditioned to never be extinct

and so

φk(ζt∧τm) = φk(ζ0) +

∫ t∧τm

0

φ′k(ζs)α
(
Y (1)
s − Y (2)

s

)
ds

+
1

2

∫ t∧τm

0

φ′′k(ζs)σ
2

[√
Y

(1)
s −

√
Y

(2)
s

]2

ds

+

∫ t∧τm

0

ds

∫
U0

4
l(r,ν;Y

(1)
s− ,Y

(2)
s−
φk(ζs−)Π(dr)dν

+

∫ t∧τm

0

ds

∫
U1

D
l(r,ν;Y

(1)
s− ,Y

(2)
s− )

φk(ζs−)Π(dr)dν + M̌t∧τm ,

(1.17)

where 4hf(z) := f(z + h)− f(z) and (M̌t∧τm) is (Ft) - martingale. By property (ii), we see
that

φ′k(ζs−)a(Y (1)
s − Y (2)

s ) ≤ |a||Y (1)
s − Y (2)

s |.

Observe also that∫
U0

4
l(r,ν;Y

(1)
s− ,Y

(2)
s− )

φk(ζs−))Π(dr)dν ≤
∫
U0

r|1{ν<Y (1)
s }
− 1{ν<Y (2)

s }
|Π(dr)dν.

By (3.83), for any s ≤ τm the sum of the right hand sides of the above two inequalities is not
larger than β(|ζs−|). Due to properties (iii) and (iv) we have

φ′′k(ζs)σ
2

[√
Y

(1)
s −

√
Y

(2)
s

]2

→ 0 and
∫
U1

D
l(r,ν;Y

(1)
s− ,Y

(2)
s− )

φk(ζs−)Π(dr)dν → 0,

uniformly on the event {s ≤ τm}. Taking expectation in (1.17) and letting k → ∞, we see
that

E↑|ζt∧τm| ≤ E↑|ζ0|+ E↑
∫ t∧τm

0

β(|ζs−|)ds.

Since ζs− < m for 0 < s ≤ τm, we deduce that t 7→ E↑|ζt∧τm| is locally bounded. Note also
that ζs− 6= ζs for at most countably many s ≥ 0. Then

E↑|ζt∧τm| ≤ E↑|ζ0|+
∫ t

0

E↑(|α|+M)|ζs∧τm|ds

≤ E↑|ζ0|+
∫ t

0

(|α|+M)E↑|ζs∧τm|ds.

Since Y (1)
0 = Y

(2)
0 , we can use Gronwall's lemma to show that E↑|ζt∧τm | = 0 for all t ≥ 0,

which implies P↑{ζt = 0 for all t ≤ τm} = 1. Since τm → ∞ as m → ∞ a.s., the prove is
completed.
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Chapter 2

SDE representations of logistic branching

process

2.1 Continuous-state branching processes with logistic growth

Branching processes with logistic growth or logistic branching processes, abbreviated as LBPs,
are density-dependent continuous time branching processes. In the continuous state-space
setting, the LBP is a Markov process with (nonnegative) real values and a.s. càdlàg paths.
The de�nition of these processes, given in a general form by Lambert [36], is inspired by
Lamperti transform linking continuous-state branching processes and Lévy processes, but
using an Ornstein-Uhlenbeck process instead: let R be the unique strong solution, starting
from x, of the SDE

dRt = dXt − cRtdt, (2.1)

where X a Lévy process with Laplace exponent ψ. Then, the continuous-state branching
process with logistic growth Z with branching mechanism ψ and rate c is the process de�ned
by

Zt :=

{
R(Ct) if 0 ≤ t < η∞,

0 if η∞ <∞∧ t ≥ η∞,
(2.2)

with T0 := inf{t > 0 : Rt = 0} and C is the right inverse of η, where

ηt =

∫ t∧T0

0

ds

Rs

, t > 0.

This de�nition give as a close relationship between logistic and branching processes: given
Y = (Yt : t ≥ 0) a CSBP with branching mechanism ψ, we can see Z = (Zt : t ≥ 0) as
the analogous of process Y with negative interactions between each pair of individuals in the
population.

Next, we give an easier characterization for this kind of processes, as the unique solution
of an SDE. This result is a generalization of the CSBP case, found in [13, Prop. 4].

Theorem 2.1 (LB-process as a SDE solution). There is a standard Brownian motion B
and an independent Poisson measure N on [0,∞) × (0,∞) × (0,∞] with intensity measure
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Chapter 2. SDE representations of logistic branching process

dt × dν × Π(dr), such that the LB-process Z is the unique strong solution of the following
equation:

Zt = v + α

∫ t

0

Zsds+ σ

∫ t

0

√
ZsdBs +

∫ t

0

∫ Zs−

0

∫ ∞
1

rN(ds, dν, dr)

+

∫ t

0

∫ Zs−

0

∫ 1

0

rÑ(ds, dν, dr)− c
∫ t

0

Zs
2ds,

(2.3)

where Ñ is the compensated Poisson measure associated with N .

Proof of Theorem 2.1. To prove this result, we use similar arguments as in [13, Prop. 4].
Given a Lévy process X with characteristic exponent ψ, there exists a standard Brownian
motion BX and a Poisson random measure NX on [0,∞)× (0,∞] with intensity ds×Π(dr)
such X satis�es

dXt = αdt+ σdBX
t +

∫ ∞
1

rNX(dt, dr) +

∫ 1

0

rÑX(dt, dr). (2.4)

Using this fact along with (2.2), we can deduce that R satis�es

dRt = adt+ σdBX
t +

∫ ∞
1

rNX(dt, dr) +

∫ 1

0

rÑX(dt, dr)− cRtdt.

Now, we set
T := inf{t > 0 : Zt = 0} = inf{t > 0 : R(Ct) = 0} ∧ η∞.

As C is right-continuous, we have that R(CT ) = 0, and from here we can deduce that
CT = T0, using the fact that

ηl =

∫ l∧T0

0

ds

Rs

= η∞

for all l ≥ T0.
In the same way that Caballero et al. [13], we de�ne a standard Brownian motion B

satisfying ∫ t

0

√
ZsdBs = BX(Ct ∧ T0) (2.5)

and a Poisson random measure N with intensity ds× dν × Π(dr) such that∑
{n:tXn <Ct}

rXn 1{rXn ≥1} =
∑
{n:tn<t}

∆n1{∆n≥1} =

∫ t

0

∫ Zs−

0

∫ ∞
0

r1{r≥1}N(ds, dv, dr),

where ((∆n, tn) : n ∈ N) is an arbitrary labelling of the pairs associating jump times and
jump sizes of Z and ((rXn , t

X
n ) : n ∈ N) are the atoms of NX , and from here we have that∫ t

0

∫ Zs−

0

∫ ∞
1

rN(ds, dν, dr) =

∫ Ct

0

∫ ∞
1

rNX(ds, dr). (2.6)

In the same way, we have that

lim
ε↘0

 ∑
{n:tn<t}

∆n1{ε<∆n<1} −
∫ t

0

Zsds

∫ 1

ε

rΠ(dr)

 = lim
ε↘0

 ∑
{n:tXn <Ct}

rXn 1{ε<rXn <1} −
∫ Ct

0

ds

∫ 1

ε

rΠ(dr)

 ,
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2.2. Logistic di�usion process conditioned to be never extinct

so the compensated measures satis�es∫ t

0

∫ Zs−

0

∫ 1

0

rÑ(ds, dν, dr) =

∫ Ct

0

∫ 1

0

rÑX(ds, dr). (2.7)

Putting together expressions (2.5), (2.6) and (2.7) into equation (2.4), we obtain that

dRCt = αdCt + σ
√
ZtdBt +

∫ Zt−

0

∫ ∞
1

rN(dt, dν, dr) +

∫ Zt−

0

∫ 1

0

rÑ(dt, dν, dr)− cRCtdCt.

By (2.2), we see that adCt = aZtdt and cRCtdCt = c(Zt)
2dt, so the logistic branching process

Z = (Zt : t ≥ 0) is a solution of (2.3). Finally, de�ning the parameters (b, σ, g0, g1) by

b(x) := (ax− cx2)1{x≥0}, σ(x) := σx, and g0(x, (ν, r)) = g1(x, (ν, r)) := r1{ν≤x}

we see that equation (2.3) is included in the jump-type stochastic equations studied by Fu
and Li in [25], so the existence of an unique non-negative strong solution to (2.3) follows
directly from [25, Thm 2.5].

2.2 Logistic di�usion process conditioned to be never ex-

tinct

Now, we want to study the LBP conditioned to non extinction. To this end, we apply the
main arguments in the proof of Theorem 1.1 to equation (2.3), assuming that such process
exists. Notice that in the LBP case, the branching property is not longer true and it is
unknown, in general, if there exists such a Q-process de�ned through an h-transform, as in
the CSBP case (see [48]). Results in that sense are only known for the logistic Feller di�usion
case, thanks to the renowned work of Cattiaux et. al. [15].

In the particular case when the underlying Lévy process is a Brownian motion with drift,
equation (2.3) reduces to

Zt = z + α

∫ t

0

Zsds+ σ

∫ t

0

√
ZsdBs − c

∫ t

0

Zs
2ds, (2.8)

In [15], Cattiaux et. al. established existence of the Q-process, through the study of quasi-
stationary distributions for drifted Brownian motion on (0,∞) of the form

dXt = dBt − q(Xt)dt, X0 = x > 0,

where q is a given function C1 on (0,∞) and (Bt : t ≥ 0) is a standard one-dimensional
Brownian motion. De�ning Xt = 2

√
Zt/σ, (2.8) turns into

dXt = dBt − q(Xt)dt, X0 = x = 2
√
z/σ > 0, (2.9)

where q(x) = 1
2x
− 2

σ2

(
ασ2x

4
− cσ4x3

16

)
. For this kind of processes, the authors in [15] de�ned

a measure µ on (0,∞), given by
µ(dy) := e−Q(y)dy,
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Chapter 2. SDE representations of logistic branching process

where Q(y) := 2
∫∞

1
q(x)dx. Hence, they have established the existence, under certain condi-

tions (see Remark 2.2 below), of a non-positive self adjoint operator L on L2(µ) with domain
D(L) ⊇ C∞0 ((0,∞)) such that for g ∈ C∞0 ((0,∞)),

Lg =
1

2
g′′ − qg′.

Using spectral theory, they showed also that −L has a purely discrete spectrum 0 ≤ λ1 <
λ2 < . . . , and furthermore, each λi (i ∈ N) is associated to a unique (up to a multiplicative
constant) eigenfunction ηi of class C2((0,∞)), which also satis�es the ordinary di�erential
equation

1

2
η′′i − qη′i = −λiηi.

The sequence (ηi)i≥1 is an orthonormal basis of L2(µ), and η1 can be chosen to be strictly
positive in (0,∞). Moreover, η1 ∈ L1(µ) and it is an increasing function.

Remark 2.2. We say that hypothesis (H) is satis�ed if

(H1) for all x > 0, Px(τ = T0 < T∞) = 1;

(H2) C = − inf
y∈(0,∞)

(q2(y)− q′(y)) <∞ and lim
y→∞

(q2(y)− q′(y)) = +∞; and

(H3)
∫ 1

0

e−Q(y)dy

q2(y)− q′(y) + C + 2
<∞ or

(∫ ∞
1

e−Q(x)dx <∞ ∧
∫ 1

0

xe−Q(x)/2dx <∞
)

hold.

Under (H), Cattiaux et al were able to describe the law of the process X conditioned to
be never extinct.

Lemma 2.3 (Corollary 6.1 in [15]). For all x > 0 and t ≥ 0, we have

lim
s→∞

Px(X ∈ B|T0 > t+ s) = Qx(B),

for all B Borel measurable subsets of C([0, t]), where Qx is the law of a di�usion process on
(0,∞), with transition probability densities (w.r.t. the Lebesgue measure) given by

q(t, x, y) = eλ1t
η1(y)

η1(x)
r(s, x, y)e−Q(y).

That is, Qx is locally absolutely continuous w.r.t. Px and

Qx(X ∈ B) = Ex
(
1B(X)1{t<T0}e

λ1t
η1(Xt)

η1(x)

)
.

In the result above, r correspond to the density of X under the measure µ, i.e. r(t, x, ·)
satis�es

Ex
[
f(Xt)1{t<T0}

]
=

∫ ∞
0

f(y)r(t, x, y)µ(dy), for all x > 0, t > 0

for all bounded Borel f . In particular, we can deduce from this result an SDE representation
for the logistic di�usion under Q.
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2.3. General LBP conditioned to be never extinct

Proposition 2.4. Under Q, the process Z satis�es

Zt = z + α

∫ t

0

Zsds+ σ

∫ t

0

√
ZsdB

Q
s − c

∫ t

0

Zs
2ds+ σ2

∫ t

0

φ′(Zs)

φ(Zs)
Zsds, (2.10)

where {BQ
t : t ≥ 0} is an standard Brownian motion on Q and φ(x) = η

(
2
√
x

σ

)
.

Proof. We start by writing the Radom-Nykodim derivative between Q and P as a function
of Z

Dt :=
dQ
dP

∣∣∣∣
Ft

=
eλ1t

η1

(
2
√
z

σ

) η1

(
2
√
Zt
σ

)
=

eλ1t

φ(z)
φ(Zt)

Applying Itô's Formula, we obtain that

dDt =
eλ1t

η1

(
2
√
z

σ

)
λ1η1

(
2
√
Zt
σ

)
dt+

η′1

(
2
√
Zt
σ

)
σ
√
Zt

dZt +
1

2

η′′1
(

2
√
Zt
σ

)
σ2Zt

−
η′1

(
2
√
Zt
σ

)
2σZt

√
Zt

 d[Z,Z]t


=

eλ1t

η1

(
2
√
z

σ

) {λ1η1

(
2
√
Zt
σ

)
+

[
(α− cZt)

√
Zt

σ
− σ

4
√
Zt

]
η′1

(
2
√
Zt
σ

)

−σ
2

√
Ztη

′′
1

(
2
√
Zt
σ

)}
dt+

eλ1t

η1

(
2
√
z

σ

)η′1(2
√
Zt
σ

)
dBt,

and thus

d〈D,B〉t =
eλ1t

η1

(
2
√
z

σ

)η′1(2
√
Zt
σ

)
dt =

σeλ1t
√
Ztφ

′(Zt)dt

φ(z)
.

Applying then the Girsanov's Theorem 1.3, we can de�ne the Q-martingale

BQ
t := Bt −

∫ t

0

η′
(

2
√
Zs
σ

)
η
(

2
√
Zs
σ

) ds
= Bt −

∫ t

0

σ
√
Zs
φ′(Zs)

φ(Zs)
ds.

In particular, BQ is a standard Brownian Motion in Q, and we can deduce equation (2.10)
from (2.8).

2.3 General LBP conditioned to be never extinct

For the general logistic case, we can not assure existence of a conditioned process de�ned
through a h-transform. Nevertheless, it is still of interest to describe the dynamics of such
processes under the assumption that such h-transform exists and is well-de�ned. Thus, given
T = inf{t > 0 : Zt = 0}, we assume that
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Chapter 2. SDE representations of logistic branching process

(H†1) The probability measure

P†x(A) := lim
s↑∞

Px(A|T > t+ s), A ∈ σ(Zs : s ≤ t),

is well de�ned. Moreover, there exist a positive real number γ and an increasing function
φ ∈ C2((0,∞)) such that P†x(A) = E(1Ah(t, Zt)) = E(1Ae

−γtφ(Zt)).

Theorem 2.5. Under hypotesis (H†1), (Z,P†) satis�es

Zt = α

∫ t

0

Zsds+ σ

∫ t

0

√
ZsdB

†
s +

∫ t

0

∫ Zs−

0

∫ ∞
1

rN †(ds, dν, dr)

+

∫ t

0

∫ Zs−

0

∫ 1

0

rÑ †(ds, dν, dr)− c
∫ t

0

Zs
2ds

+ σ2

∫ t

0

Zsφ
′(Zs)

φ(Zs)
ds+

∫ t

0

∫ Zs−φ(Zs−+r)

φ(Zs−)

Zs−

∫ ∞
1

rN ‡(ds, dν, dr)

+

∫ t

0

∫ Zs−φ(Zs−+r)

φ(Zs−)

Zs−

∫ 1

0

rÑ ‡(ds, dν, dr).

(2.11)

where {B†t : t ≥ 0} is a Brownian motion, N † and N ‡ are independent Poisson measures on
[0,∞)× (0,∞)2, both with intensity measure ds× dν × Π(dr).

Proof. As in the proof of Lemma 2.3, we start by de�ning the Radon-Nikodym derivative
D† by

D†t :=
dP†

dP

∣∣∣∣
Ft

= h(t, Zt).

We apply �rst Ito's theorem to process D† to obtain

D†t = φ(x) +

∫ t

0

e−γsφ′(Zs)[αZs − cZ2
s ]ds+

σ

2

∫ t

0

e−γsφ′′(Zs)Zsds

+ σ

∫ t

0

e−γsφ′(Zs)
√
ZsdBs +

∫ ∞
0

∫ Zs−

0

∫ ∞
1

e−γsφ′(Zs)rN(ds, dν, dr)

+

∫ ∞
0

∫ Zs−

0

∫ 1

0

e−γsφ′(Zs)rÑ(ds, dν, dr)

+
∑
tn≤t

e−γtn
[
φ(Ztn− + rn1{νn≤Ztn−})− φ(Ztn−)− φ′(Ztn−)rn1{νn≤Zt−n }

]
.

Applying Girsanov's theorem (Thm. 1.3) to the Brownian motion B, we have that

Bt = B†t + σ

∫ t

0

e−γsφ′(Zs)
√
Zs

e−γsφ(Zs)
,

where B† is a P†-BM. Thus,

σ

∫ t

0

√
ZsdB

†
s = σ

∫ t

0

√
ZsdBs − σ2

∫ t

0

φ′(Zs)

φ(Zs)
Ys.
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2.3. General LBP conditioned to be never extinct

On the other hand, we want to study the terms driven by the Poisson random measure
N . As in the CSBP case, we know that the jumps of (Zt : t ≥ 0) are given by rn1{νn≤Ztn−},
where ((tn, νn, rn) : n ∈ N) are the atoms of the Poisson measure N . Hence, enlarging the
probability space and �ltration if needed, we may and shall assume that there is a sequence
(u†tn)n≥1 of independent random variables uniformly distributed on [0, 1], independent of B
and N and such that u†tn1{tn≤t} is F

†
t -measurable, with (F †t ) the natural �ltration of the

conditioned process. As in the proof of Theorem 1.1, we de�ne ∆†n and η†n by

(∆†n, η
†
n) :=


(0, 0), r†n1{ν†n≤Ztn−}

) if u†n <
φ(Ztn)− φ(Ztn−)

φ(Ztn)
and Ztn > 0,

((r†n, ν
†
n), 0) if u†n ≥

φ(Ztn)− φ(Ztn−)

φ(Ztn)
and Ztn > 0,

((0, 0), 0) if φ(Ztn) = 0.

(2.12)

For any nonnegative (F †t )-predictable F ; nonnegative f vanishing on the diagonal, such that
f((r, ν), s) = 0 when ν ≤ R for some R ≥ 0; and x ≥ 0; we have the martingale

St :=
∑
tn≤t

Ftnf(∆†n, η
†
n)

−
∫ t

0

dsFs

∫ ∞
0

∫ ∞
0

f((0, 0), r1{ν≤Zs})
φ(Zs + r1{ν≤Zs})− φ(Zs)

φ(Zs + r1{ν≤Zs})
Π(dr)dν

−
∫ t

0

dsFs

∫ ∞
0

∫ ∞
0

f((r, ν), 0)
φ(Zs)

φ(Zs + r1{ν≤Zs})
Π(dr)dν.

and by similar arguments as in the proof of Thm. 1.1, the process S†, given by

S†t =St −
∫ t

0

d〈S,D†〉s
D†s

=
∑
tn≤t

Ftnf(∆†n, η
†
n)−

∫ t

0

dsFs

∫ ∞
0

∫ ∞
0

f((0, 0), r)
[φ(Zs + r)− φ(Zs)]1{ν≤Zs}

φ(Zs)
Π(dr)dν

−
∫ t

0

dsFs

∫ ∞
0

∫ ∞
0

f((r, ν), 0)Π(dr)dν,

is a F †-martingale under P† with mean zero. Therefore,

E†
[∑
tn≤t

Ftnf(∆†n, η
†
n)

]
= E†

[∫ t

0

dsFsZs

∫ ∞
0

f((0, 0), r)
φ(Zs + r)− φ(Zs)

φ(Zs)
Π(dr)

]
+ E†

[∫ t

0

dsFs

∫ ∞
0

∫ ∞
0

f((r, ν), 0)Π(dr)dν

]
.

(2.13)

Thanks to Lemma 1.4, the second term on the r.h.s. of previous equation allow us to deduce
that (∆†n) are in fact the atoms of a F †-Poisson random measure N † with intensity ds ×
dν × Π(dr) w.r.t. P†. Also, we can assume by a standard enlarging procedure that there
exist another F †-Poisson random measure N∗ with intensity ds × dν × Π(dr) w.r.t. P†
and independent of N †, and a sequence (vn)n≥1 of independent random variables uniformly
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Chapter 2. SDE representations of logistic branching process

distributed on [0, 1], such that vn1{tn≤t} is F
†
t -measurable and vn is independent of F †tn−.

Using these tools, we de�ne the process N ‡ as

N ‡(ds, dν, dr) = 1{ν≤Zs−}N
∗(ds, dν, dr) +

∑
n

δ{
sn,

φ(Zsn−+rn)−φ(Zsn−)

φ(Zsn−)
Ysn−Un+Zsn−,η

†
n

}(ds, dν, dr)

+ 1
{ν>φ(Zs−)Zs

φ(Zs−)
}
N∗(ds, dν, dr),

where δ denotes Dirac measure. For this process, let F be again a non-negative F †-predictable
process, and f be a two-variable non-negative Borel function. Thanks to formula (2.13), we
have that

E†
[∑
tn≤t

Ftnf(η†n,
φ(Ztn− + rs)− φ(Ztn−)

φ(Ztn−)
Ztn−Un + Ztn−)

]

= E†
[∫ t

0

∫ ∞
0

∫ 1

0

Fsf(r,
φ(Zs + r)− φ(Zs)

φ(Zs)
Zsu+ Zs)

φ(Zs + r)− φ(Zs)

φ(Zs)
ZsΠ(dr)duds

]
,

and by a change of variables we deduce that

E†
[∑
tn≤t

Ftnf(η†n,
φ(Ztn− + rn)− φ(Ztn−)

φ(Ztn−)
Ztn−Un + Ztn−)

]

= E†
[∫ t

0

dsFs

∫ φ(Zs−+r)

φ(Zs−)
Zs−

Zs−

∫ ∞
0

f(r, ν)Π(dr)dν

]
.

Moreover, since

E†
[∫ t

0

∫ ∞
0

∫ ∞
0

Fsf(ν, r)1{ν≤Zs−}N
∗(ds, dν, dr)

]
= E†

[∫ t

0

dsFs

∫ Zs−

0

∫ ∞
0

f(ν, r)Π(dr)dν

]
and

E†
[∫ t

0

∫ ∞
0

∫ ∞
0

Fsf(ν, r) 1
{ν>φ(Zs−)Zs−+r

φ(Zs−)
}
N∗(ds, dν, dr)

]
= E†

[∫ t

0

dsFs

∫ ∞
0

∫ ∞
φ(Zs−)Zs−+r

φ(Zs−)

f(ν, r)Π(dr)dν

]
,

we deduce that

E†
[∫ t

0

∫ ∞
0

∫ ∞
0

Fsf(ν, r)N ‡(ds, dν, dr)

]
= E†

[∫ t

0

Fsds

∫ ∞
0

∫ ∞
0

f(ν, r)dνΠ(dr)

]
, (2.14)

which shows that N ‡ is a F †-Poisson random measure with intensity ds× dν × Π(dr) w.r.t.
P†.

These previous equalities (2.13) and (2.14) along with the fact that∑
tn≤t

rn1{νn≤Ztn−} =
∑
tn≤t

p1(∆†n)1{p2(∆†n)≤Ztn−}
+
∑
tn≤t

η†n

=
∑
tn≤t

r†n1{ν†n≤Ztn−}
+
∑
tn≤t

r‡n1
{
Ztn−<ν

‡
n≤

Ztn−φ(Ztn−+r
‡
n)

φ(Ztn−)

},
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2.3. General LBP conditioned to be never extinct

where pi are the respective projection of {∆n} and {(tn, r†n, ν†n)}n∈N and {(tn, r‡n, ν‡n)}n∈N are
the atoms of N † and N ‡ respectively; imply that the process Z under P† satis�es the desired
SDE.

In particular, this construction allow us to recover the stochastic di�erential equation for
the CSBP case. We know that a continuous-state branching process Y can be seen as a
LB-process with rate c = 0, and in this case

h(t, Yt) = eρtφ(Yt) =
eρtYt
x

.

Here, by Lemma 1.4 together with equation (2.13), we see that

E†
[∑
tn≤t

Ftnf((0, 0), η†n)

]
= E†

[∫ t

0

Fsds

∫ Ys+r

Ys

∫ ∞
0

f((0, 0), r)dνΠ(dr)

]
= E†

[∫ t

0

Fsds

∫ ∞
0

f((0, 0), r)rΠ(dr)

]
,

(2.15)

from where {ηYn } are the atoms of a Poisson random measure N? with intensity ds× rΠ(dr)

w.r.t. P†. In particular, this measure is independent of N † and, as
∫ 1

0
(1 ∧ r)rΠ(dr) <∞, it

not need to be compensated. Therefore, equation (2.11) take the form

Yt = a

∫ t

0

Ysds+ σ

∫ t

0

√
YsdB

†
s +

∫ t

0

∫ Ys−

0

∫ ∞
1

rN †(ds, dν, dr)

+

∫ t

0

∫ Ys−

0

∫ 1

0

rÑ †(ds, dν, dr) + σ2t+

∫ t

0

∫ Zs−+r

Zs−

∫ ∞
0

rN?(ds, dr),

(2.16)

that is in fact our original equation (1.7).
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Chapter 3

Ray-Knight representation of

Lévy-driven LBPs

This chapter is based on the paper Ray-Knight representation of Lévy-driven continuous-state
branching processes with logistic growth , with J. Berestycki and J. Fontbona (in preparation) .

3.1 Introduction and preliminaries

The understanding and the description of the genealogical structure of stochastic population
models with branching-type behavior have been active �elds of research over the last decades,
giving rise to powerful mathematical tools for studying such models and the asymptotic be-
havior of large random tree-like structures. In the framework of continuous-state branching
process, or CSBP for short, the study of these questions has revealed deep connexions be-
tween the Markov processes that describe the evolution of such branching populations, and
continuous time processes of a di�erent nature that can be used to code their genealogies.
The theorem of Ray and Knight [52], [34] is historically the �rst result in that direction. It
states that the accumulated time which a suitably stopped re�ected Brownian motion spends
near level s (rigorously understood as its local time at level s) is a Feller branching di�usion
when viewed as a process in s. Thanks to the excursion theory introduced by Itô [30, 31],
it is well known that the excursions away from 0 of such re�ected Brownian motion de�ne a
Poisson point process indexed by the local time at level 0. In the nineties, Aldous constructed
the (Brownian) continuum random tree (CRT) as the tree coded by the normalized Brown-
ian excursion [5, 6]. Brought together, these objects and results give a precise mathematical
meaning to the genealogy of a population governed by the Feller di�usion: the excursions of
re�ected Brownian motion can be understood as exploration paths of the trees of descendants
of the ancestors of the population at time t = 0, with the local time at height t measuring
the population size at that time.

In the framework of general CSBP, which can be de�ned from a spectrally positive Lévy
process X by means of Lamperti's transform, a Ray-Knight theorem was established by
Duquesne and Le Gall [21]. The de�nition of the corresponding excursions, their heights and
their local times at each level, which are needed in order to state a Ray-Knight theorem in
that setting, is much more involved than in the di�usion case, with no simple (say, �nite
dimensional or SDE-like) representation of a Markov process coding the genealogy. Their
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Chapter 3. Ray-Knight representation of Lévy-driven LBPs

result therefore required the use of the so-called exploration process, introduced by Le Gall
and Le Jan [43], which codes the continuum random trees embedded in a spectrally positive
Lévy processes X, or Lévy-CRT.

Extensions of the Ray-Knight theorem and related genealogical descriptions have since
then been obtained for more complex models with branching type behavior, such as super
processes, branching processes with immigration and generalized Fleming-Viot Processes
with mutations [1, 2, 9, 8, 45], and have been used in the study of several properties of these
processes.

During the last decade, density-dependent stochastic population models have consider-
ably enlarged the scope of mathematically tractable population models and therefore have
attracted increasing attention both in the mathematical and theoretical biology communi-
ties. In the present work, we are interested in the genealogical description of continuous
state branching processes with logistic growth. Branching processes with logistic growth or
logistic branching process, abbreviated as LBP, are population-dependent continuous time
branching process where moreover, informally speaking, the total population instantaneously
decreases at a rate proportional to the squared population size at each instant. In the con-
tinuous state-space framework, LBP are Markov process taking nonnegative values and with
a.s. càdlàg paths, and were introduced in a general form by Lambert [36], by means of a
Lamperti transformation on Ornstein-Ulhenbeck processes driven by general spectrally pos-
itive Lévy process. The global behavior of the population can be intuitively understood as
the result of standard branching behavior, plus a pairwise competition among individuals,
resulting in an individual death rate increased by an amount that is proportional to the total
instantaneous population descending from the original one.

The lack of independence between the individuals of the populations modeled by such
processes prevents the application of standard tools of excursion theory and of continuous
random trees to suitably de�ne the genealogy of such processes, and new points of view must
be developed. In that setting, a Ray-Knight theorem was recently obtained in the case of
the logistic Feller di�usion by Le, Pardoux and Wakolbinger [42], see also [50], in terms of
the local times of a re�ected Brownian motion with local time drift. As in the classical Ray-
Knight representation, the excursions of such process are understood as the exploration paths
of the trees of descendants of the ancestors at time t = 0, and the local time of the process
at height s measures the population size at time t. Their key idea to de�ne a genealogy is to
think of the individuals as being arranged �from left to right � (as given by the exploration
time), and decree that interaction between them takes place through �pairwise �ghts� that
are always won by the individual �to the left �, hence lethal for the individual �to the right�.
Deaths following pairwise �ghts lead in the exploration process of the genealogical forest to
a downward drift, proportional to the amount of mass (or local time units) seen to the left
of the individual encountered at each exploration time. In this way, excursions which come
later in the exploration time tend to be smaller (trees to the right are �under attack from
those to the left�) .

The main purpose of the present paper is to extend the previous Ray-Knight representa-
tions and genealogical descriptions to LBP associated with general spectrally positive Lévy
process with (sub)critical mechanism.

We next brie�y recall the basic needed facts on CSBP and LBP and relations between
these processes, together with SDE representations that will be useful for our purposes. We
discuss then the Ray-Knight theorems of Duquesne and Le Gall and the theorem of Le,
Pardoux and Wakolbinger for the logistic Feller di�usion. In order to introduce the tools
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we will require to formulate the problem in the general setting, we then recall some ideas
on pruning of Lévy trees, following Abraham, Delmas and Voisin [3] and recall some of the
results therein that will be useful in our approach. Then, in the following section, our main
results are stated.

3.1.1 Continuous state branching processes

A CSPB is a càdlàg [0,∞)-valued strong Markov processes Y = (Yt : t ≥ 0) with laws given
the initial states (Px : x ≥ 0) which satisfy the branching property. That is, for any t ≥ 0

and y1, y2 ∈ [0,∞), Yt under Py1+y2 has the same law as the independent sum Y
(1)
t + Y

(2)
t ,

where the distribution of Y (i)
t is equal to that of Yt under Pyi for i = 1, 2. The law of Y is

completely characterized by its Laplace transform: For θ > 0, x > 0 and t ≥ 0, one has

Ex(e−θYt) = e−xut(θ),

where u is the unique nonnegative solution of the di�erential equation

∂ut(θ)

∂t
= −ψ(ut(θ)), u0(θ) = θ,

and the function ψ called branching mechanism of Z is of the form

ψ(λ) = −q − αλ+
1

2
σ2λ2 +

∫
(0,∞)

(e−λx − 1 + λx1{x<1})Π(dx) λ ≥ 0, (3.1)

for some q ≥ 0, α ∈ R, σ ≥ 0 and Π a measure supported in (0,∞) such that∫
(0,∞)

(1 ∧ x2)Π(dx) < ∞.

De�ning ρ := ψ′(0+) and since Ex(Yt) = xe−ρt, CSBPs are classi�ed as subcritical (ρ > 0),
critical (ρ = 0) and supercritical (ρ < 0), according to whether the process will, on average,
decrease, remain constant or increase. In the following, we will assume that Y satis�es the
following conditions:

(A1) cψ(0) = q = 0 and |ψ′(0+)| <∞;

(A2) α ≤ −
∫ ∞

1

rΠ(dr) and
∫ ∞

0

(r ∧ r2)Π(dr) <∞;

(A3) σ > 0 or
∫ ∞

0

rΠ(dr) =∞; and

(A4)

∫ ∞
1

dλ

ψ(λ)
<∞.

(A)

Assumption (A1) ensures that Y is conservative ( i.e. ∀ t > 0, Px(Yt <∞) = 1), assumption
(A2) when q = 0 restricts our work to the (sub)critical case and assumption (A4) implies
that there is a.s. extinction for Y . Assumption (A3) is imposed in order to deal with the
more interesting case when the process has in�nite variation. The nonnegative function ψ
is the characteristic exponent of a spectrally positive Lévy process X = (Xt : t ≥ 0), i.e. a
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process with càdlàg paths, stationary and independent increments, and no negative jumps,
characterized by its Laplace exponent

E
(
e−θXt

)
= e−tψ(θ),

and under our assumptions, it has no negative jumps, does not drift to +∞ and its paths
are of in�nite variation.

Lamperti [40] established his celebrated one-to-one trajectorial correspondence between a
CSBP Y as above and the spectrally positive Lévy processes X, killed upon hitting 0, via a
random time change. We refer to Caballero et al. [13] for modern proofs of that result. The
following alternative SDE representation of the dynamics of a CSBP established in [13],[25]
and [18] will be practical for our purposes. Given a realization of the process (Yt : t ≥ 0)
starting form y > 0 in some probability space, one can construct in an enlarged one a standard
Brownian motion B and an independent Poisson measure N on [0,∞)× (0,∞)× (0,∞) with
intensity measure dt× dν × Π(dr) such that

Yt = x+ α

∫ t

0

Ysds+ σ

∫ t

0

√
YsdBs +

∫ t

0

∫ Ys−

0

∫ ∞
1

rN(ds, dν, dr)

+

∫ t

0

∫ Ys−

0

∫ 1

0

rÑ(ds, dν, dr),

(3.2)

where Ñ denotes the compensated Poisson measure associated with N . When N and α are
identically null, or equivalently, when the underlying Lévy process is a Brownian motion, the
CSBP (Yt : t ≥ 0) is the celebrated Feller di�usion. Consider the re�ected Brownian motion

Hs =
2

σ
BH
s +

1

2
L0
s(H), s ≥ 0, (3.3)

where BH is a standard Brownian motion and Las(H) is the local time accumulated by β at
level a ≥ 0 up to time s ≥ 0. Then, one has

Theorem 3.1 (Ray-Knight theorem). Set Tx = inf{t ≥ 0 : L0
t (H) = x}. Then, the process

(LaTx(H) : a ≥ 0) has a continuous modi�cation which is a Feller difussion.

3.1.2 Lévy exploration processes and the Ray-Knight theorem of

Duquesne and Le Gall

We next recall Duquesne and Le Gall's extension of the previous result to the case of general
CSBP with (sub)critical branching mechanism. To that end the introduction of the explo-
ration process associated with a spectrally positive Lévy process X, as well as its height
and local times processes, is needed. The reader is referred to [21] for details and further
background.

Under assumption (A), point 0 is regular for the process X re�ected both at its running
in�mum and at its running supremum. The running in�mum process of X is denoted by
It := inf

0≤s≤t
Xs, and it is a local time at 0 for the strong Makov process X − I. The future

in�mum of X is the (two parameter) process de�ned for 0 ≤ s ≤ t by Ist = inf
s≤r≤t

Xr. The
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height process H0 = (H0
t : t ≥ 0) which roughly speaking measures for each t ≥ 0 the size of

the set {s ≤ t : Xs = inf [s,t] Xr}, can be �rstly de�ned as

H0
t = lim inf

ε→0

1

ε

∫ t

0

1{Xs<Ist+ε}ds,

which is equal, by time reversal at time t, to the local time at the supremum of the dual
Lévy process. The process (H0

t : t ≥ 0) is Markov only when X has no jumps (in which
case it is a re�ected Brownian motion with drift). But it always has a version which is a
measurable function of a measure-valued strong Markov process, called exploration process.
The exploration process ρ = (ρt : t ≥ 0) takes values in the spaceMf (R+) of �nite measures
in R+ and for each t ≥ 0 it is de�ned on nonnegative measurable functions f by

〈ρt, f〉 =

∫ t

0

dsI
s
t f(H0

s ),

where dsIst denotes the Lebesgue-Stieljes integral with respect to the nondecreasing map
s 7→ Ist . Equivalently

ρt(dr) = β1[0,H0
t ](r)dr +

∑
0<s≤t,Xs−<I

s
t

(Ist −Xs−)δH0
s
(dr).

In particular, the total mass of ρt is 〈ρt, 1〉 = Xt − It, The process Ht := H(ρt) de�ned as
the supremum of the closed support of the measure ρt and with H(0) := 0 by convention,
is a modi�cation of the height process H0

t , such that the mapping t → H(ρt) = Ht is lower
semicontinuous a.s.

Figure 3.1: Set {r ≤ s : Xr = inf [r,s] Xu}

The exploration process ρ, or equivalently the processX−I, codes a tree structure de�ned
in the following way. Under the excursion measure N induced on excursions of X − I away
from 0, the �law� of the height processHt puts weight on nonnegative functions e : [0, σ]→ R+

with compact support and such that e0 = 0 = es for all s ≥ σ > 0, where σ denotes the
length of the excursion. The random function de de�ned on [0, σ]2 by

de(s, t) = es + et − 2me(s, t),
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Chapter 3. Ray-Knight representation of Lévy-driven LBPs

with me(s, t) = inf
s∧t≤r≤s∨t

er, de�nes an equivalence relation in [0, σ] through de(s, t) = 0. This

induces an ultrametric distance in the quotient set Te which results to be a compact metric
space (a �real tree� actually). Informally, each real number s ∈ [0, σ] corresponds to a vertex
at level Hs in the tree, and de(s, t) is the distance between vertices corresponding to s and t
(in particular, s and t correspond to the same vertex if and only if de(s, t) = 0). The quantity
me(s, t) is interpreted as the height (or the generation) of the most recent ancestor common
to s and t. Thus, ρt can be seen as a measure on the ancestral line of the individual labeled
by t, which gives the intensity of the sub-trees that are grafted on the right of this ancestral
line.

Figure 3.2: Tree structure

The Ray-Knight theorem for CSBP of Duquesne and Le Gall is stated in terms of the
local time of the height process. The latter is in general not Markovian nor a semimartingale,
and so its local times must be de�ned in terms of the exploration process ρ. Since Ht = 0 i�
ρt = 0, or equivalently Xt − It = 0, the natural de�nition for the local time at level 0 of H
is the process L0

t := −It. In order to de�ne the local time at a given level a > 0 one has to
consider the exploration process �above level a�, de�ned as follows. Set for each t ≥ 0,

τat = inf{s ≥ 0 :

∫ s

0

1{Hr>a}dr > t} = inf{s ≥ 0 :

∫ s

0

1{ρr((a,∞))>0}dr > t}

which is a.s. �nite since
∫∞

0
1{Hr>a}dr =∞ a.s., and

τ̃at = inf{s ≥ 0 :

∫ s

0

1{Hr≤a}dr > t}.

For every t ≥ 0, one then de�nes a random measure ρat on R+ by

〈ρat , f〉 =

∫
(a,∞)

ρτat (dr)f(r − a). (3.4)

Then, the process (ρat : t ≥ 0) has the same distribution as (ρt : t ≥ 0) and is independent
of the sigma �eld Ha generated by the càdlàg process ((Xτ̃at

, ρτ̃at ) : t ≥ 0) and the class of
negligible sets of the canonical �ltration of the Lévy process X. Denoting by la = (la(s) :
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s ≥ 0) the local time at 0 of (〈ρa, 1〉 : t ≥ 0), the local time at level a and at time s of the
height process H is de�ned by

Las = la
(∫ s

0

1{Hr>a}dr

)
. (3.5)

With these elements, Duquesne and Le Gall proved in [21, Theorem 1.4.1] (see also [43,
Theorem 4.2]) the following generalization of the classic Ray-Knight theorem:

Theorem 3.2 (Ray-Knight representation for CSBP). Set Tx = inf{t ≥ 0, L0
t = x}. Then,

the process (LaTx : a ≥ 0) has a càdlàg modi�cation (Ya : a ≥ 0) which is a CSBP of branching
mechanism ψ starting from x.

3.1.3 Logistic branching processes and genealogy of the logistic Feller

di�usion

As we see in Section 2.1, continuous-state branching processes with logistic growth (LBP)
were introduced in [36] by means of a similar Lamperti transform as the one linking continuous-
state branching processes and Lévy processes, but using a Lévy driven Ornstein-Uhlenbeck
(OU) process instead. An LBP Z = (Zt : t ≥ 0) can be seen as an analogue of a CSBP
Y = (Yt : t ≥ 0) with additional negative interactions (competition) between pairs of indi-
viduals in the population alive at each time instant. As we proved in Theorem 2.1, an LBP
corresponding to a time-changed OU process driven by a Lévy process of Laplace exponent
ψ given by (3.1) can actually be constructed as a (strong) solution of the SDE

Zt = v + α

∫ t

0

Zsds+ σ

∫ t

0

√
ZsdBs +

∫ t

0

∫ Zs−

0

∫ ∞
1

rN(ds, dν, dr)

+

∫ t

0

∫ Zs−

0

∫ 1

0

rÑds, dν, dr)− c
∫ t

0

Z2
sds,

(3.6)

with a Brownian motion B and an independent Poisson point process N on [0,∞)× (0,∞)×
(0,∞] of intensity dt× dν ×Π(dr) similar as in (3.2), and c > 0 a positive constant referred
to as competition intensity. The above SDE representation of LBP can be deduced from the
Lamperti representation (in a similar way as in [13] for CSBP). In the particular case when
the underlying Lévy process is a Brownian motion with drift, the previous equation reduces
to

dZt =
(
αZt − cZ2

t

)
dt+ σ

√
ZtdBt, Z0 = x, (3.7)

the solution of which is known as the �Logistic Feller di�usion�.
In [42, 50] the authors established a generalization of the classical Ray-Knight theorem

for the process (3.7), in terms of the local times of a re�ected Brownian motion H with a
local time drift, in the case α ≥ 0. This is de�ned as the solution of the SDE

Hs =
2

σ
BH
s +

1

2
L0
s(H) +

2α

σ
s− c

∫ s

0

LHrr (H)dr, s ≥ 0, (3.8)

where BH is a standard Brownian motion and Las(H) is the local time accumulated by H at
level a ≥ 0 up to time s ≥ 0. They proved in [42] that SDE (3.8) has a weak solution, unique
in law, and moreover
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Theorem 3.3 (Ray-Knight theorem for logistic Feller di�usion). De�ne for each x > 0 the
stopping time

Tx = inf{s > 0, L0
s > x},

Then ((σ2/4)LaTx : a ≥ 0) is a weak solution of (3.7).

The result can be interpreted as follows. The death rate due to the pairwise �ghts leads in
the exploration process of the genealogical forest to a downward drift which is proportional to
LHss , that is, proportional to the amount of mass seen to the left of the individual encountered
at exploration time s (and living at real time Hs ). In this way, those excursions of H which
come later in the exploration time tend to be smaller (the trees to the right are �under attack
from those to the left�).

In a similar way as in [42], the key issue in order to de�ne a genealogy of LBP in the
Lévy case is to �rst give a sense to competition between pairs of individuals in the same
generation or height of the Lévy tree, entailing the disappearance of the defeated individual
and of its whole (potential) descendent line. Keeping in mind the picture in [42] of individ-
uals arranged from left to right, together with pairwise ��ghts� that are always won by the
left-most individual, in the Lévy case this amounts to de�ne a consistent way of randomly
�erasing � local time units at a given level, together with the corresponding excursions of the
exploration process above that level, at a rate given by the total population on the left of
the individual indexed by the erased local time unit.

The idea of �erasing� consistently the local time and the corresponding excursions of
the exploration process is now standardly formulated by a means of a �pruning� procedure
performed on the Lévy-CRT (see [3, 4, 56]). This procedure is de�ned in terms of a Poisson
Lévy-snake (a particular instance of the powerful Lévy-snake device introduced in [21]) which
provides a mechanism to put Poissonian marks on the path of the exploration process, in a
way that is consistent with coded tree structure. To a large extent, our formulation of the
genealogy of a Lévy driven LBP will be inspired by the ideas of [3], and by a Ray-Knight
interpretation of their main result. However, we will need to de�ne the pruning mechanism
in a more general way, allowing for some past exploration-path dependence of the marking
rates.

In the next subsection we recall the Lévy-tree pruning procedure developed in [3] as well
as the main results therein, and state some consequences that will be relevant for the sequel.
We will then be ready to state our main results.

3.1.4 Poisson Lévy-snake and Lévy tree pruning

Duquesne and Le Gall [21] introduced the Lévy snake process which combines the continuous
genealogical structure coded by the height process H of the exploration process ρ, with the
spatial motion of a càdlàg Markov process ξ in a Polish state space E. Recall that the space
W of killed càdlàg paths in E can be equipped with a metric making it a Polish space.

De�nition 3.4. Given a �xed starting point x ∈ E, and a realization of the process (ρs :
s ≥ 0), the Lévy snake is the time homogeneous strong Markov process ((ρs,Ws) : s ≥ 0)
with values in the product spaceMf (R+)×W (and de�ned in an enlarged probability space)
such that, conditionally on (ρs : s ≥ 0),
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3.1. Introduction and preliminaries

� for every s ≥ 0, Ws = (Ws(t) : 0 ≤ t < Hs) is a path of ξ started at x killed at time
Hs, and

� for each pair of time instants s and s′, the paths Ws and Ws′ are the same up to time
t = Hs,s′ := inf

s,s′
Hr and then behave independently conditionally on their (common)

past up to time Hs,s′ .

(we refer to [21] Ch. 4 for details). The second property above is referred to as the snake
property.

De�nition 3.5. In the case that E = R+, x = 0 and ξ is a Poisson process of rate θ > 0,
the process ((ρs,Ws) : s ≥ 0) is called Poisson Lévy-snake, or simply Poisson snake.

For each s ≥ 0, a Poisson snake Ws is rather described in terms of its derivative mθ
s,

which is (conditionally on ρ) a Poisson point measure in [0, Hs) of intensity θ times the
Lebesque measure. In these terms, the snake property is equivalent to the fact that for s < s′

(conditionally on ρ) one has mθ
s′(dr)1{r≤Hs,s′} = mθ

s(dr)1{r≤Hs,s′}, and m
θ
s′(dr)1{r>Hs,s′} and

mθ
s(dr)1{r>Hs,s′} are independent. The atoms of mθ

s can be seen as unit mass marks on the
ancestral line of the individual labeled s. Thus, atoms of (mθ

t , t ≥ 0) can be interpreted as
marks � on the skeleton� of the tree coded by ρ, which are distributed according to a Poisson
point measure with intensity θ times the Hausdor� measure on the tree.

In [3], Abraham et al. study the measure-pair valued process S θ := ((ρt,m
θ
t ) : t ≤ 0),

called the marked exploration process. (Actually, they also consider marks on the nodes of
in�nite degree of the tree, but these will not be needed here; our process (mθ

t : t ≤ 0)
corresponds to the process (mske

t : t ≥ 0) in [3]). Then, they show that if the underlying Lévy
tree is pruned by removing from the original CRT all the individuals who have a marked
ancestor, the resulting tree is the Lévy tree associated with the branching mechanism

ψθ(λ) := ψ(λ) + θλ. (3.9)

To be more precise, denoting by Āt the Lebesgue measure of the set of the individuals
prior (in exploration time) to t, whose lineage does not contain any mark, i.e.

Āt =

∫ t

0

1{mθs=0}ds =

∫ t

0

1{mθs([0,Hs))=0}ds,

and considering its right-continuous inverse C̄t := inf{r ≥ 0, Ār > t}, they de�ne the pruned
exploration process as

∀t ≥ 0, ρ̄t = ρC̄t . (3.10)

The main result in [3] then is:

Theorem 3.6. The pruned exploration process (3.10) is distributed as the exploration process
associated with a branching mechanism ψθ given in (3.9).

Using classic approximation results on local times, one can moreover check that for each
a ≥ 0, the local times of the pruned exploration process (3.10) at level a is given by the
process (∫ C̄t

0

1{mθs=0}dL
a
s : t ≥ 0

)
. (3.11)
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It is then possible to deduce a �Ray-Knight interpretation� of Theorem 3.6 and of the pruning
procedure. The following result, proved in Section 3.4, is the starting point for the ideas
developed in the present paper (and also a key technical fact for our results):

Corollary 3.7. For each x ≥ 0, the process

(∫ Tx

0

1{mθs=0}dL
a
s : a ≥ 0

)
has a right continu-

ous version which is a CSBP with branching mechanisms ψθ(λ), starting at x.

3.2 Main statements

Our �rst goal is to give a sense to the idea of pruning at height r > 0 the CRT coded by the
exploration process ρ at, roughly speaking, a rate proportional to the local time accumulated
by the pruned tree �on the left� of each individual at level r. But rather than de�ning
the pruning of the exploration process itself, this idea will be more easily and naturally
formalized in terms of �pruned local times�, inspired by the relation (3.11). Indeed, Corollary
3.7 suggests that, in order to state a Ray-Knight representation of a LBP it should be enough
to de�ne the �marks� inducing the pruning procedure we are interested in. But to do so, the
introduction of a generalized notion of marked exploration process is needed.

We denote in the sequel by M (R+) the space of Borel measures in R+ endowed with the
vague topology and by Ma(R+) the subspace of M (R+) of atomic measures with unit mass
atoms. We write (S, d̂) for the (Polish) state-space of the marked exploration process used
in [3] (the metric will be recalled below).

De�nition 3.8. Let ψ be a branching mechanism satisfying assumption (A). A càdlàg S-
valued process ((ρt,mt) : t ≥ 0) de�ned in some probability space, where ρ is an exploration
processes associated with ψ, will be called generalized marked exploration process if,
conditionally on ρ,

� for each s ≥ 0, ms is an element of Ma(R+) supported in [0, Hs) and

� for each pair of time instants s and s′ one has ms′(dr)1{r≤Hs,s′} = ms(dr)1{r≤Hs,s′}.

Moreover, it will be called progressively marked exploration process if in addition,
conditionally on the sigma �eld σ((ρs,ms1{LHss <LHst }

) : s ≤ t), mt is a (non-homogeneous)
Poisson point process in [0, Ht).

Notice that
(

(ρs,ms1{LHss <LHst }
) : s ≤ t

)
corresponds to the exploration process coding

the trees on the left of (and including) the lineage of the individual labeled t, together with
marks put strictly on its left (excluding the marks on its lineage). Also,(

σ((ρs,1{LHss <LHst }
ms) : s ≤ t)

)
t≥0

is sub�ltration of (σ((ρs,ms) : s ≤ t))t≥0.

De�nition 3.9. Let ((ρt,mt) : t ≥ 0) be a progressively marked exploration process. For
each a ≥ 0, we will call local time at level a progressively pruned by m, or simply
m-pruned local time at level a, the process de�ned by

Lat (m) :=

∫ t

0

1{ms=0}dL
a
s , t ≥ 0.
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Our �rst relevant result is the existence of a progressively marked exploration process
((ρt,m

∗
t ) : t ≥ 0) that puts marks at each level of a given ancestral line, at a rate that is

proportional to the m∗-pruned local time accumulated on the forest on its the left:

Theorem 3.10. Let (ρt : t ≥ 0) be the exploration process associated with a branching
mechanism ψ satisfying (A) and let c > 0. There exists in some extended probability space
a progressively marked exploration process ((ρt,m

∗
t ) : t ≥ 0) such that, for each t ≥ 0,

conditionally on the sigma �eld σ((ρs,m
∗
s1{LHss <LHst }

) : s ≤ t), the point process m∗t is (non-

homogeneous) Poisson of intensity measure

c Lat (m
∗)da1{a<Ht},

where for each a ≥ 0, (Lat (m
∗) : t ≥ 0) is the m∗-pruned local time process at level a.

Process ((ρt,m
∗
t ) : t ≥ 0) will be called the logistically marked exploration process.

The main result of the present paper is the identi�cation of the law of the process of
cumulated m∗-pruned local times at each level, at increase instants of the local time at level
0.

Theorem 3.11 (Ray-Knight theorem for Lévy-driven logistic branching processes). Under
the assumptions of Theorem 3.10, the process

(LaTx(m
∗) : a ≥ 0)

is a continuous-state logistic branching process with branching mechanism ψ and competition
rate c/2, starting from x.

The fact that the obtained competition rate is c/2 instead of the constant c appearing in
Theorem 3.10 accounts for the non-symmetric competition between individuals: the ones on
the left are kept forever (with respect to exploration time) as part of the population, whereas
those further right (or newly arrived in the exploration time sense) are susceptible of being
removed (as in [50].)

The techniques we introduce in order to prove Theorem 3.11 actually allow us to state a
stronger result, namely the identi�cation of the law of the two-parameter process

(LaTx(m
∗) : x ≥ 0, a ≥ 0).

In particular, we are able to provide a more complete description of the above picture of com-
petition, when competing individuals descend from di�erent ancestors (or initial populations
x ≥ 0) at generation a = 0. The key tool to do this, and also a crucial element in the proof
of Theorem 3.11, is an extension to the LBP setting of stochastic �ows of CSBP introduced
by Dawson an Li [18]. We next brie�y recall the �ow of CSBP and its connection with the
Ray-Knight theorem 3.2 and then describe the analogous connection in the present setting.

3.2.1 Stochastic �ow and tree interpretation

The �ow of CSBPs introduced in [18] is a two-parameter process (Yt(v) : t ≥ 0, v ≥ 0),
where for every v ≥ 0 the process Y (v) = (Yt(v) : t ≥ 0) is the unique strong solution of the
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stochastic di�erential equation:

Yt(v) = v + α

∫ t

0

Ys(v)ds+ σ

∫ t

0

∫ Ys− (v)

0

W (ds, du) +

∫ t

0

∫ Ys− (v)

0

∫ ∞
1

rN(ds, dν, dr)

+

∫ t

0

∫ Ys− (v)

0

∫ 1

0

rÑ(ds, dν, dr),

(3.12)

where Π(dr), σ ≥ 0 and α are the same objects as in (3.1), W (ds, du) is a white noise process
on (0,∞)2 based on the Lebesgue measure ds × du and N is a Poisson random measure
on (0,∞)3 with intensity ds × dν × Π(dr) as in (3.2). It is easily seen using the properties
of stochastic integrals with respect to white noise, that for each v ≥ 0, the above process
satis�es equation (3.2) and hence it is CSBP with branching mechanism ψ given in (3.1)
starting with initial population v. The authors in [18] proved that (Yt(v) : t ≥ 0, v ≥ 0) has
a version with the following properties:

i. for each v ≥ 0, t 7→ Yt(v) is a càdlàg process on [0,∞);

ii. for each t ≥ 0, v 7→ Yt(v) is a non-negative and non-decreasing càdlàg process on [0,∞).

iii. For each 0 ≤ v1 ≤ v2 ≤ · · · ≤ vn, the processes (Yt(vj) − Yt(vj−1) : t ≥ 0), j = 1, . . . n
are independent CSBP with branching mechanism ψ issued from vj − vj−1,

i.e. (Yt(v) : v ≥ 0) is a subordinator. The stochastic �ow of CBSP thus provides a simulta-
neous construction of a family of CSBP featuring the branching property as a function of the
initial population v (in particular it provides a SDE construction of Bertoin and Le Gall's
�ow of subordinators de�ned in [10] for similar purposes). Moreover, since a similar additive
property is shared by the exploration local times x 7→ (LaTx : a ≥ 0) of the Lévy CRT with
branching mechanism ψ thanks to the strong Markov property of the exploration process
(ρt : t ≥ 0), the process (LaTx : a ≥ 0, x ≥ 0) and the family (Ya(x) : a ≥ 0, x ≥ 0) have
the same law. The random �forest� T associated with height process H, and coded by the
exploration process (ρt : t ≥ 0), can thus be viewed as the genealogical tree T of the �ow of
CSBP.

In the case of the logistic branching, adapting techniques of [18], it is not hard to establish

Proposition 3.12. Let the parameters Π(dr), σ ≥ 0 and α and the processes W (ds, du) and
N(ds, dν, dr) be as above. For every v ≥ 0 there is a unique strong solution of the stochastic
di�erential equation:

Zt(v) = v + α

∫ t

0

Zs(v)ds+ σ

∫ t

0

∫ Zs−(v)

0

W (ds, du) +

∫ t

0

∫ Zs− (v)

0

∫ ∞
1

rN(ds, dν, dr)

+

∫ t

0

∫ Zs− (v)

0

∫ 1

0

rÑ(ds, dν, dr)− c

2

∫ t

0

Zs
2(v)ds,

(3.13)

Moreover, the process (Zt(v) : t ≥ 0, v ≥ 0) admits (bi-measurble) version such that

i. for each v ≥ 0, t 7→ Zt(v) is a càdlàg process on [0,∞) which is a LBP of branching
mechanism ψ and competition rate c/2 started from v;
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3.3. The logistic Poisson Lévy-snake

ii. for each t ≥ 0, v 7→ Zt(v) is a non-negative and non-decreasing càdlàg process on
[0,∞).

iii. For each 0 ≤ v, the conditional law of (Zt(v)− Zt(u) : t ≥ 0, u ≤ v) given
(Zt(x) : t ≥ 0, 0 ≤ x ≤ u) depends only on (Zt(u) : t ≥ 0).

Notice that this construction generalizes a similar one of [50] in the case of the logistic
Feller di�usion. Our proofs of Theorems 3.10 and 3.11 will provide a simultaneous realiza-
tion of the logistically pruned local times for di�erent initial populations, and can be easily
adapted in order to establish the following stronger result:

Corollary 3.13. The processes (LaTx(m
∗) : a ≥ 0, x ≥ 0) and (Za(x) : a ≥ 0, x ≥ 0) have the

same law.

To show that for every x ≥ 0 the local times process (LaTx(m
∗) : a ≥ 0) can be indeed

interpreted as the Ray-Knight representation for a LBP starting from x, we will construct an
approximation (Lat (ε, δ) : a ≥ 0, t ≥ 0) in a suitable tree-like height/local time discrete grid,
using the pruning procedure employed by Abraham et a. in [3] in an iterative way. To identify
the law of this approximation, we will de�ne a �ow (Zε,δ

a (v) : a ≥ 0, v ≥ 0) of suitable pruned
CSBP that will prove to be an embedding of the local time process (LaTv(ε, δ) : a ≥ 0, v ≥ 0).
Finally, we prove that the law of the pruned �ow Zε,δ (and therefore that of L(ε, δ)) converges
strong enough to the logistic �ow.

3.3 The logistic Poisson Lévy-snake

In order to give a meaning to the idea of pruning the Lévy tree or the associated exploration
processes in a logistic way, we next introduce a Poisson Lévy-snake N with values in the
space of Poisson point process in [0,∞) × (0,∞), and we will use it to mark the tree at
variable random rates, generalizing the main ideas of Abraham et al.[3]. In doing so, we will
also extend ideas developed [4], where a two dimensional Poisson snake was used to prune a
Brownian excursion process simultaneously at di�erent (but constant) rates.

3.3.1 A 2d Poisson Lévy-snake

Let V denote the set of pairs (µ, η) ∈Mf (R+)×M (R2
+) such that supp η ⊆ [0, H(µ))×R+.

For each u ∈ [0, H(µ)), we denote by η(u) ∈M (R+) the measure given by

η(u)(A) = η([0, u]× A) , A ∈ B(R+) (3.14)

and notice that u 7→ η(u) ∈M (R+) is vaguely càdlàg (by dominated convergence). Moreover,
η, η′ ∈M (R2) supported in [0, H(µ)) are equal if and only if η(u) = η′(u) for all u ∈ [0, H(µ)).

We endow V with the distance d given for (µ, η), (µ′, η′) ∈ V by,

d ((µ, η), (µ′, η′)) = D(µ, µ′) +

∫ H(µ)∧H(µ′)

0

(
du(η(u), η

′
(u)) ∧ 1

)
du+ |H(µ)−H(µ′)|, (3.15)

where D is a distance inducing the topology of weak convergence such that the metric space
(Mf (R+), D) is complete, and du is the Skorohod metric on D([0, u],M (R+)). One can check
that (V , d) is a Polish space.
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Chapter 3. Ray-Knight representation of Lévy-driven LBPs

In an analogous way as in Abraham and Serlet [4, Theorem 5] for the Brownian excursion,
one can construct a càdlàg strong Markov process ((ρs,Ns) : s ≤ 0) with values in V such
that

1. (ρs : s ≥ 0) is the exploration process associated with the Lévy process X.

2. Conditionally on (ρs : s ≥ 0), for each s ≥ 0, Ns is a Poisson point measure on
[0, H(ρs))× R+ with intensity the Lebesgue measure and, for all 0 ≤ s ≤ s′,

� Ns′(dr, dν)1{r≤Hs,s′} = Ns(dr, dν)1{r≤Hs,s′}, where Hs,s′ := inf{Hu, s ≤ u ≤ s′},
and

� Ns′(dr, dν)1{r>Hs,s′} and Ns(dr, dν)1{r>Hs,s′} are independent point processes.

Remark 3.14. We stress the fact that in the standard snake terminology of [21] (see De�ni-
tion 3.4), the above process actually is the Lévy-snake with underlying spatial-Markov process
ξ corresponding to the �primitive in the r variable� of a Poisson point measure η(dr, dν) in
M (R2

+). More precisely, in a similar way as for the one-dimensional Poisson snake, a path
of ξ here is an increasing càdlàg path r 7→ η([0, r], dν) taking values in M (R+) instead of in
R+ (see (3.14)), and we describe it in terms of its �derivative�, which is the point measure
η(dr, dν) .

We denote by (Ft)t≥0 the right continuous completion of the �ltration σ((ρs,Ns) : s ≤ t)),
t ≥ 0 and by (Fρt )t≥0 the one associated with σ(ρs : s ≤ t).

For all t ≥ 0, we introduce the �vertical� �ltration (G(t)
r )r≥0 given by the right continuous

completion of the �ltration generated by

G(t)
r = σ

(
Fρt ,

{
(r(s)
n 1{r(s)

n ≤r}
, ν(s)
n 1{r(s)

n ≤r}
)n∈N, s ≤ t

})
, (3.16)

where {(r(s)
n , ν

(s)
n )} are the atoms of the process Ns. Notice that also, for each r ≥ 0, (G(t)

r )t≥0

is a sub-�ltration of (Ft)t≥0 containing (Fρt )t≥0.
Thanks to the snake property of ((ρs,Ns) : s ≥ 0), is is not hard to check

Lemma 3.15. Conditionally on G(t)
0 , the process Nt is a (G(t)

r )r≥0-Poisson point process in
R2

+ of intensity 1[0,H(ρt))(r)dr × dν.

In particular, if Pred(G(t)) denotes the predictable sigma-�eld associated with (G(t)
r )r≥0,

one can de�ne integrals of Pred(G(t))⊗B(R+)-measurable processes h((r, ω), ν) with respect
to Nt, and they have, conditionally on Fρt , the standard properties of Poisson type integrals,
relative to the �ltration (G(t)

r )r≥0.

3.3.2 A operator on generalized marked exploration processes

Our goal now is to use the Poisson Lévy-snake ((ρs,Ns) : s ≥ 0) to construct a logistic
marked exploration process. We will do this by means of an iterative scheme. In order to
de�ne its generic step, we need to introduce an operator in the set of generalized marked
exploration process and study some of its properties.

Recall that (S, d̂) denotes the state-space of the marked exploration process used in [3],
which also contains the trajectories of the generalizes marked exploration processes previously
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3.3. The logistic Poisson Lévy-snake

introduced. This is the Polish space of pairs (µ,w) with µ ∈Mf (R+) and w ∈Mat(R+) such
that supp(w) ⊂ [0, H(µ)), endowed with the distance

d̂((µ,w), (µ′, w′)) := D(µ, µ′) +

∫ H(µ)∧H(µ′)

0

(
du(w(u), w

′
(u)) ∧ 1

)
du+ |H(µ)−H(µ′)|,

(3.17)
where w(u) (resp. w′(u)) is the cumulative distribution function of the measure w (resp. w′)
restricted to [0, u] and du is the Skorohod metric on the space D([0, u],R+).

Consider ((ρt,mt) : t ≥ 0) an (Ft)-adapted generalized marked exploration process such
that, for each t ≥ 0, the process a 7→ mt([0, a]) is (G(t)

a )-adapted. Recall that the parameter
c/2 ≥ 0 stands for competition intensity. De�ne for each t ≥ 0 and h ≥ 0 :

Lht (m) :=

∫ t

0

1{ms=0}dL
h
s and m′t([0, h]) :=

∫ Ht

0

1[0,h](r)

∫ ∞
0

1{ν<c pLrt (m)}Nt(dr, dν),

(3.18)
where (pLrt (m), r ≥ 0) is the predictable projection of (Lrt (m) : r ≥ 0) with respect to the
�ltration (G(t)

r )r≥0. That is, pL·t is the unique (up to indistinguishability) (G(t)
r )r≥0-predictable

process such that:
E
[
LRt 1{R<∞}

∣∣G(t)
R−

]
= pLRt 1{R<∞} a.s. (3.19)

for every predictable G(t)-stopping time R 1. By properties of exploration local times and
generalized marked exploration process, the two parameter process (Lrt (m) : r ≥ 0, t ≥ 0)
has a bi-measurable version which is continuous in t for each r ≥ 0. We always work with
such a version.

Lemma 3.16 (Basic properties of the mapping m 7→ m′). The process S ′ = (ρ,m′) is a
generalized marked exploration process. Moreover, the càdlàg process t 7→ m′t is (Ft)-adapted
and for every t > 0, the càdlàg process a 7→ m′t([0, a]) is (G(t)

a )-adapted. Finally, the integer
valued process t 7→ m′t([0, Ht)) of the total number of marks in each lineage is càdlàg.

Proof. Measurability follows directly from the de�nition of (3.18). The fact that (ρ,m′) is
a generalized marked exploration processes, apart from càdlàg paths, follow from (3.18) and
the snake property of the process (ρ,N ), together with the fact that the processes r 7→ Lrt
and r 7→ Lrs are equal on [0, Ht,s). As for the path regularity, from (3.17) we have for s, t ≥ 0
that

d̂((ρt,m
′
t), (ρs,m

′
s)) = D(ρt, ρs) +

∫ Ht∧Hs

Ht,s

(
du((m

′
t)(u), (m

′
s)(u)) ∧ 1

)
du+ |Ht −Hs|.

Since (ρs : s ≥ 0) is a càdlàg process and, under our assumptions, (Hs : s ≥ 0) is a continuous
process, the right-hand side goes to zero when s→ t. We deduce that the marked exploration
process ((ρt,m

′
t) : t ≥ 0) is right-continuous and has left limits (for the latter property one

easily checks that (ρsn ,m
′
sn) is Cauchy when sn ↗ t, with a limit not depending on the

sequence). Finally, the facts that for each t ≥ 0, m′t([u,Ht)) = 0 for some u ∈ (0, Ht)
and that m′s(dr)1{r≤Hs,t} = m′t(dr)1{r≤Hs,t} for s 6= t imply, together with the convergence
Hs,t → Ht when s→ t, the asserted regularity property of the total number of marks.

1Notice that (Lr
t : r ≥ 0) is G(t)0 measurable but we cannot ensure the existence of a version that is right

continuous in r for all t; we circumvent this problem using the predictable projection.
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Chapter 3. Ray-Knight representation of Lévy-driven LBPs

We prove now some estimates that will be crucial for the sequel. To this end, we are
going to use the following generalized occupation time formula: a.s. for any nonnegative
measurable function ϕ(s, a) and every t ≥ 0,∫ t

0

ϕ(r,Hr)dr =

∫ ∞
0

∫ t

0

ϕ(s, a)dLasda.
2 (3.20)

Proposition 3.17. Let (mt : t ≥ 0) and (m̃t : t ≥ 0) be two adapted right-continuous
processes taking values in the space of �nite point measures on R+, having for each t ≥ 0 a
support contained in [0, Ht) and atoms with mass equal to 1. Let the processes (m′t : t ≥ 0)
and (m̃′t : t ≥ 0) be de�ned respectively in terms of (mt : t ≥ 0) and (m̃t : t ≥ 0) by the
formulae (3.18).

i). For t ≥ 0, set ∆t = |mt([0, Ht))− m̃t([0, Ht))| and ∆′t = |m′t([0, Ht))− m̃′t([0, Ht))|.
Then, for each A ≥ 0 and T ≥ 0, we have

E
[
1{Ht≤A}∆

′
t

]
≤ c

∫ t

0

E
[
1{Hs≤A}∆t

]
ds. (3.21)

ii). For each x ≥ 0 and a ≥ 0, let T a,x denote the (Ft)-stopping time

T a,x = inf{t ≥ 0 : ∃ b ≤ a s.t. Lbt ≥ x}.

De�ne Lrt (m
′) :=

∫ t
0
1{m′s=0}dL

r
s and Lrt (m̃

′) :=
∫ t

0
1{m̃′s=0}dL

r
s. Then, for any (Ft)-

stopping τ we have

E (|Laτ∧Ta,x(m′)− Laτ∧Ta,x(m̃′)|) ≤ E
(∫ τ∧Ta,x

0

|m′t([0, a))− m̃′t([0, a))| dLat
)

≤ cx

∫ a

0

E
(∫ τ∧Ta,x

0

|mt([0, r))− m̃t([0, r))| dLrt
)
dr

= cxE
(∫ τ∧Ta,x

0

|mt([0, Ht))− m̃t([0, Ht))| dt
)
.

(3.22)

Proof.

i). Observe that for all t ≥ 0, by the assumptions on mt and m̃t,∣∣1{mt=0} − 1{m̃t=0}
∣∣ =

∣∣1{mt([0,Ht))=0} − 1{m̃t([0,Ht))=0}
∣∣ ≤ |mt([0, Ht))− m̃t([0, Ht))| ,

Since dLas = 1{Hs=a}dL
a
s , integrating this inequality between 0 and t > 0 against dLat

we deduce that

|Lat (m)− Lat (m̃)| ≤
∫ t

0

|ms([0, a))− m̃s([0, a))| dLas . (3.23)

2It is easy to deduce this formula from the occupation time formula in [18, Prop. 1.3.3]
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3.3. The logistic Poisson Lévy-snake

For every t ≥ 0, A ≥ 0, the snake property and the de�nition of the Poisson random
measure (Nt), together with (3.23) imply that

E
[
1{Ht≤A}∆

′
t

]
≤ E

[
1{Ht≤A}E

(∫ Ht

0

∫ ∞
0

∣∣1{ν<c pLrt (m)} − 1{ν<c pLrt (m̃)}
∣∣Nt(dr, dν)

∣∣∣∣Fρt )]
= E

[
1{Ht≤A}E

(∫ Ht

0

c |Lrt (m)− Lrt (m̃)| dr
∣∣∣∣Fρt )]

≤ cE
[
1{Ht≤A}

∫ Ht

0

(∫ t

0

|ms([0, r))− m̃s([0, r))| dLrs
)
dr

]
≤ cE

[∫ ∞
0

1{r≤A}

∫ t

0

|ms([0, r))− m̃s([0, r))| dLrsdr
]
.

Using the space-time occupation-times formula (3.20) and Fubini's Theorem, we deduce
(3.21).

(ii.) Since by Lemma 3.16, m′t and m̃′t are for each t ≥ 0 �nite point measures with unit
mass atoms and support contained in [0, Ht), in a similar way as (3.23) we now get

|Lat (m′)− Lat (m̃′)| ≤
∫ t

0

|m′s([0, a))− m̃′s([0, a))| dLas

for all t ≥ 0, which gives us the �rst inequality. Let us prove the second inequality. For
any (Fρt )-stopping time τ ≥ 0 one has∫ τ

0

|m′t([0, a))− m̃′t([0, a))| dLat

≤
∫ τ

0

dLat 1{Ht=a}

∫ Ht

0

∫ ∞
0

∣∣1{ν<c pLrt (m)} − 1{ν<c pLrt (m̃)}
∣∣Nt(dr, dν)

≤
∫ τ

0

dLat 1{Ht=a}ga(t),

where

ga(t) =

∫ a

0

∫ ∞
0

1{c[Lrs(m̃)∧Lrs(m)]<ν≤c[Lrs(m̃)∨Lrs(m)]}Nt(dr, dν).

Thus,

E
(∫ τ

0

|m′t([0, a))− m̃′t([0, a))| dLat
)
=E

(
E
(∫ ∞

0

|m′t([0, a))− m̃′t([0, a))|1{t≤τ}dLat
∣∣∣∣Fρτ))

≤E
(∫ ∞

0

dLat1{t≤τ}E
(
1{Ht=a}ga(t)

∣∣∣∣Fρt∧τ)) .
The snake property and the de�nition of the Poisson random measure (Nt), together
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Chapter 3. Ray-Knight representation of Lévy-driven LBPs

with (3.23) imply that

E
(
1{Ht=a}ga(t)

∣∣∣∣Fρτ)1{t≤τ}
≤
∫ a

0

E
(∫ ∞

0

∣∣1{ν<c pLrt (m)} − 1{ν<c pLrt (m̃)}
∣∣Nt(dr, dν)

∣∣∣∣Fρt∧τ)1{t≤τ}

≤
∫ a

0

E
(
|cLrt (m)− cLrt (m̃)|

∣∣∣∣Fρt∧τ)1{t≤τ}dr

≤ c

∫ a

0

E
(∫ t

0

|ms([0, r))− m̃s([0, r))| dLrs
∣∣∣∣Fρt∧τ)1{t≤τ}dr.

Taking τ∧T a,x instead of τ , the desired inequality follows with help of Fubini's theorem
and de�nition of T x,a. More precisely, from the previous we get that

E
(∫ τ∧Ta,x

0

|m′t([0, a))− m̃′t([0, a))| dLat
)

= c

∫ a

0

E
(∫ τ∧Ta,x

0

dLatE
(∫ t

0

|ms([0, r))− m̃s([0, r))| dLrs
∣∣∣∣Fρt∧τ∧Ta,x)) dr

≤ c
∫ a

0

E
(∫ Ta,x

0

dLat E
(∫ τ∧Tx,a

0

|ms((0, r])− m̃s((0, r])| dLrs
∣∣∣∣Fρt∧τ∧Ta,x)) dr

≤ cx
∫ a

0

E
(∫ τ∧Ta,x

0

|ms([0, r))− m̃s([0, r))| dLrs
)
dr.

The last asserted identity is readily obtained with the occupation times formula.

3.3.3 Construction of the logistically marked exploration process

In this subsection we shall prove the following result, which is easily seen to imply Theorem
3.10.

Theorem 3.18. There exists an (Ft)-adapted progressively marked exploration process (S∗t :
t ≥ 0) = ((ρt,m

∗
t ) : t ≥ 0) with associated m∗-pruned local time process

Lat (m
∗) =

∫ t

0

1{m∗s=0}dL
a
s , (3.24)

such that, for each t ≥ 0 the càdlàg process a 7→ m∗t ([0, a]) is (G(t)
a )-adapted, and the relation

m∗t ([0, h]) =

∫ Ht

0

1[0,h](r)

∫ ∞
0

1{ν<c pLrt (m
∗)}Nt(dν, dr), h ∈ [0, Ht). (3.25)

hold a.s. for all t ≥ 0 and h ≥ 0. Moreover, the pair of processes ((Lat (m
∗))a≥0,m

∗
t ) : t ≥ 0) is

the unique solution of the system of equations (3.24)-(3.25) satisfying the previous properties.

We start the construction of the pair ((Lat (m
∗))a≥0,m

∗
t ) by an iterative procedure.
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3.3. The logistic Poisson Lévy-snake

For each t ≥ 0, de�nem0
t as the null measure on [0, Ht), and for each a ≥ 0 set Lat (0) := Lat

for all t ≥ 0. We de�ne a marking measure process (m1
t ) such that for each t ≥ 0, m1

t is a
(�nite) point measure supported in [0, Ht), as follows. Set

m1
t ([0, h]) :=

∫ Ht

0

1[0,h](r)

∫ ∞
0

1{ν<c pLrt (0)}Nt(dr, dν), h ≥ 0, (3.26)

For every a ≥ 0, we also introduce the local time process (Lat (1) : t ≥ 0) at level a marked
by the measures (m1

t ), de�ned as

Lat (1) :=

∫ t

0

1{m1
s([0,a))=0}dL

a
s =

∫ t

0

1{m1
s=0}dL

a
s .

Notice that the second equality comes from the fact that dLas = 1{Hs=a}dL
a
s . This process

corresponds to the individuals in the population at each height a having no mark in its
ancestral line.3 For each a ≥ 0, it is easy to see that

Lat (0) ≥ Lat (1) (3.27)

a.s. for all t ≥ 0 (by continuity).
Next, we prune the original local times at each level a at rate proportional to the m1-

pruned local time La· (1) accumulated on its left. More precisely, for every t ≥ 0 we de�ne a
new measure given by

m2
t ([0, h]) :=

∫ Ht

0

1[0,h](r)

∫ ∞
0

1{ν<c pLrt (1)}Nt(dr, dν), h ≥ 0. (3.28)

From (3.27), we deduce that for each t ≥ 0,

m2
t ≤ m1

t (3.29)

almost surely, and actually a.s. for all t ≥ 0 by right continuity. We then associate with
(m2

t : t ≥ 0) a pruned local time process, corresponding to the population at each height a
having no mark in its ancestral line:

Lat (2) :=

∫ t

0

1{m2
s([0,a))=0}dL

a
s =

∫ t

0

1{m2
s=0}dL

a
s .

We see from (3.27) and (3.29) that, for all a ≥ 0,

Lat (0) ≥ Lat (2) ≥ Lat (1)

a.s. simultaneously for all t ≥ 0 and that , for all t,

m0
t ≤ m2

t ≤ m1
t

as measures. We continue to de�ne inductively for each n ∈ N, a family of measures (mn
t :

t ≥ 0) by

mn+1
t ([0, h]) :=

∫ Ht

0

1[0,h](r)

∫ ∞
0

1{ν<c pLrt (n)}Nt(dr, dν), h ≥ 0 (3.30)

3 Loosely speaking, the population La
t (1) is obtained by pruning each individual at height a at rate equal

to the size of the (original) population lying on its left.
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Chapter 3. Ray-Knight representation of Lévy-driven LBPs

for each t ≥ 0, and for each a ≥ 0 a family of processes

Lat (n+ 1) :=

∫ t

0

1{mn+1
s ([0,a))=0}dL

a
s =

∫ t

0

1{mn+1
s =0}dL

a
s . (3.31)

Notice that the processes (mn
t : t ≥ 0) have the properties stated in Lemma 3.16 for all

n ∈ N. Also, for each n ∈ N, the process (Lat : a ≥ 0, t ≥ 0) is bi-measurable, continuous in t
for each a ≥ 0 and (Ft)-adapted.

It is easily checked by induction in n that, for all a ≥ 0, a.s.

Lat (0) ≥ Lat (2) ≥ · · · ≥ Lat (2n) ≥ Lat (2n+ 1) ≥ · · · ≥ Lat (3) ≥ Lat (1), (3.32)

for all t ≥ 0 simultaneously. Also, a.s. for all t

m0
t ≤ m2

t ≤ · · · ≤ m2n
t ≤ m2n+1

t ≤ · · · ≤ m3
t ≤ m1

t (3.33)

as measures. Some relevant consequences of the previous inequalities are next established:

Lemma 3.19 (Convergence of odd and even marking measures and local times).

i). Almost surely for every t ≥ 0, there exists two �nite atomic measures me
t and m

o
t such

that for all but �nitely many n ∈ N,

me
t = m2n

t and mo
t = m2n+1

t (3.34)

and

me
t ≤ mo

t .

ii). For each a ≥ 0, de�ne two (Ft)t≥0-adapted processes (Lat (e) : t ≥ 0) and (Lat (o) : t ≥ 0)
by

Lat (e) := inf
n∈N

Lat (2n) ≥ Lat (o) := sup
n∈N

Lat (2n+ 1). (3.35)

Then, the processes (a, t) 7→
∫ t

0
1{mes=0}dL

a
s and (a, t) 7→

∫ t
0
1{mos=0}dL

a
s are bi-measurable

and continuous in t versions of respectively Lat (e) and L
a
t (o).

iii). For all t ≥ 0 one has a.s. for all h ≥ 0

me
t ([0, h]) =

∫ Ht

0

1[0,h](r)

∫ ∞
0

1{ν<c pLrt (o)}Nt(dr, dν),

mo
t ([0, h]) =

∫ Ht

0

1[0,h](r)

∫ ∞
0

1{ν<c pLrt (e)}Nt(dr, dν).

iv) The processes Se = (ρ,me) and So = (ρ,mo) are S-progressively marked exploration
process.

Proof. We prove each of the statements for the �even� limiting objects, the corresponding
proofs for the �odd� ones being similar.
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3.3. The logistic Poisson Lévy-snake

i). For each t ≥ 0, every measure mn
t is �nite since bounded by m1

t and atomic with unit
mass atoms. The increasing sequence of integers m2n

t ([0, Ht)) is convergent and thus
m2n
t ([0, Ht)) = m2nt

t ([0, Ht)) for all n larger or equal than certain integer nt > 0. From
such an index on, the sequence of atomic measures m2n

t must be constant since for
all x ∈ [0, Ht), m2n

t ({x}) ∈ {0, 1} is a non decreasing sequence and the total mass is
constant.

ii). For �xed a ≥ 0 and t ≥ 0, we have

Lat (e) = inf
n∈N

∫ t

0

1{m2n
s ([0,Ht))=0}dL

a
s =

∫ t

0

inf
n∈N

1{m2n
s =0}dL

a
s =

∫ t

0

1{mes=0}dL
a
s ,

using (3.34) in the third equality. This and the continuity of t 7→ Lat implies the desired
statement.

iii). Given t ≥ 0 and h ≥ 0, by (3.34) we have for some integer nt and all n ≥ nt that

me
t ([0, h]) = m2n+2

t ([0, h]) =

∫ Ht

0

1[0,h](r)

∫ ∞
0

1{ν<c pLrt (2n+1)}Nt(dr, dν)

= lim
k→∞

∫ Ht

0

1[0,h](r)

∫ ∞
0

1{ν<c pLrt (2k+1)}Nt(dr, dν)

=

∫ Ht

0

1[0,h](r)

∫ ∞
0

sup
k∈N

1{ν<c pLrt (2k+1)}Nt(dr, dν)

=

∫ Ht

0

1[0,h](r)

∫ ∞
0

1{ν<c pLrt (o)}Nt(dr, dν),

where we used the fact that pL·t(o) = sup
k∈N

pL·t(2k+1) by (3.35) and the characterizations

of the predictable projection analogue to that in (3.19). Both extremes in the above
equalities being right continuous functions of h, the conclusion on me

t follows.

Part iv). follows from iii). and Lemma 3.16.

We are now ready for the proof of Theorem 3.18.
Proof of Theorem 3.18. The existence part will consist in proving that the processes
((Lat (e))a≥0,m

e
t ) : t ≥ 0) and (((Lat (o))a≥0,m

o
t ) : t ≥ 0) are equal.

By letting A↗ +∞ in part i) of Proposition 3.17 applied to m = me and m̃ = mo (and
taking into account the relations in part iii) of Lemma 3.19), we see by Gronwall's lemma
that

mo
t ([0, Ht)) = me

t ([0, Ht))

holds P(dω)dt a.e. Using the right-continuity of the two processes Se = (ρ,me) and So =
(ρ,mo) in S, the previous identity is seen to hold a.s. for all t ≥ 0. Since for each t ≥ 0,
mo
t ≥ me

t as measures by (3.33), and they both are atomic with unit mass atoms and equal
total masses, we deduce that they must be equal.

By Lemma 3.19 ii) and since dLas = 1{Hs=a}dL
a
s for each a ≥ 0, we deduce from the

previous that time right continuous versions of Lat (e) and Lat (o) are indistinguishable. The
asserted properties of (m∗t ) follow from Lemma 3.16.
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For the uniqueness statement, consider m = m∗ and m̃ = m̂∗ two di�erent solutions of
(3.25) and the associated marked local times L(m∗) and L(m̂∗) given by (3.24). We obtain
by similar arguments as in the existence part that a.s. for all t ≥ 0,

m∗t ([0, Ht)) = m̂∗t ([0, Ht)).

Using this equality in (3.24) both for m∗ and m̂∗ (and again the fact that dLas = 1{Hs=a}dL
a
s),

we deduce that for each a ≥ 0 the processes Lat (m
∗) and Lat (m̂

∗) are indistinguishable. The
fact that m∗ = m̂∗ then follows by using the latter in equation (3.25) both for m∗ and m̃∗

3.4 Proof of the Ray-Knight Theorem

Our next goal is to prove Theorem 3.11. The proof consists in two main steps. First, we will
construct in terms of the same Lévy tree as before an approximation of the logistically pruned
local time (Lat (m

∗) : a ≥ 0, t ≥ 0), by local time processes pruned at constant rate in the
rectangles of some tree-like discrete grid, de�ned in height and local time units. The results
of [3] will be crucial to identify the law of such approximation. The second step will consist in
embedding this grid approximation into a white-noise/ Poisson-noise driven stochastic �ow,
which will correspond to a suitable approximation of the logistic stochastic �ow process by
an SDE �ow with frozen coe�cients, and proving then that such SDEs pointwise converges
to the desired limit.

3.4.1 Grid approximation of the logistically marked local times

We denote by (Ty)y≥0 the inverse local time at level 0 of the exploration process ρ. Given
�xed parameters ε, δ > 0 and a �xed amount x ≥ 0 of cumulated local time at 0 (interpreted
as initial population), we next introduce an approximation

L(ε, δ) = (Lat (ε, δ) : t ≤ Tx, a ≥ 0)

of (La(m∗) : t ≤ Tx, a ≥ 0), consisting in local time process pruned at rates that are
constant on the rectangles of a suitably de�ned tree-like height/local time discrete grid. The
construction of this grid will be done in a lexicographical way. The index k ∈ N represents
in what follows a discrete height level in the tree-like grid. We denote by N∗ the set

⋃
k∈N

Nk.

Notice that the dependance in the initial population x will be implicit, in order to enlighten
the notation.

Step 0 : For all t, a ≥ 0, we set

L0
t (ε, δ) := L0

t = L0
t (m

∗) and La0(ε, δ) := La0 = La0(m∗) = 0.

Moreover, for every n ∈ N we set T 0
nδ := Tnδ∧x.

Step 1 : Let k = 0 and nk = n0 = 0. For every t ∈ (0, T 0
δ ] and a ∈ (0, ε], we set

Lat (ε, δ) := LaT 0
0
(ε, δ) +

∫ t

T 0
0

1{mε,δs =0}dL
a
s ,
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3.4. Proof of the Ray-Knight Theorem

where the measure mε,δ for s ∈ (0, T 0
δ ] is de�ned by

mε,δ
s ([0, h]) :=

∫ Hs

0

1{r≤h}

∫ ∞
0

1{ν<cL0
0(ε,δ)}Ns(dr, dν), ∀h ∈ (0, ε].

If ∃t ∈ (0, Tδ] such that
Lεt(ε, δ)− Lε0(ε, δ) > 0,

we set k = k + 1 = 1, (n0, n1) = (0, 0), and de�ne

T
ε,(n0)
n1δ

:= sup{t ≥ 0 : Lεt(ε, δ)− Lε0(ε, δ) = n1δ} ∧ T 0
δ .

Otherwise, if ∃t ∈ (T 0
δ , Tx] such that

L0
t (ε, δ)− LT 0

δ
(ε, δ) > 0,

we set k = k = 0, n0 = n0 + 1 = 1.

Step g : In general, assuming that we have already constructed the processes

(Lat (ε, δ) : 0 < t ≤ T ′, ε′ < a ≤ ε′′) and (Lat (ε, δ) : 0 ≤ t < T ′′ a ≤ ε′)

respectively on the left of and below the rectangle [T ′, T ′′]× [ε′, ε′′], the process

(Lat (ε, δ) : T ′ < t ≤ T ′′, ε′ < a ≤ ε′′)

will be constructed as

Lat (ε, δ) := LaT ′(ε, δ) +

∫ t

T ′
1{mε,δs =0}dL

a
s , (3.36)

where the measure mε,δ for s ∈ (T ′, T ′′] is de�ned by

mε,δ
s ([0, h]) := mε,δ

s ([0, ε′]) +

∫ Hs

0

1{ε′<r≤h}

∫ ∞
0

1{ν<cLε′
T ′ (ε,δ)}

Ns(dr, dν), ∀h ∈ (ε′, ε′′].

(3.37)

We describe then the general step of the algorithm: Given z ∈ N and (n0, n1, ..nz) ∈ N∗,
we use formula (3.36) to construct(

Lat (ε, δ) : T
zε,(n0,n1,..n(z−1))

nzδ
< t ≤ T

zε,(n0,n1,..n(z−1))

(nz+1)δ , zε < a ≤ (z + 1)ε
)
,

where

T
zε,(n0,n1,..n(z−1))

nzδ

= inf{t ≥ T
(z−1)ε,(n0,n1,..n(z−2))

n(z−1)δ
: Lzεt (ε, δ)− Lzε

T
(z−1)ε,(n0,n1,..n(z−2))

n(z−1)δ

(ε, δ) = nzδ}

∧ T (z−1)ε,(n0,n1,..(n(z−2)))

n(z−1)+1 ,

with the convention that ni = 0 if i < 0.

If ∃t ∈ (T
zε,(n0,n1,..nz)
nzδ

, T
zε,(n0,n1,..nz)
(nz+1)δ ] such that

L
(z+1)ε
t (ε, δ)− L(z+1)ε

T
zε,(n0,n1,..nz)
nzδ

(ε, δ) > 0,

we set k = z + 1 and (n0, n1, ..nk) = (n0, n1, ..nz, 0) and we return to step g.

Otherwise,
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Step g.1 : If ∃t ∈ (T
zε,(n0,n1,..nz+1)
nzδ

, T
(z−1)ε,(n0,n1,..nz−1)
(nz−1+1)δ ] such that

Lzεt (ε, δ)− Lzε
T
zε,(n0,n1,..nz+1)
nzδ

(ε, δ) > 0,

we set k = z and (n0, .., nk) = (n0, .., nz + 1), and we return to step g.

Otherwise, we set k = z − 1 and (n0, .., nk) = (n0, .., nz + 1) and return to step
g.1 if k ≥ 0, or the algorithm stops if k = −1.

In words, on each rectangle (T
kε,(n0,..,nk−1)
nkδ

, T
kε,(n0,..,nk−1)

(nk+1)δ ] × (kε, (k + 1)ε], marks are pro-
duced at each height at constant rate equal to the pruned local time Lkε

T
kε,(n0,..,nk−1)

nkδ

(ε, δ) ac-

cumulated at the time and level of the immediately lower-left grid point (T
kε,(n0,..,nk−1)
nkδ

, kε).

Then, for each (t, a) ∈ (T
kε,(n0,..,nk−1)
nkδ

, T
kε,(n0,..,nk−1)

(nk+1)δ ] × (kε, (k + 1)ε] inside the rectangle, the
local time measure dLat is pruned according to that marks, if the local times below dLbt , b ≤ a
are not yet pruned (or equivalently, it the ancestors of t are not marked). Notice that the
algorithms stops at step g if an only if at the end of that step T 0

n0δ
= T 0

(n0+1)δ = Tx.
We therefore have a tree-like partition of the populations (represented by accumulated

local times) at each level kε, k ∈ N, into subpopulations of size at most δ, in such a way that
the partition of the population at height (k + 1)ε is a re�nement of the partition induced by
its ancestors at height kε.

In this fashion, the population block at level kε indexed by (n0, . . . , nk) corresponds to
the (nk + 1)−th block of descendants of the population block at level (k − 1)ε indexed by
(n0, . . . , nk−1). Notice that the size of the block (n0, . . . , nk) is

Lkε
T
kε,(n0,..,nk−1)

(nk+1)δ

− Lkε
T
kε,(n0,..,nk−1)

nkδ

,

and that the size of a such a block is zero for nk su�ciently large.
Given h ≥ 0, we set

kh = kh(ε) := sup{k ∈ N : kε ≤ h}
and for each s ≥ 0 and k ∈ N such that kε ≤ Hs, we de�ne

T k,(∗)s = T k,(∗)s (ε, δ) := sup{T kε,(i0,..ik−1)
ikδ

: j ∈ {0, ...k}, ij ∈ N, T kε,(i0,..ik−1)
ikδ

≤ s},

that is, the (exploration) time indexing the �rst individual in the block of ancestors at level
kε, of the individual indexed by s.

By construction, we have a.s. for all a ≥ 0 that

Lat (ε, δ) =

∫ t

0

1{mε,δs =0}dL
a
s = Lat (m

ε,δ), (3.38)

for all t ≥ 0 and, for each t ≥ 0, a.s. it holds for all h ≥ 0 that

mε,δ
t ([0, h]) =

∫ Ht

0

1{r≤h}

∫ ∞
0

1{ν<cLεkr−
T
kr,(∗)
t

(ε,δ)}Nt(dν, dr), h ∈ [0, Ht) (3.39)

To check this, we use the fact that Lεkr
T
kr,(∗)
t

(ε, δ) coincides with Lεkr−
T
kr,(∗)
t

(ε, δ) except at heights

in the grid r ∈ {0, ε, . . . , εkHt}, where the values of the measures (3.37) and (3.39) coincide
by de�nition of the former.
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⇒

⇑ ⇓

Construction of the grid approximation.
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Observe that, since we are pruning the original local times processes, for each a ≥ 0 it
a.s. holds that

Lat (ε, δ) ≤ Lat (3.40)

for all t ≤ Tx, but there is not clear pointwise relation between Lat (ε, δ) and Lat (ε
′, δ′) for

(ε, δ) 6= (ε′, δ′). Finally, observe that the constructions are consistent for di�erent initial
populations x ≥ 0.

For each �xed height a > 0, we denote in what follows by Ea the sigma �eld

Ea :=
(
(ρτ̃at ,Nτ̃at ) : t ≥ 0

)
(3.41)

where τ̃at is the right continuous inverse of the process

Ãat :=

∫ t

0

1{Hs≤a}ds.

In the remainder of this section, our goal is to prove the following two results:

Proposition 3.20 ( Law of the grid approximation). Let ε, δ > 0 and x ≥ 0 be �xed. For
each (k, (n0, ..nk)) ∈ N× N∗, conditionally on F

T
kε,(n0,..,nk−1)

nkδ

∨
Ekε the process

(
Lkε+h
T
kε,(n0,..,nk−1)

(nk+1)δ

(ε, δ)− Lkε+h
T
kε,(n0,..,nk−1)

nkδ

(ε, δ) : h ∈ [0, ε]

)
(3.42)

has the law of a CSBP of branching mechanism

ψ
kε,n0,..,nk−1

nkδ
(λ) := ψ(λ) + λLkε

T
kε,(n0,..,nk−1)

nkδ

(ε, δ) ; (3.43)

with initial population

Lkε
T
kε,(n0,..,nk−1)

(nk+1)δ

(ε, δ)− Lkε
T
kε,(n0,..,nk−1)

nkδ

(ε, δ),

observed in the time interval [0, ε].

Proposition 3.21 (Convergence of the grid approximation). For each x ≥ 0 and a ≥ 0, the
r.v. LaTx(ε, δ) converges in probability to LaTx(m

∗) when both ε and δ go (in an arbitrary way)
to 0. In particular, the process (LaTx(ε, δ) : x ≥ 0, a ≥ 0) converges to (LaTx(m

∗) : x ≥ 0, a ≥ 0)
in the sense of �nite dimensional distributions.

Their proofs are based on a series of technical lemmas, relying on the main result on Lévy
tree pruning of [3] and on the excursion theory for snake process developed in [21]. We refer
to Ch. 1 and 4 for details concerning the forthcoming discussion.

Recall that the exploration process ρt starting from 0 at time 0 can be de�ned in terms of
the excursions of the underlying re�ected Lévy process (Xs − Is : s ≥ 0) = (〈ρs, 1〉 : s ≥ 0),
with both processes sharing the same excursion intervals (αj, βj)j∈J away from their respective
0 elements, and with ρt being a function of the excursion of (Xs − Is : s ≥ 0) straddling the
time instant t, for each t ≥ 0.
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3.4. Proof of the Ray-Knight Theorem

The snake process (ρt,Nt : t ≥ 0) can also be described in terms of the above excursions
of ρt and the excursions of the snake component (N t : t ≥ 0) away from 0, occurring in the
same excursion intervals (αj, βj)j∈J . Indeed, one has

(ρt,Nt) =
∑
j∈J

1{αj<t<βj}(ρ
j
t−αj ,N

j
t−αj). (3.44)

where the pair (ρj,N j) de�ned by{
ρjs =ραj+s 0 < s < βj − αj
ρjs =0 s ≥ βj − αj

, and

{
N j
s =Nαj+s 0 < s < βj − αj
N j
s =0 s ≥ βj − αj

is the excursion away from (0, 0) of (ρt,Nt : t ≥ 0) in the interval (αj, βj).
Moreover, the point process in R+ × D(R+,Mf (R+)×M (R2

+)) given by

M :=
∑
j∈J

δ(`j ,ρj ,N j), (3.45)

where `j = L0
αj
, is Poisson with intensity dx×N(dρ , dN ), where N(dρ , dN ) = N(dρ)QH(ρ)(dN ),

N(dρ) is the excursion measure of the exploration process and QH(ρ) the conditional (prob-
ability) law of the snake component (Nt) of the snake process (ρt,Nt), given ρ. These facts
follow from standard excursion theory, or are established in Section 4.1.4 in [21] in what con-
cerns the description of N. (Notice that in the standard snake terminology, they are stated in
terms of the excursions of the process (ρt,Wt) where Wt = (s 7→ Nt([0, s], dν)), see Remark
3.14.)

Reciprocally, given a Poisson point process M of intensity dx × N(dρ , dN ) and atoms
(`j, ρj, N j)j∈J , a snake process (ρt,Nt : t ≥ 0) is uniquely determined through the relation
(3.44), with (αj, βj) de�ned in terms of M by

βj :=
∑

k∈J :`k≤`j
ζk and αj :=

∑
k∈J :`k<`j

ζk ,

where for each j ∈ J , ζj := inf{s ≥ 0 : ρjs = 0} is the length of excursion j. This follows
from the fact that the local time at level 0 of an exploration process, when seen as a measure
supported {t ≥ 0 : ρt = 0}, is singular with respect to Lebesgue measure.

Let us now �x a height a ≥ 0. Recall the notation τat used for the right continuous inverse
of the process

Aat :=

∫ t

0

1{Hs>a}ds.

Consider the process (ρat ,N a
t ) de�ned by

〈ρat , f〉 =

∫
(a,∞)

ρτat (dr)f(r − a)

for measurable f ≥ 0, and associated snake component (N a
t : t ≥ 0) de�ned by

N a
t (dr, dν) := Nτat (a+ dr, dν).
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We denote by (ρ(i))i∈I the excursions of the process ρ above from height a and by
(α(i), β(i))i∈I the corresponding excursion intervals. More precisely, for each i ∈ I, we set ρ(i)

s =

∫
(a,∞)

ρα(i)+s(dr)f(r − a) 0 < s < β(i) − α(i)

ρ(i)
s =0 s ≥ β(i) − α(i).

These excursions are in one-to-one correspondence with the excursions away from 0 of ρa

occurring at cumulated local times La
α(i) = La

β(i) at level a. We also introduce the excursions
of N above level a, but relative to their value at height a. Namely,{

N (i)
s (dr, dν) =Nα(i)+s(a+ dr, dν) 0 < s < β(i) − α(i)

N (i)
s =0 s ≥ β(i) − α(i)

.

Remark 3.22. Notice that each of these excursions N (i)
s is issued from 0, instead of from

xi = Nα(i)

∣∣
[0,a)×R+

, which would be the usual de�nition of the snake excursion above level a
of the snake process (ρt,Wt), with Wt = (s 7→ Nt([0, s], dν)).

Thus, (ρ(i),N (i))i∈I are exactly the excursions of the process ((ρat ,N a
t ) : t ≥ 0) away from

(0, 0) . Moreover, by arguments of snake excursion theory (close to those of the proof of
Proposition 4.2.3 in [21]) it is not hard to establish

Lemma 3.23 (Snake excursion process above a given level). For each a ≥ 0, the process
((ρat ,N a

t ) : t ≥ 0) has the same law as ((ρt,Nt) : t ≥ 0) and it is independent of the sigma
�eld Ea de�ned in (3.41). Moreover, conditionally on Ea, the point process in R+×D(R+,V)
given by ∑

i∈I

δ(`(i),ρ(i),N (i)), (3.46)

where `(i) = Lα(i) for all i ∈ I, has the same law as (3.45) and in particular it is independent
from Ea.

Proof. Like for the process ((ρt,Nt) : t ≥ 0), the trajectories of the process ((ρat ,N a
t ) : t ≥ 0)

are determined in a unique (measurable) way from the atoms of (3.46). It is therefore enough
to establish the second claim.

To do so, one easily adapts �rst the arguments of the proof of Proposition 4.2.3 in [21] in
order to prove that, under the excursion measure N, the process∑

i∈Ij
δ(`(i),ρ(i),N (i)), (3.47)

with Ij := {i ∈ I : (α(i), β(i)) ⊂ (αj, βj)} the sub excursions above level a of the excursion
away from 0 labeled j, is conditionally on Ea a Poisson point process of intensity dx1[Laαj ,L

a
βj

]×
N(dρ , dN ). (We notice that our superscripts (i) correspond to superscripts i therein.) The
only di�erence is that, in the computation analogous to the one in end of that proof, one must
consider test functions depending also on the components `(i) of the atoms, and depending on
the excursions of the spatial component above level a only though their increments respect
to their values at that a (recall Remark 3.22). Since I is equal to the disjoint union

⋃
j∈J Ij,

one then concludes using conditionally on Ea the additivity of Poisson point processes.
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Given θ > 0, we next consider ((ρt,m
θ
t ) : θ ≥ 0) the marked exploration processes (in the

sense of [3]) with snake component mθ
t given conditionally on ρ by

mθ
t ([0, h]) := Nt([0, h]× [0, θ]) , h ≥ 0,

that is, a Poisson process on [0, Ht) of parameter θ. The next result is central for the proof
of Proposition 3.20.

Lemma 3.24 (Pruning at constant rate below a given level). Let (Lat (m
θ) : t ≥ 0) denote

the mθ-pruned local time at level a and denote by

Iθ := {i ∈ I : mθ
α(i) = 0}

the set of excursions above level a whose lineage below that level does not have any mark.
Then, conditionally on Ea, the point process in R+ × D(R+,V) given by∑

i∈Iθ
δ(La

α(i)
(mθ),ρ(i),N (i)) (3.48)

has the same law as the point process (3.45) and is independent of Ea.

Notice that Iθ = {i ∈ I : mθ
α(i)([0, a)) = 0} since Hα(i) = a for all i ∈ I.

Remark 3.25. Lemma 3.24 can be restated by saying that the removal of local time units
corresponding to all individuals at level a with marked ancestors, and of all the excursions
starting at the removed local time positions, leaves us a tree and marks above level a which
behave (when described in terms of the right time units) exactly as the original exploration
and snake processes. (Notice that this is not the situation studied in [3], where the non
removed excursions are again pruned above level a. ) This is a consequence of Lemma 3.23,
and of an elementary fact about Poisson processes in R+ stated in Lemma 3.26 and proved
below for completeness.

Lemma 3.26. Let (Nx : x ≥ 0) be a Poisson process of parameter λ in R+ with respect to a
given �ltration, and let F ⊂ R+ be a predictable set such that a.s.,

ϕx :=

∫ x

0

1F (`)d`→∞

when x→∞. Let (ϑy)y≥0 be the right-continuous inverse of (ϕx)x≥0. Then, the process(
Nϕ
x =

∫ ϑx

0

1F (`)N(d`), x ≥ 0

)
is a Poisson process in R+ with parameter λ.

Proof of Lemma 3.24. As in the proof of Proposition 4.2.3 in [21] we introduce L̃at := Laτ̃at
with τ̃at de�ned above after (3.41) and its left-continuous inverse

γa(r) := inf{s ≥ 0 : L̃as > r}.
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We next rewrite the mθ-pruned local time at level a in terms of local time units x ≥ 0. Using
the snake property of mθ in the second equality, we have

LaTax (mθ) =

∫ Tax

0

1{mθv=0,Hv=a}dL
a
v =

∫ Ãa
Tax

0

1{mθ
τ̃av

=0}dL̃
a
v

=

∫ L̃a
Ãa
Tax

0

1{mθ
τ̃a
γa(`)

=0}d` =

∫ x

0

1{mθ
`=0}d`

where for all ` ≥ 0 we have set mθ
` := mθ

τ̃a
γa(`)

. The last equality above stems from the fact

that, by de�nition of Ãa and its right inverse,

L̃a
Ãa
Tax

= Laτ̃a
Ãa
Tax

= LaTax .

Notice that the process (mθ
` : ` ≥ 0) is Ea-measurable and thus also (LaTax (mθ) : x ≥ 0) is

so. Moreover, the function ` 7→ mθ
` is right continuous since the composition of the right

continuous functions ` 7→ τ̃aγa(`) and s 7→ mθ
s([0, Hs)) (cf. Lemma 3.16). We can thus rewrite

the process (LaTax (mθ) : x ≥ 0) as

LaTax (mθ) =

∫ x

0

1{mθ
`−=0}d`.

Let us denote by ϑy := inf{x ≥ 0 : LaTax (mθ) > y} its right continuous inverse and by Ma the
point process de�ned in (3.46). For each Borel set S ⊂ D(R+,V) with N(S) <∞, we de�ne
a Poisson process in R+ by

Na,S ([0, `]) := Ma ([0, `]× S) , ` ≥ 0.

Notice that it is a (Qa` )`≥0 -Poisson point process, where (Qa` )`≥0 is the right continuous
completion of the �ltration (σ (Ma ([0, x]× dρ, dN ) : 0 ≤ x ≤ `))`≥0. Setting F

θ = {` ∈ R+ :

mθ
`− = 0}, we then see by Lemma 3.26 that

Nϕ(S) :=

(∫ ϑx

0

1F θ(`)N
a,S(d`) : x ≥ 0

)
is a Poisson process in R+ of parameter λ = N(S), with respect to the time changed �ltration
(Qaϑ`)`≥0 (the required divergence

∫ +∞
1F θ(`)d` is checked e.g. using the additivity of the

process x 7→ LaTax (mθ) following from the strong Markov property of ((ρt,m
θ
t ) : t ≥ 0)).

Moreover for mutually disjoint sets S1, ..., Sn, the real processesNϕ(S1), .., Nϕ(Sn) are Poisson
with respect to the same �ltration (Qaϑ`)`≥0, and hence are independent from each other. We
conclude that the point process Ma,θ de�ned in R+ × D(R+,V) by

Ma,θ ([0, x]× S) =

∫
[0,ϑx]×S

1F θ(`)M
a(d`, dρ, dN )

is Poisson with intensity dx × N(dρ, dN ). Finally, it is not hard to see that this is exactly
the point process (3.48).
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3.4. Proof of the Ray-Knight Theorem

Proof of Lemma 3.26. By standard properties of Poisson processes we know that, for
any nonnegative predictable process f and stopping time τ in the given �ltration,

E
[
e−u

∫ τ∧t
0 f(`)N(d`)+λ

∫ τ∧t
0 (1−e−uf(`))d`

]
= 1

for all u ≥ 0 and t ≥ 0. If moreover τ is such that E
[
eλ
∫ τ
0 (1−e−uf(`))d`

]
< ∞, by dominated

convergence we deduce letting t→∞ that

E
[
e−u

∫ τ
0 f(`)N(d`)+λ

∫ τ
0 (1−e−uf(`))d`

]
= 1.

Since, eλ
∫ ϑx
0 (1−e−u1F (`))d` = eλ

∫ ϑx
0 (1−e−u)1F (`)d` and this, by a change of variable, is equal to

eλ
∫ x
0 (1−e−u)dϕ = eλx(1−e−u), we obtain from the previous that

E
[
e−u

∫ ϑx
0 1F (`)N(d`)

]
= e−λx(1−e−u).

We conclude the result by Campbell's formula.

Remark 3.27. Let Θ : R+ → R+ be a càglàd (left continuous) piecewise constant function,
bounded by a constant θ̄ ≥ 0 and for each t ≥ 0, de�ne θt := Θ(L0

t ) and a progressively
marked exploration process ((ρt,mt) : t ≥ 0) by

mt([0, h]) := Nt([0, h]× [0, θt]) , h ≥ 0.

A simple variation of the arguments of Lemma 3.24 considering m instead of mθ allows us to
obtain the same result for the Poisson (snake) excursion process pruned below level ε accord-
ing to m, more precisely taking m instead of mθ in (3.48). The divergence condition required
for the time change therein to work is ensured in this (variable rate) case by comparison with
the constant case of rate θ̄. This fact will be used in the proof of Propositions 3.20 and 3.21.

Remark 3.28. It is not hard to check that the snake process (ρ′t,N ′t : t ≥ 0) associated
with the Poisson excursion process (3.48) which is equal in law to (ρt,Nt : t ≥ 0) and
(ρat ,N a

t : t ≥ 0), can be described in terms of the latter and the marks below level a, via the
time change

C ′t := inf

{
s > 0 :

∫ s

0

1{mθ
τar

([0,a))=0}dr =

∫ τas

0

1mθu([0,a))=0}dA
a
u > t

}
.

More precisely, it is given by (ρ′t,N ′t : t ≥ 0) :=
(
ρaC′t

,N a
C′t

: t ≥ 0
)
. Notice that although Aau

varies on intervals where the height of the process (ρt,Nt : t ≥ 0) is above a, by the snake
property the function 1{mθu([0,a))=0} does not. Thus, (ρ′t,N ′t : t ≥ 0) is function of the process
(ρat ,N a

t : t ≥ 0) and of an independent (Ea-measurable) removal of some of its excursions.

In the proof of Proposition 3.20 we will also need Corollary 3.7. We therefore provide
now its proof, which relies on the following well known approximation of exploration local
times (see [21, Prop. 1.3.3]):

lim
ε→0

sup
a≥0

E
[
sup
s≤t

∣∣∣∣ε−1

∫ s

0

1{a<Hr≤a+ε}dr − Las
∣∣∣∣] = 0. (3.49)
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Chapter 3. Ray-Knight representation of Lévy-driven LBPs

Proof of Corollary 3.7. Recall that the height process is a function of the exploration
process at each time instant. Recall also the fact that C̄t < ∞ a.s. for all t ≥ 0 by [3].
Applying (3.49) to the pruned exploration process (3.10), and performing the change of
variable C̄r 7→ u, we deduce that its local times process

(
L̄as : t ≥ 0

)
at level a satis�es a.s.,

L̄at = lim
ε→0

ε−1

∫ C̄t

0

1{a<Hu≤a+ε,mθu=0}du for all t ≥ 0

(the limit being an L1(P) limit). We therefore just need to check that the above limit is equal
to Lat (m

θ).
The approximation (3.49) applied to the original exploration process (ρt : t ≥ 0) im-

plies, for a subsequence εn → 0 obtained by a diagonal argument, the almost sure conver-
gence in each interval [0, k], k ∈ N, of the �nite measures ε−1

n 1{a<Hs≤a+εn}ds towards the
measure dLas , with respect to the weak topology. Since a.s. for each t ≥ 0 the function
s 7→ 1{mθs([0,Hs))=0,s<C̄t} is càdlàg and supported in some interval [0, k], it is bounded and con-
tinuous almost everywhere with respect to the continuous measure 1[0,k](s)dL

a
s . In particular,

for such subsequence εn we a.s. have that

LaC̄t(m
θ) = lim

εn→0
ε−1
n

∫ C̄t

0

1{a<Hu≤a+εn,mθu=0}du.

Since for each a ≥ 0, L̄at and La
C̄t

(mθ) are both a.s. continuous functions of t ≥ 0, we

conclude that
(
L̄at : t ≥ 0

)
and

(∫ C̄t
0

1{mθs=0}dL
a
s : t ≥ 0

)
are indistinguishable. In particular,

if we denote T̄x = inf{s > 0 : L̄0
t > x}, for each a ≥ 0 we a.s. have

L̄aT̄x = LaC̄T̄x
(mθ) = LaTx(m

θ)

since L̄0 = L0
C̄·

(mθ) = L0
C̄·
. The conclusion follows by combining the above identities, Theo-

rem 3.2 and Theorem 3.6.

We are ready to proceed to the
Proof of Proposition 3.20. We consider �rst the case k = 0 and write nx0 = sup{n ∈ N :
nδ < x}. We consecutively apply the strong Markov property of (ρ,N ) with respect to FT 0

n0δ

for each n0 ∈ {0, . . . , nx0 + 1}. In each step, we deduce with Corollary 3.7 that the process(
LhT 0

(n0+1)δ
(ε, δ)− LhT 0

n0δ
(ε, δ) : h ∈ [0, ε]

)
(3.50)

has the required conditional laws. Furthermore, by Remarks 3.27 and 3.28, the process∑
i∈Iε,δ

δ(La
α(i)

(ε,δ),ρ(i),N (i)), (3.51)

with Iε,δ := {i ∈ I : mε,δ

α(i) = 0, L0
α(i) ≤ x} is a Poisson point process of intensity 1(0,LεTx (ε,δ)]d`×

N(dρ , dN ) conditionally on Eε, associated with a snake process

(ρ̂, N̂ ) :=
(

(ρε
Ĉεt
,N ε

Ĉεt
) : t ≤ T

)
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3.4. Proof of the Ray-Knight Theorem

de�ned in terms of the original one (ρ,N ) via the time change

Ĉε
t := inf

{
s > 0 :

∫ s

0

1{mε,δ
τar

([0,ε))=0}dr =

∫ τas

0

1{mε,δu ([0,ε))=0,Hu>ε}du > t

}
.

Denoting by L̂at , T̂x and Ĥt the corresponding local time processes, inverse local time process
at level 0 and height process, for every a ≥ 0 and y ≥ 0 we can write,

La+ε
T εy

(ε, δ) =

∫ T εy

0

1{mε,δs ([0,a+ε))=0}dL
a+ε
s =

∫ T̂Lε
Tεy

(ε,δ)

0

1{m̂ε,δu ([0,a))=0}dL̂
a
u,

where
m̂ε,δ
u ([0, h)) := mε,δ

Ĉεu
([ε, ε+ h)).

Therefore, the construction of the approximated pruned local time and marks (La+ε
t (mε,δ) :

a ≥ 0, t ≥ 0) and (mε,δ
t (ε + dh) : h ≥ 0, t ≥ 0) can be achieved conditionally on Ea in

terms of the process (3.51) in the same way as the processes (Lat (m
ε,δ) : a ≥ 0, t ≥ 0) and

(mε,δ
t : h ≥ 0, t ≥ 0) were constructed from the process (3.45). This allows us to iterate this

argument in order to conclude the desired result by induction in k.

The remainder of this subsection is devoted to the proof of Proposition 3.21. Two further
technical results are needed. This �rst one is an approximation result similar to the classic
one (3.49) or to the extension we dealt with in the proof of Corollary 3.7 for local times
pruned at constant rate, which will allow us to control the accumulated local times at heights
that are not in the grid, with respect to those which are in it. We thus need to deal with
local times randomly pruned at piecewise constant rates, as they appear when describing
the grid construction above level (k + 1)ε in terms of the construction between that level
and level kε. Since the amount of local time accumulated at di�erent levels kε of the grid is
unbounded even when a bound is known at level 0, the convergence of the grid approximation
needs to be established under a suitable localization of those local times (which is why the
convergence in Proposition 3.21 is obtained in probability). But in order to remove correctly
the localizing parameter, we need to know to dependence on it of the approximation of the
pruned local times. We thus need to state some quantitative version of (pruned) local times
approximations .

Following [21], for each K > 0 we denote by τK the stopping time

τK := inf{s > 0 : 〈ρs, 1〉 ≥ K} = inf{s > 0 : Xs − Is ≥ K}.

Lemma 3.29 (Approximation of variably pruned local times at level 0). Consider
as in Remark 3.27 a càglàd (i.e. left continuous) piecewise constant function Θ : R+ → [0, θ̄]
with θ̄ ≥ 0 and the progressively marked exploration process ((ρt,mt) : t ≥ 0) de�ned by

mt([0, h]) := Nt([0, h]× [0, θt]) , h ≥ 0

with

θt := Θ(L0
t )
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Chapter 3. Ray-Knight representation of Lévy-driven LBPs

a) There exists an explicit nonnegative function (ε, θ̄) 7→ Ĉ(θ̄, K, ε) going to 0 when ε→ 0
and increasing both in ε and θ̄, such that for all x ≥ 0:

E

[
sup
y∈[0,x]

∣∣∣∣y − 1

ε

∫ Ty

0

1{0<Hs≤ε,ms=0}ds

∣∣∣∣1{τK>Tx}
]
≤ Ĉ(θ̄, K, ε)(x+

√
x).

b) For all x ≥ 0 we have

E

[
sup

t∈[0,Tx]

∣∣Lεt(m)− L0
t

∣∣1{τK>Tx}
]
≤ C(θ̄, K, ε)(x+

√
x)

for an explicit nonnegative function (ε, θ̄) 7→ C(θ̄, K, ε) with similar properties as Ĉ(θ̄, K, ε).

Proof. a) The proof is inspired by that of Lemma 1.3.2 in [21]. We have

E

(
sup
y∈[0,x]

∣∣∣∣y − 1

ε

∫ Ty

0

1{0<Hs≤ε,ms=0}ds

∣∣∣∣1{τK>Tx}
)

≤ E

(
sup
y∈[0,x]

∣∣∣∣1ε
∫ Ty

0

1{0<Hs≤ε,ms=0,〈ρs,1〉≤K}ds−
1

ε
E
(∫ Ty

0

1{0<Hs≤ε,ms=0,〈ρs,1〉≤K}ds
∣∣Qy)∣∣∣∣

)

+ E

(
sup
y∈[0,x]

∣∣∣∣1εE
(∫ Ty

0

1{0<Hs≤ε,ms=0,〈ρs,1〉≤K}ds
∣∣Qy)− y∣∣∣∣

)
.

(3.52)

The time integral in the above expressions can be written in terms of the excursion point
process (3.45). More precisely,∫ Ty

0

1{0<Hs≤ε,ms=0, 〈ρs,1〉≤K}ds =
∑
j∈Jy

∫ ζj

0

1{0<Hj
s≤ε,mjs=0, 〈ρjs,1〉≤K}ds (3.53)

where Jy := {j ∈ J : `j ≤ y}, Hj
s = Hs(ρ

j) = Hαj+s, mj
s = N j

s ( · × [0,Θ(`j))) and ζj the
length of the excursion j. By compensation, the desintegration N(dρ , dN ) = N(dρ)QH(ρ)(dN )
and the very de�nition of the snake (ρ,N ), we then get

E
(∫ Ty

0

1{0<Hs≤ε,ms=0, 〈ρs,1〉≤K}ds
∣∣Qy) =

∫ y

0

d`N
(∫ ζ

0

1{0<Hs(ρ)≤ε,Ns( ·×[0,Θ(`)))=0 ,〈ρs,1〉≤K}ds

)
=

∫ y

0

d`N

(∫ ζ

0

e−Θ(`)Hs(ρ)1{0<Hs(ρ)≤ε ,〈ρs,1〉≤K}ds

)
.

Thus, the second term in the r.h.s. of (3.52) is bounded by∫ x

0

d`E
[∣∣∣∣ε−1N

(∫ ζ

0

e−Θ(`)Hs(ρ)1{0<Hs(ρ)≤ε ,〈ρs,1〉≤K}ds

)
− 1

∣∣∣∣] .
Using Proposition 1.2.5 in [21] to compute the integral with respect to N for each ` ∈ [0, y],
the latter expression is seen to be equal to∫ x

0

d`

[
1− 1

ε

∫ ε

0

eαbe−Θ(`)bP(Sb ≤ K)db

]
≤ x

[
1− 1− e(α−θ̄)ε

(α− θ̄)ε
P(Sε ≤ K)

]
(3.54)
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3.4. Proof of the Ray-Knight Theorem

where (Sb)b≥0 is a subordinator of Laplace exponent exp
(
−tψ̂(λ)

)
= E(exp−λSt) not de-

pending on the drift coe�cient α of the underlying Lévy process X. In particular, the
expression on the r.h.s. of (3.54) goes to 0 with ε, and its supremum over ε′ ∈ [0, ε] is
an increasing function of ε which does so too. As concerns the �rst term in the r.h.s. of
(3.52), which corresponds to the expected supremum of a (Q`)`≥0-martingale, we can use
BDG inequality to bound it by some universal constant C1 times√

V ar

[
1

ε

∫ Tx

0

1{0<Hs≤ε,ms=0,〈ρs,1〉≤K}ds

]
.

Written in terms of the excursion Poisson point process (3.45), the above quantity reads√√√√V ar

[
1

ε

∑
j∈Jx

∫ ζj

0

1{0<Hj
s≤ε,mjs=0, 〈ρjs,1〉≤K}ds

]

and can be estimated by the same arguments as in the proof of Lemma 1.3.2 of [21] (see also
the proof of Lemma 1.1.3 for details on related arguments):

V ar

[
1

ε

∫ Tx

0

1{0<Hs≤ε,ms=0,〈ρs,1〉≤K}ds

]
=
x

ε2
N

((∫ ζ

0

1{0<Hs≤ε,ms=0,〈ρs,1〉≤K}ds

)2
)

≤ x

ε2
N

((∫ ζ

0

1{0<Hs≤ε,〈ρs,1〉≤K}ds

)2
)

≤ 2xE(XL−1(ε) ∧K),

(3.55)

where ε 7→ XL−1(ε) is the subordinator of Laplace exponent exp
(
−t
(
ψ̂(λ)− α

))
. That is,

the same subordinator S as above, but killed at an independent exponential time of parameter
α. Thus, we have E(XL−1(ε) ∧K) ≤ E(Sε ∧K) + K(1− eαε) → 0 as ε → 0. The statement
now follows by bringing together (3.52), (3.54) and (3.55).

b) We deduce the estimate from the one in part a). Observe �rst that for all t ≤ Tx which
is not an increase time of L0, either one has Lεt(m) < L0

t in which case for some y ≥ 0 such that
Ty < t one has by continuity of local times that |L0

t −Lεt(m)| ≤ L0
Ty
−LεTy(m) = y−LεTy(m),

or Lεt(m) ≥ L0
t and then |L0

t − Lεt(m)| ≤ LεTy(m) − L0
Ty

= LεTy(m) − y for some y ≥ 0 such
that Ty > t. Therefore, is is enough to establish the required upper bound, for the quantity

E

[
sup
y∈[0,x]

∣∣∣LεTy(m)− y
∣∣∣1{τK>Tx}

]
. (3.56)

We have

LεTy(m)− y =

[
LεTy(m)− 1

ε

∫ Ty

0

1{ε<Hs≤2ε,ms((0,ε))=0}ds

]
+ 2

[
1

2ε

∫ Ty

0

1{0<Hs≤2ε,ms((0,ε))=0}ds− y
]

+

[
y − 1

ε

∫ Ty

0

1{0<Hs≤ε,ms((0,ε))=0}ds

]
,
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the absolute value of the second term on the right hand side being bounded by

2

∣∣∣∣ 1

2ε

∫ Ty

0

1{0<Hs≤2ε,ms((0,2ε))=0}ds− y
∣∣∣∣+ 2

∣∣∣∣ 1

2ε

∫ Ty

0

1{0<Hs≤2ε}ds− y
∣∣∣∣ .

It follows from part a) that the expression in (3.56) is upper bounded by(
2Ĉ(θ̄, K, 2ε) + 2Ĉ(0, K, ε) + Ĉ(θ̄, K, ε)

)
(x+

√
x)

+ E

[
sup
y∈[0,x]

∣∣∣∣LεTy(m)− 1

ε

∫ Ty

0

1{ε<Hs≤2ε,ms((0,ε))=0}ds

∣∣∣∣1{τK>Tx}
]

(3.57)

and it only remains us to obtain a bound as the required one, for the above expectation.
Notice to that end that the inner supremum can be written in terms of the Poisson excursions
point process living above level ε we described in Remark 3.27, that is∑

i∈Im
δ(Lε

α(i)
(m),ρ(i),N (i)) (3.58)

where Im = {i ∈ I : mα(i)([0, ε)) = 0}. More precisely, denote by (ρ̂, N̂ ) the associated
(standard) snake process and respectively by L̂0

t , T̂x, Ĥt and τ̂K the corresponding local
time at 0, inverse local time at 0, height process, and the stopping time τ̂K := inf{s > 0 :
〈ρ̂s, 1〉 ≥ K}. Then, writing in a similar way as in (3.53) the time integral in (3.57) as a sum
of integrals over (now) non marked excursion intervals above level ε, we get

LεTy(m)− 1

ε

∫ Ty

0

1{ε<Hs≤2ε,ms((0,ε))=0}ds = LεTy(m)− 1

ε

∫ T̂Lε
Ty

(m)

0

1{0<Ĥs≤ε}ds

Since Tx ≥ T̂LεTx (m) and supt≤Tx〈ρt, 1〉 ≥ supt≤T̂La
Tx

(m)〈ρ̂t, 1〉, the expectation in (3.57) is

bounded from above by

E

[
sup

z∈[0,LεTx (m)]

∣∣∣∣∣z − 1

ε

∫ T̂z

0

1{0<Ĥs≤ε}ds

∣∣∣∣∣1{τ̂K>T̂LεTx (m)}

]
≤ Ĉ(0, K, ε)E

[
LεTx(m) +

√
LεTx(m)

]
,

where the inequality is obtained by applying part a) (with m = 0 or equivalently θ̄ = 0)

conditionally on Eε. With the obvious bounds LεTx(m) ≤ LεTx a.s., E
[√

LεTx
]
≤
√

E
[
LεTx
]

and the identities E(LεTx) = xN
(
Lεζ
)

= xe−αε following from Corollary 1.3.4 in [21], we

conclude that the result holds with C(θ̄, K, ε) =
(

2Ĉ(θ̄, K, 2ε) + 3Ĉ(0, K, ε) + Ĉ(θ̄, K, ε)
)
.

Recall that for M ≥ 0 and a ≥ 0 we de�ned in Proposition 3.17 the stopping time
T a,M = inf{t ≥ 0 : ∃ r ≤ a s.t. Lrt ≥M}, which obviously satis�es

T a,M ≤ T rM a.s. for all r ∈ [0, a].

Lemma 3.30. Let us �x real numbers a, ε, δ,K,M > 0.
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3.4. Proof of the Ray-Knight Theorem

a) For all a > 0,

E

[
sup

t≤Ta,M∧τK
|Lkaεt (ε, δ)− Lat (ε, δ)|

]
≤ C(M,K, ε)(M +

√
M) + Γ(M,K)

where Γ(M,K) = 2MP(τK ≤ TM)

b) For each t ≥ 0,

E
[
1{t<Ta,M∧τK}1{Ht≤a} |m

ε,δ
t ([0, Ht))−m∗t ([0, Ht))|

]
≤ ca

(
δ + Γ(M,K) + C(M,K, ε)(M +

√
M)
)
ect.

Proof. a) We start noting that if t ≤ T a,M , we have Lkaεt (ε, δ) ≤ Lkaεt ≤ M and Lat (ε, δ) ≤
Lat ≤M . Thus, if ka = 0, we have

sup
t≤Ta,M∧τK

|Lkaεt (ε, δ)− Lat (ε, δ)| ≤ sup
t≤TM

|L0
t − Lat (ε, δ)|1{τK>TM} + 2M1{τK≤TM}

and the inequality follows from part b) of Lemma 3.29. To prove our claim for any level
ka = k, we �rst observe that

sup
t≤Ta,M∧τK

|Lkεt (ε, δ)− Lat (ε, δ)| ≤ sup
t≤TkεM

|Lkεt (ε, δ)− Lat (ε, δ)|1{τK>TM} + 2M1{τK≤TM}, (3.59)

so it enough to bound the �rst term on the right hand side by C(M,K, ε)(M +
√
M) to

obtain the desired inequality. In the case k = 1, we consider again the processes L̂rt , T̂x
and Ĥt associated with the snake process (ρ̂, N̂ ) already used in the proof of Proposition
3.20. By arguments given in the proof of part b) of Lemma 3.29, we know that 1{τK>T εM} ≤
1{τ̂K>T̂Lε

Tε
M

(ε,δ)}. Moreover, one can check that

sup
t≤T εM

|Lεt(ε, δ)− Lat (ε, δ)| ≤ sup
s≤T̂Lε

Tε
M

(ε,δ)

|L̂0
s − L̂ε

′

s (m̂ε,δ
s )|,

where m̂ε,δ
s was also de�ned in the proof of Proposition 3.20 and ε′ = a − kε ∈ [0, ε]. By

conditioning �rst on Eε when taking expectation to the �rst term on the r.h.s. of (3.59), and
applying part b) of Lemma (3.29) conditionally on Eε, the result follows since LεT εM (ε, δ) ≤M

and M 7→ C(M,K, ε)(M +
√
M) is increasing.

The result for general ka = k+ 1 is obtained in a similar way by using the same recursive
description of the mε,δ-pruned local times above level (k + 1)ε in terms of the non marked
excursions above level kε.

b) For each t ≥ 0 we write ∆t := |mε,δ
t ([0, Ht)) −m∗t ([0, Ht))|. By a similar argument as

in the �rst part of the proof of Proposition 3.17, we have that

E
[
1{t<Ta,M∧τK}1{Ht≤a}∆t

]
≤ E

[
1{t<Ta,M∧τK}1{Ht≤a}

∫ Ht

0

∫ ∞
0

|1{ν<cLkrε
T
kr,(∗)
t

(ε,δ)} − 1{ν<c pLrt (∗)}|Nt(dr, dν)

]

≤ E

[
1{t<Ta,M∧τK}1{Ht≤a}E

(∫ Ht

0

∫ ∞
0

|1{ν<cLkrε
T
kr,(∗)
t

(ε,δ)} − 1{ν<c pLrt (∗)}|Nt(dr, dν)

∣∣∣∣Fρt
)]

≤ cE
[
1{t<Ta,M∧τK}1{Ht≤a}

∫ Ht

0

∣∣∣Lkrε
T
kr,(∗)
t

(ε, δ)− Lrt (∗)
∣∣∣ dr] .
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We deduce that

E
[
1{t<Ta,M∧τK}1{Ht≤a}∆t

]
≤ c

{
E
[
1{t<Ta,M∧τK}1{Ht≤a}

∫ Ht

0

|Lrt (ε, δ)− Lrt (∗)| dr
]

(3.60)

+ cE
[
1{t<Ta,M∧τK}1{Ht≤a}

∫ Ht

0

|Lkrε
T
kr,(∗)
t

(ε, δ)− Lkrεt (ε, δ)|dr
]

(3.61)

+ cE
[
1{t<Ta,M∧τK}1{Ht≤a}

∫ Ht

0

|Lkrεt (ε, δ)− Lrt (ε, δ)|dr
]}

.

(3.62)

By formula (3.38) and the occupation times, the term on the right-hand side of (3.60) satis�es

E
[
1{t<Ta,M∧τK}1{Ht≤a}

∫ Ht

0

|Lrt (ε, δ)− Lrt (m∗)| dr]

≤ E
[
1{t<Ta,M∧τK}

∫ ∞
0

1{r≤a}

∫ t

0

∣∣mε,δ
s ([0, r))−m∗s([0, r))

∣∣ dLrsdr]
≤ E

[
1{t<Ta,M∧τK}

∫ t

0

1{Hs≤a}
∣∣mε,δ

s ([0, Hs))−m∗s([0, Hs))
∣∣ ds]

=

∫ t

0

E
[
1{s<Ta,M∧τK}1{Hs≤a}∆s

]
ds.

From the de�nition of the random times T ∗krt the expression (3.61) is bounded by aδ. Finally,
by part a) and since T a,M ≤ T r,M for r ∈ [0, a], the expression in (3.62) is bounded by

E

[∫ a

0

1{t<T r,M∧τK} sup
s≤T r,M∧τK

|Lkrεs (ε, δ)− Lrs(ε, δ)|dr

]
≤ a

(
C(M,K, ε)(M +

√
M) + 2MΓ(M,K)

)
,

and the statement follows by Gronwall's lemma.

Proof of Proposition 3.21. By formula (3.38) and the de�nition of the logistically pruned
local times, in an analogous way as in second part of Lemma 3.17, for all 0 ≤ h ≤ a and
every stopping time τ with respect to Fρt we get

E
[
|Lhτ∧Ta,M (ε, δ)− Lhτ∧Ta,M (m∗)|

]
≤ E

[∫ τ∧Ta,M

0

|mε,δ
s ([0, h))−m∗s([0, h))|dLhs

]

≤ cE

[∫ τ∧Ta,M

0

dLhs

∫ Hs

0

|Lkrε
T
kr,(∗)
s

(ε, δ)− Lrs(m∗)|dr

]
,

from where

E
[
|Lhτ∧Ta,M (ε, δ)− Lhτ∧Ta,M (m∗)|

]
≤ cE

[∫ τ∧Ta,M

0

dLhs

∫ Hs

0

|Lkrε
T
kr,(∗)
s

(ε, δ)− Lkrεs (ε, δ)|dr

]
(3.63)

+ cE

[∫ τ∧Ta,M

0

dLhs

∫ Hs

0

|Lkrεs (ε, δ)− Lrs(ε, δ)|dr

]
(3.64)

+ cE

[∫ τ∧Ta,M

0

dLhs

∫ Hs

0

|Lrs(ε, δ)− Lrs(m∗)|dr

]
. (3.65)
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Dealing with terms (3.63) and (3.64) as in the proof of Lemma 3.30 b), we get that

E
[
|Lhτ∧Ta,M (ε, δ) −Lhτ∧Ta,M (m∗)|

]
≤ cδa+ cE

[
1{h≤a}

∫ τ∧Ta,M

0

dLhs

∫ Hs

0

|Lkrεs (ε, δ)− Lrs(ε, δ)|dr

]

+ cE

[∫ τ∧Ta,M

0

dLhs

∫ Hs

0

|Lrs(ε, δ)− Lrs(m∗)|dr

]

≤ cδa+ cE

[∫ τ∧Ta,M

0

dLhs

∫ h

0

|Lkrεs (ε, δ)− Lrs(ε, δ)|dr

]

+ cE

[∫ τ∧Ta,M

0

dLhs

∫ h

0

∫ s

0

|mε,δ
u ([0, r))−m∗u([0, r))|dLrudr

]
,

since dLhs = dLhs1{Hs=h}. As h ≤ a, it follows by using the inequality T a,M ≤ T h,M and the
occupation times formula in the last expression that

E
[
|Lhτ∧Ta,M (ε, δ)− Lhτ∧Ta,M (m∗)|

]
≤ cδa+ cE

[∫ τ∧Ta,M

0

dLhs

∫ h

0

1{s≤τ∧Th,M}|Lkrεs (ε, δ)− Lrs(ε, δ)|dr

]

+ cE

[∫ τ∧Ta,M

0

dLhs

∫ s

0

1{Hu<h,u≤τ∧Th,M}|m
ε,δ
u ([0, Hu))−m∗u([0, Hu))|du

]
.

(3.66)

We now take τ = t∧τK∧Tx. We then can bound the integral with respect du in the last term
on inequality (3.66) by the corresponding integral between 0 and t no longer depending on s.
This trivializes the local time integral therein, yielding a quantity bounded by M . Applying
part b) of Lemma 3.30 to the remaining time integral shows that the last term in (3.66) is
then bounded by

aM
(
δ + Γ(M,K) + C(M,K, ε)(M +

√
M)
)

(ect − 1).

For the same choice of τ , taking supremum over s ≤ τK ∧ T h,M inside the integral with
respect to dr in the second term on the right hand side of (3.66), we now deduce with help
of part a) of Lemma 3.30 the following upper bound for that term:

caM
(

Γ(M,K) + C(M,K, ε)(M +
√
M)
)
.

We therefore have shown that

E
[
|LaTx∧(τK∧t∧Ta,M )(ε, δ) −L

a
Tx∧(τK∧t∧Ta,M )(m

∗)|
]

≤ a(c+ 1)M
(
δ + Γ(M,K) + C(M,K, ε)(M +

√
M)
)
ect.

Now, since τK →∞ when K →∞, for eachM > 0 there is some K = K(M) > 0 su�ciently
large so that P(τK(M) ≤ TM) ≤ 1

2M3 and hence Γ(M,K(K)) ≤ 1/M2 for all M > 0. We
then choose for each M > 0, t = t(M) := ln(M)/2c. With these choices, we have

M Γ(M,K(K))ect(M) = 2M−1 → 0
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when M →∞, whereas the sequence of stopping times TM := t(M)∧ τK(M) ∧ T a,M goes a.s.
to ∞. Thus, for each η > 0,

P
[
|LaTx(ε, δ) −L

a
Tx(m

∗)| > η
]

≤ P
[
|LaTx∧TM (ε, δ)− LaTx∧TM (m∗)| > η

]
+ P(Tx > TM)

≤ a(c+ 1)

η
M
(
δ + Γ(M,K) + C(M,K, ε)(M +

√
M)
)
ect + P(Tx > TM)

and hence, for all M ≥ 0,

lim sup
ε,δ→(0,0)

P
[
|LaTx(ε, δ)− L

a
Tx(m

∗)| > η
]
≤ a(c+ 1)

η
M Γ(M,K(K))ect(M) + P(Tx > TM).

Letting M →∞, we have established that

lim
ε,δ→(0,0)

P
[
|LaTx(ε, δ)− L

a
Tx(m

∗)| > η
]

= 0.

3.4.2 Stochastic �ow embedding of the grid-aproximation

We will now show that the approximating process (LaTx(ε, δ) : a ≥ 0) coincides (in law)
with a �ow of CSBPs of branching mechanism ψ as studied by Dawson and Li [18], but
with additional �frozen� negative drift terms, on rectangles of a suitable time-space grid,
accounting for the �pruning� of the original population.

Recall that the �ow of CSBPs introduced in [18] is the two-parameter process (Yt(v) :
t ≥ 0, v ≥ 0), where for every v ≥ 0 the process Y (v) = (Yt(v) : t ≥ 0) is the unique strong
solution of the stochastic di�erential equation:

Yt(v) = v + α

∫ t

0

Ys(v)ds+ σ

∫ t

0

∫ Ys− (v)

0

W (ds, du) +

∫ t

0

∫ Ys− (v)

0

∫ ∞
1

rN(ds, dν, dr)

+

∫ t

0

∫ Ys− (v)

0

∫ 1

0

rÑ(ds, dν, dr),

(3.67)

where Π(dr), σ ≥ 0 and α are the same objects as in (3.1), W (ds, du) is a white noise process
on (0,∞)2 based on the Lebesgue measure ds × du and N is a Poisson random measure on
(0,∞)3 with intensity ds×dν×Π(dr). Further properties of the two parameter process were
recalled in Section 3.2.1.

In a similar way, as we state in Proposition 3.12, we can de�ne also a �ow of LBPs
as a two-parameter process (Zt(v) : t ≥ 0, v ≥ 0), where for every v ≥ 0 the process
Z(v) = (Zt(v) : t ≥ 0) satis�es

Zt(v) = v + α

∫ t

0

Ys(v)ds+ σ

∫ t

0

∫ Zs− (v)

0

W (ds, du) +

∫ t

0

∫ Zs− (v)

0

∫ ∞
1

rN(ds, dν, dr)

+

∫ t

0

∫ Zs− (v)

0

∫ 1

0

rÑ(ds, dν, dr)− c
∫ t

0

Z2
sds.

(3.68)
Proof of Proposition 3.12 . We �rst show statements i) and iii) and use them to prove
ii).

i) Given the parameters (b, σ, g0, g1) de�ned by
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3.4. Proof of the Ray-Knight Theorem

� x 7→ b(x) := αx− cx2 ;

� (x, u) 7→ σ(x, u) := σ1u≤x;

� (x, ν, r) 7→ g0(x, ν, r) = g1(x, ν, r) := r1ν≤x,

we can check that (b, σ, g0, g1) are admissible parameters satisfying conditions (2.a, b, c, e) in
[18, Section 2]. Thus, for each v ≤ 0, we can deduce from [18, Thm. 2.5] that there is a unique
strong solution to (3.68). Moreover, for each v ≥ 0, the solution (Zt(v) : t ≥ 0) satis�es also
equation (3.6) with the Brownian motion given by dBt := (Zs−(v))−

1
2
∫ Zs− (v)

0
W (ds, du), and

it follows from Theorem 2.1 that any solution of equation (3.6) is a LBP with the required
parameters ψ and c > 0.

iii) Given v ≥ u ≥ 0, t ≥ 0, we set Υt := Zt(v) − Zt(u). From (3.68) we deduce that Υt

satis�es

Υt = α

∫ t

0

Υsds+ σ

∫ t

0

∫ Υs−

0

W1(ds, dw) +

∫ t

0

∫ Υs−

0

∫ ∞
1

rN1(ds, dν, dr)

+

∫ t

0

∫ Υs−

0

∫ 1

0

rÑ1(ds, dν, dr)− c
∫ t

0

[
Z2
s (v)− Z2

s (u)
]
ds,

where
W1(ds, dw) = W (ds, dw + Zs−(u))

is a white noise with intensity ds× dw, and

N1(ds, dν, dr) = N(ds, dν + Zs−(u), dr)

is a Poisson random measure with intensity ds× dν × Π(dr). Thus, (Υt : t ≥ 0) satis�es

Υt = α

∫ t

0

Υsds+ σ

∫ t

0

∫ Υs−

0

W1(ds, dw) +

∫ t

0

∫ Υs−

0

∫ ∞
1

rN1(ds, dν, dr)

+

∫ t

0

∫ Υs−

0

∫ 1

0

rÑ1(ds, dν, dr)− c
∫ t

0

Υ2
sds− c

∫ t

0

Zs(u)Υsds,

(3.69)

and we can deduce that statement iii) is true.

ii) Given t ≥ 0, the càdlàg property for v 7→ Zt(v) can be deduced from the comparison
property stated in [18, Thm. 2.3]. Moreover, it is easy to show using similar arguments as in
the proof of [18, Thm. 3.4] that there is a locally bounded non-negative function t 7→ C(t)
on [0,∞) so that

E
{

sup
0≤s≤t

|Zs(v)− Zs(u)|
}
≤ C(t)

{
(v − u) +

√
v − u

}
for v ≥ u ≥ 0. Therefore, using the previous bound and [18, Lemma 3.5] (along with the
Markov property stated in iii)), we can deduce that the path-valued process (Z(v) : v ≥ 0)
has a càdlàg modi�cation, following the arguments in the proof of Theorem 3.6 in [18].

Given �xed parameters ε, δ > 0 and a �xed initial population x ≥ 0, we now construct
a new �ow (Zε,δ

t (w) : w ≤ x, t ≥ 0) of CSBP with �frozen drifts�, driven by the same noise
processes W and N as the process Z in (3.68), by means of the following iterative procedure:
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Step 0 : For all t, v ≥ 0, we set

Zε,δ
t (0) := Zt(0) = 0 and Zε,δ

0 (v) := Z0(v) = v;

Step 1 : For every x ∈ R+, we set nx0 := sup{n ∈ N : x > nδ}. We de�ne then a new �ow
(Zε,δ

t (w) : w ≤ x, 0 ≤ ε) by

Zε,δ
t (w) :=

nx0∑
i0=0

Z
0,(i0)
t ((w ∧ (i0 + 1)δ)− (w ∧ i0δ)) , t ∈ (0, ε],

where, for each i0 ∈ {0, ..nx0}, the process (Z
0,(i0)
t (v) : t ≥ 0) is a CSBP with branching

mechanism ψ0,(i0)(λ) = ψ(λ) + cλi0δ, starting from v. More precisely, we consider
Z0,(i0)(v) as the unique strong solution of the SDE

Z
0,(i0)
t (v) =v + α

∫ t

0

Z0,(i0)
s (v)ds+ σ

∫ t

0

∫ Z
0,(i0)
s− (v)

0

W 0,(n0)(ds, du)

+

∫ t

0

∫ Z
0,(i0)
s− (v)

0

∫ ∞
1

rN0,(i0)(ds, dν, dr) +

∫ t

0

∫ Z
0,(i0)
s− (v)

0

∫ 1

0

rÑ0,(i0)(ds, dν, dr)

− ci0δ
∫ t

0

Z0,(i0)
s (v)ds.

Here
W 0,(i0)(ds, du) := W (ds, du+ Zε,δ

s (i0δ))

is a white noise with intensity ds× du, and

N0,(i0)(ds, dν, dr) := N(ds, dν + Zε,δ
s (i0δ), dr).

is a Poisson random measure with intensity ds× dν × Π(dr).

Step 2 : Now, for every i0 ∈ {0, .., n0} , we set

n(i0)
ε := sup{n ∈ N : Z0,(i0)

ε (δ) > nδ},

and for every i1 ∈ {0, .., n(i0)
ε + 1}, we de�ne

x
ε,(i0)
i1δ

:=
(
i1δ + Zε,δ

ε (i0δ)
)
.

We extend then each process (Zε,δ
t (w) : 0 ≤ t ≤ ε), with w ≤ x to a process (Zε,δ

t (w) :
0 < t ≤ 2ε) by setting

Zε,δ
t (w) := Zε,t(Z

ε,δ
ε (w)), t ∈ (ε, 2ε], (3.70)

where the process (Zε,t(y) : t ≥ ε) is given by

Zε,t(y) :=

nx0∑
i0=0

n
(i0)
ε∑
i1=0

Z
ε,(i0,i1)
t−ε

(
(x

ε,(i0)
(i1+1)δ ∧ y)− (x

ε,(i0)
i1δ
∧ y)

)
. (3.71)
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As before, each process (Z
ε,(i0,i1)
t (v) : t ≥ 0) is a CSBP with branching mechanism

ψε,(i0,i1)(λ) = ψ(λ) + cλx
ε,(i0)
i1δ

,

starting from v, and in fact it is de�ned as the unique strong solution of the SDE

Z
ε,(i0,i1)
t (v) = v + α

∫ t

0

Zε,(i0,i1)
s (v)ds+ σ

∫ t

0

∫ Z
ε,(i0,i1)
s− (v)

0

W ε,(i0,i1)(ds, du)

+

∫ t

0

∫ Z
ε,(i0,i1)
s− (v)

0

∫ ∞
1

rN ε,(i0,i1)(ds, dν, dr)

+

∫ t

0

∫ Z
ε,(i0,i1)
s− (v)

0

∫ 1

0

rÑ ε,(i0,i1)(ds, dν, dr)− cxε,(i0)
i1

∫ t

0

Zε,(i0,i1)
s (v)ds,

where
W ε,(i0,i1)(ds, du) = W (ds+ ε, du+ Zε,s(x

ε,(i0)
i1

))

is a white noise with intensity ds× du and

N ε,(i0,i1)(ds, dν, dr) = N(ds+ ε, dν + Zε,s(x
ε,(i0)
i1

), dr)

is a Poisson random measure with intensity ds× dν × Π(dr).

Step g : If we assume that the �ow (Zε,δ
t (w) : t ≤ kδ) is already constructed, we de�ne then

inductively the extension of the process Zε,δ(w) to (kδ, (k + 1)δ] as

Zε,δ
t (w) := Zkε,t(Z

ε,δ
kε (w)), t ∈ (kε, (k + 1)ε] (3.72)

where

Zkε,t(y) :=

nx0∑
i1=0

· · ·
n

(i0,..ik−1)

kε∑
ik=0

Z
kε,(i0,i1,..,ik)
t−kε

(
(x

kε,(i0,..,ik−1)

(ik+1)δ ∧ y)− (x
kε,(i0,..,ik−1)

(ik)δ ∧ y)
)
,

(3.73)
with

n
(i0,i1,..ik−1)
kε = sup{n ∈ N : Zk−1,(i0,i1,..,ik−2)

ε (δ) > nδ}
and

x
kε,(i0,..,ik−1)
ik

= Z(k−1)ε,kε(ik−1δ) + ikδ, ik ∈ {0, 1, ..n(i0,i1,..ik−1)
kε }. (3.74)

Also, each process (Z
kε,(i0,i1,..ik)
t (v) : t ≥ 0) is a CSBP with branching mechanism

ψkε,(i0,i1,..,ik)(λ) = ψ(λ) + cλx
kε,(i0,..,ik−1)
ikδ

,

starting from v, given as the unique strong solution of the SDE

Z
kε,(i0,..,ik)
t (v) = v + α

∫ t

0

Zkε,(i0,..,ik)
s (v)ds+ σ

∫ t

0

∫ Z
kε,(i0,..,ik)
s− (v)

0

W kε,(i0,..,ik)(ds, du)

+

∫ t

0

∫ Z
kε,(i0,..,ik)
s− (v)

0

∫ ∞
1

rNkε,(i0,..,ik)(ds, dν, dr)

+

∫ t

0

∫ Z
kε,(i0,..,ik)
s− (v)

0

∫ 1

0

rÑkε,(i0,..,ik)(ds, dν, dr)

− cxkε,(i0,..ik−1)
ikδ

∫ t

0

Zkε,(i0,..,ik)
s (v)ds,

(3.75)
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where
W kε,(i0,..,ik)(ds, du) = W (ds+ kε, du+ Zkε,s(x

kε,(i0,..,ik−1)
ikδ

))

is a white noise with intensity ds× du and

Nkε,(i0,..,ik)(ds, dν, dr) = N(ds+ kε, dν + Zkε,s(x
kε,(i0,..,ik−1)
ikδ

), dr)

is a Poisson random measure with intensity ds× dν × Π(dr).

Remark 3.31. Using the Lévy characterization of Brownian motions, one can check that
the white noise processesW kε,(i0,..,ik)(ds, du) are independent when the indexes (i0, .., ik) vary.
Indeed, using the quadratic variations of local martingales given by stochastic integrals with
respect to Gaussian white noise, each W kε,(i0,..,ik)(ds × [a, b]) with a ≤ b is seen to be a
Brownian motion (of variance b − a) with respect to �ltration generated by both W and
N , and for di�erent multi-indexes the covariation processes vanish since the integrals are
disjointly supported processes. A similar argument can be used for the Poisson integrals.
The independence between white and Poisson noise integrals can be checked by an extension
of such arguments using Itô calculus to identify the joint characteristic functions of the
stochastic integrals (see e.g. [24, Thm. 2.1]).

We will roughly refer to the above processes (Zε,δ
t (w) : t ≥ 0),w ≥ 0 as the �grid approxi-

mation of the LBP�. We can easily deduce an SDE for each of them

Lemma 3.32. For every w ≤ x, the process Zε,δ(w) = (Zε,δ
t (w) : t ≥ 0) solves the following

stochastic di�erential equation:

Zε,δ
t (w) = w + α

∫ t

0

Zε,δ
s (w)ds+ σ

∫ t

0

∫ Zε,δs− (w)

0

W (ds, du) +

∫ t

0

∫ Zε,δs− (w)

0

∫ ∞
1

rN(ds, dν, dr)

+

∫ t

0

∫ Zε,δs− (w)

0

∫ 1

0

rÑ(ds, dν, dr)− c
nx0∑
i0=0

· · ·
n

(..)
ktε∑

ikt=0

∫ t

0

x
ksε,(i0,..,iks−1)
iksδ

Z
ksε,(i0,..,iks )
s−ksε(

(x
ksε,(i0,..iks−1)

(iks+1)δ ∧ Zε,δ
ksε

(w))− (x
ksε,(i0,..iks−1)
iksδ

∧ Zε,δ
ksε

(w))
)
ds,

(3.76)
where σ ≥ 0 and α are the same objects as in (3.1), W (ds, du) is a white noise process
on (0,∞)2 based on the Lebesgue measure ds × du and N is a Poisson random measure on
(0,∞)3 with intensity ds× dν ×Π(dr). Moreover, by construction and properties of �ows of
CSBP, for each t ≥ 0, w 7→ Zε,δ

t (w) is a non-negative and non-decreasing càdlàg process on
[0,∞).

Proposition 3.33. For each x ≥ 0, the process (Zε,δ
a (x) : a ≥ 0) and the process (LaTx(ε, δ) :

a ≥ 0) has the same law.

Proof. For every k ∈ N and (i0, i1, ..ik) ∈ N∗, it is immediate from Proposition 3.20 to see
that the process(

Zkε,a(x
kε,(i0,..,ik−1)

(ik+1)δ )− Zkε,a(xkε,(i0,..,ik−1)
ikδ

) : kε < a ≤ (k + 1)ε
)
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behaves as the approximated local time process

(La
T
kε,(i0,..,ik−1)

(ik+1)δ

(ε, δ)− La
T
kε,(i0,..,ik−1)

(ik)δ

(ε, δ) : kε < a ≤ (k + 1)ε).

Furthermore, that result also tells us that, at each height a, the process LaTx(ε, δ) is
obtained as a sum of branching processes de�ned rectangle by rectangle in the tree-like
height/local time discrete grid, whose branching mechanisms are determined by adding to ψ
the constant c times the cumulative population in the lower left corner of the rectangle. Thus,
it becomes clear form the independence of the noises driving the CSBP stated in Remark
3.31 in each block of the grid and the construction of the �ow Zε,δ, that the latter is � an
embedding� of L(ε, δ) in the �ow framework, so that the law of the process (Zε,δ

a (x) : a ≥ 0)
is the same as the process (LaTx : a ≥ 0).

The following comparison property will be useful in the sequel.

Lemma 3.34 (Comparison property). For all ε, δ ≥ 0 and 0 ≤ v ≤ w, the solution (Zε,δ
t (v) :

t ≥ 0) of equation (3.76) and the solution (Zt(v) : t ≥ 0) of equation (3.68) satisfy

P{Zε,δ
t (v) ≤ Yt(w) ∀t ≥ 0} = 1 and P{Zt(v) ≤ Yt(w) ∀t ≥ 0} = 1, (3.77)

where (Yt(w) : t ≥ 0) is the solution of equation (3.67). In both cases we say that the
�comparison property� holds.

Proof. The comparison property for the logistic process Z follows directly from [18, Theorem
2.2]. For the grid approximation Zε,δ of the LBP, the same result implies the comparison
property for each CSBP (Z

kε,(i0,i1,..ik)
t (v) : t ≥ 0) with branching mechanism

ψkε,(i0,i1,..,ik)(λ) = ψ(λ) + cλx
kε,(i0,..,ik−1)
ikδ

and initial condition v, with respect to a �ow of CSBPs with mechanism ψ(λ) driven by the
same noise processes, and starting from initial conditions w ≥ v. Since Zε,δ

t is de�ned in
each band kε ≤ t(k + 1)ε as a sum over indexes (i0, i1, .., ik) of the above processes, by an
inductive argument in k one gets the desired comparison property.

We prove know that the process (Zε,δ
t (x) : t ≥ 0) is actually a grid approximation of the

LBP (Zt(x) : t ≥ 0), in the sense of the following proposition.

Proposition 3.35 (Convergence of the grid approximation of the LBP). For each x ≥ 0
and t ≥ 0, the r.v. Zε,δ

t (x) converges in probability to Zt(x). In particular, the process
(Zε,δ

a (x) : x ≥ 0, a ≥ 0) converges to (Za(x) : x ≥ 0, a ≥ 0) in the sense of �nite dimensional
distributions.

We introduce the �ltration(
S(x)
t

)
t≥0

=

(
kt∨
k=0

σ
(
Zkε,s(h), h ≤ Zε,δ

kε (x), kε < s ≤ (k + 1)ε ∧ t
))

t≥0

,

where (Zkε,s(h) : s ≥ kε) is the process de�ned in equation (3.73), and we de�ne (St)t≥0 by

St :=
⋃
x≥0

S(x)
t .

To unburden the proof of the above proposition, we prove �rst a technical lemma.
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Lemma 3.36. Set τm = inf{t ≥ 0 : Yt(x) > m}, m ≥ 1. We have then that

E

1{s≤τm} sup
0≤v≤Zε,δksε(x)

|Zksε,s(v)− v|

 ≤ mε

(
|α|+

∫ ∞
1

rΠ(dr)

)
+ cm2ε

+
√
mεC1

σ +

√∫ 1

0

r2Π(dr)

 ,

where C1 > 0 is an universal constant.

Proof. Using (3.73), we have that

E

1{s≤τm} sup
0≤v≤Zε,δksε(x)

|Zksε,s(v)− v|

 ≤|α|E [1{s≤τm} ∫ s

ksε

Zε,δ
θ (x)dθ

]
+ σE

 sup
0≤v≤Zε,δks∧τmε(x)

|MW
v (s ∧ τm)|


+ E

[
1{s≤τm}

∫ s

ksε

∫ Zε,δθ−(x)

0

∫ ∞
1

rN(dθ, dν, dr)

]

+ E

 sup
0≤v≤Zε,δks∧τmε(x)

|MN
v (s ∧ τm)|


+ cE

[
1{s≤τm}Z

ε,δ
ksε

(x)

∫ s

ksε

Zε,δ
θ (x)dθ

]
,

(3.78)
where the processes (MW

v (s ∧ τm))v≥0 and (MN
v (s ∧ τm))v≥0, de�ned as

MW
v (s) =

∫ s∧τm

ks∧τmε

∫ Zks∧τmε,θ(v)

0

W (dθ, du) and MN
v (s) =

∫ s∧τm

ks∧τmε

∫ Zks∧τmε,θ(v)

0

∫ 1

0

rÑ(dθ, dν, dr),

respectively are (�vertical�) martingales issued from 0. Indeed, we have

E
[∫ s∧τm

ks∧τmε

∫ Zks∧τmε,θ(v+h)

0

W (dθ, du)

∣∣∣∣∣Sksε,(v)
s

]

= E

[∫ s∧τm

ks∧τmε

∫ Zks∧τmε,θ(v)

0

W (dθ, du)

∣∣∣∣Sksε,(v)
s

]
+ E

[∫ s∧τm

ks∧τmε

∫ Zks∧τmε,θ(v+h)

Zks∧τmε,θ(v)

W (dθ, du)

∣∣∣∣Sksε,(v)
s

]

=

∫ s∧τm

ks∧τmε

∫ Zks∧τmε,θ(v)

0

W (dθ, du) + E

[∫ s∧τm

ks∧τmε

∫ Zks∧τmε,θ(v+h)

Zks∧τmε,θ(v)

W (dθ, du)

]

=

∫ s∧τm

ks∧τmε

∫ Zks∧τmε,θ(v)

0

W (dθ, du),

where the second equality holds by Remark 3.31. By Ito's formula in the time variable s, we
see also that

E
[
MW

v (s ∧ τm)
2
]

= 2E

[∫ s∧τm

ks∧τmε

∫ Zks∧τmε,θ(v)

0

MW
u (θ)W (dθ, du)

]
+ E

[∫ s∧τm

ks∧τmε

Zks∧τmε,θ(v)dθ

]
= E

[∫ s∧τm

ks∧τmε

Zks∧τmε,θ(v)dθ

]
,
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and we deduce that

E
[[
MW

. (s ∧ τm),MW
. (s ∧ τm)

]
v

]
= E

[∫ s∧τm

ks∧τmε

Zks∧τmε,θ(v)dθ

]

by de�nition of the quadratic variation of (MW
v (s∧ τm))v≥0. Thus, we bound the supremum

of MW using Burkholder-Davis-Gundy's inequality (again in the �vertical� sense)

E

 sup
0≤v≤Zε,δks∧τmε(x)

|MW
v (s ∧ τm)|

 ≤ C1E
[√

[MW
. (s ∧ τm),MW

. (s ∧ τm)]Zε,δks∧τmε(x)

]

≤ C1

√
E
[∫ s∧τm

ks∧τmε

Zε,δ
θ (x)dθ

]
,

(3.79)

with C1 > 0 a universal constant. In a similar way, we check that

E

[∫ s∧τm

ks∧τmε

∫ Zks∧τmε,θ(v+h)

0

∫ 1

0

rÑ(dθ, dν, dr)

∣∣∣∣Sksε,(v)
s

]
=

∫ s∧τm

ks∧τmε

∫ Zks∧τmε,θ(v)

0

∫ 1

0

rÑ(dθ, dν, dr),

and

E
[
M Ñ

v (s ∧ τm)
2
]

= 2E

[∫ s∧τm

ks∧τmε

∫ Zks∧τmε,θ(v)

0

∫ 1

0

M Ñ
u (θ)Ñ(dθ, dν, dr)

]

+ E

 ∑
ks∧τmε<sn≤s∧τm

r2
n1{0≤rn≤1}1{νn≤Zks∧τmε,sn (v)}


= E

[∫ s∧τm

ks∧τmε

∫ Zks∧τmε,θ(v)

0

∫ 1

0

r2Π(dr)dθdν

]
.

by Itô's formula. Thus, applying Burkholder-Davis-Gundy's inequality we have that

E

 sup
0≤v≤Zε,δks∧τmε(x)

|M Ñ
v (s ∧ τm)|

 ≤ C1E
[√[

M Ñ
. (s ∧ τm),M Ñ

. (s ∧ τm)
]
Zε,δks∧τmε(x)

]

≤ C1

√
E
[∫ s∧τm

ks∧τmε

Zε,δ
θ (x)dθ

∫ 1

0

r2Π(dr)

]
.

(3.80)
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Using expressions (3.79),(3.80) to bound equation (3.78) we obtain then that

E

1{s≤τm} sup
0≤v≤Zε,δksε(x)

|Zksε,s(v)− v|

 ≤|α|E [1{s≤τm} ∫ s

ksε

Zε,δ
θ (x)dθ

]

+ σC1

√
E
[
1{s≤τm}

∫ s

ksε

Zε,δ
θ (x)dθ

]
+ E

[
1{s≤τm}

∫ s

ksε

Zε,δ
θ−(x)dθ

∫ ∞
1

rΠ(dr)

]
+ C1

√
E
[
1{s≤τm}

∫ s

ksε

Zε,δ
θ (x)dθ

∫ 1

0

r2Π(dr)

]
+ cE

[
1{s≤τm}Z

ε,δ
ksε

(x)

∫ s

ksε

Zε,δ
θ (x)dθ

]
,

and we get the desired bound using the comparison property 3.34.

Proof of Proposition 3.35. To establish the desired convergence we adapt computations
in [25]. Given ε, δ ≥ 0, and t, x ≥ 0, we set ζε,δt (x) := Zt(x)− Zε,δ

t (x). We have then ζε,δt (x)
satis�es the SDE

ζε,δt (x) = α

∫ t

0

(
Zs(x)− Zε,δ

s (x)
)
ds+ σ

∫ t

0

∫ ∞
0

(
1{ν<Zs−(x)} − 1{ν<Zε,δs− (x)}

)
W (ds, du)

+

∫ t

0

∫ ∞
0

∫ ∞
1

(
1{ν<Zs−(x)} − 1{ν<Zε,δs− (x)}

)
rN(ds, dν, dr)

+

∫ t

0

∫ ∞
0

∫ 1

0

(
1{ν<Zs−(x)} − 1{ν<Zε,δs− (x)}

)
rÑ(ds, dν, dr)

− c

2

∫ t

0

[
Zs

2(x)− Zε,δ
s

2
(x)
]
ds− c

2

∫ t

0

Zε,δ
s

2
(x)ds

+ c

nx0∑
i0=0

..

n
(i0,..ik−1)

ktε∑
ikt=0

∫ t

0

x
ε,(i0,..iks−1)
iksδ

Z
ε,(i0,..,iks )
s−ksε (x

ε,(i0,..iks−1)

(iks+1)δ ∧ Zε,δ
ksε

(x)− xε,(i0,..iks−1)
iksδ

)ds

(3.81)
We �rst notice that∫ t

0

[
Zε,δ
s (x)

]2
ds = 2

∫ t

0

∫ Zε,δksε(x)

0

Zksε,s(v)dvZkε,s(v)ds,

and

Z
ε,(i0,..,iks )
s−ksε (x

ε,(i0,..iks−1)

(iks+1)δ ∧ Zε,δ
ksε

(x)− xε,(i0,..iks−1)
iksδ

) = Zksε,s(x
ε,(i0,..iks−1)

(iks+1)δ ∧ Zε,δ
ksε

(x))− Zksε,s(x
ε,(i0,..iks−1)
iksδ

)

=

∫ x
ε,(i0,..iks−1)

(iks
+1)δ

∧Zε,δksε(x)

x
ε,(i0,..iks−1)

iks
δ

dvZksε,s(v).

Replacing these expressions in the two last terms in the right-hand side of the equation (3.81),
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we obtain that

ζε,δt (x) = α

∫ t

0

(
Zs(x)− Zε,δ

s (x)
)
ds+ σ

∫ t

0

∫ ∞
0

(
1{ν<Zs−(x)} − 1{ν<Zε,δs− (x)}

)
W (ds, du)

+

∫ t

0

∫ ∞
0

∫ ∞
1

(
1{ν<Zs−(x)} − 1{ν<Zε,δs− (x)}

)
rN(ds, dν, dr)

+

∫ t

0

∫ ∞
0

∫ 1

0

(
1{ν<Zs−(x)} − 1{ν<Zε,δs− (x)}

)
rÑ(ds, dν, dr)

− c

2

∫ t

0

[
Zs(x)− Zε,δ

s (x)
] [
Zs(x) + Zε,δ

s (x)
]
ds

− c
nx0∑
i0=0

..

n
(i0,..ik−1)

ktε∑
ikt=0

∫ t

0

∫ Zε,δksε(x)

0

1
{x
ε,(i0,..iks−1)

iks
δ <v≤x

ε,(i0,..iks−1)

iks
δ }[

Zksε,s(v)− xε,(i0,..iks−1)
iksδ

]
dvZksε,s(v)ds.

(3.82)
For what follows, we use some notation developed in the proof of [25, Thm 5.4]. Let us de�ne

� the constant K := |α|+M , where
∫∞

1
rΠ(dr) = M <∞. Observe that

|αx|+
∫ ∞

0

∫ ∞
1

r1{ν<x}dνΠ(dr) ≤ K(x+ 1).

� the function U(x) := (σ2 + I)(x), where I =
∫ 1

0
r2Π(dr). Then, U satis�es

σ2x+

∫ ∞
0

∫ 1

0

r21{ν<x}dνΠ(dr) ≤ U(x).

� the function β(z) := (|α + 1| + M)z, which satis�es
∫

0+
β(z)−1dz = ∞. If we suppose

also without losing generality that y ≤ x, we have

|(α + 1)(x− y)|+
∫ ∞

0

∫ ∞
1

r1{y<ν<x}dνΠ(dr) ≤ β(x− y). (3.83)

� the function %(x) := [σ2 + I]
√
x, where I =

∫ 1

0
r2Π(dr). Note that, if y ≤ x, then

σ2(
√
x−√y)2 +

∫ ∞
0

∫ 1

0

r21{y<ν<x}dνΠ(dr) ≤ %(x− y). (3.84)

We �x then a sequence {aj}j≥1 such that aj = aj−1 e
−j[σ2+I]2 and a0 = 1. Note that

aj → 0+ decreasingly and
∫ aj−1

aj
%(z)−2dz = j for j ≥ 1.Thus, let z 7→ ψj(z) be a non-negative

continuous function on R which has support in (aj, aj−1), satis�es 0 ≤ ψj(z) ≤ 2k−1%(z)−2

for aj < z < aj−1, and
∫ aj−1

aj
ψj(z)dz = 1. For each j ≥ 1, we de�ne the non-negative and

twice continuously di�erentiable function

φj(x) =

∫ |x|
0

dy

∫ y

0

ψj(z)dz, x ∈ R,
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such that φj(x)→ |x| non-decreasingly as j →∞, and

{
0 ≤ φ′j(x) ≤ 1 if x ≥ 0

−1 ≤ φ′j(x) ≤ 0 if x < 0
. (3.85)

We have also that φ′′j (x) ≥ 0 for x ∈ R, and

φ′′j (x− y)[σ
√
x− σ√y]2 → 0

when j →∞, uniformly in x, y. Furthermore,

0 ≤
∫ ∞

0

∫ ∞
1

Dl(r,ν;x,y)φj(x− y)dνΠ(dr) ≤ 1

j[σ2 + I]

∫ 1

0

r2Π(dr)→j→∞ 0,

uniformly in x, y ≥ 0, where l(r, ν; , x, y) = r
[
1{ν<x} − 1{ν<y}

]
.

Notice that ζε,δt∧τm(x) ≤ 2m for each m ∈ N, by Lemma 3.34. By (3.82) and Itô's formula,
we have that

φj(ζ
ε,δ
t∧τm(x)) = a

∫ t∧τm

0

φ′j(ζ
ε,δ
s (x))

(
Zs(x)− Zε,δ

s (x)
)
ds

+
1

2

∫ t∧τm

0

σ2φ′′j (ζ
ε,δ
s (x))

[√
Zs(x)−

√
Zε,δ
s (x)

]2

ds

+

∫ t∧τm

0

∫ ∞
0

σφ′j(ζ
ε,δ
s (x))l(Zs(x), Zε,δ

s (x))W (ds, du)

+

∫ t∧τm

0

∫ ∞
0

∫ ∞
1

φ′j(ζ
ε,δ
s (x))l(Zs(x), Zε,δ

s (x))N(ds, dν, dr)

+

∫ t∧τm

0

∫ ∞
0

∫ 1

0

φ′j(ζ
ε,δ
s (x))l(Zs(x), Zε,δ

s (x))Ñ(ds, dν, dr)

+
∑

s≤t∧τm

[
φk(ζ

ε,δ
s (x))− φk(ζε,δs− (x))− φ′j(ζ

ε,δ
s− (x))∆ζε,δs (x)

]
− c

2

∫ t∧τm

0

φ′j(ζ
ε,δ
s (x))

[
Zs(x)− Zε,δ

s (x)
] [
Zs(x) + Zε,δ

s (x)
]
ds

− c
nx0∑
i0=0

..

n
(i0,..ikt−1)

ktε∑
ikt=0

∫ t∧τm

0

∫ Zε,δksε(x)

0

φ′j(ζ
ε,δ
s (x))

1{
x
ε,(i0,..iks−1)

iks
δ <v≤x

ε,(i0,..iks−1)

(iks
+1)δ

} [Zksε,s(v)− xε,(i0,..iks−1)
iksδ

]
dvZksε,s(v)ds
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and so

φj(ζ
ε,δ
t∧τm(x)) = a

∫ t∧τm

0

φ′j(ζ
ε,δ
s (x))

(
Zs(x)− Zε,δ

s (x)
)
ds

+
1

2

∫ t∧τm

0

σ2φ′′j (ζ
ε,δ
s (x))

[√
Zs(x)−

√
Zε,δ
s (x)

]2

ds

+
∑
s≤t

[
φk(ζ

ε,δ
s (x))− φk(ζε,δs− (x))− φ′j(ζ

ε,δ
s− (x))∆ζε,δs (x)

]
+

∫ t∧τm

0

ds

∫ ∞
0

∫ 1

0

4l(r,ν;Zs− (x),Zε,δ
s−

(x)φk(ζ
ε,δ
s− (x))dνΠ(dr)

+

∫ t∧τm

0

ds

∫ ∞
0

Dl(r,ν;Zs− (x),Zε,δ
s−

(x))φk(ζ
ε,δ
s− )dνΠ(dr) + M̂t∧τm

− c

2

∫ t∧τm

0

φ′j(ζ
ε,δ
s (x))

[
Zs(x)− Zε,δ

s (x)
] [
Zs(x) + Zε,δ

s (x)
]
ds

− c
nx0∑
i0=0

..

n
(i0,..ikt−1)

ktε∑
ikt=0

∫ t∧τm

0

∫ Zε,δksε(x)

0

φ′j(ζ
ε,δ
s (x))

1
{x
ε,(i0,..iks−1)

iks
δ <v≤x

ε,(i0,..iks−1)

(iks
+1)δ

}

[
Zksε,s(v)− xε,(i0,..iks−1)

iksδ

]
dvZksε,s(v)ds,

(3.86)

where 4hf(z) := f(z + h) − f(z) and (M̂t∧τm) is a (St) - martingale. By the properties of
φj, we see that

φ′j(ζ
ε,δ
s− (x))α|Zs(x)− Zε,δ

s (x)| ≤ |α||Zs(x)− Zε,δ
s (x)|,

and∫ ∞
0

∫ ∞
1

4l(r,ν;Ys− (x),Zε,δ
s−

(x))φj(ζ
ε,δ
s− (x))dνΠ(dr) ≤

∫ ∞
0

∫ ∞
1

r|1{ν<Zs(x)} − 1{ν<Zε,δs (x)}|Π(dr)dν,

so we can deduce that

φ′′j (ζ
ε,δ
s (x))σ2

[√
Zs(x)−

√
Zε,δ
s (x)

]2

→j→0 0,

and ∫ ∞
0

∫ 1

0

Dl(r,ν;Ys− (x),Zε,δ
s−

(x))φj(ζ
ε,δ
s− (x))dνΠ(dr)→j→0 0,

uniformly on the event {s ≤ τm}. Taking expectation in (3.86) and letting j → ∞, we see
that

E|ζε,δt∧τm(x)| ≤ E
[∫ t

0

(|α|+M)|ζε,δs∧τm(x)|ds
]

+
c

2
E
[∫ t∧τm

0

|ζε,δs∧τm(x)|
[
Zs(x) + Zε,δ

s (x)
]
ds

]

+ cE


∣∣∣∣∣∣∣
nx0∑
i0=0

..

n
(i0,..ikt−1)

ktε∑
ikt=0

∫ t∧τm

0

∫ Zε,δksε(x)

0

1
{x
ε,(i0,..iks−1)

iks
δ <v≤x

ε,(i0,..iks−1)

iks
δ }(

Zksε,s(v)− xε,(i0,..iks−1)
iksδ

)
dvZksε,s(v)ds

∣∣∣]
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from where

E|ζε,δt∧τm(x)| ≤ E
[∫ t

0

(|α|+M + cm)|ζε,δs∧τm(x)|ds
]

+ cE

 nx0∑
i0=0

..

n
(i0,..ikt−1)

ktε∑
ikt=0

∫ t∧τm

0∫ Zε,δksε(x)

0

1
{x
ε,(i0,..iks−1)

iks
δ <v≤x

ε,(i0,..iks−1)

(iks
+1)δ

}

∣∣∣v − xε,(i0,..iks−1)
iksδ

∣∣∣ dvZksε,s(v)ds
]

+ E

[∣∣∣∣∣
∫ t∧τm

0

∫ Zε,δksε(x)

0

(Zksε,s(v)− v) dvZksε,s(v)ds

∣∣∣∣∣
]
.

(3.87)

By (3.74), we see that
∣∣∣v − xε,(i0,..ik−1)

iksδ

∣∣∣ ≤ δ. Thus,

E|ζε,δt∧τm(x)| ≤ E
[∫ t

0

(|α|+M + cm)|ζε,δs∧τm(x)|ds
]

+ cδE
[∫ t∧τm

0

Zε,δ
s (x)ds

]
+ E

∣∣∣∣∣c
∫ t∧τm

0

∫ Zε,δksε(x)

0

(Zksε,s(v)− v)dvZksε,s(v)ds

∣∣∣∣∣
≤ E

[∫ t∧τm

0

(|α|+M + cm)|ζε,δs∧τm(x)|ds
]

+ cmδt

+ cE

∣∣∣∣∣
∫ t∧τm

0

∫ Zε,δksε(x)

0

(Zksε,s(v)− v)dvZksε,s(v)ds

∣∣∣∣∣ .
(3.88)

By integration by parts, we have that∫ Zε,δksε(x)

0

vdvZksε,s(v) = vZksε,s(v)

∣∣∣∣Zε,δksε(x)

0

−
∫ Zε,δksε(x)

0

Zksε,s(v)dv

= Zε,δ
ksε

(x)Zε,δ
s (x)−

∫ Zε,δksε(x)

0

Zksε,s(v)dv.

Thus, the last term in the right-hand side of (3.88) can be rewritten as

cE

∣∣∣∣∣
∫ t∧τm

0

∫ Zε,δksε(x)

0

(Zksε,s(v)− v)dvZksε,s(v)ds

∣∣∣∣∣ =cE
∣∣∣∣12
∫ t∧τm

0

Zε,δ
s (x)

2
ds−

∫ t∧τm

0

Zε,δ
ksε

(x)Zε,δ
s (x)ds

+

∫ t∧τm

0

∫ Zε,δksε(x)

0

Zksε,s(v)dvds

∣∣∣∣∣
≤ c

2
E
∣∣∣∣∫ t∧τm

0

(
Zε,δ
s (x)− Zε,δ

ksε
(x)
)2

ds

∣∣∣∣
+ cE

∣∣∣∣∣
∫ t∧τm

0

∫ Zε,δksε(x)

0

(Zksε,s(v)− v) dvds

∣∣∣∣∣ ,
where in the last inequality we used the fact that

1

2

∫ t∧τm

0

Zε,δ
ksε

(x)
2
ds =

∫ t∧τm

0

∫ Zε,δksε(x)

0

vdvds.
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Then, equation (3.88) yields

E|ζε,δt∧τm(x)| ≤
∫ t

0

(|α|+M + cm)E
[
|ζε,δs∧τm(x)|

]
ds+ cmδt

+
c

2

∫ t

0

E
[
1{s≤τm}

∣∣∣Zε,δ
s (x)− Zε,δ

ksε
(x)
∣∣∣ (Zε,δ

s (x) + Zε,δ
ksε

(x)
)]
ds

+ c

∫ t

0

E

[
1{s≤τm}

∫ Zε,δksε(x)

0

|Zksε,s(v)− v| ds

]
ds

≤
∫ t

0

(|α|+M + cm)E
[
|ζε,δs∧τm(x)|

]
ds+ cmδt

+ cm

∫ t

0

E
[
1{s≤τm}

∣∣∣Zε,δ
s (x)− Zε,δ

ksε
(x)
∣∣∣] ds

+ c

∫ t

0

E

[
1{s≤τm}

∫ Zε,δksε(x)

0

|Zksε,s(v)− v| dv

]
ds

(3.89)
We use Lemma 3.36 to bound the last two terms in the right-hand side of equation above

to obtain that

E|ζε,δt∧τm(x)| ≤ (|α|+M + cm)E
[∫ t

0

|ζε,δs∧τm(x)|ds
]

+ cmδt+ 2cm2tε

(
|α|+

∫ ∞
1

rΠ(dr)

)

+ 2cmt

cm2ε+
√
mεC1

σ +

√∫ 1

0

r2Π(dr)

 .

Since ζs < 2m for 0 < s ≤ τm, we deduce that t 7→ E|ζt∧τm| is locally bounded. Thus, we
have that

E|ζε,δt∧τm(x)| ≤ cmt

[
δ + 2mε

(
|α|+

∫ ∞
1

rΠ(dr)

)
+ 2cm2ε

+2
√
mεC1

σ +

√∫ 1

0

r2Π(dr)

 e(|α|+M+cm)t

by Gronwall's lemma, from where E|ζε,δt∧τm(x)| goes to zero when (δ, ε)→ (0, 0). Since τm →∞
as m→∞ a.s., we have the desired result.

Finally, we can easily deduce the
Proof of Theorem 3.11. Given x ≥ 0, by Proposition 3.21 we have the convergence
in the sense of �nite-dimensional laws of the process (LaTx(ε, δ) : a ≥ 0) to the process
(LaTx(∗) : a ≥ 0). Analogously, by Proposition 3.35 we have convergence, in the sense of �nite-
dimensional distributions, of the process (Zε,δ

a (x) : a ≥ 0) to the process (Za(x) : a ≥ 0).
Then, thanks to Proposition 3.33, we obtain the desired result.
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