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Resumen

El trabajo presentado en esta memoria se sitia en la interfaz entre el analisis y la geometria.
El interés recae en el estudio de fenémenos de concentracién para dos problemas “geométri-
cos” no lineales: la existencia de hipersuperficies con r-curvatura constante en variedades
Riemannianas, y una ecuacién de Schrodinger no lineal. Esta memoria se puede dividir en
dos partes principales. La primera esta dedicada a explorar algunos resultados sobre concen-
tracién de familias de hipersuperficies de curvatura media constante (o en general curvatura
r-media constante) con topologia no trivial en variedades Riemannianas compactas. Se re-
cuerda que la curvatura r-media de una hipersuperficie se define como la r-ésima funcion
simétrica elemental de las curvaturas principales de la hipersuperficie. Se prueba que las
técnicas desarrolladas en el trabajo de Mahmoudi, Mazzeo y Pacard [2§] se pueden extender
para manejar el caso de curvatura r-media con r > 1. Este fendmeno de concentraciéon se
relaciona en general con un fenémeno de resonancia, que hace el andlisis particularmente
delicado y que también se encuentra en el estudio de una clase de ecuaciones elapticas no
lineales que presentan concentracion sobre conjuntos de dimensién mayor.

En la segunda parte, correspondiente al paper [29], se prueba un nuevo resultado sobre
concentracion en subvariedades para una ecuacion de Schrodinger no lineal con potencial
definido en una variedad Riemanniana suave y compacta M o el espacio Euclideo R", re-
solviendo en completa generalidad una conjetura planteada por Ambrosetti, Malchiodi y Ni,
ver [I]. Precisamente, se estudian soluciones positivas de la siguiente ecuacién semilineal:

e2Agu —V(z)u+u’ =0 en M,

donde (M, g) es una variedad Riemanniana n-dimensional suave, compacta y sin borde o
el espacio Euclideo R", € es un parametro positivo pequeno, p > 1 y V es un potencial
uniformemente positivo. Se prueba quedadok=1,...,n—1yl<p< ng:,’z, y suponiendo
que K es una subvariedad k-dimensional suave y encajada de M, que es estacionaria y

. ptl_ n—k . .
no degenerada con respecto al funcional [ VP12 dvol, entonces existe una secuencia

e = ¢; — 0 y soluciones positivas asociadas u = u. que concentran sobre K en el sentido
de que decaen exponencialmente a cualquier distancia positiva a K. En particular este
enfoque explora una conexioén entre soluciones de esta ecuacion de Schrodinger no lineal y
subvariedades f-minimales en variedades con densidad.
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Abstract

The work presented in this thesis is located in the interface of analysis and geometry. The
interest is the study of concentration phenomena for two nonlinear “geometric” problems:
the existence of hypersurfaces with constant r-curvature in Riemannian manifolds, and a
nonlinear Schrodinger equation. This thesis can be divided in two main parts. The first one
is devoted to explore some results about concentration of families of constant mean curvature
(or in general constant r-mean curvature) hypersurfaces with nontrivial topology in compact
Riemannian manifolds. Recall that the r-mean curvature of a hypersurface is defined to be
the r-th elementary symmetric function of the principal curvatures of the hypersurface. It
is shown that the techniques developed in the paper by Mahmoudi, Mazzeo and Pacard [2§]
can be extended to handle the case of r-mean curvature with r > 1. This concentration
phenomenon is in general related to a resonance phenomenon which makes the analysis
particularly delicate and which one also meets in the study of a class of nonlinear elliptic
equations presenting concentration on higher dimensional sets.

In the second part, corresponding to the paper [29] (submitted), a new result about con-
centration on submanifolds for a nonlinear Shrodinger equation with potential defined on a
smooth compact Riemannian manifold M or the Euclidean space R" is proved, solving in full
generality a conjecture stated by Ambrosetti, Malchiodi and Ni, see [I]. Precisely, positive
solutions of the following semilinear equation are studied:

e2Agu—V(2)u+u’ =0 on M,

where (M, g) is a compact smooth n-dimensional Riemannian manifold without boundary
or the Fuclidean space R", ¢ is a small positive parameter, p > 1 and V is a uniformly
positive smooth potential. It is proved that given k =1,..., n—1land 1 <p < Zf;:];, and
assuming that K is a k-dimensional smooth, embedded compact submanifold of M, which

is stationary and non-degenerate with respect to the functional [ I Vit "2 dvol , then there
exist a sequence € = ¢€; — 0 and associated positive solutions u. that concentrate along K in
the sense that they decay exponentially at each distance to K. In particular this approach
explores a connection between solutions of this nonlinear Schrédinger equation and f-minimal
submanifolds in manifolds with density.
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Chapter 1

Hypersurfaces of constant r-mean
curvature condensing on a
submanifold

1.1 Introduction

Let ¥™ be an oriented embedded (or possibly immersed) hypersurface in a compact Rieman-
nian manifold (M™% g). The shape operator Ay is the symmetric endomorphism of the
tangent bundle of K associated with the second fundamental form of X, by, by

bs(X,Y)=gs(Axs X,Y), VXY €T%; here gs = glrs -

The eigenvalues x; of the shape operator Ay, are the principal curvatures of the hypersur-
face X. The r-curvature of ¥ is defined to be the k-th symmetric function of the principal

curvatures of X, i.e.
o-(X) = g Kiy - - Ki, .

1< <lpe

In particular o; equals m times the mean curvature of ¥ and o, equals the Gauss-Kronecker
curvature of .

Hypersurfaces of constant mean curvature and Gauss-Kronecker curvature constitute a
very important class of submanifolds in a compact Riemannian manifold (M™%, g) and have
been studied extensively. In this work, degenerating families of submanifolds with constant
r-curvature which ‘condense’ to the submanifold K* C M™*! of codimension greater than 1
are studied. Under fairly reasonable geometric assumptions, cf. [34], the existence of such a
family for » = 1 implies that K is minimal. Some cases have been studied previously: Ye [47],
[48] proved the existence of a local foliation by constant mean curvature hypersurfaces when
K is a point (which is required to be a nondegenerate critical point of the scalar curvature
function); more recently, Mazzeo and Pacard [34] proved existence of a partial foliation in
the mean curvature case when K is a nondegenerate geodesic and Mahmoudi [24] proved
existence of a local foliation in the case when K is a point and general r. Finally, Mahmoudi,
Mazzeo and Pacard [28] studied the case when K is an arbitrary nondegenerate minimal
submanifold (no extra curvature hypotheses are required) and » = 1. The aim of the first
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part of this work is to give a overview of the above mentionned results and to show that the
methods used in the paper [28] can be extanded to handle the general case, i.e. for arbitrary
k and r.

This result is described in more detail. Let K* be a closed (embedded or immersed)
submanifold in M™*™! 1 < k < m — 1, and define the geodesic tube of radius p about K by

S,:={qge M™": dist,(q, K) = p}.

This is a smooth (immersed) hypersurface provided p is smaller than the radius of curvature
of K, and henceforth it is always assumed that this is the case. The r-curvature of this tube
satisfies

UT(SP) = C<m7 ka T) IO_T + O(p_r)a as P \,4 07
with n =m +1—k and C(m, k,r) = C!_,, a quantity depending only on m, k and r, and

n
hence it is plausible that this tube might be able to be perturbed to a constant r-curvature
hypersurface with o, = C(m, k,r) p~". This is not quite true since the r-mean curvature of
S, is not sufficiently close to being constant, however when K is minimal there is a better
estimate
a.(Sp) = C(m, k,7) p~" + O(p),

cf. Section for more details. Even in this case, there are other more subtle obstructions
to carrying out this procedure at certain radii p related to eigenvalues of the linearized mean
curvature operator on Sp, which in turn are related to a genuine bifurcation phenomenon,
at least when k = r = 1, cf. [34]. Thus the existence of the constant mean curvature
perturbation is not obtained for every small radius. The precise statement of the obtained

result is the following:

Theorem 1.1 Suppose that K* is a nondegenerate closed minimal submanifold 1 < k <
m—1andr < m—k. Then there exists a sequence of disjoint nonempty intervals I; = (pi,pi),
pi — 0, such that for all p € I := U;I;, the geodesic tube S, may be perturbed to a constant

mean curvature hypersurface S, with o,(S,) =C} _, p~".

The nondegeneracy condition on K is simply that the linearized mean curvature operator,
also called the Jacobi operator, is invertible; this restriction is quite mild and holds generically
[45]. As mentioned above, this result was already known when k& = 0,1, but the case k > 1
requires a more complicated analysis. This approach was inspired by the works of Malchiodi
and Montenegro in different context, see [32, [33].

The hypersurface S, is a small perturbation of S ,» in the sense that it is the normal graph of
some function (with L norm bounded by a constant times p?) over a submanifold obtained
by ‘translating” K by a section of its normal bundle (with L> norm bounded by a constant
times p?); the reader is referred to for the precise formulation of the construction of S,.
When K is embedded, then so are the hypersurfaces S, for p sufficiently small. In addition,
the hypersurfaces in each of the families {5, } ¢/, are leaves of a local foliation of some annular
neighborhood of K.

The fact that the construction fails for certain values of p is related to a bifurcation
phenomenon. When k& = 1 the families of surfaces which bifurcate off are (perturbations of)
Delaunay unduloids [23]; however, when k > 2, this bifurcation is only known to exist in
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special cases, and the geometry of the surfaces in the putative bifurcating branches is less
clear. In any case, such bifurcations are inherent to the problem and occur also in [32] and
in many other situations. Furthermore, the index of the hypersurfaces S,, p € I;, tends to
400 as ¢ — 00. On the other hand, it is proved that the set I = U;[; is quite dense near 0 in
the sense that for any ¢ > 2 there exists a ¢, > 0 such that

|HC((0, p) N T) = pl < ¢4,
where H! denotes the 1-dimensional Hausdorff measure.

In the next section the asymptotic expansion of the metric on M in Fermi coordinates
around K is calculated; this is applied in the (quite technical) Section to derive the
expansions of various geometric quantities for the tubes Sp and their perturbations. This is
used in Section to obtain the expression for the mean curvature of the perturbed tubes,
which gives the equation to be solved. An iteration scheme is introduced in Section
which allows to find a preliminary perturbation for which the error term is much better, and
estimates for the gaps in the spectrum of the linearization are obtained in [I.6} finally, the
existence of the constant mean curvature hypersurfaces S, is obtained in [I.7

1.2 Fermi coordinates near K and expansion of the
metric

1.2.1 Fermi coordinates

The construction of Fermi coordinates in a neighborhood of K is recalled. For a given p € K,

there is a natural splitting
T,M =T,K & N,K.

Orthonormal bases E,, a = n+1,...,m+ 1, for T,K, and E;, i = 1,...,n, of N, K, are
chosen.

Notation: The convention that indices a, b, ¢, d, ... € {n+1,...,m+1}, indices ¢, j, k, ¢, ... €
{1,...,n} and indices «, 3,7, ... € {1,...,m + 1}, is adopted.

Consider, in a neighborhood of p in K, normal geodesic coordinates

fly) =expy (v Ea),  y= """ .. y™h,

where exp® is the exponential map on K and summation over repeated indices is understood.
This yields the coordinate vector fields X, := f,(0y«). For any E € T, K, the curve

s — yu(s) = expy (sE),

is a geodesic in K, so that
VXaXb|p € NpK.

As usual, the Christoffel symbols I':, are defined by

Vx, Xol, = Tiy Ei.
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The FE; are extended along each yg(s) so that they are parallel with respect to the induced
connection on the normal bundle N K. This yields an orthonormal frame field X; for NK in
a neighborhood of p in K which satisfies

VXaXi|p € TpK,
and hence defines coefficients I'’; by

Vx,Xil, = Tb; Ep.

A coordinate system in a neighborhood of p in M is now defined by
F(z,y) = exp%y)(aji Xi), (z,y) == (2',..., 2" y"" .y
with corresponding coordinate vector fields
X; = F,(04) and Xo = Fi(Oya).

By construction, X, |, = E,.

1.2.2 Taylor expansion of the metric

As usual, the definition of the Fermi coordinates above make the metric coefficients

Jap = 9(Xa, Xp)

equal d,p at p; furthermore, g(X,, X;) = 0 in some neighborhood of p in K. This implies
that

Xy 9(Xa, Xi) = 9(Vx, Xa, Xi) + 9(Xa, Vx, Xi) =0
on K, which yields the identity
ng = _Ffzb (1.1)
at p.
Denote by I’ : N,K — R the linear form with coefficients

To() = 9(Ve, By, ) = —9(Ve,, Ey)

The higher terms in the Taylor expansions of the functions g,s are now computed. The
metric coefficients at ¢ := F(x,0) are given in terms of geometric data at p := F(0,0) and

2| = disty(p, q).

Notation: The symbol O(|z|") indicates a function such that it and its partial derivatives
of any order, with respect to the vector fields X, and z* X;, are bounded by c¢|z|" in some
fixed neighborhood of 0.

Start with the expansion of the covariant derivative:
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Lemma 1.2 At the point of ¢ = F(z,0), the following expansions hold:
Vx, X; = 0(|z])X,,
Vi, Xp = —I%E)X,; +0(z])X,, (1.2)
Vx, X; = Vx,X.=T%E) X, +0(z])X,,

a

Proor. Observe that, because coordinate vector fields are used, Vx, X = Vx X, for any
a, 5. It also holds that VxX|, = 0 since any X € N,K is tangent to the geodesic s
expy’(sX), and hence

VXiJer (Xz + Xj)’p - O

Therefore
(Vx, X, + VXin)‘p =0,

which proves the first estimate.

Also, by construction .
Vi, Xy =T Xi + O(|2]) X,

and
Vx,Xi = Vx,Xo =% X, + 0(|z]) X,.
From this, the definition of I'® and (1.1]) the next two estimates follow. ]

The expansion of the metric coefficients can now be given. The expansion of the g;;,
1,7 = 1,...,n, agrees with the well known expansion for the metric in normal coordinates
[41], [21], [46], but the proof is recalled here for completeness.

Proposition 1.3 At the point ¢ = F(x,0), the following expansions hold
9i; = 0+ 3 9(R(Ey, E;) By, Ej) 2 2" + O(|z]?)
gai = O(|z[?) (1.3)
gab = Oap = 2T5(E;) o' + (9(R(Ey, Ea) Ee, Ey) + T(Ey) TUEr)) o* 2 + O(|z[?).

Proor. By construction, g,s = dap at p, and so
Yap = 0ap + O(|z]).

Now, from
Xi Gap = g(szXav X,B) + g(XOm VXZX,B)v

Lemma and (|1.1]), it holds that
Xi gajl, = 0, Xigjl,=0  and Xi gapl, = Toy + Iy = 207,
This yields the first order Taylor expansion

905 = O(I2P), gy =0y +0(2P")  and  gu = da +2Tg; 2" + O(|af*).



To compute the second order terms, it suffices to compute X, X gog at p and polarize
(i.e. replace Xy by X; + X, etc.). It holds that

X X, Gop = g(vﬁan’ X/J’) + g(Xm v%(kXﬁ) +2 g<vXkXOM VXkX/3> (14)

To proceed, first observe that

VxX|, , =0

at p' € K, for any X € Ny K. Indeed, for all p’ € K, X € N,y K is tangent to the geodesic
s — expy/(sX), and so Vx X = V5 X = 0 at the point p/.

In particular, taking X = X}, + ¢ X}, it holds that
0= Vxi1ex; Vi rex; (Xi +X5) .
Equating the coefficient of € to 0 gives Vx, Vx, Xi|, = —2Vx, Vx, Xj|,, and hence
3Vi.X|, = R(Ex, E)) By,
So finally, using together with the result of Lemma , it is obtained that

X Xi gijl, = 3 9(R(Ek, ) By, Ej).

2
3
The formula for the second order Taylor coefficient for g;; now follows at once.

Recall that, since X, are coordinate vector fields, it follows from (|1.4]) that

V?kay =Vx, Vx X =Vx Vx, X + R(Xy, X)) X
Using ((1.4]), this yields
Xk Xi g = 29(R(X, Xa)Xi, Xp) +29(Vx, Xa, Vx, Xp)
+ 9(Vx,Vx, X, Xp) + 9(Xa, Vx, Vx, Xi).

Using the result of Lemma together with the fact that VxX = 0 at p’ € K for any
X € Ny K, it is concluded that

Xy Xk gabl, = 2 9(R(Ek, Eo) By, Ey) + 2175, T,

and this gives the formula for the second order Taylor expansion for gq,. O]

Later on, an expansion of some covariant derivatives which is more accurate than the one
given in Lemma is needed. These are given in the following:

Lemma 1.4 At the point ¢ = F(x,0), the following expansion holds
Vx, Xp» = IY(E;)X; — g(R(E;, E,) Ej, Ey) 2 X

+ 5 (9(R (Ea,Eb) By, Ej) — Uo(Ey) To(E)) — T(E;) TA(E)) 2 X; (1.5)

+ O(|z]) Xe + 0(J2*) X



PRrROOF.

Xig(Vx, X, Xj) = 9(Vx,Vx, Xp, X;5) + 9(Vx, X, Vx, Xj)
= g(R(X;, Xa) X, Xj) + 9(Vx, Vx, Xi, Xj) + 9(Vx, Xp, Vx, X;).

Observe that, by construction, it follows that
Vixerex, Xi = (I + e 1) Xe
along the geodesic s — exp{f (s(Fy +cEy)). Hence
v%(a—l—aXin = ((Xo +eXp)(Ig; +e1%)) Xe+ (g +eT%) Vx,ve x, Xe (1.6)
Evaluating this at the point p and considering the coefficient of ¢, it follows that
(Vx, Vx, Xi + Vx, Vx, Xi)|, — (TG Vx, Xe + 1Y, Vi, Xo)|, € T, K

and therefore

9(Vx, Vx, Xi, X)), + 9(Vx, Vx, Xi, Xj)|, = TG 9(Vx, Xe, Xj)|,
+ I59(Vx, Xe, X5)1,
= TG+ 5T

Finally, using the fact that
9(Vx, Vx, Xi, X;) = g(R(Xs, Xo) Xi, X;) + 9(Vx, Vx, Xi, X))
it is concluded that, at the point p
29(Ve, Vi, Ei, Ej)|, = 9(R(Eq, Ey) B, E;) + 17 ), + T4 T,
Collecting these estimates together with the fact that Vg, Ej]p = 0 it is concluded that
2 X 9(Vx,Xp, X;)|, = —29(R(E;, E) Ej, By) + g(R(Ea, By) Ei, Ej) + T, T}, + T4 T,

And this implies ((1.5]). ]

1.3 Geometry of tubes

Expansions as p tends to 0 for the metric, second fundamental form and the r-mean cur-
vature of the tubes S, and suitable perturbations are derived. This is an extension of the
computation in [34].



1.3.1 Perturbed tubes

A suitable class of deformations of the geodesic tubes S,, depending on a section ® of NK
and a scalar function w on the spherical normal bundle SN K is now described.

Fix p > 0. It is convenient to introduce the scaled variable § = y/p; also a local
parametrization z — ©(z) of S"7! is used. Define the map

G(z.9) =F (p(1+w(z7) O(2) + 2(p7). p7),
and denote its image by S,(w, ®), so in particular

S,(0,0) =S,

Notation: Because of the definition of these hypersurfaces using the exponential map, var-
ious vector fields used may be regarded either as fields along K or along S,(w, ®). To help
with this confusion, the following notation is used:

d = P E D, := 0y P E; Dy = Dya,p D' E

0 :=0’E; Q, :== 0.6/ E;.

These are all vectors in the tangent space T, M at the fixed point p € K. On the other hand,
the vectors ‘ A
U= X; U, = 0y P’ X,

lie in the tangent space T,M, ¢ = F(z,y).

For brevity, it is also written

w; = 0w, W = Ogaw, Wi = 04 0w, Wy = Oga Opw,  Wgj = Oga D5w.

In terms of this notation, the tangent space to S,(w, ®) at any point is spanned by the
vectors

Zy = Gu(0p) = p(Xg+w; T+Y,), a=n+1,....m+1

1.3.2 Notation for error terms

The formulas for the various geometric quantities of S,(®, w) are potentially very complicated,
and so it is important to condense notation as much as possible.

Any expression of the form L(w,®) denotes a linear combination of the functions w to-
gether with its derivatives with respect to the vector fields p X, and X; up to order 2, and
®J together with their derivatives with respect to the vector fields X, up to order 2. The
coefficients are assumed to be smooth functions on SN K which are bounded by a constant
independent of p in the € topology (i.e. derivatives taken with respect to X, and X;).
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Similarly, an expression of the form @Q(w, ®) denotes a nonlinear operator in the functions
w together with its derivatives with respect to the vector fields p X, and X; up to order 2,
and ®7 together with their derivatives with respect to the vector fields X, up to order 2.
Again, the coefficients of the Taylor expansion of the corresponding differential operator are
smooth on SNK, and () vanishes quadratically at (w, ®) = (0,0).

Finally, any term denoted O(p?) is a smooth function on SNK which is bounded in
C®(SNK) by a constant times p.

1.3.3 The first fundamental form

The aim of this section is to compute the coefficients of the first fundamental form of S,(w, ®).
Setting p := G(0,0) and

¢ = G(2,0) = F(p(1+w(z,0)) 6() + ®(pz),0)
formula yileds
9(Xa, Xp) = 0 —2pT5(0) +0(p*) = 215 (@) + p L(w, ) + Q(w, P)
9(Xi, X;) = 0+ 5 g(R(O, ) ©, E;) + 0(p°)
+ £(9(R(©, ) @, Ej) + g(R(D, E7) ©, E)) + p* L(w, @) + Q(w, D)
0(p?) + p L(w, @) + Q(w, ®).

(1.8)

g(Xiv Xa)

Using the previous expansions, the following computation follows:

Evaluating this expression with w = 0 and ® = 0, it follows that g(Y,Y;) = 0 since T is
normal and Y is tangent to S,(0,0). Since the first three terms on the right are independent
of w and ®, they must vanish and therefore

9(Y. 1)) = £9(R(2.0)0,0,) +* L(w,®) + Q(w, ¥) (19)

Using a similar argument, it follows that
g(T.7) = 9(6.0)+ % g(R(6,0)0,6,) + 0(p")
+ £(9(R(©,0)2,0) + g(R(2,0)0,0)) + p* L(w, ?) + Q(w, ),
and when w = 0 and ® = 0 this gives g(1,T) = 1, yielding

g(T, ) =1+ p* L(w, ®) + Q(w, D) (1.10)

Using these expansions, the expansion of the first fundamental form of S,(®,w) is ob-
tained:



Proposition 1.5 It holds that
029(Za %) = Bup—2pT8(O) + O(p2) — 2TL(®) + p L(w, ®) + Q(w, @)
P2 9(Za, Zj) = 0(p*) + L(w, @) + Q(w, D)
p29(Zi,Z;) = 9(6:,0))+ 5 g(R(©,6,)0,0;) + 0(p*) +29(6;,0;) w

=+ g (g(R(@7 @Z)(I)7 @J> + g(R(@7 @j)q)7 @2)) =+ pQL(w, (I)> + Q(w7 (I)>7
(1.11)

where summation over repeated indices is understood.

1.3.4 The normal vector field

The task of this section is to give the expansion of the unit normal N to S,(w, ®) in terms
of (w, ®). The following proposition is proved:

Proposition 1.6

N = —Y+a7; 4 X, + (pL(w, ®) + Q(w, P)) X, + (p*L(w, @) + Q(w, P)) X;
(1.12)
where the coefficients o’ are solutions of the system

o' 9(6,,0,) = wi + £ g(R(9,0)0,0,) + p’L(w, ®) + Q(w,®),  i=1...,n-1,

where summation again over j is understodd, and the coefficients $* are given by
B = wa + 9(®a, 0) + pL(w, ) + Q(w, ©).
Proor. Define the normal (not necessarily unitary) vector field
N:=—-Y+ A Z; + B* Z,

and choose the coefficients A’ and B* so that that N is orthogonal to all of the Z; and Z;.
This leads to a linear system for A7 and B@.

From (1.8)) together with the fact that ¢(Y,Z;) = 0 and ¢(Y,Z;) = 0 when w = 0 and
® = 0, it follows that

9T, Zz) = pws+pg(Pa,0)+ p* L(w, @) + pQ(w, P) L.13)
9(Y,Z;) = puw;+ 5 g(R(®,0)0,0;) + p* L(w, ®) + pQ(w, D),
Using Proposition [1.5] it follows that
1
B = wz + g(©,®,) + p L(w, ®) + 5 Q(w, ?)

and

. 1 1 1
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Recall also that Z; = pY; + p L(w, ®) and Z; = p X, + p L(w, ). Collecting these, together
with the fact that, at ¢, )
IN| =1+ p* L(w, @) + Q(w, D),

it follows that

N = ~T+1(aIZ+ 6 Z) + (L(w, ) + 1Q(w, cp)) Zs
(1.14)
+ <p L(w, ®) + 1Q(w, c1>)) Z; + (0 L(w, ®) + Q(w, ®)) T.

The result then follows. O

1.3.5 The second fundamental form

The second fundamental form of S,(w, ®) can now be computed. To simplify the computa-
tions it can be henceforth assumed that, at the point ©(z) € S,

9(0,0;)=6; and Ve,0,=0, ij=1,...,n—1 (1.15)
(where V is the connection on T.S™1).

Proposition 1.7 The following expansions hold:

p29(N,Vz.Za) = —T5O) +pg(R(O, Ea) ©, Ea) + pT(0) TUO) + O(p?)
Ly — g0, ) + g(R(®, E,)0, B,) + T5(O) T2(®) + w; T%(6))
+ pL(w, @)+ Q(w, P),

p 29N, Vz,Z5) = S +35pg(R(©,0;)0,0;)+0(p?)
— Jwj+yw+ 5 9(R(2,0))6,6;)
+ pL(w,®) —l—% Q(w, P)

p 29N, V2, Z5) = —T5(0) = swg+0(p) + L(w, @) +  Q(w, ) a#b

p29(N.Vz.Z;) = 0(p)+, L(w,®) + - Q(w, P)

p29(N,V2Z) = Op)+ 1 Lw, @)+ 5 Qw, @), i# 3.
(1.16)

Because of the extensive computations involved, the proof of this proposition is postponed
to section [

1.3.6 The shape operator of the perturbed tubes

Given the above expansion of the first and the second fundamental forms, and using the fact
that in terms of matrix representations it holds that p=2g = I + M implies that p’¢~! =

I — M+ O(|MJ*) and A = g~'B, the following expansion of the shape operator follows:

11



Proposition 1.8 Under the previous hypothesis, the shape operator is given by
pAwu(w, @) = p*g(R(O,E,)0, E,) — p*I5(0)TE(O) + 0(p?)
= Waa — PI(Paa + R(P, Ey)Eq, ©) + pT'(2) I2(O)
— 2pT5(0) e + p? L(w, @) + Q(w, P)
pAi(w,®) = 14 3p*9g(R(6,6,)0,0;) —w; —w + O(p)
+ p? L(w,®) + Q(w, ®)
p A1, ®) = O(p) + L(w, ®) + Q(uw, @)
pAij(w, @) = 0(p*) + L(w, @) + Q(w, @) i # j

pAab(w’ CI)) = —pFﬁ(@) — Wqe T+ O(IOZ) + L(wv (I)) + Q(w7 CI)) a 7é b

where all curvature terms are computed at the point p.

1.4 The r-mean curvature of perturbed tubes

Given any symmetric matrix A, and any r = 1, ..., m, define

O'T(A> = Z )\il NN >\ir7

11 <...<tp

where \q,...,\,, are the eigenvalues of A. Recall that the r-th Newton transform of A is
defined by

T.(A) :=0,(A) — 0,1 (A)A+ -+ (-1)" A"

with 7,,(A) = 0 by the Cayley-Hamilton theorem. It is proved in [39] that if A = A(¢) is a
one parameter family of symmetric matrices which depends smoothly on ¢ then

d

d
EO—T(A) = tr (TT1(A)%A) : (1.17)

from which it follows that, given any m x m symmetric matrices A and M,

or(A+ M) = 0,(A) + tr (T, (A) M) + O(|M[?).

- (I, 0
(% 0)

where n = m + 1 — k. Observe that o,(I) =C!_, if r < n—1and o,(I) =0 if r > n.
Using this together with the previous expansion of the shape operator, it is not hard to check

Let I be the matrix

12



that the r-mean curvature of the hypersurface S,(w, ®) can be expanded as

pron(Sy(w, @) = Ch_ +Ch1p? (% 1= 9(R(©,0,)0,0;) + g(R(©, E,)0, Ea))
— O p°TE(0)Te(O) 4+ 0(p?)
— Cﬁj (p2 Agw + 7= (Agn—1w + (n—1) w)) — 2,00,2:} I (0) wee

— pCZi(9(Ax® + R(®, E,)E, , ©) — I (®)T%(0))
p* L(w, @) + Q(w, ©),

+

where summation over repeated indices is understood and the linear and nonlinear operators
appearing on the expression are different from the ones before, but enjoy similar properties.

This expression can be simplified as follows: First, note that
K minimal <= I' = 0.

Define
n—r

= (Dgn1 +(n 1))> 7 (1.18)

as an operator on the spherical normal bundle SN K with the expression ([1.18]) in any local
coordinates.

n —

Introduce the quadratic form

0, = -0t (173257 ) 0@ - 5 B Rl ) - g(BY- )

acting on N, K, cf. [20]. Also, the Jacobi operator, for K is defined by
J=Cr0 (—AN — BN 4 RY). (1.19)

To explain the terms here, recall that the Levi-Civita connection for g induces not only the
Levi-Civita connection on K, but also a connection V¥ on the normal bundle NK. The first
term here is simply the rough Laplacian for this connection, i.e.

AN = (V)TN = VY VR -V e

In the coordinates chosen. The third term is the contraction (in normal directions) of the
curvature operator for this connection:

RN .= (R(E;, ") E)Y |
where E; is any orthonormal frame for /V,K. Finally, the second fundamental form
B:T,K xT,K — N,K, B(X,)Y) = (VXY)N7 X, Y eTl,K,

defines a symmetric operator
BN .= B'o B;

13



in terms of the coefficients I'Y := B(E,, E),
g(BY X, Y) =To(X)T3(Y).
Also define the Ricci tensor

Ric(X,Y) = g(R(X,E,)Y,E,), X,Y €T,M.

Finally, introduce the operator
g('7 B) © V%( = g('> B(Em Eb))(anva - V(VEaEb))7
in the coordinates chosen.
In terms of this notation, the following holds:

Proposition 1.9 Let K be a minimal submanifold. Then the r-mean curvature of 8 ,(w, ®)
can be expanded as

o (8w, @) = Ci_, —Q(6,0)p*+0(p?)
Lyw+pg(J®,0)—2C71 p°g(0, B) o Viw

_l’_
+ 0 L(w, ) + Q(u, D).

The equation p” 0,(8,(w, ®)) = C;_; can now be written as

Low+pg3P,0) = Q6,0)p* +0(p°) +2C;71p*9(0, B) o Viw

(1.20)
+ p*L(w,®) + Q(w, ®).

1.4.1 Decomposition of functions on SNK

Let (¢j,A;) be the eigendata of Agn—1, with eigenfunctions orthonormal and counted with
multiplicity. Define the subspace 8§ C L*(SNK) as the set of functions v : SNK — R such
that the restriction of v to each fibre of SN K is spanned by {¢1,...,¢,}. Denote by II and
1+ the L? orthogonal projections of L2(SNK) onto 8 and 8, respectively.

Now, given any function v € L2(SNK), write
v =g(®,0), Iv=pw,

sov = pw+g(P, O); here ¥ is a section of the normal bundle N K, and the somewhat elaborate
notation in the second summand here reflects the fact that any element of & can be written
(locally) as the inner product of a section of NK and the vector ©, whose components are
the linear coordinate functions on each S™~!. This summand is identified with ®, and thus,
in the following, w and ® always represent the components of v in 8+ and 8, respectively.

Thus 1
w = ~I, g(®,0) = Ilv.
p
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Later on the decomposition
W = Wy + W1 (121)

is used, where wy is a function on K and the integral of w; over each fibre of SN K vanishes.

Note that the operator
J:v=g(9,0) — g(J,0)

preserves & and is invertible since K is a nondegerate minimal submanifold.

1.5 Improving the approximate solution

The first step in solving ([1.20)) is to use an iteration scheme of Picard’s type to find a sequence
of approximate solutions ( (l) , ®@) for which the estimates for the error term are increasingly
small, namely

pTO-T<SP(w(i)7 CI)(Z))) - C(m7 ka T) + O(pz+3)

Letting (w®, ®©) = (0,0), define the sequence (w1, ®+D) ¢ §+ ¢ § inductively as

the unique solution to
Low ™D + pg(J+D 0) = Q(6,0)p% + (f)(pg) — p? Akw(i)
(1.22)
+2C,719°9(0, B) o Viw + p? L(w®, 21) 4 Q(w®, @),

Here
n

e —-T
LO = —C 7%n_1(ASn—1+(n—1))

n

Observe that the operator Ax has been moved to the right hand side and hence the operator
on the left hand side is not elliptic anymore. This equation becomes simpler when divided
into its 8+ and 8§ components. Thus using that £, annihilates 8 and

Q(0,0) € 8+,
since it is quadratic in ©, can be rewritten as the two separate equations:
Low ™D = I+ (Q(0,0)p* + 0(p*) — p* Agw®
+ 2C,719°9(0, B) o Vicw + p? L(w®, @) + Q(w®, 21))

and

IO = T (0(p?) +2C5-1p%g(0, B) o Viw® + p L(w®, ®D) + p~1Q(w®, ®0)) ,
since I[I(Agw) = 0 for all w € 8.

That there is a unique solution now follows from the invertibility of the operators J on &

and Ly on 8+, so the only issue is to obtain estimates.

Lemma 1.10 For this sequence (w'?, ®®)), the estimates
W0 89 =),
wiTD — @ — O<pi+3) U+ _ o) — O(pi“)
hold, for all © > 1.
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Proor. The estimates for (w™, ®(1)) are immediate, and the result for i > 1 is proved by a
standard induction using the general structure of the operators L and Q. O]

As already mentioned, the operator in the right hand side of (1.23]) is not elliptic since £y
acts on functions defined on SN K and does not involve any derivatives with respect to y®.
Nevertheless, since the pertinent functions are in 8, the equation

Low:f

can always be solved for any f € 8 (this equation is solved on each fiber of NK with the
base point as a parameter), but without any gain of regularity in the y* variables and in fact
there is a “loss” of two derivatives in the y® variables at each iteration. At first glance, it
would have been more natural to work with the operator £,, which is elliptic, and solve the
equation

Low = f,

but the operator £, has the disadvantage to have a nontrivial kernel in S each time %

belongs to the spectrum of —A . This implies that the corresponding iteration scheme, using
the operator £, instead of £, does not work for any value of p. In addition, even if C(p”fjr]i’”
is chosen not to belong to the spectrum of —Ag, the norm of the inverse of £, blows up as
p tends to 0 and hence the estimates for w® and ®® are not as good as the ones stated in

Lemma [I.10l

To conclude, the use of the iteration scheme ([1.22]) allows one to improve the approximate
solution to any finite order. Observe that the error Q(0,0)p* + O(p?) in (1.22)) is smooth in
the y® variables and hence losing finite regularity in these variables is not a real issue.

Finally, replacing (w, ®) by (w® +w, ®® + &) in (1.20), the expansion of the equation

(S, (D + w, 00 4 @)) = CET)
pr

becomes
L, w+ 9(3,0) — 205-1p2(0, B) o Vil + p Li(w, ®) = 0,(p™2)1Qu(w, @), (1.24)

The linear and nonlinear operators L; and (); appearing on this equation are different from
the ones before and depend on ¢, but enjoy similar properties uniformly in 7.

1.6 Estimates of the spectrum of linearized operators

The mapping properties of the linear operator
1 ,
(w, ®) — ELPU} +9(3®,0) —2C""1p?¢(0, B) o V2w + p Li(w, ®), (1.25)
which appears in ((1.24]), are examined. This is not precisely the usual Jacobi operator
(applied to the function pw + g(®, ©)), because this hypersurface is parametrized as a graph

over S,(w®, ®®)) using the vector field —T rather than the unit normal.
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To understand the difference between ([1.25]) and the Jacobi operator, recall that if N is the
unit normal to a hypersurface ¥ and NN is any other transverse vector field, then hypersurfaces
which are C2-close to ¥ can be parameterized as either

ESqupr]M(wN) or ZBq»—)expfy(wN).
The corresponding linearized r-mean curvature operators Ly, vy and Ly, y are related by
LZ,N(g<N7 N) UJ) +m (NTHE) w = LE,NU}’

here N7 is the orthogonal projection of N onto T'S. Since Ly, v is self-adjoint with respect to
the usual inner product, it follows that Ly, g is self-adjoint with respect to the inner product

(v,0) ::/Evv’g(N, N) dvols..

Now suppose that ¥ = Sp(w(i), ®@) and N = Y. From Lemma and Proposition
it follows that

Furthermore, from Proposition [1.5| and Lemma and the fact that K is minimal, the
volume forms of the tubes S,(w®, ®@) and SNK are related by

Vet (g5, 00 00)) = P72 (14 0(%)) v/det(gsnic);

hence

\/ det(gs, (w® a0))

=1+ 0(p*). (1.26)
pk/2 \/det(gsn k)

AP = g(Na _T>

Now define

1 _

Lyov=Ly(pw+g(®,0)):=A4, (— L,w+g(JP,0)+ 0(p*) Viw + p L(w, (IJ))
1p (1.27)

= (5800 + 92 9,0) + 0() Vku + pL(w, D))

where the last equality follows from (|1.26]).

Finally, multiplying (|1.24]) by A, gives one further equivalent form of this equation,

~ 1 ~/1
L,v=0(p*") + ;Q (;HLU, Hv) , (1.28)

where the nonlinear operator on the right has the same properties as before.

Associated to L, is the quadratic form

Q, (w, ) = /  (pw+g(®.O) Ly + 9(0.0))
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and its corresponding polarization, the bilinear form C,. These forms are studied as pertur-
bations of the model forms

Wp—1

Q(w,®)i= [ (VP + [Tsrwf - (0= 1) fuf) + 22 [ 5(30,0)
SNK K

and associated polarization C.

To make precise the sense in which Qy and Q, are close, define the weighted norm

I @)y = [ (1w + [Tomrof + ) + w0 [ (T +]0)
SNK K

and also

I (w, ®) 25 := / wl? + w / B2,
SNK K

Using ((1.26)) and the properties of L, it follows that

1Cp((w, @), (w', @) = Co((w, @), (w', &) < cp | (w, )y [|(w', &)1z, (1.29)

1.6.1 Estimates for eigenfunctions with small eigenvalues

Lemma 1.11 Let o be an eigenvalue of L, and (w, ®) a corresponding eigenfunction. There
exist constants ¢,cy > 0 such that if |o| < ¢g, then using the decomposition w = wgy + w;

from (m,

[ = wo, @)y < cp | (w, @)y

Proor. For any (w', ®'),
€yl @), (0, #)) = o [ (sl +g(@O)g(t,0)
NK

= a/ p2ww’+a&/g(<b,®').
SNK n Jk

In addition, (1.29)) gives

/ (P* Vgw Vgw' + VgrwVgnaw — (n—14+0)ww')
SNK

(1.30)
/K (9(38. ') — 0 g(®,))

Wn—1
+

- < cpl(w, @)y | (w', )|z

Step 1: First take v’ = 0 and ¢ = & in ([1.30)); this yields

[ o)+ ag<<1>,<1>>>' < cpll(w, @)1 110,91y
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Since J is invertible, there exists ¢; > 0 such that

Y

zen 0.0l <| [ a(a0.0)
K

hence
(21 = o)) [0, @) [y < cpll(w, @) a1

Assuming ¢; > |o|, it follows that

10, @) |z < cpll(w, @)l

Step 2: Using now ([1.30) with & = 0 and w = w, it follows that

< cpll(w, @)llay |(wy, 0)|mp-

/ (P Vicws? + [Veorwi]? = (n— 1 — ) [wn])
SNK

However, since ITw; = 0 and |, gn—1 w1 = 0, this implies

/ |V5n_1w1|2 Z 2n / |w1|2,
Sn—1 Sn—1

1
[ @19l + 5 s + (1= fol) )
SNK

hence

< cpll(w, @)lay [l (wy, 0)|my-

This implies that
(w1, 0) |y < cpl(w, )|
provided |o| < 1/4. This completes the proof taking ¢y = min{c;, 1/4}. O

1.6.2 Variation of small eigenvalues with respect to p

In order to estimate the spectral gaps of L, when the parameter p is small, it is necessary to
understand the rate of variation of the small eigenvalues of this operator. This is stated in
the following lemma

Lemma 1.12 There exist constants cy,c > 0 such that, if o is an eigenvalue of L, with
|o| < ¢, then
p0,0>2(n—1)—cp

provided p is small enough.

Proor. It is relevant to note that for simple eigenvalues, there is a well-known formula which
allows to compute its variation with respect to the parameter. This formula is given by

0,0 = / v (0,L,)v dvolgnk-.
SNK

There is in general complications in the presence of multiplicities, but a result of Kato [17]
shows that if one considers the derivative of the eigenvalue as a multi-valued function, then

19



an analogue of this same formula holds for self-adjoint operators. In fact it holds that in this
case

0,0 € {/ v(OL)v: v=pw+g(P,0), Luy=ocv, |v|= 1} .
SNK

Hence bounds should be provided for the set on the right. This is done by comparing to the
model case and using the bounds for eigenfunctions obtained in the last subsection.

Let v be an eigenfunction of LL, corresponding to a small eigenvalue o, namely L,v = o v.
Rather than normalizing by ||v||z2 = 1, it is assumed instead that ||(w, ®)||z2 = 1. Recall
that w = p~'II+v and hence it holds that

1 _
L= EL,,HLU + g(30,0) + O(p) VI v + p L(p~' TTHv, TIw).
Then, since II and II* are independent of p, it follows that

2 1 o
,Lv = —ELP(HJ‘U) + F(—2pAKHiv) +O(1) VEIT o + L(p ' TTHo, Iv)

2 _
= —?Low +0(p)Viw + L(w, ®)

where the operator L varies from line to line but satisfies the usual assumptions. This now
gives

2
/ 0 (O,L,) + / (IVgnrwl — (n— 1) |w]?)
SNK SNK

; <clw®f,. W3

Now, for this eigenfunction v, Q,(v,v) = o [ p*|w|* + g(P, @), and hence by (1.29),

/ (P IVl + [Vsmrwl — (n— 1+ o) [uwf) + <22 / (9(3®, @) — 0 ¢(®, ®))
SNK n Jx

< cpll(w, B3,

(1.32)
By Lemma [I.11]
/SNKWsn1w|2+/K<|ch1>|2+|<1>y2) < cpll(w, @), (1.33)
and inserting this in gives
/SNK(/ﬂ IVew> = (n—1+0)|w|?)| <epll(w, <I>)||§{%. (1.34)

Adding these last two estimates now implies that
w0}y < collw By +c [ ol
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Thus, when p is small enough,
[(w, )7, < cll(w, @)[|z2 < ¢

by the choice of normalization. From ([1.33) again
[ WswP s [ (Tx0p s lop) <cp
SNK K

Inserting this into (1.31), and using again that ||(w, ®)||z2 = 1, it follows that

2
/ 0 (9,L,)0 — = (n — 1)‘ <e (1.35)
SNK P
for all v such that L,v = cv and ||(w, ®)||z2 = 1.

This already implies that d,0 > 0 for p small enough. But observing that ||v||z2 <
||(w, ®)||2 always holds, it follows that

inf / v(d,L,)v > inf / v (0,L,)v
viLpv=o SNK vilpv=0v SNK

14
vl 2=1 [l(w,®)]| 2=1
and ((1.35]) implies that

2
0,,02;(71—1)—0.

This completes the proof of the result. n

1.6.3 The spectral gap at 0 of L,

A quantitative statement about the clustering of the spectrum at 0 of I, as p ™\, 0 can now
be proven. The ultimate goal is to estimate the norm of the inverse of this operator, but by
self-adjointness, this is equivalent to an estimate on the size of the spectral gap at 0.

Lemma 1.13 Fix any q > 2. Then there exists a sequence of disjoint nonempty intervals
L= (p;,p), pf — 0 and a constant ¢, > 0 such that when p € I := U;I;, the operator L,
is invertible and

L,': L*(SNK) — L*(SNK)

has norm bounded by ¢, p~*=9*1 uniformly in p € I. Furthermore, I := U;I; satisfies

|3 ((0,p) N I) —p| <cp?,  p\(O.

Proor. An estimate for the size of the spectral gap at 0 is related to the spectral flow of L,
and so it suffices to find an asymptotic estimate for the number of negative eigenvalues of
L,. Define the two quadratic forms

Q* (w, @) 1= Qo(w, @) £ 7 p || (w, )|,
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From (1.29), if v > 0 is sufficiently large, then
Q- <9, <07,
and this gives a two-sided bound for the index of Q,.

Decomposing w = wy + wy, with wy depending only on y € K, write

Di¥(wo) = (17 p) /

P’ |[Vkwo|* = (n —1Fvp) / |wol?,
K

K

D) = (147 p) /

(P IV icwrl? + [Vsnrwi?) = (n— 15 vp) / o 2,
SNK

SNK
and finally

Di(<1>>:—<1iw>/Kg(3<b,<1>>,

so that
Wn—1

Q*(w, ®) = wy_y D (wo) + DE (wy) + =L D* ()

n
If 1 — v p > 0, then the index of D* equals the index of the minimal submanifold K, and
hence does not depend on p. Next, if (1 —~p)2n — (n —1+7p) > 0, then the index of D
equals 0. So it remains only to study the index of DF. This is equal to the largest j € N
such that

(1£vp)p°pu; < (n—1Fcp)
Weyl’s asymptotic formula states that

Ind Q* ~ cx p7*,

and hence the index of D, and finally Ind Q, too, is asymptotic to cx p~*.
Let p; ™\ 0 be the decreasing sequence corresponding to the values at which the index of
Q, changes, counted according to the dimension of the nullspace of L, , i.e.
Pi-1 < pi=...= pj < Pjt1

if dim KerL,, = j + 1 —1. This is well-defined since, by Lemma [I.12] the small eigenvalues of
IL, are monotone increasing for p small enough and hence, the function p — Q, is monotone
decreasing for p small.

The estimates for Ind @2, and Ind @), imply that

ro=#{pi € (p.2p)} ~cp .

Letting [, denote the sum of lengths of intervals (p;;1,p;) for which p;11 € (p,2p) and
(pi — piv1) < p"7, then it holds that I, < ¢ p% from this it is concluded that £,, the sum of
lengths of all intervals (p;y1, p;) Where piy1 < p and (p; — pip1) < p*9 is also estimated by
cpl.
Define
I= U(Piﬂ, Pi); where i€ .J & pi—pi1 > pi L.
ieJ
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Then by the above, it holds that

|H((0,p) N 1) = p| < cqp”.

Finally, consider for any p € (pi+1,p:), ¢ € J, the eigenvalues of IL, which are closest to 0,
say
o (p) <0 <a"(p).

(Thus for each p € (pi+1,pi), 0~ (p) = 0; where j = Ind Q,.) By construction,

lim o (p) = lim o~ = 0.
PN\Pi+1 (p) P/ pi (P)

By Lemma [1.12]

— tcp; p € (Pit1, i),

and

P — Pit+1
0+(P)22(n—1)ﬁ—cpf:fa p € (pit1, pi)-
1+

Hence by the monotonicity of small eigenvalues, if
pel:=]J{p LS gy T e
. i+ 4 7 s Mi 4 i

1

then the infimum of the absolute value of the eigenvalues of IL, is bounded from below by a

constant (only depending on n) times pf+q_1, provided p is small enough. The result then
follows. o

1.7 Existence of -CMC hypersurfaces

The results of the previous sections are now used in order to solve the equation ([1.28]), which
reduces to finding a fixed point

pw+ g(®,0) =L (o<p2“> 200w, @)) |

Since any function v defined on SN K can be decomposed as v = pw + g(®, ©) where the

function w satisfies
/ we; =0
Sn—l

for all j =1,...,n, this equation can be re-written as
_ -1 24 L1l
v=I1L"{0(p )+;Q ;H v, v | ) .

Start with the following observation:
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Lemma 1.14 There exists a constant ¢ > 0 such that

_k
P vlleza < e p® Ly vlleoa +cp™2 [|v]| 2.

Proor. This is an application of (rescaled) standard elliptic estimates. Set f :=L,v and, as
in , use local normal coordinates y = y/p to parameterize a ball of radius 2pR in K, for
some fixed small constant R > 0, and local coordinates z to parameterize S"~!. Define the
functions

o(z, ) =v(zpy) and  f(z,9):=p’ f(zpD).

It is easy to check that f := L,v translates into L,0 = f, where L, is a second order
elliptic operator whose coefficients are bounded uniformly in p as p tends to 0. Moreover,
the principal part of L, is the Laplace operator on SN K. Standard elliptic estimates yield

1/2
[ollsseqinsn sy < ¢l Flemagspesn + ¢ ( / ( / |m2dy)>
Sn—1 BQR

where, to evaluate the Holder norms in C»® one takes derivatives with respect to § and z.
Going back to the functions v and f this yields

02+a HUHGM(B,JRxsnfl) <c HT)HéQv‘l(BRXS”—l)a ||f||é27&(BpR><Sn—1) < CPQ ||f||62’a(BRst)
and
1/ 1/2
([ (] wran)) <eot ([ ([ wea
Sn—1 B2R Sn—1 B2pR
the result then follows at once. O

Fix ¢ > 2 and a € (0,1). Collecting the result of Lemma and the result of the
previous Lemma, it follows that, if p € I, then

[vlleza < ep™P |IL, v]eom (1.36)
where the constant ¢ > 0 does not depend on p and where D := 3% +q+1+ .

Given R > 0, set
B(R) :={v € C**(SNK) : |[v||ez« < R}.

and define the mapping
-1 iy, L oa (1)
Ny(v) ==L, (O(p )+;Q ;H v, 1lv | ).

It follows from (|1.36]) that
¢ -
I, (0)ene < 2 24"

for some constant ¢y > 0, independent of p € I.
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Choose i € N such that ¢ > 2D + 1. Using the properties of the operator Q, it is easy to
check that there exists py > 0 such that, for all p € (0, po) N1,

N, (0) ez < o p**-P
and
[N, (v) = Np(v)]lez < cp™ 2P Jlu = 0|2

for all v,v" € B(co p**~P). Therefore the mapping N, admits a (unique) fixed point v, in
B(cg p>T=P). This yields the existence of a constant r-mean curvature perturbation of the
tube S,(w®, ®®) for all p € (0, py) N I. The proof of the Theorem is complete.

1.8 Proof of Proposition

The aim of this section in to prove Proposition Note first that by Lemma it holds
that
vXa Xb = FZ(E’L) X’L + (O(P) + L(wa @) + Q(wa @)) X’ya
Vi X; = (0(p) + L(w, ®) + Q(w, ®)) X, (1.37)
Vx, Xi = =T4(E) X, + (0(p) + L(w, @) + Q(w, P)) X,.

a

In particular, this, together with the expression of Z; implies that

VX = pTh(E) X+ (0(0%) + pL(w, ) + pQ(w, ) X,

a

(1.38)
ViuXe = —pTh(E)Xi+ (0(6) + pL(w, @) + pQ(uw, )) X,

The following expansion which follows from the result of Lemma [1.4] is also be needed:

VXaXb = FZ(Ej)Xj—g(R(p@+q),Ea)Ej,Eb)Xj

+ 5 (9(R(Ea, Eby) p© + @, Ej) —T(p© + @) TY(E;) — To(p© + @) TE(E))) X;
£ (O(p) + Lw, ®) + Q(w, B) X, + (O(2) + pLw. ®) + Quw, ®)) X;.
(1.39)
Finally, the following expansions is needed:
9(T, Xa) = pL(w,®)+Q(w,P)
(1.40)

9<T7Tj) = pL(qu)> + Q(w7 (I))a

the proof of which can be obtained as in [1.3.2] starting from the estimates ([1.8]).

First estimate: Estimate (N, V2, Z;) when a = b, since the corresponding estimate, when
a # b follows from the same proof. The expression to be expanded is

P2 9(N,Vz,Za) = p~" (9(N,Vz,Xa) + g(N, V7, (wa 1)) + g(N, V2, 0,)) .
The estimate is broken into three steps:
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Step 1 From (L.12), it follows that
g(N,T) = —g(T, 1) +a? g(T;, 1) + 5 g(Xp, T) + (p L (w, @) + Q' (w, ®)) g(X, T)
+ (P L(w, @) + Q(w, ®)) (X, T)
= —1+4+p?L(w,®)+ Q(w, ).
Substituting N = =T + N + T gives
g(N, V2 7T) = —% Ogag(T,T) +g(N +7T,V,T).

But it follows from that

0o 9(T,T) = p* L(w, ) + Q(w, D),
and together with the expression of N implies that

gIN+7T,V2T)=pL(w, @)+ pQw, D).

Collecting these estimates,

9(N,Vz,T) = p L(w, @) + Q(w, ®).
Hence it is concluded that

9(N,Vz,(wa 1)) = waa g(N, T) + wa g(N, Vz,T) = —waa + Q(w, P).
Step 2 Next, .
9N, Vz,9a) = pg(N, Vaa) + ©; g(N, V2, Xj).
From (L.38), it follows that
@), g(N,V2zX;) = p L(w, ®) + Q(w, ®).
Also, using the decomposition of N and , it holds that
gIN, Vo) = —g(T, W) +g(N + 71, W,0)
= —9(0,Pa0) + p L(w, @) + Q(w, P)).

Collecting these gives

9N, V2, ¥,) = =pg(Pua, ©) + p* L(w, D) + p Q(w, P)).

Step 3 Expanding Z; gives
9(N,V2,X,) =pg(N,Vx,Xa) + pws g(N,VrX,) + p @) g(N, Vi, Xp). (1.41)
With the help of , the following can be evaluated:
g(N,VrXa) = 0(p) + L(w,®) + Q(w, )
9N, Vx,Xa) = 0O(p) + L(w, ®) + Q(w, P)
gIN+7T,Vx,Xo) = —a/T5(6;) +pL(w,®) + Qw, D),
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and plugging these into ((1.41f) gives
9(N.Vz,Xa) = =pg(T.Vx,Xo) + p* L(w, D) + pQ(w, ®)
Using the following expansion is obtained:
Vx, Xo = —T5(Ej) X; = g(R(p© + @, E,) Ej, E.) X; + T5(p© + @) IT(E)) X;
+ (0(p) + L(w, @) + Q(w, ®)) Xc + (0(p*) + p L(w, @) + Q(w, ©)) X;,
Finally, using again, it follows that
9(N.VzXp) = pIe(0)+p*g(R(O,E,) 0, E,) + 0(p°)
+ pg(R(®,E,)©,Ey) + pL(p© + ©)TE(O) — pa’ 7 (6;)
+ PP L(w,®) + pQ(w, ),

which, together with the results of Step 1 and Step 2, completes the proof of the first estimate.

Second estimate: Estimate g(N, V2, Z;) when i = j since, just as before, the corresponding
estimate when i # j follows similarly. This part is taken directly from [34]. Observe that, by
Proposition (1.5} it can also be written

1 . A
N=-T+-aZ;+N,
p

where
N = (L(w,®) + Q(w, ®)) X, + (0* L(w, ®) + Q(w, P)) X,. (1.42)

Now write

9(N,Vz,Z;) = g(N,VyZj)
= 9(Vz Y, Z;) - 9(Vz (o' Zy), Z))
+ 9(N,V5,Z;) - 0., 9(N, Z)).
Step 1: By , it can be estimated
Vz,Zi = pwYj+pw; T+p(l+w) Vg Y+ pw; Vg T
= (0(p°) + p* L(w, ®) + p* L(w, ®) (L(w, @) + Q(w, P))) X,
+ (0(p%) + pL(w, @) + p* Q(w, D)) Xy,

Observe that the coefficient of X, is slightly better than the coefficient of X, since the first
two terms only involve the Xj. Using this together with (1.42)) it is concluded that

9(N,Vz,2;) = p* L(w, ®) + pQ(w, ®).
Step 2: Next, using ((1.42)) together with (|1.8]), it follows that
az]- Q(N; Z]) = p3 L(w) q)) + pQ(wa (I))
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Step 3: Now estimate
C:= QQ(VZjT, Z])

It is convenient to define 5
C'=——q(Vy(1+ T. 7).
1 wg( ZJ( ’LU) ) j)

It follows from ((1.13)) that
C=C+pQw,?)

hence it is enough to focuss on the estimate of C’. To analyze this term, for the moment
being regard w and ® as functions of the coordinates (z,¢) again and also consider p as a
variable instead of just a parameter. Thus consider

F(p,z,9) = F(p(1 +w(z,9)Y(z) + (t). 7).

The coordinate vector fields Z; are still equal to F}(9.,), but now it also holds that (14w)Y =

J

F.(0,), which is the identity to be used below. Now, from (1.11]), write

1 1
C' = H—wg(VaPZij) ~1T+w b 9(Zj, Z;).

Therefore, it follows from in Proposition [1.5 that

C = t550,[079(6,.0;) + 5 g(R(©,6,)0,6;) + ()
202wg(0;,0;) + 4 (9(R(©,6,) ®,0,) + g(R(6,0;) ©,8)))
p' L(w, @) + p* Q(w, @)] + p Q(w, P)
5 209(8;,0;) + 5 0° g(R(©,0,) ©,0;) + 0(p*)
4pwg(©;,0;) +p* (9(R(O,0;) ®,0;) + g(R(, ;) P, 6;))
P’ L(w, @) + p Q(w, )]
2p9(0;,0;) + 5 0° g(R(©,0;)0,0;) + 0(p*)
2pwg(0;,0;) + p* (9(R(6, ;) @, 0;) + g(R(©,6;) 2,0;))
P’ L(w, @) + p Q(w, ®).

+ o+ 1+ A

-

Step 4: Finally, the expression to be computed is
D = 29(Vy(a'Z;), Z;)
= 29(Z;,Z;) 00 + 20" (N4, 25, Z;)
= 29(Z;,Z;) 050" + ' 0. 9(Z;, Z;).

Observe that (1.15)) implies
azjg(@i, @j’) =0

at the point p. Using this together with ([1.11)) and the expression for the o' given in Propo-
sition [I.6] it follows that

a0, 9(Z;,Z;) = p* L(w, ®) + p* Q(w, D).
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It follows from and the definition of o' again that
9(Zi, Z;) 050" = p* g(0;,0;) 00" + p* L(w, @) + p* Q(w, ).
Therefore, it remains to estimate g(Y;, ;) 0.;a". By definition, it holds that
ol 9(0:,0;) = w; + gg(R(QJ, 0)0,0)).
Differentiating with respect to 2/ this yields
(9(64,0,) D00’ +a' 9.19(6:,6,)) = wy; + £ 0.19(R(2,6) ©,6,). (1.43)

Again, it follows from (1.15)) that 0,,9(©;,©,) = 0. Moreover, using (1.38), it can first be
estimated
V2, X =T+ 0(p%) + pL(w, @) + pQ(w, P);

and, using in addition , it also holds that
Vz,Tj=aT+0(p?) +pL(w,®) + pQ(w, P)
for some a € R. Reinserting this in yields
9(0:,0;) 0ua’ = wj; + §9(R(P,0;)0,0;) + § g(R(2,0) 0;,0;)+
+ PP L(w, @) + p* Q(w, )),
since R(©,0) = 0.

Collecting these estimates, it is concluded that

3

D =ptwj; + %g(R((I), 0,)0,0,) + p* L(w, ®) + p* Q(w, D)

since g(R(®,0)0;,0,) = 0. With the estimates of the previous steps, this finishes the proof
of the estimate.

Third estimate: Decompose

1

;g(N, V2.2;) = g(N,T;)wg + g(N,T)wa; + (1 +w) g(N,VzT;)+w;jg(N,VzT).
As above the expression of N given in ((1.12]) is used, to estimate

g(Nv TJ) = _g(T’Tj) +g(N+ Tarj) = L(w> (b) + Q(w>(1))'

Similarly

But now, by , it holds that
g(N.Vz,T;) = 0(p°) + p L(w, ®) + p Q(w, ®)
and, as already shown in Step 1
9(N,Vz, 1) = p* L(w, ) + Q(w, P),

and the proof of the estimate follows directly. O
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Chapter 2

Concentration on a submanifold for a
nonlinear Shrodinger equation

The construction of a one-parameter family of constant r-mean curvature hypersurfaces,
described in the previous chapter, is comparable to many concentration results that have
been highlighted in recent years in the study of semilinear elliptic equations. The first section
of this chapter is devoted to recall some results in this direction while in the second section
a new result obtained in collaboration with F. Mahmoudi and W. Yao, see [29] is presented.

2.1 Semilinear PDE’s presenting concentration phenom-
ena

In this section some previous results are briefly described. The first results in this direction
are recalled, referring to Subsection below for more bibliography.

A. Malchiodi [31] has studied the existence of periodic solutions for the equation
Lo ] n
x—l—;V(x) =0, reR (2.1)

for € > 0 small enough and V' : R® — R is a smooth function whose the set of critical points is
a hypersurface M C R". He distinguished two cases depending on the nature of the potential
V. where V is of repulsive type with respect to M, i.e.

V'"(z) (ng,n) <0  NYxe M, 0#n, LT,M,

he proved that every closed non degenerate geodesic zo : St — M is a limit, as € > 0 tends
to 0, of a one-parameter family wu. of solutions to equation (2.1). In particular, there is no
restriction on the the parameter €. In the attractive case

V"(x) (ngy,ng) >0  VYze M, 0#n, LT,M

the situation is radically different: given the existence of a resonance phenomenon and under
some technical assumptions, A. Malchiodi has demonstrated the existence of a sequence (g;);
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tending to zero and a sequence of solutions of equation (2.1) which converges to zy when j
tends to +oc.

J. Shatah and C. Zeng [42] considered the equation
Dyp + 11, (w'(p)) = 0 sur M, (2.2)

where M is a submanifold of dimension k embedded in R™*!, TI, is the orthogonal projection
of T,R™ over T,M and D, is the covariant derivative on M in the direction of p. The
problem is to show that the periodic solutions of equation are limits of a sequence of
periodic solutions to the penalized equation

# 4w (2) + 5_12 Q') = 0 (2.3)

where this time z is a curve in R™"! and the penalization potential is G(-) = dist(-, M)? in a
neighborhood of M. They proved in [42] that given p, a nondegenerate periodic solution of
(2.2)), there exists (g;); tending to 0 and a sequence of periodic solutions z; of equation ({2.3))
with e = & which converges to po in a suitable sence. As in [31], the existence is only proved
for a subsequence ¢; and not for all € > 0 small. This is related to a resonance phenomenon
coresponding to values of € for which the linearisation of around py admits a nontrivial
kernel. In fact, if one looks formally for solutions of as perturbations of solutions to
(2.2)), namely solutions of the form

r=po+y +y"

where py is a solutions of (2.2)), ™ and 3" are respectively normal and tangential perturbations
to M, then the linearized operator of ([2.3]), projected to normal fibers can be written as

1

L(y") ="+ A(y") + = y"

and the resonant modes correspond to the values of € satisfying

1

o\
g2 J

where \; are the eigenvalues of the operator y" — 3" + A(y").

In [8], M. del Pino, M. Kowalczyk and J. Wei studied existence of solutions to the nonlinear
Schrodinger equation

i P2 Ay QU b (2.4

in R?, where p > 1. If one looks for a solution 1 of the form (¢, y) = exp (—i At/e) u(y),
then wu is a solution for the nonlinear equation

2 Au—(Qy) +Nu+u’ =0, u>0, (2.5)

By developing an infinite dimensional version of the Lyapunov-Schmidt reduction method,
they proved that given a stationary non-degenerate curve I' for the potential energy

r—s /vfﬁ*i—édy
T
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and if () + X\ is a uniformly positive function, then for some constant ¢ > 0, there exists
go > 0 and )\, > 0 such that for all € < gy satisfying [e? j2 — \,| > ce, Vj € N, the equation
admits a positive solution u. which concentrate along I'. This result generalizes a
previous result obtained by A. Ambrosetti, A. Malchiodi and W.M. Ni [I] in the case where
the potential V' depends only on the distance to the origin. In particular the result of
M. del Pino, M. Kowalczyk and J. Wei is the first positive answer in the case n = 2 and
k = 1 to a conjecture stated by A. Ambrosetti, A. Malchiodi and W.M. Ni which says
that concentration on k-dimensional sets for k = 1,--- . n — 1 is expected under suitable
non-degeneracy assumptions and the limit set K should satisfy

0,.VVV = VH, (2.6)

where V¥ is the normal gradient to K and H is the mean-curvature vector on K.

Later on Mahmoudi, Malchiodi and Montenegro in [27] constructed different type of so-
lutions. Indeed, they studied complex-valued solutions whose phase is highly oscillatory
carrying a quantum mechanical momentum along the limit curve. In particular they estab-
lished the validity of the above conjecture for the case n > 2 arbitrary and £ = 1. Recently, by
applying the method developed in [8], Wang-Wei-Yang [43] considered the one-codimensional
case n > 3 and k =n — 1 in the flat Euclidean space R".

The main purpose of this chapter is to prove the validity of the above conjecture for all
k=1,...,n—1.

2.2  On the Ambrosetti-Malchiodi-Ni conjecture for gen-
eral submanifolds (joint work with F. Mahmoudi and
W. Yao), hitp://arxiv.org/abs/1405.6752

2.2.1 Introduction and main results

In this chapter concentration phenomena for positive solutions of the nonlinear elliptic prob-
lem
—?Agu+V(2)u = [ufP'u on M, (2.7)

are studied, where M is an n-dimensional compact Riemannian manifold without boundary
(or the flat Euclidean space R"), A; stands for the Laplace-Beltrami operator on (1, g), V'
is a smooth positive function on M satisfying

0< Vi <V(z) <V, forall z€e M and for some constants V;, V3, (2.8)

u is a real-valued function, € > 0 is a small parameter and p is an exponent greater than one.

The above semilinear elliptic problem arises from the standing waves for the nonlinear
Schrodinger equation on M, see [1l § and some references therein for more details. An
interesting case is the semiclassical limit € — 0. For results in this direction, when M = R
and p = 3, Floer-Weinstein [12] first proved the existence of solutions highly concentrated
near critical points of V. Later on this result was extended by Oh [37] to R™ with 1 < p < Z—fg
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More precisely, the profile of these solutions is given by the ground state Uy (4, of the limit
equation
—Au+V(zg)u—u’ =0 in R", (2.9)

where 1z is the concentration point. That is, the solutions obtained in [12] and [37] behave

qualitatively like
r — g

U () ~ Uy (20) (

Since Uy (4,) decays exponentially to 0 at infinity, u. vanishes rapidly away from zo. In other
words, in the semiclassical limit, solutions constructed in [12, 37] concentrate at points and
they are always called peak solutions or spike solutions. In recent years, these existence results
have been generalized in different directions, including: multiple peaks solutions, degenerate
potentials, potentials tending to zero at infinity and for more general nonlinearities. An
important and interesting question is whether solutions exhibiting concentration on higher
dimensional sets exist.

) , as ¢ tends to zero.
€

Only recently it has been proven the existence of solutions concentrating at higher dimen-
sional sets, like curves or spheres. In all these results (except for [2]), the profile is given
by (real) solutions to which are independent of some of the variables. If concentration
occurs near a k-dimensional set, then the profile in the directions orthogonal to the limit set
(concentration set) will be given by a soliton in R"~*. For example, some first results in the
case of radial symmetry were obtained by Badiale-D’Aprile [4] and Benci-D’Aprile [5]. These
results were improved by Ambrosetti-Malchiodi-Ni [1], where necessary and sufficient condi-
tions for the location of the concentration set have been given. Unlike the point concentration
case, the limit set is not stationary for the potential V' : in fact a solution concentrated near
a sphere carries a potential energy due to V and a volume energy. Define

/ Vul2+ V() ——/ ! (2.10)

and let K be a k-dimensional submanifold of M and Uk be a proper approximate solution
concentrated along K, see (2.51) below. One has

1
E(Ug) ~ gnk/ Vidvol, — with 6=~ — (n—k).
K

Based on the above energy considerations, Ambrosetti-Malchiodi-Ni [I] conjectured that
concentration on k-dimensional sets for k = 1,--- ,n — 1 is expected under suitable non-
degeneracy assumptions and the limit set K should satisfy

0,.VYV = VH, (2.11)

where V¥ is the normal gradient to K and H is the mean-curvature vector on K. In
particular, they suspected that concentration occurs in general along sequences €; — 0.

By developing an infinite dimensional version of the Lyapunov-Schmidt reduction method,
del Pino-Kowalczyk-Wei [§] successfully proved the validity of the above conjecture for n = 2
and k£ = 1. Actually they proved that: given a non-degenerate stationary curve K in R? (for
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the weighted length functional [ K V%fé), suppose that ¢ is sufficiently small and satisfies
the following gap condition:
|e0* — jo| > ce, VILEN,

where g is a fixed positive constant, then problem has a positive solution u. which
concentrates on K, in the sense that it is exponentially small away from K. After some time
Mahmoudi-Malchiodi-Montenegro in [27] constructed a different type of solutions. Indeed,
they studied complex-valued solutions whose phase is highly oscillatory carrying a quantum
mechanical momentum along the limit curve. In particular they established the validity of
the above conjecture for the case n > 2 arbitrary and & = 1. Recently, by applying the
method developed in [8], Wang-Wei-Yang [43] considered the one-codimensional case n > 3
and £ =n — 1 in the flat Euclidean space R™. The main purpose of this chapter is to prove
the validity of the above conjecture for all k =1,...,n — 1.

To prove the validity of the Ambrosetti-Malchiodi-Ni conjecture for all cases, one possible
way is to generalize the method developed in [8] and [43]. For this purpose, the key steps in [§]
and [43] are first recalled. According to our knowledge, the first key step is the construction
of proper approximate solutions, and the second key step is to develop an infinite dimensional
Lyapunov-Schmidt reduction method so that the original problem can be reduced to a simpler
one that can be handled easily. Actually this kind of infinite dimensional reduction argument
has been used in many constructions in PDE and geometric analysis. It has been developed
by many authors working on this subject or on closely related problems, see for example
[8, @, 13] 28], 25] and references therein.

Let us now go back to our problem. To construct proper approximate solutions for general
submanifolds, first the Laplace-Betrami operator for arbitrary submanifolds is expanded, see
Proposition 2.5l Then by an iterative scheme of Picard’s type, a family of very accurate
approximate solutions can be obtained, see Section 3. Next an infinite dimensional reduction
is developed such that the construction of positive solutions of problem can be reduced
to the solvability of a reduced system (2.62). For more details about the setting-up of the
problem, refer to Subsection 4.1. It is slightly different from the arguments in [§] and [43].
Finally, by noticing the recent development on manifolds with density in differential geometry
(cf. e.g. [22, 35]), our method explores a connection between solutions of the nonlinear
Schrodinger equation and f-minimal submanifolds in Riemannian manifolds with density.

The main result can now be stated.

Theorem 2.1 Let M be a compact n-dimensional Riemannian manifold (or the Euclidean
space R") and let V. : M — R be a smooth positive function satistying (2.8). Given k =
n+2—k

L,...,n—1,and 1 < p < *==F. Suppose that K be a stationary non-degenerate smooth

compact submanifold in M for the weighted functional

ptl _n—k
/Vpl z dvol,
K

then there is a sequence ¢; — 0 such that problem (2.7) possesses positive solutions u.,
which concentrate near K. Moreover, for some constants C, cq > 0, the solutions u., satisfies
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globally
lu, ()] < Cexp (— codist(z, K) /g;).

Remark 2.2.1 The assumptions on K are related to the existence of non-degenerate compact
p+l n—k

minimal submanifold in manifolds M with density Vit "2 dvol. In fact writing Vr—17"2 =
e/, then K is called f-minimal submanifold in differential geometry (cf. [22]).

Remark 2.2.2 Actually it can be proved that the same result holds true under a gap condi-
tion on €, which is due to a resonance phenomena. Similar conditions can be found in [8] [43]
and some references therein.

Before closing this introduction, notice that problem (22.7)) is similar to the following sin-
gular perturbation problem

—?Au+u=u? inQ,
Gu — on 02, (2.12)
u>0 in 2.

This latter problem arises in the study of some biological models and as it exhibits
concentration of solutions at some points of Q. Since this equation is homogeneous, then the
location of concentration points is determined by the geometry of the domain. On the other
hand, it has been proven that solutions exhibiting concentration on higher dimensional sets

exist. For results in this direction refer to [9) 25| 26 130, [32] 33], [44].

In general, these results can be divided into two types: The first one is the case where the
concentration set lies totally on the boundary. The second one is where the concentration
set is inside the domain and which intersect the boundary transversally. For this second type
of solutions refer to Wei-Yang [44], who proved the existence of layer on the line intersecting
with the boundary of a two-dimensional domain orthogonally. See also Ao-Musso-Wei [3],
where triple junction solutions have been constructed. In the over-mentioned two results,
[3] and [44], only the one dimensional concentration case has been considered. We believe
the method developed here to the above problem can be used to handle the higher
dimensional situation, namely concentration at arbitrary dimensional submanifolds which
intersect the boundary transversally. Interestingly, our preliminary result shows that our
method explores a connection between solutions of problem and minimal submanifolds
with free boundary in geometric analysis.

It is worth pointing out that [44] applied an infinite dimensional reduction method while
[3] used a finite dimensional one. Interested readers are encouraged to refer to the paper [10]
for an intermediate reduction method which can be interpreted as an intermediate procedure
between the finite and the infinite dimensional ones. Moreover, it is interesting to consider
Open Question 4 in [10], which can be seen as the Ambrosetti-Malchiodi-Ni Conjecture
without the small parameter €.

The chapter is organized as follows. In Section 2 the Fermi coordinates in a tubular
neighborhood of K in M are introduced and the Laplace-Beltrami operator is expanded in
these Fermi coordinates. In Section 3, a family of very accurate approximate solutions is
constructed. Section 4 will be devoted to develop an infinite dimensional Lyapunov-Schmidt
reduction and to prove Theorem [2.1]
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2.2.2 (Geometric background

In this section some geometric background is given. In particular, the so-called Fermi coor-
dinates, which play important role in the higher dimensional concentrations, are introduced.
Before doing this, the auxiliary weighted functional corresponding to problem ([2.7)) is first
introduced.

The auxiliary weighted functional
Let K be a k-dimensional closed (embedded or immersed) submanifold of M™, 1 < k < n—1.

Let {K;}; be a smooth one-parameter family of submanifolds such that Ky = K. Define

ptl n—k
Cp—1 2

E(t) :/ V?dvol, with o (2.13)
K

Denote VT and V¥ to be connections projected to the tangential and normal spaces on K.
The following definitions on K which appear in Theorem are given:

Definition 2.2.1 (Stationary condition) A submanifold K is said to be stationary relative
to the functional [, V7dvol if

oVNV = —VH on K, (2.14)

where H is the mean curvature vector on K, i.e., H; = —T'g; (here the minus sign depends
on the orientation, and '’ are the 1-forms on the normal bundle of K (see (2.19) below for
the definition).

Definition 2.2.2 (Nondegeneracy (ND) condition) It is said that K is non-degenerate if the
quadratic form

g

V@”)V@Aﬂ—&d@@)

/Q{<AK®+w%VKV-VK¢AQ—%a”[ﬂ@f
+F§(<I>)FZ(<I>)}V“\/det(g) dvol (2.15)

defined on the normal bundle to K, is non-degenerate.

Remark 2.2.3 As in the first chapter the Einstein summation convention is used, that is,
summation over repeated indices is understood.
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Setting V° = e/, i.e., f = —oInV, then the stationary and ND conditions correspond
to the first and second variation formulas of an f-minimal submanifold in [22], i.e.,

H=V"f,

where H = — )" Vé\i e, is the mean curvature vector, e, (1 < a < k) is an orthonormal
frame in an open set of K. And at ¢t =0,

d? k 1
- -f) = - _ 1 9 ) e
dt2(/f‘(te ) Le ( ;Ram}a 2AK<‘U‘ )+’VK’U’ 2"4 | fvv
1
# 5T ET ) ),

where K, is a smooth family of submanifolds such that Ky = K, the variational normal vector
field v is compactly supported on K;, and AY, = —(V,, ep, v).

Fermi coordinates and expansion of the metric

Let K be a k-dimensional submanifold of (M,g) (1 < k <n —1). Define N = n — k, and
choose along K a local orthonormal frame field ((Ea)azl,,..,k, (Ez)zle) which is oriented.
At points of K, the natural splitting

TM=TK®NK

hold, where T'K is the tangent space to K and N K represents the normal bundle, which are
spanned respectively by (E,), and (E;);.

Denote by V the connection induced by the metric § and by V¥ the corresponding normal
connection on the normal bundle. Given p € K, some geodesic coordinates y centered at p
are used. It is also assumed that at p the normal vectors (E;);, i = 1,..., N, are transported
parallely (with respect to V) through geodesics from p, so in particular

(Ve E; ,E)=0 atp, Vi,j=1,...,N,a=1,... k. (2.16)
In a neighborhood of p in K, consider normal geodesic coordinates

f(ﬂ) = expf(yaECL)? vy = <y17 R 7yk>7

where exp® is the exponential map on K and summation over repeated indices is understood.
This yields the coordinate vector fields X, := f.(9,,). Extend the E; along each geodesic
~ve(s) so that they are parallel with respect to the induced connection on the normal bundle
N K. This yields an orthonormal frame field X; for NK in a neighborhood of p in K which
satisfies

vXaXi|p € TPK

A coordinate system in a neighborhood of p in M is now defined by
F(Q,ZZ‘) = eXp%gj)(‘riXi)a V(@,j) = (ylu'-'ayk)xlw"amN)a (217>
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with corresponding coordinate vector fields

X;:=F.(0;;) and X,:= F.(9,,).

By our choice of coordinates, on K the metric g splits in the following way
9(0) = Gab(q) dya © dys + §i(q) d; ©® dj, Vg€ K. (2.18)
We denote by T'%(+) the 1-forms defined on the normal bundle, NK, of K by the formula
Goel i = Goel o (Xi) = 9(Vx, Xp, Xi) at ¢ = f(9). (2.19)

Notice that

k
K is minimal <= Y T9(E;) =0 foranyi=1,... N. (2.20)
a=1

Define ¢ = f(y) = F(y,0) € K and let (gap(y)) be the induced metric on K. When we
consider the metric coefficients in a neighborhood of K, we obtain a deviation from formula
(2.18]), which is expressed by the next lemma. We will denote by R,s,s the components of
the curvature tensor with lowered indices, which are obtained by means of the usual ones
Rj,s by

Raﬁfy(s = Gao REMS' (2.21)

Lemma 2.2 At the point F(y,z), the following expansions hold, for any a = 1,...,k and
any i,j =1,...,N, where N =n — k,

1
Gij = 0i5 + 3 Rigtj Ts 7 + O(|Z]*);

_ 2 L _
Jaj = ggabRZﬂwkwl +0(|z]*);

gab = gab - {gac Fgl + gbc ng} T+ [Rsabl + gcdr(cls Fgl Ty + O(|E|3)
Here R, are computed at the point of K parameterized by (y,0).

Proor. The proof is somewhat standard and is thus omitted, we refer to [9] for details, see
also Proposition 2.1 in [28§]. O

By the Whitney embedding theorem, K C M — R?". Thus we can define K, := K /e and
M. := M /e in a natural way. On the other hand since F'(y,z) is a Fermi coordinate system
on M, then F.(y,z) := F(ey,ex)/e defines a Fermi coordinate system on M/e. With this
notation, here and in the sequel, by slight abuse of notation we denote V' (ey,ex) to actually
mean V(ez) = V(F (ey, 5:1:)) in the Fermi coordinate system. The same way is understood
to its derivatives with respect to y and z.

Now we can introduce our first parameter function ® which is a normal vector field defined
on K and define z = {+®(ey). Then (y, ) is the Fermi coordinate system for the submanifold
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Kg. Adjusting the parameter @, it is later shown that there are solutions concentrating on
Kg for a subsequence of ¢.

We denote by gns the metric coefficients in the new coordinates (y,&). It follows that
_ 0z, 023
Gap = 9v6 27 A
% B 857 855

Which yields
9ij = Gijleve, 9o = Gajlere +€0:9'Gj1lera,
and
Yab = Gablera + € {gaj Op®’ + g, (%q’]}\&@ + &% 0,9 0P Gijleso
where summations over repeated indices is understood.

To express the error terms, it is convenient to introduce some notations. For a positive
integer ¢, we denote by R,(§), R,(&, ®), Ry(&, @, VP), and R, (£, P, VP, VD) error terms

such that the following bounds hold for some positive constants C' and d:

|Ry(€)] < (1 +[¢]),

|R,(€,®)] < Cet(1 + [¢]%),
|Ry(€,®) — Ry(€,®)] < Ce?(1 + [¢])|@ — @,

’RQ(£> CI)’ VCI))| S ng(l + |£|d)7
IR, (€,®, V) — Ry(£,0,VP)| < Ci(1+ €] (|@ — @] + VO — V),
and

R (&, @, VP, V20)| <Ce”(1 + [¢]*) + Ce™ (1 + [¢])[ V],

|Ry(€,@,VE, V°0) — Ry(¢, 9, VO, VD)
< Cl(1+ ) (|2 — @]+ [VE — VP|) (1 +£| V| + £| VD)
+ O™ (1 + ¢V — V2.

Using the expansion of the previous lemma, one can easily show that the following lemma
holds true.

Lemma 2.3 In the coordinate (y, ), the metric coefficients satisfy
Gab = Jab — € {gbfrgk + gafrlfk} (& + @*) + ¢ (Rkabl + Ged ngrgz) (& + @*) (" + o)
+ 20, D7 0;®7 + R3(€, D, VD),
Gaj = €0, 7 + §a2Rkaﬂ(§k + ) (& + @Y + Ry(¢, @, VD),
gij = 0ij + éﬁRkiﬂ(gk + OF)(E + D) + Ry(&, @, VD).
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Denote the inverse metric of (gas) by (9%?). Recall that, given the expansion of a matrix
as M =1 +eA+e*B+ 0(e%), we have

M '=T-eA—-eB+2A*+0(e%).

Lemma 2.4 In the coordinate (y,£), the metric coefficients g*? satisfy
gab — 'g/ab +e {’g’cb cmzz + ’g’ca Flc)z} (é;z + @1) . 82 gcb gad chdl (gk + q)k)(gl + (I)l)
+ € (gac Told + g™ T e + g ngrgz) (€ + DF)(' + @') + Ry(€, @, VD),

) B 2g2 (L _ . ,
9 = 2" O — Z-Run(h + 9)(E + @) + 00 {gbc I+ F’;z} (& + )

+ RB(f? q)7 V(I))a

2
g7 = 8y = T Rua(€" + @) (' + @) + £ 5 0,05 + Ry(€, @, V).

Furthermore, we have the validity of the following expansion for the log of the determinant
of g:

1
log (det g) = log (det ﬁ) — 2¢ sz (Sk + (IDk) + 3 £2 Rynssl (& + ™) (fl + (IJl)

22 (5 Ronar =TT ) (67 + @) (€1 4+ ') + Ry(€, @, V).

Proor. The expansions of the metric in the above lemma follow from Lemma while the
expansion of the log of the determinant of g follows from the fact that one can write g = G+ M
with

_(9 0 _
G—(O _[dRN) and M = 0O(e),

then we have the following expansion
1
log (det g) = log (det G) + tr(G~'M) — 5tr((c:—ljw)?) +O(||M|]?).

and the lemma follows at once. O

2.2.3 Expansion of the Laplace-Beltrami operator

In terms the above notations, we have the following expansion of the Laplace-Beltrami oper-
ator.

Proposition 2.5 Let u be a smooth function on M.. Then in the Fermi coordinate (y,§),
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we have that

Agu = Ohu+ Ag.u—eTy0;u — 26 g% 907 92 u + 2 GO T (€8 + ©°)02u

+?Vg®' - Vi d 32 u— §EZszjl(f +oN)(E+ @ )afju — 29, 90" G0 u

4 B , .
— ggQRkaﬂ(fk + dF) (&' + @l)agju + 2620, @7 { bepe 4 goe T, } (& + %) 07u

+ £ { 9% 9" Ryear + §° Ty Ty + g T8 + g 04T } (€ 20+ ) G

3
+ 28°0%9T0, (€F + OF)0;u

- 2 .
+¢e? (gab Riavj + 5 Riiij — szrgj) (&" + OF)0ju — A d Ou

35 ?Riaju(€F + @F)0,u

_ 62 (gab aargk a {§Cbrck + gcal—\bk}> fk + (I)k a U —
+ 2¢? {gcb I+ g Fg} Oy @' Oyt + 5 & Oa(logdet §) {G7TE +GTe HE + ) bu
+ R3(&, @, VO, V2®)(d;u + O,u) + Rg(g, ®, VP)(87u+ 02u + Ou).

Remark 2.2.4 The proof of Proposition will be postponed to section [2.2.6] It is worth
mentioning that the coefficients of all the derivatives of u in the above expansion are smooth
bounded functions of the variable § = ey. The slow dependence of theses coefficients of y is
important in our construction of some proper approximate solutions.

2.2.4 Construction of approximate solutions

To prove Theorem [2.1] the first key step in our method is to construct some proper ap-
proximate solutions. To achieve this goal, we have introduced some geometric background,
especially the Fermi coordinates. The main objective of this section is to construct some
very accurate local approximate solutions in a tubular neighbourhood of K. by an iterative
scheme of Picard’s type and to define some proper global approximate solutions by the gluing
method.

Facts on the limit equation

Recall that by the scaling, equation ({2.7)) becomes
Agu—V(ez)u+u? = 0. (2.22)

In the Fermi coordinate (y,x), we can write V(ez) = V(ey,ex). Taking x = & + ®(ey), we
have the following expansion of potential:

V(ey,ex) = V(ey,0) +e(VVV(ey,0), € + @) + ;(VN)ZV(ay, 0)[¢ + ®]* + R3(&, ). (2.23)

41



If the profile of solutions depends only on £ or varies slower on ¥y, by the expansion of
the Laplace-Beltrami operator in Proposition [2.5| and the above expansion of potential, the
leading equation is

N
Z O eu—V(ey,0)u+u” = 0. (2.24)
i=1
Define
p(ey) = V(ey,0)',  h(sy) =V(ey, 00"V, vyeK.. (2.25)

For the leading equation (2.24)), by the scaling
u(y, &) = hiey)v(uley)€) = h(ey)v(§),

the function v satisfies

Agnvv —v+ 0P =0. (2.26)

We call this equation the limit equation.

We now turn to the equation (2.22)), in the spirit of above argument, we look for a solution
u of the form

u(y, &) = h(ey)v(y,€)  with € = p(ey)€ € RY. (2.27)

An easy computation shows that

Oat = h 0,v + €(0zh)v + e h Oz §jc9jv,
8i2ju = hu? 81-2]-1),

0%y =& (4oah+ i) Oy -+ sy < o O

a

0% = ho%u + ¢ (6gh 0av + Dah Oy + hOs &0%,0 + hdaps g'agjv)
+e? ((%h&gpfj D0+ DhDap& D0 + 0%hv + hds i 0% + haggugjajv),

and

AKEU = €2AKhU + hAKSU + 2¢ VKh . VKEU + 82 (hAK,U + QVKh . VK/L) gj 8j’U
+ &2 h|Vgpl & 05v+2ehe Vigp - (Vi 0p).

Therefore, we get the following expansion of the Laplace-Beltrami operator on wu:
h ' 2 Agu = Apnv + 2 Ag.v + B(v),
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with B(v) = By(v) + B2(v). Where B,’s are respectively given by
—171b 2 —1 (~ab 2 c Ta 1 ck k
Bi(v) =—ep Ty 0v+ep (9 Riabj + 5 Bkiij — Pakrcj> (;5 + @%)9v
- |
+ e h t pu? Axghv +2e* (hp®) Vih - (% Vi — VK<I>]> djv
1 1- 1

+2e W 2 Vgh - Vigv— 552 Rkiﬂ(;g’“ + @k)(ﬁgl + @)%

+ &2 (/ﬂ? Vi — VK(I)Z) (/ﬂfj Vi — Vig® ) Ov
cj , .

e 2 (% At — 2V e - Vidd — /LAKCDJ) ;v
¢ »

+2ep7? (E Vi —p VKCI)J> -V, (9jv),

and

hBy(v) = —e* h TG Vg ® - Vv

¢’ ¢
;asjv + h@au ; agjv})

. 1 o - L
&2 jt Ry (—g’“ + cbk) (—é n @l)agjv 4222 B 1 0, { gere 4 e r’;} (—5@ + @l) 00
M M u

1 2eG0Te (% £+ <1>8) (h B0+ ¢ {3{,[1 840 + Bah By + g

4
3

e N _ i 1.

+eh { — 97§ Ryear + 29" T T + 5 ngrgz} <—§k + ‘pk) (—fl + ‘I)l> Dy
1 1
. 1-
+26% h p 0%,®TY, (—fk + ®k> ;v
L
- . - 1_ 2 1~
_e2p (g“b 8T, — aa{ i gmrgk}) (-g’f + @k)abv — 5 h R (—5’“ + @k)aav
[t T
- 1 1_ A
+2e%h {gcb T + g rgz} 03 ' v + 5 €% h 0y (log det §) {gﬂbrg + @“C“F’;Z} (—gl + <1>Z> Oyv
1

4 Ry(€,, VD, V2D) (ajv + aav) 4 Ry(€,®, V) (afju + %0 + agbv>.

Setting
Se(u) = =Agu+ V(ez)u — u?,

then by using the above expansion we can write
Rt 2 Sc(u) = —Agnvv — 2 Ag.v — B(v) + 2 Viez)v — R 2 0P
= —Apnvv v — P — T Ag v+ (V(ey, ex) — V(ey, 0)) v — B(v).

Now using the following expansion of potential:

2
V(ey,ex) = V(ey,0) + (VVV (ey,0), % + @) + %(VN)2V(5y, o)[% + @2 + Rs(€, D),

43



we obtain

h 2 S (u) = —Agvv +v — 0P — 2 Ag.v — B(v) =: S.(v), (2.28)
where B(v) = By (v) + By(v) with

Bi(v) = By(v) — p 2 (5<VNV(€y, 0), % + o) + %(VN)2v(gy, O)[% + @]2> v

and

Bs(v) = By(v) — Rs(£, @) v.

At the end of this subsection, let us list some basic and useful properties of positive
solutions of the limit equation ([2.26]).

Proposition 2.6 If l <p<oofor N=2and1 <p< % for N > 3, then every solution
of problem:

{ —Agnvv 4 v — 0P =0 in RV, (2.29)

v>0inRY ve H(RY),

has the form wy(- — Q) for some Q € RN, where wy(z) = wo(|z|) € C*°(RY) is the unique
positive radial solution which satisfies
N-1 w{)(r)

. == r - .
rlggor 7 ¢"wo(r) = enyp, Tlggo wo(r)

= 1. (2.30)

Here cn) is a positive constant depending only on N and p. Furthermore, wy is non-
degenerate in the sense that

Ker (—ARN +1-— pwgfl) NL®RY) = Span{&vlwo, e ,awao},
and the Morse index of wq is one, that is, the linear operator
Lo:= —Apy +1—pub™

has only one negative eigenvalue \g < 0, and the unique even and positive eigenfunction
corresponding to Ay can be denoted by Z.

Proor. This result is well known. For the proof we refer the interested reader to [6] for
the existence, [I4] for the symmetry, [I§] for the uniqueness, Appendix C in [36] for the
nondegeneracy, and [7] for the Morse index. O

As a corollary, there is a constant vy > 0 such that

[ Awor+ o —put e} de =0 [ o (2.31)
RN RN
whenever ¢ € H'(RY) and
¢ 0wy dé =0 = oZdé, Yj=1,...,N.
RN RN
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Local approximate solutions
In a tubular neighbourhood of K., (2.28) makes it obvious that S.(u) = 0 is equivalent to
Se(v) =0.

By the expression of §€(v) and Remark , we look for approximate solutions of the
form

v =v(y8) = w(@ + Y cwiley, &) +ce(ey) Z(8), (232)

where I € N, wy and Z are given in Proposition [2.6] w,’s and e are smooth bounded
functions on their variables.

The idea for introducing eZ in (2.32)) comes directly from [8][43]. The reason is the linear
theory in Section 4.2.2, especially Lemma

To solve §6(v) = 0 accurately, the normal section ® is to be chosen in the following form

-1
P = (I)o + Z &TZ (I)g,

=1
where @, ..., P;_; are smooth bounded functions on y.

Expansion at first order in ¢ :

We first solve the equation S.(v) = 0 up to order e. Here and in the following we will
write O(g?) for terms that appear at the j-th order in an expansion.

Suppose v has the form (2.32)), then

S:(v) = 5( — Agvwy + wy — pwg_1w1> + 6( — & Age + )\Oe)Z

+ s(u_lf‘zj@jwo + 12 (VNV (ey, 0), /% + Q)o)w()) + 0(£?).

Hence the term of order ¢ in the right-hand side of above equation vanishes if and only if
the function w; solves

Lowy = —p~ ' Ty,0;w9 — 2 (VNV (ey, 0), % + o) wo. (2.33)

Here and in the following, we will keep the term 5( — 2t Age+ )\Oe)Z in the error. The
reason is simply that it cannot be cancelled without solving an equation of e since LyZ = \¢Z.

By Proposition [2.6] equation (2.33) is solvable if and only if for all i = 1,..., N,
—1pb —2 )N 3 F_
/ <,u Fbjajwo + % <V V(sy, O), ; + CI)()> U)o) aiwo dé' = 0. (234)
RN
Since wy is radially symmetric, (2.34) is equivalent to

| _

ng/ |Ovwol? d€ = = 2 9,V (ey, 0) / wy d€.

RN 2 RN
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Recalling the identity

%/RngdE:a/RN 1Oy ? dE Witha:%—g, (2.35)
we get
oVNV(ey,0) = —V(ey,0)H (gy), (2.36)
where H = (—I%,); is the mean curvature vector on K. This is exactly our stationary
condition on K.
When holds, the equation of w; becomes
Lowy = —p ' T, <8jw0 + a’léjwo) + o N H, ®o)wp. (2.37)
Hence we can write
wy = Wi, + w2, (2.38)
where
Wy = T Flb’jUj and wyo = o HH, &) U. (2.39)
Here Uj; is the unique smooth bounded function satisfying
LoU; = 0w + o~ & wy, /RN U;jQwodé =0, Vi=1,...,N, (2.40)
and Uy is the unique smooth bounded function such that
LoUy = wy, /RN Uy O;wodé =0, Vi=1,...,N. (2.41)

It follows immediately that w; = wy(ey, &) is smooth bounded on its variable. Furthermore,
it is easily seen that U; is odd on variable &/ and is even on other variables. Moreover, Uy
has an explicit expression

1 1=
UQ = _p _ 1200 - 55 : Vwo. (242)

Expansion at second order in ¢

In this subsection we will solve the equation §5(v) = 0 up to order £? by solving w, and @
together.

Suppose v has the form (2.32)), then

SE(U) = €2< — ARNU}Q + wy — pwg_1w2> + 8( — €2M_2AK6 + )\oe)Z
+ 2%, 4 26, + O(%),
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where
1

Fo=p"" szajwl + w2 (VY @) wy + 5

1- 1
Rkiﬂ(;g’“ + q)lé)(;él + @) wo
—1(~ab 2 c 1a ch k
— (g Rap; + ngiij - Fakrcj) (E + ©g)0jwo
(S Agp—2 V®) — n Ag®l) 0,
o B Vip - Vg®y — pAx Py ) 0w
- |
—h ' Aghwy — 2(hp®) *Vch - (% Vi — VKqD%) djwo
. (,ﬂ?‘ Vi — chbg) (,ﬂéﬂ' Vi — chpg;) 0%wy
_ £ _

1 1 _
+ (VY /% + ®g)w; + 5 w2 (VN)QV[; + dy, /% + Pp| wy — ép(p — Dw?w?,

and

3 1
Gy =p "I e0;Z + > (VNV, % + Pg)eZ — §p(p - 1)wg_2{(w1 +eZ)? — wf}

Hence the term of order €2 vanishes (except the term e( —e?pu 2Age + Aoe) Z) if and only
if wy satisfies the equation

Lowy; = —§2 — Gs.

By Freedholm alternative this equation is solvable if and only if 5 + &5 is L? orthogonal to
the kernel of linearized operator Ly, which is spanned by the functions d;wg, i =1,..., N.

It is convenient to write §o as
§o = n7 2 (VNV, B1)wg + o
Then %2 does not involve ®,. By , similar to wy, we can write wy as
Wo = Wo 1 + W22,
where wy s = o~ (H, ®1)Uj solves the equation
Low2,2 = —M_2<VNV, @1)21)0,

and wq; will solve the equation
Low2,1 = —%2 — G,.

To solve the equation on wy; we write
5’2 = §2(q)0) = S50 + S2(Po) + Na(Po),

where S50 = 2(0) does not involve &g, S(Pp) is the sum of linear terms of ®, and Ny(Pg)
is the nonlinear term of ®y.
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Recall that wy = wy 1 + w2 with
wl,l = —/fl FZ]-U]' and ng = 0'71<H, (I)0>U0.

Then

1 k&l ~a 2 c a ¢
Sa0 =" Ty Qjwn 1 + 5#72Rkijl (€~ &' Do) — /fz(g " Ryaj + 3 L2hiij — Fakch) (€" Djw0)
— (0 Agp) (& 0ywo) — (W ™ Arch) wo — 2(hp) ™ (Vich - Ve ) (€7 9jw0)

- B 1 -
— WV p? (¢ 87j2jw0) + u VNV, Ew g + §M_4(VN)2V[5> &] wo
1 2 9

- 5]7(]? - 1)“’8 Wy s

2
3

2 c ~a c a
So(Po) =p~ 'Th; 0wy + gﬂ_leiﬂ o (& 07 wo) — p! (9 * Riabj + 5 Ruiij — Fakrcj> O Djwy

+2u7? (VKN : VK(D%) (& az'2ij) + M_3<VNVa 5>w1,2 + M_2<VNV7 Do)ws 1
+ w3 (VN V[Dg, &l wo — p(p — 1)11)3_2?111,1?1)1,2,

and
Ny(®g) = %Rkiﬂ Df 0 02wy — (V@) - V@) 02wy + p2(VNV, @)
+ %u‘z (VY)2V[®g, Do) wo — %p(p — Dwhwi,.
Therefore,

2 _
/ SQ(q)o) 83'LU0 :/leg. / 0j”LU1 2 85?1)0 + _ﬂ_leijl (I)é / fk alsz ast
RN J RN ’ 3 RN J
—1(~a 2 c Ta
— U 1 <g bRkabj + ngllj — Fakfcj> (I)IS /RN aij 8Sw0
+ M_Q (ZVK,M . VK(I% + MAKCI){)> / aj’wo 68100
RN
4 2(hp) ! (th : chbg) / 9,10 Do
RN
+ 2,u_2 <VK,u . qu)6> / gz 833’11)0 aSU)()
RN
+ 1720,V (ey, 0) (u‘l & wy 9 Owp + @6/ wy Osw())
RN RN

+ u05V (ey, 0) © / & wo Oswo
]RN

—p(p—1) / wg_Q w1 Wi 2 OsWo.
]RN
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Let us denote by A the sum of terms involving w; ; and w2 in the above formula. Using

(2.36) and (2.39) we can write

A=y o (H, dp)T?, / (aon F U+ 0 E Uy + plp — Dl 2 U, Uo}é?swo.

RN

To compute this term we differentiate the equation (2.40) on U; with respect to the variable
&7 to obtain

L()(ajUj) - p(p - 1)w§_2Uj8jw0 = a?jwo + O'_lwo + 0'_1 f_j 8jw0. (243)
Multiplying the above equation by U, and integrating by parts, we have
/ {aon—i-Uj—i-O'_l gj Uo —|—p(p— 1)w€72Uj Uo}ajwo
RN
= — / (2832]100 + O'_1 ’LU())UO
RN

1 1 1 1
=-2 — — — E'Qwg) 0% wy — 1/ — — &9
/RN( p—lwo 2§ lwg) W — o RN( p—lwo 25 lwo)wo

On the other hand, by direct computations we have

/ ajwo 8sw0 = 5js/ (ale)Za
RN RN

_ 1 ~ N
/ 07 jwo £ Dswy = 5 s E O (Ojwo)? = —5 0js [ (Brwo)”,
RN RN

RN

Rkijl (I)é / gk afjwo asu]O = stjl (I)é/ (8111)0)2,
RN N

R

-~a 2 C a -~a 2 C a
(9 bRkabj+§Rkiij_Fakch) CDIS /RN O;wp Oswy = <9 bRkabs+§Rkii5_Fakrcs) <I>’5/ (31100)2-

RN

Summarizing, we have
/ SQ(@Q) 8Sw0 = lu_l{AK(I)S — </§ab Rkabs — ngrg5> q)lg + (2 — N)M_viM . VK(I)S
RN
+2h 'Wh - Vg®5 — o> aij(gy, 0)®) — o~ 'T%, (H, <I>0>} / (O1wo)?.
RN

Now, using the fact that
1

. VI VRV,

1
Vi = 3 VIVEV and h7'Vgh=
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we obtain (recalling the definition of o) that
(2= N\ "Vip - Vie®s + 207 Wich - Vi®i = 0 VI ViV - Vi d2.

Hence we summarize
/ So(Pg) Dswy = ul{Achg — (’g“ab Riabs — ngrgs)qﬂg + oV VLV - Vg®
RN

— o 2%V (ey,0) @) + o' T, T2, cbg} /N |Oywo .
R

Define Ji : NK +— NK is a linear operator from the family of smooth sections of normal
bundle to K into itself, whose components are given by

(Tr®o)® = Agd; — (gab Riwps — ngrgs> OF + oV VLV - Vi

| , (2.44)

—op 0%V (7,0)Py + o' Ty, Ta, .

Then
So(Pg) Oswy = ul(/ ]81w0]2)(3K®0)5(5y). (2.45)
RN RN
On the other hand, it is easy to check that
/ 527() 85w0 =0= Ng(q)o) 8511}() (246)
RN RN

and

/ 62 Gswo = {/u_lrgs/ aszasw() + M_385V(5y, O) gs Zasw()
RN RN RN
—p(p—1) / wg_zwl,lZ 88w0}e
RN

- M‘lfise/ {C%Z +o0 ' ZE +plp— Dl Z Us}ﬁswo
RN

—1b
=cop Ip,e.

Therefore, the solvability of equation on ws is equivalent to the solvability of following
equation on Pq:

Jx®o = $H2(y; ), (2.47)
where $)5(y; e) = coHe is a smooth bounded function.

By the non-degeneracy condition on K, (2.47)) is solvable. Moreover, for any given e,
it is easy to check that &y = ®y(y;e) is a smooth bounded function on g and is Lipschitz
continuous with respect to e.

Now let us go back to the equation of ws ;:
L0w2,1 = —352 — G,.
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Since both §2 and &, are smooth bounded functions of (ey,€). Hence Wy = w1 (gy, €)
is also a smooth bounded function of (ey,&). Moreover, wy1 = wa;(ey,&;e) is Lipschitz
continuous with respect to e.

Higher order approximations

The construction of higher order terms follows exactly from the same calculation. Indeed,
to solve the equation up to an error of order e/*! for some j > 3, we use an iterative scheme
of Picard’s type : assuming all the functions w;’s (1 < i < j — 1) constructed, we need to
choose a function w; to solve an equation similar to that of wy (with obvious modifications)
by solving an equation of ®;_5 similar to that of ®y.

When we collect all terms of order O(¢7) in S.(v), assuming all w;’s for i = 1,---5 — 1
constructed (by the iterative scheme), we have

Se(v) = 5j< — Agpvwj +wj — pwg_le> +e(— e’ Age+ \e) Z
+e/F + € e 2+ Al(ey, & Do, -+, Djs) e i Z
+ B (ey, & @o, -+, By 5) €057 + €7C(ey, & @o, -+, Py 5) - Ve diZ
+ &/ DI (ey, & Do, - -+, Bj_3) Oope Z 4 O(7),

with

— 2 - c —1{ ~a 2 c a
Sj =u 1Fgl 8le,1 + gu 1Rkisl fk ‘1)3-72 @iwo Y ! (g b Riaps + ngiis - Fakch) (I)?,g 5wy

b (2 Vit Vidi_y + p Achj,Z)ast +2(hy)! (th : chbij) Dgwo
+2u7? (VKM : VK@§_2> (€ Do) + = (VIV, Do)w; 1 + =2 (VIV, 5 o)wy
+u VNV, @ 1) wo + p (VY §> wj—1 + OV (ey, 0) @, €8 wy
— p(p — Dwh*wiw;_y + Gy(ey, & Do, - -+, j_s)
=2V, @ 1) wo + 3
and
¢ = —p(p — Dl 2wy + p (VVV, 0, 0) + €;(ey, & Do, -+, D;j_3),

where A%, Bif, €%, D and @j are smooth bounded functions on their variables.

Except for 5( — &2 2 Age+ /\Oe)Z, the term of order &/ vanishes if and only if w; satisfies
the equation

Lowj = —Sj — Gj GZ — .A;(éy,g, (1)0, v ,q)j_:;) 6812 — 3;Z(€y,g, (I)(), s 7@]'_3) 681252
- eé‘(@yag; g, -, Py 3) - Vged;i Z — (D?b@%é Do, -, Dj3) 82(:6 Z.

a

By Freedholm alternative this equation is solvable if and only if the right hand side is L?
orthogonal to the kernel of linearized operator Ly. Before computing the projection against
Oswy, let us recall that

Wj—1 = Wj-1,1 + 0'_1<H, (I)j_2>U07
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where w;_1 1 L d;wp is a function which does not involve ®,_.

As before we look for a solution w; of the form
U)j = wj,l -+ 0'_1<H, q)j_1>U0,
where w;; L Q;wy solves

Low;, = _§j —¢jeZ — A;(@J,g; g, -, Pj3)e0iZ — fBj*e(&%E; Do, -, Dj3) 651-242
- G;(ey,f; Do, -+, P 3) - VgediZ — Q?b(&?y,g; Dy, -+, Dj3) 821)6 Z.

a

Since j > 3, we can write
§i = 5i(®j2) = S0+ 55(®50),

where S;0 = S;o(ey, E:Dg, - ,®;_3) does not involve ®;_o, and S;(®,_2) is the sum of linear
terms of ®;_,. Since

/]RN Sj(®j-2) Oswo = p~* ( /RN [O1wo|*) (Fx Dj—2)*(2y), (2.48)

the equation on w;; (and then on w;) is solvable if and only if ®;_, satisfies an equation of
the form

3K(I)j—2 = f’j(y_; g, - -+, ‘I)j—:a, 6).

This latter equation is solvable by the non-degeneracy condition on K. Moreover, for any
given e, by induction method one can get ®;_5 = ®;_5(y;e) is a smooth bounded function
on y and is Lipschitz continuous with respect to e. When this is done, since the right
hand side of equation of w;; is a smooth bounded function of (ey, &), we see at once that
w; 1 = wj(ey, €) is a smooth bounded function of (ey,£). Furthermore, w;; = w;;(ey, &; e)
is Lipschitz continuous with respect to e.

Remark 2.2.5 To get the higher order approximations, our argument only need the expan-

sion of the Laplace-Beltrami operator up to second order. It is slightly different from the
argument used in [43].

Summary

Let vy be the local approximate solution constructed in the previous section, i.e.,

vi(y,€) = wo(&) + Y weley, §) + e(ey) Z(€), (2.49)
/=1

for I € N, an arbitrary positive integer.

From the analysis in the previous subsections, the stationary and non-degeneracy condi-
tions on K can be seen as conditions such that v; is very close to a genuine solution and can
be reformulated as follows.
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Proposition 2.7 Let K* be a closed (embedded or immersed) submanifold of M™. Then
the stationary condition on K is (2.36]), and the non-degeneracy condition on K is equivalent
to the invertibility of operator Jx defined in (12.44)).

Summarizing, we have the following proposition by taking j = [ + 1, wry; = 0, and
®;,1 =0 in Section 3.2.3.

Proposition 2.8 Let [ > 3 be an arbitrary positive integer, for any given smooth functions
®;_, and e on K, there are smooth bounded functions

wé:wﬁ,l(gyag;e)+0__1<H7(I)€—1>U0a (= 17"'7Ia

and
q)]:q)j(g;€>7 jZOJ 7-[_27
such that
S.(vr) = e( = Age+ Moe) Z + e F g +el e eZ
+ EI—H-Ah-l (cy,&¢) e D Z + 51+1B§£+1(€y, Ee)edyZ (2.50)
+eleC ey, &) - Ve diZ + D (ey, i e) De Z + O(e712),
where

~ 2 c ~a 2 c a
Fr1 =p Ty 0wy + gﬂ_leisl Fol 92wy — (9 ® Riaps + ngiz‘s - FakFCS> % | Oy
4o (2 Vi Vieds  +u Ach;_l)aswo +2(hp)! (th - chb;_l)aswo

+ou? (VKM - VK<I>§_1> (€ 02w0) + 1 2(VNV, do)wr + VY, &1 Yy

+u VYV, %) wr + p 208V (ey, 0) @4, 8wy — p(p — Vwh 2wiwr + Grya(ey, & e),

Erp=—plp— 1)w§_2w1 +u AV, @) + &H—l(gya &e),

i il i ab ot : : :
and A7, BY,,, €1, DY, €141 and Gy are smooth bounded functions on their variables
and are Lipschitz continuous with respect to e.

Remark 2.2.6 For example, €, involves the term p 302V (ey, 0) ®L_, .

Global approximation

In the previous sections, some very accurate local approximate solution v; have been defined.

Denote B
U](Q, 5) = h(5y>1}](y, 5),

in the Fermi coordinate. Since K is compact, by the definition of Fermi coordinate, there is
a constant § > 0 such that the normal coordinate z on K. is well defined for |z| < 10006 /¢.

93



Now we can simply define our global approximation:

W(z) = nss(x)ur(y, &) for z € M., (2.51)

elz]

where 7j;(z) := n(%5') and 7 is a nonnegative smooth cutoff function such that
nt)=1 if |t <1 and n(t)=0 if|t|>2.

It is easy to see that W has the concentration property as required. Note that W depends
on the parameter functions ®;_; and e, thus we can write W = W( - ;®;_1,¢e) and define
the configuration space of (®;_1,¢e) by

|11 lcoew) + (| VPr1llcoa) + V2R r1]lcon) < 1,

— (D1, e ) L (2.52)
HeHco,a(K) + SHV‘QHCO@‘(K) + €2HV26H00,a(K) <1

Clearly, the configuration space A is infinite dimensional.

For (®;_1,e) € A, it is not difficult to show that for any 0 < 7 < 1, there is a positive
constant C' (independent of e, ®;_;, ) such that

or(y, )| < Ce™™, V(y,€) € K. x RV, (2.53)

2.2.5 An infinite dimensional reduction and the proof of Theo-

rem 2.1

To construct the solutions stated in Theorem we will apply the so-called infinite dimen-
sional reduction which can be seen as a generalization of the classical Lyapunov-Schmidt
reduction in an infinite dimensional setting. It has been used in many constructions in PDE
and geometric analysis. We present it here in a rather simple and synthetic way since it uses
many ideas which have been developed by all the different authors working on this subject

or on closely related problems. In particular, we are benefited from the ideas and tricks in
[8, 38, [43].

Setting-up of the problem

Given (®;_1,e) € A, we have defined a global approximate solution W. an infinite di-
mensional reduction will be applied to claim that there exist ®;_; and e such that a small
perturbation of the global approximation W is a genuine solution.

For this purpose, we denote

E =AW + V(e)W — WP,

Le[¢] = —=Dgp + V(ez)p — pWP g,
and

N(¢) = —[(W + ¢)F — WP — pWP~1g].
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Obviously, W + ¢ is a solution of equation (2.22)) is equivalent to

L.[¢] + E + N(¢) = 0. (2.54)

To solve (2.54]), we look for a solution ¢ of the form
Qb = n§6¢ﬁ + qbbv

where ¢ : M, — R and ¢* : K. x RY — R. This nice argument has been used in [8] 38, 43]
and is called the gluing technique. It seems rather counterintuitive, but this strategy will
make the linear theory of L. clear.

An easy computation shows that
—Le[0] = 155 (80" — Vi + pWP™6F) + 80" =V + W™ + (Aynis) 6 + 2V s V.
Therefore, ¢ is a solution of (2.54)) if the pair (¢°, ¢*) satisfies the following coupled system:
Dy =V = (i) = 29,55 Vo + (1= 1) [E + Nlaiod? + o) = >8],

n5s (Agf — Vi + pWP—Loh) = s [E + N(n550° + &) — pW”‘lqbb} :

In order to solve the above system, we first define
L[¢) = Ay’ = V¢ on M, (2.55)

and note that it is a strongly coercive operator thanks to the conditions on the potential V',
see (2.8). Then, in the support of n5;, we define

¢ = h(ey)o* (v, €), with  ¢* : K. x RV - R.
A straightforward computation as in Subsection 3.1 yields

s (g0 = V&F + pWP 168 ) = ishr (B + i Ak 6™ — 6" + ()" o~ 6" + Blo]).

where B = O(¢) is a linear operator defined in Subsection 3.1. Now we extend the linear
operator B to K. x RY and we define

Le[¢7] := Apn o™ + u 2 Mg, 6" — ¢* + (155)7 ooy ' ¢* + s Blo*] on K. x RY,
and
Li[¢"] i= Dpn ¢ + p Ak " — ¢" + pwl 9" = —Lo[¢] + p *Ax.¢* on K. x RV,

Since 155 - m5 = 15 and 155 - NEs = N5, ¢ is a solution of (2.54) if the pair (¢°, ¢*) solves the
following coupled system:

L2[$) = —(Aguia)hd” — 2955 - Vo(he*) + (1 = 15) [ + N(s? + ) - pWr17),
L[] = v h? [E + N(sho™ + ") — W= | — (Lo — L2)[g7]
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It is easy to check that

_<Ag77§6>h¢* - 2vg"7:§6 ) vg<h¢*> = (1 - 77§) [ - (Agﬁ:is)hcﬁ* - 2vg"7:§6 ) vg<h¢*>
and

(1 =n5) = (1 —n5)(L —n52)-

Now, we define

NE(¢b7 ¢, Pr_y,e) = — (Ag77§5)h¢* —2Vyns5s - vg(h¢*)
(L= i) [ B+ Nl +¢) —p7 '),

and
Mo(¢, 6", @1r,€) = 15 b [ B+ N(nigho' +¢) —pW?™'¢?| = (L. — L),
Then W + ¢ is a solution of equation (2.22)) if (¢, ¢*, ®;_1, €) solves the following system:

L[¢] = (1= n5) Ne(¢, 6%, @11, €),

(2.56)
Li[¢*] = Mo(¢", 0%, @11, €).

To solve the above system , we first study the linear theory : on one hand, since
the operator L’ is strongly coercive, then we have the solvability of equation L’[¢’] = 1. On
the other hand, one can check at once that L} has bounded kernels, e.g., Ojwg, j =1,..., N.
Actually, since L has a negative eigenvalue Ay with the corresponding eigenfunction Z, there
may be more bounded kernels of L.

Let 1 be a function defined on K. x RY we define II to be the L?(d¢)-orthogonal projection
on J;wy’s and Z, namely

1) = (W), . T[], v [0]), (2.57)
where for j =1,..., N,
1 . N -
)= - [ 0O Oun() . with oo = [ ool i

Co JRN

and

My [¢] = N U(y, &) Z(&) d€.
R
Let us also denote by I+ the orthogonal projection on the orthogonal of d;wy’s and Z, namely

N

I [y] o= ¢ — Z IL;[4)] Ojwo — Uy [¢] Z.

J=1

26



With these notations, as in the Lyapunov-Schmidt reduction, solving the system (2.56)
amounts to solving the system

L2[¢’) = (1 = n5)N(¢’, 6%, @11, ),
L[] = 14 [ ML, 67, @11 0)|. (2.58)
H[Mg(gb",gb*, @1_1,6)] —0.
It is to see that one can write
E =55 hP §6<UI) — (Agnss) (hvr) — 2(Vgnss) - Vg(hvr) — 3, [(U§5)p_1 - 1} hPvy.
Hence by Proposition

M.(¢°, ¢*, &1, €) =c(— e’ Age + \oe) Z + e S (Pr_y)
+ MG rialey, &) + P I (ey, & Py e)

P [NOgsho” + ) — o] — (L — L)[67).
On the other hand, since

Sr1(®r-1) dswo = cop ™ (Ix®r1)*(ey), (2.59)

RN

by some rather tedious and technical computations, one can show that
MGk [®r1] = O (i) + M1 (@7, 0%, D1y, e);

H[M€(¢b, ¢*,<1>,~_1,e)] — 0
8%5[6] = Ma,2(¢ba¢*aq)l—1ae)a

(2.60)

where $;7,1(y; e) is a smooth bounded function on g and is Lipschitz continuous with respect
to e, Ji is the Jacobi operator on K, and K. is a Schrodinger operator defined by

K.[e] := —e*Axe + \op’e (2.61)
where )\ is the unique negative eigenvalue of Lj.

We summarize the above discussion by saying that the function
u=W(-;®r1,e) +n55h " + ¢,

is a solution of the equation
Agu—V(ez)u+u’ =0,
if the functions ¢, ¢*, ®;_; and e satisfy the following system

LZ[W] = (1—mn5) Ns(¢b7¢*, ;1)
Li[6] = T [ML(, 67, @11, €)]
€[+13K[(I)I*1] = €I+1‘61+1 (gv 6) + M6,1(¢b7 ¢*7 (I)Ifh 6)7

\ngE[e] = M872(¢b7 ¢*a (I)[—lﬂ 6).

(2.62)
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Remark 2.2.7 1. In general there are two different approaches to set-up the problem:
the first one, as used in [§] and [43], consists in solving first the equations of ¢” and ¢*
for fixed ®;_; and e, and then solve the left equations of ®;_; and e. The second one,
as in [26], 30] consists in solving first the linear problem L.[¢] 4+ ¢ = 0 under some non-
degeneracy and gap conditions; and then solve the nonlinear problem L. [¢]+E+N(¢) =
0 by using a fixed point arguments.

Our approach is slightly different from those in [8]-[43] and [26]-[30].

2. After solving the system (12.62)), one can prove the positivity of u by contradiction since
both ¢* and ¢* are small.

Analysis of the linear operators

By the above analysis, what is left is to show that (2.62)) has a solution. To this end, we will
apply a fixed point theorem. Before we do this, a linear theory will be developed.

Analysis of a strongly coercive operator

To deal with the term —n5h PpWP~1¢’ in M.(¢’, ¢*, ®;_1,¢€) in applying a fixed point
theorem, one needs to choose norms with the property that ME(¢b, ¢*, ®r_1, e) depends slowly
on ¢’. To this end, we define

1
19|00 = lI(1 = 154)lloo + g||77§/4¢b||oo- (2.63)
With this notation, by the exponential decay of W, we have

IM(&, 6", @121, €)lloc < Cl|¢ |00

and
M (7, ¢%, @r-1,€) — Me(B5, 0", @11, €)oo < Celld] — B5lc,00-

Since (2.8]), we have the following lemma.
Lemma 2.9 For any function ¢(z) € L>(M.), there is a unique bounded solution ¢ of

L[] = (1 —n5). (2.64)

Moreover, there exists a constant C' > 0 (independent of ) such that

18]le00 < Cllt) |- (2.65)

For ¢* € Cy*(M.), we define

1
199w = 1L = 78708 s+ 5 a6 e (2.66)

As a consequence of standard elliptic estimates, the following lemma holds.
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Lemma 2.10 For any function ¢ € Co*®(M.), there is a unique solution ¢ € Co*(M.) of

L2[¢] = (1 —15)¢. (2.67)

Moreover, there exists a constant C' > 0 (independent of €) such that

I19ll2c.0 = I8llza + 1 VSllea + 1V Sllea < Cllllczaar- (2.68)

Study of the model linear operator L

First, we will prove an injectivity result which is the key result. Then, we will use this
result to obtain an a priori estimate and the existence result for solutions of L¥[¢] = ¢ when

[[¢] = 0 = I[y].

Lemma 2.11 (The injectivity result) Suppose that ¢ € L®(K. x RY) satisfies L:[¢] = 0
and I1[¢] = 0. Then ¢ = 0.

Proor. We will prove this lemma by two steps.

Step 1: The function ¢(y,£) decays exponentially in the variables €.

To prove this fact, it suffices to apply the maximum principle since wg(£) has exponential
decay and ¢ is bounded.

Step 2: We next prove that

f) = | FuOdE=0, VyeK.

Indeed, by Step 1, for all y € K., f(y) is well defined. Since L[¢] = 0, we have

Bict= [ 20niodis [ AVioP i
RN RN
=2 [ {Veol +0 - put Y2 | Viofd
RN RN
2 2/12’)/0 ¢2 <y7 g) dga
RN
where in the last inequality since I1[¢] = 0 we use the following inequality

/RN {’vé(b’Q +¢7 - pwg_1¢2} d€ > o /RN ¢* d€. (2.69)

Therefore, by the definition of f, the above inequality gives

A f> 21y f.

Since f is nonnegative and K. is compact, we just get f = 0 by the integration. If K, is non
compact, one can first show that f goes to zero at infinity by the comparison theorem and
then get f = 0 by the maximum principle. O]
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Remark 2.2.8 Actually, following the argument of proof of Lemma 3.7 in [3§], one can show
that

o= Z&(y) djwo + Ny Z, (2.70)

J=1

if ¢ is a bounded solution of Lf[¢] = 0, where ¢;(y) (j = 1,...,N) can be any bounded
function, but ¢¥*1(y) must satisfy the equation

Ag. VT = Nop2N T (2.71)

€

It is worth noting that (2.71)) is just another form of K.[e] = 0. When ¢ satisfies some gap
condition (cf. Proposition below), equation ([2.71)) does not have a bounded solution.

Moreover, one can show that under the orthogonal conditions I1[¢] = 0, the linear operator
L7 has only negative eigenvalues A5’s and there exists a constant ¢ such that

)\j < —cp < 0.

To prove it, since p? = V(3,0) and (2.8), the inequality (2.69)) implies

Y T 2 2
/MRN ngwzc/mw( Lé)u ‘”ZC%/MRN“

Before stating the surjectivity result, we define

||1/’||6,a,p ‘= Sup epm||w||0°’a(31((y,§)))’
(y,6)€Ke xRN

where a and p are small positive constants.

Proposition 2.12 (The surjectivity result) For any function ¢ with ||1)||a.. < 0o and II[{)] =
0, the problem

Lilg] = (2.72)
has a unique solution ¢ with II[¢] = 0. Moreover, the following estimate holds:
19ll2c.0.0 = [1llc.cp + IVl + 1V*Slleap < ClYllcap, (2.73)

where C' is a constant independent of e.

Remark 2.2.9 Here we choose to use weighted Holder norms, actually one can also use
weighted Sobolev norms.

Non-degeneracy condition and invertibility of Jx

Proposition 2.13 Suppose that K is non-degenerate, then for any ¥ € (C*%(K))¥ N NK,
there exists a unique ® € (C?**(K))Y N NK such that

Ix[®] =V (2.74)
with the property
@120 = [[@llcoaim) + IVOllcoai) + [VERllcoa) < ClI¥[lcoa ), (2.75)

where C' is a positive constant depending only on K.
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Proor. Since the Jacobi operator Jx is self-adjoint, this result follows from standard elliptic
estimates, cf. [15] [19)]. O

Gap condition and invertibility of XK.

Proposition 2.14 There is a sequence ¢ = ¢; N\, 0 such that for any p € C**(K), there
exists a unique e € C**(K) such that

K.le] = ¢ (2.76)
with the property
lells := llellcoaqx) + el Velleoa) + %[ V2ellcoam) < Ce™ lpllcon ), (2.77)
where C' is a positive constant independent of €.

Proor. This is a semiclassical analysis of a Schrodinger operator. The arguments are similar
in spirit as the ones used in the proof of Proposition 8.1 in [43]. We summarize them in the
following two steps.

Step 1: There is a sequence ¢; \, 0 such that for any ¢ € L?(K), there exists a unique
solution to ([2.76)) and satisfies

lell 22y < CE;kHSOHLQ(K)- (2.78)

This fact follows from the variational characterization of the eigenvalues and Weyl’s asymp-
totic formula.

Step 2: The unique solution satisfies (2.77). This follows from standard elliptic estimates
and Sobolev embedding theorem. m

The nonlinear scheme

Now we can develop the nonlinear theory and complete the proof of Theorem [2.1]

Size of the error

Lemma 2.15 There is a constant C' independent of € such that the following estimates hold:

IN=(0,0,0,0) || 2, + ([T [M:(0,0,0,0)] |, , < Ce"*. (2.79)

Moreover,
| M.1(0, 0,0, O)HCO@(K) < Ce? || M.2(0,0,0, 0)}|CO,Q(K) < Ce (2.80)
Proor. It follows from the definitions and the estimate (2.53). O
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Lipschitz continuity

According to the estimate of error, we define

B/\ = {(¢b> ¢*a (I)I—la 6) | ”d)bHQ,a,a S )\5]+17 H¢*“2,a,a,p S )\51+17
(2.81)

1Pr-1]l2,0 < A, lefl« < /\813/«}‘

Lemma 2.16 Given (¢}, ¢7, ®1_1,e1), (¢}, 05, P11, e2) € By, there is a constant C' indepen-
dent of € such that the following estimates hold:

HNE( b17¢>{7 (bf—lael) - NE(¢Z?¢;7 6]—1762)”03@(]\46)

< Ce'tt (Hﬂﬂ — Ol + |07 — B3ll2cap + | P11 — Pro

s+ llex = eall.),

HHL [Mg( 37¢T7¢171,61)] — 1t [Ms(%;(ﬁ;,&)pl,@)] Hw’p
< C (|16 = Bllac + 167 = Dl + 111 = &1y

2, + ||61 - 62”*)’

HMEJ(QS?’ ¢>{> CI)I—la 61) - Ma,l(qsgv QZS;, (I)I—b eQ)”co,a(K)
< O (|16} = hlacia + 165 = 326 + 111 = Bioallza + ler = eal.),

and

HME,Q((b?? ¢T7 @[,1,61) - M€,2(¢;7 (b;?(iffheQ)”Co,a(K)
< Ce'™! (H(b? — Blleia + 167 — Dbll2iap + @11 — Bry

2, + ||€1 - 62”*)-

Proor. This proof is rather technical but does not offer any real difficulty. It is worth
noting that the use of the norm ||¢’||2... is crucial to estimate the term —ns hPpWP~1¢’ in
Ms(¢ba¢*7q)[flae)' O

Proof of Theorem 2.1

By the analysis in Section 4.1, the proof of Theorem [2.1] follows from the solvability of (2.62)).

Now we can use the results in the linear theory to rephrase the solvability of (2.62)) as a
fixed point problem. To do this, let ®;_1 = ®;_1 9+ ®;_1, where ®;_; ¢ solve the equation

Ix[Pr-10] = D141(7; €). (2.82)

62



Thus ®;_1 0 = ®;_10(y;e). Moreover, the reduced system (2.62) becomes

(szb] = (1 - 773) NE((bb? (b*v (1)1*17 6)7
L:[¢*] = HJ_ M6(¢b7 Qb*, q)f—lﬁ 6):| )
5I+13K[EI;I—1] = j\v/[s,l((bbv o, &)1—1, 6)7

(e K:[e] = ﬁ572(¢b, ¢, Pr_1,e).

(2.83)

It is a simple matter to check that both Jv[al and 3\7[53 satisfy the properties in Lemmas
and [2.16, Taking I > 3k+1 and X sufficiently large, Theorem [2.1]is now a simple consequence
of a fixed point theorem for the contraction mapping B,.

2.2.6 Proof of Proposition

The proof is based on the Taylor expansion of the metric coefficients. Recall that the Laplace-
Beltrami operator is given by

1
Vdet g

Agu = Oa ( det g g** 85u>

which can be rewritten as
A = a582 0 of 0 1 0‘58 1 d 0
gU g a,Bu + ( ad ) BU + 5 g a( 0g et g) BU-

Using the expansion of the metric coefficients determined above, it can be easily proved that

gaﬁ aiﬂu = ﬁ“b beu + ﬁfiu + € {ﬁCb re + g« Flc’i} (fi + <I>i) gab beu — 2¢ ﬁab 81;<I>j Zﬁju

+ ¢ ( — 373" Ryear + 9 T, T8 + g TGI8 + g szrgz) (&F + M) (& + @) D%
42

— TRkajl(gk +0F) (¢ + @) 83;‘“ + 22057 {gbc I +9* ng} (& + @) aﬁju

2
€ ~al i i
-3 Ry (€8 + @F) (& + @) 07 u + € ™ ;9" 0,97

+ R3(&, @, vq>)(a§ju + agju + 03u).
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An easy computations yields

O™ = 0pg™ + ¢ 6%{ goTy + g FZ} (& +9") +¢° {Zq’c” I +9* FZ} 05 @°
+ R3(£,®, VO, V),

8jgja = —ge’:“QRJaJl(g + (I) ) + 5265(I)J {~bc Fa gac Fb } + RS(&; (I)7 VCI)),

8agaj — —52 aigab agq)] o 62 gab a;l;q)j + 638;?)@]‘ {~bc Fa + gac Fb } (51 + (I)z)
+ R3(&, @, VO, V),
ij L, k k
g = =38 Rriji(§" + %) + Ry (&, @, V).
Then the following expansion holds
(90g™")Ogu =
abgab aau + 62 a_{Ncb Fa + gca Flc)z} (52 + q)z) aau + 52 { ~cb Fa + gca Flc)z} agq)z aau
2 e ~
B 552Rjajl(fl + ') Dyu + 205’ {gbc Ie+9* FZJ} Out
— 20,9 057 dju — ¢ 2 82 o7 oju + 5382 Y {~bc re +g% Fb } (&' + @Y dju

1
— §gQR,ﬂ-jl-(gk + &%) 9ju + R3(&, @, VD, V20)(d;u + O4u).

On the other hand using the expansion of the log of determinant of g given in Lemma [2.4] it
holds that

dylog (det g) = O, log (det g) — 262 G;(T%,) (6% + @F) — 22 T%, 9;@F + R3(¢, @, VD, VD).

and
N 1
O;(log det g) = —2e Iy, + 2¢7 (gab Ryapi + ngjji - ngf?i) (& + @F) + Ry(&, @, V),
which implies that

1
égaﬂaa(log det g)0pu =

1
J.(log det q) ( 7% Opu + 5{ngF“ + geT®, }(ﬁ’ + @) Oyu — £ G070, u)

N |

—€ inaiu +&° (ZiabRkabi +

1
3 Likiii — FZkF?i) (& + @) O

e (ag(rz%k) (6 + &)+ T az,cb'f) T00uu + Ry(E, ®, VO, V2) (D0 + Do),
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Collecting the above terms and recalling that
~ ~ 1 ~
Ag.u =G 0+ (0™)0u + 5 §0a(log det ) dpu,

the desired result then follows at once.
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