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“Un dia bien, otro mal, no hay mal que por bien no venga,
el que quiere andar ya sabe que llevar la sombra cuesta. ”
Armando Tejada Gémez
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Resumen

El objetivo de este trabajo es explorar el comportamiento de los procesos de ramificacion
evolucionando a tiempo y estados continuos, y encontrar representaciones para su trayectoria
y su genealogia.

En el primer capitulo se muestra que un proceso de ramificaciéon condicionado a no ex-
tinguirse es la Gnica solucion fuerte de una ecuacion diferencial estocastica conducida por un
movimiento Browniano y una medida puntual de Poisson, més un subordinador que repre-
senta la inmigracion, donde estos procesos son mutuamente independientes. Para esto se usa
el hecho de que es posible obtener la ley del proceso condicionado a partir del proceso original,
a través de su h-transformada, y se da una manera trayectorial de construir la inmigracion a
partir de los saltos del proceso.

En el segundo capitulo se encuentra una representacién para los procesos de ramificacion
con crecimiento logistico, usando ecuaciones estocasticas. En particular, usando la definicion
general dada por A. Lambert, se prueba que un proceso logistico es la tinica solucion fuerte de
una ecuacion estocastica conducida por un movimiento Browniano y una medida puntual de
Poisson, pero con un drift negativo fruto de la competencia entre individuos. En este capitulo
se encuentra ademas una ecuacion diferencial estocastica asociada con un proceso logistico
condicionado a no extinguirse, suponiendo que éste existe y que puede ser definido a través
de una h-transformada. Esta representaciéon muestra que nuevamente el condicionamiento
da origen a un término correspondiente a la inmigracion, pero en este caso dependiente de la
poblacion.

Por ultimo, en el tercer capitulo se obtiene una representacion de tipo Ray-Knight para
los procesos de ramificacion logisticos, lo que da una descripciéon de su genealogia continua.
Para esto, se utiliza la construccion de arboles aleatorios continuos asociados con procesos de
Lévy generales dada por J.-F. Le Gall e Y. Le Jan, y una generalizaciéon del procedimiento
de “poda” desarrollado por R. Abraham, J.-F. Delmas. Este resultado extiende la repre-
sentacion de Ray-Knight para procesos de difusion logisticos dada por V. Le, E. Pardoux y
A. Wakolbinger.






Abstract

The aim of this Ph.D. thesis is to explore the behaviour of continuous-state population
processes that evolve over continuous time, and to find some pathwise and genealogical
representations for such processes.

In the first chapter, it is shown that a (sub-)critical continuous-state branching process
conditioned to be never extinct is the unique strong solution to a stochastic differential
equation driven by a Brownian motion and a Poisson point measure, plus an independent
subordinator accounting for immigration, and these objects are mutually independent.To
this end, the fact that the law of the conditioned CSBP is obtained from the one of the non
conditioned process by means of an explicit A-transform is used, and an explicit mechanism
to build the immigration term appearing in the conditioned process is given, by randomly
selecting jumps of the original one.

In the second chapter, a representation for logistic branching process is found using
stochastic differential equations. In particular, Lambert’s general definition [36] is used to
characterize them as the unique strong solution of a stochastic differential equation driven
by a Brownian motion and a Poisson point measure with a negative drift, resulting from
negative interactions between each pair of individuals in the population. Also, under the
assumption that a logistic branching process conditioned to be never extinct exists and can
be defined trough a h-transform, a stochastic differential equation associated is found. Such
representation shows again an immigration term, that it is density-dependent in this case.

In the third chapter, a Ray-Knight representation for logistic branching processes is es-
tablished, giving a description of its continuous genealogy. To this end, the construction of
continuum random trees associated with general Lévy processes given by J.-F. Le Gall and
Y. Le Jan and a generalization of the pruning procedure developed by R. Abraham and J.-F.
Delmas are used. The main result presented in this last chapter extends the Ray-Knight
representation for logistic Feller difussion given by V. Le, E. Pardoux and A. Wakolbinger.
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Introduction

The aim of this Ph.D. thesis is to explore the behaviour of continuous-state population
processes that evolve over continuous time. In nature, competition for limited resources
regulates the growth of these populations, and their behaviour varies according to whether
they are isolated or not. Therefore, study their genealogy and possible extinction is an issue
of great interest for various sciences, especially biology (see |29, 37, 16, 39, 7|).

In population biology, the most simple process modeling the dynamics of a population is
the Malthusian process. If Y; € [0, 00) denotes the total number of individuals at time ¢, then
the Malthusian process satisfies dY; = bY,dt, where b is the mean birth-death balance per
individual and per time unit. The solutions are straightforward exponential functions and
when b > 0, they rapidly go to oo, proving useless for long-term models. Moreover, this model
does not allow populations with positive growth to become extinct. This elementary model
has a random counterpart, called the branching process, where populations may have positive
(expected) growth and become extinct. In their discrete time and discrete state-space form,
branching processes were introduced by Lord Francis Galton and Irénée-Jules Bienaymé in
1873. The so-called Bienaymé-Galton-Watson (BGW) process is a Markov chain, where time
steps are the nonoverlapping generations, with individuals behaving independently from one
another and each giving birth to a (random) number of offspring (belonging to the next
generation). These (random) offspring all have the same probability distribution. Here,
the mean growth is geometric, but the process evolves randomly through time, eventually
dying out or tending to oo, with probability 1. In 1958, M. Jirina [32] defined continuous-
state branching processes (CSBP). Later, J. Lamperti [36] showed that they can be obtained
as scaling limits of a sequence of Galton-Watson processes, and established a one-to-one
correspondence between CSBPs and spectrally positive Lévy processes via a random time
change. The definition of branching processes in this context was generalized by K. Kawazu
and S. Watanabe [33] to model populations with immigration (CBI).

From an ecological standpoint, the BGW-process shares with the Malthusian process the
shortcoming of being able to go to co. In the deterministic case, a celebrated improvement
of the Malthusian process is the logistic process, characterized by the ordinary differential
equation dY; = bY;dt — cY2dt, for t > 0, where ¢ > 0. It is an elementary combination of
geometric growth for small population sizes and a quadratic density-dependent regulatory
mechanism. The main advantage of this model is that Y; converges to a finite limit as ¢ — oo,
namely, b/c (if b > 0) or 0 (if b < 0). On the other hand, this model does not allow the
population to evolve once it has reached its stable state. A natural continuation will then
be for us to replace geometric growth in the logistic equation by random branching (random
growth with geometric mean). Alternatively, this can be seen as improving the branching
process by, loosely speaking, adding a quadratic regulatory term to it (and thus prevent it
from going to oo). This kind of processes were introduced by R.B. Campbell [14] in the
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context of continuous-state and continuous-time processes. In this case, branching processes
with logistic growth (LBPs) were defined in a general form by A. Lambert [36] by means
of a Lamperti transformation on Ornstein-Uhlenbeck processes driven by general spectrally
positive Lévy process. The global behavior of the population can be intuitively understood
as the result of standard branching behavior, plus a pairwise competition among individuals,
resulting in an individual death rate increased by an amount that is proportional to the total
instantaneous population descending from the original one.

The study of this kind of population processes has revealed deep connexions between the
stochastic differential equations that describe the evolution of such branching populations,
and continuous time processes of a different nature that can be used to code their genealogies.

In the first chapter of this work, SDEs are used as a tool to describe the paths of (sub)critic
continuous-state branching processes conditioned to never extinct. CSBPs conditioned to
stay positive were first studied in the continuous-state framework by S. Roelly and A. Rouault
[54], who proved that there is a well defined probability measure for this case and, under this
measure, a CSBP has the same law as a CBI, where the immigration corresponds to an in-
dependent subordinator (i.e. a Lévy process with no negative jumps). In the particular case
of a (sub)-critical CSBP, it is well known that such conditioned CSBP corresponds to a CBI
with particular immigration mechanisms (see [54]). Thus, using general results and tech-
niques developed in some of the aforementioned works (see [17, 25]), was possible to obtain
such representation in a direct way, by using the fact that the law of the conditioned CSBP
is obtained from the one of the non conditioned process by means of an explicit h-transform.
It is shown that under the law of a (sub-)critical continuous-state branching process condi-
tioned to be never extinct, the process is the unique strong solution to a stochastic differential
equation driven by a Brownian motion and two Poisson point measures and these objects
are mutually independent. The relation between the original law and the conditioned law,
together with the spine or immortal particle picture of the conditioned process (|40, 23|),
suggest that one should be able to identify, after a measure change, copies of the original
driving random processes and an independent subordinator accounting for immigration. The
stochastic differential equation describes an explicit mechanism to build the immigration
term appearing in the conditioned process, by randomly selecting jumps of the original one.
This work has already been published [24].

In the second chapter some SDE representations for LBP are studied. In particular,
Lambert’s definition [36] for general logistic branching processes is used to characterize them
as the unique solution of a stochastic differential equation.

Also, the LBP conditioned to non extinction is studied. Unlike the CSBP case, the
branching property is not longer true and it is unknown, in general, if there exists such
conditioned process (and if it can be defined through an h-transform, as in the CSBP case
-see [48]-). Results in that sense are only known for the logistic Feller diffusion case, thanks
to the renowned work of Cattiaux et. al. [15]. In the general case, the study of this problem
requires the use of spectral theory of jump processes, and will not be addressed in this
dissertation. However, it is still of interest to describe the dynamics of such conditioned
process. Under the assumption that a function h exists that allows one to obtain the law of
the conditioned LBP from the one of the non conditioned process by means of an h-transform,
the same arguments as in the CSBP case can be applied. Some results are obtained, which
shed some light on the pathwise properties of this kind of processes.



In the third chapter of this dissertation, a Ray-Knight representation for LBP is estab-
lished. At first sight, the continuous-state branching process with logistic growth does not
lend itself to a Ray-Knight representation, because the competition between individuals de-
stroys the “branching property”, i.e. the independence in the reproduction. The lack of
independence between the individuals of the populations modeled by such processes prevents
the application of standard tools of excursion theory and of continuous random trees to
suitably define the genealogy of such processes, and new points of view must be developed.
The use of excursion theory to describe the genealogy of the process start with Kiyosi Ito
[30, 31]. He introduced the Poisson point process of excursions of a Markov process from
a regular point, inspired by the ideas of P. Lévy [44] in the case of linear Brownian mo-
tion. Ito excursion theory has many important applications, since it is a fundamental tool
in the analysis of Lévy processes and for studying the asymptotic properties of large random
trees, which are deeply connected with branching processes. Around 1990, Davis Aldous
constructed a continuum random tree (CRT) as the tree coded by a normalized Brownian
excursion [5, 6]. This relationship between exploration and mass excursion had appeared
earlier in the classical second Ray-Knight theorem (]|52], [34], see [53]) as a connection be-
tween Brownian excursions (described by Ité’s excursion measure) and excursions of Feller’s
branching diffusion. In informal terms, this theorem says that: The time which a (suitably
stopped) reflected Brownian motion spends near level t (and which is formally captured by its
local time at t), viewed as a process in t, is a Feller branching diffusion. So, the excursions of
reflected Brownian motion can be understood as exploration paths of the trees of descendants
of the ancestors of the population at time ¢ = 0, with the local time at height ¢ measuring
the population size at time .

This same idea was generalized by T. Duquesne and J.-F. Le Gall [43] for general Lévy
processes. In their work, given a Lévy process X with characteristic exponent ¢, they defined
a suitable height process H and proved that the process of local times of H at a fixed time is
a CSBP. The definition of the corresponding excursions, their heights and their local times
at each level, which are needed in order to state a Ray-Knight theorem in that setting, is
much more involved than in the diffusion case, with no simple (say, finite dimensional or
SDE-like) representation of a Markov process coding the genealogy. Their result therefore
required to use of the so-called exploration process, introduced by J.-F. Le Gall and Y. Le
Jan [43], which codes the continuum random trees embedded in a spectrally positive Lévy
processes X, or Lévy-CRT. Extensions of the Ray-Knight theorem and related genealogical
descriptions have since then been obtained for more complex models with branching type
behavior, such as super processes and branching processes with immigration, [2, 1, 9], and
have been used in the study of several properties of these processes.

Later, V. Le, E. Pardoux and A. Wakolbinger ([42], see also [49] ) give another general-
ization of Ray-Knight result, for the Feller branching diffusion with logistic growth. As in
the classical Ray-Knight representation, the excursions of such process are understood as the
exploration paths of the trees of descendants of the ancestors at time t = 0, and the local time
of the process at height s measures the population size at time t. Their key idea to define a
genealogy is to think of the individuals as being arranged “from left to right” (as given by the
exploration time), and decree that interaction between them takes place through “pairwise
fights” that are always won by the individual “to the left”, hence lethal for the individual “to
the right”. Deaths following pairwise fights lead in the exploration process of the genealogical
forest to a downward drift, proportional to the amount of mass (or local time units) seen to
the left of the individual encountered at each exploration time. In this way, excursions which
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come later in the exploration time tend to be smaller (trees to the right are “under attack
from those to the left”).

The main purpose of the this last chapter is to extend the previous Ray-Knight repre-
sentations and genealogical descriptions to LBP associated with general spectrally positive
Lévy process with (sub)critical mechanism. To this end, a family of generalized marked ex-
ploration processes and correspondent pruned local time processes are constructed, using a
Poisson Lévy snake in two dimensions, in a more general way that was done by Abraham
and Delmas to prune a Lévy-CRT at constant rate [3]. Through a fix point argument, a lim-
iting progressively marked exploration process (p, m*) and an associated local times process
(L¢(m*) s a > 0,t > 0) are obtained. This new local time process correspond to the local
times of the original Lévy-CRT, coded by the exploration process, erased at a rate depending
on the population “on the left”, at each instant and height. While this idea was inspired by
the work of Pardoux and Wakolbinger [42, 50] for the Feller diffusion with logistic growth, the
general case presents other challenges, since the height process in this case is not Markovian.
Furthermore, the result obtained is not only in law but also allows to obtain the desired
representation from a Lévy tree coded by a exploration process in a pathwise manner. The
finite-dimensional laws of the associated pruned local times read at increase times of the local
time at level O are identified as the finite-dimensional laws of a LBP. For this identification,
a discretization of this process is used, whose law coincides with the law of a stochastic flow
studied by Dawson-Li [18] pruned piecewise in a path-dependent way. This last chapter is
a joint work with Professor Julien Berestycki, as a result of two stays in the Laboratoire of
Probabilités et Modeles Aléatoires of Université Pierre et Marie Curie (Paris VI).



Chapter 1

On SDE associated with CSBP
conditioned to never be extinct

This chapter is largely based on the paper On SDE associated with continuous-state branch-
g processes conditioned to never be extinct , with J. Fontbona, published in the volume

17-49 of ELECTRONIC COMMUNICATIONS in PROBABILITY in 2012 |24].

1.1 Introduction and preliminaries

Stochastic differential equations (SDE) representing continuous-state branching processes
(CSBP) or CSBP with immigration (CBI) have attracted increasing attention in the last
years, as powerful tools for studying pathwise and distributional properties of these processes
as well as some scaling limits, see e.g. Dawson and Li [17, 18|, Lambert [38], Fu and Li [25]
and Caballero et al. [13]. In this chapter, we are interested in SDE representations for (sub)-
critical CSBP conditioned to never be extinct. It is well known that such conditioned CSBP
correspond to CBIs with particular immigration mechanisms (see [54]). Thus, it is possible
to obtain SDE representations for them by using general results and techniques developed in
some of the aforementioned works, see [25, 17]. However, our goal is to directly obtain such
representation by rather using the fact that the law of the conditioned CSBP is obtained
from the one of the non conditioned process, by means of an explicit A-transform. This
relation between the two laws, together with the “spine” or immortal particle picture of the
conditioned process [54, 23], suggest that one should be able to identify, after measure change,
copies of the original driving random processes and an independent subordinator accounting
for immigration. Our proof will show how to obtain these processes by using Girsanov
theorem and an enlargement of the probability space in order to select by a suitable marking
procedure those jumps of the original (non conditioned) process that will constitute (or will
not) the immigrants. The enlargement of the probability space and the marking procedure
are both inspired in a construction of Lambert [38] on stable Lévy processes. They are also
reminiscent of the sized biased tree representation of measure changes for Galton-Watson
trees (Lyons et al. [47]) or for branching Brownian motions (see e.g. Kyprianou [35] and
Englinger and Kyprianou [22]), but we do not aim at fully developing those ideas in the
present framework. In a related direction, using the look-down particle representation of
CSBP of Donnelly and Kurtz [20], Hénard obtains in a recently posted article |28] the same

3



Chapter 1. On SDE associated with CSBP conditioned to never be extinct

SDE description of the conditioned CSBP. Our proof of the SDE representation contains less
information about the process, but in turn is much simpler. The reader is also referred to
[19, 41, 46| for further recent developments on representations of CSBP and their conditioned
versions.

We start by recalling some definitions and results about CSBP and Lévy processes, fol-
lowing Kyprianou’s book [35, Ch. 1,2 and 10]. Then, we remind their relationship through
the Lamperti transform, following Kyprianou [35, Ch. 10| and Caballero et al. [13].

1.1.1 Continuous-state branching processes

A continuous-state branching process (CSBP) with probability laws given the initial state
{P, : x > 0} is a cadlag [0, co)-valued strong Markov processes Y = (Y; : t > 0) satisfying
the branching property. That is, for any ¢ > 0 and y;,y2 € [0,00), Y; under Py, 1, has the

same law as the independent sum Yt(l) + th), where the distribution of Yt(i) is equal to that
of Y; under P, for ¢ = 1,2. Usually, Y; represents the population at time ¢ descending from
an initial population x. The law of Y is completely characterized by its Laplace transform

E,(e %) = 72w Vg >0,t >0,

where u is a differentiable function in ¢ satisfying

% (6) + v w(8)) = 0

ot
UO(H) = 97

and 1 is called the branching mechanism of Y, which has the form

1
$(N) = —g— aX+ S0\ +/ (€7 =1+ Arlpery)(dz) X >0, (1.2)
(0,00)

for some ¢ > 0, a € R, 0 > 0 and II a measure supported in (0, c0) such that

/ (1A z*)(dx) < oo.
(0,00)

In particular, v is the Laplace exponent of a spectrally positive Lévy process, i.e. one with no
negative jumps. Since clearly, E,(Y;) = ze=¥' O defining p := 1//(0+) one has the following
classification of CSBPs :

. subcritical if p > 0,
. critical if p =0, and
. supercritical  if p <0,

according to whether the process will, on average, decrease, remain constant or increase.
In the following, we will assume that Y is conservative, i.e. ¥Vt > 0, P,(Y; < o0) = 1. By

Grey [26], this is true if and only if
[
o+ [H(E)] ’

6



1.1. Introduction and preliminaries

so it is sufficient to asume
P(0)=0 and [ (04)] < .

From now on, we also assume that Z is a (sub-)critical CSBP with branching mechanism
which satisfies

=00 an . 00
P(o0) = d /¢(€)< . (1.3)

Under these previous conditions, the process does not explode and there is almost surely
extinction in finite time.

1.1.2 Lévy Processes and their connection with continuous-state
branching processes

A Lévy process X = (X, : t > 0) is a process which possesses the following properties:
i). The paths of X are P-a.s. right continuous with left limits.
ii). P(Xo=0)=1.
iii). For 0 < s <t, X; — X, is equal in distribution to X; .  (Stationary Increments)
iv). For 0 < s <t, X; — X, is independent of {X,, : u < s}.  (Independent Increments)

A Lévy process X with characteristic exponent 1) can be identificated as the independent
sum of three processes:

Theorem (Lévy-Itd descomposition). Given any a € R, o > 0 and a measure I1 concentrated
on R\{0}, satisfying

/(1 A 22)TI(dz) < oo,

there ezists a probability space on which three independent Lévy processes exist, XV, X2

XG) where XY s a linear Brownian motion with drift given by

Yy

Xt(l) = O'Bt + Oét,

X® 4s a compound Poisson process given by

Ny
xXP=>6
1=1

where (Ny : t > 0) is Poisson process with rate II(R\(—1,1)), and (§ : ¢ > 1) are i.i.d. r.v.
with distribution I1(dx)/TI(R\(—1,1)) concentrated on {x : |x| > 1}; and X is a square
wntegrable martingale with an almost surely countable number of jumps on each finite time
wnterval which are of magnitude less than unity and with characteristic exponent given by

1
»3(0) = / (1 —e % — g2)1I(dx).
0
The measure 11 is called the Lévy (characteristic) measure.

7
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Then, given X a spectrally positive Lévy process with initial position x > 0, using the
Lévy-Ito descomposition one can write

t oo t 1
X;=x+at+oB; + / / rN*(ds,dr) + / / rNX(ds,dr), (1.4)
0 J1 0 Jo

where « is a real number, 0 > 0, BX is a un Brownian motion and N* is an independent
Poisson measure on [0, 00) x (0, oo] with intensity measure dt x II(dr), with N the associated
compensated measure, satisfying

/Ot/OITNX(ds,dT) = li Uot/:NX(ds,dr)—/ot/: dsn(dr)}

1.1.3 Lamperti representation of continuous-state branching pro-
cesses

In [40], Lamperti established a one-to-one correspondence between CSBPs and spectrally
positive Lévy processes via a random time change. The correspondence at the level of laws
was also proved by Silverstein [55]| by analytic methods, and a proof in the conservative case
by discrete (probabilistic) approximation was given in [27]. We refer the reader to [13] for
self-contained modern proofs of this result in the general case. Given a Lévy process X as
above, Lamperti’s construction states that the process

Y = (Y, = Xg,pr, : t > 0),

0 Xu
branching process with branching mechanism v and initial value Y, = z. Conversely, given
Y = (Y, :t >0) a CSBP with branching mechanism v, such that Yy = x > 0, we have that

where Ty = inf{t > 0 : X; = 0} and 0, = inf{s >0: fsd—“ > t}, is a continuous-state

X = (X, = Ypur: t>0),

where T' = inf{t > 0:Y; = 0} and ¢; = inf{s >0: fos Y, du > t}, is a Lévy process with
no negative jumps, stopped at T and satisfying ¢(\) = logIE(e=**1), with initial position
Xo = z. Relying on this relationship, Caballero et al. |13, Prop 4| provide a pathwise
description of the dynamics of a CSBP: given a version of the process (Y;,¢ > 0) on some
probability space, there exist in an enlarged probability space a standard Brownian motion
BY and an independent Poisson measure N on [0,00) x (0,00) x (0,00) with intensity
measure dt X dv x II(dr) such that

t t t pYs_ 00
Yt—x—l—oz/ sts—i—a/ \/stBer/ / / rNY (ds, dv, dr)
0 0 0o Jo 1

t Yoo ol
+ / / / rNY (ds,dv, dr),
0 0 0

where NY is the compensated Poisson measure associated with NY .

(1.5)



1.2. CSBPs conditioned to be never extinct as solutions of SDEs

1.2 CSBPs conditioned to be never extinct as solutions
of SDEs

1.2.1 CSBP conditioned to be never extinct

Branching processes conditioned to stay positive were first studied in the continuous-state
framework by Roelly and Rouault [54], who proved that for Z satisfying the above conditions,

Pl (A) = liTmIP’x(A\T >t+s), Aco(Yi:s<t) (1.6)

is a well defined probability measure which satisfies

Y,
PI(A) = E(lAeptj).

In particular, PT(T < oo) = 0, and (e”Y; : t > 0) is a martingale under P,. Note that P!
is the law of the so-called Q-process (for an in-depth look at these processes, we refer the
reader to [38], [48] and references therein). They also proved that (Y,PT) has the same law
as a CBI with branching mechanism ¢ and immigration mechanism ¢(6) = ¢/(6) — p, 6 > 0.
This means that (Y, P") is a cadlag [0, co)-valued process, such that for all z,¢ > 0 and § > 0

B ™) = exp{=au(6) — [ olu-.(0))ds}.

where u,(f) is the unique solution to (1.1). Note also that ¢ is the Laplace exponent of a
subordinator. We call subordinators to Lévy processes whose paths are almost surely non-
decreasing. For 6 > 0,

$(0) = do +/ (1 — e ")A(d),

(0,00)

where A is a measure concentrated on (0, c0), satisfying f(o sy (LA T)A(dz) < o0.

1.3 Main Result

The work of Roelly and Rouault is the key for the study of CSBP conditioned on non-
extinction, but we seek a more explicit description for the paths of Y under PT. To this end,
we shall prove that (Y,P') has a SDE representation, which agrees with the interpretation
of a CSBP conditioned on non-extinction as a CBI, but also gives us a pathwise description
for the conditioned process. In particular, this result extends Lambert’s results for the stable
case |38, Theorem 5.2| (see below for details) as well as equation (1.5).

Theorem 1.1. Under P', the process Y is the unique strong solution of the following stochas-
tic differential equation:

t t t pY,_ oo
Y, :93+0z/ sts+0/ \/}/;dB;r+/ / / rN'(ds,dv, dr)
0 0 0 Jo 1

t Y — 1 t o0
+/ / / rNT(ds,dv, dr) + / / rN*(ds,dr) + o’t,
o Jo 0 o Jo

9
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Chapter 1. On SDE associated with CSBP conditioned to never be extinct

where (B} - t > 0) is a Brownian motion, N and N* are Poisson measures on [0, 00)x (0, 00)2
and [0,00) x (0,00) with intensities measures ds x dv x I1(dr) and ds x rII(dr), respectively,
and these objects are mutually independent (as usual, N' stands for the compensated measure
associated with N'). Moreover, given a solution to (1.5) in some filtered probability space
(Q, F,(F,),P), the processes BT, NT and N* can be explicitly constructed by a change of
measure in an enlargement of (2, F,(F)) by an independent i.i.d. sequence of uniform
random variables in [0, 1].

This result implies that we can recover Y conditioned on non-extinction as the solution of
a SDE driven by a copy of BY, a copy of NY, and a Poisson random measure with intensity
ds x rIl(dr), plus a drift. (Notice that taking out the last two terms, corresponding to a
subordinator with drift, one again obtains equation (1.5).)

1.4 Relations to previous results

1.4.1 Stable processes

As pointed out before, the result above is based in the work of Lambert, and we can recover
his result using equation (1.7). We consider the case when X is a spectrally positive a-
stable process, 1 < o < 2, that is a Lévy process with Laplace exponent 1) proportional to
A — Aa. In particular, p = 0 (critical case). In this case, Lambert showed that the associated
Q-process is the solution of a certain SDE, which enlightens the immigration mechanism.

Theorem 1.2 (Theorem 5.2 in [38]). The branching process with branching mechanism 1) is
the unique solution in law to the following SDFE

ay, =Y,/ — dax,, (1.8)

where X 1is a spectrally positive a-stable Lévy process with Laplace exponent 1. Moreover,
the branching process conditioned to be never extinct is solution to

dY; = )/t_dXt + dO't, (19)
where o is an (o — 1)-stable subordinator with Laplace exponent i), independent of X.

We show that Lambert’s SDE representation of stable branching processes can be seen
as a special case of Theorem 1.1.

Let X be a spectrally positive a-stable process with characteristic exponent 1 and char-
acteristic measure I(dr) = kr~(@*Ddr, where k is some positive constant and 1 < a < 2.
Let Y be the branching process with branching mechanism . Thanks to Theorem 1.1 we
know that, under PT, Y satisfies the following stochastic differential equation:

t Ys— 0o t Ys— 1 5
Yt:x%—/ / / TNT(dS,dV,dT’)—I—/ / / rN'(ds, dv, dr)
Ut OOC 1 0 JO 0 (110)
+/ / rN*(ds,dr),
0 Jo

where NT is a Poisson random measure with intensity ds x dv x II(dr) and N* is an inde-
pendent Poisson random measure with intensity ds x rII(dr).

10



1.4. Relations to previous results

Now, we define

0, = —rnl{'j”q/'” )

v
where ((t,, v}, r]) :n € N) are the atoms of NT. We claim that, under P, ((¢,,6,) : n € N)
are atoms of a Poisson random measure N’ with intensity ds x II(du). Indeed, for any
bounded non-negative predictable process H, and any positive bounded function f vanishing

at zero,
t 00 00
My =" Hy, f(6,) - / H.ds / / F (/YN 1y 1(dr)dy
0 0o Jo

tn<t

?

is a martingale. If we change variables, the particular form of II implies that
t 00
M= 3" f6) - [ Has [ fn(
<t 0 0

Taking expectations, our claim follows thanks to Lemma 1.4 below. Since

Z Tn {yn<Ytn Y ZYti/a ns

tn <t tn <t

we can rewrite (1.10) as

Yt_x+// Y uN'(ds, du) + // Y uN'(ds, du) + // rN*(ds, dr).

Defining
t 0 t 1
X ::// uN'(ds,du)+/ / uN'(ds, du),
0 J1 0 Jo

by the Lévy-Ito decomposition it is easy to see that X is an a-stable Lévy process with
characteristic exponent 1. Similarly,

t 0o
Sy = / / rN*(ds,dr)
0 Jo

is seen to be an (o — 1)-stable subordinator. Independence of X and S is granted by con-
struction, because the two processes do not have simultaneous jumps. Thus, we have

dY, = V;'/*dX, + dS,,

which corresponds to equation (1.9) in Lambert’s result.

1.4.2 CSBP flows as SDE solutions

A family of CSBP processes Y = (Yi(a) : t > 0,a > 0) allowing the initial population
size Yp(a) = a to vary, can be constructed simultaneously as a two parameter process or
stochastic flow satisfying the branching property. This was done by Bertoin and Le-Gall [10]
by using families of subordinators. In [11, 12| they later used Poisson measure driven SDE
to formulate such type of flows in related contexts, including equations close to (1.5). In the

11



Chapter 1. On SDE associated with CSBP conditioned to never be extinct

same line, Dawson and Li [18] proved the existence of strong solutions for stochastic flows
of continuous-state branching processes with immigration, as SDE families driven by white
noise processes and Poisson random measures with joint regularity properties.

In particular, suppose ¢ > 0 and a real constants and v — 7(v) is a non-negative and
non-decreasing continuous function on [0,00). Let W (ds,du) be a white noise process on
(0,00)? based on the Lebesgue measure ds X du. Let N(ds,dv,dr) be a Poisson random
measure on (0,00)% with intensity ds x dv x II(dr) independent of W (ds,du). Tt is shown
in [18] that for any v > 0 there is a pathwise unique non-negative solution of the stochastic
equation

Ziv) = v—l—a/ot /OZS_(U)wus,duH/ot () — aZs(v)] ds+/0t /OZS_(U) /Ooorzv(ds,du,dr),

and each solution Z(v) = (Z;(v) : t > 0) is a continuous-state branching process with
immigration (CBl-process), so it is natural to call the two-parameter process (Z;(v) : t >
0,v>0) a flow of CBI-processes. Moreover, the family of two-parameter processes (Y;(v) :
t > s,v > 0) has a version with the following properties:

(i) for each v >0, t — Z;(v) is a cadlag process on [0, 00) and solves (3.67);

(ii) for each ¢ > 0, v — Z;(v) is a non-negative and non-decreasing cadlag process on
[0, 00).

The stochastic equation above is close to equation (1.7), the main difference being the im-
migration behavior which in their case only covers linear drifts. For simplicity reasons our
result is presented in the case of a Brownian motion and Poisson measure driven SDE, but
our arguments can be extended to the white-noise and Poisson measure driven stochastic
flow considered (in absence of immigration) in [18].

1.5 Proof of the main theorem

This result was inspired for the work of Lambert [38]. In his work, a suitable marking
of Poisson point processes was used to firstly construct a stable Lévy process, conditioned
to stay positive, out of the realization of the unconditioned one. After time-changing the
author takes advantage of the scaling property of a-stable processes to derive an SDE for the
branching process. Our proof is inspired in his marking argument but in turn it is carried
out directly in the time scale of the CSBP. For the proof, we will need the following version
of Girsanov’s theorem (c.f. Theorem 37 in Chapter II1.8 of [51]):

Theorem 1.3. Let (2, F,(F;),P) be a filtered probability space, and let M be a P-local mar-
tingale with My = 0. Let P* be another probability measure absolutely continuous with respect

to P, and let Dy = E(%2 7)- Assume that (M, D) exists for P. Then A, = fg 5—d(M, D),

exists a.s. for the probability P*, and M; — A; is a P*-local martingale.

The following well-known characterization of Poisson point processes will also be useful:

Lemma 1.4. Let (Q, F,(F;),P) be a filtered probability space, (S,S,n) an arbitrary o-finite
measure space, and {(t,,0,) € Ry x S} a countable family of random wvariables such that

12



1.5. Proof of the main theorem

{tn <t,0, € A} € F; for alln e N, t >0 and A € S and, moreover,

S Fog(s / Fuds / o(z)m(dz) (1.11)

n:tp, <t
for any nonnegative predictable process Fy and any nonnegative measurable function g : S —
R. Then, (t,,0n)nen are the atoms of a Poisson random measure N on Ry x S with intensity
dt x m(dz).

Proof. Writing

etnq Z [ H ] (e f(n) _ 1)

nitn <t Lkitr<tn

> )
-y { kithtn ’“} (/6 _ 1),
n:t, <t

we get from (1.11) that

ST f(6n) / > f(dk)
E |:€n:tn<t :| — /E |:€k:tk<s :| ds/(ef(r) _ ]_)m(dx)7
S
0

since F, := [] e/ is a predictable process. Solving this differential equation yields
tL<s

> f(on)
E[ ]:exp ~t [ e mar) |,

S

and the statement follows by Campbell’s formula (see for example Theorem 2.7 in [35]). =
Proof of Theorem 1.1. We will prove that under the laws P the process Y in equation
(1.5) is a weak solution of (1.7). Pathwise uniqueness, which classically implies also strong
existence, will then be shown as in [25].

We write B = BY and N = NY for the processes in (1.5), and we denote by (F;) the
filtration

Fi= U(st (rn’ Vn)l(tnﬁs);n €N,s < t)’

where ((tn,7n, V) € [0,00) x (0,00) x (0,00)),,cy are the atoms of the Poisson point process
N. We will use the absolute continuity of PT w.r.t. P with Radon-Nikodym density D, = Yy

€T ?
applying Theorem 1.3 to the process (B; : t > 0) and, indirectly, to the Poisson random
measure N and its compensated measure.

Dealing with the diffusion part is standard since d(D, B); = 6m‘a\/?tdzf so that

t t
Bl =B, - dD.B). _ Bi—o | vilds
! D

0 s 0

is a Brownian motion under PT by Theorem 1.3.

13



Chapter 1. On SDE associated with CSBP conditioned to never be extinct

We next study the way the Poisson random measure N is affected by the change of
probability, which is the main part of the proof. Enlarging the probability space and filtration
if needed, we may and shall assume that there is a sequence (u,),>; of independent random
variables uniformly distributed on [0, 1], independent of B and N and such that wu,1, < is
Fi-measurable. Define random variables (A,,, d,) € [0,00)? x [0,00) by

( Dy, Y-

(<O’O>’r"1{”"gzt;}) it w, > Dy Y, and Y, > 0,
— D, _
(Ap,0n) i= ((rp,v),0)  if  up < Dt" and Y; >0,
tn
((0,0),0) if Y, =0.

Let fr. be a nonnegative measurable function such that for fixed R > 0 and 0 < e <1, and

all (r,v, s),
« fre((r,v),s) =0 when v > R,
« fre((r,v),s) =0 when r < ¢, and

+ [re((0,0),0) = 0.

For any non-negative predictable process F' we then have (using the third property of fr . to
pass to the second line)

ZFtnfR,e(Ana 5n)

tn<t
= F | (0,0),r, 1+ Fi fre(Tn, V) ne
2 t. /R, < )T { <z }) (> 2=} tz<t b fRe((Tn, v { (<=}
= ZFtnfR,E((Oa rn)l{un<Ytn }1{ >an } +2FtnfRe Tnal/n { <an }
tn<t tn<t N
Therefore, since 1 — Xn= — i by th tion f la th
, e 7, , by the compensation formula the process

1<y
E F, (A, 6n) dsF, c )———=—~2zll(dr)d
St tnfR / S / / fR 0 0 Y +T1{V§Y5}x ( T) v

tn <t
/dF/OO/OOf (), 0) 2 TI(dr)d
— sk ((rv),0) g———— r)dy
0 0 0 f Ys+7"1{1/§Ys}
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1.5. Proof of the main theorem

is a pure jump martingale under P. The quadratic covariation of S and D is thus given by

eptn eptn—
[Sv D]t = Z(Stn - Stn—) ( T Yi, — - Y;en—>

tn<t
ePln

= Fi fre(Dn, 60)— —Talpsn, )

tn <t

ePtn

ZZFtnfRE 0 0) Tn) 7”n:|.{yn<ytn }1{ >Ytn }

tn <t Ty,

ePtn
+ZFtnfR,e((rn7Vn)aO) T Tnl{unﬁﬁn—}l{ung%}'

tn <t

By the compensation formula, the conditional quadratic covariation of S and D is then given

by
ey
D,S); = d— p 00 : rII(dr)d
(D, S); = / //fR g )y

Y,
d— c 0)———rly, II(dr)dv.
/0 s // () 0 g ey ()

Using Theorem 1.3 we see that the process

1,
ST= 5, — // / Fy frc((0,0), 1) ——2=Y T r1(ar)duds

Y, + 7’1{l,<y9} Y,

Y, rli<vy
- Fsfre((r,v),0 —>11(dr)dvds
/0 /0 /0 Trel(r:) )YS +rlp<yvy Y (dr)

is a (F;)-martingale under P'. By definition of S and noting that [~ {-1(,<y,jdv = 7, we
get

Sh= ZFtnfReAmd /dsF/ / {fR6 (0,0),r )?1{V<y§}+f36((7' v), )} I(dr)dv

tn <t

:ZFtnfR’e(An,én)—/ dsF [/ Tr((0,0),r)rIl(dr) + / / fre((r,v) }dH(dr)I/.

tn<t

Since ET(ST) = ET(S]) = 0, this implies

{ / dsF, / fr((0,0), )rH(dr)]
+ET U dsF/ / fre((r,v) (dr)dy}.

By standard arguments, this formula is also true for any nonnegative function f such that
£((0,0),0) = 0. Using Lemma 1.4 we then see that (., A,)n>0 and (t,, 0, )n>0 are under PT

]ET Z FtnfR,e(Any 571)

tn<t
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the atoms of two Poisson point processes NT and N*, with intensity measures dt x dv x I1(dr)
and dt x rII(dr) on [0, 00) X (0, 00) x (0, 00) and [0, 00) x (0, 00), respectively. By construction,
NT and N* are independent because they never jump simultaneously. Now set

Jy = // / rN(ds,dv,dr) Zrnl{yn<yt Y S

tn <t

From the definition of (A, §,)nen, and writing AY for the i—th coordinate of A, i=1,2,
we have

1
Jy = Z AgL )l{Af)SYtnf}l{Af)zl} + Z 6n1{5n21}

tn <t tn <t

t Y. — 0o t [e’e)
= / / / rNT(ds,dv, dr) + / / rN*(ds, dr).
0 Jo 1 0 1

Finally, we observe that for given 0 < & < 1, the process

3 t Ysm gl t pYe— ol
M ::/ / / rN(ds,dv,dr) —/ / / rIl(dr)dvds
0 JO € 0 JO €

Ys
_Zrnl{un<Ytn yle<r,<1} —/ / / r11(dr)dvds

tn <t

is a P-martingale which converges in the L(P) sense when ¢ — 0 to M, := [, fOYS_ fol rN(ds, dv, dr).
In terms of (A,) and (d,,), we can write

(Z A1 A(2)<Ytn ) {E<Am<1} / / / II(dr) dyds) + 25 s, <1}
tn <t

tn <t

(// /rNTdsdudr ///rndrdyds> //rN*dsdr

(1.12)

Thanks to [35, Theorem 2.10], the L?(P") limit as ¢ — 0 of the P’-martingale given by the
expression in the third line of (1.12) exists, and equals the PT-martingale

//YS /rNTds dv, dr),

where N1 is the compensated measure associated with NT. Also, as JS (1A 2?)I(dx) < oo
by [35, Theorem 2.9] the last term of (1.12) converges PT-a.s. as ¢ — 0, and so we have

t Ys— 1 5 t 1
M, = / / / rNT(ds,dv, dr) + / / rN*(ds,dr) P! —a.s.
0 0 0 0 0

Bringing all parts together, we have shown that Y satisfies under P' the desired SDE, except
for the independence of the processes B' and (NT, N*), which we establish in what follows.
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1.5. Proof of the main theorem

Let ( € R, A,y € Ry, me Nand k € {1,...,m}, and consider (W)}~ and (Vj)j, dis-
joint subsets of (0, 00) x (0, 00) and (0, 0o) respectively, such that [, 1(dr)dv and [, rII(dr)
are finite. Set

F(z, Y1,y Yms 215 -5 Zm) r= e$%e™ k=1 MUk o 2ok Tek

Applying It6’s formula to the semimartingale
X, = (BJ,NT((o,t] < W), s NT((0,8] X W), N*((0, 8] x V), ... N*((0, 1] % vm)) ,

we obtain for 0 < s <t that

2
F(X, /gF BMCQ / F(X,)du+ > F(X;,) - F(X,,_)
S s<tn<t
+ Z Z [N F (X, ) ianew,y + 2 F (X, -)1is,ev,1]

s<tn<t j=1

_Z// N F (X )N (du, dv, dr) — Z//% ~)N*(du, dr)
/CF dB“rCQ/ iut Y F(X)f(An, ),

s<tn<t
(1.13)
where the second and third lines canceled out by definition of the integrals with respect to

N* and N', and where the notation

= 22 Melryewyy— 22 Melisevy)

f((?“, I/)a 3) =e k=t k=1 -1

was used in the last term of the fourth line. Using the fact that f((0,0),0) = 0 and previous
arguments, we can show that the process

Z F(X, ) f(Ap,d,) — /OtF(Xu)du {/OOO /OOO f((ryv),0)II(dr)dv + /OOO £((0,0),r)rI(dr)

is a PT-martingale with respect to J;. Since the sum of the two integrals in square braquets

is equal to
m

> [ /W k(e”’“ — DIL(dr)dv + /V k(e—% - 1)rH(dr)] :

k=1
we deduce from the latter and (1.13) that

[/Wk(e—*k — DII(dr)dv + /Vk(e—% — 1)rn(dr)D

is a martingale increment. Multiplying it by F'((X,)) 114 for A € F,, taking expectation,
and using then Gronwall’s lemma, we conclude that

2 m
-

F(Xy) — F(X) — / F(X,)du (5

t 8) + (e_Ak DII d'r’)dy-i,— <~ e~k —1)rII(dr
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Chapter 1. On SDE associated with CSBP conditioned to never be extinct

This means that under P', X, is a multidimensional Lévy process with respect to F; with
independent coordinates and implies the independence of BT and (NT, N*).

We now establish the pathwise uniqueness of solutions following the ideas of Fu and Li
[25]. Let B!, N and N* be independent processes as before. Let (Y, and (¥;”)) be two

solutions of (1.7) with deterministic initial values, and set (; := YY) —v,® for t > 0. Then,

we have
t
Clt_COJF/O‘(Ys(l) Y2 ds+/ (\/YS —\ Y, )dBT
0

t

+/0 /U " (1{V<Ys(l)} B 1{1/<YS(2)}> N'(ds, dv, dr) (1.14)

0

t T

T \/0 /(;.1 r <1{I/<Yg(l>} - 1{11<YS(2)}> N (ds, dV, dT’),

where Uy = [0,00) X [1,00) and U; = [0,00) x (0, 1).
The idea is to construct now a suitable sequence of C? functions {¢;} that approximate
the function |z|, and to prove then that E [¢x(¢;)] = 0 for each ¢ > 0 with help of 1td’s

formula.
First, we establish some notation that will be needed in the sequel:

. Let us define the constant K := |a| + M, where [ rII(dr) = M < co. Observe that
lazx| +/ / 1<y (dr)dy = Ka.
o J1
. Set L(z) := (6% + I)(z), where [ = fol r?T1(dr). Then, the function L satisfies
oo 1 1
v’z +/ / 1,y dVIL(dr) = o’z + SL’/ r*(dr) = L(x).
o Jo 0

. Let 8(z) := (|a| + M)z. This function satisfies [, B(2)"'dz = oo and, if we suppose
without losing generality that y < x, we have

alz —y)| + /000 /1OO r1ycval(dr)dy = B(x —y). (1.15)

. We define the function o(z) := [0 + I]y/z, where [ = fol r?TI(dr). Note that, if y < z,
then

AWa= i [ [ Pt ='W B e

<o(r—y).

Now, fix a sequence (ay)r>1 such that ap = ax_;e —ko*+1* and ay = 1. Note that a; — 0,
decreasingly and faik_l 0(2)72dz =k for k > 1. Let z — () be a non-negative continuous

function on R which has support in (ay, ax_1), satisfies 0 < (2) < 2k71o(2)72 for ap <
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1.5. Proof of the main theorem

z < aj_1, and faik‘l Yr(z)dz = 1. For each k > 1, we define the non-negative and twice
continuously differentiable function

|| y
fbk(iv):/o dy/0 Up(2)dz, = €R.

The sequence (¢y) has the following properties:
i). ¢x(x) = |z| non-decreasingly as k — oo, since for all y > 0, [/ ¢(2)dz 7 1;
ii). 0 < ¢p(z) <1forxz>0and —1 < ¢j(x) <0 for z <0

)
iii). ¢"(z) >0 for z € R, and ¢}(z — y)[o/r —oy/y]* - 0 (k — o0), uniformly in z,y;
iv).

1 b
0< o Dy r(x — y)(dr)dy < m/o rII(dr) — k-0 0,

uniformly in z,y > 0, where I(r,v;,z,y) =r [1{,,@} — 1{,,<y}}.
Property iii.) is true by (3.84). Indeed,

(@ —ylove — oyl < dr(lz —ylollz — y))* < 2/k
Also, by Taylor’s expansion,

Dygi(s) = ¢r(s + h) — k(<) — dp()h
—h2/ (s +th)(1 —t)dt
:h?/ Unlls + th)(1 — 1)t
0
and the monotonicity of z — p(z) implies
1
0 < Diéi(s) < 2k—1h2/ o(ls +th)(1 — t)dt < k~"ho(|s])~
0
for ¢h > 0. Since x +— 711y, is non-decreasing, for x,y > 0 we can use the previous
inequalities and (3.84) to prove property iv.).

We now deduce the pathwise uniqueness for equation (1.7). Let 7, = inf{t > 0: v,!) >
mor ¥;?) > m}, m > 1. By (1.14) and It&’s formula,

tATm tATm 2
o) =on(a)+ [ kG (0 vy as g [ dtaic) VY -] as

v f T () (W - W) 15!
0

+/tArm o (G )(Y(l YS(Q))NT(dSvdV’ dr)

/ o S (CYD, YOVN (ds, dv, dr)
Uy

+ ) [86(C) — Br(Com) — BL(Go)AL]

s<t
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Chapter 1. On SDE associated with CSBP conditioned to never be extinct

and so

O (Cenrn) = Ox(Co) —l—/o : ¢ (C)a (Y — Y2 ds

1 tATm 2
+ 5/ [\/ 1) Yg(Z) ds

tATm

0 (1.17)
d

+/ s Dy y @ Ok (G )IL(dr)dv
tATm ’ .
+ /0 dS . Dl(r,u;YS(i),YQ(E))(ZSk(CS_)H(dr)dV + th-m,

where Ay f(2) == f(z+h) — f(2) and (M) is (F;) - martingale. By property (i), we see
that
1 (¢m)a(YD =Y < Jal|YV =Y.

S

Observe also that
. AZ(T,V;YS@7ys<g>)¢k(Csf))H(dr)dz/ < /UO iy, ywy — 1,y @y T(dr)dy

By (3.83), for any s < 7, the sum of the right hand sides of the above two inequalities is not
larger than ((|(s_|). Due to properties (iii) and (iv) we have

[\/ Y(l Y(2 — 0 and / Dl(ny;y(p7Y(E))¢k(cs,)ﬂ(d7“)dl/ — 0,

U1

uniformly on the event {s < 7,,}. Taking expectation in (1.17) and letting k& — oo, we see
that

ET ‘ Ct/\Tm,

szmeA " (¢, )ds

Since ¢, < m for 0 < s < 7,,,, we deduce that t — E|(;A.,.| is locally bounded. Note also
that (s # (, for at most countably many s > 0. Then

t
EWWASWM+/EWM+WMMMS
0
t
SWmH/ﬂM+ME%mﬂw
0

Since Yo(l) = Yo(z), we can use Gronwall’s lemma to show that E|(ia,, | = 0 for all ¢ > 0,
which implies PT{¢; = 0 for all t < 7,,} = 1. Since 7, — 00 as m — oo a.s., the prove is
completed. m
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Chapter 2

SDE representations of logistic branching
process

2.1 Continuous-state branching processes with logistic growth

Branching processes with logistic growth or logistic branching processes, abbreviated as LBPs,
are density-dependent continuous time branching processes. In the continuous state-space
setting, the LBP is a Markov process with (nonnegative) real values and a.s. cadlag paths.
The definition of these processes, given in a general form by Lambert [36], is inspired by
Lamperti transform linking continuous-state branching processes and Lévy processes, but
using an Ornstein-Uhlenbeck process instead: let R be the unique strong solution, starting
from x, of the SDE

th == dXt - Ctht, (21)

where X a Lévy process with Laplace exponent ¢. Then, the continuous-state branching
process with logistic growth Z with branching mechanism v and rate c is the process defined

by
R(C if 0 <t < "o,
Zy = { (C2) U= g (2.2)

0 if oo <O AL > N,

with Ty := inf{¢t > 0 : R, = 0} and C'is the right inverse of 7, where

tA\Ty dS
= —, t>0.
Ui /0 R.

This definition give as a close relationship between logistic and branching processes: given
Y = (Y} : t > 0) a CSBP with branching mechanism 1, we can see Z = (Z; : t > 0) as
the analogous of process Y with negative interactions between each pair of individuals in the
population.

Next, we give an easier characterization for this kind of processes, as the unique solution
of an SDE. This result is a generalization of the CSBP case, found in [13, Prop. 4].

Theorem 2.1 (LB-process as a SDE solution). There is a standard Brownian motion B
and an independent Poisson measure N on [0,00) x (0,00) x (0, 00] with intensity measure
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Chapter 2. SDE representations of logistic branching process

dt x dv x II(dr), such that the LB-process Z is the unique strong solution of the following
equation:

t t t pZe_  poo
Zy=v+ oz/ Zsds + a/ \/ ZdBg + / / / rN(ds,dv,dr)
0 0 0o Jo 1

t pZe pl ¢
+/ / / rN(ds,dv,dr) — c/ Zds,
0o Jo 0 0

where N is the compensated Poisson measure associated with N.

(2.3)

Proof of Theorem 2.1. To prove this result, we use similar arguments as in [13, Prop. 4].
Given a Lévy process X with characteristic exponent v, there exists a standard Brownian
motion BX and a Poisson random measure N on [0, 00) x (0, 00| with intensity ds x II(dr)
such X satisfies

00 I
dX; = adt + cd B + / rN*(dt,dr) + / rN¥(dt,dr). (2.4)

1 0

Using this fact along with (2.2), we can deduce that R satisfies
e 1
dR; = adt + ocdB;* + / rNX(dt,dr) + / rN¥(dt,dr) — cRydt.
1 0
Now, we set

T:=inf{t >0:Z, =0} =inf{t >0: R(C}) = 0} A No-

As C is right-continuous, we have that R(Cr) = 0, and from here we can deduce that

Cr = Tp, using the fact that
INTyH ds
m = / - — N
0 Rs
for all [ > Tj.

In the same way that Caballero et al. [13], we define a standard Brownian motion B
satisfying

/t VZ.dB, = BX(C, A Ty) (2.5)

and a Poisson random measure N with intensity ds x dv x II(dr) such that

t pZs— o0
Z rri(l{ry)fZl} = Z Anl{AnZI} = / / / T]-{r21}N<d5; dU, dT),
0 Jo 0

{n:itX <Cy} {n:tn<t}

where ((A,,t,) : n € N) is an arbitrary labelling of the pairs associating jump times and
jump sizes of Z and ((r:X,tX) : n € N) are the atoms of N*, and from here we have that

n»’n

/Ot /OZ /100rN(ds,dy,dr)=/OCt /100rNX(d8,dr)- (2.6)

In the same way, we have that

t 1 Cy 1
li{r(l) Z An1{8<An<1}—/0 sts/5 rI1(dr) zli\r% Z rfl{squ}—/o ds/s rIl(dr)| ,

{nitn<t} {n:tX<Ct}
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2.2. Logistic diffusion process conditioned to be never extinct

so the compensated measures satisfies

/Ot /OZ /01 rﬁ(ds,du,dr):/OCt /01 PN (ds, dr). (2.7)

Putting together expressions (2.5), (2.6) and (2.7) into equation (2.4), we obtain that

Zi—  poo Zi— 1
dR¢c, = adCy + o~/ Z;dB; + / / rN(dt,dv,dr) + / / rN(dt,dv,dr) — cRc,dCy.
0 1 0 0

By (2.2), we see that adC; = aZ,dt and c¢Re,dCy = ¢(Z;)*dt, so the logistic branching process
Z = (Z;:t >0)is a solution of (2.3). Finally, defining the parameters (b, o, go, g1) by

b(x) := (ax — cx2)1{ng}, o(x) :=o0x, and go(z,(v,7)) = gi(x, (v,7)) = 1<z}

we see that equation (2.3) is included in the jump-type stochastic equations studied by Fu
and Li in [25], so the existence of an unique non-negative strong solution to (2.3) follows
directly from |25, Thm 2.5]. [ |

2.2 Logistic diffusion process conditioned to be never ex-
tinct

Now, we want to study the LBP conditioned to non extinction. To this end, we apply the
main arguments in the proof of Theorem 1.1 to equation (2.3), assuming that such process
exists. Notice that in the LBP case, the branching property is not longer true and it is
unknown, in general, if there exists such a )-process defined through an h-transform, as in
the CSBP case (see [48]). Results in that sense are only known for the logistic Feller diffusion
case, thanks to the renowned work of Cattiaux et. al. [15].

In the particular case when the underlying Lévy process is a Brownian motion with drift,
equation (2.3) reduces to

t t t
Zy =2+ a/ Zyds + a/ \/ Z,dBg — c/ Zds, (2.8)
0 0 0
In [15], Cattiaux et. al. established existence of the Q-process, through the study of quasi-
stationary distributions for drifted Brownian motion on (0, c0) of the form

dXt = dBt - Q(Xt)dt7 X() =x > 0,

where ¢ is a given function C*! on (0,00) and (B; : ¢ > 0) is a standard one-dimensional
Brownian motion. Defining X; = 2v/Z; /0, (2.8) turns into

2z o2 4 16
a measure p on (0,00), given by

where ¢(z) = £ — 2 (ﬂ — ﬁ) For this kind of processes, the authors in |15 defined
p(dy) == e Wy,
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Chapter 2. SDE representations of logistic branching process

where Q(y) := 2 floo q(z)dz. Hence, they have established the existence, under certain condi-
tions (see Remark 2.2 below), of a non-positive self adjoint operator L on L*(p) with domain
D(L) 2 C§°((0,00)) such that for g € C5°((0, 00)),

1g” —q9g'.

La =
973

Using spectral theory, they showed also that —L has a purely discrete spectrum 0 < A\ <
Ay < ..., and furthermore, each \; (¢ € N) is associated to a unique (up to a multiplicative
constant) eigenfunction n; of class C?((0,00)), which also satisfies the ordinary differential

equation
1

i /
0 —qn = —\m;.
2771 qnl 77

The sequence (1;);>1 is an orthonormal basis of IL?(x), and 7; can be chosen to be strictly
positive in (0, 00). Moreover, 1, € L'(u) and it is an increasing function.

Remark 2.2. We say that hypothesis (H) is satisfied if
(H1) forallxz > 0, P(7 =Ty < T) = 1;

(H2) C=— inf (¢*(y) —¢(y)) <oco and lim (¢*(y) — ¢'(y)) = +o0; and

y€(0,00) Y00

1 QW) o0 1
(H3) / 2 ° J <oo or </ e 9@dr <00 A / ze” Q@ 2dy < oo>
o ¢y) —q(y) +C+2 1 0

hold.

Under (H), Cattiaux et al were able to describe the law of the process X conditioned to
be never extinct.

Lemma 2.3 (Corollary 6.1 in [15]). For all x > 0 and t > 0, we have

lim P, (X € B|Ty >t +s) = Q.(B),
S§—00

for all B Borel measurable subsets of C([0,t]), where Q, is the law of a diffusion process on
(0, 00), with transition probability densities (w.r.t. the Lebesque measure) given by

At m (y)

_ -Q(y)
q(t,z,y) =€ r(s,x,y)e .
( ) 771(37) ( )

That is, Q, is locally absolutely continuous w.r.t. P, and

Qw(X € B) = Eac <1B(‘Xv)]-{t<T0}6 n1($)

In the result above, r correspond to the density of X under the measure u, i.e. r(t,z,-)
satisfies

E, [f(Xt)l{KTO}] = /000 f)rt, z,y)u(dy), forallz>0,t>0

for all bounded Borel f. In particular, we can deduce from this result an SDE representation
for the logistic diffusion under Q.
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2.3. General LBP conditioned to be never extinct

Proposition 2.4. Under Q, the process Z satisfies

t t t t ¢,(Z )
Zy =2+ a/ Zyds + O'/ \/ Z,dBQ — c/ Z32ds + 02/ 2 7.ds, (2.10)
0 0 0 o $(Zs)

where {BY : t > 0} is an standard Brownian motion on Q and ¢(z) =7 <%§)

Proof. We start by writing the Radom-Nykodim derivative between Q and P as a function
of Z

Dt = ﬁ ¢(Zt>

e)\1t (2\/Z> 6)\1t

g 771
Aom(3E) N e

Applying It6’s Formula, we obtain that

dD; = e A (2\/_> dt+ <2\£Z7> dZ; + L ! <2\£Z> — 77'1 (2\(/771&) d|Z, 7]
om (%) " oVZi 2| oz 20ZZ |
WZN\  [a—cZWZ o ], (W
:T A o + o _4\/7 h o
m (7) ¢
2/ 7. At AN
-2 me(iﬁz)}dr+ : m(’JT)ch
2 o m <2\/5> o
and thus
et 27 oeM/ 7. (Z,)dt
02 (A B
n (25)

Applying then the Girsanov’s Theorem 1.3, we can define the Q-martingale

- <zﬁ>
BY:=B,— | ———ds

()

¥(2.)
:Bt_/OWZW)d

In particular, B? is a standard Brownian Motion in @, and we can deduce equation (2.10)
from (2.8). u

2.3 General LBP conditioned to be never extinct

For the general logistic case, we can not assure existence of a conditioned process defined
through a h-transform. Nevertheless, it is still of interest to describe the dynamics of such
processes under the assumption that such h-transform exists and is well-defined. Thus, given
T =inf{t > 0: Z; = 0}, we assume that
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Chapter 2. SDE representations of logistic branching process

(H!) The probability measure
Pl (A) := liTmIP:,;(A|T >t+s), Aco(Z,:s<t),
is well defined. Moreover, there exist a positive real number v and an increasing function
¢ € C*((0,00)) such that PI(A) = E(14h(t, Z;)) = E(1ae " p(Z;)).

Theorem 2.5. Under hypotesis (H), (Z,PT) satisfies

t t t Zs— 00
7, = a/ Zids + O'/ V Z,dB! —|—/ / / rNT(ds, dv, dr)
0 0 0 Jo 1
t Zs— 1 _ t
+/ / / rNT(ds, dv, dr) — c/ Z2ds

Zy_6(Zs_+r (2.11)

Z / o0
+o ¢ d + / / e / rN*(ds, dv, dr)
0 o

Zs ¢(Z +r> L
52, -
/ / / rN*(ds, dv, dr).

where {BtT .t >0} is a Brownian motion, N' and N* are independent Poisson measures on
[0,00) x (0,00)2, both with intensity measure ds x dv x II(dr).

Proof. As in the proof of Lemma 2.3, we start by defining the Radon-Nikodym derivative
D' by
dPf

Df =2
PdP |,

= h(t, Z,).

We apply first Tto’s theorem to process D to obtain
t o t
Di= o)+ [ e (Zaz,—ezlis + 5 [ oo z) s
0 0
t o) Lo fe’e)
+ a/ e ¢ (Zs)\/ Zsd B —|—/ / / e ¢ (Zs)rN(ds,dv,dr)
0 o Jo 1

o) Lo 1 B
—i—/ / / e ¢ (Zs)rN(ds,dv,dr)
o Jo 0

+ Z e_vtn [¢(Ztn— + Tn]-{l/nSZtn—}) - ¢<Ztn_) - ¢/(Ztn_)rn1{1’"§zt_} ’

tn<t

Applying Girsanov’s theorem (Thm. 1.3) to the Brownian motion B, we have that

Bi= 5o [ COLNE
+"/0 AR

where B is a PI-BM. Thus,

a/ot\/Zngza/otJZst—ﬁ/otig)
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2.3. General LBP conditioned to be never extinct

On the other hand, we want to study the terms driven by the Poisson random measure
N. As in the CSBP case, we know that the jumps of (Z; : t > 0) are given by r,1q,<z, 3,
where ((tn,Vn, ) : n € N) are the atoms of the Poisson measure N. Hence, enlarging the
probability space and filtration if needed, we may and shall assume that there is a sequence
(uln)nzl of independent random variables uniformly distributed on [0, 1], independent of B
and N and such that Uznl{tngt} is ET—measurable, with (.7-":) the natural filtration of the
conditioned process. As in the proof of Theorem 1.1, we define Al and 5! by

(07 0)7 rn]‘{VT<Ztn }) if ujz < (Ztn;<Z¢<)Ztn ) and Ztn > 07
(Bt =9 ((11,0),0) it gz A0 gz, oo O
\ ((07 0)7 O) lf ¢<Ztn) = 0.

For any nonnegative (ET)—predictable F; nonnegative f vanishing on the diagonal, such that
f((r,v),s) =0 when v < R for some R > 0; and x > 0; we have the martingale

ZFtn ?nn

tn <t

! R ¢(Zs + rl{VSZs}) - gb(Zs)
— /O dst/O /0 f((0,0),714<z.y) o7+ Lpper) II(dr)dv

—/Otdst /OOO /Ooo F((r,),0) 5 7 f<rzls{>y§zs})ﬂ(dr)du.

and by similar arguments as in the proof of Thm. 1.1, the process ST, given by

bd(S, D1,
Sf:St—/ { T>
0 Ds

= f [ s o . 0(Zs + 1) — (Zs)) Liy<z.) .
_%Ftnf(An,nn) /Od FS/O /0 £((0,0),7) A T(dr)d

—/Otdst /Ooo /OOO F((r,v), 0)I1(dr)dw,

is a F'-martingale under PT with mean zero. Therefore,

ZF F(AL g [ /0 UsE 7, /0 " F((0,0), 1) 2 Z)E)Z_) gb(ZS)H(dr)}

+Ef [/Ot dsF, /OOO /OOO f((r, y),O)H(dr)dy} :

Thanks to Lemma, 1.4, the second term on the r.h.s. of previous equation allow us to deduce
that (Al) are in fact the atoms of a F'-Poisson random measure NT with intensity ds x
dv x I(dr) w.r.t. P, Also, we can assume by a standard enlarging procedure that there
exist another F'-Poisson random measure N* with intensity ds x dv x I(dr) w.r.t. P
and independent of NT, and a sequence (v,),>; of independent random variables uniformly

(2.13)
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Chapter 2. SDE representations of logistic branching process

distributed on [0, 1], such that UL, <y 18 .ET—measurable and v, is independent of }"tTn_
Using these tools, we define the process Nt as

(ds,dv,dr)

N¥(ds, dv,dr) = Ly<z, yN*(ds, dv,dr) + Y 07 oz, tra-sze, )

¢<an_> st—Un+Zen »Tin }

+1 _ #Zs)Zs

N*(ds,dv,dr),
>z 5}

where § denotes Dirac measure. For this process, let F be again a non-negative F'-predictable
process, and f be a two-variable non-negative Borel function. Thanks to formula (2.13), we
have that

T ¢(Zi,— +rs) — d(Zy,-)
;F f(n T Zy _Un+ 2, _)

_ R U/ / Fof(r, 2% J”(") )¢(ZS)Zsu+ZS)¢<ZS +¢Z)Zs; ¢<ZS>ZSH(dr)duds],

and by a change of variables we deduce that

gb(Ztn_ + Tn) - ¢(Ztn,_) :|
Fy, f(n), Zi U + 2y,
¢( Ss— +7‘)

t S Zs-
/dsF/ / f(r,v)I(dr)dv| .
0 Zs
Moreover, since

t h b t Zs— o0
Ef {/ / / Ff(v,r)liy<z, yN*(ds, dv, dr)l =Ef {/ dst/ / f<y’r)H(dr)dV1
0 0 0 = ; ; i
d
t o) 00
B {/ / / st(y’ T) 1{V>M N*(dS,dl/, dr)}
0 Jo 70 6Zs)

t o) ()
/0 dst/O A(ZS)ZSH f(v, T‘)H(dT)dV] :
#(Z5_)
we deduce that

R Vot /OOO /OOO E,f(v,7)N¥(ds, dv, dr)} =" Vot Fsds/ooo /OOO f(v, r)dyH(dr)], (2.14)

which shows that N* is a F'-Poisson random measure with intensity ds x dv x I(dr) w.r.t.
Pt
These previous equalities (2.13) and (2.14) along with the fact that

Zrnl{wﬂt }—Zpl W)L paal)<z., }+Z”n

— Ef

— Ef

tn <t th <t tn<t
TL {V <Ztn*} + rnl 7. i<Ztn7¢(Ztn*+r’§l) !
tn<t tn<t tn=<VnS—5z, )
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2.3. General LBP conditioned to be never extinct

where p; are the respective projection of {A,} and {(t,, 7], v1)}en and {(t,, 7}, ) }en are

the atoms of NT and N* respectively; imply that the process Z under PT satisfies the desired
SDE. [

In particular, this construction allow us to recover the stochastic differential equation for
the CSBP case. We know that a continuous-state branching process Y can be seen as a
LB-process with rate ¢ = 0, and in this case

ey,

WL, Y:) = "' (Y;) =

Here, by Lemma 1.4 together with equation (2.13), we see that

_ g [/OthdS/YjSH /OOO f((o,o),r)dyn(dr)]

_ g [ /0 ' Fuds /0 A, 0),7“)7‘H(d7“)} ,

E' > F, f((0,0), 1))

tn <t

(2.15)

from where {n)} are the atoms of a Poisson random measure N* with intensity ds x r1I(dr)
w.r.t. PT. In particular, this measure is independent of Nt and, as fol(l Ar)rIl(dr) < oo, it
not need to be compensated. Therefore, equation (2.11) take the form

t t t pYs_ 0o
Yt—a/ sts—l—o/ \/stB;Jr// / rN(ds,dv, dr)
0 0 0o Jo 1

t Ys— 1 - t ZS_+T’ o0
- / / / rNT(ds, dv,dr) + ot + / / / rN*(ds,dr),
0 0 0 0 s— 0

that is in fact our original equation (1.7).

(2.16)
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Chapter 3

Ray-Knight representation of
Lévy-driven LBPs

This chapter is based on the paper Ray-Knight representation of Lévy-driven continuous-state
branching processes with logistic growth , with J. Berestycki and J. Fontbona (in preparation) .

3.1 Introduction and preliminaries

The understanding and the description of the genealogical structure of stochastic population
models with branching-type behavior have been active fields of research over the last decades,
giving rise to powerful mathematical tools for studying such models and the asymptotic be-
havior of large random tree-like structures. In the framework of continuous-state branching
process, or CSBP for short, the study of these questions has revealed deep connexions be-
tween the Markov processes that describe the evolution of such branching populations, and
continuous time processes of a different nature that can be used to code their genealogies.
The theorem of Ray and Knight [52], [34] is historically the first result in that direction. It
states that the accumulated time which a suitably stopped reflected Brownian motion spends
near level s (rigorously understood as its local time at level s) is a Feller branching diffusion
when viewed as a process in s. Thanks to the excursion theory introduced by It6 [30, 31|,
it is well known that the excursions away from 0 of such reflected Brownian motion define a
Poisson point process indexed by the local time at level 0. In the nineties, Aldous constructed
the (Brownian) continuum random tree (CRT) as the tree coded by the normalized Brown-
ian excursion [5, 6]. Brought together, these objects and results give a precise mathematical
meaning to the genealogy of a population governed by the Feller diffusion: the excursions of
reflected Brownian motion can be understood as exploration paths of the trees of descendants
of the ancestors of the population at time ¢ = 0, with the local time at height ¢ measuring
the population size at that time.

In the framework of general CSBP, which can be defined from a spectrally positive Lévy
process X by means of Lamperti’s transform, a Ray-Knight theorem was established by
Duquesne and Le Gall [21]. The definition of the corresponding excursions, their heights and
their local times at each level, which are needed in order to state a Ray-Knight theorem in
that setting, is much more involved than in the diffusion case, with no simple (say, finite
dimensional or SDE-like) representation of a Markov process coding the genealogy. Their
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Chapter 3. Ray-Knight representation of Lévy-driven LBPs

result therefore required the use of the so-called exploration process, introduced by Le Gall
and Le Jan [43|, which codes the continuum random trees embedded in a spectrally positive
Lévy processes X, or Lévy-CRT.

Extensions of the Ray-Knight theorem and related genealogical descriptions have since
then been obtained for more complex models with branching type behavior, such as super
processes, branching processes with immigration and generalized Fleming-Viot Processes
with mutations [1, 2, 9, 8, 45|, and have been used in the study of several properties of these
processes.

During the last decade, density-dependent stochastic population models have consider-
ably enlarged the scope of mathematically tractable population models and therefore have
attracted increasing attention both in the mathematical and theoretical biology communi-
ties. In the present work, we are interested in the genealogical description of continuous
state branching processes with logistic growth. Branching processes with logistic growth or
logistic branching process, abbreviated as LBP, are population-dependent continuous time
branching process where moreover, informally speaking, the total population instantaneously
decreases at a rate proportional to the squared population size at each instant. In the con-
tinuous state-space framework, LBP are Markov process taking nonnegative values and with
a.s. cadlag paths, and were introduced in a general form by Lambert [36], by means of a
Lamperti transformation on Ornstein-Ulhenbeck processes driven by general spectrally pos-
itive Lévy process. The global behavior of the population can be intuitively understood as
the result of standard branching behavior, plus a pairwise competition among individuals,
resulting in an individual death rate increased by an amount that is proportional to the total
instantaneous population descending from the original one.

The lack of independence between the individuals of the populations modeled by such
processes prevents the application of standard tools of excursion theory and of continuous
random trees to suitably define the genealogy of such processes, and new points of view must
be developed. In that setting, a Ray-Knight theorem was recently obtained in the case of
the logistic Feller diffusion by Le, Pardoux and Wakolbinger [42], see also [50], in terms of
the local times of a reflected Brownian motion with local time drift. As in the classical Ray-
Knight representation, the excursions of such process are understood as the exploration paths
of the trees of descendants of the ancestors at time ¢ = 0, and the local time of the process
at height s measures the population size at time ¢. Their key idea to define a genealogy is to
think of the individuals as being arranged “from left to right ” (as given by the exploration
time), and decree that interaction between them takes place through “pairwise fights” that
are always won by the individual “to the left ”, hence lethal for the individual “to the right”.
Deaths following pairwise fights lead in the exploration process of the genealogical forest to
a downward drift, proportional to the amount of mass (or local time units) seen to the left
of the individual encountered at each exploration time. In this way, excursions which come
later in the exploration time tend to be smaller (trees to the right are “under attack from
those to the left”) .

The main purpose of the present paper is to extend the previous Ray-Knight representa-
tions and genealogical descriptions to LBP associated with general spectrally positive Lévy
process with (sub)critical mechanism.

We next briefly recall the basic needed facts on CSBP and LBP and relations between
these processes, together with SDE representations that will be useful for our purposes. We
discuss then the Ray-Knight theorems of Duquesne and Le Gall and the theorem of Le,
Pardoux and Wakolbinger for the logistic Feller diffusion. In order to introduce the tools
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3.1. Introduction and preliminaries

we will require to formulate the problem in the general setting, we then recall some ideas
on pruning of Lévy trees, following Abraham, Delmas and Voisin [3] and recall some of the
results therein that will be useful in our approach. Then, in the following section, our main
results are stated.

3.1.1 Continuous state branching processes

A CSPB is a cadlag [0, oo)-valued strong Markov processes Y = (Y; : t > 0) with laws given
the initial states (P, : x > 0) which satisfy the branching property. That is, for any ¢ > 0

and y1,y2 € [0,00), Y; under P,,.,, has the same law as the independent sum Yt(l) + Yt(Q),

where the distribution of Y;(i) is equal to that of Y; under P,, for i = 1,2. The law of Y is
completely characterized by its Laplace transform: For 6 > 0, x > 0 and ¢t > 0, one has

Ex(e—GYt) — o Tut (6)

where u is the unique nonnegative solution of the differential equation

8ut(9)
ot

= —(u(0)), uo(f) =90,

and the function v called branching mechanism of Z is of the form

1
YO = —g—ar+ SN + / (e =1+ Aaley)li(dr) A>0,  (3.1)
(0.00)

for some ¢ > 0, « € R, 0 > 0 and IT a measure supported in (0, c0) such that

/ (1 A z*)(dxr) < oo.
(0,00)

Defining p := ¢/(0+) and since E,(Y;) = xe ?', CSBPs are classified as subcritical (p > 0),
critical (p = 0) and supercritical (p < 0), according to whether the process will, on average,
decrease, remain constant or increase. In the following, we will assume that Y satisfies the
following conditions:

(A1) c(0)=¢=0 and [¢'(0+)] < oo;
(A) a< —/1 rII(dr) and /0 (r Ar®IL(dr) < oo;

(A3) o>0 or / rII(dr) = co;  and
0

(Ag) — < 0.

IOy

Assumption (A;) ensures that Y is conservative (i.e. V¢t > 0, P,(Y; < 0o) = 1), assumption
(A2) when ¢ = 0 restricts our work to the (sub)critical case and assumption (A4) implies
that there is a.s. extinction for Y. Assumption (Ajs) is imposed in order to deal with the
more interesting case when the process has infinite variation. The nonnegative function
is the characteristic exponent of a spectrally positive Lévy process X = (X; : ¢t > 0), i.e. a
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Chapter 3. Ray-Knight representation of Lévy-driven LBPs

process with cadlag paths, stationary and independent increments, and no negative jumps,
characterized by its Laplace exponent

E (6—9Xz) _ e—tw(e),

and under our assumptions, it has no negative jumps, does not drift to +oo and its paths
are of infinite variation.

Lamperti [40] established his celebrated one-to-one trajectorial correspondence between a
CSBP Y as above and the spectrally positive Lévy processes X, killed upon hitting 0, via a
random time change. We refer to Caballero et al. [13] for modern proofs of that result. The
following alternative SDE representation of the dynamics of a CSBP established in [13],[25]
and [18] will be practical for our purposes. Given a realization of the process (Y; : t > 0)
starting form y > 0 in some probability space, one can construct in an enlarged one a standard
Brownian motion B and an independent Poisson measure N on [0, 00) x (0, 00) x (0, 00) with
intensity measure dt x dv x II(dr) such that

t t t Yo poo
Yt::z:+a/ Y5d$+0/ \/Y;dBS+/ / / rN(ds,dv,dr)
0 0 o Jo 1

t Yo ol
+ / / / rN(ds,dv,dr),
0 Jo 0

where N denotes the compensated Poisson measure associated with N. When N and « are
identically null, or equivalently, when the underlying Lévy process is a Brownian motion, the
CSBP (Y; : t > 0) is the celebrated Feller diffusion. Consider the reflected Brownian motion

(3.2)

2 1
H,==-B" + 5LQ(H), 5> 0, (3.3)
o

where Bf is a standard Brownian motion and L2(H) is the local time accumulated by 3 at
level a > 0 up to time s > 0. Then, one has

Theorem 3.1 (Ray-Knight theorem). Set T, = inf{t > 0: LY(H) = z}. Then, the process
(L%, (H) :a > 0) has a continuous modification which is a Feller difussion.

3.1.2 Lévy exploration processes and the Ray-Knight theorem of
Duquesne and Le Gall

We next recall Duquesne and Le Gall’s extension of the previous result to the case of general
CSBP with (sub)critical branching mechanism. To that end the introduction of the explo-
ration process associated with a spectrally positive Lévy process X, as well as its height
and local times processes, is needed. The reader is referred to [21] for details and further
background.

Under assumption (A), point 0 is regular for the process X reflected both at its running
infimum and at its running supremum. The running infimum process of X is denoted by

I = Oi<nf<th, and it is a local time at 0 for the strong Makov process X — I. The future

infimum of X is the (two parameter) process defined for 0 < s <t by I} = i<n£t X,. The
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3.1. Introduction and preliminaries

height process H® = (H? : t > 0) which roughly speaking measures for each ¢ > 0 the size of
the set {s <t : X, =inf},4 X, }, can be firstly defined as

S B
Hto = llIgi}lglfg/Ov 1{XS<]f+E}dS7

which is equal, by time reversal at time ¢, to the local time at the supremum of the dual
Lévy process. The process (HY :t > 0) is Markov only when X has no jumps (in which
case it is a reflected Brownian motion with drift). But it always has a version which is a
measurable function of a measure-valued strong Markov process, called exploration process.
The exploration process p = (p; : t > 0) takes values in the space M (R, ) of finite measures
in R, and for each ¢ > 0 it is defined on nonnegative measurable functions f by

(oo, f) = / 4.1 f(HO),

where d,I; denotes the Lebesgue-Stieljes integral with respect to the nondecreasing map
s — I}. Equivalently

pe(dr) = 51[07Hto}(r)dr + Z (I} — X5 )0po(dr).

0<s<t,X _<If

In particular, the total mass of p; is (p;,1) = X; — I;, The process H; := H(p;) defined as
the supremum of the closed support of the measure p, and with H(0) := 0 by convention,
is a modification of the height process H?, such that the mapping ¢t — H(p;) = H; is lower
semicontinuous a.s.

Aoy ph,

T

Figure 3.1: Set {r < s: X, = inf}, g X, }

The exploration process p, or equivalently the process X —I, codes a tree structure defined
in the following way. Under the excursion measure N induced on excursions of X — I away
from 0, the “law” of the height process H; puts weight on nonnegative functions e : [0, 0] — R,
with compact support and such that eg = 0 = e, for all s > o > 0, where o denotes the
length of the excursion. The random function d. defined on [0, c]* by

de(s,t) = es + €5 — 2me(s, t),
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Chapter 3. Ray-Knight representation of Lévy-driven LBPs

with m.(s,t) = Mi<n£ e defines an equivalence relation in [0, o] through d.(s,t) = 0. This

induces an ultrametric distance in the quotient set 7, which results to be a compact metric
space (a “real tree” actually). Informally, each real number s € [0, o] corresponds to a vertex
at level H in the tree, and d.(s,t) is the distance between vertices corresponding to s and ¢
(in particular, s and ¢ correspond to the same vertex if and only if d.(s,t) = 0). The quantity
me(s,t) is interpreted as the height (or the generation) of the most recent ancestor common
to s and t. Thus, p; can be seen as a measure on the ancestral line of the individual labeled
by ¢, which gives the intensity of the sub-trees that are grafted on the right of this ancestral
line.

Figure 3.2: Tree structure

The Ray-Knight theorem for CSBP of Duquesne and Le Gall is stated in terms of the
local time of the height process. The latter is in general not Markovian nor a semimartingale,
and so its local times must be defined in terms of the exploration process p. Since H; = 0 iff
pr = 0, or equivalently X; — I; = 0, the natural definition for the local time at level 0 of H
is the process LY := —I,. In order to define the local time at a given level a > 0 one has to
consider the exploration process “above level a”, defined as follows. Set for each t > 0,

S

7t =1inf{s > 0: /08 g, >qpdr >t} =inf{s > 0: /0 L, ((a,00)>01dr >t}
which is a.s. finite since [;° 1y, ~q3dr = oo a.s., and
7p=inf{s > 0: /s 1im, <qpdr > t}.
0
For every ¢t > 0, one then defines a random measure p{ on R by
o dr= [ el —a) (3.4

Then, the process (p¢ : ¢t > 0) has the same distribution as (p; : ¢ > 0) and is independent
of the sigma field H, generated by the cadlag process ((Xza,pza) : t > 0) and the class of
negligible sets of the canonical filtration of the Lévy process X. Denoting by (¢ = (1%(s) :
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3.1. Introduction and preliminaries

s > 0) the local time at 0 of ({p®, 1) : ¢ > 0), the local time at level a and at time s of the

height process H is defined by
L= (/ l{H,.>a}d7“> . (3.5)
0

With these elements, Duquesne and Le Gall proved in |21, Theorem 1.4.1| (see also [43,
Theorem 4.2|) the following generalization of the classic Ray-Knight theorem:

Theorem 3.2 (Ray-Knight representation for CSBP). Set T, = inf{t > 0, L = z}. Then,
the process (L%, : a > 0) has a cadlag modification (Y, : a > 0) which is a CSBP of branching
mechanism 1 starting from x.

3.1.3 Logistic branching processes and genealogy of the logistic Feller
diffusion

As we see in Section 2.1, continuous-state branching processes with logistic growth (LBP)
were introduced in [36] by means of a similar Lamperti transform as the one linking continuous-
state branching processes and Lévy processes, but using a Lévy driven Ornstein-Uhlenbeck
(OU) process instead. An LBP Z = (Z; : t > 0) can be seen as an analogue of a CSBP
Y = (Y; : t > 0) with additional negative interactions (competition) between pairs of indi-
viduals in the population alive at each time instant. As we proved in Theorem 2.1, an LBP
corresponding to a time-changed OU process driven by a Lévy process of Laplace exponent
Y given by (3.1) can actually be constructed as a (strong) solution of the SDE

t t t pZ. oo
Zy=v+ a/ Zyds + 0/ \/ ZdBg + / / / rN(ds,dv,dr)
0 0 o Jo 1

t pZo 1 t
+/ / / rNds,dv,dr) — c/ Z2ds,
0o Jo 0 0

with a Brownian motion B and an independent Poisson point process N on [0, 00) x (0, 00) X
(0, 00] of intensity dt x dv x II(dr) similar as in (3.2), and ¢ > 0 a positive constant referred
to as competition intensity. The above SDE representation of LBP can be deduced from the
Lamperti representation (in a similar way as in [13| for CSBP). In the particular case when
the underlying Lévy process is a Brownian motion with drift, the previous equation reduces
to

(3.6)

dZ; = (aZy — cZ2) dt + o/ Z,dBy,  Zy = =, (3.7)

the solution of which is known as the “Logistic Feller diffusion”.

In [42, 50] the authors established a generalization of the classical Ray-Knight theorem
for the process (3.7), in terms of the local times of a reflected Brownian motion H with a
local time drift, in the case o > 0. This is defined as the solution of the SDE

2 1 2 3
H,==B" + ~L%H)+ s c/ LA (H)dr, s>0, (3.8)
o 2 o 0
where B is a standard Brownian motion and L%(H) is the local time accumulated by H at
level @ > 0 up to time s > 0. They proved in [12]| that SDE (3.8) has a weak solution, unique
in law, and moreover
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Chapter 3. Ray-Knight representation of Lévy-driven LBPs

Theorem 3.3 (Ray-Knight theorem for logistic Feller diffusion). Define for each x > 0 the
stopping time

T, = inf{s >0, L) > z},
Then ((02/4)L%, :a > 0) is a weak solution of (3.7).

The result can be interpreted as follows. The death rate due to the pairwise fights leads in
the exploration process of the genealogical forest to a downward drift which is proportional to
L that is, proportional to the amount of mass seen to the left of the individual encountered
at exploration time s (and living at real time H, ). In this way, those excursions of H which
come later in the exploration time tend to be smaller (the trees to the right are “under attack
from those to the left”).

In a similar way as in [42], the key issue in order to define a genealogy of LBP in the
Lévy case is to first give a sense to competition between pairs of individuals in the same
generation or height of the Lévy tree, entailing the disappearance of the defeated individual
and of its whole (potential) descendent line. Keeping in mind the picture in [42] of individ-
uals arranged from left to right, together with pairwise “fights” that are always won by the
left-most individual, in the Lévy case this amounts to define a consistent way of randomly
“erasing ” local time units at a given level, together with the corresponding excursions of the
exploration process above that level, at a rate given by the total population on the left of
the individual indexed by the erased local time unit.

The idea of “erasing” consistently the local time and the corresponding excursions of
the exploration process is now standardly formulated by a means of a “pruning” procedure
performed on the Lévy-CRT (see [3, 4, 56]). This procedure is defined in terms of a Poisson
Lévy-snake (a particular instance of the powerful Lévy-snake device introduced in [21]) which
provides a mechanism to put Poissonian marks on the path of the exploration process, in a
way that is consistent with coded tree structure. To a large extent, our formulation of the
genealogy of a Lévy driven LBP will be inspired by the ideas of [3]|, and by a Ray-Knight
interpretation of their main result. However, we will need to define the pruning mechanism
in a more general way, allowing for some past exploration-path dependence of the marking
rates.

In the next subsection we recall the Lévy-tree pruning procedure developed in [3] as well
as the main results therein, and state some consequences that will be relevant for the sequel.
We will then be ready to state our main results.

3.1.4 Poisson Lévy-snake and Lévy tree pruning

Duquesne and Le Gall [21] introduced the Lévy snake process which combines the continuous
genealogical structure coded by the height process H of the exploration process p, with the
spatial motion of a cadlag Markov process ¢ in a Polish state space E. Recall that the space
W of killed cadlag paths in E can be equipped with a metric making it a Polish space.

Definition 3.4. Given a fixed starting point = € E, and a realization of the process (p; :
s > 0), the Lévy snake is the time homogeneous strong Markov process ((ps, Ws) : s > 0)
with values in the product space M;(R,)x # (and defined in an enlarged probability space)
such that, conditionally on (ps : s > 0),
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3.1. Introduction and preliminaries

. for every s > 0, Wy, = Ws(t) : 0 <t < Hy) is a path of £ started at x killed at time
H,, and

. for each pair of time instants s and s’, the paths W, and W, are the same up to time
t = Hyy := inf H, and then behave independently conditionally on their (common)

8,8’

past up to time Hj y.

(we refer to [21] Ch. 4 for details). The second property above is referred to as the snake
property.

Definition 3.5. In the case that £ = R,, z = 0 and ¢ is a Poisson process of rate § > 0,
the process ((ps, Ws) : s > 0) is called Poisson Lévy-snake, or simply Poisson snake.

For each s > 0, a Poisson snake W, is rather described in terms of its derivative m?,

which is (conditionally on p) a Poisson point measure in [0, Hy) of intensity 6 times the
Lebesque measure. In these terms, the snake property is equivalent to the fact that for s < s’
(conditionally on p) one has mg,(dr)l{rgHsys,} = mg(dr)l{TSHsys,}, and mgl(dr)l{DH&S/} and
mg(dr)l{st,S,} are independent. The atoms of m? can be seen as unit mass marks on the
ancestral line of the individual labeled s. Thus, atoms of (m? ¢ > 0) can be interpreted as
marks “ on the skeleton” of the tree coded by p, which are distributed according to a Poisson
point measure with intensity # times the Hausdorff measure on the tree.

In [3], Abraham et al. study the measure-pair valued process .7% := ((p;, m?) : t < 0),
called the marked exploration process. (Actually, they also consider marks on the nodes of
infinite degree of the tree, but these will not be needed here; our process (m! : ¢ < 0)
corresponds to the process (m§<® : ¢t > 0) in [3]). Then, they show that if the underlying Lévy
tree is pruned by removing from the original CRT all the individuals who have a marked
ancestor, the resulting tree is the Lévy tree associated with the branching mechanism

Yo(N) = (A) + 2. (3.9)

To be more precise, denoting by A, the Lebesgue measure of the set of the individuals
prior (in exploration time) to t, whose lineage does not contain any mark, i.e.

t t
A= / Limg—opds = / Lims ((0.1.))=0} 5
0 0

and considering its right-continuous inverse C; := inf{r > 0, A, > t}, they define the pruned
exploration process as
VE>0, p=pc, (3.10)

The main result in [3] then is:

Theorem 3.6. The pruned exploration process (3.10) is distributed as the exploration process
associated with a branching mechanism 1y given in (3.9).

Using classic approximation results on local times, one can moreover check that for each
a > 0, the local times of the pruned exploration process (3.10) at level a is given by the

process
C
(/ l{mgzo}d[/g 0t Z 0) . (311)
0
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Chapter 3. Ray-Knight representation of Lévy-driven LBPs

It is then possible to deduce a “Ray-Knight interpretation” of Theorem 3.6 and of the pruning
procedure. The following result, proved in Section 3.4, is the starting point for the ideas
developed in the present paper (and also a key technical fact for our results):

Ty
Corollary 3.7. For each x > 0, the process (/ Tgpo—gydL 1 a > 0) has a right continu-
0

ous version which is a CSBP with branching mechanisms 1g(\), starting at x.

3.2 Main statements

Our first goal is to give a sense to the idea of pruning at height » > 0 the CRT coded by the
exploration process p at, roughly speaking, a rate proportional to the local time accumulated
by the pruned tree “on the left” of each individual at level r. But rather than defining
the pruning of the exploration process itself, this idea will be more easily and naturally
formalized in terms of “pruned local times”, inspired by the relation (3.11). Indeed, Corollary
3.7 suggests that, in order to state a Ray-Knight representation of a LBP it should be enough
to define the “marks” inducing the pruning procedure we are interested in. But to do so, the
introduction of a generalized notion of marked exploration process is needed.

We denote in the sequel by .Z (R, ) the space of Borel measures in R, endowed with the
vague topology and by ., (R, ) the subspace of .#(R,) of atomic measures with unit mass
atoms. We write (S, d) for the (Polish) state-space of the marked exploration process used
in [3] (the metric will be recalled below).

Definition 3.8. Let ¢) be a branching mechanism satisfying assumption (A4). A cadlag S-
valued process ((ps, m¢) : t > 0) defined in some probability space, where p is an exploration
processes associated with v, will be called generalized marked exploration process if,
conditionally on p,

. for each s > 0, m; is an element of .Z,(R ) supported in [0, H;) and
. for each pair of time instants s and s" one has my(dr)1<p, 3 = ms(dr)ly<m, -

Moreover, it will be called progressively marked exploration process if in addition,
conditionally on the sigma field U((Psvmsl{Lfs<Lfs}) : s < t), my is a (non-homogeneous)
Poisson point process in [0, Hy).

Notice that ((ps,msl{L§S<LfS}) is < t) corresponds to the exploration process coding

the trees on the left of (and including) the lineage of the individual labeled ¢, together with
marks put strictly on its left (excluding the marks on its lineage). Also,

(0((037 1{L§15<LtHs}mS> PSS t)>t>0

is subfiltration of (o((ps,ms) : 8 <1)),50-

Definition 3.9. Let ((p;,m¢) : t > 0) be a progressively marked exploration process. For
each a > 0, we will call local time at level a progressively pruned by m, or simply
m-pruned local time at level a, the process defined by

t
L?(m) = / 1{m5=0}dL(51> t 2 0.
0
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Our first relevant result is the existence of a progressively marked exploration process
((pt,my) : t > 0) that puts marks at each level of a given ancestral line, at a rate that is
proportional to the m*-pruned local time accumulated on the forest on its the left:

Theorem 3.10. Let (p; : t > 0) be the exploration process associated with a branching
mechanism v satisfying (A) and let ¢ > 0. There ezists in some extended probability space
a progressively marked exploration process ((p,m;) : t > 0) such that, for each t > 0,
conditionally on the sigma field 0((ps,m§1{L£{5<LtHs}) : s < t), the point process m; is (non-
homogeneous) Poisson of intensily measure

cL{(m”)dal{oep,y,
where for each a > 0, (L{(m*) : t > 0) is the m*-pruned local time process at level a.

Process ((p;, m;) : t > 0) will be called the logistically marked exploration process.

The main result of the present paper is the identification of the law of the process of
cumulated m*-pruned local times at each level, at increase instants of the local time at level
0.

Theorem 3.11 (Ray-Knight theorem for Lévy-driven logistic branching processes). Under
the assumptions of Theorem 3.10, the process

(L7, (m*) :a >0)

18 a conlinuous-state logistic branching process with branching mechanism ¢ and compelition
rate ¢/2, starting from x.

The fact that the obtained competition rate is ¢/2 instead of the constant ¢ appearing in
Theorem 3.10 accounts for the non-symmetric competition between individuals: the ones on
the left are kept forever (with respect to exploration time) as part of the population, whereas
those further right (or newly arrived in the exploration time sense) are susceptible of being
removed (as in [50].)

The techniques we introduce in order to prove Theorem 3.11 actually allow us to state a
stronger result, namely the identification of the law of the two-parameter process

(L7, (m") :2>0,a >0).

In particular, we are able to provide a more complete description of the above picture of com-
petition, when competing individuals descend from different ancestors (or initial populations
x > 0) at generation a = 0. The key tool to do this, and also a crucial element in the proof
of Theorem 3.11, is an extension to the LBP setting of stochastic flows of CSBP introduced
by Dawson an Li [18]. We next briefly recall the flow of CSBP and its connection with the
Ray-Knight theorem 3.2 and then describe the analogous connection in the present setting.

3.2.1 Stochastic flow and tree interpretation

The flow of CSBPs introduced in [18] is a two-parameter process (Yi(v) : ¢t > 0,0 > 0),
where for every v > 0 the process Y (v) = (Y;(v) : t > 0) is the unique strong solution of the
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stochastic differential equation:

t t rY,—(v) t Y, (v) poo
Yi(v) =v+ a/ Yi(v)ds + O'/ / W (ds, du) + / / / rN(ds, dv,dr)
0 0 Jo 0 Jo 1

t rY,—(v) 1
+ / / / rN(ds,dv,dr),
0o Jo 0

where II(dr), 0 > 0 and « are the same objects as in (3.1), W (ds, du) is a white noise process
on (0,00)? based on the Lebesgue measure ds x du and N is a Poisson random measure
on (0,00)% with intensity ds x dv x II(dr) as in (3.2). Tt is easily seen using the properties
of stochastic integrals with respect to white noise, that for each v > 0, the above process
satisfies equation (3.2) and hence it is CSBP with branching mechanism ¢ given in (3.1)
starting with initial population v. The authors in |[18] proved that (Y;(v) : t > 0,v > 0) has
a version with the following properties:

(3.12)

i. for each v > 0, t — Y;(v) is a cadlag process on [0, 00);
ii. foreacht >0, v~ Y;(v)is a non-negative and non-decreasing cadlag process on [0, 00).

iii. For each 0 < vy < wy < --- < v, the processes (Yi(v;) —Yi(vj_1) :t>0),j=1,...n
are independent CSBP with branching mechanism v issued from v; — v;_q,

i.e. (Yi(v):v > 0) is a subordinator. The stochastic flow of CBSP thus provides a simulta-
neous construction of a family of CSBP featuring the branching property as a function of the
initial population v (in particular it provides a SDE construction of Bertoin and Le Gall’s
flow of subordinators defined in [10] for similar purposes). Moreover, since a similar additive
property is shared by the exploration local times x +— (L%, : a > 0) of the Lévy CRT with
branching mechanism @ thanks to the strong Markov property of the exploration process
(pr : t > 0), the process (L7, : a > 0,2 > 0) and the family (Y,(z) : @ > 0,2 > 0) have
the same law. The random “forest” T associated with height process H, and coded by the
exploration process (p; : t > 0), can thus be viewed as the genealogical tree T of the flow of
CSBP.

In the case of the logistic branching, adapting techniques of [18], it is not hard to establish

Proposition 3.12. Let the parameters I1(dr), o > 0 and o and the processes W (ds, du) and
N(ds,dv,dr) be as above. For every v > 0 there is a unique strong solution of the stochastic
differential equation:

t t pZs—(v) t pZ,(v) poo
Zi(v) = v+ a/ Zs(v)ds + O’/ / W (ds, du) + / / / rN(ds, dv,dr)
0 0 Jo 0 Jo 1

t rZ,—(v) o c t
+/ / / rN(ds,dv,dr) — —/ Z2(v)ds,
0 Jo 0 2 Jo

Moreover, the process (Zy(v) : t > 0,v > 0) admits (bi-measurble) version such that

(3.13)

i. for each v > 0, t — Zi(v) is a cadlag process on [0,00) which is a LBP of branching
mechanism 1 and competition rate c/2 started from v;
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3.3. The logistic Poisson Lévy-snake

ii. for each t > 0, v — Z;(v) is a non-negative and non-decreasing cadlag process on
[0, 00).

iii. For each 0 <w, the conditional law of (Z;(v) — Zi(u) : t > 0,u < v) given
(Zy(x) :t > 0,0 < x <u) depends only on (Z;(u) : t > 0).

Notice that this construction generalizes a similar one of [50] in the case of the logistic
Feller diffusion. Our proofs of Theorems 3.10 and 3.11 will provide a simultaneous realiza-
tion of the logistically pruned local times for different initial populations, and can be easily
adapted in order to establish the following stronger result:

Corollary 3.13. The processes (L} (m*) :a >0,z > 0) and (Z,(z) : a > 0,2 > 0) have the
same law.

To show that for every o > 0 the local times process (L%, (m*) : a > 0) can be indeed
interpreted as the Ray-Knight representation for a LBP starting from x, we will construct an
approximation (L{(e,d) : @ > 0,t > 0) in a suitable tree-like height/local time discrete grid,
using the pruning procedure employed by Abraham et a. in [3] in an iterative way. To identify
the law of this approximation, we will define a flow (Z°(v) : a > 0,v > 0) of suitable pruned
CSBP that will prove to be an embedding of the local time process (L%, (g,0) : @ > 0,v > 0).
Finally, we prove that the law of the pruned flow Z° (and therefore that of L(e, §)) converges
strong enough to the logistic flow.

3.3 The logistic Poisson Lévy-snake

In order to give a meaning to the idea of pruning the Lévy tree or the associated exploration
processes in a logistic way, we next introduce a Poisson Lévy-snake AN with values in the
space of Poisson point process in [0,00) X (0,00), and we will use it to mark the tree at
variable random rates, generalizing the main ideas of Abraham et al.[3]. In doing so, we will
also extend ideas developed [4], where a two dimensional Poisson snake was used to prune a
Brownian excursion process simultaneously at different (but constant) rates.

3.3.1 A 2d Poisson Lévy-snake

Let V denote the set of pairs (1, n) € A5 (Ry) x A (R%) such that supp n C [0, H(u)) x Ry.
For each u € [0, H(jt)), we denote by 1w, € . (R,) the measure given by

Nw(A) =n((0,u] x A), A e BRy) (3.14)

and notice that u — ng,) € #(R,) is vaguely cadlag (by dominated convergence). Moreover,
n,1" € 4 (R?) supported in [0, H(u)) are equal if and only if n) = 1, for all u € [0, H(u)).
We endow V with the distance d given for (u,n), (1/,n') € V by,

L ) H(p)AH (1) . )
d((p,m), (') = D(p, i) +/ (du(nwy, M) A1) du+ |H(p) — H(i')],  (3.15)
0
where D is a distance inducing the topology of weak convergence such that the metric space
(A(R,), D) is complete, and d,, is the Skorohod metric on D([0, u], # (R, )). One can check
that (V,d) is a Polish space.
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Chapter 3. Ray-Knight representation of Lévy-driven LBPs

In an analogous way as in Abraham and Serlet [4, Theorem 5| for the Brownian excursion,
one can construct a cadlag strong Markov process ((ps, Ns) : s < 0) with values in V such
that

1. (ps:s>0) is the exploration process associated with the Lévy process X.

2. Conditionally on (ps : s > 0), for each s > 0, N, is a Poisson point measure on
[0, H(ps)) x Ry with intensity the Lebesgue measure and, for all 0 < s < ¢/,

. -/\/;’(dr> dy)]'{TSHs,S/} = j\[s(dr7 dy)]'{TSHS,s/b where Hs,s’ = iIlf{Hu,S <u < 3,}7
and

- Ny(dr,dv)lgsp, y and N(dr,dv)1gs gy are independent point processes.

Remark 3.14. We stress the fact that in the standard snake terminology of [21] (see Defini-
tion 3.4), the above process actually is the Lévy-snake with underlying spatial-Markov process
¢ corresponding to the “primitive in the r variable” of a Poisson point measure n(dr,dv) in
A (R?). More precisely, in a similar way as for the one-dimensional Poisson snake, a path
of € here is an increasing cadlag path r — ([0, r], dv) taking values in .# (R, ) instead of in
R, (see (3.14)), and we describe it in terms of its “derivative”, which is the point measure
n(dr,dv) .

We denote by (F;);>o the right continuous completion of the filtration o ((ps, Ns) : s < t)),
t > 0 and by (F);>0 the one associated with o(ps : s < t).

For all t > 0, we introduce the “vertical” filtration (QT@)QO given by the right continuous
completion of the filtration generated by

G\ =o (J:fp’ {(rgls)l{rﬁ”gr}’ VL0 <y Ineis 8 < t}) ’ (3.16)

where {(r,(f), M(f))} are the atoms of the process N;. Notice that also, for each r > 0, (gﬁ“)tzo
is a sub-filtration of (F;)¢>o containing (F;);>o-
Thanks to the snake property of ((ps, Ns) : s > 0), is is not hard to check

Lemma 3.15. Conditionally on g((f), the process N is a (gﬁt))T.ZO—Poisson point process in
R? of intensity Ly p(p) (r)dr X dv.

In particular, if Pred(G®) denotes the predictable sigma-field associated with (gﬁt))rzo,
one can define integrals of Pred(G®") ® B(R..)-measurable processes h((r,w), ) with respect
to NV, and they have, conditionally on F/, the standard properties of Poisson type integrals,
relative to the filtration (Qr(t))rzo.

3.3.2 A operator on generalized marked exploration processes

Our goal now is to use the Poisson Lévy-snake ((ps,N;) : s > 0) to construct a logistic
marked exploration process. We will do this by means of an iterative scheme. In order to
define its generic step, we need to introduce an operator in the set of generalized marked
exploration process and study some of its properties.

Recall that (S, d) denotes the state-space of the marked exploration process used in [3],
which also contains the trajectories of the generalizes marked exploration processes previously
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3.3. The logistic Poisson Lévy-snake

introduced. This is the Polish space of pairs (u, w) with p € #;(R.) and w € 4, (R4) such
that supp(w) C [0, H(u)), endowed with the distance

R H(u)NH (')
d((p, w), (W', w')) = D(p, p') + /0 (du(weuy wiyy) A1) du+ [H(u) — H(i'),
(3.17)

where w(,) (resp. wy,)) is the cumulative distribution function of the measure w (resp. w’)
restricted to [0,u] and d,, is the Skorohod metric on the space D(]0, u], Ry).

Consider ((ps,m¢) : t > 0) an (F;)-adapted generalized marked exploration process such
that, for each ¢ > 0, the process a — my([0,a]) is (gét))—adapted. Recall that the parameter
¢/2 > 0 stands for competition intensity. Define for each ¢t > 0 and h > 0 :

t H; 0o
L (m) = / Limo—oydLl and  mj([0,h]) := / Lio,4) (7“)/ Liv<c rrrmyNe(dr, dv),
0 0 0
(3.18)
where (PLj(m),r > 0) is the predictable projection of (Lj(m) : r > 0) with respect to the
filtration (gﬁt))rzo. That is, PL; is the unique (up to indistinguishability) (gﬁt))rzo—predictable
process such that:

E L o) |01 ] = "LET(neney as (3.19)

for every predictable G®-stopping time R '. By properties of exploration local times and
generalized marked exploration process, the two parameter process (Ly(m) : r > 0,t > 0)
has a bi-measurable version which is continuous in ¢ for each » > 0. We always work with
such a version.

Lemma 3.16 (Basic properties of the mapping m — m’). The process S' = (p,m’) is a
generalized marked exploration process. Moreover, the cadlag process t — m) is (F;)-adapted
and for every t > 0, the cadlag process a — m;([0,a]) is ( ((zt))—adapted. Finally, the integer
valued process t — m;([0, Hy)) of the total number of marks in each lineage is cadlag.

Proof. Measurability follows directly from the definition of (3.18). The fact that (p,m’) is
a generalized marked exploration processes, apart from cadlag paths, follow from (3.18) and
the snake property of the process (p,N), together with the fact that the processes r — LI
and r +— L’ are equal on [0, H; ;). As for the path regularity, from (3.17) we have for s,¢ > 0
that

HiNHg

d((pt,m;), (ps;my)) = D(pt, ps) + / (du«m;)(uw (m;)(U)) N 1) du + |H; — Hyl.

Ht,s

Since (ps : s > 0) is a cadlag process and, under our assumptions, (H, : s > 0) is a continuous
process, the right-hand side goes to zero when s — t. We deduce that the marked exploration
process ((pr,m;) : t > 0) is right-continuous and has left limits (for the latter property one
easily checks that (ps,,m/) ) is Cauchy when s,  t, with a limit not depending on the
sequence). Finally, the facts that for each ¢ > 0, m}([u, H;)) = 0 for some u € (0, H;)
and that m{(dr)ly<p, 3 = my(dr)ly<p, ) for s # ¢ imply, together with the convergence
H,, — H, when s — t, the asserted regularity property of the total number of marks. [ ]

!Notice that (L} : r > 0) is gét) measurable but we cannot ensure the existence of a version that is right
continuous in r for all ¢; we circumvent this problem using the predictable projection.
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Chapter 3. Ray-Knight representation of Lévy-driven LBPs

We prove now some estimates that will be crucial for the sequel. To this end, we are
going to use the following generalized occupation time formula: a.s. for any nonnegative
measurable function ¢(s,a) and every ¢t > 0,

t 00 t
/ o(r, H,)dr = / / o(s,a)dLida.? (3.20)
0 o Jo

Proposition 3.17. Let (m; : t > 0) and (my : t > 0) be two adapted right-continuous
processes taking values in the space of finite point measures on Ry, having for each t > 0 a
support contained in [0, H;) and atoms with mass equal to 1. Let the processes (mj : t > 0)
and (my : t > 0) be defined respectively in terms of (my : t > 0) and (7, : t > 0) by the
formulae (3.18).

i) Fort > 0, set Ay = [my((0, Hy)) — ([0, Hy))| and A = |mi([0, Hy)) — (0, Hy))].
Then, for each A >0 and T > 0, we have

t
E [1im<aAy] < C/ E [1m,<a1 2] ds. (3.21)
0

ii). For each x >0 and a > 0, let T denote the (F)-stopping time
T =inf{t>0:3b<a st L?Zm}.

Define Lj(m') = fg 1 —oydL} and Lj(m') = f(f 1gn—oydLy. Then, for any (F)-

stopping T we have

B (Erer ()~ Lipgec ) < & ([ 0.0 - w0,
< e /OaE (/OAT ma([0, 7)) — g ([0, 7)) dL;) dr

= czE (/OTATW |my ([0, Hy)) — ([0, Hy))| dt) .
(3.22)

Proof.
i). Observe that for all £ > 0, by the assumptions on m; and 7y,

| Limi=0y = Lgm=0}| = |Lime(io.5)=0) = Lgme(o.rren=03 | < [me((0, Hy)) — me([0, Hy))l

Since dL§ = 1yy,—q3dL¢, integrating this inequality between 0 and ¢t > 0 against dL{
we deduce that

\wmwmmWSAmumm—@@mwm. (3.23)

2It is easy to deduce this formula from the occupation time formula in [18, Prop. 1.3.3]

46



3.3. The logistic Poisson Lévy-snake

For every t > 0, A > 0, the snake property and the definition of the Poisson random
measure (N;), together with (3.23) imply that
)]

H; e
E [1{m<ayA;] <E [1{Ht§A}E (/0 /0 1 Livcc rrromyy — Lw<e rrseay| No(dr, dv)

_E {1{%14}1@ (/OH c|Ly(m) — L ()| dr ff)]

<t [ ([ im0 - mo i) ]

<[ [“1pen [ (0.0~ (o) dziar).

Using the space-time occupation-times formula (3.20) and Fubini’s Theorem, we deduce
(3.21).

(7.) Since by Lemma 3.16, m;, and m; are for each ¢ > 0 finite point measures with unit
mass atoms and support contained in [0, H;), in a similar way as (3.23) we now get

|Li (m') = Ly ()| < /0 [mis([0, @) = M ([0, a))] LS

for all ¢ > 0, which gives us the first inequality. Let us prove the second inequality. For
any (F7)-stopping time 7 > 0 one has

/O ([0, a)) — ([0, a))| AL

T

Ht oo
< | dLj 1{Ht=a}/ / | Lgv<e rrrm) — Lu<e rrpimyy| Ni(dr, dv)
0 0

dLy 1im=0}9a (t)v

T

IN

J
J

where
9a(t) = /O /O LicismnLsm))<v<elrzmyvymyNe(dr, dv).
Thus,
([ mi0.0) - (0.0l az;
0
~5 (& ([ mi(10.0)) ~ (0.0 1oyt
0

<E ( / dL{ e E <1{Hta}ga(t)‘ft’}f)> :
0

The snake property and the definition of the Poisson random measure (N;), together

")
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Chapter 3. Ray-Knight representation of Lévy-driven LBPs

with (3.23) imply that

E (1{Ht:a}9a<t)‘-7:f) ly<ny
/OaE (/OOO | Lw<e rrpemyy — Liw<e rryemp| Ne(dr, dv)
< [ (rcLz<m> — eLi(m)
< o ["B ([ Imo.r) - mo.ryjaz;

IN

‘/—-tp/\’r> 1{t§7'}

ff/\r) 1{t§r}d7”

.Ftp/\T> 1{t§7} dr.

Taking 7 AT** instead of 7, the desired inequality follows with help of Fubini’s theorem
and definition of T%®. More precisely, from the previous we get that

e( [ T (0, @)) — i (0,0)) i)

a TATHT t
— [ ( [ anm ( [ imato.0) = o 1z f)) dr
0 0 0
a Tee TAT®e
< | E( / szE( [ ) gy f))d
0 0 0

<a [ B ( / (0. — ma((0,) dL;‘) dr.

The last asserted identity is readily obtained with the occupation times formula. [ ]

3.3.3 Construction of the logistically marked exploration process

In this subsection we shall prove the following result, which is easily seen to imply Theorem
3.10.

Theorem 3.18. There exists an (F;)-adapted progressively marked exploration process (S :
t>0) = ((pr,my) : t > 0) with associated m*-pruned local time process

¢
L) = [ LmoydLs (3.24)
0
such that, for each t > 0 the cadlag process a — m;([0,a]) is (gc(f))—adapted, and the relation

Ht (e.¢]
m([0, B]) = /0 Lo (1) /0 Lpee sirmenpNi(dvodr), he [0,H).  (3.25)

hold a.s. for allt > 0 and h > 0. Moreover, the pair of processes ((L{(m*))a>0,m;) : t > 0) is
the unique solution of the system of equations (3.24)-(3.25) satisfying the previous properties.

We start the construction of the pair ((L{(m*)).>0, m;) by an iterative procedure.
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3.3. The logistic Poisson Lévy-snake

For each t > 0, define m? as the null measure on [0, H;), and for each a > 0 set L(0) := L¢
for all t > 0. We define a marking measure process (m}) such that for each ¢t > 0, m; is a
(finite) point measure supported in [0, H;), as follows. Set

Ht oo
m%([o, h]) = /0 1[07;1] (7’)/0 ]_{,,<C pL:(O)}N’t(dT, dV), h Z 0, (326)

For every a > 0, we also introduce the local time process (L{(1) : t > 0) at level a marked
by the measures (m;), defined as

t

t
Ly (1) 1:/0 1{mé([0,a))=0}dL§:/0 Lpmi=oydLs.

Notice that the second equality comes from the fact that dL] = 1y, _q)dLi. This process
corresponds to the individuals in the population at each height a having no mark in its
ancestral line.® For each a > 0, it is easy to see that

Li(0) > Li(1) (3.27)

a.s. for all t > 0 (by continuity).

Next, we prune the original local times at each level a at rate proportional to the m!-
pruned local time L%(1) accumulated on its left. More precisely, for every ¢t > 0 we define a
new measure given by

Ht o
m2([0, h)) ::/0 1[07;1](7“)/0 Liy<c rrrapNe(dr, dv), h>0. (3.28)

From (3.27), we deduce that for each ¢ > 0,
m? < m; (3.29)

almost surely, and actually a.s. for all ¢ > 0 by right continuity. We then associate with
(m? :t > 0) a pruned local time process, corresponding to the population at each height a
having no mark in its ancestral line:

t

L42) = /O ooy dLE — /0 Loy d L.
We see from (3.27) and (3.29) that, for all a > 0,
Ly(0) = Ly(2) = L{(1)
a.s. simultaneously for all ¢ > 0 and that , for all £,
md < m? <mj}

as measures. We continue to define inductively for each n € N, a family of measures (m} :

t >0) by
Ht [o.¢]
m?“([O, h]) = /0 l[U,h] (T)/O 1{,,<C pL:(n)}./\/‘t(d'r, dy), h Z 0 (3.30)

% Loosely speaking, the population L¢(1) is obtained by pruning each individual at height a at rate equal
to the size of the (original) population lying on its left.
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Chapter 3. Ray-Knight representation of Lévy-driven LBPs

for each ¢t > 0, and for each a > 0 a family of processes

t

t

Notice that the processes (my : t > 0) have the properties stated in Lemma 3.16 for all
n € N. Also, for each n € N, the process (L : a > 0,¢t > 0) is bi-measurable, continuous in ¢
for each a > 0 and (F;)-adapted.

It is easily checked by induction in n that, for all @ > 0, a.s.

L(0) > Li(2) > - > Lf(20) > Li2n+ 1) > -~ > LH(3) > Li(1),  (3.32)
for all t > 0 simultaneously. Also, a.s. for all ¢
m) <m? <. <mP<mT <o <md <m)f (3.33)
as measures. Some relevant consequences of the previous inequalities are next established:
Lemma 3.19 (Convergence of odd and even marking measures and local times).

i). Almost surely for every t > 0, there exists two finite atomic measures m§ and mg such
that for all but finitely many n € N,

e __ 2n o __ 2n+1
m; = m; and  my =m; (3.34)

and

€ o
my < my.

ii). For each a > 0, define two (F;)i>o-adapted processes (L (e) : t > 0) and (L§(0) : t > 0)
by
Li(e) := irellg L} (2n) > L{(o) :==sup L{(2n + 1). (3.35)

neN

Then, the processes (a,t) — [ Line—oydL? and (a,t) = [} 1imo—oydL? are bi-measurable
and continuous in t versions of respectively L¢(e) and L¢(o).

iii). For allt >0 one has a.s. for all h >0

Hy 00
my ([0, ) :/0 1[0,h](7“)/0 Liv<c rrppNe(dr, dv),

H, 0o
mp(0.0) = [ ton(r) [ Lo sz Nilaran)
0 0
iv) The processes 8¢ = (p,m®) and S° = (p,m°) are S-progressively marked exploration

Process.

Proof. We prove each of the statements for the “even” limiting objects, the corresponding
proofs for the “odd” ones being similar.
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3.3. The logistic Poisson Lévy-snake

i). For each ¢t > 0, every measure m? is finite since bounded by m} and atomic with unit
mass atoms. The increasing sequence of integers m?™([0, H;)) is convergent and thus
m2([0, Hy)) = m?™ ([0, H,)) for all n larger or equal than certain integer n;, > 0. From
such an index on, the sequence of atomic measures m?" must be constant since for
all z € [0, Hy), m?({x}) € {0,1} is a non decreasing sequence and the total mass is

constant.

ii). For fixed a > 0 and ¢t > 0, we have

t t

t
Lf(e) = inf l{mgn([O’Ht)):()}dLZ —/ inlf\l l{mgnzo}dlzg = / l{mgzo}d[/?,
‘ 0 "€ ‘ 0

neN Jo

using (3.34) in the third equality. This and the continuity of ¢ — L¢ implies the desired
statement.

iii). Given t > 0 and h > 0, by (3.34) we have for some integer n; and all n > n,; that

H; 0o
m(0.00) =m0 = [ 2oa(r) [ Lo rrgamn Nl
0 0

H¢ oo
= lim 1[0,h](r)/ Liy<e rryes1yNi(dr, dv)
0

k—o0 0

Hy 00
- / Loz (7”)/ sup 1q,<c vz (arr1))Ne(dr, dv)
0 0 keN

Hy )
= / 1[0,}4 <7a) / ]-{1/<c PL{(O)}M(d?”, dl/)7
0 0

where we used the fact that ?L;(0) = sup PL;(2k+1) by (3.35) and the characterizations
keN

of the predictable projection analogue to that in (3.19). Both extremes in the above
equalities being right continuous functions of h, the conclusion on my follows.

Part iv). follows from iii). and Lemma 3.16. n

We are now ready for the proof of Theorem 3.18.
Proof of Theorem 3.18. The existence part will consist in proving that the processes
((L8(€))azoemg) : £ 2 0) and ((L(0))azomy) : £ = 0) are equal.

By letting A 7 +o0 in part i) of Proposition 3.17 applied to m = m® and m = m?° (and
taking into account the relations in part iii) of Lemma 3.19), we see by Gronwall’s lemma
that

m{([0, Hy)) = mg ([0, Hy))

holds P(dw)dt a.e. Using the right-continuity of the two processes S¢ = (p, m¢) and S° =
(p,m®) in S, the previous identity is seen to hold a.s. for all ¢ > 0. Since for each ¢ > 0,
m¢ > m$ as measures by (3.33), and they both are atomic with unit mass atoms and equal
total masses, we deduce that they must be equal.

By Lemma 3.19 ii) and since dL¢ = 1ypy,—qdL¢ for each a > 0, we deduce from the
previous that time right continuous versions of L¢(e) and L{(o0) are indistinguishable. The
asserted properties of (m;) follow from Lemma 3.16.
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Chapter 3. Ray-Knight representation of Lévy-driven LBPs

For the uniqueness statement, consider m = m* and m = m* two different solutions of
(3.25) and the associated marked local times L(m*) and L(m*) given by (3.24). We obtain
by similar arguments as in the existence part that a.s. for all ¢ > 0,

m; ([0, Hy)) = mz ([0, Hy)).

Using this equality in (3.24) both for m* and m* (and again the fact that dL§ = 1yy,—.dL?),
we deduce that for each a > 0 the processes L{(m*) and L{(m*) are indistinguishable. The
fact that m* = 7* then follows by using the latter in equation (3.25) both for m* and m* m

3.4 Proof of the Ray-Knight Theorem

Our next goal is to prove Theorem 3.11. The proof consists in two main steps. First, we will
construct in terms of the same Lévy tree as before an approximation of the logistically pruned
local time (L¢(m*) : a > 0,t > 0), by local time processes pruned at constant rate in the
rectangles of some tree-like discrete grid, defined in height and local time units. The results
of [3] will be crucial to identify the law of such approximation. The second step will consist in
embedding this grid approximation into a white-noise/ Poisson-noise driven stochastic flow,
which will correspond to a suitable approximation of the logistic stochastic flow process by
an SDE flow with frozen coefficients, and proving then that such SDEs pointwise converges
to the desired limit.

3.4.1 Grid approximation of the logistically marked local times

We denote by (T,),>0 the inverse local time at level 0 of the exploration process p. Given
fixed parameters £,0 > 0 and a fixed amount z > 0 of cumulated local time at 0 (interpreted
as initial population), we next introduce an approximation

L(2,8) = (L%, 6) : t < Thya > 0)

of (L*(m*) : t < T,,a > 0), consisting in local time process pruned at rates that are
constant on the rectangles of a suitably defined tree-like height/local time discrete grid. The
construction of this grid will be done in a lexicographical way. The index k € N represents

in what follows a discrete height level in the tree-like grid. We denote by N* the set |J NF.
kEN
Notice that the dependance in the initial population x will be implicit, in order to enlighten

the notation.

Step 0 : For all t,a > 0, we set
L(e,6) := L) = LY(m*) and L§(e,6) := L§ = Li(m*) = 0.
Moreover, for every n € N we set TCs := Tpsne-

Step 1 : Let k =0 and ny = ng = 0. For every t € (0,7¢] and a € (0,¢], we set
t

Li(e,6) i= Lig(e,6) + / 1 ey dLE,

0 s
TO
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3.4. Proof of the Ray-Knight Theorem

where the measure m=° for s € (0,T7] is defined by

Hg 0o
m ([0, h]) = / Lpen / Ly corgoapNaldr.dv), Vi € (0,2]
0 0

If 3t € (0, T}] such that
Li(e,0) — Li(e,0) > 0,

we set k=k+1=1,(ng,n1) = (0,0), and define
Trz(én(’) = sup{t > 0: Li(,6) — L5(g,0) = nid} ATy
Otherwise, if 3¢ € (T2, T,] such that
LY(e,8) — Lro(g,6) >0,
weset k=k=0,n90=mno+1=1.
Step g : In general, assuming that we have already constructed the processes
(L{(e,0): 0<t<T' e <a<e’) and (L{(e,0): 0<t<T"a<¢)
respectively on the left of and below the rectangle [T", T"] x [¢/,£"], the process
(Li(e,0) : TN <t <T" ' <a<e")

will be constructed as

t
L(e, ) :== L(g,9) +/ 1z dLs, (3.36)
where the measure m=? for s € (T",T"] is defined by
H o0
miﬁ([O, h]) = miﬁ([O, 5’]) + / 1{5/<r§h} / 1{u<cL5T/,(e,6)}'/V’5(dT7 dV), Vh € (5” 5//].
0 0

(3.37)

We describe then the general step of the algorithm: Given z € N and (ng, nq,..n,) € N*,
we use formula (3.36) to construct

<L?(€, (5) . T;;(n(),m,..n(z—l)) <t< T(fz,(:f),gh..n(z—l))’zg <a< (Z + 1>€) :

where
Tza,(no,nl,‘.n(z,l))

nzd

. —1)e, SV T (5
= inf{t = T, 5O L (6,6) = Ly (6:6) = .6}

n(z_l)é

(z2=1)e,(no,n1,.-(n(2—2)))
/\ T’I’L(Z_1>+1 ’ ?

with the convention that n;, = 0 if 7 < 0.

If 3t € (775 e (")) such that

L V5(e,6) = LIS Ly (2:0) > 0,

ze,(ng,ny,..nz)
nz

we set k = z + 1 and (ng, n1,..nx) = (ng,n1,..n,,0) and we return to step g.

Otherwise,
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Chapter 3. Ray-Knight representation of Lévy-driven LBPs

Step g.1: If3te (T (no.m,metl) T((;Z 11)i§;l3)’"1’ "==1)] such that

LZE(E: 5) Tze ,(ng,my,..nz+1) (67 5) > 07

nzd
we set k = z and (no, .., nx) = (no, ..,n. + 1), and we return to step g.

Otherwise, we set k = z — 1 and (ng,..,nx) = (ng,..,n, + 1) and return to step
g.lif k£ > 0, or the algorithm stops if £ = —

(Tfﬁé(”()wvnk—l) T]%v(nO:-w"kfl)

In words, on each rectangle L i) | x (ke, (k + 1), marks are pro-

duced at each height at constant rate equal to the pruned local time L’;ks (normp_ 1) (€ 0) ac-

ngd
cumulated at the time and level of the immediately lower-left grid point (Tf;’;(no""n’“‘l), ke).
Then, for each (¢,a) € (T:f:a(no’ WTk=1) T(Ifk(ff)’é’"k Y] x (ke, (k + 1)e] inside the rectangle, the

local time measure dL¢ is pruned according to that marks, if the local times below dL?, b < a
are not yet pruned (or equivalently, it the ancestors of ¢ are not marked). Notice that the
algorithms stops at step g if an only if at the end of that step Ty ; = T(gm+1)6 =T,.

We therefore have a tree-like partition of the populations (represented by accumulated
local times) at each level ke, k € N, into subpopulations of size at most 4, in such a way that
the partition of the population at height (k + 1)e is a refinement of the partition induced by
its ancestors at height ke.

In this fashion, the population block at level ke indexed by (ng,...,n;) corresponds to
the (ng + 1)—th block of descendants of the population block at level (k — 1)e indexed by
(ng,...,ng_1). Notice that the size of the block (ng,...,ng) is

ke ke
L ke,(ng,-ng_1) L ke,(ng,..
(ng+1)6 ngd

MEg—1))

and that the size of a such a block is zero for n; sufficiently large.
Given h > 0, we set
ky = kn(e) :=sup{k € N: ke <h}

and for each s > 0 and k£ € N such that ke < H,, we define
T = TR0 (e, 6) i= sup{T}5 0%V 1 j € {0, ..k}, iy € N, T500 1) < g},

S » Tikd

that is, the (exploration) time indexing the first individual in the block of ancestors at level
ke, of the individual indexed by s.
By construction, we have a.s. for all a > 0 that

t
Li(e,6) = /0 Lyeo_gpdLg = Li(m™°), (3.38)

for all t > 0 and, for each t > 0, a.s. it holds for all ~ > 0 that
s Hy [e'e)
00 = [ e | Ay Vil neOH) (39

To check this, we use the fact that L= (e,d) coincides with L%~ (e, §) except at heights
() s (s) g
t t

in the grid r € {0,¢,...,ekp, }, where the values of the measures (3.37) and (3.39) coincide
by definition of the former.
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Chapter 3. Ray-Knight representation of Lévy-driven LBPs

Observe that, since we are pruning the original local times processes, for each a > 0 it
a.s. holds that
Li(e,0) < L} (3.40)

for all t < T,, but there is not clear pointwise relation between L{(e,d) and L¢(¢’,d") for
(e,6) # (¢/,0"). Finally, observe that the constructions are consistent for different initial
populations x > 0.

For each fixed height a > 0, we denote in what follows by &, the sigma field

ga = ((p;g,./\/}g) 0t Z 0) (341)

where 7/ is the right continuous inverse of the process

t
A = / lim,<qds.
0
In the remainder of this section, our goal is to prove the following two results:

Proposition 3.20 ( Law of the grid approximation). Let £, > 0 and > 0 be fized. For
each (k, (ng,..n;)) € N x N*, conditionally on F kg mg 1) \ Eke the process

e
(Lk?g(} %,g,nk71><€v 5) — L;%fnomnm(& §):helo, a]) (3.42)
ke n
has the law of a CSBP of branching mechanism
Ve ) = OO + A1 (2:9); (3.43)
with initial population
ij’jf};f{’)’(;""’“‘l)(& 5) — L;EZL;"O""""'_I)<€’ J),

observed in the time interval |0, €].

Proposition 3.21 (Convergence of the grid approximation). For each x > 0 and a > 0, the
r.v. L (€,9) converges in probability to Lg, (m*) when both ¢ and 0 go (in an arbitrary way)
to 0. In particular, the process (Lf, (¢,6) : © > 0,a > 0) converges to (L, (m*) : x > 0,a > 0)
in the sense of finite dimensional distributions.

Their proofs are based on a series of technical lemmas, relying on the main result on Lévy
tree pruning of [3] and on the excursion theory for snake process developed in [21]. We refer
to Ch. 1 and 4 for details concerning the forthcoming discussion.

Recall that the exploration process p, starting from 0 at time O can be defined in terms of
the excursions of the underlying reflected Lévy process (Xs — I, : s > 0) = ((ps, 1) : s > 0),
with both processes sharing the same excursion intervals (o, 8;) es away from their respective
0 elements, and with p,; being a function of the excursion of (X — I : s > 0) straddling the
time instant ¢, for each ¢ > 0.
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3.4. Proof of the Ray-Knight Theorem

The snake process (p;, N; : t > 0) can also be described in terms of the above excursions
of p; and the excursions of the snake component (N, : ¢t > 0) away from 0, occurring in the
same excursion intervals (o, 5;);es. Indeed, one has

(pta-/\/;e) = Z 1{aj<t<5j}(pz_aj7-/\/;j_aj>' (344)

jed
where the pair (p’, N7) defined by

Pl =pa+s  0<5<b;—aq and NI =Nojps  0<s<Bj—o
pizo SZﬁj—Oéj’ -/\/-SJZO SZBj_aj

is the excursion away from (0,0) of (p;, NV; : t > 0) in the interval (o, 5;).
Moreover, the point process in Ry x D(Ry, #;(R) x 4 (R?%)) given by

M = Z‘s(éj,pj,f\/j)v (3.45)

jed

where ¢/ = LY, is Poisson with intensity dzxN(dp, dN), where N(dp , dN') = N(dp)Q"?) (dN),
N(dp) is the excursion measure of the exploration process and Q¥ (v) the conditional (prob-
ability) law of the snake component (N;) of the snake process (p;, N;), given p. These facts
follow from standard excursion theory, or are established in Section 4.1.4 in [21] in what con-
cerns the description of N. (Notice that in the standard snake terminology, they are stated in
terms of the excursions of the process (p;, W;) where Wy = (s — Ni([0, s], dv)), see Remark
3.14.)

Reciprocally, given a Poisson point process M of intensity dz x N(dp,dN') and atoms
(07, p7, N7) ey, a snake process (p;, N; : t > 0) is uniquely determined through the relation
(3.44), with (o, 8;) defined in terms of M by

Bj = Z e and o = Z Ck »

ke J:4k<pi keJ:bk <pi

where for each j € J, ¢; ;== inf{s > 0: pJ = 0} is the length of excursion j. This follows
from the fact that the local time at level 0 of an exploration process, when seen as a measure
supported {t > 0: p, = 0}, is singular with respect to Lebesgue measure.

Let us now fix a height a > 0. Recall the notation 7;* used for the right continuous inverse
of the process

t
A? ::/ ]—{Hs>a}d3-
0

Consider the process (pf, N}*) defined by
wt = [ ol —a

for measurable f > 0, and associated snake component (N : ¢ > 0) defined by
'/\/;a(drv dV) = NTta (CL + dT’, d’/)

57



Chapter 3. Ray-Knight representation of Lévy-driven LBPs

We denote by (p®);c; the excursions of the process p above from height a and by
(@, B@));cr the corresponding excursion intervals. More precisely, for each i € I, we set

W= [ b)) 0 <s<p0-al
(a,00)

P =0 s> B0 — o)
These excursions are in one-to-one correspondence with the excursions away from 0 of p*
occurring at cumulated local times L? ;) = ng at level a. We also introduce the excursions

k3

of N above level a, but relative to their value at height a. Namely,

NO(dr,dv) =Ny, (a+dr,dv)  0<s<pY -
N —0 s> B0 o

Remark 3.22. Notice that each of these excursions N is issued from 0, instead of from

;i = N, o 0.0) xR which would be the usual definition of the snake excursion above level a

of the snake process (p;, W;), with W, = (s — Ni([0, s, dv)).

Thus, (p, N@),c; are exactly the excursions of the process ((pf, N?) : t > 0) away from
(0,0) . Moreover, by arguments of snake excursion theory (close to those of the proof of
Proposition 4.2.3 in [21]) it is not hard to establish

Lemma 3.23 (Snake excursion process above a given level). For each a > 0, the process
((p¢, N&) :t > 0) has the same law as ((py, N;) : t > 0) and it is independent of the sigma
field &, defined in (3.41). Moreover, conditionally on &,, the point process in Ry x D(R,,V)
given by
Z (et pi), A(D)) (3.46)
icl
where () = L for all i € I, has the same law as (3.45) and in particular it is independent
from &,.

Proof. Like for the process ((p;, N;) : t > 0), the trajectories of the process ((p¢, N) : t > 0)
are determined in a unique (measurable) way from the atoms of (3.46). It is therefore enough
to establish the second claim.

To do so, one easily adapts first the arguments of the proof of Proposition 4.2.3 in [21] in
order to prove that, under the excursion measure N, the process

Z O ,p), N )5 (3.47)

ield

with I; := {i € I : (@, %) C (a’, 7)} the sub excursions above level a of the excursion
away from 0 labeled j, is conditionally on &, a Poisson point process of intensity dr1za Ly ] %
378

N(dp,dN'). (We notice that our superscripts (i) correspond to superscripts i therein.) The
only difference is that, in the computation analogous to the one in end of that proof, one must
consider test functions depending also on the components () of the atoms, and depending on
the excursions of the spatial component above level a only though their increments respect
to their values at that a (recall Remark 3.22). Since [ is equal to the disjoint union {J,; I;,
one then concludes using conditionally on &, the additivity of Poisson point processes. ®
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3.4. Proof of the Ray-Knight Theorem

Given 6 > 0, we next consider ((p;, m?) : 6 > 0) the marked exploration processes (in the
sense of [3|) with snake component m? given conditionally on p by

m?([ov h]) = M([O’ h] X [079]) , h >0,

that is, a Poisson process on [0, H;) of parameter 6. The next result is central for the proof
of Proposition 3.20.

Lemma 3.24 (Pruning at constant rate below a given level). Let (L¢(m%) : t > 0) denote
the m®-pruned local time at level a and denote by

IP={iel:ml, =0}

the set of excursions above level a whose lineage below that level does not have any mark.
Then, conditionally on &,, the point process in Ry x D(R,,V) given by

Z 5(Lzm (m?),p, N(@)) (3.48)

iel?
has the same law as the point process (3.45) and is independent of &,.
Notice that I = {i € I : m®, ([0,a)) = 0} since H,w = a for all i € I.

Remark 3.25. Lemma 3.24 can be restated by saying that the removal of local time units
corresponding to all individuals at level a with marked ancestors, and of all the excursions
starting at the removed local time positions, leaves us a tree and marks above level a which
behave (when described in terms of the right time units) exactly as the original exploration
and snake processes. (Notice that this is not the situation studied in [3], where the non
removed excursions are again pruned above level a. ) This is a consequence of Lemma 3.23,
and of an elementary fact about Poisson processes in R, stated in Lemma 3.26 and proved
below for completeness.

Lemma 3.26. Let (N, : x > 0) be a Poisson process of parameter \ in Ry with respect to a
given filtration, and let F' C R, be a predictable set such that a.s.,

- ::/ 1p(0)dl — o
0

when © — 0o. Let (V)0 be the right-continuous inverse of (¢y)s>0- Then, the process

<N;; - /Oﬂz 1e(O)N(d0), > o>

15 a Poisson process in Ry with parameter \.

Proof of Lemma 3.24. As in the proof of Proposition 4.2.3 in [21] we introduce L¢ := L%
with 7 defined above after (3.41) and its left-continuous inverse

~(r) = inf{s > 0: L > r}.
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Chapter 3. Ray-Knight representation of Lévy-driven LBPs

We next rewrite the m?-pruned local time at level @ in terms of local time units z > 0. Using
the snake property of m? in the second equality, we have

0

where for all £ > 0 we have set m{ := mZ, © The last equality above stems from the fact
ve(e

that, by definition of A% and its right inverse,

Notice that the process (mJ : ¢ > 0) is &,-measurable and thus also (L“Tg(me) cx > 0) is
so. Moreover, the function ¢ — m{ is right continuous since the composition of the right
continuous functions £ — 75, and s m?([0, H,)) (cf. Lemma 3.16). We can thus rewrite

the process (L. (mf) 12 >0) as

Lo (m?) = / Pm—
0

Let us denote by ¥, := inf{z > 0: L%, (m?) > y} its right continuous inverse and by M¢ the
point process defined in (3.46). For each Borel set S C D(R,,V) with N(S) < oo, we define
a Poisson process in R, by

N“5([0,0]) :== M*([0,£] x S), £>0.

Notice that it is a (QY)s>o -Poisson point process, where (Q%),>¢ is the right continuous
completion of the filtration (o (M* ([0, 2] x dp,dN) : 0 < x < {)),5,. Setting F’ = {¢ € R, :
mY =0}, we then see by Lemma 3.26 that

N¥(S) = ( /0 L (ONS(dl) -z > o)

is a Poisson process in R, of parameter A = N(S), with respect to the time changed filtration
(Q§,)e>0 (the required divergence f+°° 1pe(¢)dl is checked e.g. using the additivity of the
process T Lag(me) following from the strong Markov property of ((p;, m?) : t > 0)).
Moreover for mutually disjoint sets Sy, ..., S,, the real processes N¥(S1), .., N¥(S,,) are Poisson
with respect to the same filtration (Qg,)¢>0, and hence are independent from each other. We
conclude that the point process M*? defined in R, x D(R, V) by

M*? ([0,2] x S) = / 150 (0)M®(dl, dp, dN)

[0,92]%S

is Poisson with intensity dz x N(dp,dN). Finally, it is not hard to see that this is exactly
the point process (3.48). n
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3.4. Proof of the Ray-Knight Theorem

Proof of Lemma 3.26. By standard properties of Poisson processes we know that, for
any nonnegative predictable process f and stopping time 7 in the given filtration,

E [e—uf(;/\tf(Z)N(dZ)—&-)\ fOTM(l—e*uf(f))df} 1

for all w > 0 and ¢t > 0. If moreover 7 is such that E [eA foT(lfe_"f(Z))df] < 00, by dominated
convergence we deduce letting ¢ — oo that

E |:efu JT FON(dO)+A fg(pefuf(o)de] 1

Since, e* Jo* (mem i O)de o) [ (1=e")1r(0d2 41 this, by a change of variable, is equal to
eMo (1=e™)dp — Ax(1-e™) e ohtain from the previous that

E [e*“fdﬁz 1F(€)N(d4)} — g Aa(l—e)
We conclude the result by Campbell’s formula. .

Remark 3.27. Let © : R, — R, be a caglad (left continuous) piecewise constant function,
bounded by a constant § > 0 and for each ¢ > 0, define 6, := O(LY) and a progressively
marked exploration process ((pg, my) : t > 0) by

my([0, h]) := N([0, ] x [0,6:]), h = 0.

A simple variation of the arguments of Lemma 3.24 considering m instead of m? allows us to
obtain the same result for the Poisson (snake) excursion process pruned below level € accord-
ing to m, more precisely taking m instead of m? in (3.48). The divergence condition required
for the time change therein to work is ensured in this (variable rate) case by comparison with
the constant case of rate §. This fact will be used in the proof of Propositions 3.20 and 3.21.

Remark 3.28. It is not hard to check that the snake process (p;, N :t > 0) associated
with the Poisson excursion process (3.48) which is equal in law to (p;, N; : ¢ >0) and
(p?, N :t >0), can be described in terms of the latter and the marks below level a, via the
time change

O; = inf {S >0 : / 1{m9a([0,a)):0}dT = / \ ]-mz([O,a)):O}dAZ > t} .
0 i 0

More precisely, it is given by (p}, N} :t > 0) := (p“cé, = 0) . Notice that although A?
varies on intervals where the height of the process (p;, N; :t > 0) is above a, by the snake

property the function 1,0 0.q))=0y does not. Thus, (pj, N{ :t > 0) is function of the process
(p¢, N =t >0) and of an independent (&,-measurable) removal of some of its excursions.

In the proof of Proposition 3.20 we will also need Corollary 3.7. We therefore provide
now its proof, which relies on the following well known approximation of exploration local
times (see |21, Prop. 1.3.3]):

limsup E {sup ] = 0. (3.49)

e=0 4>0 s<t

51/ 1{a<Hr§a+s}d7a - L(gl
0
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Chapter 3. Ray-Knight representation of Lévy-driven LBPs

Proof of Corollary 3.7. Recall that the height process is a function of the exploration
process at each time instant. Recall also the fact that C; < oo a.s. for all t > 0 by [3].
Applying (3.49) to the pruned exploration process (3.10), and performing the change of
variable C, — u, we deduce that its local times process (L“ it > O) at level a satisfies a.s.,

e—0

Cl
LY =lime~ 1/ Liocr,<atremo—oydu  for allt >0
0

(the limit being an L' (PP) limit). We therefore just need to check that the above limit is equal
to L¢(m?).

The approximation (3.49) applied to the original exploration process (p; : t > 0) im-
plies, for a subsequence €, — 0 obtained by a diagonal argument, the almost sure conver-
gence in each interval [0,k], k € N, of the finite measures ¢, '1(,<p, <qte,}ds towards the
measure dL?, with respect to the weak topology. Since a.s. for each ¢ > 0 the function
s+ 1imo((0,1,))=0,5<c;} 18 cadlag and supported in some interval [0, k], it is bounded and con-
tinuous almost everywhere with respect to the continuous measure 1y 4)(s)dL?. In particular,
for such subsequence ¢, we a.s. have that

o
L2 (m%) = lim ;! / 1joeto<asenmi—oy .
0

en—0

Since for each a > 0, L% and Lg, (m?) are both a.s. continuous functions of t > 0, we
conclude that (E? it > O) and (focf’ Tgpo—oydLg it > 0) are indistinguishable. In particular,
if we denote T, = inf{s > 0: LY > 2}, for each a > 0 we a.s. have

L3 = L%TI (m?) = Lg. (m?)
since L° = L% (m?) = L%, . The conclusion follows by combining the above identities, Theo-

rem 3.2 and Theorem 3.6. ]

We are ready to proceed to the
Proof of Proposition 3.20. We consider first the case k = 0 and write nf = sup{n € N :
nd < x}. We consecutively apply the strong Markov property of (p, N') with respect to Fro S
ng

for each ng € {0,...,n{ + 1}. In each step, we deduce with Corollary 3.7 that the process

(L , (e,6)— LNy (5,5):he[0,5]> (3.50)

(”0+1)5 ngd

has the required conditional laws. Furthermore, by Remarks 3.27 and 3.28, the process

> o o (£0),00, N )5 (3.51)

ielss 8

with 150 :={i e I : m® ( , =0, L0< » < x}is a Poisson point process of intensity 1o ., (=) ydlx
N(dp, dN) conditionally on &, associated with a snake process

(0.N) = (0 Ng) 21 <T)
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3.4. Proof of the Ray-Knight Theorem

defined in terms of the original one (p, ') via the time change

C; :=inf {s >0: /0 l{mif([o,s)):o}dr = /0 L0020 ((0.0))=0,Hy > ey AU > t} .

Denoting by ﬁ?, T, and H, the corresponding local time processes, inverse local time process
at level 0 and height process, for every a > 0 and y > 0 we can write,

TE

y TLE < (e,6)

Ty

L (0.0 =0y W

L - |

at+e __
| Lot oarep=0y LT _/0

where
w5 ([0,h)) == m2 ([e,e + h)).

u

Therefore, the construction of the approximated pruned local time and marks (Lt (m®9) :

a > 0,t > 0) and (mf’é(e + dh) : h > 0,t > 0) can be achieved conditionally on &, in

terms of the process (3.51) in the same way as the processes (L&(m®°) : a > 0,¢t > 0) and

(m® - h > 0,t > 0) were constructed from the process (3.45). This allows us to iterate this
argument in order to conclude the desired result by induction in k.

n

The remainder of this subsection is devoted to the proof of Proposition 3.21. Two further
technical results are needed. This first one is an approximation result similar to the classic
one (3.49) or to the extension we dealt with in the proof of Corollary 3.7 for local times
pruned at constant rate, which will allow us to control the accumulated local times at heights
that are not in the grid, with respect to those which are in it. We thus need to deal with
local times randomly pruned at piecewise constant rates, as they appear when describing
the grid construction above level (k + 1)e in terms of the construction between that level
and level ke. Since the amount of local time accumulated at different levels ke of the grid is
unbounded even when a bound is known at level 0, the convergence of the grid approximation
needs to be established under a suitable localization of those local times (which is why the
convergence in Proposition 3.21 is obtained in probability). But in order to remove correctly
the localizing parameter, we need to know to dependence on it of the approximation of the
pruned local times. We thus need to state some quantitative version of (pruned) local times
approximations .

Following [21], for each K > 0 we denote by 75 the stopping time

™ i=inf{s >0 : {p,,1) > K} =inf{s >0 : X, — [, > K}.

Lemma 3.29 (Approximation of variably pruned local times at level 0). Consider

as in Remark 3.27 a caglad (i.e. left continuous) piecewise constant function © : Ry — [0, 0]
with 0 > 0 and the progressively marked exploration process ((py,my) 1t > 0) defined by

ma([0,]) := Ni([0,h] % [0,6,]), h>0

with
(9t = @(Lg)
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Chapter 3. Ray-Knight representation of Lévy-driven LBPs

a) There exists an explicit nonnegative function (e, 0) é(é, K,¢e) going to 0 when ¢ — 0
and increasing both in € and 0, such that for all x > 0:

E | sup <C0,K,e)(z + x).

1{TK >Ty}
yE[U,I}

1 [T
Y — —/ Li0<H,<c,m,=0}ds
€Jo

b) For all x > 0 we have

E

sup |L§(m) - L?‘ l{TK>Tm}] < 6(0_7 K, 8) (ZE + \/E>

t€[0,T%]

for an explicit nonnegative function (¢,0) — C(0, K, €) with similar properties as é(e‘, K,e).

Proof. a) The proof is inspired by that of Lemma 1.3.2 in [21]. We have

E sup 1{TK >T,}
y€[0,2]

1 [T 1 Ty
<E[ sup |- / L{o<H <e;m.=0,(p 1)<k }ds — —IE < / 1{0<Hssfs,ms07<ps,1>3K}d5’Qy>
yelo,z] | € Jo € 0

1 Ty
+E | sup |-E / L{0< Ho<eyme=0,(ps, 1)<k }d5| Qy ) — 9| | -
yE[O,I] € 0

The time integral in the above expressions can be written in terms of the excursion point
process (3.45). More precisely,

1

Ty
Y — _/ 1{0<H5§e,ms:0}ds
€ Jo

)

(3.52)

Ty ¢
/0 Lio<H,<em,=0, (ps 1)<k} d5 = Z/o 1{0<Hgf§a,mg':o,<p?;,1>gK}d3 (3.53)

JeJy

where J, :={j € J: ¢/ <y}, H = Hy(p') = Hyiys, mi = NZ(- x [0,0(£))) and ¢7 the
length of the excursion j. By compensation, the desintegration N(dp,dN) = N(dp)Q™ ) (dN)
and the very definition of the snake (p, N'), we then get

Ty Yy ¢
E (/ 1i0<m,<em.=o0, (p5,1><K}d8|Qy) =/ dlN (/ 1{0<Hs(p)<a,/\f5('><[O,@(ﬁ))):O,(p5,1><K}d3)
0 0 0

y ¢
- / deN( / 6G(Z)Hs(p)1{0<H5(P)S€KPsJ)SK}dS)'
0 0

Thus, the second term in the r.h.s. of (3.52) is bounded by

z ¢
/ AR [a‘lN ( / e_e(e)Hs(p)1{0<H5(p)§a7<ps71)§K}d8> - 1H :
0 0

Using Proposition 1.2.5 in [21] to compute the integral with respect to N for each ¢ € [0, y],
the latter expression is seen to be equal to

x € _ (a—0)e
/ de [1 ! / e POPP(S, < K)db} <z|l- 16—_1@(55 < K) (3.54)
0 € Jo (a—0)e
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3.4. Proof of the Ray-Knight Theorem

where (Sp)p>0 is a subordinator of Laplace exponent exp (—t{ﬁ\()\)) = E(exp —AS;) not de-

pending on the drift coefficient o of the underlying Lévy process X. In particular, the
expression on the r.hs. of (3.54) goes to 0 with €, and its supremum over ¢ € [0,¢] is
an increasing function of € which does so too. As concerns the first term in the r.h.s. of
(3.52), which corresponds to the expected supremum of a (Qy),>¢-martingale, we can use
BDG inequality to bound it by some universal constant C times

1 [T
\/VCLT |:g/ 1{O<Hs<E,m5—0,<p571><K}d3:| i
0

Written in terms of the excursion Poisson point process (3.45), the above quantity reads

1 G
e Z/O Lo<ni<emi=o, (phn<r) 48

J€Jx

Var

and can be estimated by the same arguments as in the proof of Lemma 1.3.2 of [21] (see also
the proof of Lemma 1.1.3 for details on related arguments):

[T z ‘ 2
Var {g/ 1{0<HsSz—:,ms=0,<Ps,1>§K}d$:| - gN (/ 1{0<Hs§€»ms=07<Ps’1>§K}ds)
0 0
. ¢ 2 (3.55)
Sg—QN /O Lio<H.<e,(ps 1)<k} S

S 2$E(XL—1(5) A K)7

where € — X -1 is the subordinator of Laplace exponent exp (—t (12()\) — a)). That is,
the same subordinator S as above, but killed at an independent exponential time of parameter
a. Thus, we have E(X -1 A K) <E(S: A K) + K(1 —e*) = 0 as ¢ — 0. The statement
now follows by bringing together (3.52), (3.54) and (3.55).

b) We deduce the estimate from the one in part a). Observe first that for all ¢ < T, which
is not an increase time of L°, either one has L (m) < LY in which case for some y > 0 such that
T, < t one has by continuity of local times that [L} — Lj(m)| < L§ — L7, (m) =y — L7, (m),
or Li(m) > Ly and then |L} — L;j(m)| < Lg, (m) — LY, = L7, (m) — y for some y > 0 such
that T, > t. Therefore, is is enough to establish the required upper bound, for the quantity

E

sup
y€[0,7]

We have
£ e 1 Ty
Ly, (m) —y = |:LTy(m) - g/o 1{E<Hs§2€,ms((075)):0}d$:|
1 (T
+ 2 |:2— / 1{0<Hs§26,ms((075)):0}d3 — y:|
€Jo

1 (T
+ |:y - g/ 1{0<H§§57ms((075))0}d8:| ’
0
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Chapter 3. Ray-Knight representation of Lévy-driven LBPs

the absolute value of the second term on the right hand side being bounded by

1 [T 1 [
2 '2—6 / 1{0<Hs§25,ms((0,26)):0}d8 - y‘ +2 ‘2—8/ 1{0<HS§25}d3 - y' .
0 0

It follows from part a) that the expression in (3.56) is upper bounded by

(2&(@, K,2¢) +20(0, K, ) + C(4, K, 5)) (z + V)

1

Ty
L?y (m) — g/o Licc b, <26,ms((0,6))=0ydS

+E | sup

y€[0,7]

1{TK>TI}]
(3.57)

and it only remains us to obtain a bound as the required one, for the above expectation.
Notice to that end that the inner supremum can be written in terms of the Poisson excursions
point process living above level € we described in Remark 3.27, that is

Z 5(Li(i> (m),p, N'(D) (3.58)

ielm
where I™ = {i € I : m,u([0,€)) = 0}. More precisely, denote by (5, ) the associated
(standard) snake process and respectively by j}?, Tx, H, and 7K the corresponding local
time at 0, inverse local time at 0, height process, and the stopping time 7% := inf{s > 0 :
(ps, 1) > K}. Then, writing in a similar way as in (3.53) the time integral in (3.57) as a sum
of integrals over (now) non marked excursion intervals above level e, we get

1 1

Ty
iy m) = - [ Ve caumoonands = Ly (m) = = [

Since T, > TLsT (m) and sup,<r, (pr; 1) > Sup, 7,y (Pr: 1), the expectation in (3.57) is
x —_— — Tz

bounded from above by

1 [T
Z = E/O 1{0<Hsgs}d5

E sup

z€[0,L5, (m)]

1 {+K>TL€Tz<m>}] < C(0,K,e)E [LeTz (m) + ﬂ/LSTI(m)} ,

where the inequality is obtained by applying part a) (with m = 0 or equivalently 6 = 0)
conditionally on &. With the obvious bounds Lg, (m) < L7, as., E [\/L_‘ETT] < 4/E [L%J
and the identities E(L5,) = 2N (Lg) = ze™ following from Corollary 1.3.4 in [21], we
conclude that the result holds with C(0, K,¢) = (2@(@, K, 2¢e) + SCA(O7 K e)+ é(é, K, 5)) [

Recall that for M > 0 and a > 0 we defined in Proposition 3.17 the stopping time
ToM =inf{t > 0:3r <as.t. L] > M}, which obviously satisfies

TeM < T7, as. for all v € [0, a].

Lemma 3.30. Let us fix real numbers a,e,0, K, M > 0.
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3.4. Proof of the Ray-Knight Theorem

a) For all a >0,

tSTa,]M AT K

E| sup |LE(c,6) — L§(5,5)|] < C(M,K,&)(M + VM) + (M, K)

where T'(M, K) = 2MP (75 < Ty)
b) For each t >0,
E []—{t<T”wM/\7'K}1{HtS&} ’m?&([ov Ht)) - m:([()? Ht))‘]

<ca (5 + (M, K) +C(M, K,)(M + \/M)) ect.

Proof. a) We start noting that if ¢ < 7% we have Lf“s(s, J) < Lf“s < M and L{(g,6) <
Ly < M. Thus, if k, = 0, we have
sup ’Lfas(‘gv 5) - L?(é‘, 5)‘ < sup ‘L(t) - L?(& 6)|1{TK>T]\/I} + 2M1{TK§TM}
t<TaMpATE t<Tn

and the inequality follows from part b) of Lemma 3.29. To prove our claim for any level
k, = k, we first observe that

sup  |Li*(g,6) — Ly(e,6)| < sup |Ly*(g,8) — Li(e,0)|1xsryy + 2M1x<r,,y, (3.59)

tSTa,]W/\TK tSTJI&E

so it enough to bound the first term on the right hand side by C(M, K,e)(M + VM) to
obtain the desired inequality. In the case k = 1, we consider again the processes Li, T,
and H; associated with the snake process (p, N') already used in the proof of Proposition
3.20. By arguments given in the proof of part b) of Lemma 3.29, we know that i rorsy <
1 Moreover, one can check that

{fK>TL€T5 (e,5)}"
M

sup [Li(e,0) = Li(e,0)] < sup  |L¢ — LS (m3?)],

- .
tSTJVI SSTL%]EW (€,6)

where M9 was also defined in the proof of Proposition 3.20 and &’ = a — ke € [0,¢]. By

conditioning first on £ when taking expectation to the first term on the r.h.s. of (3.59), and
applying part b) of Lemma (3.29) conditionally on &, the result follows since L5 < (,0) <M
and M — C(M, K,e)(M + /M) is increasing.

The result for general k, = k+ 1 is obtained in a similar way by using the same recursive
description of the m*-pruned local times above level (k + 1)e in terms of the non marked
excursions above level ke.

b) For each t > 0 we write A, := |m$°([0, H;)) — m([0, Hy))|. By a similar argument as
in the first part of the proof of Proposition 3.17, we have that

E |:1{t<Ta’A/I/\TK}1{Hz§a}At]

H; [e'¢)
§ E 1{t<Ta,]vI/\TK}]_{Ht§a} /O /0 |1{u<chT;‘ (*)(5,5)} - 1{1,<C pLg(*)}’M(dT, du)]
Tt AR]

Ht o
S E | lgeronney L <a B ( /0 /0 Lcertre @on ~ Lov<e rrppNeldr, dv)
Tt T

' o]

")

H;
< cE 1{t<Ta,JW/\TK}1{Ht§a}/ Ll;fliﬁ(*)(é, 5) — L:(*)
0 t
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Chapter 3. Ray-Knight representation of Lévy-driven LBPs

We deduce that
Hy
E |:]_{t<Ta,]VI/\TK}1{HtSa}At:| S C {E |:]_{t<Ta,1\/I/\TK}1{HtSa}/ ’L:(e’:‘, (5) — L:(*)’ d?”‘| (360)
0

H;
+ cE |:1{t<T“7M/\TK}1{Ht§a}/ ‘L;rki,(*)<€’6) — LfT5(£75)‘dT:|
0 t
(3.61)

H;
+ cE |:1{t<Ta,IM/\7-K}]_{Ht§a}/ ‘Lfrg(&“, 5) — Li(e, 5)](17“] } .
0
(3.62)
By formula (3.38) and the occupation times, the term on the right-hand side of (3.60) satisfies

Hy
E 1{t<Ta7MATK}1{Htga}/ |Li(g,6) — Li(m")| dr]
0

IN

[e's) t
E[MKW,W} / Lireu) / \mzﬁ([o,r))—mzao,rmszdr]
0 0
t
<E [ut@,W} / 1t <ay | =20, H,)) — m([0, H,))| ds}
0

t
:/ E [1{S<Ta,M/\7.K}1{HS§a}AS} ds.
0

From the definition of the random times 7;*" the expression (3.61) is bounded by aé. Finally,
by part a) and since T < T™M for r € [0, a], the expression in (3.62) is bounded by

E / Lernineky sup|LE¥(e,0) = LI(e, 5)|dr] <a (C(M, K,e)(M + VM) + 2MT(M, K)) ,
0 s<TmMAT
and the statement follows by Gronwall’s lemma. [ ]

Proof of Proposition 3.21. By formula (3.38) and the definition of the logistically pruned
local times, in an analogous way as in second part of Lemma 3.17, for all 0 < h < a and
every stopping time 7 with respect to F{ we get

/OT | |mz’5<[o,h>>—m:ao,h))\dLZ]

TATM H,
| [k o) - L

E UL];/\T‘LM (5, (S) — L?/\T“’M (m*>’:| S E

< cE

from where

E UL?/\T“'A/[ (5, (5) — L,lrl/\Ta,JW (m*)” <cE

TAT®M H,
| [ e - e par
(3.63)

[ prATOM H
+ cE / dL" / |L’§”6(5,6)—L§(5,5)|dr] (3.64)
0 0

[ prAToM H;
+ cE / dLg/ |L%(g,0) —L;(m*)|dr] . (3.65)
0 0
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3.4. Proof of the Ray-Knight Theorem

Dealing with terms (3.63) and (3.64) as in the proof of Lemma 3.30 b), we get that

E UL?/\TG»M (€,0) _Lﬁ/\Ta«M (m*)u
TATHM H,
tpeo [ Lt [ ILE0) - Life0)dr
0 0

TATHM H,
| ath [ ines) - mjar
0 0

AT M
/ dL” / |LF2(e,8) — L (e, 5)\dr]

AT M
/ dLh/ / Im= ([0, 7)) — m ([0, 7)) dL"dr | |

since dL = dLgl{HS:h}. As h < a, it follows by using the inequality 7% < T"M and the
occupation times formula in the last expression that

E ULI:ATM/I(E’ 8) = L2 pan (m*)H

TANTeM h
/ dLg / 1{8§T/\Th’M}‘Lls€r€<€v 5) - Lg (57 5) |dT
0 0

< cda+cE

+cE

< cda+cE

+cE

< cda+ cE ( )
3.66

+cE

TANT M s
/ dL};/ 1{Hu<h7u§7_/\Th,Iw}|mi’6([0, H,))— mi([O,Hu))|du] .
0 0

We now take 7 = t AT AT,. We then can bound the integral with respect du in the last term
on inequality (3.66) by the corresponding integral between 0 and ¢ no longer depending on s.
This trivializes the local time integral therein, yielding a quantity bounded by M. Applying
part b) of Lemma 3.30 to the remaining time integral shows that the last term in (3.66) is
then bounded by

aM (5 +D(M,K) +C(M, K, )(M + \/M)) (et —1).

For the same choice of 7, taking supremum over s < 75 A T™M inside the integral with
respect to dr in the second term on the right hand side of (3.66), we now deduce with help
of part a) of Lemma 3.30 the following upper bound for that term:

caM (F(M, K) +C(M, K, &)(M + \/M)> .
We therefore have shown that
E (1L, e panrnsny (€)= Ly s panronny () |
<alc+1)M (5 +T(M,K) + C(M, K, e)(M + JE) et

Now, since 75 — oo when K — oo, for each M > 0 there is some K = K (M) > 0 sufficiently
large so that P(r%(M) < Ty) < 5375 and hence I'(M, K(K)) < 1/M? for all M > 0. We
then choose for each M > 0, t = t(M) :=In(M)/2c. With these choices, we have

MT(M, K(K))e™) =2M~1 — 0

69



Chapter 3. Ray-Knight representation of Lévy-driven LBPs

when M — oo, whereas the sequence of stopping times Ty := t(M) A TEM) ATOM goes as.
to co. Thus, for each n > 0,

P [|L%, (e,0) —LF, (m")| > n]
< P [|L3, a7y, (8, 0) = Ly agy, (M) > ] +P(Ty > T)
a(c+1)
Ui
and hence, for all M > 0,

<

M <5+ D(M,K)+C(M,K,e)(M + \/M)) e +P(T, > Tu)

limsup P [|L4, (¢,6) — L% (m*)| > n] < Ut ) o r(M, K(K))e @) 4 BT, > Ta).

€,0—(0,0)

Letting M — oo, we have established that

lim P[|L%, (,6) — L% (m*)| > ] = 0.
£ 6(0.0) 125, (2.0) = L, (mO)] > ]

3.4.2 Stochastic flow embedding of the grid-aproximation

We will now show that the approximating process (L%, (€,9) : a > 0) coincides (in law)
with a flow of CSBPs of branching mechanism ¢ as studied by Dawson and Li [18], but
with additional “frozen” negative drift terms, on rectangles of a suitable time-space grid,
accounting for the “pruning” of the original population.

Recall that the flow of CSBPs introduced in [18] is the two-parameter process (Y;(v) :
t > 0,v > 0), where for every v > 0 the process Y (v) = (Y;(v) : t > 0) is the unique strong
solution of the stochastic differential equation:

t t pY,—(v) t Y, (v) poo
Yi(v) =v+ a/ Yi(v)ds + a/ / W (ds, du) + / / / rN(ds, dv, dr)
0 0 Jo 0 Jo 1

t Y, (v) I
+ / / / rN(ds,dv,dr),
0o Jo 0

where II(dr), o > 0 and « are the same objects as in (3.1), W (ds, du) is a white noise process
on (0,00)? based on the Lebesgue measure ds X du and N is a Poisson random measure on
(0, 00)? with intensity ds x dv x I1(dr). Further properties of the two parameter process were
recalled in Section 3.2.1.

In a similar way, as we state in Proposition 3.12, we can define also a flow of LBPs
as a two-parameter process (Z;(v) : t > 0,v > 0), where for every v > 0 the process
Z(v) = (Zi(v) : t > 0) satisfies

t t rZ,(v) t pZ,(v) poo
Zi(v) = v+ a/ Yi(v)ds + 0/ / W (ds, du) + / / / rN(ds,dv,dr)
0 o Jo 0 Jo 1

t Z . (v) 1 t
—l—// /rN(ds,dl/,dr)—c/ Z2ds.
0 Jo 0 0
(3.68)

Proof of Proposition 3.12 . We first show statements i) and iii) and use them to prove
ii).

i) Given the parameters (b, o, go, g1) defined by

(3.67)
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3.4. Proof of the Ray-Knight Theorem

. x> b(z) = ar — cx?
« (zyu) = oo(z,u) = oly<y;
« (x,v,r) = ogo(z,v,r) = gi(z, v, ) == 1l,<,

we can check that (b, 0, g0, g1) are admissible parameters satisfying conditions (2.a, b, ¢, €) in
[18, Section 2|. Thus, for each v < 0, we can deduce from [18, Thm. 2.5| that there is a unique
strong solution to (3.68). Moreover, for each v > 0, the solution (Z;(v) : ¢ > 0) satisfies also
equation (3.6) with the Brownian motion given by dB; := (Z,- (v))_% fOZS’(v) W (ds,du), and
it follows from Theorem 2.1 that any solution of equation (3.6) is a LBP with the required
parameters ¢ and ¢ > 0.

iii) Given v > u > 0, t > 0, we set Yy := Z;(v) — Zy(u). From (3.68) we deduce that T,

satisfies
t t T s—
Tt:a/Tds—i—a/ Wi (ds, dw) + // / rNi(ds,dv,dr)
0
/ / _/ 7"N1 ds, dv, dr)—c/ [ZQ( ) — Zg(u)] ds,
0

Wi(ds,dw) = W(ds, dw + Zs_(u))

where

is a white noise with intensity ds X dw, and
Ni(ds,dv,dr) = N(ds,dv + Zs_(u),dr)

is a Poisson random measure with intensity ds x dv x II(dr). Thus, (T, : t > 0) satisfies

t t Y. .
Tt:a/Tds—f—a/ Wi(ds, dw) + // / rNiy(ds, dv, dr)
0
/ / é/ N (ds, dv, dr) —c/ T2ds—c/ Zs(u)Yds,

and we can deduce that statement iii) is true.

(3.69)

ii) Given t > 0, the cadlag property for v — Z;(v) can be deduced from the comparison
property stated in [18, Thm. 2.3]. Moreover, it is easy to show using similar arguments as in
the proof of [18, Thm. 3.4] that there is a locally bounded non-negative function ¢ — C(t)
on [0,00) so that

E {oiglzt | Zs(v) — Zg(u)|} <O {(v—u)+Vv—u}

for v > u > 0. Therefore, using the previous bound and [18, Lemma 3.5] (along with the
Markov property stated in iii)), we can deduce that the path-valued process (Z(v) : v > 0)
has a cadlag modification, following the arguments in the proof of Theorem 3.6 in [18]. m

Given fixed parameters €,0 > 0 and a fixed initial population x > 0, we now construct
a new flow (Z5°(w) : w < x,t > 0) of CSBP with “frozen drifts”, driven by the same noise
processes W and N as the process Z in (3.68), by means of the following iterative procedure:
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Chapter 3. Ray-Knight representation of Lévy-driven LBPs

Step O :

Step 1 :

Step 2 :

For all t,v > 0, we set

Z°(0) := Z,(0) =0 and ZZ°(v) := Zo(v) =

For every x € Ry, we set n{ := sup{n € N : x > nd}. We define then a new flow
(Z(w) : w < 2,0 < €) by

(E

7% (w ZZ o) ((w A (i + 1)) — (w Aigd)), te€ (0,¢],

10=0

where, for each zo e {0, ..n%}, the process (Z; (10)( ):t>0)is a CSBP with branching
mechanism %) (X) = 1(\) + c)igd, starting from v. More precisely, we consider
Z%G0) () as the unique strong solution of the SDE

7% (Zo)

Z, (ZO)( )—v—i—oz/ Z0 i) ds+a/ / ; "0)(ds,du)
. 0>(U
+// / N0 (ds, dv, dr) + // / N0 (ds, dv, dr)
0o Jo

—cioé/ Z%00) (v)ds.
0

Here
W60 (ds, du) := W (ds, du + Z°(io0))

is a white noise with intensity ds x du, and
NO@O)(ds dv, dr) := N(ds,dv + Z5°(id), dr).
is a Poisson random measure with intensity ds x dv x II(dr).
Now, for every ig € {0,..,no} , we set
n{) = sup{n € N: Z2%0)(§) > nd},
and for every i; € {0, .., ni 4 1}, we define
200 = (18 + Z%(ig9)) .

We extend then each process (Z5°(w) : 0 < ¢ < &), with w < & to a process (Z5°(w) :
0 <t < 2¢) by setting

Z7(w) i= Ze (250 (w)), € (e,2e], (3.70)
where the process (Z..(y) : t > €) is given by

ng n (io)

= 3 ()~ 6T Aw) e

10=0141=0
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3.4. Proof of the Ray-Knight Theorem

As before, each process (Zf’(io’il)(v) :t >0) is a CSBP with branching mechanism
R 0) = 9N + ey,

starting from v, and in fact it is defined as the unique strong solution of the SDE

6(10 i1)
(®) -
Z (’L()Zl)( )_U+a/ Zs(zou) d3+0/ / W&(zo,u)(ds,du)

75 (o 11)

LT s

7 (i0, 11)

S— ~ .. - t ..
// /T’NE’(”O’“)(dS,dy,dr)—cx;’(lo)/ ZE’(ZO’“)(U)dS,
0

Wi (ds, du) = W (ds + e, du + Z. 4(a5"))
is a white noise with intensity ds X du and
N0 (ds, du, dr) = N(ds + e, dv + Z. ,(a5"), dr)

is a Poisson random measure with intensity ds x dv x II(dr).

where

Step g : If we assume that the flow (Z5°(w) : t < k6) is already constructed, we define then
inductively the extension of the process Z=%(w) to (ké, (k + 1)d] as

ZE(w) = Zet(Z (W), t € (ke, (k+ 1)e] (3.72)
where
e n,(jo’“ik*l)
0 5
Ziealy) =3 D0 2 (@ Ay) = (@t Ay)).
i1=0 ix=0
(3.73)
with o S
’rl,(j;’“’"lk_l) _ sup{n eEN: Zf—l,(zo,u,..,zk_g)(é) > 715}
and

2 = g ege(inma0) kS i € 0,1 (3.74)

ik
Also, each process (ZF=U™ %) (y) . t > 0) is a CSBP with branching mechanism
¢k8 10, 21,..,zk)()\) ¢(/\) + C)\:Eka (20, eytg— 1)

starting from v, given as the unique strong solution of the SDE

ks (ig,--
Zk;g( zk)< )—v+a/ st( Zk) d8+0/ / ° Wke,(io,..,ik)(dsjdu)

ks (ig;-- zk)(v

/ ke (20, Zk)(v

—C%k(gw g 1)/ Zka( )(U)ds,
0

/ TNkav(io,..,ik:)(ds, dl/, dT)

1
/ Nke,(im--yik)(ds, dv, d?“)

(3.75)
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Chapter 3. Ray-Knight representation of Lévy-driven LBPs

where o
Wheliori) (ds, du) = W (ds + ke, du + Zye,y (i 1))

1,0

is a white noise with intensity ds X du and
N’“a’(io""i’“)(ds, dv,dr) = N(ds + ke, dv + Zka’s(xf:g(io"”i'“’l)), dr)

is a Poisson random measure with intensity ds x dv x II(dr).

Remark 3.31. Using the Lévy characterization of Brownian motions, one can check that
the white noise processes W*:(0-i) (ds du) are independent when the indexes (iy, .., i) vary.
Indeed, using the quadratic variations of local martingales given by stochastic integrals with
respect to Gaussian white noise, each W#s (i) (ds x [a,b]) with a < b is seen to be a
Brownian motion (of variance b — a) with respect to filtration generated by both W and
N, and for different multi-indexes the covariation processes vanish since the integrals are
disjointly supported processes. A similar argument can be used for the Poisson integrals.
The independence between white and Poisson noise integrals can be checked by an extension
of such arguments using Ito6 calculus to identify the joint characteristic functions of the
stochastic integrals (see e.g. |24, Thm. 2.1]).

We will roughly refer to the above processes (Zf"s(w) 1t >0),w > 0 as the “grid approxi-
mation of the LBP”. We can easily deduce an SDE for each of them

Lemma 3.32. For every w < x, the process Z%°(w) = (Z5°(w) : t > 0) solves the following
stochastic differential equation:

t t 25 (w) t ,Z9%w) oo
7 (w) = w + a/ 7 (w)ds + J/ / W (ds, du) + / / / rN(ds, dv,dr)
0 0 Jo 0 Jo 1

e

kie

topzw) 1 "8 b -
—I—/ / / rN(ds, dv, dr) —CZ--- Z / xf:(’;(m’”’lks’l)ijf?""”“s)
070 0 io=0  i,=0"0
(@S A 25 w)) = (5 A 25 w)) ) ds,

(3.76)
where o > 0 and « are the same objects as in (3.1), W (ds,du) is a white noise process
on (0,00)? based on the Lebesque measure ds x du and N is a Poisson random measure on
(0,00) with intensity ds x dv x II(dr). Moreover, by construction and properties of flows of
CSBP, for each t > 0, w — Zf’é(w) 1 a non-negative and non-decreasing cadlag process on
[0, c0).

Proposition 3.33. For each x > 0, the process (Z°(x) : a > 0) and the process (L§, (€,0) :
a > 0) has the same law.

Proof. For every k € N and (i, i1, ..ix) € N*, it is immediate from Proposition 3.20 to see
that the process

(st,a(xlglzgiis.é’ikil)) _ st,a(xf:‘é(io,..,ikfl)) ke <a< (k + 1>€)
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3.4. Proof of the Ray-Knight Theorem

behaves as the approximated local time process

(Laks,(io-,»-,ikfl)({_:) (5) — Laks,(io,u,ikfl)(gv 5) . kg < a S (k + 1)5)

(ig+1)6 (ig)d

Furthermore, that result also tells us that, at each height a, the process L% (e,9) is
obtained as a sum of branching processes defined rectangle by rectangle in the tree-like
height /local time discrete grid, whose branching mechanisms are determined by adding to ¢
the constant ¢ times the cumulative population in the lower left corner of the rectangle. Thus,
it becomes clear form the independence of the noises driving the CSBP stated in Remark
3.31 in each block of the grid and the construction of the flow Z<°, that the latter is “ an
embedding” of L(g,d) in the flow framework, so that the law of the process (Z°(x) : a > 0)
is the same as the process (L%, :a > 0). u

The following comparison property will be useful in the sequel.

Lemma 3.34 (Comparison property). For alle,6 > 0 and 0 < v < w, the solution (Z:°(v) :
t > 0) of equation (3.76) and the solution (Zy(v) : t > 0) of equation (3.68) satisfy

P{Z°(v) <Y (w) YVt >0} =1 and P{Z(v) < Yi(w) Vt >0} =1, (3.77)

where (Yy(w) : t > 0) is the solution of equation (3.67). In both cases we say that the
“comparison property” holds.

Proof. The comparison property for the logistic process Z follows directly from [18, Theorem
2.2|. For the grid approximation Z=° of the LBP, the same result implies the comparison

property for each CSBP (Zfe’(io’il’“i’“)(v) :t > 0) with branching mechanism

1/]ka,(i0,i1,..,ik)<)\) _ ¢()\) + C)\xlf&(io,--7ik—1)

1,0

and initial condition v, with respect to a flow of CSBPs with mechanism (\) driven by the
same noise processes, and starting from initial conditions w > v. Since Z; % is defined in
each band ke < t(k + 1)e as a sum over indexes (g, i1, ..,7;) of the above processes, by an
inductive argument in k one gets the desired comparison property. [ ]

We prove know that the process (Z°(z) : t > 0) is actually a grid approximation of the
LBP (Z(x) : t > 0), in the sense of the following proposition.

Proposition 3.35 (Convergence of the grid approximation of the LBP). For each x > 0
and t > 0, the r.v. Zf’d(x) converges in probability to Z,(z). In particular, the process
(Ze%(x) x> 0,a > 0) converges to (Z,(x) : & > 0,a > 0) in the sense of finite dimensional
distributions.

We introduce the filtration
kt
@)  _ < ges )

(st )M (\/ o (Zka,s(h),h < 75%(x) ke < s < (k+ 1)e /\t>> ,

=0 >0
where (Zje s(h) : s > ke) is the process defined in equation (3.73), and we define (S;),5, by
S = U St(z).
x>0

To unburden the proof of the above proposition, we prove first a technical lemma.
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Chapter 3. Ray-Knight representation of Lévy-driven LBPs

Lemma 3.36. Set 7, = inf{t > 0:Y,(x) > m}, m > 1. We have then that

E [1{<ry  SUP [ Zpes(v) —v|| <me (|oz| +/ rH(dr)) + cm®e
1

0<v< 7}’ ()

1
+vmeCy | 0+ /TQH(dT) ,
0

where C1 > 0 s an universal constant.

Proof. Using (3.73), we have that

E [1i<rny  sup  |Zies(v) —v|| <|ofE 1{S<Tm}/ Zaé( )d@] + oE sup MY (5 A7)
0<v<ZE (o) 0<v<Zy’  (2)
+E 1{S<Tm}/ / / rN(df,dv,dr)
kse JO 1
+E sup [ MY (s A7)
0<U<ZZS€\T"L (z)
+cE [1{s§7m}ZZ:i(x) / ng‘s(x)de},
kse
(3.78)

where the processes (MW(S A Tm))vzo and (MY (s A T,))vs0, defined as

SATm stm—mf 0 SATm st/\-rmiﬁ(v) 1
= / / W(df,du) and MYN(s / / / rN(df, dv,dr),
ksarme <0 ksarme Y0 0

respectively are (“vertical”) martingales issued from 0. Indeed, we have

SATm st/\-rmaﬂ(”Jrh)
E { / / W (df, du) |SF=)
ks/\‘rmf 0
SN\Tm st/\TmE,Q(U)
~E / / W (df, du)
kS/\TmE 0
SATm st/\TnLE,G(VU)
= / / W(df,du) + E
ks/\.,—ms 0
SA\Tm Zhig prp 0 (
/ / W(df, du),
k

SATME

Sk= | LR

SATm stm— ,0(v+h)
/ / W (d6), du)
ks/\‘rm ks/\-,—ms G(U)

SATm ks AT & o(v+h)
/ / W (d6), du)
ks/\‘rm k:s/\-,- €, 9(U

Sfee,w)]

where the second equality holds by Remark 3.31. By Ito’s formula in the time variable s, we
see also that
SATm, Zksprgm e.0(V) SATm,
/ / MY ()W (d,du) | +E { / kamg,g(v)de}
ks/\rm k

SATm
— E [\/ stATm570(U)d9:| 9
ks/\‘rms
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and we deduce that

SATm

E[[MY (s A7m), M"Y (s A Tm)}v} =E {/k Ziegpry,e0(v)d0

SATME

by definition of the quadratic variation of (MY (s A 7,,,))y>0- Thus, we bound the supremum
of MW using Burkholder-Davis-Gundy’s inequality (again in the “vertical” sense)

Bl sw o MYeanl| < GE | ATGAT) MG AL
OSUSZZ;&ATmE(CE) "73/\‘1'7,Lf5
SATm,
< Cy IE[ / Z;"s(x)de},
ks/\Tm5

with C > 0 a universal constant. In a similar way, we check that

SATm st/\‘f'm 5,9(v+h) 1 ~ SATm, st/\-,-ms,e(v) 1 ~
/ / / rN(df,dv, dr) = / / / rN(df,dv,dr),
k eJO 0 k eJO 0

SATm SATm,

(3.79)

E Sheeiv

and

B[ (s A Tm)Q] i

SATm Zkspry e.0(V) 1 - ~
/ / / MY (0)N (8, dv, dr)
ksarme 40 0

+ E Z TTQL]'{OSTngl}1{Vn§ZkS/\7—ms,sn(v)}

ksnrm €<Sn<SATm
SATm stAng’g(v) 1 )
/ / /rl‘[(dr)d@du :
kspre 0 0

by [t6’s formula. Thus, applying Burkholder-Davis-Gundy’s inequality we have that

=E

E sup |M5\7(s AT | < CLE {\/[MN(S ATm), MN (s A Tm)}Za,a ( )}
USUSZZ:SATmS(x) ksATm € (3.80)

SATm 1
< 01\/1@ { / 75 ()df / TQH(dr)].
ks/\Tm5 0
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Using expressions (3.79),(3.80) to bound equation (3.78) we obtain then that

E 1{5§7’m} sup |ste,s(v> - U| §|04|E |:1{SS7'77L}/ Z;’5(Jf)d6:|

0<v<Z;’ () kse

+ oC} \/]E [1{s§7m}/ Zgﬁ(x)de]
kse

+E |:1{s§7'm}/ Z;f(x)dﬁ/ TH(dr)}
1

kse

s 1
—1—01\/1[-3 [1{S§Tm}/ Z§’5($)d9/ T'QH(dT):|
kse 0

LR [1{897"}2;;@(95) / Zg’é(x)dQ} ,

kse

and we get the desired bound using the comparison property 3.34. [ ]

Proof of Proposition 3.35. To establish the desired convergence we adapt computations
in [25]. Given £,6 > 0, and ¢,z > 0, we set (7°(z) := Zy(x) — Z7° (). We have then ¢ ()
satisfies the SDE

t . -
£,0 -
o(x) = Oé/o (Zs(x) — Z3 5($)) ds + 0/0 /0 (1{u<zs,(x)} - 1{1/<Z§f(m)}> W (ds, du)
t 0o 00
+ / / / <]-{V<Zsf($)} - 1{1/<Z6’5(x)}) TN(dS7 dv, d?”)
0 JO 1 P
t o0 1 ~
/0 /0 /0 (1{u<Zs—(x)} - 1{V<Z§,:s(x)}> rN(ds,dv,dr)

5 [[[w -zt w]as-§ [ 7w

0

+

(ig,--ig_1)
kie

ng n t
€,(10,-tkg—1) r76,(10,ikg) 1 €,(105-Tkg—1) 8 £,(10,-1ks—1)
+c Z . Z / xiksfs Zsfkss (x(ik5+1)6 A sts(x) - xiksé )dS
; 0
ik, =0

i0=0
(3.81)
We first notice that

and

€,(105+siks) [ €5 (105-Tkg —1) ,(20,--ikg—1) &,(40,ikg—1)

75 ,6
Zs—kse (x(z'ks—i-l)é A ZZSE(SC) - xiksd ) = stt?,s(x(iks—i-l)ﬁ A Zlise(x» - ZkSE,S(xz‘kS(S

5,(1’0,“1']“3_1)

5
Tl +1)3 NZjo(@)
= dekSs,s<U)-

5,(i0,4.ik571)
iy

Replacing these expressions in the two last terms in the right-hand side of the equation (3.81),

78

57(i01--ik5—1)
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we obtain that
£,0 €,
(z) = a/ (Zy(z) — Z2 Oz ) ds + 0/ / 1z, @ 1{u<ij(z)}> W (ds, du)
+ / / / (1{u<Z5,(:ﬂ)} 1{V<Zs,6(x)}) TN(dS, dl/, d?“)
0 Jo 1 s
t [e’s) 1 N
+ / / / <1{1/<ZS_(:1:)} — 1{y<Z6’5(z)}> TN(dS, dl/, d?“)
0 Jo 0 5

- / [Z.(2) — Z2°(2)] [Ze(2) + 25°(2)] ds

pLi05k—1)
kte
qu
—C E E / / s(ig,“iks_1)<U§z§,(z‘§,“iks_1)}
— ks ks
i0=0 ’Lk =0 S

[st&s(v) — xi;(;g’"i’“s’l)} dyZge s(V)ds.

(3.82)
For what follows, we use some notation developed in the proof of |25, Thm 5.4|. Let us define

. the constant K := |a| + M, where [ rII(dr) = M < co. Observe that
%4 —l—/ / rlqcpydvli(dr) < K(z +1).
o J1
. the function U(z) := (0% + I)(x), where [ = fol r?II(dr). Then, U satisfies
o) 1
o’x —I—/ / 1y pydvIl(dr) < U(z).
o Jo

. the function f(z) := (|a+ 1| + M)z, which satisfies fo )~tdz = co. If we suppose
also without losing generality that y < z, we have

(a4 1)(z —y)| +/ / rlycv<aydvil(dr) < Bz —y). (3.83)
o J1
. the function o(z) := [0? + I]\/z, where [ = fol r2I1(dr). Note that, if y < x, then
e 1
o (Vr —\/y)? —|—/ / 1y cv<aydVIL(dr) < o(z —y). (3.84)
o Jo

We fix then a sequence {a;};>1 such that a; = a;_; e /" and ay = 1. Note that
a; — 04 decreasingly and fi?’l 0(2)"2dz = j for j > 1.Thus, let z — 1);(z) be a non-negative
continuous function on R which has support in (a;,a;_1), satisfies 0 < ¥;(2) < 2k o(z) 2
for a; < z < aj_1, and f(:_j’l Y;(z)dz = 1. For each j > 1, we define the non-negative and

twice continuously differentiable function

|| y
b;(z) = / dy / b(2)dz, weR,
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such that ¢;(x) — |z| non-decreasingly as j — oo, and

We have also that ¢f(z)

when j — oo, uniformly

00 0 1 1
0< / / Dir iz @i (x — y)dvI(dr) < —]/ r2H(dr) — 00 0,
o J1 0

ifx>0

0 < ¢i(r) <1
<0 ifzx<0’

—1 < ¢fj()

> 0 for z € R, and

iz —y)love —ay/y)* =0

in x,y. Furthermore,

jlo?+1

uniformly in z,y > 0, where I(r,v;, z,y) =T [1{,,@} — 1{V<y}}.

(3.85)

Notice that Cfﬂm(x) < 2m for each m € N, by Lemma 3.34. By (3.82) and It6’s formula,

we have that

(G = a (@) (Zu(e) — 229(a)) ds

+

TR W R e

/Wm/ 0@ (G0 (@)U Zs (), Z5° (2))W (ds, du)

«f / [ S @z, 2 @) N s i)

+

1{36

/tATm/ / & (¢ (@) Zalw), 259 (2)) N (ds, dv, dr)

S [0 @) - i <c”<x>> — (@) AG (@)
sc<t/\‘r:/1\7—m
s [ @) [20) - 2@)] [20a) + 22°(a)] ds
0
(20 Ay —1)
Mhye Nt 20 ()
¢ # (@)
oy 7
R [ Fhis(0) =55 | o)

80



3.4. Proof of the Ray-Knight Theorem

and so
(G0 (0) = a / " @) (Zo() — Z29%(a)) ds

+%/Ot/\rm 2¢,, Caé [\/— \/ZT] ds

+ 30 [60(C7 (@) — 0u(C (@) — (@) AG ()]

s<t

tATm 0 1
+ / ds / / Drniz oy 7050y 6(C2 () v TI(dr)
0 0 0 s s

tATm () s . (386)
i /0 dS/O Dirnz, - (a).2:@ (65 )WTUdr) + M,

-5 e (200 - 2w) [2.40) + 20 ds
(20 Ay —1) o
—CZ > AT

8,(i0,..ik _1)
ety [ Zres() = 28 o),

1 57(i07"iks 1)
{z =P (ig +1)8

iy ®

where Ay f(2) := f(z+h) — f(2) and (Myn,,,) is a (S;) - martingale. By the properties of
¢j, we see that

G (1))l Zo(w) = Z2 ()] < |al|Zy(x) — Z3°(x)],

//AZ(WY (@),25° (@ ¢J(C66( )dvT1(dr) //7’|1{V<Z5 {V<ZE§(:1:)}|H( r)dv

so we can deduce that

// Csé |:\/— Zaé :| 0 0

and o
[ [ P oz @nanmian =0

uniformly on the event {s < 7,,}. Taking expectation in (3.86) and letting j — oo, we see
that

B o <B] [ )+ 30icit, wlas] + B[ [ 6k 0 2.0+ 2000 ds

(10 iy —1)
kts

N 270 ()
+ cE E g . 1{x§7(i0»»<iks U S0k — 1)}

0=0 zksts — 85

(Zhees(v) - x(5)> dy Z e o(0)ds
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from where

(10 gy —1)
kts tATm

Bl 0 <[ [ el 00 et o] 42 |35

10=0 zkt*O
750 (@) o (3.87)
s €,(105--Tkg—1) .
/ l{x:k(lg e oy <x§z(20+1l)ks vy U Tiggs ' d”sta’s(v)ds]
tATm k E
stss V) — ) dy g, s(v)ds|| .
By (3.74), we see that ’v — ;) (Zg - < 5. Thus,
t t/\'?'nz
Bl O <E | [ (a4 01 + an)l2, (olas| + o | [ 222y
0
tATm ZE'S
L E / / o) — 0 Zi o (0
(3.88)

tATm
<E U (o] + M + em)|(ZE, (@ )\ds} 4 emdt

tATm
/ / stss V) — v)dy e s(v)ds| .

By integration by parts, we have that

+ cE

Z7° (@) 2% (a)

- / Zyepe.s(v)dv
0 0
Ze ) ( )

kse

= ZZ:Z(QZ)Z;’(S(ZE) — / e s(v)dv.
0

Thus, the last term in the right-hand side of (3.88) can be rewritten as

1 tATm 9 tATm
—CE‘Q/ 759 (x )ds—/ 230 (2) 22 (x)ds
0

tATm Zlifs
/ / e s(v)dvds

75 (x)
/ Udek;sa,s(v) = Usta,s( )
0

255

kss

tATm,

Zk.sg s(v) = v)dy Z,e s(v)ds

C t/\’Tm 2
<E|[ (20 - 22w ds
0
tATm szs(z)
+cE / / (Ze,s(v) — v) dvds|
0 0

where in the last inequality we used the fact that

1 tATm, 9 tATm, Z}i’si—(x)
—/ Z° () ds :/ / vduds.
2 Jo 0 0
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Then, equation (3.88) yields
t
E|¢;0, (z)] < / (|| + M+ em)E [|¢50. (x)]] ds + emét
0

t
+E/ E [1{537"1}
2 Jo

t Z;js(x)
+ c/ E 1{S§Tm}/ | Zyes(v) —v|ds| ds
0 0

t
< / (lo| + M + em)E [|¢0, ()] ds + emét
0

SATm

Z:0(w) = Z@)| (22°(0) + 27 ) )| ds

t
+ cm/ E [l{sgm} 75 (x) — ZZ‘Z(x)H ds
0

+c /t E
: (3.89)

We use Lemma 3.36 to bound the last two terms in the right-hand side of equation above
to obtain that

AR C))
1{5<Tm}/ | Zyes(v) —v|dv| ds
0

t [e'e]
I (0] < (ol + 31+ e | |11, (@)lds| + emdt + 2emte (Jal + [ ritan))
0 1
1
+ 2emt | emPe +vmeCy [ o + / r211(dr)
0

Since (s < 2m for 0 < s < 7, we deduce that ¢ — E|(;a,,| is locally bounded. Thus, we
have that

E|C§’A57m(x)| < cemt {5 + 2me (!a| +/ rH(dr)) + 2em?e
1

1
+2v/meCy | 0 + /TQH(dT) ellal+Mtem)t
0

by Gronwall’s lemma, from where E|C§’A57m(95)| goes to zero when (d,¢) — (0,0). Since 7, — 00
as m — oo a.s., we have the desired result. [ ]

Finally, we can easily deduce the
Proof of Theorem 3.11. Given x > 0, by Proposition 3.21 we have the convergence
in the sense of finite-dimensional laws of the process (L%, (€,0) : @ > 0) to the process
(L%, (%) : @ > 0). Analogously, by Proposition 3.35 we have convergence, in the sense of finite-
dimensional distributions, of the process (Z:°(x) : a > 0) to the process (Z,(z) : a > 0).
Then, thanks to Proposition 3.33, we obtain the desired result. [ ]
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