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Resumen

El trabajo presentado en esta memoria se sitúa en la interfaz entre el análisis y la geometŕıa.
El interés recae en el estudio de fenómenos de concentración para dos problemas “geométri-
cos” no lineales: la existencia de hipersuperficies con r-curvatura constante en variedades
Riemannianas, y una ecuación de Schrödinger no lineal. Esta memoria se puede dividir en
dos partes principales. La primera está dedicada a explorar algunos resultados sobre concen-
tración de familias de hipersuperficies de curvatura media constante (o en general curvatura
r-media constante) con topoloǵıa no trivial en variedades Riemannianas compactas. Se re-
cuerda que la curvatura r-media de una hipersuperficie se define como la r-ésima función
simétrica elemental de las curvaturas principales de la hipersuperficie. Se prueba que las
técnicas desarrolladas en el trabajo de Mahmoudi, Mazzeo y Pacard [28] se pueden extender
para manejar el caso de curvatura r-media con r ≥ 1. Este fenómeno de concentración se
relaciona en general con un fenómeno de resonancia, que hace el análisis particularmente
delicado y que también se encuentra en el estudio de una clase de ecuaciones elápticas no
lineales que presentan concentración sobre conjuntos de dimensión mayor.

En la segunda parte, correspondiente al paper [29], se prueba un nuevo resultado sobre
concentración en subvariedades para una ecuación de Schrödinger no lineal con potencial
definido en una variedad Riemanniana suave y compacta M o el espacio Eucĺıdeo Rn, re-
solviendo en completa generalidad una conjetura planteada por Ambrosetti, Malchiodi y Ni,
ver [1]. Precisamente, se estudian soluciones positivas de la siguiente ecuación semilineal:

ε2∆ḡu− V (z)u+ up = 0 en M,

donde (M, ḡ) es una variedad Riemanniana n-dimensional suave, compacta y sin borde o
el espacio Eucĺıdeo Rn, ε es un parámetro positivo pequeño, p > 1 y V es un potencial
uniformemente positivo. Se prueba que dado k = 1, . . . , n−1 y 1 < p < n+2−k

n−2−k , y suponiendo
que K es una subvariedad k-dimensional suave y encajada de M , que es estacionaria y

no degenerada con respecto al funcional
∫
K
V

p+1
p−1
−n−k

2 dvol, entonces existe una secuencia
ε = εj → 0 y soluciones positivas asociadas u = uε que concentran sobre K en el sentido
de que decaen exponencialmente a cualquier distancia positiva a K. En particular este
enfoque explora una conexión entre soluciones de esta ecuación de Schrödinger no lineal y
subvariedades f -minimales en variedades con densidad.

iii



iv



Abstract

The work presented in this thesis is located in the interface of analysis and geometry. The
interest is the study of concentration phenomena for two nonlinear “geometric” problems:
the existence of hypersurfaces with constant r-curvature in Riemannian manifolds, and a
nonlinear Schrödinger equation. This thesis can be divided in two main parts. The first one
is devoted to explore some results about concentration of families of constant mean curvature
(or in general constant r-mean curvature) hypersurfaces with nontrivial topology in compact
Riemannian manifolds. Recall that the r-mean curvature of a hypersurface is defined to be
the r-th elementary symmetric function of the principal curvatures of the hypersurface. It
is shown that the techniques developed in the paper by Mahmoudi, Mazzeo and Pacard [28]
can be extended to handle the case of r-mean curvature with r ≥ 1. This concentration
phenomenon is in general related to a resonance phenomenon which makes the analysis
particularly delicate and which one also meets in the study of a class of nonlinear elliptic
equations presenting concentration on higher dimensional sets.

In the second part, corresponding to the paper [29] (submitted), a new result about con-
centration on submanifolds for a nonlinear Shrödinger equation with potential defined on a
smooth compact Riemannian manifold M or the Euclidean space Rn is proved, solving in full
generality a conjecture stated by Ambrosetti, Malchiodi and Ni, see [1]. Precisely, positive
solutions of the following semilinear equation are studied:

ε2∆ḡu− V (z)u+ up = 0 on M,

where (M, ḡ) is a compact smooth n-dimensional Riemannian manifold without boundary
or the Euclidean space Rn, ε is a small positive parameter, p > 1 and V is a uniformly
positive smooth potential. It is proved that given k = 1, . . . , n − 1 and 1 < p < n+2−k

n−2−k , and
assuming that K is a k-dimensional smooth, embedded compact submanifold of M , which

is stationary and non-degenerate with respect to the functional
∫
K
V

p+1
p−1
−n−k

2 dvol, then there
exist a sequence ε = εj → 0 and associated positive solutions uε that concentrate along K in
the sense that they decay exponentially at each distance to K. In particular this approach
explores a connection between solutions of this nonlinear Schrödinger equation and f -minimal
submanifolds in manifolds with density.
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Chapter 1

Hypersurfaces of constant r-mean
curvature condensing on a
submanifold

1.1 Introduction

Let Σm be an oriented embedded (or possibly immersed) hypersurface in a compact Rieman-
nian manifold (Mm+1, g). The shape operator AΣ is the symmetric endomorphism of the
tangent bundle of K associated with the second fundamental form of Σ, bΣ, by

bΣ(X, Y ) = gΣ(AΣX, Y ), ∀X, Y ∈ TΣ; here gΣ = g|TΣ .

The eigenvalues κi of the shape operator AΣ are the principal curvatures of the hypersur-
face Σ. The r-curvature of Σ is defined to be the k-th symmetric function of the principal
curvatures of Σ, i.e.

σr(Σ) :=
∑

i1<...<ir

κi1 . . . κir .

In particular σ1 equals m times the mean curvature of Σ and σm equals the Gauss-Kronecker
curvature of Σ.

Hypersurfaces of constant mean curvature and Gauss-Kronecker curvature constitute a
very important class of submanifolds in a compact Riemannian manifold (Mm+1, g) and have
been studied extensively. In this work, degenerating families of submanifolds with constant
r-curvature which ‘condense’ to the submanifold Kk ⊂Mm+1 of codimension greater than 1
are studied. Under fairly reasonable geometric assumptions, cf. [34], the existence of such a
family for r = 1 implies that K is minimal. Some cases have been studied previously: Ye [47],
[48] proved the existence of a local foliation by constant mean curvature hypersurfaces when
K is a point (which is required to be a nondegenerate critical point of the scalar curvature
function); more recently, Mazzeo and Pacard [34] proved existence of a partial foliation in
the mean curvature case when K is a nondegenerate geodesic and Mahmoudi [24] proved
existence of a local foliation in the case when K is a point and general r. Finally, Mahmoudi,
Mazzeo and Pacard [28] studied the case when K is an arbitrary nondegenerate minimal
submanifold (no extra curvature hypotheses are required) and r = 1. The aim of the first
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part of this work is to give a overview of the above mentionned results and to show that the
methods used in the paper [28] can be extanded to handle the general case, i.e. for arbitrary
k and r.

This result is described in more detail. Let Kk be a closed (embedded or immersed)
submanifold in Mm+1, 1 ≤ k ≤ m− 1, and define the geodesic tube of radius ρ about K by

S̄ρ := {q ∈Mm+1 : distg(q,K) = ρ}.

This is a smooth (immersed) hypersurface provided ρ is smaller than the radius of curvature
of K, and henceforth it is always assumed that this is the case. The r-curvature of this tube
satisfies

σr(S̄ρ) = C(m, k, r) ρ−r + O(ρ−r), as ρ↘ 0,

with n = m + 1 − k and C(m, k, r) = Cr
n−1, a quantity depending only on m, k and r, and

hence it is plausible that this tube might be able to be perturbed to a constant r-curvature
hypersurface with σr ≡ C(m, k, r) ρ−r. This is not quite true since the r-mean curvature of
S̄ρ is not sufficiently close to being constant, however when K is minimal there is a better
estimate

σr(S̄ρ) = C(m, k, r) ρ−r + O(ρ),

cf. Section 1.4 for more details. Even in this case, there are other more subtle obstructions
to carrying out this procedure at certain radii ρ related to eigenvalues of the linearized mean
curvature operator on S̄ρ, which in turn are related to a genuine bifurcation phenomenon,
at least when k = r = 1, cf. [34]. Thus the existence of the constant mean curvature
perturbation is not obtained for every small radius. The precise statement of the obtained
result is the following:

Theorem 1.1 Suppose that Kk is a nondegenerate closed minimal submanifold 1 ≤ k ≤
m−1 and r ≤ m−k. Then there exists a sequence of disjoint nonempty intervals Ii = (ρ−i , ρ

+
i ),

ρ±i → 0, such that for all ρ ∈ I := ∪iIi, the geodesic tube S̄ρ may be perturbed to a constant
mean curvature hypersurface Sρ with σr(Sρ) = Cr

m−k ρ
−r.

The nondegeneracy condition on K is simply that the linearized mean curvature operator,
also called the Jacobi operator, is invertible; this restriction is quite mild and holds generically
[45]. As mentioned above, this result was already known when k = 0, 1, but the case k > 1
requires a more complicated analysis. This approach was inspired by the works of Malchiodi
and Montenegro in different context, see [32, 33].

The hypersurface Sρ is a small perturbation of S̄ρ in the sense that it is the normal graph of
some function (with L∞ norm bounded by a constant times ρ3) over a submanifold obtained
by ‘translating’ K by a section of its normal bundle (with L∞ norm bounded by a constant
times ρ2); the reader is referred to 1.3.1 for the precise formulation of the construction of Sρ.
When K is embedded, then so are the hypersurfaces Sρ for ρ sufficiently small. In addition,
the hypersurfaces in each of the families {Sρ}ρ∈Ii are leaves of a local foliation of some annular
neighborhood of K.

The fact that the construction fails for certain values of ρ is related to a bifurcation
phenomenon. When k = 1 the families of surfaces which bifurcate off are (perturbations of)
Delaunay unduloids [23]; however, when k ≥ 2, this bifurcation is only known to exist in
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special cases, and the geometry of the surfaces in the putative bifurcating branches is less
clear. In any case, such bifurcations are inherent to the problem and occur also in [32] and
in many other situations. Furthermore, the index of the hypersurfaces Sρ, ρ ∈ Ii, tends to
+∞ as i→∞. On the other hand, it is proved that the set I = ∪iIi is quite dense near 0 in
the sense that for any q ≥ 2 there exists a cq > 0 such that

|H1((0, ρ) ∩ I)− ρ| ≤ cq ρ
q,

where H1 denotes the 1-dimensional Hausdorff measure.

In the next section the asymptotic expansion of the metric on M in Fermi coordinates
around K is calculated; this is applied in the (quite technical) Section 1.3 to derive the
expansions of various geometric quantities for the tubes S̄ρ and their perturbations. This is
used in Section 1.4 to obtain the expression for the mean curvature of the perturbed tubes,
which gives the equation to be solved. An iteration scheme is introduced in Section 1.5
which allows to find a preliminary perturbation for which the error term is much better, and
estimates for the gaps in the spectrum of the linearization are obtained in 1.6; finally, the
existence of the constant mean curvature hypersurfaces Sρ is obtained in 1.7.

1.2 Fermi coordinates near K and expansion of the

metric

1.2.1 Fermi coordinates

The construction of Fermi coordinates in a neighborhood of K is recalled. For a given p ∈ K,
there is a natural splitting

TpM = TpK ⊕NpK.

Orthonormal bases Ea, a = n + 1, . . . ,m + 1, for TpK, and Ei, i = 1, . . . , n, of NpK, are
chosen.

Notation: The convention that indices a, b, c, d, . . . ∈ {n+1, . . . ,m+1}, indices i, j, k, `, . . . ∈
{1, . . . , n} and indices α, β, γ, . . . ∈ {1, . . . ,m+ 1}, is adopted.

Consider, in a neighborhood of p in K, normal geodesic coordinates

f(y) := expKp (yaEa), y := (yn+1, . . . , ym+1),

where expK is the exponential map on K and summation over repeated indices is understood.
This yields the coordinate vector fields Xa := f∗(∂ya). For any E ∈ TpK, the curve

s −→ γE(s) := expKp (sE),

is a geodesic in K, so that
∇XaXb|p ∈ NpK.

As usual, the Christoffel symbols Γiab are defined by

∇XaXb|p = ΓiabEi.
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The Ei are extended along each γE(s) so that they are parallel with respect to the induced
connection on the normal bundle NK. This yields an orthonormal frame field Xi for NK in
a neighborhood of p in K which satisfies

∇XaXi|p ∈ TpK,

and hence defines coefficients Γbai by

∇XaXi|p = ΓbaiEb.

A coordinate system in a neighborhood of p in M is now defined by

F (x, y) := expMf(y)(x
iXi), (x, y) := (x1, . . . , xn, yn+1, . . . , ym+1),

with corresponding coordinate vector fields

Xi := F∗(∂xi) and Xa := F∗(∂ya).

By construction, Xα|p = Eα.

1.2.2 Taylor expansion of the metric

As usual, the definition of the Fermi coordinates above make the metric coefficients

gαβ = g(Xα, Xβ)

equal δαβ at p; furthermore, g(Xa, Xi) = 0 in some neighborhood of p in K. This implies
that

Xb g(Xa, Xi) = g(∇XbXa, Xi) + g(Xa,∇Xb Xi) = 0

on K, which yields the identity

Γbai = −Γiab (1.1)

at p.

Denote by Γba : NpK −→ R the linear form with coefficients

Γba(·) := g(∇EaEb, ·) = −g(∇Ea ·, Eb)

The higher terms in the Taylor expansions of the functions gαβ are now computed. The
metric coefficients at q := F (x, 0) are given in terms of geometric data at p := F (0, 0) and
|x| = distg(p, q).

Notation: The symbol O(|x|r) indicates a function such that it and its partial derivatives
of any order, with respect to the vector fields Xa and xiXj, are bounded by c |x|r in some
fixed neighborhood of 0.

Start with the expansion of the covariant derivative:
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Lemma 1.2 At the point of q = F (x, 0), the following expansions hold:

∇Xi Xj = O(|x|)Xγ,

∇Xa Xb = −Γba(Ei)Xi + O(|x|)Xγ,

∇Xa Xi = ∇XiXa = Γba(Ei)Xb + O(|x|)Xγ,

(1.2)

Proof. Observe that, because coordinate vector fields are used, ∇XαXβ = ∇XβXα for any
α, β. It also holds that ∇XX|p = 0 since any X ∈ NpK is tangent to the geodesic s 7→
expMp (sX), and hence

∇Xi+Xj(Xi +Xj)
∣∣
p

= 0.

Therefore
(∇XiXj +∇XjXi)

∣∣
p

= 0,

which proves the first estimate.

Also, by construction
∇XaXb = ΓiabXi + O(|x|)Xγ

and
∇XaXi = ∇XiXa = ΓbaiXb + O(|x|)Xγ.

From this, the definition of Γba and (1.1) the next two estimates follow.

The expansion of the metric coefficients can now be given. The expansion of the gij,
i, j = 1, . . . , n, agrees with the well known expansion for the metric in normal coordinates
[41], [21], [46], but the proof is recalled here for completeness.

Proposition 1.3 At the point q = F (x, 0), the following expansions hold

gij = δij + 1
3
g(R(Ek, Ei)E`, Ej)x

k x` + O(|x|3)

gai = O(|x|2)

gab = δab − 2 Γba(Ei)x
i + (g(R(Ek, Ea)E`, Eb) + Γca(Ek) Γbc(E`))x

k x` + O(|x|3).

(1.3)

Proof. By construction, gαβ = δαβ at p, and so

gαβ = δαβ + O(|x|).

Now, from
Xi gαβ = g(∇XiXα, Xβ) + g(Xα,∇XiXβ),

Lemma 1.2 and (1.1), it holds that

Xi gaj|p = 0, Xi gjk|p = 0 and Xi gab|p = Γbai + Γaib = 2Γbai.

This yields the first order Taylor expansion

gaj = O(|x|2), gij = δij + O(|x|2) and gab = δab + 2 Γbai x
i + O(|x|2).

5



To compute the second order terms, it suffices to compute XkXk gαβ at p and polarize
(i.e. replace Xk by Xi +Xj, etc.). It holds that

XkXk gαβ = g(∇2
Xk
Xα, Xβ) + g(Xα,∇2

Xk
Xβ) + 2 g(∇XkXα,∇XkXβ) (1.4)

To proceed, first observe that

∇XX|p′ = ∇2
XX
∣∣
p′

= 0

at p′ ∈ K, for any X ∈ Np′K. Indeed, for all p′ ∈ K, X ∈ Np′K is tangent to the geodesic
s 7→ expMp′ (sX), and so ∇XX = ∇2

XX = 0 at the point p′.

In particular, taking X = Xk + εXj, it holds that

0 = ∇Xk+εXj∇Xk+εXj(Xk + εXj)|p.

Equating the coefficient of ε to 0 gives ∇Xj∇XkXk|p = −2∇Xk∇XkXj|p, and hence

3∇2
Xk
Xj

∣∣
p

= R(Ek, Ej)Ek,

So finally, using (1.4) together with the result of Lemma 1.2, it is obtained that

XkXk gij|p =
2

3
g(R(Ek, Ei)Ek, Ej).

The formula for the second order Taylor coefficient for gij now follows at once.

Recall that, since Xγ are coordinate vector fields, it follows from (1.4) that

∇2
Xk
Xγ = ∇Xk∇XγXk = ∇Xγ∇XkXk +R(Xk, Xγ)Xk.

Using (1.4), this yields

XkXk gab = 2 g(R(Xk, Xa)Xk, Xb) + 2 g(∇XkXa,∇XkXb)

+ g(∇Xa∇XkXk, Xb) + g(Xa,∇Xb∇XkXk).

Using the result of Lemma 1.2 together with the fact that ∇XX = 0 at p′ ∈ K for any
X ∈ Np′K, it is concluded that

XkXk gab|p = 2 g(R(Ek, Ea)Ek, Eb) + 2 Γcak Γcbk

and this gives the formula for the second order Taylor expansion for gab.

Later on, an expansion of some covariant derivatives which is more accurate than the one
given in Lemma 1.2 is needed. These are given in the following:

Lemma 1.4 At the point q = F (x, 0), the following expansion holds

∇Xa Xb = Γba(Ej)Xj − g(R(Ei, Ea)Ej, Eb)x
iXj

+ 1
2

(
g(R(Ea, Eb)Ei, Ej)− Γca(Ei) Γbc(Ej)− Γca(Ej) Γbc(Ei)

)
xiXj

+ O(|x|)Xc + O(|x|2)Xj.

(1.5)
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Proof.

Xi g(∇XaXb, Xj) = g(∇Xi∇XaXb, Xj) + g(∇XaXb,∇XiXj)

= g(R(Xi, Xa)Xb, Xj) + g(∇Xa∇XbXi, Xj) + g(∇XaXb,∇XiXj).

Observe that, by construction, it follows that

∇Xa+εXbXi = (Γcai + εΓcbi)Xc

along the geodesic s 7→ expKp (s(Ea + εEb)). Hence

∇2
Xa+εXb

Xi = ((Xa + εXb)(Γ
c
ai + εΓcbi)) Xc + (Γcai + εΓcbi)∇Xa+εXb Xc. (1.6)

Evaluating this at the point p and considering the coefficient of ε, it follows that

(∇Xa ∇XbXi +∇Xb ∇XaXi)|p − (Γcai∇Xb Xc + Γcbi∇Xa Xc)|p ∈ TpK

and therefore

g(∇Xa ∇XbXi, Xj)|p + g(∇Xb ∇XaXi, Xj)|p = Γcai g(∇Xb Xc, Xj)|p
+ Γcbi g(∇Xa Xc, Xj)|p
= Γcai Γ

j
bc + Γcbi Γ

j
ac.

Finally, using the fact that

g(∇Xb ∇XaXi, Xj) = g(R(Xb, Xa)Xi, Xj) + g(∇Xa ∇XbXi, Xj)

it is concluded that, at the point p

2 g(∇Ea∇EbEi, Ej)|p = g(R(Ea, Eb)Ei, Ej) + Γcai Γ
j
bc + Γcbi Γ

j
ac

Collecting these estimates together with the fact that ∇EiEj|p = 0 it is concluded that

2Xi g(∇XaXb, Xj)|p = −2g(R(Ei, Ea)Ej, Eb) + g(R(Ea, Eb)Ei, Ej) + Γcai Γ
j
bc + Γcbi Γ

j
ac

And this implies (1.5).

1.3 Geometry of tubes

Expansions as ρ tends to 0 for the metric, second fundamental form and the r-mean cur-
vature of the tubes S̄ρ and suitable perturbations are derived. This is an extension of the
computation in [34].
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1.3.1 Perturbed tubes

A suitable class of deformations of the geodesic tubes S̄ρ, depending on a section Φ of NK
and a scalar function w on the spherical normal bundle SNK is now described.

Fix ρ > 0. It is convenient to introduce the scaled variable ȳ = y/ρ; also a local
parametrization z 7→ Θ(z) of Sn−1 is used. Define the map

G(z, ȳ) := F
(
ρ (1 + w(z, ȳ)) Θ(z) + Φ(ρ ȳ), ρ ȳ

)
,

and denote its image by Sρ(w,Φ), so in particular

Sρ(0, 0) = S̄ρ.

Notation: Because of the definition of these hypersurfaces using the exponential map, var-
ious vector fields used may be regarded either as fields along K or along Sρ(w,Φ). To help
with this confusion, the following notation is used:

Φ := Φj Ej Φa := ∂ya Φj Ej Φab := ∂ya∂yb Φj Ej

Θ := Θj Ej Θi := ∂ziΘ
j Ej.

These are all vectors in the tangent space TpM at the fixed point p ∈ K. On the other hand,
the vectors

Ψ := Φj Xj Ψa := ∂ya Φj Xj,

Υ := Θj Xj Υi := ∂ziΘ
j Xj

lie in the tangent space TqM , q = F (z, y).

For brevity, it is also written

wj := ∂zjw, wā := ∂ȳaw, wij := ∂zi ∂zjw, wāb̄ := ∂ȳa ∂ȳbw, wāj := ∂ȳa ∂zjw.

In terms of this notation, the tangent space to Sρ(w,Φ) at any point is spanned by the
vectors

Zā = G∗(∂ȳa) = ρ (Xa + wā Υ + Ψa), a = n+ 1, . . . ,m+ 1

Zj = G∗(∂zj) = ρ ((1 + w) Υj + wj Υ), j = 1, . . . , n− 1.
(1.7)

1.3.2 Notation for error terms

The formulas for the various geometric quantities of Sρ(Φ, w) are potentially very complicated,
and so it is important to condense notation as much as possible.

Any expression of the form L(w,Φ) denotes a linear combination of the functions w to-
gether with its derivatives with respect to the vector fields ρXa and Xi up to order 2, and
Φj together with their derivatives with respect to the vector fields Xa up to order 2. The
coefficients are assumed to be smooth functions on SNK which are bounded by a constant
independent of ρ in the C∞ topology (i.e. derivatives taken with respect to Xa and Xi).
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Similarly, an expression of the form Q(w,Φ) denotes a nonlinear operator in the functions
w together with its derivatives with respect to the vector fields ρXa and Xi up to order 2,
and Φj together with their derivatives with respect to the vector fields Xa up to order 2.
Again, the coefficients of the Taylor expansion of the corresponding differential operator are
smooth on SNK, and Q vanishes quadratically at (w,Φ) = (0, 0).

Finally, any term denoted O(ρd) is a smooth function on SNK which is bounded in
C∞(SNK) by a constant times ρd.

1.3.3 The first fundamental form

The aim of this section is to compute the coefficients of the first fundamental form of Sρ(w,Φ).
Setting p := G(0, 0) and

q := G(z, 0) = F (ρ(1 + w(z, 0)) Θ(z) + Φ(ρz), 0)

formula (1.3) yileds

g(Xa, Xb) = δab − 2 ρΓba(Θ) + O(ρ2)− 2 Γba (Φ) + ρL(w,Φ) +Q(w,Φ)

g(Xi, Xj) = δij + ρ2

3
g(R(Θ, Ei) Θ, Ej) + O(ρ3)

+ ρ
3

(g(R(Θ, Ei) Φ, Ej) + g(R(Φ, Ei) Θ, Ej)) + ρ2 L(w,Φ) +Q(w,Φ)

g(Xi, Xa) = O(ρ2) + ρL(w,Φ) +Q(w,Φ).

(1.8)

Using the previous expansions, the following computation follows:

g(Υ,Υj) = g(Θ,Θj) + ρ2

3
g(R(Θ,Θ) Θ,Θj) + O(ρ3)

+ ρ
3

(g(R(Θ,Θ) Φ,Θj) + g(R(Φ,Θ) Θ,Θj)) + ρ2 L(w,Φ) +Q(w,Φ).

Evaluating this expression with w = 0 and Φ = 0, it follows that g(Υ,Υj) = 0 since Υ is
normal and Υj is tangent to Sρ(0, 0). Since the first three terms on the right are independent
of w and Φ, they must vanish and therefore

g(Υ,Υj) =
ρ

3
g(R(Φ,Θ) Θ,Θj) + ρ2 L(w,Φ) +Q(w,Φ) (1.9)

Using a similar argument, it follows that

g(Υ,Υ) = g(Θ,Θ) + ρ2

3
g(R(Θ,Θ) Θ,Θj) + O(ρ3)

+ ρ
3

(g(R(Θ,Θ) Φ,Θ) + g(R(Φ,Θ) Θ,Θ)) + ρ2 L(w,Φ) +Q(w,Φ),

and when w = 0 and Φ = 0 this gives g(Υ,Υ) = 1, yielding

g(Υ,Υ) = 1 + ρ2 L(w,Φ) +Q(w,Φ) (1.10)

Using these expansions, the expansion of the first fundamental form of Sρ(Φ, w) is ob-
tained:
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Proposition 1.5 It holds that

ρ−2 g(Zā, Zb̄) = δab − 2 ρΓba(Θ) + O(ρ2)− 2 Γba(Φ) + ρL(w,Φ) +Q(w,Φ)

ρ−2 g(Zā, Zj) = O(ρ2) + L(w,Φ) +Q(w,Φ)

ρ−2 g(Zi, Zj) = g(Θi,Θj) + ρ2

3
g(R(Θ,Θi) Θ,Θj) + O(ρ3) + 2 g(Θi,Θj)w

+ ρ
3

(g(R(Θ,Θi)Φ,Θj) + g(R(Θ,Θj)Φ,Θi)) + ρ2L(w,Φ) +Q(w,Φ),
(1.11)

where summation over repeated indices is understood.

1.3.4 The normal vector field

The task of this section is to give the expansion of the unit normal N to Sρ(w,Φ) in terms
of (w,Φ). The following proposition is proved:

Proposition 1.6

N = −Υ + αjΥj + βaXa + (ρL(w,Φ) +Q(w,Φ))Xa + (ρ2L(w,Φ) +Q(w,Φ))Xj

(1.12)
where the coefficients αj are solutions of the system

αj g(Θj,Θi) = wi +
ρ

3
g(R(Φ,Θ) Θ,Θi) + ρ2L(w,Φ) +Q(w,Φ), i = 1, . . . , n− 1,

where summation again over j is understodd, and the coefficients βa are given by

βa = wā + g(Φa,Θ) + ρL(w,Φ) +Q(w,Φ).

Proof. Define the normal (not necessarily unitary) vector field

Ñ := −Υ + Aj Zj +Ba Zā,

and choose the coefficients Aj and Ba so that that Ñ is orthogonal to all of the Zb̄ and Zi.
This leads to a linear system for Aj and Ba.

From (1.8) together with the fact that g(Υ, Zā) = 0 and g(Υ, Zj) = 0 when w = 0 and
Φ = 0, it follows that

g(Υ, Zā) = ρwā + ρ g(Φa,Θ) + ρ2 L(w,Φ) + ρQ(w,Φ)

g(Υ, Zj) = ρwj + ρ2

3
g(R(Φ,Θ) Θ,Θj) + ρ3 L(w,Φ) + ρQ(w,Φ).

(1.13)

Using Proposition 1.5, it follows that

Ba = wā + g(Θ,Φa) + ρL(w,Φ) +
1

ρ
Q(w,Φ)

and

Aj g(Θj,Θi) =
1

ρ
wi +

1

3
g(R(Φ,Θ) Θ,Θi) + ρL(w,Φ) +

1

ρ
Q(w,Φ).
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Recall also that Zj = ρΥj + ρL(w,Φ) and Zā = ρXa + ρL(w,Φ). Collecting these, together
with the fact that, at q,

|Ñ | = 1 + ρ2 L(w,Φ) +Q(w,Φ),

it follows that

N := −Υ + 1
ρ

(αj Zj + βa Zā) +
(
L(w,Φ) + 1

ρ
Q(w,Φ)

)
Zā

+
(
ρL(w,Φ) + 1

ρ
Q(w,Φ)

)
Zj + (ρ2 L(w,Φ) +Q(w,Φ)) Υ.

(1.14)

The result then follows.

1.3.5 The second fundamental form

The second fundamental form of Sρ(w,Φ) can now be computed. To simplify the computa-
tions it can be henceforth assumed that, at the point Θ(z) ∈ Sn−1,

g(Θi,Θj) = δij and ∇ΘiΘj = 0, i, j = 1, . . . , n− 1 (1.15)

(where ∇ is the connection on TSn−1).

Proposition 1.7 The following expansions hold:

ρ−2 g(N,∇ZāZā) = −Γaa(Θ) + ρ g(R(Θ, Ea) Θ, Ea) + ρΓca(Θ) Γac(Θ) + O(ρ2)

− 1
ρ
wāā − g(Φaa,Θ) + g(R(Φ, Ea)Θ, Ea) + Γca(Θ) Γac(Φ) + wj Γaa(Θj)

+ ρL(w,Φ) + 1
ρ
Q(w,Φ),

ρ−2 g(N,∇ZjZj) = 1
ρ

+ 2
3
ρ g(R(Θ,Θj) Θ,Θj) + O(ρ2)

− 1
ρ
wjj + 1

ρ
w + 2

3
g(R(Φ,Θj) Θ,Θj)

+ ρL(w,Φ) + 1
ρ
Q(w,Φ)

ρ−2 g(N,∇ZāZb̄) = −Γba(Θ)− 1
ρ
wāb̄ + O(ρ) + L(w,Φ) + 1

ρ
Q(w,Φ) a 6= b

ρ−2 g(N,∇ZāZj) = O(ρ) + 1
ρ
L(w,Φ) + 1

ρ
Q(w,Φ)

ρ−2 g(N,∇ZiZj) = O(ρ) + 1
ρ
L(w,Φ) + 1

ρ
Q(w,Φ), i 6= j.

(1.16)

Because of the extensive computations involved, the proof of this proposition is postponed
to section 1.8.

1.3.6 The shape operator of the perturbed tubes

Given the above expansion of the first and the second fundamental forms, and using the fact
that in terms of matrix representations it holds that ρ−2g = I + M implies that ρ2g−1 =
I −M + O(|M |2) and A = g−1B, the following expansion of the shape operator follows:
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Proposition 1.8 Under the previous hypothesis, the shape operator is given by

ρAaa(w,Φ) = ρ2 g(R(Θ, Ea)Θ, Ea)− ρ2 Γca(Θ) Γac(Θ) + O(ρ3)

− waa − ρ g(Φaa +R(Φ, Ea)Ea ,Θ) + ρΓca(Φ) Γac(Θ)

− 2 ρΓca(Θ)wac + ρ2 L(w,Φ) +Q(w,Φ)

ρAii(w,Φ) = 1 + 1
3
ρ2 g(R(Θ,Θi)Θ,Θi)− wii − w + O(ρ3)

+ ρ2 L(w,Φ) +Q(w,Φ)

ρAaj(w,Φ) = O(ρ2) + L(w,Φ) +Q(w,Φ)

ρAij(w,Φ) = O(ρ2) + L(w,Φ) +Q(w,Φ) i 6= j

ρAab(w,Φ) = −ρΓba(Θ)− wac + O(ρ2) + L(w,Φ) +Q(w,Φ) a 6= b

where all curvature terms are computed at the point p.

1.4 The r-mean curvature of perturbed tubes

Given any symmetric matrix A, and any r = 1, . . . ,m, define

σr(A) :=
∑

i1<...<ir

λi1 . . . λir ,

where λ1, . . . , λm are the eigenvalues of A. Recall that the r-th Newton transform of A is
defined by

Tr(A) := σr(A)I − σr−1(A)A+ · · ·+ (−1)r Ar

with Tm(A) = 0 by the Cayley–Hamilton theorem. It is proved in [39] that if A = A(t) is a
one parameter family of symmetric matrices which depends smoothly on t then

d

dt
σr(A) = tr

(
Tr−1(A)

d

dt
A

)
, (1.17)

from which it follows that, given any m×m symmetric matrices A and M ,

σr(A+M) = σr(A) + tr (Tr−1(A)M) + O(|M |2).

Let Ĩ be the matrix

Ĩ =

(
In−1 0

0 0

)
where n = m + 1 − k. Observe that σr(Ĩ) = Cr

n−1 if r ≤ n − 1 and σr(Ĩ) = 0 if r ≥ n.
Using this together with the previous expansion of the shape operator, it is not hard to check
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that the r-mean curvature of the hypersurface Sρ(w,Φ) can be expanded as

ρr σr(Sρ(w,Φ)) = Cr
n−1 + Cr−1

n−1 ρ
2

(
1
3
n−r
n−1

g(R(Θ,Θi)Θ,Θi) + g(R(Θ, Ea)Θ, Ea)

)
− Cr−1

n−1 ρ
2 Γca(Θ) Γac(Θ) + O(ρ3)

− Cr−1
n−1

(
ρ2 ∆Kw + n−r

n−1
(∆Sn−1w + (n− 1)w)

)
− 2 ρCr−1

n−1 Γca(Θ)wac

− ρCr−1
n−1 ( g(∆KΦ +R(Φ, Ea)Ea ,Θ)− Γca(Φ) Γac(Θ))

+ ρ2 L(w,Φ) +Q(w,Φ),

where summation over repeated indices is understood and the linear and nonlinear operators
appearing on the expression are different from the ones before, but enjoy similar properties.

This expression can be simplified as follows: First, note that

K minimal⇐⇒ Γaa = 0.

Define

Lρ := −Cr−1
n−1

(
ρ2 ∆K +

n− r
n− 1

(∆Sn−1 + (n− 1))

)
, (1.18)

as an operator on the spherical normal bundle SNK with the expression (1.18) in any local
coordinates.

Introduce the quadratic form

Ω (·, ·) := −Cr−1
n−1

((
1− 1

3

n− r
n− 1

)
g(RN ·, ·)− 1

3

n− r
n− 1

Ric(·, ·)− g(BN ·, ·)
)

acting on NpK, cf. [20]. Also, the Jacobi operator, for K is defined by

J := Cr−1
n−1

(
−∆N −BN + RN

)
. (1.19)

To explain the terms here, recall that the Levi-Civita connection for g induces not only the
Levi-Civita connection on K, but also a connection ∇N on the normal bundle NK. The first
term here is simply the rough Laplacian for this connection, i.e.

∆N = (∇N)∗∇N = ∇N
Ea∇

N
Ea −∇

N
(∇EaEa)T .

In the coordinates chosen. The third term is the contraction (in normal directions) of the
curvature operator for this connection:

RN := (R(Ei, ·)Ei)N ,

where Ei is any orthonormal frame for NpK. Finally, the second fundamental form

B : TpK × TpK −→ NpK, B(X, Y ) := (∇XY )N , X, Y ∈ TpK,

defines a symmetric operator
BN := Bt ◦B;
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in terms of the coefficients Γba := B(Ea, Eb),

g(BN X, Y ) = Γba(X) Γab (Y ).

Also define the Ricci tensor

Ric(X, Y ) = g(R(X,Eγ)Y,Eγ), X, Y ∈ TpM.

Finally, introduce the operator

g(·, B) ◦ ∇2
K = g(·, B(Ea, Eb))(∇Ea∇Eb −∇(∇EaEb)),

in the coordinates chosen.

In terms of this notation, the following holds:

Proposition 1.9 Let K be a minimal submanifold. Then the r-mean curvature of Sρ(w,Φ)
can be expanded as

ρr σr(Sρ(w,Φ)) = Cr
n−1 − Ω(Θ,Θ) ρ2 + O(ρ3)

+ Lρw + ρ g(JΦ,Θ)− 2Cr−1
n−1 ρ

3 g(Θ, B) ◦ ∇2
Kw

+ ρ2 L(w,Φ) +Q(w,Φ).

The equation ρr σr(Sρ(w,Φ)) = Cr
n−1 can now be written as

Lρw + ρ g(JΦ,Θ) = Ω(Θ,Θ) ρ2 + O(ρ3) + 2Cr−1
n−1 ρ

3 g(Θ, B) ◦ ∇2
Kw

+ ρ2 L(w,Φ) +Q(w,Φ).
(1.20)

1.4.1 Decomposition of functions on SNK

Let (ϕj, λj) be the eigendata of ∆Sn−1 , with eigenfunctions orthonormal and counted with
multiplicity. Define the subspace S ⊂ L2(SNK) as the set of functions v : SNK → R such
that the restriction of v to each fibre of SNK is spanned by {ϕ1, . . . , ϕn}. Denote by Π and
Π⊥ the L2 orthogonal projections of L2(SNK) onto S and S⊥, respectively.

Now, given any function v ∈ L2(SNK), write

Πv = g(Φ,Θ), Π⊥v = ρw,

so v = ρw+g(Φ,Θ); here Φ is a section of the normal bundleNK, and the somewhat elaborate
notation in the second summand here reflects the fact that any element of S can be written
(locally) as the inner product of a section of NK and the vector Θ, whose components are
the linear coordinate functions on each Sn−1. This summand is identified with Φ, and thus,
in the following, w and Φ always represent the components of v in S⊥ and S, respectively.
Thus

w =
1

ρ
Π⊥v, g(Φ,Θ) = Πv.
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Later on the decomposition
w = w0 + w1 (1.21)

is used, where w0 is a function on K and the integral of w1 over each fibre of SNK vanishes.

Note that the operator
J : v = g(Φ,Θ) 7→ g(JΦ,Θ)

preserves S and is invertible since K is a nondegerate minimal submanifold.

1.5 Improving the approximate solution

The first step in solving (1.20) is to use an iteration scheme of Picard’s type to find a sequence
of approximate solutions (w(i),Φ(i)) for which the estimates for the error term are increasingly
small, namely

ρrσr(Sρ(w
(i),Φ(i))) = C(m, k, r) + O(ρi+3).

Letting (w(0),Φ(0)) = (0, 0), define the sequence (w(i+1),Φ(i+1)) ∈ S⊥ ⊕ S inductively as
the unique solution to

L0w
(i+1) + ρ g(JΦ(i+1),Θ) = Ω(Θ,Θ)ρ2 + O(ρ3)− ρ2 ∆Kw

(i)

+2Cr−1
n−1ρ

3g(Θ, B) ◦ ∇2
Kw

(i) + ρ2 L(w(i),Φ(i)) +Q(w(i),Φ(i)).
(1.22)

Here

L0 := −Cr−1
n−1 ·

n− r
n− 1

(∆Sn−1 + (n− 1)) .

Observe that the operator ∆K has been moved to the right hand side and hence the operator
on the left hand side is not elliptic anymore. This equation becomes simpler when divided
into its S⊥ and S components. Thus using that L0 annihilates S and

Ω(Θ,Θ) ∈ S⊥,

since it is quadratic in Θ, (1.22) can be rewritten as the two separate equations:

L0w
(i+1) = Π⊥

(
Ω(Θ,Θ)ρ2 + O(ρ3)− ρ2 ∆Kw

(i)

+ 2Cr−1
n−1ρ

3g(Θ, B) ◦ ∇2
Kw

(i) + ρ2 L(w(i),Φ(i)) +Q(w(i),Φ(i))
)
,

(1.23)

and

JΦ(i+1) = Π
(
O(ρ2) + 2Cr−1

n−1ρ
2g(Θ, B) ◦ ∇2

Kw
(i) + ρL(w(i),Φ(i)) + ρ−1Q(w(i),Φ(i))

)
,

since Π(∆Kw) = 0 for all w ∈ S.

That there is a unique solution now follows from the invertibility of the operators J on S

and L0 on S⊥, so the only issue is to obtain estimates.

Lemma 1.10 For this sequence (w(i),Φ(i)), the estimates

w(i) = O(ρ2) Φ(i) = O(ρ2),

w(i+1) − w(i) = O(ρi+3) Φ(i+1) − Φ(i) = O(ρi+2)

hold, for all i ≥ 1.
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Proof. The estimates for (w(1),Φ(1)) are immediate, and the result for i > 1 is proved by a
standard induction using the general structure of the operators L and Q.

As already mentioned, the operator in the right hand side of (1.23) is not elliptic since L0

acts on functions defined on SNK and does not involve any derivatives with respect to ya.
Nevertheless, since the pertinent functions are in S, the equation

L0w = f

can always be solved for any f ∈ S (this equation is solved on each fiber of NK with the
base point as a parameter), but without any gain of regularity in the ya variables and in fact
there is a “loss” of two derivatives in the ya variables at each iteration. At first glance, it
would have been more natural to work with the operator Lρ, which is elliptic, and solve the
equation

Lρw = f,

but the operator Lρ has the disadvantage to have a nontrivial kernel in S each time C(m,k,r)
ρr+1

belongs to the spectrum of −∆K . This implies that the corresponding iteration scheme, using
the operator Lρ instead of L0, does not work for any value of ρ. In addition, even if C(m,k,r)

ρr+1

is chosen not to belong to the spectrum of −∆K , the norm of the inverse of Lρ blows up as
ρ tends to 0 and hence the estimates for w(i) and Φ(i) are not as good as the ones stated in
Lemma 1.10.

To conclude, the use of the iteration scheme (1.22) allows one to improve the approximate
solution to any finite order. Observe that the error Ω(Θ,Θ)ρ2 + O(ρ3) in (1.22) is smooth in
the ya variables and hence losing finite regularity in these variables is not a real issue.

Finally, replacing (w,Φ) by (w(i) + w,Φ(i) + Φ) in (1.20), the expansion of the equation

σr(Sρ(w
(i) + w,Φ(i) + Φ)) =

C(m, k, r)

ρr
.

becomes

1
ρ
Lρw + g(JΦ,Θ)− 2Cr−1

n−1ρ
2g(Θ, B) ◦ ∇2

Kw
(i) + ρLi(w,Φ) = Oi(ρ

i+2)1
ρ
Qi(w,Φ). (1.24)

The linear and nonlinear operators Li and Qi appearing on this equation are different from
the ones before and depend on i, but enjoy similar properties uniformly in i.

1.6 Estimates of the spectrum of linearized operators

The mapping properties of the linear operator

(w,Φ) 7→ 1

ρ
Lρw + g(JΦ,Θ)− 2Cr−1

n−1ρ
2g(Θ, B) ◦ ∇2

Kw
(i) + ρLi(w,Φ), (1.25)

which appears in (1.24), are examined. This is not precisely the usual Jacobi operator
(applied to the function ρw+ g(Φ,Θ)), because this hypersurface is parametrized as a graph
over Sρ(w

(i),Φ(i)) using the vector field −Υ rather than the unit normal.
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To understand the difference between (1.25) and the Jacobi operator, recall that if N is the
unit normal to a hypersurface Σ and Ñ is any other transverse vector field, then hypersurfaces
which are C2-close to Σ can be parameterized as either

Σ 3 q 7→ expMq (wN) or Σ 3 q 7→ expMq (w̃Ñ).

The corresponding linearized r-mean curvature operators LΣ,N and LΣ,Ñ are related by

LΣ,N(g(N, Ñ)w) +m (ÑTHΣ)w = LΣ,Ñw,

here ÑT is the orthogonal projection of Ñ onto TΣ. Since LΣ,N is self-adjoint with respect to
the usual inner product, it follows that LΣ,Ñ is self-adjoint with respect to the inner product

〈v, v′〉 :=

∫
Σ

v v′ g(N, Ñ) dvolΣ.

Now suppose that Σ = Sρ(w
(i),Φ(i)) and Ñ = Υ. From Lemma 1.10 and Proposition 1.6

it follows that
g(N,−Υ) = 1 + O(ρ2).

Furthermore, from Proposition 1.5 and Lemma 1.10, and the fact that K is minimal, the
volume forms of the tubes Sρ(w

(i),Φ(i)) and SNK are related by√
det(gSρ(w(i),Φ(i))) = ρk/2 (1 + O(ρ2))

√
det(gSNK);

hence

Aρ := g(N,−Υ)

√
det(gSρ(w(i),Φ(i)))

ρk/2
√

det(gSNK)
= 1 + O(ρ2). (1.26)

Now define

Lρv = Lρ(ρw + g(Φ,Θ)) := Aρ

(
1

ρ
Lρw + g(JΦ,Θ) + O(ρ2)∇2

Kw + ρ L̄(w,Φ)

)
=

(
1

ρ
Lρw + g(JΦ,Θ) + O(ρ2)∇2

Kw + ρ L̄(w,Φ)

)
,

(1.27)

where the last equality follows from (1.26).

Finally, multiplying (1.24) by Aρ gives one further equivalent form of this equation,

Lρ v = O(ρ2+i) +
1

ρ
Q̃

(
1

ρ
Π⊥v,Πv

)
, (1.28)

where the nonlinear operator on the right has the same properties as before.

Associated to Lρ is the quadratic form

Qρ(w,Φ) :=

∫
SNK

(ρw + g(Φ,Θ))Lρ(ρw + g(Φ,Θ)),
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and its corresponding polarization, the bilinear form Cρ. These forms are studied as pertur-
bations of the model forms

Q0(w,Φ) :=

∫
SNK

(ρ2 |∇Kw|2 + |∇Sn−1w|2 − (n− 1) |w|2) +
ωn−1

n

∫
K

g(JΦ,Φ)

and associated polarization C0.

To make precise the sense in which Q0 and Qρ are close, define the weighted norm

‖(w,Φ)‖2
H1
ρ

:=

∫
SNK

(ρ2 |∇Kw|2 + |∇Sn−1w|2 + |w|2) + ωn

∫
K

(|∇KΦ|2 + |Φ|2)

and also

‖(w,Φ)‖2
L2 :=

∫
SNK

|w|2 + ωn

∫
K

|Φ|2.

Using (1.26) and the properties of L̄, it follows that

|Cρ((w,Φ), (w′,Φ′))− C0((w,Φ), (w′,Φ′))| ≤ c ρ ‖(w,Φ)‖H1
ρ
‖(w′,Φ′)‖H1

ρ
. (1.29)

1.6.1 Estimates for eigenfunctions with small eigenvalues

Lemma 1.11 Let σ be an eigenvalue of Lρ and (w,Φ) a corresponding eigenfunction. There
exist constants c, c0 > 0 such that if |σ| ≤ c0, then using the decomposition w = w0 + w1

from (1.21),

‖(w − w0,Φ)‖H1
ρ
≤ c ρ ‖(w,Φ)‖H1

ρ
.

Proof. For any (w′,Φ′),

Cρ((w,Φ), (w′,Φ′)) = σ

∫
SNK

(ρ2ww′ + g(Φ,Θ)g(Φ′,Θ))

= σ

∫
SNK

ρ2ww′ + σ
ωn
n

∫
K

g(Φ,Φ′).

In addition, (1.29) gives∣∣∣∣∫
SNK

(ρ2∇Kw∇Kw
′ +∇Sn−1w∇Sn−1w′ − (n− 1 + σ)ww′)

+
ωn−1

n

∫
K

(g(JΦ,Φ′)− σ g(Φ,Φ′))

∣∣∣∣ ≤ c ρ ‖(w,Φ)‖H1
ρ
‖(w′,Φ′)‖H1

ρ
.

(1.30)

Step 1: First take w′ = 0 and Φ′ = Φ in (1.30); this yields∣∣∣∣∫
K

(g(JΦ,Φ) + σ g(Φ,Φ))

∣∣∣∣ ≤ c ρ ‖(w,Φ)‖H1
ρ
‖(0,Φ)‖H1

ρ
.
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Since J is invertible, there exists c1 > 0 such that

2 c1 ‖(0,Φ)‖2
H1
ρ
≤
∣∣∣∣∫
K

g(JΦ,Φ)

∣∣∣∣ ,
hence

(2 c1 − |σ|) ‖(0,Φ)‖H1
ρ
≤ c ρ ‖(w,Φ)‖H1

ρ
.

Assuming c1 ≥ |σ|, it follows that

‖(0,Φ)‖H1
ρ
≤ c ρ ‖(w,Φ)‖H1

ρ
.

Step 2: Using now (1.30) with Φ′ = 0 and w = w1 it follows that∣∣∣∣∫
SNK

(ρ2 |∇Kw1|2 + |∇Sn−1w1|2 − (n− 1− σ) |w1|2)

∣∣∣∣ ≤ c ρ ‖(w,Φ)‖H1
ρ
‖(w1, 0)‖H1

ρ
.

However, since Πw1 = 0 and
∫
Sn−1 w1 = 0, this implies∫
Sn−1

|∇Sn−1w1|2 ≥ 2n

∫
Sn−1

|w1|2,

hence∣∣∣∣∫
SNK

(ρ2 |∇Kw1|2 +
1

2
|∇Sn−1w1|2 + (1− |σ|) |w1|2)

∣∣∣∣ ≤ c ρ ‖(w,Φ)‖H1
ρ
‖(w1, 0)‖H1

ρ
.

This implies that
‖(w1, 0)‖H1

ρ
≤ c ρ ‖(w,Φ)‖H1

ρ

provided |σ| ≤ 1/4. This completes the proof taking c0 = min{c1, 1/4}.

1.6.2 Variation of small eigenvalues with respect to ρ

In order to estimate the spectral gaps of Lρ when the parameter ρ is small, it is necessary to
understand the rate of variation of the small eigenvalues of this operator. This is stated in
the following lemma

Lemma 1.12 There exist constants c0, c > 0 such that, if σ is an eigenvalue of Lρ with
|σ| < c0, then

ρ ∂ρσ ≥ 2 (n− 1)− cρ
provided ρ is small enough.

Proof. It is relevant to note that for simple eigenvalues, there is a well-known formula which
allows to compute its variation with respect to the parameter. This formula is given by

∂ρσ =

∫
SNK

v (∂ρLρ)v dvolSNK .

There is in general complications in the presence of multiplicities, but a result of Kato [17]
shows that if one considers the derivative of the eigenvalue as a multi-valued function, then
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an analogue of this same formula holds for self-adjoint operators. In fact it holds that in this
case

∂ρσ ∈
{∫

SNK

v (∂ρLρ)v : v = ρw + g(Φ,Θ), Lρv = σ v, ‖v‖L2 = 1

}
.

Hence bounds should be provided for the set on the right. This is done by comparing to the
model case and using the bounds for eigenfunctions obtained in the last subsection.

Let v be an eigenfunction of Lρ corresponding to a small eigenvalue σ, namely Lρv = σ v.
Rather than normalizing by ‖v‖L2 = 1, it is assumed instead that ‖(w,Φ)‖L2 = 1. Recall
that w = ρ−1Π⊥v and hence it holds that

Lρv =
1

ρ2
LρΠ

⊥v + g(JΦ,Θ) + O(ρ)∇2
KΠ⊥v + ρ L̄(ρ−1 Π⊥v,Πv).

Then, since Π and Π⊥ are independent of ρ, it follows that

∂ρLρv = − 2

ρ3
Lρ(Π

⊥v) +
1

ρ2
(−2ρ∆KΠ⊥v) + O(1)∇2

KΠ⊥v + L̄(ρ−1 Π⊥v,Πv)

= − 2

ρ2
L0w + O(ρ)∇2

Kw + L̄(w,Φ)

where the operator L̄ varies from line to line but satisfies the usual assumptions. This now
gives ∣∣∣∣∫

SNK

v (∂ρLρ)v +
2

ρ

∫
SNK

(|∇Sn−1w|2 − (n− 1) |w|2)

∣∣∣∣ ≤ c ‖(w,Φ)‖2
H1
ρ
. (1.31)

Now, for this eigenfunction v, Qρ(v, v) = σ
∫
ρ2|w|2 + g(Φ,Φ), and hence by (1.29),∣∣∣∣∫

SNK

(ρ2 |∇Kw|2 + |∇Sn−1w|2 − (n− 1 + σ) |w|2) +
ωn−1

n

∫
K

(g(JΦ,Φ)− σ g(Φ,Φ))

∣∣∣∣
≤ c ρ ‖(w,Φ)‖2

H1
ρ
,

(1.32)

By Lemma 1.11,∫
SNK

|∇Sn−1w|2 +

∫
K

(|∇KΦ|2 + |Φ|2) ≤ c ρ ‖(w,Φ)‖2
H1
ρ
, (1.33)

and inserting this in (1.32) gives∣∣∣∣∫
SNK

(ρ2 |∇Kw|2 − (n− 1 + σ) |w|2)

∣∣∣∣ ≤ c ρ ‖(w,Φ)‖2
H1
ρ
. (1.34)

Adding these last two estimates now implies that

‖(w,Φ)‖2
H1
ρ
≤ c ρ ‖(w,Φ)‖2

H1
ρ

+ c

∫
SNK

|w|2.
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Thus, when ρ is small enough,

‖(w,Φ)‖2
H1
ρ
≤ c‖(w,Φ)‖L2 ≤ c

by the choice of normalization. From (1.33) again∫
SNK

|∇Sn−1w|2 +

∫
K

(|∇KΦ|2 + |Φ|2) ≤ c ρ.

Inserting this into (1.31), and using again that ‖(w,Φ)‖L2 = 1, it follows that∣∣∣∣∫
SNK

v (∂ρLρ)v −
2

ρ
(n− 1)

∣∣∣∣ ≤ c (1.35)

for all v such that Lρv = σ v and ‖(w,Φ)‖L2 = 1.

This already implies that ∂ρσ > 0 for ρ small enough. But observing that ‖v‖L2 ≤
‖(w,Φ)‖L2 always holds, it follows that

inf
v:Lρv=σ

‖v‖L2=1

∫
SNK

v (∂ρLρ)v ≥ inf
v:Lρv=σ v

‖(w,Φ)‖L2=1

∫
SNK

v (∂ρLρ)v

and (1.35) implies that

∂ρσ ≥
2

ρ
(n− 1)− c.

This completes the proof of the result.

1.6.3 The spectral gap at 0 of Lρ

A quantitative statement about the clustering of the spectrum at 0 of Lρ as ρ↘ 0 can now
be proven. The ultimate goal is to estimate the norm of the inverse of this operator, but by
self-adjointness, this is equivalent to an estimate on the size of the spectral gap at 0.

Lemma 1.13 Fix any q ≥ 2. Then there exists a sequence of disjoint nonempty intervals
Ii = (ρ−i , ρ

+
i ), ρ±i → 0 and a constant cq > 0 such that when ρ ∈ I := ∪iIi, the operator Lρ

is invertible and
L−1
ρ : L2(SNK) −→ L2(SNK)

has norm bounded by cq ρ
−k−q+1, uniformly in ρ ∈ I. Furthermore, I := ∪iIi satisfies∣∣H1((0, ρ) ∩ I)− ρ

∣∣ ≤ c ρq, ρ↘ 0.

Proof. An estimate for the size of the spectral gap at 0 is related to the spectral flow of Lρ,
and so it suffices to find an asymptotic estimate for the number of negative eigenvalues of
Lρ. Define the two quadratic forms

Q±(w,Φ) := Q0(w,Φ)± γ ρ ‖(w,Φ)‖2
H1
ρ
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From (1.29), if γ > 0 is sufficiently large, then

Q− ≤ Qρ ≤ Q+,

and this gives a two-sided bound for the index of Qρ.

Decomposing w = w0 + w1 with w0 depending only on y ∈ K, write

D±0 (w0) = (1± γ ρ)

∫
K

ρ2 |∇Kw0|2 − (n− 1∓ γ ρ)

∫
K

|w0|2,

D±1 (w1) = (1± γ ρ)

∫
SNK

(ρ2 |∇Kw1|2 + |∇Sn−1w1|2)− (n− 1∓ γ ρ)

∫
SNK

|w1|2,

and finally

D±(Φ) = −(1± γ ρ)

∫
K

g(JΦ,Φ),

so that
Q±(w,Φ) = ωn−1D

±
0 (w0) +D±1 (w1) +

ωn−1

n
D±(Φ)

If 1 − γ ρ > 0, then the index of D± equals the index of the minimal submanifold K, and
hence does not depend on ρ. Next, if (1− γ ρ) 2n− (n− 1 + γ ρ) > 0, then the index of D±1
equals 0. So it remains only to study the index of D±0 . This is equal to the largest j ∈ N
such that

(1± γ ρ) ρ2 µj ≤ (n− 1∓ c ρ)

Weyl’s asymptotic formula states that

IndQ± ∼ cK ρ
−k,

and hence the index of D±0 , and finally IndQρ too, is asymptotic to cK ρ
−k.

Let ρi ↘ 0 be the decreasing sequence corresponding to the values at which the index of
Qρ changes, counted according to the dimension of the nullspace of Lρi , i.e.

ρi−1 < ρi = . . . = ρj < ρj+1

if dim KerLρi = j+ 1− i. This is well-defined since, by Lemma 1.12 the small eigenvalues of
Lρ are monotone increasing for ρ small enough and hence, the function ρ→ Qρ is monotone
decreasing for ρ small.

The estimates for IndQ2ρ and IndQρ imply that

rρ := #{ρi ∈ (ρ, 2ρ)} ∼ c ρ−k.

Letting lρ denote the sum of lengths of intervals (ρi+1, ρi) for which ρi+1 ∈ (ρ, 2ρ) and
(ρi − ρi+1) ≤ ρk+q, then it holds that lρ ≤ c ρq; from this it is concluded that `σ, the sum of
lengths of all intervals (ρi+1, ρi) where ρi+1 < ρ and (ρi − ρi+1) ≤ ρk+q is also estimated by
c ρq.

Define
Ĩ =

⋃
i∈J

(ρi+1, ρi), where i ∈ J ⇔ ρi − ρi+1 ≥ ρk+q
i .
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Then by the above, it holds that∣∣H1((0, ρ) ∩ I)− ρ
∣∣ ≤ cq ρ

q.

Finally, consider for any ρ ∈ (ρi+1, ρi), i ∈ J , the eigenvalues of Lρ which are closest to 0,
say

σ−(ρ) < 0 < σ+(ρ).

(Thus for each ρ ∈ (ρi+1, ρi), σ
−(ρ) = σj where j = IndQρ.) By construction,

lim
ρ↘ρi+1

σ+(ρ) = lim
ρ↗ρi

σ−(ρ) = 0.

By Lemma 1.12,

σ−(ρ) ≤ 2 (n− 1)
ρ− ρi
ρi

+ c ρk+q
i , ρ ∈ (ρi+1, ρi),

and

σ+(ρ) ≥ 2 (n− 1)
ρ− ρi+1

ρi+1

− c ρk+q
i+1 , ρ ∈ (ρi+1, ρi).

Hence by the monotonicity of small eigenvalues, if

ρ ∈ I :=
⋃
i

(
ρi+1 +

1

4
ρk+q
i , ρi −

1

4
ρk+q
i

)
then the infimum of the absolute value of the eigenvalues of Lρ is bounded from below by a

constant (only depending on n) times ρk+q−1
i , provided ρ is small enough. The result then

follows.

1.7 Existence of r-CMC hypersurfaces

The results of the previous sections are now used in order to solve the equation (1.28), which
reduces to finding a fixed point

ρw + g(Φ,Θ) = L−1
ρ

(
O(ρ2+i) +

1

ρ
Q̃(w,Φ)

)
.

Since any function v defined on SNK can be decomposed as v = ρw+ g(Φ,Θ) where the
function w satisfies ∫

Sn−1

wϕj = 0

for all j = 1, . . . , n, this equation can be re-written as

v = L−1
ρ

(
O(ρ2+i) +

1

ρ
Q̃

(
1

ρ
Π⊥v,Πv

))
.

Start with the following observation:
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Lemma 1.14 There exists a constant c > 0 such that

ρ2+α ‖v‖C2,α ≤ c ρ2 ‖Lρ v‖C0,α + c ρ−
k
2 ‖v‖L2 .

Proof. This is an application of (rescaled) standard elliptic estimates. Set f := Lρ v and, as
in 1.3.1, use local normal coordinates ȳ = y/ρ to parameterize a ball of radius 2ρR in K, for
some fixed small constant R > 0, and local coordinates z to parameterize Sn−1. Define the
functions

v̄(z, ȳ) := v(z, ρ ȳ) and f̄(z, ȳ) := ρ2 f(z, ρ ȳ).

It is easy to check that f := Lρ v translates into L̄ρv̄ = f̄ , where L̄ρ is a second order
elliptic operator whose coefficients are bounded uniformly in ρ as ρ tends to 0. Moreover,
the principal part of L̄ρ is the Laplace operator on SNK. Standard elliptic estimates yield

‖v̄‖C̄2,α(BR×Sn−1) ≤ c ‖f̄‖C̄0,α(BR×Sn−1) + c

(∫
Sn−1

(∫
B2R

|v̄|2 dȳ
))1/2

where, to evaluate the Hölder norms in C̄p,α one takes derivatives with respect to ȳ and z.
Going back to the functions v and f this yields

ρ2+α ‖v‖C2,α(BρR×Sn−1) ≤ c ‖v̄‖C̄2,α(BR×Sn−1), ‖f̄‖C̄2,α(BρR×Sn−1) ≤ c ρ2 ‖f‖C2,α(BR×Sn−1)

and (∫
Sn−1

(∫
B2R

|v̄|2 dȳ
))1/2

≤ c ρ−
k
2

(∫
Sn−1

(∫
B2ρR

|v|2 dy

))1/2

the result then follows at once.

Fix q ≥ 2 and α ∈ (0, 1). Collecting the result of Lemma 1.13 and the result of the
previous Lemma, it follows that, if ρ ∈ I, then

‖v‖C2,α ≤ c ρ−D ‖Lρ v‖C0,α (1.36)

where the constant c > 0 does not depend on ρ and where D := 3k
2

+ q + 1 + α.

Given R > 0, set

B(R) := {v ∈ C2,α(SNK) : ‖v‖C2,α ≤ R}.

and define the mapping

Nρ(v) := L−1
ρ

(
O(ρ2+i) +

1

ρ
Q̃

(
1

ρ
Π⊥v,Πv

))
.

It follows from (1.36) that

‖Nρ(0)‖C2,α ≤ c0

2
ρ2+i−D

for some constant c0 > 0, independent of ρ ∈ I.
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Choose i ∈ N such that i > 2D + 1. Using the properties of the operator Q̃, it is easy to
check that there exists ρ0 > 0 such that, for all ρ ∈ (0, ρ0) ∩ I,

‖Nρ(v)‖C2,α ≤ c0 ρ
2+i−D

and

‖Nρ(v)−Nρ(v
′)‖C2,α ≤ c ρi−1−2D ‖v − v′‖C2,α

for all v, v′ ∈ B(c0 ρ
2+i−D). Therefore the mapping Nρ admits a (unique) fixed point vρ in

B(c0 ρ
2+i−D). This yields the existence of a constant r-mean curvature perturbation of the

tube Sρ(w
(i),Φ(i)) for all ρ ∈ (0, ρ0) ∩ I. The proof of the Theorem is complete.

1.8 Proof of Proposition 1.7

The aim of this section in to prove Proposition 1.7. Note first that by Lemma 1.2, it holds
that

∇Xa Xb = Γba(Ei)Xi + (O(ρ) + L(w,Φ) +Q(w,Φ))Xγ,

∇Xi Xj = (O(ρ) + L(w,Φ) +Q(w,Φ))Xγ,

∇Xa Xi = −Γba(Ei)Xb + (O(ρ) + L(w,Φ) +Q(w,Φ))Xγ.

(1.37)

In particular, this, together with the expression of Zā implies that

∇ZāXi = ρΓba(Ei)Xb + (O(ρ2) + ρL(w,Φ) + ρQ(w,Φ))Xγ,

∇ZāXb = −ρΓba(Ei)Xi + (O(ρ2) + ρL(w,Φ) + ρQ(w,Φ))Xγ.
(1.38)

The following expansion which follows from the result of Lemma 1.4 is also be needed:

∇Xa Xb = Γba(Ej)Xj − g(R(ρΘ + Φ, Ea)Ej, Eb)Xj

+ 1
2

(
g(R(Ea, Eb) ρΘ + Φ, Ej)− Γca(ρΘ + Φ) Γbc(Ej)− Γbc(ρΘ + Φ) Γca(Ej)

)
Xj

+ (O(ρ) + L(w,Φ) +Q(w,Φ))Xc + (O(ρ2) + ρL(w,Φ) +Q(w,Φ))Xj.
(1.39)

Finally, the following expansions is needed:

g(Υ, Xa) = ρL(w,Φ) +Q(w,Φ)

g(Υ,Υj) = ρL(w,Φ) +Q(w,Φ),
(1.40)

the proof of which can be obtained as in 1.3.2, starting from the estimates (1.8).

First estimate: Estimate g(N,∇ZāZb̄) when a = b, since the corresponding estimate, when
a 6= b follows from the same proof. The expression to be expanded is

ρ−2 g(N,∇ZāZā) = ρ−1 (g(N,∇ZāXa) + g(N,∇Zā(wā Υ)) + g(N,∇ZāΨa)) .

The estimate is broken into three steps:
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Step 1 From (1.12), it follows that

g(N,Υ) = −g(Υ,Υ) + αj g(Υj,Υ) + βb g(Xb,Υ) + (ρL1(w,Φ) +Q1(w,Φ)) g(Xc,Υ)

+ (ρ2 L(w,Φ) +Q(w,Φ)) g(Xj,Υ)

= −1 + ρ2 L(w,Φ) +Q(w,Φ).

Substituting N = −Υ +N + Υ gives

g(N,∇ZāΥ) = −1

2
∂ȳag(Υ,Υ) + g(N + Υ,∇ZāΥ).

But it follows from (1.10) that

∂ȳa g(Υ,Υ) = ρ2 L(w,Φ) +Q(w,Φ),

and (1.38) together with the expression of N implies that

g(N + Υ,∇ZāΥ) = ρL(w,Φ) + ρQ(w,Φ).

Collecting these estimates,

g(N,∇ZāΥ) = ρL(w,Φ) +Q(w,Φ).

Hence it is concluded that

g(N,∇Zā(wā Υ)) = wāā g(N,Υ) + wā g(N,∇ZāΥ) = −wāā +Q(w,Φ).

Step 2 Next,
g(N,∇ZāΨa) = ρ g(N,Ψaa) + Φj

a g(N,∇Zā Xj).

From (1.38), it follows that

Φj
a g(N,∇ZāXj) = ρL(w,Φ) +Q(w,Φ).

Also, using the decomposition of N and (1.8), it holds that

g(N,Ψaa) = −g(Υ,Ψaa) + g(N + Υ,Ψaa)

= −g(Θ,Φaa) + ρL(w,Φ) +Q(w,Φ)).

Collecting these gives

g(N,∇ZāΨa) = −ρ g(Φaa,Θ) + ρ2 L(w,Φ) + ρQ(w,Φ)).

Step 3 Expanding Zā gives

g(N,∇ZāXa) = ρ g(N,∇XaXa) + ρwā g(N,∇ΥXa) + ρΦj
a g(N,∇XjXb). (1.41)

With the help of (1.38), the following can be evaluated:

g(N,∇ΥXa) = O(ρ) + L(w,Φ) +Q(w,Φ)

g(N,∇XjXa) = O(ρ) + L(w,Φ) +Q(w,Φ)

g(N + Υ,∇XaXa) = −αj Γaa (Θj) + ρL(w,Φ) +Q(w,Φ),
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and plugging these into (1.41) gives

g(N,∇ZāXa) = −ρ g(Υ,∇XaXa) + ρ2 L(w,Φ) + ρQ(w,Φ)

Using (1.39) the following expansion is obtained:

∇XaXa = −Γaa(Ej)Xj − g(R(ρΘ + Φ, Ea)Ej, Ea)Xj + Γca(ρΘ + Φ) Γac(Ej)Xj

+ (O(ρ) + L(w,Φ) +Q(w,Φ))Xc + (O(ρ2) + ρL(w,Φ) +Q(w,Φ))Xj,

Finally, using (1.8) again, it follows that

g(N,∇ZāXb) = ρΓba(Θ) + ρ2 g(R(Θ, Ea) Θ, Ea) + O(ρ3)

+ ρ g(R(Φ, Ea) Θ, Ea) + ρΓca(ρΘ + Φ) Γac(Θ)− ραj Γba (Θj)

+ ρ2 L(w,Φ) + ρQ(w,Φ),

which, together with the results of Step 1 and Step 2, completes the proof of the first estimate.

Second estimate: Estimate g(N,∇ZiZj) when i = j since, just as before, the corresponding
estimate when i 6= j follows similarly. This part is taken directly from [34]. Observe that, by
Proposition 1.5, it can also be written

N = −Υ +
1

ρ
αj Zj + N̂ ,

where
N̂ = (L(w,Φ) +Q(w,Φ))Xa + (ρ2 L(w,Φ) +Q(w,Φ))Xj. (1.42)

Now write
g(N,∇ZjZj) = g(N,∇ZjZj)

= g(∇ZjΥ, Zj)− g(∇Zj(α
i Zi), Zj)

+ g(N̂ ,∇ZjZj)− ∂zj g(N̂ , Zj).

Step 1: By (1.37), it can be estimated

∇ZjZj = ρwj Yj + ρwjj Υ + ρ (1 + w)∇ZjYj + ρwj∇ZjΥ

= (O(ρ3) + ρ2 L(w,Φ) + ρ2 L(w,Φ) (L(w,Φ) +Q(w,Φ)))Xa

+ (O(ρ3) + ρL(w,Φ) + ρ2Q(w,Φ))Xk,

Observe that the coefficient of Xa is slightly better than the coefficient of Xk since the first
two terms only involve the Xk. Using this together with (1.42) it is concluded that

g(N̂ ,∇ZjZj) = ρ3 L(w,Φ) + ρQ(w,Φ).

Step 2: Next, using (1.42) together with (1.8), it follows that

∂zj g(N̂ , Zj) = ρ3 L(w,Φ) + ρQ(w,Φ).
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Step 3: Now estimate
C := 2 g(∇ZjΥ, Zj).

It is convenient to define

C ′ :=
2

1 + w
g(∇Zj(1 + w) Υ, Zj).

It follows from (1.13) that
C = C ′ + ρQ(w,Φ)

hence it is enough to focuss on the estimate of C ′. To analyze this term, for the moment
being regard w and Φ as functions of the coordinates (z, ȳ) again and also consider ρ as a
variable instead of just a parameter. Thus consider

F̃ (ρ, z, ȳ) = F
(
ρ(1 + w(z, ȳ))Υ(z) + Φ(t ȳ), t ȳ

)
.

The coordinate vector fields Zj are still equal to F̃∗(∂zj), but now it also holds that (1+w)Υ =

F̃∗(∂ρ), which is the identity to be used below. Now, from (1.11), write

C ′ =
1

1 + w
g(∇∂ρZj, Zj) =

1

1 + w
∂ρg(Zj, Zj).

Therefore, it follows from (1.11) in Proposition 1.5 that

C = 1
1+w

∂ρ [ρ2 g(Θj,Θj) + ρ4

3
g(R(Θ,Θj) Θ,Θj) + O(ρ5)

+ 2 ρ2w g(Θj,Θj) + ρ3

3
(g(R(Θ,Θj) Φ,Θj) + g(R(Θ,Θj) Φ,Θj))

+ ρ4 L(w,Φ) + ρ2Q(w,Φ)] + ρQ(w,Φ)

= 1
1+w

[2 ρ g(Θj,Θj) + 4
3
ρ3 g(R(Θ,Θj) Θ,Θj) + O(ρ4)

+ 4 ρw g(Θj,Θj) + ρ2 (g(R(Θ,Θj) Φ,Θj) + g(R(Θ,Θj) Φ,Θj))

+ ρ3 L(w,Φ) + ρQ(w,Φ)]

= 2 ρ g(Θj,Θj) + 4
3
ρ3 g(R(Θ,Θj) Θ,Θj) + O(ρ4)

+ 2 ρw g(Θj,Θj) + ρ2 (g(R(Θ,Θj) Φ,Θj) + g(R(Θ,Θj) Φ,Θj))

+ ρ3 L(w,Φ) + ρQ(w,Φ).

Step 4: Finally, the expression to be computed is

D := 2 g(∇Zj(α
i Zi), Zj)

= 2 g(Zi, Zj) ∂zjα
i + 2αi g(∇ZiZj, Zj)

= 2 g(Zi, Zj) ∂zjα
i + αi ∂zi g(Zj, Zj).

Observe that (1.15) implies
∂zjg(Θi,Θj′) = 0

at the point p. Using this together with (1.11) and the expression for the αi given in Propo-
sition 1.6, it follows that

αi ∂zi g(Zj, Zj) = ρ4 L(w,Φ) + ρ2Q(w,Φ).
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It follows from (1.11) and the definition of αi again that

g(Zi, Zj) ∂zjα
i = ρ2 g(Θi,Θj) ∂zjα

i + ρ4 L(w,Φ) + ρ2Q(w,Φ).

Therefore, it remains to estimate g(Υi,Υj′) ∂zjα
i. By definition, it holds that

αi g(Θi,Θj) = wj +
ρ

3
g(R(Φ,Θ) Θ,Θj).

Differentiating with respect to zj this yields(
g(Θi,Θj) ∂zjα

i + αi ∂zjg(Θi,Θj)
)

= wjj +
ρ

3
∂zjg(R(Φ,Θ) Θ,Θj). (1.43)

Again, it follows from (1.15) that ∂zjg(Θi,Θj) = 0. Moreover, using (1.38), it can first be
estimated

∇ZjΥ = Υj + O(ρ2) + ρL(w,Φ) + ρQ(w,Φ);

and, using in addition (1.15), it also holds that

∇ZjΥj = aΥ + O(ρ2) + ρL(w,Φ) + ρQ(w,Φ)

for some a ∈ R. Reinserting this in (1.43) yields

g(Θi,Θj) ∂zjα
i = wjj + ρ

3
g(R(Φ,Θj) Θ,Θj) + ρ

3
g(R(Φ,Θ) Θj,Θj)+

+ ρ3 L(w,Φ) + ρ2Q(w,Φ)),

since R(Θ,Θ) = 0.

Collecting these estimates, it is concluded that

D = ρ2wjj +
ρ3

3
g(R(Φ,Θj) Θ,Θj) + ρ4 L(w,Φ) + ρ2Q(w,Φ)

since g(R(Φ,Θ) Θj,Θj) = 0. With the estimates of the previous steps, this finishes the proof
of the estimate.

Third estimate: Decompose

1

ρ
g(N,∇ZāZj) = g(N,Υj)wā + g(N,Υ)wāj + (1 + w) g(N,∇ZāΥj) + wj g(N,∇ZāΥ).

As above the expression of N given in (1.12) is used, to estimate

g(N,Υj) = −g(Υ,Υj) + g(N + Υ,Υj) = L(w,Φ) +Q(w,Φ).

Similarly
g(N,Υ) = −1 + L(w,Φ) +Q(w,Φ).

But now, by (1.38), it holds that

g(N,∇Zā Υj) = O(ρ2) + ρL(w,Φ) + ρQ(w,Φ)

and, as already shown in Step 1

g(N,∇Zā Υ) = ρ2 L(w,Φ) +Q(w,Φ),

and the proof of the estimate follows directly. 2
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Chapter 2

Concentration on a submanifold for a
nonlinear Shrödinger equation

The construction of a one-parameter family of constant r-mean curvature hypersurfaces,
described in the previous chapter, is comparable to many concentration results that have
been highlighted in recent years in the study of semilinear elliptic equations. The first section
of this chapter is devoted to recall some results in this direction while in the second section
a new result obtained in collaboration with F. Mahmoudi and W. Yao, see [29] is presented.

2.1 Semilinear PDE’s presenting concentration phenom-

ena

In this section some previous results are briefly described. The first results in this direction
are recalled, referring to Subsection 2.2.1 below for more bibliography.

A. Malchiodi [31] has studied the existence of periodic solutions for the equation

ẍ+
1

ε2
V (x) = 0, x ∈ Rn (2.1)

for ε > 0 small enough and V : Rn → R is a smooth function whose the set of critical points is
a hypersurface M ⊂ Rn. He distinguished two cases depending on the nature of the potential
V : where V is of repulsive type with respect to M , i.e.

V ′′(x) (nx, nx) < 0 ∀x ∈ M, 0 6= nx ⊥ TxM,

he proved that every closed non degenerate geodesic x0 : S1 → M is a limit, as ε > 0 tends
to 0, of a one-parameter family uε of solutions to equation (2.1). In particular, there is no
restriction on the the parameter ε. In the attractive case

V ′′(x) (nx, nx) > 0 ∀x ∈ M, 0 6= nx ⊥ TxM

the situation is radically different: given the existence of a resonance phenomenon and under
some technical assumptions, A. Malchiodi has demonstrated the existence of a sequence (εj)j
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tending to zero and a sequence of solutions of equation (2.1) which converges to x0 when j
tends to +∞.

J. Shatah and C. Zeng [42] considered the equation

Dtṗ+ Πp (w′(p)) = 0 sur M, (2.2)

where M is a submanifold of dimension k embedded in Rm+1, Πp is the orthogonal projection
of TpRm+1 over TpM and Dt is the covariant derivative on M in the direction of ṗ. The
problem is to show that the periodic solutions of equation (2.2) are limits of a sequence of
periodic solutions to the penalized equation

ẍ+ w′(x) +
1

ε2
G′(x) = 0 (2.3)

where this time x is a curve in Rm+1 and the penalization potential is G(·) = dist(·,M)2 in a
neighborhood of M . They proved in [42] that given p0 a nondegenerate periodic solution of
(2.2), there exists (εj)j tending to 0 and a sequence of periodic solutions xj of equation (2.3)
with ε = εk which converges to p0 in a suitable sence. As in [31], the existence is only proved
for a subsequence εj and not for all ε > 0 small. This is related to a resonance phenomenon
coresponding to values of ε for which the linearisation of (2.3) around p0 admits a nontrivial
kernel. In fact, if one looks formally for solutions of (2.3) as perturbations of solutions to
(2.2), namely solutions of the form

x = p0 + yt + yn

where p0 is a solutions of (2.2), yn and yt are respectively normal and tangential perturbations
to M , then the linearized operator of (2.3), projected to normal fibers can be written as

L(yn) = ÿn + A(yn) +
1

ε2
yn

and the resonant modes correspond to the values of ε satisfying

1

ε2
= λj

where λj are the eigenvalues of the operator yn 7−→ ÿn + A(yn).

In [8], M. del Pino, M. Kowalczyk and J. Wei studied existence of solutions to the nonlinear
Schrödinger equation

− i ε ∂ψ
∂t

= ε2 ∆ψ −Q(y)ψ + ψ |ψ|p (2.4)

in R2, where p > 1. If one looks for a solution ψ of the form ψ(t, y) = exp (−i λ t/ε)u(y),
then u is a solution for the nonlinear equation

ε2 ∆u− (Q(y) + λ)u+ up = 0, u > 0, (2.5)

By developing an infinite dimensional version of the Lyapunov-Schmidt reduction method,
they proved that given a stationary non-degenerate curve Γ for the potential energy

Γ −→
∫

Γ

V
p+1
p−1
− 1

2 dγ
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and if Q + λ is a uniformly positive function, then for some constant c > 0, there exists
ε0 > 0 and λ∗ > 0 such that for all ε < ε0 satisfying |ε2 j2 − λ∗| ≥ cε, ∀ j ∈ N, the equation
(2.5) admits a positive solution uε which concentrate along Γ. This result generalizes a
previous result obtained by A. Ambrosetti, A. Malchiodi and W.M. Ni [1] in the case where
the potential V depends only on the distance to the origin. In particular the result of
M. del Pino, M. Kowalczyk and J. Wei is the first positive answer in the case n = 2 and
k = 1 to a conjecture stated by A. Ambrosetti, A. Malchiodi and W.M. Ni which says
that concentration on k-dimensional sets for k = 1, · · · , n − 1 is expected under suitable
non-degeneracy assumptions and the limit set K should satisfy

θk∇NV = VH, (2.6)

where ∇N is the normal gradient to K and H is the mean-curvature vector on K.

Later on Mahmoudi, Malchiodi and Montenegro in [27] constructed different type of so-
lutions. Indeed, they studied complex-valued solutions whose phase is highly oscillatory
carrying a quantum mechanical momentum along the limit curve. In particular they estab-
lished the validity of the above conjecture for the case n ≥ 2 arbitrary and k = 1. Recently, by
applying the method developed in [8], Wang-Wei-Yang [43] considered the one-codimensional
case n ≥ 3 and k = n− 1 in the flat Euclidean space Rn.

The main purpose of this chapter is to prove the validity of the above conjecture for all
k = 1, . . . , n− 1.

2.2 On the Ambrosetti-Malchiodi-Ni conjecture for gen-

eral submanifolds (joint work with F. Mahmoudi and

W. Yao), http://arxiv.org/abs/1405.6752

2.2.1 Introduction and main results

In this chapter concentration phenomena for positive solutions of the nonlinear elliptic prob-
lem

− ε2∆ḡu+ V (z)u = |u|p−1u on M, (2.7)

are studied, where M is an n-dimensional compact Riemannian manifold without boundary
(or the flat Euclidean space Rn), ∆ḡ stands for the Laplace-Beltrami operator on (M, ḡ), V
is a smooth positive function on M satisfying

0 < V1 ≤ V (z) ≤ V2, for all z ∈M and for some constants V1, V2, (2.8)

u is a real-valued function, ε > 0 is a small parameter and p is an exponent greater than one.

The above semilinear elliptic problem arises from the standing waves for the nonlinear
Schrödinger equation on M , see [1, 8] and some references therein for more details. An
interesting case is the semiclassical limit ε → 0. For results in this direction, when M = R
and p = 3, Floer-Weinstein [12] first proved the existence of solutions highly concentrated
near critical points of V . Later on this result was extended by Oh [37] to Rn with 1 < p < n+2

n−2
.
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More precisely, the profile of these solutions is given by the ground state UV (x0) of the limit
equation

−∆u+ V (x0)u− up = 0 in Rn, (2.9)

where x0 is the concentration point. That is, the solutions obtained in [12] and [37] behave
qualitatively like

uε(x) ∼ UV (x0)

(
x− x0

ε

)
, as ε tends to zero.

Since UV (x0) decays exponentially to 0 at infinity, uε vanishes rapidly away from x0. In other
words, in the semiclassical limit, solutions constructed in [12, 37] concentrate at points and
they are always called peak solutions or spike solutions. In recent years, these existence results
have been generalized in different directions, including: multiple peaks solutions, degenerate
potentials, potentials tending to zero at infinity and for more general nonlinearities. An
important and interesting question is whether solutions exhibiting concentration on higher
dimensional sets exist.

Only recently it has been proven the existence of solutions concentrating at higher dimen-
sional sets, like curves or spheres. In all these results (except for [2]), the profile is given
by (real) solutions to (2.9) which are independent of some of the variables. If concentration
occurs near a k-dimensional set, then the profile in the directions orthogonal to the limit set
(concentration set) will be given by a soliton in Rn−k. For example, some first results in the
case of radial symmetry were obtained by Badiale-D’Aprile [4] and Benci-D’Aprile [5]. These
results were improved by Ambrosetti-Malchiodi-Ni [1], where necessary and sufficient condi-
tions for the location of the concentration set have been given. Unlike the point concentration
case, the limit set is not stationary for the potential V : in fact a solution concentrated near
a sphere carries a potential energy due to V and a volume energy. Define

E(u) =
ε2

2

∫
M

|∇ḡu|2 + V (z)u2 − 1

p+ 1

∫
M

|u|p+1 (2.10)

and let K be a k-dimensional submanifold of M and UK be a proper approximate solution
concentrated along K, see (2.51) below. One has

E(UK) ∼ εn−k
∫
K

V θkdvol, with θk =
p+ 1

p− 1
− 1

2
(n− k).

Based on the above energy considerations, Ambrosetti-Malchiodi-Ni [1] conjectured that
concentration on k-dimensional sets for k = 1, · · · , n − 1 is expected under suitable non-
degeneracy assumptions and the limit set K should satisfy

θk∇NV = VH, (2.11)

where ∇N is the normal gradient to K and H is the mean-curvature vector on K. In
particular, they suspected that concentration occurs in general along sequences εj → 0.

By developing an infinite dimensional version of the Lyapunov-Schmidt reduction method,
del Pino-Kowalczyk-Wei [8] successfully proved the validity of the above conjecture for n = 2
and k = 1. Actually they proved that: given a non-degenerate stationary curve K in R2 (for
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the weighted length functional
∫
K
V

p+1
p−1
− 1

2 ), suppose that ε is sufficiently small and satisfies
the following gap condition:

|ε2`2 − µ0| ≥ c ε, ∀ ` ∈ N,

where µ0 is a fixed positive constant, then problem (2.7) has a positive solution uε which
concentrates on K, in the sense that it is exponentially small away from K. After some time
Mahmoudi-Malchiodi-Montenegro in [27] constructed a different type of solutions. Indeed,
they studied complex-valued solutions whose phase is highly oscillatory carrying a quantum
mechanical momentum along the limit curve. In particular they established the validity of
the above conjecture for the case n ≥ 2 arbitrary and k = 1. Recently, by applying the
method developed in [8], Wang-Wei-Yang [43] considered the one-codimensional case n ≥ 3
and k = n− 1 in the flat Euclidean space Rn. The main purpose of this chapter is to prove
the validity of the above conjecture for all k = 1, . . . , n− 1.

To prove the validity of the Ambrosetti-Malchiodi-Ni conjecture for all cases, one possible
way is to generalize the method developed in [8] and [43]. For this purpose, the key steps in [8]
and [43] are first recalled. According to our knowledge, the first key step is the construction
of proper approximate solutions, and the second key step is to develop an infinite dimensional
Lyapunov-Schmidt reduction method so that the original problem can be reduced to a simpler
one that can be handled easily. Actually this kind of infinite dimensional reduction argument
has been used in many constructions in PDE and geometric analysis. It has been developed
by many authors working on this subject or on closely related problems, see for example
[8, 9, 13, 28, 25] and references therein.

Let us now go back to our problem. To construct proper approximate solutions for general
submanifolds, first the Laplace-Betrami operator for arbitrary submanifolds is expanded, see
Proposition 2.5. Then by an iterative scheme of Picard’s type, a family of very accurate
approximate solutions can be obtained, see Section 3. Next an infinite dimensional reduction
is developed such that the construction of positive solutions of problem (2.7) can be reduced
to the solvability of a reduced system (2.62). For more details about the setting-up of the
problem, refer to Subsection 4.1. It is slightly different from the arguments in [8] and [43].
Finally, by noticing the recent development on manifolds with density in differential geometry
(cf. e.g. [22, 35]), our method explores a connection between solutions of the nonlinear
Schrödinger equation and f -minimal submanifolds in Riemannian manifolds with density.

The main result can now be stated.

Theorem 2.1 Let M be a compact n-dimensional Riemannian manifold (or the Euclidean
space Rn) and let V : M → R be a smooth positive function satisfying (2.8). Given k =
1, . . . , n − 1, and 1 < p < n+2−k

n−2−k . Suppose that K be a stationary non-degenerate smooth
compact submanifold in M for the weighted functional∫

K

V
p+1
p−1
−n−k

2 dvol,

then there is a sequence εj → 0 such that problem (2.7) possesses positive solutions uεj
which concentrate near K. Moreover, for some constants C, c0 > 0, the solutions uεj satisfies
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globally
|uεj(z)| ≤ C exp

(
− c0 dist(z,K)

/
εj
)
.

Remark 2.2.1 The assumptions onK are related to the existence of non-degenerate compact

minimal submanifold in manifolds M with density V
p+1
p−1
−n−k

2 dvol. In fact writing V
p+1
p−1
−n−k

2 =
e−f , then K is called f -minimal submanifold in differential geometry (cf. [22]).

Remark 2.2.2 Actually it can be proved that the same result holds true under a gap condi-
tion on ε, which is due to a resonance phenomena. Similar conditions can be found in [8, 43]
and some references therein.

Before closing this introduction, notice that problem (2.7) is similar to the following sin-
gular perturbation problem 

−ε2∆u+ u = up in Ω,
∂u
∂ν

= 0 on ∂Ω,

u > 0 in Ω.

(2.12)

This latter problem arises in the study of some biological models and as (2.7) it exhibits
concentration of solutions at some points of Ω. Since this equation is homogeneous, then the
location of concentration points is determined by the geometry of the domain. On the other
hand, it has been proven that solutions exhibiting concentration on higher dimensional sets
exist. For results in this direction refer to [9, 25, 26, 30, 32, 33, 44].

In general, these results can be divided into two types: The first one is the case where the
concentration set lies totally on the boundary. The second one is where the concentration
set is inside the domain and which intersect the boundary transversally. For this second type
of solutions refer to Wei-Yang [44], who proved the existence of layer on the line intersecting
with the boundary of a two-dimensional domain orthogonally. See also Ao-Musso-Wei [3],
where triple junction solutions have been constructed. In the over-mentioned two results,
[3] and [44], only the one dimensional concentration case has been considered. We believe
the method developed here to the above problem (2.12) can be used to handle the higher
dimensional situation, namely concentration at arbitrary dimensional submanifolds which
intersect the boundary transversally. Interestingly, our preliminary result shows that our
method explores a connection between solutions of problem (2.12) and minimal submanifolds
with free boundary in geometric analysis.

It is worth pointing out that [44] applied an infinite dimensional reduction method while
[3] used a finite dimensional one. Interested readers are encouraged to refer to the paper [10]
for an intermediate reduction method which can be interpreted as an intermediate procedure
between the finite and the infinite dimensional ones. Moreover, it is interesting to consider
Open Question 4 in [10], which can be seen as the Ambrosetti-Malchiodi-Ni Conjecture
without the small parameter ε.

The chapter is organized as follows. In Section 2 the Fermi coordinates in a tubular
neighborhood of K in M are introduced and the Laplace-Beltrami operator is expanded in
these Fermi coordinates. In Section 3, a family of very accurate approximate solutions is
constructed. Section 4 will be devoted to develop an infinite dimensional Lyapunov-Schmidt
reduction and to prove Theorem 2.1.
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2.2.2 Geometric background

In this section some geometric background is given. In particular, the so-called Fermi coor-
dinates, which play important role in the higher dimensional concentrations, are introduced.
Before doing this, the auxiliary weighted functional corresponding to problem (2.7) is first
introduced.

The auxiliary weighted functional

Let K be a k-dimensional closed (embedded or immersed) submanifold of Mn, 1 ≤ k ≤ n−1.
Let {Kt}t be a smooth one-parameter family of submanifolds such that K0 = K. Define

E(t) =

∫
Kt

V σdvol, with σ =
p+ 1

p− 1
− n− k

2
. (2.13)

Denote ∇T and ∇N to be connections projected to the tangential and normal spaces on K.
The following definitions on K which appear in Theorem 2.1 are given:

Definition 2.2.1 (Stationary condition) A submanifold K is said to be stationary relative
to the functional

∫
K
V σdvol if

σ∇NV = −V H on K, (2.14)

where H is the mean curvature vector on K, i.e., Hj = −Γaaj (here the minus sign depends
on the orientation, and Γba are the 1-forms on the normal bundle of K (see (2.19) below for
the definition).

Definition 2.2.2 (Nondegeneracy (ND) condition) It is said that K is non-degenerate if the
quadratic form∫

K

{〈
∆KΦ +

σ

V
∇KV · ∇KΦ,Φ

〉
+ σ−1H(Φ)2 − σ

V

(
∇N
)2
V [Φ,Φ]− Ric(Φ,Φ)

+ Γab (Φ)Γba(Φ)

}
V σ
√

det(g) dvol (2.15)

defined on the normal bundle to K, is non-degenerate.

Remark 2.2.3 As in the first chapter the Einstein summation convention is used, that is,
summation over repeated indices is understood.
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Setting V σ = e−f , i.e., f = −σ lnV , then the stationary and ND conditions correspond
to the first and second variation formulas of an f -minimal submanifold in [22], i.e.,

H = ∇Nf,

where H = −
∑

a∇N
eaea is the mean curvature vector, ea (1 ≤ a ≤ k) is an orthonormal

frame in an open set of K. And at t = 0,

d2

dt2

(∫
Kt

e−f
)

=

∫
K

e−f
(
−

k∑
a=1

Ravva −
1

2
∆K(|v|2) + |∇Kv|2 − 2|Av|2 − fvv

+
1

2
〈∇Tf,∇T (|v|2)〉

)
,

where Kt is a smooth family of submanifolds such that K0 = K, the variational normal vector
field v is compactly supported on Kt, and Avab = −〈∇eaeb, v〉.

Fermi coordinates and expansion of the metric

Let K be a k-dimensional submanifold of (M, ḡ) (1 ≤ k ≤ n − 1). Define N = n − k, and
choose along K a local orthonormal frame field

(
(Ea)a=1,··· ,k, (Ei)i=1,··· ,N

)
which is oriented.

At points of K, the natural splitting

TM = TK ⊕NK

hold, where TK is the tangent space to K and NK represents the normal bundle, which are
spanned respectively by (Ea)a and (Ei)i.

Denote by ∇ the connection induced by the metric ḡ and by ∇N the corresponding normal
connection on the normal bundle. Given p ∈ K, some geodesic coordinates y centered at p
are used. It is also assumed that at p the normal vectors (Ei)i, i = 1, . . . , N , are transported
parallely (with respect to ∇N) through geodesics from p, so in particular

ḡ (∇EaEj , Ei) = 0 at p, ∀ i, j = 1, . . . , N, a = 1, . . . , k. (2.16)

In a neighborhood of p in K, consider normal geodesic coordinates

f(ȳ) := expKp (yaEa), ∀ ȳ := (y1, . . . , yk),

where expK is the exponential map on K and summation over repeated indices is understood.
This yields the coordinate vector fields Xa := f∗(∂ya). Extend the Ei along each geodesic
γE(s) so that they are parallel with respect to the induced connection on the normal bundle
NK. This yields an orthonormal frame field Xi for NK in a neighborhood of p in K which
satisfies

∇XaXi|p ∈ TpK.

A coordinate system in a neighborhood of p in M is now defined by

F (ȳ, x̄) := expMf(ȳ)(xiXi), ∀ (ȳ, x̄) := (y1, . . . , yk, x1, . . . , xN), (2.17)
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with corresponding coordinate vector fields

Xi := F∗(∂xi) and Xa := F∗(∂ya).

By our choice of coordinates, on K the metric ḡ splits in the following way

ḡ(q) = ḡab(q) dya ⊗ dyb + ḡij(q) dxi ⊗ dxj, ∀q ∈ K. (2.18)

We denote by Γba(·) the 1-forms defined on the normal bundle, NK, of K by the formula

ḡbcΓ
c
ai := ḡbcΓ

c
a(Xi) = ḡ(∇XaXb, Xi) at q = f(ȳ). (2.19)

Notice that

K is minimal ⇐⇒
k∑
a=1

Γaa(Ei) = 0 for any i = 1, . . . N. (2.20)

Define q = f(ȳ) = F (ȳ, 0) ∈ K and let (g̃ab(y)) be the induced metric on K. When we
consider the metric coefficients in a neighborhood of K, we obtain a deviation from formula
(2.18), which is expressed by the next lemma. We will denote by Rαβγδ the components of
the curvature tensor with lowered indices, which are obtained by means of the usual ones
Rσ
βγδ by

Rαβγδ = ḡασ R
σ
βγδ. (2.21)

Lemma 2.2 At the point F (ȳ, x̄), the following expansions hold, for any a = 1, ..., k and
any i, j = 1, ..., N , where N = n− k,

ḡij = δij +
1

3
Ristj x̄s x̄t + O(|x̄|3);

ḡaj =
2

3
g̃abR

b
kjlx̄

kx̄l + O(|x̄|3);

ḡab = g̃ab −
{
g̃ac Γcbi + g̃bc Γcai

}
x̄i +

[
Rsabl + g̃cdΓ

c
as Γdbl

]
x̄sx̄l + O(|x̄|3).

Here Ristj are computed at the point of K parameterized by (ȳ, 0).

Proof. The proof is somewhat standard and is thus omitted, we refer to [9] for details, see
also Proposition 2.1 in [28].

By the Whitney embedding theorem, K ⊂M ↪→ R2n. Thus we can define Kε := K/ε and
Mε := M/ε in a natural way. On the other hand since F (ȳ, x̄) is a Fermi coordinate system
on M , then Fε(y, x) := F (εy, εx)/ε defines a Fermi coordinate system on M/ε. With this
notation, here and in the sequel, by slight abuse of notation we denote V (εy, εx) to actually
mean V (εz) = V

(
F (εy, εx)

)
in the Fermi coordinate system. The same way is understood

to its derivatives with respect to y and x.

Now we can introduce our first parameter function Φ which is a normal vector field defined
on K and define x = ξ+Φ(εy). Then (y, ξ) is the Fermi coordinate system for the submanifold
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KΦ. Adjusting the parameter Φ, it is later shown that there are solutions concentrating on
KΦ for a subsequence of ε.

We denote by gαβ the metric coefficients in the new coordinates (y, ξ). It follows that

gαβ =
∑
γ,δ

ḡγδ
∂zα
∂ξγ

∂zβ
∂ξδ

.

Which yields
gij = ḡij|ξ+Φ, gaj = ḡaj|ξ+Φ + ε ∂āΦ

lḡjl|ξ+Φ,

and
gab = ḡab|ξ+Φ + ε

{
ḡaj ∂b̄Φ

j + ḡbj ∂āΦ
j
}
|ξ+Φ + ε2 ∂āΦ

i ∂b̄Φ
j ḡij|ξ+Φ

where summations over repeated indices is understood.

To express the error terms, it is convenient to introduce some notations. For a positive
integer q, we denote by Rq(ξ), Rq(ξ,Φ), Rq(ξ,Φ,∇Φ), and Rq(ξ,Φ,∇Φ,∇2Φ) error terms
such that the following bounds hold for some positive constants C and d:

|Rq(ξ)| ≤ Cεq(1 + |ξ|d),

|Rq(ξ,Φ)| ≤ Cεq(1 + |ξ|d),
|Rq(ξ,Φ)−Rq(ξ, Φ̄)| ≤ Cεq(1 + |ξ|d)|Φ− Φ̄|,

|Rq(ξ,Φ,∇Φ)| ≤ Cεq(1 + |ξ|d),
|Rq(ξ,Φ,∇Φ)−Rq(ξ, Φ̄,∇Φ̄)| ≤ Cεq(1 + |ξ|d)

(
|Φ− Φ̄|+ |∇Φ−∇Φ̄|

)
,

and

|Rq(ξ,Φ,∇Φ,∇2Φ)| ≤Cεq(1 + |ξ|d) + Cεq+1(1 + |ξ|d)|∇2Φ|,

∣∣Rq(ξ,Φ,∇Φ,∇2Φ)−Rq(ξ, Φ̄,∇Φ̄,∇2Φ̄)
∣∣

≤ Cεq(1 + |ξ|d)
(
|Φ− Φ̄|+ |∇Φ−∇Φ̄|

)(
1 + ε|∇2Φ|+ ε|∇2Φ̄|

)
+ Cεq+1(1 + |ξ|d)|∇2Φ−∇2Φ̄|.

Using the expansion of the previous lemma, one can easily show that the following lemma
holds true.

Lemma 2.3 In the coordinate (y, ξ), the metric coefficients satisfy

gab = g̃ab − ε
{
g̃bfΓ

f
ak + g̃afΓ

f
bk

}
(ξk + Φk) + ε2

(
Rkabl + g̃cd ΓcakΓ

d
bl

)
(ξk + Φk)(ξl + Φl)

+ ε2∂āΦ
j∂b̄Φ

j +R3(ξ,Φ,∇Φ),

gaj = ε∂āΦ
j +

2

3
ε2Rkajl(ξ

k + Φk)(ξl + Φl) +R3(ξ,Φ,∇Φ),

gij = δij +
1

3
ε2Rkijl(ξ

k + Φk)(ξl + Φl) +R3(ξ,Φ,∇Φ).
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Denote the inverse metric of (gαβ) by (gαβ). Recall that, given the expansion of a matrix
as M = I + εA+ ε2B + O(ε3), we have

M−1 = I − εA− ε2B + ε2A2 + O(ε3).

Lemma 2.4 In the coordinate (y, ξ), the metric coefficients gαβ satisfy

gab = g̃ab + ε

{
g̃cb Γaci + g̃ca Γbci

}
(ξi + Φi)− ε2 g̃cb g̃adRkcdl (ξ

k + Φk)(ξl + Φl)

+ ε2

(
g̃ac ΓbdkΓ

d
cl + g̃bc ΓadkΓ

d
cl + g̃cd ΓadkΓ

b
cl

)
(ξk + Φk)(ξl + Φl) +R3(ξ,Φ,∇Φ),

gaj = −ε g̃ab ∂b̄Φj − 2 ε2

3
Rkajl(ξ

k + Φk)(ξl + Φl) + ε2∂b̄Φ
j

{
g̃bc Γaci + g̃ac Γbci

}
(ξi + Φi)

+R3(ξ,Φ,∇Φ),

gij = δij −
ε2

3
Rkijl(ξ

k + Φk)(ξl + Φl) + ε2 g̃ab ∂āΦ
i∂b̄Φ

j +R3(ξ,Φ,∇Φ).

Furthermore, we have the validity of the following expansion for the log of the determinant
of g:

log
(

det g
)

= log
(

det g̃
)
− 2εΓbbk (ξk + Φk) +

1

3
ε2Rmssl (ξ

m + Φm) (ξl + Φl)

+ ε2
(
g̃abRmabl − ΓcamΓacl

)
(ξm + Φm) (ξl + Φl) +R3(ξ,Φ,∇Φ).

Proof. The expansions of the metric in the above lemma follow from Lemma 2.2 while the
expansion of the log of the determinant of g follows from the fact that one can write g = G+M
with

G =

(
g̃ 0
0 IdRN

)
and M = O(ε),

then we have the following expansion

log
(

det g
)

= log
(

detG
)

+ tr(G−1M)− 1

2
tr
(

(G−1M)2
)

+ O(‖M‖3).

and the lemma follows at once.

2.2.3 Expansion of the Laplace-Beltrami operator

In terms the above notations, we have the following expansion of the Laplace-Beltrami oper-
ator.

Proposition 2.5 Let u be a smooth function on Mε. Then in the Fermi coordinate (y, ξ),
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we have that

∆gu = ∂2
iiu+ ∆Kεu− εΓbbj∂ju− 2ε g̃ab ∂b̄Φ

j ∂2
aju+ 2 ε g̃cb Γacs (ξs + Φs)∂2

abu

+ ε2∇KΦi · ∇KΦj ∂2
iju−

1

3
ε2Rkijl(ξ

k + Φk)(ξl + Φl)∂2
iju− ε2 Γddk ∂b̄Φ

k g̃ab∂au

− 4

3
ε2Rkajl(ξ

k + Φk)(ξl + Φl)∂2
aju+ 2ε2∂b̄Φ

j

{
g̃bc Γaci + g̃ac Γbci

}
(ξi + Φi) ∂2

aju

+ ε2

{
− g̃cb g̃adRkcdl + g̃ac ΓbdkΓ

d
cl + g̃bc ΓadkΓ

d
cl + g̃cd ΓadkΓ

b
cl

}
(ξk + Φk)(ξl + Φl) ∂2

abu

+ ε2

(
g̃abRkabj +

2

3
Rkiij − ΓcakΓ

a
cj

)
(ξk + Φk)∂ju− ε2∆KΦj∂ju

+ 2ε3∂2
āb̄Φ

jΓbak(ξ
k + Φk)∂ju

− ε2

(
g̃ab ∂āΓ

d
dk − ∂ā

{
g̃cbΓack + g̃caΓbck

})
(ξk + Φk)∂bu−

2

3
ε2Rjajk(ξ

k + Φk)∂au

+ 2ε2

{
g̃cb Γaci + g̃ca Γbci

}
∂b̄ Φi ∂au+

1

2
ε2 ∂ā(log det g̃)

{
g̃cbΓaci + g̃caΓbci

}
(ξi + Φi)∂bu

+R3(ξ,Φ,∇Φ,∇2Φ)(∂ju+ ∂au) +R3(ξ,Φ,∇Φ)(∂2
iju+ ∂2

aju+ ∂2
abu).

Remark 2.2.4 The proof of Proposition 2.5 will be postponed to section 2.2.6. It is worth
mentioning that the coefficients of all the derivatives of u in the above expansion are smooth
bounded functions of the variable ȳ = εy. The slow dependence of theses coefficients of y is
important in our construction of some proper approximate solutions.

2.2.4 Construction of approximate solutions

To prove Theorem 2.1, the first key step in our method is to construct some proper ap-
proximate solutions. To achieve this goal, we have introduced some geometric background,
especially the Fermi coordinates. The main objective of this section is to construct some
very accurate local approximate solutions in a tubular neighbourhood of Kε by an iterative
scheme of Picard’s type and to define some proper global approximate solutions by the gluing
method.

Facts on the limit equation

Recall that by the scaling, equation (2.7) becomes

∆gu− V (εz)u+ up = 0. (2.22)

In the Fermi coordinate (y, x), we can write V (εz) = V (εy, εx). Taking x = ξ + Φ(εy), we
have the following expansion of potential:

V (εy, εx) = V (εy, 0) + ε〈∇NV (εy, 0), ξ + Φ〉+
ε2

2
(∇N)2V (εy, 0)[ξ + Φ]2 +R3(ξ,Φ). (2.23)
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If the profile of solutions depends only on ξ or varies slower on y, by the expansion of
the Laplace-Beltrami operator in Proposition 2.5 and the above expansion of potential, the
leading equation is

N∑
i=1

∂2
ξiξi
u− V (εy, 0)u+ up = 0. (2.24)

Define

µ(εy) = V (εy, 0)1/2, h(εy) = V (εy, 0)1/(p−1), ∀ y ∈ Kε. (2.25)

For the leading equation (2.24), by the scaling

u(y, ξ) = h(εy)v
(
µ(εy)ξ

)
= h(εy)v(ξ̄),

the function v satisfies

∆RNv − v + vp = 0. (2.26)

We call this equation the limit equation.

We now turn to the equation (2.22), in the spirit of above argument, we look for a solution
u of the form

u(y, ξ) = h(εy)v
(
y, ξ̄
)

with ξ̄ = µ(εy)ξ ∈ RN . (2.27)

An easy computation shows that

∂au = h ∂av + ε(∂āh)v + ε h ∂āµ ξ
j∂jv,

∂2
iju = hµ2 ∂2

ijv,

∂2
aju = ε

(
µ∂āh+ h∂āµ

)
∂jv + hµ ∂2

ajv + ε h µ ξi ∂āµ ∂
2
ijv,

∂2
abu = h ∂2

abv + ε
(
∂b̄h ∂av + ∂āh ∂bv + h∂b̄µ ξ

j∂2
ajv + h∂āµ ξ

j∂2
bjv
)

+ ε2
(
∂āh∂b̄µξ

j∂jv + ∂b̄h∂āµξ
j∂jv + ∂2

āb̄hv + h∂āµ∂b̄µξ
iξj∂2

ijv + h∂2
āb̄µξ

j∂jv
)
,

and

∆Kεu = ε2∆Kh v + h∆Kεv + 2ε∇Kh · ∇Kεv + ε2
(
h∆Kµ+ 2∇Kh · ∇Kµ

)
ξj ∂jv

+ ε2 h |∇Kµ|2 ξjξl ∂2
jlv + 2ε h ξj∇Kµ · (∇Kε∂jv).

Therefore, we get the following expansion of the Laplace-Beltrami operator on u:

h−1µ−2 ∆gu = ∆RNv + µ−2 ∆Kεv +B(v),
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with B(v) = B1(v) +B2(v). Where Bj’s are respectively given by

B1(v) =− ε µ−1 Γbbj ∂jv + ε2 µ−1
(
g̃abRkabj +

2

3
Rkiij − ΓcakΓ

a
cj

)
(
1

µ
ξ̄k + Φk)∂jv

+ ε2 h−1 µ−2 ∆Kh v + 2ε2 (hµ2)−1∇Kh ·
( ξ̄j
µ
∇Kµ− µ∇KΦj

)
∂jv

+ 2ε h−1 µ−2∇Kh · ∇Kεv −
1

3
ε2Rkijl(

1

µ
ξ̄k + Φk)(

1

µ
ξ̄l + Φl)∂2

ijv

+ ε2
(
µ−2ξ̄i∇Kµ−∇KΦi

)(
µ−2ξ̄j∇Kµ−∇KΦj

)
∂2
ijv

+ ε2 µ−2
( ξ̄j
µ

∆Kµ− 2∇Kµ · ∇KΦj − µ∆KΦj
)
∂jv

+ 2ε µ−2
( ξ̄j
µ
∇Kµ− µ ∇KΦj

)
· ∇Kε

(
∂jv
)
,

and

hµ2B2(v) = −ε2 hΓddj∇KΦj · ∇Kεv

+ 2 ε g̃cb Γacs

( 1

µ
ξ̄s + Φs

)(
h ∂2

abv + ε
{
∂b̄h ∂av + ∂āh ∂bv + h∂b̄µ

ξ̄j

µ
∂2
ajv + h∂āµ

ξ̄j

µ
∂2
bjv
})

− 4

3
ε2 hµRkajl

( 1

µ
ξ̄k + Φk

)( 1

µ
ξ̄l + Φl

)
∂2
ajv + 2ε2 hµ ∂bΦ

j
{
g̃bc Γaci + g̃ac Γbci

}( 1

µ
ξ̄i + Φi

)
∂2
ajv

+ ε2 h
{
− g̃cb g̃adRkcdl + 2g̃ac ΓbdkΓ

d
cl + g̃cd ΓadkΓ

b
cl

}( 1

µ
ξ̄k + Φk

)( 1

µ
ξ̄l + Φl

)
∂2
abv

+ 2ε3 hµ ∂2
āb̄Φ

jΓbak

( 1

µ
ξ̄k + Φk

)
∂jv

− ε2 h
(
g̃ab ∂āΓ

d
dk − ∂ā

{
g̃cbΓack + g̃caΓbck

})( 1

µ
ξ̄k + Φk

)
∂bv −

2

3
ε2 hRjajk

( 1

µ
ξ̄k + Φk

)
∂av

+ 2ε2 h
{
g̃cb Γaci + g̃ca Γbci

}
∂b̄ Φi ∂av +

1

2
ε2 h ∂ā(log det g̃)

{
g̃cbΓaci + g̃caΓbci

}( 1

µ
ξ̄i + Φi

)
∂bv

+R3(ξ,Φ,∇Φ,∇2Φ)
(
∂jv + ∂av

)
+R3(ξ,Φ,∇Φ)

(
∂2
ijv + ∂2

ajv + ∂2
abv
)
.

Setting

Sε(u) = −∆gu+ V (εz)u− up,

then by using the above expansion we can write

h−1µ−2 Sε(u) = −∆RNv − µ−2 ∆Kεv −B(v) + µ−2 V (εz)v − hp−1µ−2 vp

= −∆RNv + v − vp − µ−2 ∆Kεv + µ−2
(
V (εy, εx)− V (εy, 0)

)
v −B(v).

Now using the following expansion of potential:

V (εy, εx) = V (εy, 0) + ε〈∇NV (εy, 0),
ξ̄

µ
+ Φ〉+

ε2

2
(∇N)2V (εy, 0)[

ξ̄

µ
+ Φ]2 +R3(ξ̄,Φ),
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we obtain

h−1µ−2 Sε(u) = −∆RNv + v − vp − µ−2 ∆Kεv − B̃(v) =: S̃ε(v), (2.28)

where B̃(v) = B̃1(v) + B̃2(v) with

B̃1(v) = B1(v)− µ−2
(
ε〈∇NV (εy, 0),

ξ̄

µ
+ Φ〉+

ε2

2
(∇N)2V (εy, 0)[

ξ̄

µ
+ Φ]2

)
v

and
B̃2(v) = B2(v)−R3(ξ̄,Φ) v.

At the end of this subsection, let us list some basic and useful properties of positive
solutions of the limit equation (2.26).

Proposition 2.6 If 1 < p <∞ for N = 2 and 1 < p < N+2
N−2

for N ≥ 3, then every solution
of problem: { −∆RNv + v − vp = 0 in RN ,

v > 0 in RN , v ∈ H1(RN),
(2.29)

has the form w0(· − Q) for some Q ∈ RN , where w0(x) = w0(|x|) ∈ C∞(RN) is the unique
positive radial solution which satisfies

lim
r→∞

r
N−1

2 erw0(r) = cN,p, lim
r→∞

w′0(r)

w0(r)
= −1. (2.30)

Here cN,p is a positive constant depending only on N and p. Furthermore, w0 is non-
degenerate in the sense that

Ker
(
−∆RN + 1− pwp−1

0

)
∩ L∞(RN) = Span

{
∂x1w0, · · · , ∂xNw0

}
,

and the Morse index of w0 is one, that is, the linear operator

L0 := −∆RN + 1− pwp−1
0

has only one negative eigenvalue λ0 < 0, and the unique even and positive eigenfunction
corresponding to λ0 can be denoted by Z.

Proof. This result is well known. For the proof we refer the interested reader to [6] for
the existence, [14] for the symmetry, [18] for the uniqueness, Appendix C in [36] for the
nondegeneracy, and [7] for the Morse index.

As a corollary, there is a constant γ0 > 0 such that∫
RN

{
|∇φ|2 + φ2 − pwp−1

0 φ2
}
dξ̄ ≥ γ0

∫
RN
φ2 dξ̄, (2.31)

whenever φ ∈ H1(RN) and∫
RN
φ ∂jw0 dξ̄ = 0 =

∫
RN
φZ dξ̄, ∀ j = 1, . . . , N.
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Local approximate solutions

In a tubular neighbourhood of Kε, (2.28) makes it obvious that Sε(u) = 0 is equivalent to

S̃ε(v) = 0.

By the expression of S̃ε(v) and Remark 2.2.4, we look for approximate solutions of the
form

v = v(y, ξ̄) = w0(ξ̄) +
I∑
`=1

ε`w`(εy, ξ̄) + εe(εy)Z(ξ̄), (2.32)

where I ∈ N+, w0 and Z are given in Proposition 2.6, w`’s and e are smooth bounded
functions on their variables.

The idea for introducing eZ in (2.32) comes directly from [8, 43]. The reason is the linear
theory in Section 4.2.2, especially Lemma 2.11.

To solve S̃ε(v) = 0 accurately, the normal section Φ is to be chosen in the following form

Φ = Φ0 +
I−1∑
`=1

ε` Φ`,

where Φ0, . . . ,ΦI−1 are smooth bounded functions on ȳ.

Expansion at first order in ε :

We first solve the equation S̃ε(v) = 0 up to order ε. Here and in the following we will
write O(εj) for terms that appear at the j-th order in an expansion.

Suppose v has the form (2.32), then

S̃ε(v) = ε
(
−∆RNw1 + w1 − pwp−1

0 w1

)
+ ε
(
− ε2µ−2∆Ke+ λ0e

)
Z

+ ε
(
µ−1Γbbj∂jw0 + µ−2 〈∇NV (εy, 0),

ξ̄

µ
+ Φ0〉w0

)
+ O(ε2).

Hence the term of order ε in the right-hand side of above equation vanishes if and only if
the function w1 solves

L0w1 = −µ−1 Γbbj∂jw0 − µ−2 〈∇NV (εy, 0),
ξ̄

µ
+ Φ0〉w0. (2.33)

Here and in the following, we will keep the term ε
(
− ε2µ−2∆Ke+λ0e

)
Z in the error. The

reason is simply that it cannot be cancelled without solving an equation of e since L0Z = λ0Z.

By Proposition 2.6, equation (2.33) is solvable if and only if for all i = 1, . . . , N ,∫
RN

(
µ−1 Γbbj∂jw0 + µ−2 〈∇NV (εy, 0),

ξ̄

µ
+ Φ0〉w0

)
∂iw0 dξ̄ = 0. (2.34)

Since w0 is radially symmetric, (2.34) is equivalent to

Γbbi

∫
RN
|∂1w0|2 dξ̄ =

1

2
µ−2 ∂iV (εy, 0)

∫
RN
w2

0 dξ̄.
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Recalling the identity

1

2

∫
RN
w2

0 dξ̄ = σ

∫
RN
|∂1w0|2 dξ̄ with σ =

p+ 1

p− 1
− N

2
, (2.35)

we get

σ∇NV (εy, 0) = −V (εy, 0)H(εy), (2.36)

where H = (−Γbbi)i is the mean curvature vector on K. This is exactly our stationary
condition on K.

When (2.36) holds, the equation of w1 becomes

L0w1 = −µ−1 Γbbj

(
∂jw0 + σ−1ξ̄jw0

)
+ σ−1〈H,Φ0〉w0. (2.37)

Hence we can write

w1 = w1,1 + w1,2, (2.38)

where

w1,1 = −µ−1 ΓbbjUj and w1,2 = σ−1〈H,Φ0〉U0. (2.39)

Here Uj is the unique smooth bounded function satisfying

L0Uj = ∂jw0 + σ−1 ξ̄j w0,

∫
RN
Uj ∂iw0 dξ̄ = 0, ∀ i = 1, . . . , N, (2.40)

and U0 is the unique smooth bounded function such that

L0U0 = w0,

∫
RN
U0 ∂iw0 dξ̄ = 0, ∀ i = 1, . . . , N. (2.41)

It follows immediately that w1 = w1(εy, ξ̄) is smooth bounded on its variable. Furthermore,
it is easily seen that Uj is odd on variable ξ̄j and is even on other variables. Moreover, U0

has an explicit expression

U0 = − 1

p− 1
w0 −

1

2
ξ̄ · ∇w0. (2.42)

Expansion at second order in ε

In this subsection we will solve the equation S̃ε(v) = 0 up to order ε2 by solving w2 and Φ0

together.

Suppose v has the form (2.32), then

S̃ε(v) = ε2
(
−∆RNw2 + w2 − pwp−1

0 w2

)
+ ε
(
− ε2µ−2∆Ke+ λ0e

)
Z

+ ε2F2 + ε2G2 + O(ε3),
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where

F2 =µ−1 Γbbj∂jw1 + µ−2 〈∇NV,Φ1〉w0 +
1

3
Rkijl(

1

µ
ξ̄k + Φk

0)(
1

µ
ξ̄l + Φl

0)∂2
ijw0

− µ−1
(
g̃abRkabj +

2

3
Rkiij − ΓcakΓ

a
cj

)
(
ξ̄k

µ
+ Φk

0)∂jw0

− µ−2
( ξ̄j
µ

∆Kµ− 2∇Kµ · ∇KΦj
0 − µ∆KΦj

0

)
∂jw0

− h−1µ−2 ∆Khw0 − 2(hµ2)−1∇Kh ·
( ξ̄j
µ
∇Kµ− µ∇KΦj

0

)
∂jw0

−
(
µ−2ξ̄i∇Kµ−∇KΦi

0

)(
µ−2ξ̄j∇Kµ−∇KΦj

0

)
∂2
ijw0

+ µ−2 〈∇NV,
ξ̄

µ
+ Φ0〉w1 +

1

2
µ−2 (∇N)2V [

ξ̄

µ
+ Φ0,

ξ̄

µ
+ Φ0]w0 −

1

2
p(p− 1)wp−2

0 w2
1,

and

G2 =µ−1Γbbj e ∂jZ + µ−2 〈∇NV,
ξ̄

µ
+ Φ0〉eZ −

1

2
p(p− 1)wp−2

0

{
(w1 + eZ)2 − w2

1

}
.

Hence the term of order ε2 vanishes (except the term ε
(
− ε2µ−2∆Ke+λ0e

)
Z) if and only

if w2 satisfies the equation

L0w2 = −F2 −G2.

By Freedholm alternative this equation is solvable if and only if F2 + G2 is L2 orthogonal to
the kernel of linearized operator L0, which is spanned by the functions ∂iw0, i = 1, . . . , N .

It is convenient to write F2 as

F2 = µ−2〈∇NV,Φ1〉w0 + F̃2.

Then F̃2 does not involve Φ1. By (2.36), similar to w1, we can write w2 as

w2 = w2,1 + w2,2,

where w2,2 = σ−1〈H,Φ1〉U0 solves the equation

L0w2,2 = −µ−2〈∇NV,Φ1〉w0,

and w2,1 will solve the equation

L0w2,1 = −F̃2 −G2.

To solve the equation on w2,1 we write

F̃2 = F̃2(Φ0) = S2,0 + S2(Φ0) +N2(Φ0),

where S2,0 = F̃2(0) does not involve Φ0, S2(Φ0) is the sum of linear terms of Φ0, and N2(Φ0)
is the nonlinear term of Φ0.
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Recall that w1 = w1,1 + w1,2 with

w1,1 = −µ−1 ΓbbjUj and w1,2 = σ−1〈H,Φ0〉U0.

Then

S2,0 =µ−1 Γbbj ∂jw1,1 +
1

3
µ−2Rkijl (ξ̄

k ξ̄l ∂2
ijw0)− µ−2

(
g̃abRkabj +

2

3
Rkiij − ΓcakΓ

a
cj

)
(ξ̄k ∂jw0)

− (µ−3∆Kµ)(ξ̄j ∂jw0)− (h−1µ−2∆Kh)w0 − 2(hµ3)−1(∇Kh · ∇Kµ)(ξ̄j ∂jw0)

− µ−4|∇Kµ|2 (ξ̄i ξ̄j ∂2
ijw0) + µ−3〈∇NV, ξ̄〉w1,1 +

1

2
µ−4(∇N)2V [ξ̄, ξ̄]w0

− 1

2
p(p− 1)wp−2

0 w2
1,1,

S2(Φ0) =µ−1Γbbj ∂jw1,2 +
2

3
µ−1Rkijl Φ

l
0 (ξ̄k ∂2

ijw0)− µ−1
(
g̃abRkabj +

2

3
Rkiij − ΓcakΓ

a
cj

)
Φk

0 ∂jw0

+ µ−2
(

2∇Kµ · ∇KΦj
0 + µ∆KΦj

0

)
∂jw0 + 2(hµ)−1

(
∇Kh · ∇KΦj

0

)
∂jw0

+ 2µ−2
(
∇Kµ · ∇KΦj

0

)
(ξ̄i ∂2

ijw0) + µ−3〈∇NV, ξ̄〉w1,2 + µ−2〈∇NV,Φ0〉w1,1

+ µ−3(∇N)2V [Φ0, ξ̄]w0 − p(p− 1)wp−2
0 w1,1w1,2,

and

N2(Φ0) =
1

3
Rkijl Φ

k
0 Φl

0 ∂
2
ijw0 − (∇KΦi

0 · ∇KΦj
0) ∂2

ijw0 + µ−2〈∇NV,Φ0〉w1,2

+
1

2
µ−2 (∇N)2V [Φ0,Φ0]w0 −

1

2
p(p− 1)wp−2

0 w2
1,2.

Therefore,∫
RN
S2(Φ0) ∂sw0 =µ−1Γbbj

∫
RN
∂jw1,2 ∂sw0 +

2

3
µ−1Rkijl Φ

l
0

∫
RN
ξ̄k ∂2

ijw0 ∂sw0

− µ−1
(
g̃abRkabj +

2

3
Rkiij − ΓcakΓ

a
cj

)
Φk

0

∫
RN
∂jw0 ∂sw0

+ µ−2
(

2∇Kµ · ∇KΦj
0 + µ∆KΦj

0

)∫
RN
∂jw0 ∂sw0

+ 2(hµ)−1
(
∇Kh · ∇KΦj

0

)∫
RN
∂jw0 ∂sw0

+ 2µ−2
(
∇Kµ · ∇KΦj

0

)∫
RN
ξ̄i ∂2

ijw0 ∂sw0

+ µ−2∂jV (εy, 0)
(
µ−1

∫
RN
ξ̄j w1,2 ∂sw0 + Φj

0

∫
RN
w1,1 ∂sw0

)
+ µ−3∂2

ijV (εy, 0) Φj
0

∫
RN
ξ̄iw0 ∂sw0

− p(p− 1)

∫
RN
wp−2

0 w1,1w1,2 ∂sw0.
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Let us denote by A the sum of terms involving w1,1 and w1,2 in the above formula. Using
(2.36) and (2.39) we can write

A = µ−1 σ−1 〈H,Φ0〉Γaaj
∫
RN

(
∂jU0 + Uj + σ−1 ξ̄j U0 + p(p− 1)wp−2

0 Uj U0

}
∂sw0.

To compute this term we differentiate the equation (2.40) on Uj with respect to the variable
ξ̄j to obtain

L0(∂jUj)− p(p− 1)wp−2
0 Uj∂jw0 = ∂2

jjw0 + σ−1w0 + σ−1 ξ̄j ∂jw0. (2.43)

Multiplying the above equation by U0 and integrating by parts, we have∫
RN

{
∂jU0 + Uj + σ−1 ξ̄j U0 + p(p− 1)wp−2

0 Uj U0

}
∂jw0

= −
∫
RN

(
2∂2

jjw0 + σ−1w0

)
U0

= −2

∫
RN

(
− 1

p− 1
w0 −

1

2
ξ̄l∂lw0

)
∂2
jjw0 − σ−1

∫
RN

(
− 1

p− 1
w0 −

1

2
ξ̄l∂lw0

)
w0

= −
( 2

p− 1
+ 1− N

2

) ∫
RN
|∂1w0|2 − σ−1

(N
4
− 1

p− 1

) ∫
RN
w2

0

= −
∫
RN
|∂1w0|2.

On the other hand, by direct computations we have∫
RN
∂jw0 ∂sw0 = δjs

∫
RN

(∂1w0)2,

∫
RN
∂2
kjw0 ξ̄

k∂sw0 =
1

2
δjs

∫
RN
ξ̄k∂k(∂jw0)2 = −N

2
δjs

∫
RN

(∂1w0)2,

Rkijl Φ
l
0

∫
RN
ξ̄k ∂2

ijw0 ∂sw0 = Rsjjl Φ
l
0

∫
RN

(∂1w0)2,(
g̃abRkabj+

2

3
Rkiij−ΓcakΓ

a
cj

)
Φk

0

∫
RN
∂jw0 ∂sw0 =

(
g̃abRkabs+

2

3
Rkiis−ΓcakΓ

a
cs

)
Φk

0

∫
RN

(∂1w0)2.

Summarizing, we have∫
RN
S2(Φ0) ∂sw0 = µ−1

{
∆KΦs

0 −
(
g̃abRkabs − ΓcakΓ

a
cs

)
Φk

0 + (2−N)µ−1∇Kµ · ∇KΦs
0

+ 2h−1∇Kh · ∇KΦs
0 − σµ−2 ∂2

sjV (εy, 0)Φj
0 − σ−1Γaas〈H,Φ0〉

}∫
RN

(∂1w0)2.

Now, using the fact that

µ−1∇Kµ =
1

2
V −1∇KV and h−1∇Kh =

1

p− 1
V −1∇KV,
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we obtain (recalling the definition of σ) that

(2−N)µ−1∇Kµ · ∇KΦs
0 + 2h−1∇Kh · ∇KΦs

0 = σ V −1∇KV · ∇KΦs
0.

Hence we summarize∫
RN
S2(Φ0) ∂sw0 = µ−1

{
∆KΦs

0 −
(
g̃abRkabs − ΓcakΓ

a
cs

)
Φk

0 + σV −1∇KV · ∇KΦs
0

− σµ−2∂2
sjV (εy, 0)Φj

0 + σ−1Γbbj Γaas Φj
0

}∫
RN
|∂1w0|2.

Define JK : NK 7→ NK is a linear operator from the family of smooth sections of normal
bundle to K into itself, whose components are given by

(JKΦ0)s = ∆KΦs
0 −

(
g̃abRkabs − ΓcakΓ

a
cs

)
Φk

0 + σV −1∇KV · ∇KΦs
0

−σµ−2∂2
sjV (ȳ, 0)Φj

0 + σ−1Γbbj Γaas Φj
0.

(2.44)

Then ∫
RN
S2(Φ0) ∂sw0 = µ−1

( ∫
RN
|∂1w0|2

)
(JKΦ0)s(εy). (2.45)

On the other hand, it is easy to check that∫
RN
S2,0 ∂sw0 = 0 =

∫
RN
N2(Φ0) ∂sw0 (2.46)

and ∫
RN

G2 ∂sw0 =

{
µ−1Γbbs

∫
RN
∂sZ ∂sw0 + µ−3∂sV (εy, 0)

∫
RN
ξ̄s Z ∂sw0

− p(p− 1)

∫
RN
wp−2

0 w1,1Z ∂sw0

}
e

= µ−1Γbbse

∫
RN

{
∂sZ + σ−1Z ξ̄s + p(p− 1)wp−2

0 Z Us

}
∂sw0

= c0µ
−1Γbbse.

Therefore, the solvability of equation on w2 is equivalent to the solvability of following
equation on Φ0:

JKΦ0 = H2(ȳ; e), (2.47)

where H2(ȳ; e) = c0He is a smooth bounded function.

By the non-degeneracy condition on K, (2.47) is solvable. Moreover, for any given e,
it is easy to check that Φ0 = Φ0(ȳ; e) is a smooth bounded function on ȳ and is Lipschitz
continuous with respect to e.

Now let us go back to the equation of w2,1:

L0w2,1 = −F̃2 −G2.
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Since both F̃2 and G2 are smooth bounded functions of (εy, ξ̄). Hence w2,1 = w2,1(εy, ξ̄)
is also a smooth bounded function of (εy, ξ̄). Moreover, w2,1 = w2,1(εy, ξ̄; e) is Lipschitz
continuous with respect to e.

Higher order approximations

The construction of higher order terms follows exactly from the same calculation. Indeed,
to solve the equation up to an error of order εj+1 for some j ≥ 3, we use an iterative scheme
of Picard’s type : assuming all the functions wi’s (1 ≤ i ≤ j − 1) constructed, we need to
choose a function wj to solve an equation similar to that of w2 (with obvious modifications)
by solving an equation of Φj−2 similar to that of Φ0.

When we collect all terms of order O(εj) in S̃ε(v), assuming all wi’s for i = 1, · · · j − 1
constructed (by the iterative scheme), we have

S̃ε(v) = εj
(
−∆RNwj + wj − pwp−1

0 wj

)
+ ε
(
− ε2µ−2∆Ke+ λ0e

)
Z

+ εjFj + εjEj eZ + εjAi
j(εy, ξ̄; Φ0, · · · ,Φj−3) e ∂iZ

+ εjBi`
j (εy, ξ̄; Φ0, · · · ,Φj−3) e ∂2

i`Z + εjCij(εy, ξ̄; Φ0, · · · ,Φj−3) · ∇Ke ∂iZ

+ εjDab
j (εy, ξ̄; Φ0, · · · ,Φj−3) ∂2

abeZ + O(εj+1),

with

Fj =µ−1Γbbl ∂lwj−1 +
2

3
µ−1Rkisl ξ̄

k Φl
j−2 ∂

2
isw0 − µ−1

(
g̃abRkabs +

2

3
Rkiis − ΓcakΓ

a
cs

)
Φk
j−2 ∂sw0

+ µ−2
(

2∇Kµ · ∇KΦs
j−2 + µ∆KΦs

j−2

)
∂sw0 + 2(hµ)−1

(
∇Kh · ∇KΦs

j−2

)
∂sw0

+ 2µ−2
(
∇Kµ · ∇KΦs

j−2

)
(ξ̄i ∂2

isw0) + µ−2〈∇NV,Φ0〉wj−1 + µ−2〈∇NV,Φj−2〉w1

+ µ−2〈∇NV,Φj−1〉w0 + µ−2〈∇NV,
ξ̄

µ
〉wj−1 + µ−3∂2

klV (εy, 0) Φl
j−2 ξ̄

k w0

− p(p− 1)wp−2
0 w1wj−1 +Gj(εy, ξ̄; Φ0, · · · ,Φj−3)

=µ−2〈∇NV,Φj−1〉w0 + F̃j

and

Ej = −p(p− 1)wp−2
0 wj−1 + µ−2〈∇NV,Φj−2〉+ Ẽj(εy, ξ̄; Φ0, · · · ,Φj−3),

where Ai
j, B

i`
j , Cij, D

ab
j and Ẽj are smooth bounded functions on their variables.

Except for ε
(
− ε2µ−2∆Ke+λ0e

)
Z, the term of order εj vanishes if and only if wj satisfies

the equation

L0wj = −Fj − Ej eZ −Ai
j(εy, ξ̄; Φ0, · · · ,Φj−3) e ∂iZ −Bi`

j (εy, ξ̄; Φ0, · · · ,Φj−3) e ∂2
i`Z

− Cij(εy, ξ̄; Φ0, · · · ,Φj−3) · ∇Ke ∂iZ −Dab
j (εy, ξ̄; Φ0, · · · ,Φj−3) ∂2

abeZ.

By Freedholm alternative this equation is solvable if and only if the right hand side is L2

orthogonal to the kernel of linearized operator L0. Before computing the projection against
∂sw0, let us recall that

wj−1 = wj−1,1 + σ−1〈H,Φj−2〉U0,
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where wj−1,1 ⊥ ∂iw0 is a function which does not involve Φj−2.

As before we look for a solution wj of the form

wj = wj,1 + σ−1〈H,Φj−1〉U0,

where wj,1 ⊥ ∂iw0 solves

L0wj,1 = −F̃j − Ej eZ −Ai
j(εy, ξ̄; Φ0, · · · ,Φj−3) e ∂iZ −Bi`

j (εy, ξ̄; Φ0, · · · ,Φj−3) e ∂2
i`Z

− Cij(εy, ξ̄; Φ0, · · · ,Φj−3) · ∇Ke ∂iZ −Dab
j (εy, ξ̄; Φ0, · · · ,Φj−3) ∂2

abeZ.

Since j ≥ 3, we can write

F̃j = F̃j(Φj−2) = Sj,0 + Sj(Φj−2),

where Sj,0 = Sj,0(εy, ξ̄; Φ0, · · · ,Φj−3) does not involve Φj−2, and Sj(Φj−2) is the sum of linear
terms of Φj−2. Since∫

RN
Sj(Φj−2) ∂sw0 = µ−1

( ∫
RN
|∂1w0|2

)
(JKΦj−2)s(εy), (2.48)

the equation on wj,1 (and then on wj) is solvable if and only if Φj−2 satisfies an equation of
the form

JKΦj−2 = Hj(ȳ; Φ0, · · · ,Φj−3, e).

This latter equation is solvable by the non-degeneracy condition on K. Moreover, for any
given e, by induction method one can get Φj−2 = Φj−2(ȳ; e) is a smooth bounded function
on ȳ and is Lipschitz continuous with respect to e. When this is done, since the right
hand side of equation of wj,1 is a smooth bounded function of (εy, ξ̄), we see at once that
wj,1 = wj,1(εy, ξ̄) is a smooth bounded function of (εy, ξ̄). Furthermore, wj,1 = wj,1(εy, ξ̄; e)
is Lipschitz continuous with respect to e.

Remark 2.2.5 To get the higher order approximations, our argument only need the expan-
sion of the Laplace-Beltrami operator up to second order. It is slightly different from the
argument used in [43].

Summary

Let vI be the local approximate solution constructed in the previous section, i.e.,

vI(y, ξ̄) = w0(ξ̄) +
I∑
`=1

ε`w`(εy, ξ̄) + εe(εy)Z(ξ̄), (2.49)

for I ∈ N+ an arbitrary positive integer.

From the analysis in the previous subsections, the stationary and non-degeneracy condi-
tions on K can be seen as conditions such that vI is very close to a genuine solution and can
be reformulated as follows.
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Proposition 2.7 Let Kk be a closed (embedded or immersed) submanifold of Mn. Then
the stationary condition on K is (2.36), and the non-degeneracy condition on K is equivalent
to the invertibility of operator JK defined in (2.44).

Summarizing, we have the following proposition by taking j = I + 1, wI+1 = 0, and
ΦI+1 = 0 in Section 3.2.3.

Proposition 2.8 Let I ≥ 3 be an arbitrary positive integer, for any given smooth functions
ΦI−1 and e on K, there are smooth bounded functions

w` = w`,1(εy, ξ̄; e) + σ−1〈H,Φ`−1〉U0, ` = 1, . . . , I,

and
Φj = Φj(ȳ; e), j = 0, . . . , I − 2,

such that

S̃ε(vI) = ε
(
− ε2µ−2∆Ke+ λ0e

)
Z + εI+1F̃I+1 + εI+1EI+1 eZ

+ εI+1Ai
I+1(εy, ξ̄; e) e ∂iZ + εI+1Bi`

I+1(εy, ξ̄; e) e ∂2
i`Z (2.50)

+ εI+1CiI+1(εy, ξ̄; e) · ∇Ke ∂iZ + εI+1Dab
I+1(εy, ξ̄; e) ∂2

abeZ + O(εI+2),

where

F̃I+1 =µ−1Γbbl ∂lwI +
2

3
µ−1Rkisl ξ̄

k Φl
I−1 ∂

2
isw0 − µ−1

(
g̃abRkabs +

2

3
Rkiis − ΓcakΓ

a
cs

)
Φk
I−1 ∂sw0

+ µ−2
(

2∇Kµ · ∇KΦs
I−1 + µ∆KΦs

I−1

)
∂sw0 + 2(hµ)−1

(
∇Kh · ∇KΦs

I−1

)
∂sw0

+ 2µ−2
(
∇Kµ · ∇KΦs

I−1

)
(ξ̄i ∂2

isw0) + µ−2〈∇NV,Φ0〉wI + µ−2〈∇NV,ΦI−1〉w1

+ µ−2〈∇NV,
ξ̄

µ
〉wI + µ−3∂2

klV (εy, 0) Φl
I−1 ξ̄

k w0 − p(p− 1)wp−2
0 w1wI +GI+1(εy, ξ̄; e),

EI+1 =− p(p− 1)wp−2
0 wI + µ−2〈∇NV,ΦI−1〉+ ẼI+1(εy, ξ̄; e),

and Ai
I+1, Bi`

I+1, CiI+1, Dab
I+1, ẼI+1 and GI+1 are smooth bounded functions on their variables

and are Lipschitz continuous with respect to e.

Remark 2.2.6 For example, ẼI+1 involves the term µ−3∂2
klV (εy, 0) Φl

I−2 ξ̄
k.

Global approximation

In the previous sections, some very accurate local approximate solution vI have been defined.

Denote
uI(y, ξ) = h(εy)vI(y, ξ̄),

in the Fermi coordinate. Since K is compact, by the definition of Fermi coordinate, there is
a constant δ > 0 such that the normal coordinate x on Kε is well defined for |x| < 1000δ/ε.
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Now we can simply define our global approximation:

W (z) = ηε3δ(x)uI(y, ξ) for z ∈Mε, (2.51)

where ηε`δ(x) := η( ε|x|
`δ

) and η is a nonnegative smooth cutoff function such that

η(t) = 1 if |t| < 1 and η(t) = 0 if |t| > 2.

It is easy to see that W has the concentration property as required. Note that W depends
on the parameter functions ΦI−1 and e, thus we can write W = W ( · ; ΦI−1, e) and define
the configuration space of (ΦI−1, e) by

Λ :=

{
(ΦI−1, e)

∣∣∣ ‖ΦI−1‖C0,α(K) + ‖∇ΦI−1‖C0,α(K) + ‖∇2ΦI−1‖C0,α(K) ≤ 1,

‖e‖C0,α(K) + ε‖∇e‖C0,α(K) + ε2‖∇2e‖C0,α(K) ≤ 1

}
. (2.52)

Clearly, the configuration space Λ is infinite dimensional.

For (ΦI−1, e) ∈ Λ, it is not difficult to show that for any 0 < τ < 1, there is a positive
constant C (independent of ε, ΦI−1, e) such that

|vI(y, ξ̄)| ≤ Ce−τ |ξ̄|, ∀ (y, ξ̄) ∈ Kε × RN . (2.53)

2.2.5 An infinite dimensional reduction and the proof of Theo-
rem 2.1

To construct the solutions stated in Theorem 2.1, we will apply the so-called infinite dimen-
sional reduction which can be seen as a generalization of the classical Lyapunov-Schmidt
reduction in an infinite dimensional setting. It has been used in many constructions in PDE
and geometric analysis. We present it here in a rather simple and synthetic way since it uses
many ideas which have been developed by all the different authors working on this subject
or on closely related problems. In particular, we are benefited from the ideas and tricks in
[8, 38, 43].

Setting-up of the problem

Given (ΦI−1, e) ∈ Λ, we have defined a global approximate solution W . an infinite di-
mensional reduction will be applied to claim that there exist ΦI−1 and e such that a small
perturbation of the global approximation W is a genuine solution.

For this purpose, we denote

E := −∆gW + V (εz)W −W p,

Lε[φ] := −∆gφ+ V (εz)φ− pW p−1φ,

and

N(φ) := −
[
(W + φ)p −W p − pW p−1φ

]
.
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Obviously, W + φ is a solution of equation (2.22) is equivalent to

Lε[φ] + E +N(φ) = 0. (2.54)

To solve (2.54), we look for a solution φ of the form

φ := ηε3δφ
] + φ[,

where φ[ : Mε → R and φ] : Kε × RN → R. This nice argument has been used in [8, 38, 43]
and is called the gluing technique. It seems rather counterintuitive, but this strategy will
make the linear theory of Lε clear.

An easy computation shows that

−Lε[φ] = ηε3δ
(
∆gφ

] − V φ] + pW p−1φ]
)

+ ∆gφ
[−V φ[+pW p−1φ[ + (∆gη

ε
3δ)φ

] + 2∇gη
ε
3δ ·∇gφ

].

Therefore, φ is a solution of (2.54) if the pair (φ[, φ]) satisfies the following coupled system:
∆gφ

[ − V φ[ = −(∆gη
ε
3δ)φ

] − 2∇gη
ε
3δ · ∇gφ

] + (1− ηεδ)
[
E +N(ηε3δφ

] + φ[)− pW p−1φ[
]
,

ηε3δ
(
∆gφ

] − V φ] + pW p−1φ]
)

= ηεδ

[
E +N(ηε3δφ

] + φ[)− pW p−1φ[
]
.

In order to solve the above system, we first define

L[ε[φ
[] := ∆gφ

[ − V φ[ on Mε, (2.55)

and note that it is a strongly coercive operator thanks to the conditions on the potential V ,
see (2.8). Then, in the support of ηε3δ, we define

φ] := h(εy)φ∗(y, ξ̄), with φ∗ : Kε × RN → R.

A straightforward computation as in Subsection 3.1 yields

ηε3δ

(
∆gφ

] − V φ] + pW p−1φ]
)

= ηε3δh
p
(

∆RNφ
∗ + µ−2∆Kεφ

∗ − φ∗ + (ηε3δ)
p−1pvp−1

I φ∗ + B̃[φ∗]
)
.

where B̃ = O(ε) is a linear operator defined in Subsection 3.1. Now we extend the linear

operator B̃ to Kε × RN and we define

Lε[φ∗] := ∆RNφ
∗ + µ−2∆Kεφ

∗ − φ∗ + (ηε3δ)
p−1pvp−1

I φ∗ + ηε6δB̃[φ∗] on Kε × RN ,

and

L∗ε[φ
∗] := ∆RNφ

∗ + µ−2∆Kεφ
∗ − φ∗ + pwp−1

0 φ∗ = −L0[φ∗] + µ−2∆Kεφ
∗ on Kε × RN .

Since ηε3δ · ηεδ = ηεδ and ηε3δ · ηε6δ = ηε3δ, φ is a solution of (2.54) if the pair (φ[, φ∗) solves the
following coupled system:

L[ε[φ
[] = −(∆gη

ε
3δ)hφ

∗ − 2∇gη
ε
3δ · ∇g(hφ

∗) + (1− ηεδ)
[
E +N(ηε3δφ

] + φ[)− pW p−1φ[
]
,

L∗ε[φ
∗] = ηεδ h

−p
[
E +N(ηε3δhφ

∗ + φ[)− pW p−1φ[
]
− (Lε − L∗ε)[φ∗].
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It is easy to check that

−(∆gη
ε
3δ)hφ

∗ − 2∇gη
ε
3δ · ∇g(hφ

∗) = (1− ηεδ)
[
− (∆gη

ε
3δ)hφ

∗ − 2∇gη
ε
3δ · ∇g(hφ

∗)
]

and

(1− ηεδ) = (1− ηεδ)(1− ηεδ/2).

Now, we define

Nε(φ
[, φ∗,ΦI−1, e) :=− (∆gη

ε
3δ)hφ

∗ − 2∇gη
ε
3δ · ∇g(hφ

∗)

+ (1− ηεδ/2)
[
E +N(ηε3δφ

] + φ[)− pW p−1φ[
]
,

and

Mε(φ
[, φ∗,ΦI−1, e) := ηεδ h

−p
[
E +N(ηε3δhφ

∗ + φ[)− pW p−1φ[
]
− (Lε − L∗ε)[φ∗].

Then W + φ is a solution of equation (2.22) if (φ[, φ∗,ΦI−1, e) solves the following system:L
[
ε[φ

[] = (1− ηεδ)Nε(φ
[, φ∗,ΦI−1, e),

L∗ε[φ
∗] = Mε(φ

[, φ∗,ΦI−1, e).
(2.56)

To solve the above system (2.56), we first study the linear theory : on one hand, since
the operator L[ε is strongly coercive, then we have the solvability of equation L[ε[φ

[] = ψ. On
the other hand, one can check at once that L∗ε has bounded kernels, e.g., ∂jw0, j = 1, . . . , N .
Actually, since L0 has a negative eigenvalue λ0 with the corresponding eigenfunction Z, there
may be more bounded kernels of L∗ε.

Let ψ be a function defined on Kε×RN , we define Π to be the L2(dξ̄)-orthogonal projection
on ∂jw0’s and Z, namely

Π[ψ] :=
(

Π1[ψ], . . . ,ΠN [ψ],ΠN+1[ψ]
)
, (2.57)

where for j = 1, . . . , N ,

Πj[ψ] :=
1

c0

∫
RN
ψ(y, ξ̄) ∂jw0(ξ̄) dξ̄, with c0 =

∫
RN
|∂1w0|2 dξ̄,

and

ΠN+1[ψ] :=

∫
RN
ψ(y, ξ̄)Z(ξ̄) dξ̄.

Let us also denote by Π⊥ the orthogonal projection on the orthogonal of ∂jw0’s and Z, namely

Π⊥[ψ] := ψ −
N∑
j=1

Πj[ψ] ∂jw0 − ΠN+1[ψ]Z.
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With these notations, as in the Lyapunov-Schmidt reduction, solving the system (2.56)
amounts to solving the system

L[ε[φ
[] = (1− ηεδ)Nε(φ

[, φ∗,ΦI−1, e),

L∗ε[φ
∗] = Π⊥

[
Mε(φ

[, φ∗,ΦI−1, e)
]
,

Π
[
Mε(φ

[, φ∗,ΦI−1, e)
]

= 0.

(2.58)

It is to see that one can write

E = ηε3δ h
p S̃ε(vI)− (∆gη

ε
3δ)(hvI)− 2(∇gη

ε
3δ) · ∇g(hvI)− ηε3δ

[
(ηε3δ)

p−1 − 1
]
hpvpI .

Hence by Proposition 2.8,

Mε(φ
[, φ∗,ΦI−1, e) =ε

(
− ε2µ−2∆Ke+ λ0e

)
Z + εI+1SI+1(ΦI−1)

+ εI+1GI+1(εy, ξ̄; e) + εI+2JI+1(εy, ξ̄; ΦI−1, e)

+ ηεδ h
−p
[
N(ηε3δhφ

∗ + φ[)− pW p−1φ[
]
− (Lε − L∗ε)[φ∗].

On the other hand, since∫
RN
SI+1(ΦI−1) ∂sw0 = c0µ

−1(JKΦI−1)s(εy), (2.59)

by some rather tedious and technical computations, one can show that

Π
[
Mε(φ

[, φ∗,ΦI−1, e)
]

= 0⇐⇒

{
εI+1JK [ΦI−1] = εI+1HI+1(ȳ; e) + Mε,1(φ[, φ∗,ΦI−1, e);

εKε[e] = Mε,2(φ[, φ∗,ΦI−1, e),

(2.60)

where HI+1(ȳ; e) is a smooth bounded function on ȳ and is Lipschitz continuous with respect
to e, JK is the Jacobi operator on K, and Kε is a Schrödinger operator defined by

Kε[e] := −ε2∆Ke+ λ0µ
2e (2.61)

where λ0 is the unique negative eigenvalue of L0.

We summarize the above discussion by saying that the function

u = W ( · ; ΦI−1, e) + ηε3δ hφ
∗ + φ[,

is a solution of the equation
∆gu− V (εz)u+ up = 0,

if the functions φ[, φ∗, ΦI−1 and e satisfy the following system

L[ε[φ
[] = (1− ηεδ)Nε(φ

[, φ∗,ΦI−1, e),

L∗ε[φ
∗] = Π⊥

[
Mε(φ

[, φ∗,ΦI−1, e)
]
,

εI+1JK [ΦI−1] = εI+1HI+1(ȳ; e) + Mε,1(φ[, φ∗,ΦI−1, e),

εKε[e] = Mε,2(φ[, φ∗,ΦI−1, e).

(2.62)
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Remark 2.2.7 1. In general there are two different approaches to set-up the problem:
the first one, as used in [8] and [43], consists in solving first the equations of φ[ and φ∗

for fixed ΦI−1 and e, and then solve the left equations of ΦI−1 and e. The second one,
as in [26, 30] consists in solving first the linear problem Lε[φ] +ψ = 0 under some non-
degeneracy and gap conditions; and then solve the nonlinear problem Lε[φ]+E+N(φ) =
0 by using a fixed point arguments.

Our approach is slightly different from those in [8]-[43] and [26]-[30].

2. After solving the system (2.62), one can prove the positivity of u by contradiction since
both φ[ and φ∗ are small.

Analysis of the linear operators

By the above analysis, what is left is to show that (2.62) has a solution. To this end, we will
apply a fixed point theorem. Before we do this, a linear theory will be developed.

Analysis of a strongly coercive operator

To deal with the term −ηεδ h−ppW p−1φ[ in Mε(φ
[, φ∗,ΦI−1, e) in applying a fixed point

theorem, one needs to choose norms with the property that Mε(φ
[, φ∗,ΦI−1, e) depends slowly

on φ[. To this end, we define

‖φ[‖ε,∞ = ‖(1− ηεδ/4)φ[‖∞ +
1

ε
‖ηεδ/4φ[‖∞. (2.63)

With this notation, by the exponential decay of W , we have

‖Mε(φ
[, φ∗,ΦI−1, e)‖∞ ≤ Cε‖φ[‖ε,∞

and

‖Mε(φ
[
1, φ
∗,ΦI−1, e)−Mε(φ

[
2, φ
∗,ΦI−1, e)‖∞ ≤ Cε‖φ[1 − φ[2‖ε,∞.

Since (2.8), we have the following lemma.

Lemma 2.9 For any function ψ(z) ∈ L∞(Mε), there is a unique bounded solution φ of

L[ε[φ] = (1− ηεδ)ψ. (2.64)

Moreover, there exists a constant C > 0 (independent of ε) such that

‖φ‖ε,∞ ≤ C‖ψ‖∞. (2.65)

For φ[ ∈ C0,α
0 (Mε), we define

‖φ[‖ε,α = ‖(1− ηεδ/4)φ[‖C0,α
0

+
1

ε
‖ηεδ/4φ[‖C0,α

0
. (2.66)

As a consequence of standard elliptic estimates, the following lemma holds.
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Lemma 2.10 For any function ψ ∈ C0,α
0 (Mε), there is a unique solution φ ∈ C2,α

0 (Mε) of

L[ε[φ] = (1− ηεδ)ψ. (2.67)

Moreover, there exists a constant C > 0 (independent of ε) such that

‖φ‖2,ε,α := ‖φ‖ε,α + ‖∇φ‖ε,α + ‖∇2φ‖ε,α ≤ C‖ψ‖C2,α
0 (Mε)

. (2.68)

Study of the model linear operator L∗ε

First, we will prove an injectivity result which is the key result. Then, we will use this
result to obtain an a priori estimate and the existence result for solutions of L∗ε[φ] = ψ when
Π[φ] = 0 = Π[ψ].

Lemma 2.11 (The injectivity result) Suppose that φ ∈ L∞(Kε × RN) satisfies L∗ε[φ] = 0
and Π[φ] = 0. Then φ ≡ 0.

Proof. We will prove this lemma by two steps.

Step 1: The function φ(y, ξ̄) decays exponentially in the variables ξ̄.

To prove this fact, it suffices to apply the maximum principle since w0(ξ̄) has exponential
decay and φ is bounded.

Step 2: We next prove that

f(y) :=

∫
RN
φ2(y, ξ̄) dξ̄ = 0, ∀ y ∈ Kε.

Indeed, by Step 1, for all y ∈ Kε, f(y) is well defined. Since L∗ε[φ] = 0, we have

∆Kεf =

∫
RN

2φ∆Kεφ dξ̄ +

∫
RN

2|∇Kεφ|2 dξ̄

= 2µ2

∫
RN

{
|∇ξ̄φ|2 + φ2 − pwp−1

0 φ2
}
dξ̄ + 2

∫
RN
|∇Kεφ|2 dξ̄

≥ 2µ2γ0

∫
RN
φ2(y, ξ̄) dξ̄,

where in the last inequality since Π[φ] = 0 we use the following inequality∫
RN

{
|∇ξ̄φ|2 + φ2 − pwp−1

0 φ2
}
dξ̄ ≥ γ0

∫
RN
φ2 dξ̄. (2.69)

Therefore, by the definition of f , the above inequality gives

∆Kεf ≥ 2µ2γ0f.

Since f is nonnegative and Kε is compact, we just get f ≡ 0 by the integration. If Kε is non
compact, one can first show that f goes to zero at infinity by the comparison theorem and
then get f ≡ 0 by the maximum principle.

59



Remark 2.2.8 Actually, following the argument of proof of Lemma 3.7 in [38], one can show
that

φ =
N∑
j=1

cj(y) ∂jw0 + cN+1(y)Z, (2.70)

if φ is a bounded solution of L∗ε[φ] = 0, where cj(y) (j = 1, . . . , N) can be any bounded
function, but cN+1(y) must satisfy the equation

∆Kεc
N+1 = λ0µ

2cN+1. (2.71)

It is worth noting that (2.71) is just another form of Kε[e] = 0. When ε satisfies some gap
condition (cf. Proposition 2.14 below), equation (2.71) does not have a bounded solution.

Moreover, one can show that under the orthogonal conditions Π[φ] = 0, the linear operator
L∗ε has only negative eigenvalues λεj ’s and there exists a constant c0 such that

λεj ≤ −c0 < 0.

To prove it, since µ2 = V (ȳ, 0) and (2.8), the inequality (2.69) implies∫
Kε×RN

−L∗ε[φ]φ ≥ c

∫
Kε×RN

(−L∗ε[φ])(µ2φ) ≥ cγ0

∫
Kε×RN

φ2.

Before stating the surjectivity result, we define

‖ψ‖ε,α,ρ := sup
(y,ξ̄)∈Kε×RN

eρ|ξ̄|‖ψ‖C0,α(B1((y,ξ̄))),

where α and ρ are small positive constants.

Proposition 2.12 (The surjectivity result) For any function ψ with ‖ψ‖α,σ <∞ and Π[ψ] =
0, the problem

L∗ε[φ] = ψ (2.72)

has a unique solution φ with Π[φ] = 0. Moreover, the following estimate holds:

‖φ‖2,ε,α,ρ := ‖φ‖ε,α,ρ + ‖∇φ‖ε,α,ρ + ‖∇2φ‖ε,α,ρ ≤ C‖ψ‖ε,α,ρ, (2.73)

where C is a constant independent of ε.

Remark 2.2.9 Here we choose to use weighted Hölder norms, actually one can also use
weighted Sobolev norms.

Non-degeneracy condition and invertibility of JK

Proposition 2.13 Suppose that K is non-degenerate, then for any Ψ ∈ (C0,α(K))N ∩NK,
there exists a unique Φ ∈ (C2,α(K))N ∩NK such that

JK [Φ] = Ψ (2.74)

with the property

‖Φ‖2,α := ‖Φ‖C0,α(K) + ‖∇Φ‖C0,α(K) + ‖∇2Φ‖C0,α(K) ≤ C‖Ψ‖C0,α(K), (2.75)

where C is a positive constant depending only on K.
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Proof. Since the Jacobi operator JK is self-adjoint, this result follows from standard elliptic
estimates, cf. [15, 19].

Gap condition and invertibility of Kε

Proposition 2.14 There is a sequence ε = εj ↘ 0 such that for any ϕ ∈ C0,α(K), there
exists a unique e ∈ C2,α(K) such that

Kε[e] = ϕ (2.76)

with the property

‖e‖∗ := ‖e‖C0,α(K) + ε‖∇e‖C0,α(K) + ε2‖∇2e‖C0,α(K) ≤ Cε−3k‖ϕ‖C0,α(K), (2.77)

where C is a positive constant independent of εj.

Proof. This is a semiclassical analysis of a Schrödinger operator. The arguments are similar
in spirit as the ones used in the proof of Proposition 8.1 in [43]. We summarize them in the
following two steps.

Step 1: There is a sequence εj ↘ 0 such that for any ϕ ∈ L2(K), there exists a unique
solution to (2.76) and satisfies

‖e‖L2(K) ≤ Cε−kj ‖ϕ‖L2(K). (2.78)

This fact follows from the variational characterization of the eigenvalues and Weyl’s asymp-
totic formula.

Step 2: The unique solution satisfies (2.77). This follows from standard elliptic estimates
and Sobolev embedding theorem.

The nonlinear scheme

Now we can develop the nonlinear theory and complete the proof of Theorem 2.1.

Size of the error

Lemma 2.15 There is a constant C independent of ε such that the following estimates hold:∥∥Nε(0, 0, 0, 0)
∥∥
C2,α

0 (Mε)
+
∥∥Π⊥

[
Mε(0, 0, 0, 0)

]∥∥
ε,α,ρ
≤ CεI+1. (2.79)

Moreover, ∥∥Mε,1(0, 0, 0, 0)
∥∥
C0,α(K)

≤ CεI+2,
∥∥Mε,2(0, 0, 0, 0)

∥∥
C0,α(K)

≤ CεI+1. (2.80)

Proof. It follows from the definitions and the estimate (2.53).
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Lipschitz continuity

According to the estimate of error, we define

Bλ :=

{
(φ[, φ∗,ΦI−1, e)

∣∣ ‖φ[‖2,ε,α ≤ λεI+1, ‖φ∗‖2,ε,α,ρ ≤ λεI+1,

‖ΦI−1‖2,α ≤ λε, ‖e‖∗ ≤ λεI−3k

}
.

(2.81)

Lemma 2.16 Given (φ[1, φ
∗
1,ΦI−1, e1), (φ[2, φ

∗
2, Φ̃I−1, e2) ∈ Bλ, there is a constant C indepen-

dent of ε such that the following estimates hold:∥∥Nε(φ
[
1, φ
∗
1,ΦI−1, e1)−Nε(φ

[
2, φ
∗
2, Φ̃I−1, e2)

∥∥
C2,α

0 (Mε)

≤ CεI+1
(
‖φ[1 − φ[2‖2,ε,α + ‖φ∗1 − φ∗2‖2,ε,α,ρ + ‖ΦI−1 − Φ̃I−1‖2,α + ‖e1 − e2‖∗

)
,

∥∥Π⊥
[
Mε(φ

[
1, φ
∗
1,ΦI−1, e1)

]
− Π⊥

[
Mε(φ

[
2, φ
∗
2, Φ̃I−1, e2)

]∥∥
ε,α,ρ

≤ CεI+1
(
‖φ[1 − φ[2‖2,ε,α + ‖φ∗1 − φ∗2‖2,ε,α,ρ + ‖ΦI−1 − Φ̃I−1‖2,α + ‖e1 − e2‖∗

)
,

∥∥Mε,1(φ[1, φ
∗
1,ΦI−1, e1)−Mε,1(φ[2, φ

∗
2, Φ̃I−1, e2)

∥∥
C0,α(K)

≤ CεI+2
(
‖φ[1 − φ[2‖2,ε,α + ‖φ∗1 − φ∗2‖2,ε,α,ρ + ‖ΦI−1 − Φ̃I−1‖2,α + ‖e1 − e2‖∗

)
,

and ∥∥Mε,2(φ[1, φ
∗
1,ΦI−1, e1)−Mε,2(φ[2, φ

∗
2, Φ̃I−1, e2)

∥∥
C0,α(K)

≤ CεI+1
(
‖φ[1 − φ[2‖2,ε,α + ‖φ∗1 − φ∗2‖2,ε,α,ρ + ‖ΦI−1 − Φ̃I−1‖2,α + ‖e1 − e2‖∗

)
.

Proof. This proof is rather technical but does not offer any real difficulty. It is worth
noting that the use of the norm ‖φ[‖2,ε,α is crucial to estimate the term −ηεδ h−ppW p−1φ[ in
Mε(φ

[, φ∗,ΦI−1, e).

Proof of Theorem 2.1

By the analysis in Section 4.1, the proof of Theorem 2.1 follows from the solvability of (2.62).

Now we can use the results in the linear theory to rephrase the solvability of (2.62) as a

fixed point problem. To do this, let ΦI−1 = ΦI−1,0 + Φ̃I−1, where ΦI−1,0 solve the equation

JK [ΦI−1,0] = HI+1(ȳ; e). (2.82)
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Thus ΦI−1,0 = ΦI−1,0(ȳ; e). Moreover, the reduced system (2.62) becomes



L[ε[φ
[] = (1− ηεδ)Nε(φ

[, φ∗,ΦI−1, e),

L∗ε[φ
∗] = Π⊥

[
Mε(φ

[, φ∗,ΦI−1, e)
]
,

εI+1JK [Φ̃I−1] = M̃ε,1(φ[, φ∗, Φ̃I−1, e),

εKε[e] = M̃ε,2(φ[, φ∗, Φ̃I−1, e).

(2.83)

It is a simple matter to check that both M̃ε,1 and M̃ε,2 satisfy the properties in Lemmas 2.15
and 2.16. Taking I ≥ 3k+1 and λ sufficiently large, Theorem 2.1 is now a simple consequence
of a fixed point theorem for the contraction mapping Bλ.

2.2.6 Proof of Proposition 2.5

The proof is based on the Taylor expansion of the metric coefficients. Recall that the Laplace-
Beltrami operator is given by

∆gu =
1√

det g
∂α

(√
det g gαβ ∂βu

)

which can be rewritten as

∆gu = gαβ∂2
αβu+ (∂αg

αβ)∂βu+
1

2
gαβ∂α(log det g)∂βu.

Using the expansion of the metric coefficients determined above, it can be easily proved that

gαβ ∂2
αβu = g̃ab ∂2

abu+ ∂2
iiu+ ε

{
g̃cb Γaci + g̃ca Γbci

}
(ξi + Φi) g̃ab ∂2

abu− 2ε g̃ab ∂b̄Φ
j ∂2

aju

+ ε2

(
− g̃cb g̃adRkcdl + g̃ac ΓbdkΓ

d
cl + g̃bc ΓadkΓ

d
cl + g̃cd ΓadkΓ

b
cl

)
(ξk + Φk)(ξl + Φl) ∂2

abu

− 4 ε2

3
Rkajl(ξ

k + Φk)(ξl + Φl) ∂2
aju+ 2ε2∂b̄Φ

j

{
g̃bc Γaci + g̃ac Γbci

}
(ξi + Φi) ∂2

aju

− ε2

3
Rkijl(ξ

k + Φk)(ξl + Φl) ∂2
iju+ ε2 g̃ab ∂āΦ

i∂b̄Φ
j ∂2

iju

+R3(ξ,Φ,∇Φ)(∂2
iju+ ∂2

aju+ ∂2
abu).
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An easy computations yields

∂bg
ab = ∂bg̃

ab + ε2 ∂b̄

{
g̃cb Γaci + g̃ca Γbci

}
(ξi + Φi) + ε2

{
g̃cb Γaci + g̃ca Γbci

}
∂b̄ Φi

+R3(ξ,Φ,∇Φ,∇2Φ),

∂jg
ja = −2

3
ε2Rjajl(ξ

l + Φl) + ε2∂b̄Φ
j

{
g̃bc Γacj + g̃ac Γbcj

}
+R3(ξ,Φ,∇Φ),

∂ag
aj = −ε2 ∂āg̃

ab ∂b̄Φ
j − ε2 g̃ab ∂2

āb̄Φ
j + ε3∂2

āb̄Φ
j

{
g̃bc Γaci + g̃ac Γbci

}
(ξi + Φi)

+R3(ξ,Φ,∇Φ,∇2Φ),

∂ig
ij = −1

3
ε2Rkiji(ξ

k + Φk) +R3(ξ,Φ,∇Φ).

Then the following expansion holds

(∂αg
αβ)∂βu =

∂bg̃
ab ∂au+ ε2 ∂b̄

{
g̃cb Γaci + g̃ca Γbci

}
(ξi + Φi) ∂au+ ε2

{
g̃cb Γaci + g̃ca Γbci

}
∂b̄ Φi ∂au

− 2

3
ε2Rjajl(ξ

l + Φl) ∂au+ ε2∂b̄Φ
j

{
g̃bc Γacj + g̃ac Γbcj

}
∂au

− ε2 ∂āg̃
ab ∂b̄Φ

j ∂ju− ε2 g̃ab ∂2
āb̄Φ

j ∂ju+ ε3∂2
āb̄Φ

j

{
g̃bc Γaci + g̃ac Γbci

}
(ξi + Φi) ∂ju

− 1

3
ε2Rkiji(ξ

k + Φk) ∂ju+R3(ξ,Φ,∇Φ,∇2Φ)(∂ju+ ∂au).

On the other hand using the expansion of the log of determinant of g given in Lemma 2.4, it
holds that

∂b log
(

det g
)

= ∂b log
(

det g̃
)
− 2ε2 ∂b̄

(
Γaak
)

(ξk + Φk)− 2ε2 Γaak ∂b̄Φ
k +R3(ξ,Φ,∇Φ,∇2Φ).

and

∂i(log det g) = −2εΓbbi + 2ε2

(
g̃abRkabi +

1

3
Rkjji − ΓcakΓ

a
ci

)
(ξk + Φk) +R3(ξ,Φ,∇Φ),

which implies that

1

2
gαβ∂α(log det g)∂βu =

1

2
∂a(log det g̃)

(
g̃ab ∂bu+ ε

{
g̃cbΓaci + g̃caΓbci

}
(ξi + Φi)∂bu− ε g̃ab∂b̄Φj∂ju

)
− εΓbbi∂iu+ ε2

(
g̃abRkabi +

1

3
Rkjji − ΓcakΓ

a
ci

)
(ξk + Φk) ∂iu

− ε2

(
∂b̄
(
Γddk
)

(ξk + Φk) + Γddk ∂b̄Φ
k

)
g̃ab∂au+R3(ξ,Φ,∇Φ,∇2Φ)(∂ju+ ∂au).
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Collecting the above terms and recalling that

∆Kεu = g̃ab∂2
abu+ (∂ag̃

ab)∂bu+
1

2
g̃ab∂a(log det g̃)∂bu,

the desired result then follows at once. 2
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