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On the topology of solenoidal attractors of the cylinder
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Abstract

We study the dynamics of skew product endomorphisms acting on the cylinderR/Z × R, of the form

(θ, t) �→ (
�θ,λt + τ (θ)

)
,

where� � 2 is an integer,λ ∈ (0,1) andτ :R/Z → R is a continuous function. We are interested intopologicalproperties of
the global attractorΩλ,τ of this map. Given� and a Lipschitz functionτ , we show that the attractor setΩλ,τ is homeomorphic
to a closed topological annulus for allλ sufficiently close to 1. Moreover, we prove thatΩλ,τ is a Jordan curve for at mos
finitely manyλ ∈ (0,1).

These results rely on a detailed study of iterated “cohomological” equations of the formτ = Lλ1µ1, µ1 =Lλ2µ2, . . . , where
Lλµ = µ ◦ m� − λµ andm� :R/Z → R/Z denotes the multiplication by� map. We show the following finiteness result: ea
Lipschitz functionτ can be written in a canonical way as,

τ =Lλ1 ◦ · · · ◦Lλm
µ,

wherem � 0, λ1, . . . , λm ∈ (0,1] and the Lipschitz functionµ satisfiesµ �= Lλρ for every continuous functionρ and every
λ ∈ (0,1].
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Résumé

On étudie la dynamique des produits croisés agissant sur le cylindreR/Z × R, de la forme

(θ, t) �→ (
�θ,λt + τ (θ)

)
,

où � � 2 est un entier,λ ∈ (0,1) et τ :R/Z → R est une fonction continue. On s’intéresse aux propriétéstopologiquesde
l’attracteur globalΩλ,τ de cet endomorphisme. Étant donné� et une fonction lipschitzienneτ , on démontre que l’attracteu
Ωλ,τ est homéomorphe à un anneau topologique pour toutλ suffisamment proche de 1. D’autre part, on démontre qu’il ex
au plus un nombre fini deλ ∈ (0,1) tels que l’attracteurΩλ,τ soit une courbe de Jordan.

Ces résultats s’appuient sur une analyse détaillée des équations “cohomologiques” itérées :τ = Lλ1µ1, µ1 = Lλ2µ2, . . . ,
oùLλµ = µ ◦ m� − λµ et m� est l’application de multiplication par� sur le cercleR/Z. On démontre le résultat de finitud
suivant : toute fonction lipschitizenneτ s’écrit de façon canonique sous la forme

τ =Lλ1 ◦ · · · ◦Lλm
µ,

oùm � 0,λ1, . . . , λm ∈ (0,1] et la fonction lispchitzienneµ satisfaitµ �=Lλρ pour toute fonction continueρ et toutλ ∈ (0,1].

Keywords:Attractors; Endomorphisms

1. Introduction

In this paper we study the dynamics of skew product endomorphisms of the cylinderR/Z × R of the form

Aλ,τ :R/Z × R → R/Z × R,

(θ, t) �→ (
�θ,λt + τ(θ)

)
,

where� � 2 is an integer,λ ∈ (0,1) andτ :R/Z → R is a continuous function.
The non-wandering setΩλ,τ of Aλ,τ is a global attractor of the dynamics ofAλ,τ : the forward orbit of every

point inR/Z × R converges toΩλ,τ andAλ,τ is transitive onΩλ,τ . In factAλ,τ is topologically semi-conjugate t
a solenoidal map onΩλ,τ (Section 2).

These maps where initially studied in [10], from ameasure theoreticalpoint of view. In that paper M. Tsuji
showed thatAλ,τ has a unique physical measure and that the support of this measure is the attractorΩλ,τ . The
main result of [10] is that, whenλ > �−1, for generic functionsτ of classC2 the unique physical measure ofAλ,τ

is absolutely continuous with respect to Lebesgue measure.
The purpose of this paper is to studytopologicalproperties of the attractor setsΩλ,τ . Our main result is the

following.

Theorem 1.Suppose thatτ :R/Z → R is a non-constant Lipschitz function. Then the following hold:

(1) The setJτ = {λ ∈ (0,1) | Ωλ,τ is a Jordan curve} is finite.
(2) There existsλ0 ∈ (0,1) such that for allλ ∈ [λ0,1) the attractor setΩλ,τ is homeomorphic to an annulus.

For a givenλ ∈ (0,1), we characterize those functionsτ for whichΩλ,τ is a Jordan curve in terms of the Four
coefficients ofτ (Theorem 2). From this characterization it follows easily that the set of thoseτ for whichΩλ,τ is
a Jordan curve has infinite codimension in the space of all Lipschitz functions.
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1.1. On the interior of the attractor

Whenλ < �−1, it is easy to see thatΩλ,τ has zero Lebesgue measure and hence empty interior. On the
hand, whenλ = �−1 we show the setΩλ,τ is not homeomorphic to an annulus (Proposition 4.4). Soλ0 in part (2)
of the theorem must be strictly larger than�−1.

Whenλ > �−1, Tsujii’s result (mentioned above) implies that for mostτ of classC2, the attractor setΩλ,τ has
positive Lebesgue measure. Here we show examples of mapsAλ,τ for which the setΩλ,τ has non-empty interio
but it is not homeomorphic to an annulus (Proposition 7.4). In these examplesλ can be taken arbitrarily clos
to �−1. Moreover we show that these examples arerobustin the sense that any mapA :R/Z × R → R/Z × R that
is sufficiently (Lipschitz) close toAλ,τ has the same properties. Here,A is not necessarily a skew product map.

In a forthcoming paper we show that, whenλ > �−1, for mostτ of classC2 the setΩλ,τ has non-empty interior

1.2. On the iterated cohomological equation

Recall that a continuous functionτ : R/Z → R is cohomologous to0 if there is a continuous functionµ such
that

τ = Lµ = µ ◦ m� − µ,

wherem� : R/Z → R/Z is the multiplication by� map. It is easy to see that in this case
∫

R/Z τ = 0 and the function
µ is unique up to an additive constant. For this reason we will assume that all the functions considered in
of the introduction have 0 mean.

Part (2) of the theorem is first proven in the case whenτ is not cohomologous to0 (Proposition 4.6). When
τ = Lµ is cohomologous to 0, a direct computation shows thatthe mapsAλ,τ and Aλ,µ are conjugatedby the
homeomorphism(θ, t) �→ (θ, (t + µ)/(1 − λ)). So, if µ is not cohomologous to 0 we reduce to the first case
induction, if for some positive integern there is a continuous functionµ : R/Z → R that is not cohomologous to
and such thatτ = Lnµ, then we reduce to the first case.

We complete the proof of part (2) of the theorem by showing thata non-constant Lipschitz function cannot
infinitely cohomologous to0. More precisely, we show that ifτ is Lipschitz, then the integern above is bounded
by a constant depending only on the Fourier coefficients ofτ (Corollary 5.7).

Problem 1. Is there a non-constant continuous function that is infinitely cohomologous to 0?

1.3. Cohomological operators

For λ ∈ (0,1] it is interesting to consider the linear operatorsLλ defined byLλµ = λµ − µ ◦ m�, so that
L1 = L. For λ0 ∈ (0,1) andτ (Lipschitz) continuous we show thatΩλ0,τ is a Jordan curve if and only if ther
exists a (Lipschitz) continuous functionµ such thatτ = Lλ0µ (Proposition 3.1). In that case, for everyλ ∈ (0,1)

different fromλ0, the mapsAλ,τ andAλ,µ are conjugate (Lemma 5.8).
We show that each Lipschitz functionτ can be written in a canonical way as

τ = Lλ1 ◦ · · · ◦Lλmµ,

where the functionµ satisfies
∫

R/Z µ = 0 andµ �= Lλρ for everyλ ∈ (0,1] and every continuous functionρ (here
there might be repetitions amongλ1, . . . , λm). This implies part (1) of the theorem. Note that such a functionµ is
such that for everyλ ∈ (0,1) the setΩλ,µ is not a Jordan curve and for everyλ ∈ (0,1) different from theλi , the
mapsAλ,τ andAλ,µ are conjugate (Theorem 3).

Problem 2.For� = 2, letµ be a non-constant Lipschitz function such thatµ �= Lλρ for everyλ ∈ (0,1) and every
continuous functionρ. Is thereλ0 ∈ (0,1) such thatΩλ,µ is homeomorphic to an annulus if and only ifλ � λ0?
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1.4. Are there periodic points in the boundary?

Theupper(resp.lower) boundary of the attractoris by definition the graph of the function

ρ+(θ) = sup
{
t | (θ, t) ∈ Ωλ,τ

}
(resp.ρ−(θ) = inf

{
t | (θ, t) ∈ Ωλ,τ

}
).

These functions are continuous and characterized by the functional equations

ρ+(θ) = max
{
λρ+(θ ′) + τ(θ ′) | θ ′ ∈ m−1

� (θ)
}
,

ρ−(θ) = min
{
λρ−(θ ′) + τ(θ ′) | θ ′ ∈ m−1

� (θ)
}
.

Moreover, whenτ is Lipschitz the functionsρ+ andρ− are also Lipschitz.

Conjecture. For eachλ ∈ (0,1) there is an open and dense set of functionsτ of classC1, such that the following
properties hold.

1. The upper(resp. lower) boundary ofΩλ,τ contains a finite number of periodic orbits ofAλ,τ .
2. The upper(resp. lower) boundary ofΩλ,τ is formed by a finite number of pieces of the unstable manifold

the periodic orbits that it contains.

In particular the upper and lower boundaries areC1 by parts.

For a givenλ ∈ (0,1) and a continuous functionτ :R/Z → R consider the closed set

D+ = {
θ ∈ R/Z | λρ+(θ) + τ(θ) = ρ+(�θ)

}
.

It follows from the functional equation ofρ+ thatm�(D
+) = R/Z, so the maximal invariant set

K+ = {
θ ∈ D+ | mn

�(θ) ∈ D+ for n � 1
}

is non-empty and compact. Part 1 of the conjecture implies thatK+ contains a finite number of periodic orbits a
part 2 implies thatK+ is finite.

The above conjecture is somewhat similar to the conjecture that, for generic expanding endomorphism
circlef , there is a unique measureµ minimizing the integral

∫
R/Z lnf ′ dµ and that this measure has finite suppo

see [1,2] and references therein.

1.5. Notes and references

Our original motivation to study the dynamics of the skew product mapsAλ,τ was the family of mapsfλ,c

considered in Subsection 7.1.
Similar skew products of the cylinder where studied by M. Viana [12]. M. Tsujii [11] extended the re

of [10] and [12] to general partially hyperbolic endomorphisms on surfaces. The structural stability of Ax
endomorphisms has been studied in [9]. Piecewise affine endomorphisms having an attractor set with no
interior were studied in [3].

After this article was written we found out that the skew product maps considered here were studie
and [4], see also Appendix 3 of [8]. In [4] there are some examples of mapsAλ,τ whose attractor setΩλ,τ has
non-empty interior.

Some results in this paper are closely related to “normal forms” in “ergodic optimization” (e.g. see [
references therein). For example, given a functionτ :R/Z → R the study of the solutionsρ+ of the equation

ρ+(θ) = max
{
λρ+(θ ′) + τ(θ ′) | θ ′ ∈ m−1(θ)

}

�
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asλ → 1 leads to the existence of a normal form ofτ. It is remarkable that in our context the functionρ+ has the
clear geometrical interpretation as the upper boundary of an attractor set.

1.6. Outline

Let us now describe the structure of the paper.
Section 2 starts giving several equivalent characterizations of the setΩλ,τ . Then, in Subsection 2.1, we sho

that the semiconjugacy between the dynamics induced by the multiplication by� map on the solenoidS and the
dynamics ofAλ,τ on Ωλ,τ can be written in a fairly explicit manner. Also, we endowS with an adapted metri
distλ which makes this semiconjugacy a Lipschitz function, provided thatτ is Lipschitz. Then it naturally follows
that the upper and lower boundaries of the attractorΩλ,τ are Lipschitz graphs whenτ is Lipschitz (Subsection 2.2

Section 3 is devoted to study Jordan curve attractors. We characterize them and show, among othe
that Ωλ,τ is a Jordan curve if and only if the functional equationµ ◦ m� − λµ = τ has a continuous solutio
(Proposition 3.1). This allow us to show, in Subsection 3.2, that the set of continuousτ (with absolutely convergen
Fourier series) such thatΩλ,τ is a Jordan curve has infinite codimension (Theorem 2).

The main result in Section 4 is that, forλ sufficiently close to 1, the attractorΩλ,τ is a closed topologica
annulus provided thatτ is Hölder, not cohomologous to 0 and with 0 mean (Proposition 4.6). This section
with general results about annular attractors. In particular, we show that if the image of the upper boundaryΩλ,τ

is above in the cylinderR/Z × R than the image of the lower boundary, thenΩλ,τ is homeomorphic to a close
annulus (Lemma 4.1). Also, we establish that forλ � 1/�, the attractorΩλ,τ cannot be an annulus (Proposition 4.
Then, in Subsection 4.1, under the above assumptions forτ we find periodic orbitsO± in the circle so that the
corresponding orbits inΩλ,τ ⊂ R/Z × R haveR coordinates tending to±∞ asλ → 1. From this we deduc
that the image of the upper boundary is higher up inR/Z × R than the image of the lower boundary, whenλ is
sufficiently close to 1, and therefore thatΩλ,τ is an annulus.

Sections 3 and 4 lead us to study in more detail the operatorsLλµ = µ ◦ m� − λµ with λ ∈ (0,1]. For our
purpose the natural domain of the operatorsLλ is the space of Lipschitz functions. In Section 5 we start by prov
some general facts about these linear operators and relating them to conjugacy classes of maps of theAλ,τ

(Lemmas 5.2 and 5.8). As mentioned in Subsection 1.2 this forces us to study iterated equations of t
Lλ1µ1 = τ ,Lλ2µ2 = µ1, . . . . An important feature of the operatorsLλ is that they do not increase the best Lipsch
constant forµ (Lemma 5.4) which implies that solutionsµn of the iterated equations are uniformly Lipschi
Then we show that the above equations have the effect of increasing the Fourier coefficients ofµn asn increases
and establish our Main Lemma which states that, given a Lipschitz functionτ there exists a finite collectio
0< λ1, . . . , λm � 1 (maybe with repetitions) and a (Lipschitz) continuous functionµ such thatLλ1 ◦· · ·◦Lλmµ = τ

andLλρ �= µ for all continuousρ (see Lemma 5.6 and the Main Lemma). Theorem 1 and its stronger ve
Theorem 3 follow immediately from our Main Lemma.

In Section 6 we start by appropriately defining the attractor set and the upper and lower boundaries for
maps (not necessarily skew products) which are close toAλ,τ and state that the upper and lower boundarie
Ωλ,τ vary continuously in theC0 topology under Lipschitz perturbations ofAλ,τ (Proposition 6.2). To prove thi
we pass to the universal coverR2 of R/Z × R and, in Subsection 6.1, examine the action of Lipschitz maps
R2 into R2 on the graphs of Lipschitz functions. In Subsection 6.2, motivated by the fact that the upper an
boundaries ofΩλ,τ are the graphs of functionsρ± :R/Z → R which satisfy certain functional equations we sh
that, under certain conditions, the upper and lower boundaries of the attractor of mapsF of the cylinder are fixed
points of operatorsT ±

F which act on Lipschitz functions. The definition and properties ofT ±
F rely on the work of

Subsection 6.1. At the end of Section 6 we prove the above mentioned continuity of the upper and lower bo
of the attractor.

The last section, Section 7, contains two examples. The first example consists of an application of our r
the study of a familyfλ,c of endomorphisms ofC∗ = C \ {0} whereλ ∈ (0,1) andc ∈ C∗. Herefλ,c = fλ,0 + c

wherefλ,0 acts as angle doubling on the arguments ofz ∈ C∗ and as an affine contraction of factorλ in the
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radial direction. Thus,fλ,c is closely related to the extensively studied quadratic familyQc(z) = z2 + c where the
|z| �→ |z|2 action ofQ0 in the radial direction has been substituted by an affine contraction. We show thaλ
sufficiently close to 1 and for|c| sufficiently small, the attractor offλ,c is an annulus. The second example sho
that givenλ > 1/� there exist skew product endomorphismsAλ,τ such that the attractorsΩλ,τ have non-empty
interior and are not an annulus. This example is robust under Lipschitz perturbations.

2. Preliminaries

Throughout this section, unless otherwise stated,τ :R/Z → R is a continuous function andλ ∈ (0,1). We start
by showing thatΩλ,τ is a global attractor for the dynamics ofAλ,τ and giving several equivalent characterizatio
of this set. As usual‖τ‖∞ = sup{τ(θ) | θ ∈ R/Z}.

Lemma 2.1.LetΩλ,τ be the non-wandering set ofAλ,τ :R/Z × R → R/Z × R.

(1) If U0 = R/Z × (−T0, T0) for someT0 such that(1− λ)T0 > ‖τ‖∞, then

Aλ,τ (U0) ⊂ U0 and Ωλ,τ =
⋂
n�0

An
λ,τ (U0).

(2) Ωλ,τ is the set of all(θ, t) ∈ R/Z × R with a bounded infinite backward orbit(i.e., there existsC > 0 and
{(θn, tn)}n�1 such thatAn

λ,τ (θn, tn) = (θ, t) and |tn| � C for all n � 1).
(3) Ωλ,τ is the closure of the set formed by the periodic points ofAλ,τ .

Proof. Denote by Per the set of periodic points ofAλ,τ and byB the set of points inR/Z × R which have a
bounded infinite backward orbit. We will show that:

Per⊂ Ωλ,τ ⊂
⋂
n�0

An
λ,τ (U0) ⊂ B ⊂ Per.

The inclusionsPer⊂ Ωλ,τ and
⋂

n�0 An
λ,τ (U0) ⊂ B are clear.

Let T0 be such that(1− λ)T0 > ‖τ‖∞. Since∣∣λt + τ(θ)
∣∣ � λT0 + ‖τ‖∞ < λT0 + (1− λ)T0 = T0

for all |t | � T0, it follows thatAλ,τ (U0) ⊂ U0.
Note that if(θn, tn) = An

λ,τ (θ, t), thenθn = �nθ and

tn = λnt + λn−1τ(θ) + λn−2τ(�θ) + · · · + τ(�n−1θ).

Therefore,

|tn| � 1− λn

1− λ
‖τ‖∞ + λn|t |. (1)

Hence, for all(θ, t) ∈ R/Z × R there existsn such thatAn
λ,τ (θ, t) ∈ U0.

Now we show thatΩλ,τ ⊂ ⋂
n�0 An

λ,τ (U0). In fact, suppose that for somem � 0 we have that(θ, t) /∈ Am
λ,τ (U0)

and considern such that(θ, t) belongs to the open setV = A−n
λ,τ (U0) \ Am

λ,τ (U0). Then, for everyM � m we have

thatV is disjoint fromAn+M
λ,τ (V ). It follows that(θ, t) does not belong to the non-wandering setΩλ,τ of Aλ,τ .

To finish the proof of the lemma we consider a neighborhoodU of a point(θ, t) with bounded infinite backwar
orbit and proceed to show thatU contains a periodic point. Let{(θn, tn)}n�1 andC > 0 be such thatAn

λ,τ (θn, tn) =
(θ, t) and|tn| � C for all n � 1. There existn � 1 and an open intervalI ⊂ R/Z aroundθn such that the rectangl



R. Bamón et al.

t

om
R = I × [−T0, T0] maps intoU underAn
λ,τ . Since there existsθ ′ ∈ I periodic under multiplication by�, say of

periodm, we have thatAm
λ,τ restricted to{θ ′} × [−T0, T0] is a contraction. It follows thatAλ,τ has a periodic poin

in {θ ′} × [−T0, T0] ⊂ R and therefore inU . �
2.1. The solenoid and the semiconjugacy

Throughout the paper multiplication by� in the circle will be denoted bym� :R/Z → R/Z. For eachλ ∈ (0,1)

we endow the solenoid:

S := {
θ̄ = (θk) ∈ (R/Z)N∪{0} | m�(θk+1) = θk for all k � 0

}
with the adapted metric

distλ
(
(θk), (θ

′
k)

) =
∑
k�0

λk distR/Z(θk, θ
′
k),

where distR/Z denotes the projection of the standard metric ofR ontoR/Z. The dynamics of multiplication by�
induces:

M� :S → S,

(θk)k�0 �→ (�θ0, θ0, θ1, . . .).

We will show that the dynamics ofM� :S → S semi-conjugates to that ofAλ,τ :Ωλ,τ → Ωλ,τ . Thus, the
attractorΩλ,τ is in this sense a solenoidal attractor. To write an explicit formula for the semiconjugacy frS
ontoΩλ,τ we need the following definition.

Definition 2.2.Given a continuous functionτ :R/Z → R andλ ∈ (0,1) we definetλ :S → R by

tλ(θ̄ ) = τ(θ1) + λτ(θ2) + λ2τ(θ3) + · · · .

Note thattλ is continuous. Under the assumption thatτ is a Lipschitz function we will show thattλ is also
Lipschitz. In order to make the statements precise we introduce some notation.

Notation 2.3.Consider two metric spaces(X,ρX), (Y,ρY ). Given a Lipschitz mapf :X → Y the best Lipschitz
constant forf

sup
a �=b

ρY (f (a), f (b))

ρX(a, b)

is denoted by‖f ‖L and ifC � ‖f ‖L, we say thatf is aC-Lipschitz map.

Lemma 2.4.If λ ∈ (0,1) andτ :R/Z → R is a Lipschitz function, thentλ is a (λ−1‖τ‖L)-Lipschitz function from
(S,distλ) to R.

Proof. For anyθ̄ = (θk) andθ̄ ′ = (θ ′
k) in S we have∣∣tλ(θ̄ ) − tλ(θ̄

′)
∣∣ �

∑
k�1

λk−1
∣∣τ(θk) − τ(θ ′

k)
∣∣ � ‖τ‖L ·

∑
k�1

λk−1 distR/Z(θk, θ
′
k)

= λ−1‖τ‖L

(
distλ(θ̄ , θ̄ ′) − distR/Z(θ0, θ

′
0)

)
� λ−1‖τ‖L distλ(θ̄ , θ̄ ′). (2)

That is,tλ is λ−1‖τ‖L-Lipschitz. �
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Proposition 2.5.Givenλ ∈ (0,1) and a continuous functionτ :R/Z → R, let

hλ : S → R/Z × R,

θ̄ = (θk) �→ (
θ0, tλ(θ̄ )

)
.

Thenhλ is a continuous semiconjugacy fromS ontoΩλ,τ . That is,hλ :S → Ωλ,τ is onto andAλ,τ ◦hλ = hλ ◦M�.
Moreover,hλ : (S,distλ) → Ωλ,τ is Lipschitz wheneverτ :R/Z → R is Lipschitz.

Proof. That Aλ,τ ◦ hλ = hλ ◦ M� is a straightforward computation. We must show thathλ(S) = Ωλ,τ . Since
hλ(S) is bounded and forward invariant (i.e.,Aλ,τ (hλ(S)) = hλ(S)), by Lemma 2.1, we have thath(S) ⊂ Ωλ,τ .
Now if (θ0, t0) ∈ Ωλ,τ , then there exists a bounded backward orbit{(θn, tn)}n�0. Therefore,θ̄ = (θn) ∈ S and
t0 = tλ(θ̄ ). Hence,(θ0, t0) = hλ(θ̄) ∈ hλ(S). By the previous lemma,hλ is Lipschitz, ifτ :R/Z → R is a Lipschitz
function. �
2.2. Upper and lower boundaries of the attractor

The attractorΩλ,τ lies in between the graph of two functions which we call the upper and lower bound
of Ωλ,τ . More precisely:

Definition 2.6.Let

ρ+(θ) = sup
{
t | (θ, t) ∈ Ωλ,τ

}
,

ρ−(θ) = inf
{
t | (θ, t) ∈ Ωλ,τ

}
.

We say that∂±Ωλ,τ = {(θ, ρ±(θ)) | θ ∈ R/Z} are theupper and lower boundaries ofΩλ,τ , respectively.

SinceAλ,τ (Ωλ,τ ) = Ωλ,τ andAλ,τ is locally orientation preserving, it follows that

ρ+(θ) = max
{
λρ+(θ ′) + τ(θ ′) | θ ′ ∈ m−1

� (θ)
}
,

ρ−(θ) = min
{
λρ−(θ ′) + τ(θ ′) | θ ′ ∈ m−1

� (θ)
}
.

(3)

For τ Lipschitz, the upper and lower boundaries are Lipschitz graphs. In general, forτ of classC∞ or even real
analytic, the upper and lower boundaries are notC1.

Lemma 2.7.If τ :R/Z → R is Lipschitz, thenρ± :R/Z → R are (‖τ‖L/(� − λ))-Lipschitz maps.

Proof. Considerθ0, θ
′
0 ∈ R/Z. Let θ̄ = (θk) ∈ S be such thattλ(θ̄ ) = ρ+(θ0). There exists̄θ ′ = (θ ′

k) ∈ S such that
distR/Z(θ ′

k, θk) = �−k distR/Z(θ ′
0, θ0) and therefore,

distλ(θ̄ , θ̄ ′) = �

� − λ
distR/Z(θ0, θ

′
0).

Then, by (2):

ρ+(θ ′
0) � tλ(θ̄

′) = tλ(θ̄
′) − tλ(θ̄ ) + tλ(θ̄ ) � −C

(
distλ(θ̄ , θ̄ ′) − distR/Z(θ0, θ

′
0)

) + tλ(θ̄ )

= −C

(
�

� − λ
− 1

)
distλ(θ̄ , θ̄ ′) + tλ(θ̄ ) = ρ+(θ0) − C

λ

� − λ
distλ(θ̄ , θ̄ ′)

whereC = λ−1‖τ‖L is a Lipschitz constant fortλ (see Lemma 2.4). It follows thatρ+ :R/Z → R is Lipschitz with
the appropriate constant. Forρ− :R/Z → R a similar argument can be applied.�
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3. Jordan curve attractors

Observe that the equator{0} × R/Z of the cylinder is the attractor of the mapAλ,0.

3.1. Characterization

The next proposition characterizes Jordan curve attractors.

Proposition 3.1.Let τ :R/Z → R be a function of classC whereC is either the Lipschitz class, or theCr class for
somer ∈ [0,∞] ∪ {ω}.

Then the following are equivalent:

(1) Aλ,τ is topologically conjugate toAλ,0.
(1′) Aλ,τ is C-conjugate toAλ,0.
(2) Ωλ,τ ⊂ R/Z × R is the graph of a continuous functionµ :R/Z → R.
(2′) Ωλ,τ ⊂ R/Z × R is the graph of a functionµ :R/Z → R of classC.
(3) The functional equationµ ◦ m� − λµ = τ has a continuous solutionµ :R/Z → R.
(3′) The functional equationµ ◦ m� − λµ = τ has a solutionµ :R/Z → R of classC.
(4) ρ+(θ) = ρ−(θ) for all θ ∈ R/Z.
(5) ρ+(θ) = ρ−(θ) for someθ ∈ R/Z.
(6) Ωλ,τ is a Jordan curve.

Proof. (6) ⇒ (5). If Ωλ,τ is a Jordan curve, thenρ+(θ) = ρ−(θ) for someθ ∈ R/Z. Otherwise,ρ+(θ) > ρ−(θ)

for all θ and the two Jordan curves{(θ, ρ+(θ))} and{(θ, ρ−(θ))} would be disjoint and contained in the Jord
curveΩλ,τ which is impossible.

(5) ⇒ (4). If ρ+(θ) = ρ−(θ) for someθ ∈ R/Z, then the setS = {θ ∈ R/Z | ρ+(θ) = ρ−(θ)} is not empty,
closed andm−1

� (S) = S, henceS = R/Z.
(4) ⇒ (2). If ρ+ andρ− agree onR/Z, thenΩλ,τ is the graph ofµ = ρ+ = ρ−.
(2) ⇒ (3) (resp. (2′) ⇒ (3′)). If Ωλ,τ ⊂ R/Z × R is the graph of aC0 (resp.C) function µ :R/Z → R, then

(�θ,λµ(θ) + τ(θ)) = Aλ,τ (θ,µ(θ)) belongs to the graph ofµ. Therefore,µ(�θ) = λµ(θ) + τ(θ) for all θ .
(3) ⇒ (3′). Let us denote byπ :R → R/Z quotient map. Ifµ ◦ m� − λµ = τ has aC0 solutionµ :R/Z → R,

thenµ ◦π :R → R is a solution ofµ̃(�s)−λµ̃(s) = τ̃ (s) whereτ̃ = τ ◦π . It is not difficult to check that this latte
equation has a unique continuous solution given by

µ̃(s) = τ̃ (s/�) + λτ̃ (s/�2) + λ2τ̃ (s/�3) + · · · ,
which is of the same class asτ̃ . Therefore,µ ◦ π = µ̃ andµ are of classC.

(3′) ⇒ (1′) and (2′). If µ :R/Z → R is a C function such thatµ ◦ m� − λµ = τ , thenh ◦ Aλ,0 = Aλ,τ ◦ h

whereh(θ, t) = (θ, t + µ(θ)). HenceAλ,τ is C-conjugate toAλ,0 andΩλ,τ = h(R/Z × {0} = Ωλ,0) is the graph
of µ :R/Z → R.

Since (1′) trivially implies (1) and (1) implies (6), the proof of the proposition is complete.�
3.2. Infinite codimension

Throughout this subsection we fixλ ∈ (0,1). In Proposition 3.1 we showed that the global attractorΩλ,τ of
Aλ,τ is a Jordan curve if and only if the functional equation

τ = µ ◦ m� − λµ (4)
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has a continuous solutionµ :R/Z → R. The aim of this subsection is to characterize the continuous func
τ :R/Z → R for which the functional equation (4) has a solution. With this purpose in mind, for eachk ∈ N, we
introduce the linear functional

Dk :L1(R/Z,R) → R,

ψ �→
∫

R/Z

ψ(θ)νk(θ)dθ

where

νk(θ) =
∑
n�0

λn
(
e2π i�nkθ + e−2π i�nkθ

)
.

Lemma 3.2.Considerτ ∈ L1(R/Z,R) and suppose that there existsµ ∈ L1(R/Z,R) such that:

τ = µ ◦ m� − λµ.

Then,Dk(τ ) = 0 for all k ∈ N such that� � k.

Recall that for eachφ ∈ L1(R/Z,R) thek-th Fourier coefficient ofφ is defined by

φ̂(k) =
∫

R/Z

φ(θ)e−2π ikθ dθ.

For general background on Fourier series see [7].

Proof. From Eq. (4) it follows that

λnτ(θ) + λn−1τ(�θ) + · · · + τ(�nθ) = µ(�n+1θ) − λn+1µ(θ)

for all n � 1. For allk such that� � k, computing the�n k-th Fourier coefficient of the functions involved in th
previous equation we obtain that:

λnτ̂ (�nk) + λn−1τ̂ n−1(�n−1k) + · · · + τ̂ (k) = −λn+1µ̂(�nk). (5)

In view of the fact that the Fourier coefficient ofµ ∈ L1(R/Z,R) are bounded, asn → ∞ we have that
λn+1µ̂(�nk) → 0 and, therefore,∑

n�0

λnτ̂ (�nk) = 0. (6)

Now recall that the Fourier coefficients of a real valued function are even. In particular,τ̂ (k) = τ̂ (−k) and
Eq. (6) is equivalent to:

Dk(τ ) =
∑
n�0

λn
(
τ̂ (�nk) + τ̂ (−�nk)

) = 0.

Thus we have completed the proof of the lemma.�
Theorem 2.Let τ :R/Z → R be a continuous function with absolutely convergent Fourier series. If

Dk(τ ) = 0 (7)

for all k ∈ N such that� � k, then there exists a continuous functionµ :R/Z → R satisfying the functional equatio

τ = µ ◦ m� − λµ.
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Proof. We will obtainµ as a Fourier series with coefficientsb(·) where:

b(0) = τ̂ (0)

1− λ
,

b(�nk) = − 1

λn+1

n∑
j=0

λj τ̂ (�j k) = 1

λn+1

∞∑
j=n+1

λj τ̂ (�j k) (8)

for n � 0 andk �= 0 such that� does not dividek. (Compare with Eq. (5).)
We claim that the Fourier series∑

q∈Z

b(q)e2π iqθ = b(0) +
∑
��k

∑
n�0

b(�nk)e2π i�nkθ

is absolutely convergent (i.e.,
∑

q∈Z |b(q)| < ∞). In fact, from Eq. (8):∑
q∈Z

∣∣b(q)
∣∣ = ∣∣b(0)

∣∣ +
∑
��k

∑
n�0

∣∣b(�nk)
∣∣ �

∣∣b(0)
∣∣ +

∑
��k

∑
n�0

1

λn+1

∑
j�n+1

λj
∣∣τ̂ (�j k)

∣∣.
Since∑

n�0

1

λn+1

∑
j�n+1

λj
∣∣τ̂ (�j k)

∣∣ =
∑
n�0

n∑
j=0

λj
∣∣τ̂ (�n+1k)

∣∣ =
∑
n�0

1− λn+1

1− λ

∣∣·τ̂ (�n+1k)
∣∣ � 1

1− λ

∑
n�0

∣∣τ̂ (�n+1k)
∣∣,

it follows that∑
q∈Z

∣∣b(q)
∣∣ �

∣∣τ̂ (0)
∣∣ 1

1− λ
+ 1

1− λ

∑
��k

∑
n�0

∣∣τ̂ (�n+1k)
∣∣ = 1

1− λ

∑
q∈Z

∣∣τ̂ (q)
∣∣ < ∞.

Thus the series
∑

q∈Z b(q)e2π iqθ uniformly converges to a continuous functionµ :R/Z → R. which is a solu-
tion of τ = µ ◦ m� − λµ since an easy computation shows that the Fourier coefficients ofτ andµ ◦ m� − λµ agree
(cf. Lemma 3.2). �
Definition 3.3. Let τ :R/Z → R be a continuous function with absolutely convergent Fourier series. D
the canonical representative ofτ by the continuous functionτc :R/Z → R given by the Fourier seriesτc(θ) =∑

��k Dk(τ )e2π ikθ .

An immediate consequence of the theorem above is the following corollary:

Corollary 3.4. Let τ :R/Z → R be a continuous function with absolutely convergent Fourier series. Ifτc is the
canonical representative ofτ , thenτ is cohomologous toτc. That is, there exists a continuous functionµ :R/Z → R
such thatτ = τc + µ ◦ m� − λµ.

Proof. Note that for everyk which is not divided by� it holds thatDk(τ − τc) = 0. Therefore we may apply th
previous theorem toτ − τc and obtain the corollary. �

4. Annular attractors

Our next result contains the sufficient condition forΩλ,τ to be a closed topological annulus which will be us
in the proof of Theorem 1. More precisely, below we prove that if the image of the upper boundary ofΩλ,τ lies
higher inR/Z × R than the image of the lower boundary, thenΩλ,τ is an annulus:
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Lemma 4.1.If Ωλ,τ is not a Jordan curve and

min
{
λρ+(θ ′) + τ(θ ′) | θ ′ ∈ m−1

� (θ)
}

� max
{
λρ−(θ ′) − τ(θ ′) | θ ′ ∈ m−1

� (θ)
}

(9)

for all θ ∈ R/Z, thenΩλ,τ is a closed topological annulus. Moreover, if� = 2 andΩλ,τ is a closed topologica
annulus, then inequality(9) holds.

Remark 4.2.For all � � 2 and provided thatΩλ,τ is not a Jordan curve, a necessary and sufficient conditio
Ωλ,τ to be homeomorphic to a closed annulus is that for allθ ∈ R/Z:

I (θ) =
⋃

θ ′∈m−1
� (θ)

Aλ,τ

(
I (θ ′)

)
whereI (θ) = {θ} × [ρ−(θ), ρ+(θ)].

Proof. Let A = {(θ, t) | ρ−(θ) � t � ρ+(θ)} and note thatAλ,τ (A) ⊂ A. We claim that from (9) it follows
Aλ,τ (A) = A and thereforeΩλ,τ = A. Otherwise there would existt0 ∈ (ρ−(θ0), ρ

+(θ0)) such that(θ0, t0) /∈
Aλ,τ (A). Considerθ ′± ∈ m−1

� (θ0) such thatρ±(θ0) = λρ±(θ ′±) + τ(θ ′±). Since(θ0, t0) /∈ Aλ,τ (A), the image of
A∩ ({θ ′+} × R) should be abovet0 and the image ofA∩ ({θ ′−} × R) should be belowt0. Hence, we would have:

λρ+(θ ′−) + τ(θ ′−) < t0 < λρ−(θ ′+) + τ(θ ′+)

which contradicts (9). ThereforeA = Ωλ,τ . By Proposition 3.1, ifΩλ,τ is not a Jordan curve, thenρ+ > ρ− on
R/Z. HenceΩλ,τ = A is a closed topological annulus.

For � = 2, if (9) does not hold for someθ0, then the two intervals,Aλ,τ (A ∩ ({θ0/2} × R)) andAλ,τ (A ∩
({θ0/2 + 1/2} × R)) are disjoint and their union isAλ,τ (A) ∩ ({θ0} × R). Therefore,Ωλ,τ ⊂ Aλ,τ (A) is not an
annulus. �

To show that ifΩλ,τ is a topological annulus thenλ > 1/�, we will need the following result.

Lemma 4.3.Assume thatλ � 1/�. Let τ :R/Z → R be a continuous function. Ifρ+ − ρ− is a constant function
thenΩλ,τ is not an annulus.

Proof. Suppose thatλ � 1/� andρ+−ρ− is the constant functionC for someC > 0. We proceed by contradiction
If Ωλ,τ is an annulus, then[

ρ−(θ), ρ+(θ)
] =

⋃
θ ′∈m−1

� (θ)

J (θ ′)

whereJ (θ ′) = [λρ−(θ ′) + τ(θ ′), λρ+(θ ′) + τ(θ ′)]. Since the length of[ρ−(θ), ρ+(θ)] is C and the length o
each of the� intervalsJ (θ ′) is λC, it follows that�λC � C and thereforeλ = 1/�. Moreover, the interior of the
intervalsJ (θ ′) must be pairwise disjoint, which is impossible since the image underAλ,τ of the loop{(θ, (ρ+(θ)+
ρ−(θ))/2) | θ ∈ R/Z} must have self-intersections.�
Proposition 4.4.If Ωλ,τ is a closed topological annulus, thenλ > 1/�.

Proof. Suppose thatλ � 1/�. Let C be the maximum ofρ+ − ρ− and letE ⊂ R/Z be the set formed by th
argumentsθ such thatC = (ρ+ − ρ−)(θ). From the previous lemma we may assume thatE �= R/Z. Hence, there
existsθ0 /∈ E such thatθ = �θ0 ∈ E. It follows that the length of

S =
⋃

θ ′∈m−1(θ)

[
λρ−(θ ′) + τ(θ ′), λρ+(θ ′) + τ(θ ′)

]

�
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is strictly less thanC. Therefore,[ρ−(θ), ρ+(θ)] �= S and by Remark 4.2 we conclude thatΩλ,τ is not an annu-
lus. �
4.1. Annular attractors whenτ is not cohomologous to0

The aim of this subsection is to prove (2) of Theorem 1 under some extra assumptions onτ .

Definition 4.5. We say thatτ :R/Z → R is cohomologous to0 or a coboundary ifτ = µ ◦ m� − µ for some
continuousµ :R/Z → R.

We will show that Theorem 1 (2) holds ifτ is not cohomologous to 0 and
∫

R/Z τ(θ)dθ = 0. Under these stronge
assumptions we can weaken the Lipschitz class hypothesis forτ :

Proposition 4.6. Let τ :R/Z → R be a Hölder function which is not cohomologous to0 and such that∫
R/Z τ(θ)dθ = 0. Then there existsλ0 < 1 such thatΩλ,τ is a closed topological annulus for allλ ∈ [λ0,1).

The proof relies on finding appropriate periodic orbits under the multiplication by� mapm� :R/Z → R/Z.
To simplify notation we let

∫
τ = ∫

R/Z τ(θ)dθ = 0 since we will only consider integrals with respect to
Lebesgue measure onR/Z.

Lemma 4.7.If τ :R/Z → R is a Hölder function which is not cohomologous to0 and such that
∫

τ = 0, then there
exist periodic pointsθ± of periodp± such that:

τ(θ+) + · · · + τ(�p+θ+) > 0,

τ (θ−) + · · · + τ(�p−θ−) < 0.

We employ the ideas contained in the proof of Theorem 9 in [2].

Proof. By considering−τ instead ofτ it is sufficient to findθ+. For θ̄ = (θ0, θ1, θ2, . . .) ∈ S we let

Snθ̄ = τ(θ1) + · · · + τ(θn).

We proceed by contradiction and suppose that for all periodn pointsθ̄ we have thatSnθ̄ � 0.
We claim that

{Snθ̄ | θ̄ ∈ S, n ∈ N}
is bounded above. In fact, for anȳθ ∈ S there exists a periodn point θ̄ ′ = (θ ′

0, θ
′
1, . . .) ∈ S such that

distR/Z(θ ′
n, θn) � 1

�n−1
.

Therefore,

Sn(θ̄) � Sn(θ̄) − Sn(θ̄
′) � C · (1+ · · · + �−(n−1)α

)
� C · �α

�α − 1

whereC > 0 is anα-Hölder constant forτ .
Now µ :R/Z → R defined by

µ(θ0) = sup
{
Snθ̄ | θ̄ = (θ0, β1, β2, . . .) ∈ S

}
is anα-Hölder function. In fact, for anyθ0, θ

′
0 ∈ R/Z andε > 0 let θ̄ = (θ0, θ1, . . .) be such thatµ(θ0) < Snθ̄ + ε.

Then there exists̄θ ′ = (θ ′ , . . .) ∈ S such that distR/Z(θk, θ
′ ) = �−k distR/Z(θ0, θ

′ ). Therefore,
0 k 0
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µ(θ ′
0) � Sn(θ̄

′) = Sn(θ̄
′) − Sn(θ̄) + Sn(θ̄) � Sn(θ̄) − C

1

�α − 1
distR/Z(θ0, θ

′
0)

α

� µ(θ0) − ε − C
1

�α − 1
distR/Z(θ0, θ

′
0)

α.

It follows thatµ is α-Hölder, in particular continuous.
From the definition ofµ we conclude that

µ(�θ) � µ(θ) + τ(θ).

Thereforeµ◦m� −µ−τ is a non-negative function whose integral overR/Z is zero. It follows thatτ = µ◦m� −µ

which contradicts our assumption thatτ is not cohomologous to 0.�
Proof of Proposition 4.6. We will show thatρ+ → +∞ (resp.ρ− → −∞) asλ → 1. In particular forλ suffi-
ciently close to 1 we have thatρ+ > λ−1‖τ‖∞ (resp.ρ− < −λ−1‖τ‖∞), which in view of Lemma 4.1 implies
thatΩλ,τ is an annulus.

Let θ+ be a periodp = p+ periodic point as in the previous lemma and letc = τ(θ+) + · · · + τ(�p−1θ+) > 0.
Considerλ1 < 1 and a neighborhoodU ⊂ R/Z of O = {θ+, . . . , �p−1θ+} such that:

(a) There exists a neighborhoodV ⊂ U of O such thatm� :V → U is a bijection.
(b) For allλ > λ1, if {θ, �θ, . . . , �p−1θ} ⊂ U , then

τ(θ) + λτ(�θ) + · · · + λp−1τ(�p−1θ) >
c

2
.

Let n0 be such thatmn0
� (U) = R/Z. Then for allθ0 ∈ R/Z there exists̄θ = (θ0, . . .) ∈ S such thatθn ∈ U for all

n � n0. Hence for allλ > λ1,

ρ+(θ0) �
∑
k�1

λk−1τ(θk) =
n0−1∑
k�1

λk−1τ(θk) +
∑
k�n0

λk−1τ(θk)

� −(1+ · · · + λn0−1)‖τ‖∞ + λn0−1(1+ λp + λ2p + · · ·) c

2

� −n0‖τ‖∞ + cλn0−1

2(1− λp)
. �

Remark 4.8.Provided thatτ :R/Z → R is Hölder,
∫

τ = 0 andτ is not cohomologous to zero, it follows from th
previous proof that forλ ∈ [λ0,1) the inequality (9) holds strictly, that is:

min
{
λρ+(θ ′) + τ(θ ′) | θ ′ ∈ m−1

� (θ)
}

> max
{
λρ−(θ ′) + τ(θ ′) | θ ′ ∈ m−1

� (θ)
}
.

5. Cohomological operators

In this section we will study the linear operators

Lλµ = µ ◦ m� − λµ

acting on Lipschitz functionsµ :R/Z → R whereλ ∈ (0,1]. On one hand these linear operators are relate
conjugacy classes of affine mapsAλ,τ (see Lemma 5.8). On the other hand, in view of Propositions 3.1 and
these operators are also related to topological properties of the attractorΩλ,τ . At the end of this section we wil
apply the properties ofLλ to prove a stronger version of Theorem 1 announced in Subsection 1.3.
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5.1. Basic properties

Definition 5.1. Consider a continuous functionτ :R/Z → R. Givenλ ∈ (0,1] we define the multiplicity multτ (λ)

as follows:

multτ (λ) = sup
{
n � 0 | there is a continuous functionµ :R/Z → R such thatLn

λµ = τ
}
.

We will show thatJ ′
τ = {λ ∈ (0,1] | multτ (λ) > 0} is finite (counting multiplicities) provided thatτ is a non-

constant Lipschitz function (cf. Main Lemma). In particular, multτ (λ) is finite for eachλ ∈ (0,1].
Although our main interest is on mapsAλ,τ whereτ :R/Z → R is Lipschitz, the basic properties of the operat

Lλ acting on any class are summarized in the following lemma.

Lemma 5.2.For λ ∈ (0,1], letLλ :C → C be the linear operator defined above acting on the classC of maps from
R/Z to R whereC is the class of Lipschitz orCr maps for somer ∈ [0,∞] ∪ {ω}. Then:

(1) Lλ1 ◦Lλ2 = Lλ2 ◦Lλ1 for all 0< λ1, λ2 � 1.
(2) If Lλ1µ1 = τ , thenmultµ1(λ) = multτ (λ) for all λ �= λ1 andmultµ1(λ1) = multτ (λ1) − 1.
(3) kerL1 = {constant maps} andkerLλ = {0} for all λ ∈ (0,1).
(4) If Lλµ = τ and

∫
τ = 0 for someλ ∈ (0,1), then

∫
µ = 0.

(5) If τ :R/Z → R is of classC andµ :R/Z → R is a continuous function such thatµ ◦ m� − λµ = τ , thenµ is
of classC.

(6) If τ ∈ ImageL1, then
∫

τ = 0.
(7) Lλ({constant maps}) = {constant maps} for all λ ∈ (0,1).

Proof. Statement (1) is a straightforward computation and statements (4) and (6) are an immediate cons
of the fact that the Lebesgue measure in the circle ism�-invariant (i.e.,

∫
τ ◦ m� = ∫

τ for all continuous
τ :R/Z → R).

For (2), suppose thatLλ1µ1 = τ and just note that if, for someλ �= λ1, there existsµ such thatLλµ = τ , then
Lλ(µ − µ1)/(λ − λ1) = µ1.

(3) If µ(�θ) − λµ(θ) = 0, thenµ(�nθ) = λnµ(θ) for all θ ∈ R/Z and alln � 0. Let θ0 be such that{�nθ0}n�0
is dense inR/Z. Hence, for allθ ∈ R/Z, µ(θ) = 0 whenλ < 1 andµ(θ) = µ(θ0) whenλ = 1.

(5) As in the proof of Proposition 3.1 we pass to the universal coverπ :R → R/Z. That is, ifµ ◦ m� − λµ = τ

thenµ̃(�s) − λµ̃(s) = τ̃ (s) whereµ̃ = µ ◦ π andτ̃ = τ ◦ π . It follows thatµ̃(s) = τ̃ (�−1s) + λτ̃ (�−2s) + · · · is a
classC map fromR to R and thereforeµ :R/Z → R is also of classC.

Since the image underLλ of the constant functionτ equal to 1 is the constant functionµ equal to 1− λ,
statement (7) follows. �
Remark 5.3.From (1) and (2) it follows that there exists a continuousµ such thatLλ1 ◦ · · · ◦Lλmµ = τ if and only
if λ1, . . . , λm is a collection of elements ofJ ′

τ , maybe with repetitions, but such that the number of occurrenc
λ ∈ J ′

τ is not greater than its multiplicity. Moreover, (7) implies thatµ is uniquely determined byτ andλ1, . . . , λm

up to an additive constant.

Lemma 5.4.If µ :R/Z → R is Lipschitz, then

‖Lλµ‖L � (� − λ)‖µ‖L

for all λ ∈ (0,1].
Proof. Let µ be Lipschitz and letτ = Lλµ. Considerθ̄ = (θk) ∈ S and observe that

µ(θ0) = τ(θ1) + λτ(θ2) + . . . + λnτ(θn+1) + λn+1µ(θn+1).
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For θ ′
0 ∈ R/Z let θ̄ ′ = (θ ′

k) be such that

distR/Z(θk, θ
′
k) = distR/Z(θ0, θ

′
0)

�k
.

It follows that for alln � 0:∣∣µ(θ0) − µ(θ ′
0)

∣∣ � distR/Z(θ0, θ
′
0)‖τ‖L

(
1

�
+ λ

�2
+ . . . + λn

�n+1

)
+ λn+1

∣∣µ(θn+1) − µ(θ ′
n+1)

∣∣
� distR/Z(θ0, θ

′
0)‖τ‖L

1

� − λ
+ λn+1

∣∣µ(θn+1) − µ(θ ′
n+1)

∣∣.
Therefore,∣∣µ(θ0) − µ(θ ′

0)
∣∣ � ‖τ‖L

1

� − λ
distR/Z(θ0, θ

′
0)

and the lemma follows. �
Lemma 5.5.Let τ :R/Z → R be a Lipschitz map such that

∫
τ = 0. The set

J ′
τ = {

λ ∈ (0,1] | multτ (λ) > 0
}

is closed in(0,1].

Note that from Proposition 3.1 it follows that

J ′
τ ∩ (0,1) = Jτ = {

λ ∈ (0,1) | Ωλ,τ is a Jordan curve
}
.

Proof. Suppose that there existsλn → λ ∈ (0,1] andµn :R/Z → R such thatµn ◦ m� − λnµ = τ . It follows that∫
µn = 0 and‖µn‖L � ‖τ‖L for all n. Therefore,{µn} is an equicontinuous and uniformly bounded family. Hen

by passing to a subsequence, we may assume that{µn} converges to some continuous functionµ which necessarily
satisfies the equationµ ◦ m� − λµ = τ , that is,λ ∈ J ′

τ . �
5.2. Finiteness results

We now show that a Lipschitz functionτ which is not constant is not “infinitely” cohomologous to 0 or equi
lently thatλ = 1 has finite multiplicity (see Definition 5.1).

Lemma 5.6.Let τ :R/Z → R be a non-constant Lipschitz function such that
∫

τ = 0. Then there existsm � 0 and
a Lipschitz functionµ :R/Z → R such thatLm

1 µ = τ and
∫

µ = 0 butL1ρ �= µ for all Lipschitz functionsρ.

Proof. Suppose that for 0� n � m there existµn :R/Z → R such that

Ln
1µn = µ0 = τ.

By Lemma 5.2, maybe after adding a constant toµm, we may assume that for 0� n � m we have
∫

µn = 0. It
follows thatL1µn = µn−1. Under the assumption thatτ = µ0 is not identically 0 we will exhibit an upper boun
for m in terms of the Fourier coefficients ofτ .

The Fourier coefficientŝµn(k) are uniformly bounded. In fact, by Lemma 5.4,‖µn‖L � ‖τ‖L and therefore∣∣µ̂n(k)
∣∣ � ‖τ‖L

4k
(10)

for all 0 �= k ∈ Z and 0� n � m.
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Sinceµ0 is not identically 0, there existsk ∈ Z such that� � k andp � 0 such that:

µ̂0(�
j k) = 0 for 0� j < p,

µ̂0(�
pk) �= 0.

Taking the�j k-th Fourier coefficient toµn ◦ m� − µn = µn−1:

µ̂n(�
j−1k) − µ̂n(�

j k) = µ̂n−1(�
j k) for j � 1, (11)

−µ̂n(k) = µ̂n−1(k), (12)

for 1 � n � m.
By induction inp � 0, it is easy to deduce from (11) and (12) that ifµ̂0(�

j k) = 0 for 0� j < p, then:

µ̂n(�
j k) = 0 for 0� j < p,

−µ̂n(�
pk) = µ̂n−1(�

pk),

for 0 � n � m. Therefore, from (11), it follows that

m(−1)m−1µ̂0(�
pk) − µ̂m(�p+1k) = (−1)m+1µ̂0(�

p+1k).

Hence,

m � |µ̂m(�p+1k)| + |µ̂0(�
p+1k)|

|µ̂0(�pk)|
and by (10) we obtain an upper bound form:

m � ‖τ‖L + 4k�p+1|τ̂ (�p+1k)|
4k�p+1|τ̂ (�pk)| . � (13)

Below we record the explicit bound obtained in the previous proof.

Corollary 5.7. Let τ :R/Z → R be a Lipschitz function such that:

τ̂ (�j k) = 0 for 0� j < p,

τ̂ (�pk) �= 0

for some integersk ∈ Z andp � 0 with � � k. If there existsm � 0 and a continuous functionµ :R/Z → R such
that

Lm
1 µ = τ.

Then

m � ‖τ‖L + 4k�p+1|τ̂ (�p+1k)|
4k�p+1|τ̂ (�pk)| .

Main Lemma. Letτ :R/Z → R be a non-constant Lipschitz function. Then the setJ ′
τ is finite, counting multiplic-

ities.
Moreover, consider the finite collection0 < λ1, . . . , λm � 1 consisting of elements ofJ ′

τ where the number o
repetitions of each element ofJ ′

τ coincides with its multiplicity. Then there exists a Lipschitz functionµ :R/Z → R
such that

τ = Lλ1 ◦ · · · ◦Lλmµ,

and such thatµ �= Lλρ for all λ ∈ (0,1] and all Lipschitz functionsρ :R/Z → R. Furthermore, the functionµ is
uniquely determined by this property, up to an additive constant. If

∫
τ = 0, thenµ may be chosen so that

∫
µ = 0.
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Proof. By Lemma 5.2 and Remark 5.3 it is sufficient to show thatJ ′
τ is finite, counting multiplicities. If

multτ (1) > 0, then there exists a Lipschitz functionµ :R/Z → R such thatLmultτ (1)
1 µ = τ (Lemma 5.6). By

Lemma 5.2 it follows that multµ(1) = 0 and that for everyλ ∈ (0,1) we have multµ(λ) = multτ (λ). So, replacing
τ by µ if necessary, we reduce to the case when multτ (1) = 0. Then Lemma 5.5 implies that there existsλ0 ∈ (0,1)

such thatJ ′
τ is contained in(0, λ0].

We proceed by contradiction and supposeJ ′
τ is infinite or that it contains an element with infinite multiplicit

In both cases, for alln � 1 there existλn ∈ (0, λ0] and a Lipschitz functionµn :R/Z → R such that

Lλ1 ◦ · · · ◦Lλnµn = τ. (14)

Lemma 5.4 implies that for everyn � 1 we have,

‖τ‖L � (� − λ1) · · · (� − λn)‖µn‖L,

so that‖µn‖L � ‖τ‖L. Therefore, for alln � 1 andk ∈ Z different from 0 we have,∣∣µ̂n(k)
∣∣ � ‖τ‖L,

whereµ̂n(k) denotes thek-th Fourier coefficient ofµn.
Settingµ0 = τ , Lemma 5.2(3) implies that for alln � 1 we have,

Lλnµn = µn−1.

Hence,µn(�θ) − λnµn(θ) = µn−1(θ) and for allk ∈ Z such that� � k we have,

µ̂n(�
j−1k) − λnµ̂n(�

j k) = µ̂n−1(�
j k) for j � 1, (15)

−λnµ̂n(k) = µ̂n−1(k). (16)

Fix k �= 0 such that� does not dividek. We show by induction onj � 0 thatµ̂n(�
j k) = 0 for all n � 0.

For j = 0, by Eq. (16),µ̂0(k) = (−1)nλ1 · · ·λnµ̂n(k). Since theµ̂n(k) are uniformly bounded, it follows tha
µ̂0(k) = 0 and thereforêµn(k) = 0 for all n.

Let j � 1 and suppose thatµ̂n(�
j−1k) = 0 for alln � 0. It follows from Eq. (15) that−λnµ̂n(�

j k) = µ̂n−1(�
j k).

Hence, µ̂0(�
j k) = (−1)nλ1 · · ·λnµ̂n(�

j k). Again using thatµ̂n(�
j k) are uniformly bounded, it follows tha

µ̂n(�
j k) = 0 for all n.

We conclude thatτ = µ0 is constant which is a contradiction.�
5.3. Theorems 1 and 3

We now state and prove Theorem 3 which is a stronger version of Theorem 1. Recall thatJτ denotes the set o
λ ∈ (0,1) such thatAλ,τ is a Jordan curve.

Theorem 3.Suppose thatτ :R/Z → R is a non-constant Lipschitz. Then there exists a Lipschitz mapµ :R/Z → R
satisfying the following properties:

(1) Jµ = ∅ and for allλ ∈ (0,1) \Jτ the mapsAλ,τ andAλ,µ are topologically conjugate.
(2)

∫
µ = 0 andµ is not cohomologous to0.

Lemma 5.8.Let τ :R/Z → R be a map of classC whereC is the class of Lipschitz orCr maps for somer ∈
(0,∞] ∪ {ω}. Then:

(1) For all c ∈ R and0< λ < 1, the mapsAλ,τ andAλ,τ+c are conjugate via an affine map.
(2) If µ ◦ m� − λ0µ = τ for some continuous mapµ :R/Z → R and λ0 ∈ (0,1], then Aλ,τ and Aλ,µ are

C-conjugate for allλ �= λ0.



R. Bamón et al.

ll

z

l

Proof. For (1) note thatAλ,τ ◦ h = h ◦ Aλ,τ+c whereh(θ, t) = (θ, t − c/(1− λ)).
For (2), if µ ◦ m� − λ0µ = τ for some continuous mapµ, thenµ is automatically of classC andh(θ, t) =

(θ, (λ − λ0)t + µ(θ)) is such thath ◦ Aλ,µ = Aλ,τ ◦ h for all λ �= λ0. �
Proof of Theorem 3. By Lemma 5.8(1), after replacingτ by τ − ∫

τ , we may assume that
∫

τ = 0. In view of
Proposition 3.1 and Lemma 5.8(2), statements (1) and (2) hold for the functionµ : R/Z → R given by the Main
Lemma. �
Proof of Theorem 1. For (1) just note that the Main Lemma implies thatJτ is finite. For (2) letµ :R/Z → R be
as in Theorem 3 and apply Proposition 4.6.�

6. Continuity of the upper and lower boundaries

In this section we show that for every map that is sufficiently (Lipschitz) close toAλ,τ has an attractor with we
defined upper and lower boundaries. HereA need not be a skew product map.

The aim of this section is to show that the upper and lower boundaries ofΩλ,τ vary continuously under Lipschit
perturbations ofAλ,τ .

Given an open setU ⊂ R/Z × R with compact closure we denote by Lip(U,R/Z × R) the set formed by al
the Lipschitz mapsF :U → R/Z × R endowed with the Lipschitz metric distL. More precisely,

distL(F0,F1) = ‖F0 − F1‖∞ + ‖f0 − f1‖L + ‖g0 − g1‖L

whereFi(θ, t) = (fi(θ, t), gi(θ, t)) for i = 0,1.
Note that the set Lip(U,U) of all F ∈ Lip(U,R/Z × R) such thatF(U) ⊂ U is open in Lip(U,R/Z × R).

Definition 6.1. Suppose thatU ⊂ R/Z × R is an open set with compact closure. For anyF ∈ Lip(U,U) we let
ΩF = ⋂

n�0 Fn(U) be the attractor ofF . Theupper and lower boundaries ofΩF are the graphs of

ρ±
F :R/Z → R ∪ {±∞}

where

ρ+
F (θ) = sup

{
t ∈ R | (θ, t) ∈ ΩF

}
,

ρ−
F (θ) = inf

{
t ∈ R | (θ, t) ∈ ΩF

}
if ΩF ∩ ({θ} × R) �= ∅ andρ±(θ) = ∓∞ otherwise.

We may now state the main result of this section.

Proposition 6.2.Considerλ ∈ (0,1) and a Lipschitz functionτ :R/Z → R. LetT0 ∈ R be such thatAλ,τ (U0) ⊂ U0

whereU0 = R/Z × (−T0, T0). Givenε > 0 there exists a neighborhoodU ⊂ Lip(U0,U0) of Aλ,τ such that for all
F ∈ U the following hold:

(1) ρ±
F :R/Z → R are well defined Lipschitz functions.

(2) ‖ρ±
F − ρ±

Aλ,τ
‖∞ < ε.



R. Bamón et al.

f of
6.1. Lipschitz maps inR2

In this subsection we consider�V = R × [−T0, T0] ⊂ R2 and study the action of Lipschitz maps̃F : �V → R2

on the graphs of Lipschitz functions̃ρ :R → [−T0, T0]. The results obtained here will be applied in the proo
Proposition 6.2 to the lift of mapsF which are Lipschitz close toAλ,τ .

Throughout this subsection we consider a map:

F̃ : �V → R2,

(s, t) �→ (
f̃ (s, t), g̃(s, t)

)
and suppose that there exist positive constants�0, λ0,C1,2 andC2,1 such that:

f̃ (s0, t) − f̃ (s1, t) � �0(s0 − s1), (17)∣∣g̃(s0, t) − g̃(s1, t)
∣∣ � C2,1|s0 − s1|, (18)∣∣f̃ (s, t0) − f̃ (s, t1)
∣∣ � C1,2|t0 − t1|, (19)∣∣g̃(s, t0) − g̃(s, t1)
∣∣ � λ0|t0 − t1|, (20)

for all s0 > s1 andt, t0, t1 ∈ [−T0, T0].
The above conditions are satisfied by the liftÃλ,τ (s, t) = (�s, λt + τ ◦ π(s)) of Aλ,τ whereτ :R/Z → R is

Lipschitz andλ ∈ (0,1). Observe that in this case we may choose�0 = �, C2,1 = ‖τ‖L, C1,2 = 0, andλ0 = λ.

Lemma 6.3.If γ̃ ⊂ �V is the graph of a Lipschitz functioñρ :R → [−T0, T0] such that‖ρ̃‖L < �0C
−1
1,2, thenF̃ (γ̃ )

is the graph of aC-Lipschitz functionTF̃ (ρ̃) :R → R, where

C = C2,1 + λ0‖ρ̃‖L

�0 − C1,2‖ρ̃‖L

.

Proof. Suppose thats0 > s1. For i = 0,1, let ti = ρ̃(si) and(s′
i , t

′
i ) = F̃ (si , ti). Then we have that:

s′
0 − s′

1 = f̃ (s0, t0) − f̃ (s1, t1) = (
f̃ (s0, t0) − f̃ (s0, t1)

) + (
f̃ (s0, t1) − f̃ (s1, t1)

)
� −C1,2|t0 − t1| + �0(s0 − s1) > −�0|s0 − s1| + �0(s0 − s1) = 0.

In particular,F̃ (γ̃ ) is the graph of some function. Also,

|t ′0 − t ′1| =
∣∣g̃(s0, t0) − g̃(s1, t1)

∣∣ = ∣∣g̃(s0, t0) − g̃(s0, t1) + g̃(s0, t1) − g̃(s1, t1)
∣∣ � λ0|t0 − t1| + C2,1|s0 − s1|.

Hence,

|t ′0 − t ′1|
|s′

0 − s′
1|

� λ0|t0 − t1| + C2,1|s0 − s1|
−C1,2|t0 − t1| + �0|s0 − s1| � C2,1 + λ0‖ρ̃‖L

�0 − C1,2‖ρ̃‖L

and the lemma follows. �
Definition 6.4. We say that a Lipschitz map̃F :V → R2 preservesC-Lipschitz graphswith constants�0, λ0,C1,2
andC2,1 if (17)–(20) hold and

C2,1 + λ0C

�0 − C1,2C
� C <

�0

C1,2
.

In particular, ifF̃ :V → V ⊂ R2 preservesC-Lipschitz graphs, thenTF̃ acts on the set ofC-Lipschitz functions
ρ :R → [−T0, T0] (see Lemma 6.3).

Now we compute a Lipschitz constant forTF̃ with respect to theC0-norm.
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Lemma 6.5.LetC > 0 be such thatC < �0C
−1
1,2. Suppose that̃ρi :R → [−T0, T0] areC-Lipschitz functions wher

i = 0,1. Then∥∥TF̃ (ρ̃0) − TF̃ (ρ̃1)
∥∥∞ � λ0�0 + C2,1C1,2

�0 − C1,2C
‖ρ̃0 − ρ̃1‖∞.

Proof. Considers′ ∈ R. For i = 0,1, let ρ̃′
i = TF̃ (ρ̃i), t ′i = ρ̃′

i (s
′). Also we let(si , ti ) be the points in the graph o

ρ̃i such that̃F(si, ti) = (s′, t ′i ). We may assume thats1 > s0.
We must find an upper bound for|t ′1 − t ′0| in terms of|t̂1 − t0| wheret̂1 = ρ̃1(s0).
Since

0= f̃ (s0, t0) − f̃ (s1, t1) = f̃ (s0, t0) − f̃ (s1, t0) + f̃ (s1, t0) − f̃ (s1, t1),

we have that

f̃ (s1, t0) − f̃ (s0, t0) = ∣∣f̃ (s1, t1) − f̃ (s1, t0)
∣∣.

Therefore,

�0(s1 − s0) � C1,2|t1 − t0|. (21)

Also,

|t ′1 − t ′0| =
∣∣g̃(s0, t0) − g̃(s1, t1)

∣∣ �
∣∣g̃(s0, t0) − g̃(s0, t1)

∣∣ + ∣∣g̃(s0, t1) − g̃(s1, t1)
∣∣

� λ0|t0 − t1| + C2,1|s0 − s1|. (22)

Since

|t1 − t0| � |t̂1 − t0| + |t̂1 − t1| � |t̂1 − t0| + C|s0 − s1|,
it follows from (21) that

|t1 − t0| � |t̂1 − t0| + CC1,2�
−1
0 |t1 − t0|.

Hence,

|t1 − t0| � (1− CC1,2�
−1
0 )−1|t̂1 − t0|. (23)

Combining (21) and (22) we obtain

|t ′1 − t ′0| � (λ0 + C2,1C1,2�
−1
0 )|t1 − t0|. (24)

The lemma now follows directly from (23) and (24).�
Lemma 6.6.For i = 0,1, let F̃i(s, t) = (f̃i(s, t), g̃i (s, t)) be maps inLip(V ,R2) such that̃Fi preserveC-Lipschitz
graphs with constants�0, λ0,C1,2 andC2,1. If ‖F̃0 − F̃1‖∞ < ε, then∥∥TF̃0

(ρ̃) − TF̃1
(ρ̃)

∥∥∞ � (1+ C)ε

for all C-Lipschitz functions̃ρ : R → [−T0, T0].

Proof. Considers0 ∈ R and lett0 = ρ̃(s0). Also let (s′
i , t

′
i ) = Fi(s0, t0) wherei = 0,1. It follows that∣∣ρ̃′

1(s
′
1) − ρ̃′

0(s
′
1)

∣∣ �
∣∣ρ̃′

1(s
′
1) − ρ̃′

0(s
′
0)

∣∣ + ∣∣ρ̃′
0(s

′
0) − ρ̃′

0(s
′
1)

∣∣ � ε + C|s′
0 − s′

1| � ε + Cε

whereTFi
(ρ̃) = ρ̃′

i . �
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6.2. The upper and lower boundaries as fixed points

Throughout this subsection we letT0 > 0 andU0 = R/Z× (−T0, T0). Here we consider a mapF ∈ Lip(U0,U0)

and show that under certain conditions the upper and lower boundaries of the attractorΩF are Lipschitz graphs.

Lemma 6.7.Let F ∈ Lip(U0,U0) be locally an orientation preserving homeomorphism which acts as multip
tion by� � 1 on the first homology ofR/Z × (−T0, T0). Denote bỹF :R × [−T0, T0] → R/Z × (−T0, T0) a lift of
F to the universal cover and suppose thatF̃ preservesC-Lipschitz maps with constants�0, λ0, C1,2, C2,1. Assume
that:

λ0�0 + C2,1C1,2

�0 − C1,2C
< 1.

Let

T +
F (ρ̃)(s) = max

{
TF̃ (ρ̃)(s),TF̃ (ρ̃)(s + 1), . . . ,TF̃ (ρ̃)(s + � − 1)

}
and

T −
F (ρ̃)(s) = min

{
TF̃ (ρ̃)(s),TF̃ (ρ̃)(s + 1), . . . ,TF̃ (ρ̃)(s + � − 1)

}
.

ThenT ±
F are contractions in the space ofC-Lipschitz functions̃ρ :R → [−T0, T0] endowed with‖ · ‖∞. The fixed

pointsρ̃±
F of T ±

F are 1-periodic and the graphs of

ρ±
F : R/Z → R,

θ = π(s) �→ ρ̃±
F (s)

are the upper and lower boundaries of the attractorΩF .

Proof. Since the maximum and minimum ofC-Lipschitz functions are alsoC-Lipschitz, from Lemma 6.3 i
follows thatT ±

F (ρ̃) areC-Lipschitz whenever̃ρ is C-Lipschitz. By Lemma 6.5, the operatorsT ±
F act as contraction

maps. Our hypothesis thatF acts as multiplication by� on the first homology group translates to the universal co
asF̃ (s + 1, t) = F̃ (s, t) + (�,0). It follows thatT ±

F preserve the closed subset of 1-periodicC-Lipschitz function.
Therefore, the fixed points̃ρ±

F are 1-periodic and we letρ±
F (π(s)) = ρ̃±

F (s).
We now show thatρ+

F is the upper boundary ofΩF . Note that the graphγ +
F of ρ+

F is invariant underF .
That isF(γ +

F ) ⊃ γ +
F . Thereforeγ +

F ⊂ ΩF . It is sufficient to show thatΩF is belowγ +
F . For this letρ̃0 be the

constant functionT0 on R and letρ̃n = T +
F (ρ̃0). From our previous discussion and the fact thatρ̃0 is 1-periodic,

we conclude that̃ρn projects to a functionρn :R/Z → R with graphγn. SinceF is locally an orientation preservin
homeomorphism,Fn(U0) has as upper boundary the curveγn. Taking into consideration thatρn converges toρ, it
follows that∩Fn(U0) is belowγ +

F . A similar argument shows thatρ−
F is the lower boundary ofΩF . �

The analogue of Lemma 4.1 also holds in this context. More precisely:

Lemma 6.8.Assume thatF ∈ Lip(U0,U0) is locally an orientation preserving homeomorphism such that the u
and lower boundaries ofΩF are the graphsγ ±

F of functionsρ±
F :R/Z → R. If for all θ ∈ R/Z

min
{
t | (θ, t) ∈ F(γ +

F )
}

> max
{
t | (θ, t) ∈ F(γ −

F )
}
,

thenΩF is a closed topological annulus. Moreover, if� = 2 and for someθ ∈ R/Z

min
{
t | (θ, t) ∈ F(γ +

F )
}

< max
{
t | (θ, t) ∈ F(γ −

F )
}
,

thenΩF is not a closed topological annulus.

We omit the proof of this lemma since it is very similar to that of Lemma 4.1.
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6.3. Proof of Proposition 6.2

Since Lipschitz perturbations of bilipschitz maps are bilipschitz, allF in a sufficiently small neighborhoodU
of Aλ,τ in Lip(U0,U0) are locally orientation preserving homeomorphisms. Consider a small real numberδ > 0
and shrinkU , if necessary, so that for allF ∈ U there exists a unique lift̃F :R × [−T0, T0] → R2 of F such that
‖F̃ − Ãλ,τ‖∞ < δ, whereÃλ,τ (s, t) = (�s, λt + τ ◦ π(s)). After further shrinking ofU , if necessary, we ma
assume that there exist positive constants:�0 slightly smaller than�, λ0 close toλ, C2,1 close to‖τ‖L, andC1,2
sufficiently small such that for allF ∈ U the corresponding lift̃F preservesC-Lipschitz graphs with constan
�0, λ0,C2,1,C1,2 and the following inequalities also hold:

C > (� − λ)−1‖τ‖L � ‖ρ±
Aλ,τ

‖L,

λ̂ = λ0�0 + C2,1C1,2

�0 − C1,2C
< 1.

Let ρ̃+ be the lift ofρ+
Aλ,τ

. By Lemma 6.6,

∥∥(T +
F )n(ρ̃+) − ρ̃+∥∥∞ �

n−1∑
k=0

∥∥(T +
F )k+1(ρ̃+) − (T +

F )k(ρ̃+)
∥∥∞ �

(
n−1∑
k=0

λ̂k

)
(1+ C)δ � 1+ C

1− λ̂
δ.

Choosingδ > 0 so that(1+ C)/(1− λ̂)δ = ε it follows that ρ̃+
F = lim(T +

F )n(ρ̃+) is ε-close toρ̃+. Similarly, we
obtain thatρ̃−

F is ε-close toρ̃−. �

7. Examples

7.1. Perturbation of affine maps with annular attractors

In the previous section we showed that the upper and lower boundaries of the attractorΩλ,τ of an affine map
Aλ,τ move continuously under Lipschitz perturbations. In view of Lemma 4.1, Remark 4.8 and Theorem
obtain the following result.

Proposition 7.1.Let τ :R/Z → R be a Lipschitz function. Then there existsλ0 ∈ (1/�,1) such that for anyλ ∈
[λ0,1) and for allF in an appropriate neighborhoodU of Aλ,τ in Lip(U,U) we have thatΩF is an annulus where
U = R/Z × (−T0, T0) is such thatAλ,τ ∈ Lip(U,U).

We will apply the above proposition to exhibit annular attractors in an explicit family of endomorphis
C∗ = C \ {0}. More precisely, we consider the family

fλ,c :C∗ → C,

z �→ (
λ|z| + 1− λ

) z2

|z|2 + c,

wherec ∈ C andλ ∈ (0,1). Observe thatfλ,0(C
∗) = {z ∈ C | |z| > 1 − λ} ⊂ C∗ andfλ,0 acts as multiplication

by 2 on the arguments and as the affine contractionλ|z| + 1 − λ on radial lines. Also,fλ,0(S
1) = S1 where

S1 = {|z| = 1}. The mapfλ,c may be written as the postcomposition offλ,0 by the translationz �→ z+c. Therefore,
fλ,c(C

∗) = {z ∈ C | |z| > 1− λ} + c.
This family fλ,c is closely related to the well known and extensively studied quadratic familyQc(z) = z2 + c.

The action ofQ0 as|z|2 on radial lines has been replaced by an affine contraction.
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ve
Our main interest here will be on mapsfλ,c for |c| small. For|c| < 1− λ, by the above considerations we ha
thatfc(C

∗) ⊂ C∗. Moreover, it is easy to check that

V =
{
z ∈ C∗

∣∣∣ exp

(
− |c|

1− λ

)
< |z| < exp

( |c|
1− λ

)}
is a trapping region forfλ,c when|c| is sufficiently small. That is,fλ,c(V ) ⊂ V . We say that

Ωλ,c =
⋂
n�0

f n
λ,c(V )

is the attractor for the dynamics offλ,c.

Proposition 7.2.There existsλ0 ∈ (0,1) such that ifλ ∈ [λ0,1), then the attractor offλ,c is homeomorphic to a
closed topological annulus for allc in a punctured neighborhood of the origin(which depends onλ).

The proof of this fact relies on considering an appropriate rescaling offλ,c asc goes to 0. Namely, consider

ι :R/Z × R → C∗, (25)

(θ, t) �→ exp
(
2π(t + iθ)

)
(26)

and for|c| < 1− λ, let

f̂λ,c = ι−1 ◦ fλ,c ◦ ι.

Lemma 7.3.For η > 0 let hη(θ, t) = (θ, ηt). Then, for allα ∈ R/Z,

h−1
η ◦ f̂λ,η exp(2π iα) ◦ hη

converges, asη → 0, in theC1 topology to:

Fλ,α(θ, t) =
(

2θ,λt + 1

2π
cos2π(α − 2θ)

)
.

Proof. Fix λ ∈ (0,1). Let c(η) = η exp(2π iα) and(
Φη(θ, t),Ψη(θ, t)

) = f̂λ,c(η) ◦ hη(θ, t).

Therefore,

h−1
η ◦ f̂λ,η exp(2π iα) ◦ hη =

(
Φη,

Ψη

η

)
.

We must show thatΦη(θ, t) → 2θ and that

Ψη(θ, t)

η
→ λt + (2π)−1 cos(α − 2θ)

in theC1 topology, asη → 0. Fromfλ,c ◦ ι ◦ hη = ι ◦ (Φη,Ψη/η) we obtain:(
λexp(2πηt) + 1− λ

)
exp(2π i2θ) + η exp(2π iα) = exp

(
2π

(
Ψη(θ, t) + iΦη(θ, t)

))
. (27)

It follows that

exp
(
2 · 2π i

(
Φη(θ, t) − 2θ

)) = λexp(2πηt) + 1− λ + η exp(2π i(α − 2θ))
(28)
λexp(2πηt) + 1− λ + η exp(−2π i(α − 2θ))
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ty is
od
a

ord-
converges to the constant function 1 in theC1 topology for maps fromR/Z × R into R. Therefore,

Φη(θ, t) − 2θ → 0

in theC1 topology for maps fromR/Z × R into R/Z. From (27),

exp

(
2π

Ψη(θ, t)

η

)
= ∣∣1+ η

(
2πλt + exp

(
2π i(α − 2θ) + O(η)

))∣∣1/η
,

which, asη → 0, converges to

exp
(
2πλt + cos2π(α − 2θ)

)
in theC1 topology. It follows that

Ψη

η
→ λt + 1

2π
cos2π(α − 2θ)

which establishes the lemma.�
From Proposition 7.1, there existsλ0 such that for allλ ∈ [λ0,1) there exists a neighborhoodU of {Fλ,α | α ∈

R/Z} ⊂ Lip(U,U) so that the attractorΩF is an annulus for allF ∈ U whereU = R/Z× (−(1−λ)−1, (1−λ)−1).
Since forη sufficiently small, say 0< η < η0, and for allα ∈ R/Z,

h−1
η ◦ f̂λ,η exp(2π iα) ◦ hη ∈ U,

it follows that the attractor set of̂fλ,η exp(2π iα) ∈ Lip(W,W) is an annulus, whereW = R/Z × (−(1 − λ)−1η,

(1−λ)−1η). Therefore, the attractor offλ,η exp(2π iα) is an annulus for all 0< η < η0 and allα ∈ R/Z which proves
the claim of Proposition 7.2.

7.2. With interior and not an annulus

Proposition 7.4. For all λ > 1/2 there exists aCω function τ :R/Z → R such that the attractor setΩλ,τ of
Aλ,τ (θ, t) = (2θ,λt + τ(θ)) has non-empty interior and it is not a topological annulus. Moreover, this proper
robust. That is, letU = R/Z× (−T0, T0) ⊂ R/Z×R be such thatAλ,τ (U) ⊂ U . Then there exists a neighborho
U of Aλ,τ in Lip(U,U) such that for allF ∈ U the attractor setΩF has non-empty interior and it is not
topological annulus.

A similar example can be constructed for allλ > 1/� and� > 2. Here we specialize in the case� = 2 for the
sake of simplicity of the exposition.

Construction of the example.We endowR/Z with its standard orientation and use interval notation acc
ingly. Let p � 1 be such thatλ + · · · + λp−1 > 1 and considerη < 1 such that:

(λ + · · · + λp−1)η > 1. (29)

Consider the periodic cycle{θ0 = 2p−1/(2p − 1), θ1 = m2(θ0), . . . , θp−1 = m
p−1
2 (θ0)} of periodp > 2 with

subindices modp. Observe that the subindices respect cyclic order and that the intervalI0 = (θ0, θ1) has length
|I0| > 1/2.

Consider positive constantsT0, T1, δ, ε0, . . . , εp−1, λ
′ and a natural numberN � 2 such that

T0 >
1

1− λ
, (30)

T0
>

λ − λN

+ λNT0 = T1, (31)

λ 1− λ 1− λ
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function
o-

ic
δ = |I0| − 1/2, (32)

0< ε0 < δ · 2−N+1, (33)

2εj < εj+1 for j = 1, . . . , p − 1, (34)

λη < λ′ < λ. (35)

Let τ :R/Z → R be aC∞ function such that:

τ(θ) = 0 for all θ ∈ I
ε0
0 , (36)

τ(θ) = λ′ for all θ ∈ I
εj

j andj = 1, . . . , p − 1 (37)

whereI
εj

j = (θj + εj , θj+1 − εj ),

τ(θj ) = T0 for j = 0,1, . . . , p − 1, (38)

0< τ(θ) � T0 for θ ∈ R/Z \ I0. (39)

The next three lemmas are devoted to prove that the properties stated in Proposition 7.4 hold for a
τ :R/Z → R as above. It follows that there is a Lipschitz closeCω function for which the statement of the prop
sition holds.

Lemma 7.5.Letρ± = ρ±
Aλ,τ

on R/Z. Then

(1) ρ−(θ) = 0 for all θ ∈ R/Z.
(2) ρ+(θj ) = (1− λ)−1T0 for all j = 0, . . . , p − 1.

(3) ρ+(θ0 + 1
2) < λ−1T0.

Proof. (1) Since∣∣I ε0
0

∣∣ = |I0| − 2ε0 > |I0| − 2δ · 2−N+1 � |I0| − δ,

it follows that m2(I
ε0
0 ) = R/Z. Therefore, givenθ ′

0 ∈ R/Z andn � 1 there existsθ ′
n ∈ I

ε0
0 such that 2θ ′

n = θ ′
n−1.

Hence,ρ−(θ ′
0) � tλ((θ

′
n)) = 0 (see Proposition 2.5). Also 0� ρ−(θ ′

0) sinceτ � 0.
(2) Sinceτ � T0, it follows thatρ+ � (1−λ)−1T0. Nowρ+(θj ) = (1−λ)−1T0 because each one of the period

pointsθj has as an infinite backward orbit along the periodic orbitθ0, . . . , θp−1.
(3) Let θ ′

0 = θ0 + 1/2 and(θ ′
n) ∈ S be a backward orbit. Let

N0 = min
{
n | θ ′

n /∈ I
ε0
0 ∪ · · · ∪ I

εp−1
p−1

}
.

Then

distR/Z

(
θ ′
N0

, {θj }p−1
0

)
� max{εj } = ε0 < δ · 2−N+1.

Hence,

δ = distR/Z

(
θ ′

0, {θj }p−1
0

)
< δ · 2−N+1 · 2N0.

We conclude thatN0 � N and

ρ+(θ ′
0) � τ(θ ′

1) + λτ(θ ′
2) + · · · + λN0−2τ(θ ′

N0−1) + λN0T0

1− λ
� λ + λ2 + · · · + λN0−1 + λN0T0

1− λ

= λ − λN0

1− λ
+ λN0T0

1− λ
� λ − λN

1− λ
+ λNT0

1− λ
< λ−1T0. �
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Lemma 7.6.There exists an open neighborhoodU of Aλ,τ in Lip(U,U) such that for allF ∈ U the attractorΩF

is not a closed topological annulus.

Proof. If we denote byγ ± the graphs ofρ±
Aλ,τ

, then

min
{
t | (θ1, t) ∈ Aλ,τ (γ

+)
} = min

{
λρ+(θ0 + 1/2) + τ(θ0 + 1/2), λρ+(θ0) + τ(θ0)

}
= min

{
λρ+(θ0 + 1/2), (1− λ)−1T0

}
< T0

= max{0, T0}
= max{λρ−(θ0 + 1/2) + τ(θ0 + 1/2), λρ−(θ0) + τ(θ0)}
= max

{
t | (θ1, t) ∈ Aλ,τ (γ

−)
}
.

By Lemma 6.8, it follows that for allF close toAλ,τ the attractorΩF is not an annulus. �
Lemma 7.7.There exists an open neighborhoodU of Aλ,τ in Lip(U,U) such that for allF ∈ U the attractorΩF

has non-empty interior.

Proof. Let η′ be such that

(λ + · · · + λp−1)η > η′ > 1.

By Proposition 6.2 we may assume that for allF sufficiently close toAλ,τ the lower boundaryρ−
F :R/Z → R is

well defined and

ρ−
F < (λ′)2.

Consider the subsetsRF
1 andR2 of R/Z × R defined by:

RF
1 = {

(θ, t) | ρ−
F (θ) � t � λ

}
,

R2 = I
ε0
0 × [λ,η′] ∪

p−1⋃
j=2

(
I

εj

j × [
λ, (λ + · · · + λj )η

])
.

Let RF = RF
1 ∪ R2. We will show that theF(RF ) ⊃ RF for all F in a sufficiently small neighborhood ofAλ,τ .

To simplify notation, letR = RAλ,τ . We start by showing thatAλ,τ (intR) ⊃ R2. In fact, since forj = 1, . . . ,

p − 1

I
εj

j × (
0, (λ + · · · + λj )η

) ⊂ intR

andτ(I
εj

j ) = {λ′}, it follows that

m2
(
I

εj

j

) × (
λ′ + λ(λ + · · · + λj )η

) ⊂ Aλ,τ (intR).

By (34),m2(I
εj

j ) ⊃ I
εj+1
j+1 and, by (35),(λ′ +λ(λ+· · ·λj )η) ⊃ [λ,λη+λ(λ+· · ·+λj )η]. Therefore,Aλ,τ (intR) ⊃

R2. Hence, for allF sufficiently close toAλ,τ we also have that

F
(
intRF

) ⊃ R2 (40)

since the boundaries ofRF move continuously withF .
ForF sufficiently close toAλ,τ the circleR/Z × {λ} has image contained int > λ′λ. Therefore,

F
{
(θ, t) | ρ−(θ) � t � λ

} ⊃ {
(θ, t) | ρ−(θ) � t � λλ′}. (41)
F F
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Rodrigo
ons with

Dynam.

305.
9 (1983)

roxima-
Berlin,
SinceAλ,τ (I
ε0
0 × (λη,η′)) ⊃ R/Z × (λλ′η,λη′) ⊃ R/Z × [λλ′, λ], for all F sufficiently close toAλ,τ we also

have that

F
(
RF

) ⊃ R/Z × [λλ′, λ]. (42)

From (41) and (42) we conclude thatF(RF ) ⊃ RF
1 . By (40), we obtain thatF(RF ) ⊃ RF .

Since for allF sufficiently close toAλ,τ we have thatF(RF ) ⊃ RF , it follows thatRF ⊂ ΩF and thereforeΩF

has non-empty interior. �
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