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Abstract

We establish the existence of a positive solution for the following non-variational equation

—div (]x|72Vu) = |x|2@FD+Cf(x u, vu), in 2
u=0, onaf?,

where the non-linearityf (x, t, £) belongs to a class of functions that are superlinear in the variate
sublinear in the variablé. For this purpose we used an idea of a recent work by De Figueiredo et al. [D.
De Figueiredo, M. Girardi, M. Matzeu, Semilinear elliptic equations with dependence on the gradient via
mountain-pass techniques, Diff. Integral Equ. (in press)] and we established a new regularity result for a
class of Singular Elliptic Equations.

1. Introduction

We oonsider the problem

{—div(|x|—ZaVu) = |x|72@D+CE (x u, vu), in 2 (1.1)

u=20, onaoJs?

where 0< a < % ¢ > 1 andf? is abounded domain ii®N with a snooth boundary such that

0 e {2. Sincethe nonlinearityf depends orVu, (1.1) cannot be treated directly by variational
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methods. Our approach is based on an idea of De Figueiredo 4} falr fn equation involving
the Laplacian. This idea consists of analyzinfamily of associated elliptic equations without
dependence on the gradient (see a8} More precisely, givenw € C%1(12), we mnsiderthe
following problem

{—div(|x|‘2""Vu) = |x|72@+tDHCf (x u, Vw), in 0 (1.2)

u=20, onafl.

Then the result is obtained by a combination of Truncation techniques, the Mountain Pass
Theorem and Monotone lteration. This also requires a proof of Lipschitz regularity of the
solutions that occur in the iteration (s8ection 2below). At this stage we would like to point
outthatifa < O orif ¢ < 1, then we cannot expect a solution(@f2)to be Lipschitz continuous

(for counter examples, see the remark at the er®eation 2. This means that the method df [

is not applicable in the cases < 0 or c < 1. We assign the following hypotheses on the
nonlinearity f:

(fo) f: 2 xR xRN — Ris measurable, anéi(x, -, -) is continuous orR x RN.

(f1) lim¢_o w = Ouniformly forx € 2, £ € RN,

(fo) 1f (X, t,8)] <ar(1+tIP)A+ &) YV (X, 1,€) € 2 xR x RN, for some onstants; > 0,

l<p< min[%,%} andr € (0, 1).

(f3) 0 < OF(x,t,&) < tf(x,t,&) Vx € 2,]t] > to, & € RN, for some onstant¥) > 2 and
to > 0, whereF (x,t,£) = fé f(x,s,&)ds.

We ndice that (f3) implies that here exist constants, az > 0 such that
Fx,t,&) >aplt|” —as Vxe2,teR, & eRN. (1.3)

The above hypotheses allow us to apply the Mountain Pass Theorem of Ambrosetti and
Rabnowitz (see P]) on Eq.(1.2). Thesolvability of problem(1.1)is then ensured if the function
f satisfies two local Lipschitz conditions that are given i) (below,

(fa) 1T, U, 6) = f, U, &) < Lalt' —=t"| ¥x e 2,t',t" €0, p1l, |§| < p2, and
IFx,t,8) — F(X,1,&)] < La2|g" = &"| Vxe 2,tel0p1], §'], "] < p2, wherepy
andp depend orp, N, 6, a1, ap, az given in( f2), (f3) and(1.3).

Let us first recall some basic facts about the weighted Sobolev spaces that we will work with
(compare, e.g.1[1]). Givenl > 1 andx € R, we daote byL' (12, [x| =) the space of measurable
functionsu : 2 — R suchthat

Ul (@, xj—o) = /;2 x| ~Jul' dx < +oo.
If a € (—o0, (N—2)/2),then Iet\NOl’ P, Ix|~22) denote the closure @5° (£2) under the norm

ull = / IX| 23| Vu|? dx.
9]

Letl € (1,2N/(N —2)) andx < (14+a)l + N(1— (1/2)). Then here is a constarilg > 0 such

that
2/
Co(/ x|~ |u" dx) 5/ Ix|~22|vul|? dx. (1.4)
9] 0
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The casé = 2 in (1.4)requires special attention in our analysis. Consider the weighted Rayleigh
guotient

Oualv) = [ IXI723|Vv|% dx
a,c V) = fQ |X|_2(a+1)+c1j2 dX’

v e Wy (42, IX|72), v #0,

wherea € (—oo, (N — 2)/2) andc > 0 and set
S(2,a,¢) = inf{Qac(v) : ve Wa?(12, |x|723), v # 0}. (1.5)
If c > 0, thenS({2, a, ¢) is equal to the first eigenvalue of the following problem

{—div(|x|2aVu) = A|x|72@D+Cy in 0,

u=0 ona s, (1.6)

andS({2, a, ¢) is attained for any first eigenfunction ¢i.6) (see [L1]).

If c = 0, thenS(RN,a,0) = (N — 2 — 2a)/2)2, but the hfimum in(1.5)is not attained
(see B)). Itis easy to see that ihalso implies thaB(12, a,0) = (N — 2 — 2a)/2)?, and that
S(£2, a, 0) is not attained. We are now in a position to formulate our main result.

Theorem 1.1. Let 2 be a C'-domain, and assume that eith@< a < (N — 2)/2and ¢> 1, or
a = 0and c> 1. Furthermore, suppose that f satisfigly), ..., (f4). Then poblem(1.1) has
a postive and a negative solution in W(Q, |x|=22) provided that
L L
1 " 2 -1
S(£2,a,c) S(12,a,2(c— 1))

Our paper is organized as follows. Bection 2we obtain regularity properties for the

solutionsof problem(1.2). Theproof of Theorem 1.1s given inSection 3

1.7)

2. Aregularity result
In this section we prove boundedness and smoothness for solutions of p(ahkm

Theorem2.1. Leta € (—oo,(N —2)/2),c >0, M > 0,8 =2@+1 —-¢1<qc<
min{(N +2)/(N — 2); (N - 2@+ 1) +2c)/(N —2(a+1))},andletg: 2 xR - R, a
Caratheodory function such that

lgx, )] < ML+ [t|% V(x,t) € 2 xR. (2.8)
Furthermore, let ue W&’Z(Q, Ix|~22) satisfy weakly

—div (Ix]72vu) = x| Pg(x,u)  in Q2. (2.9)
Then there is @onstant C> 0, deending only on N {2, a, cand g, such that

lux)| < MC in 2. (2.10)

Moreover, thee is anumbera € (0, 1] such hat u € Cloo’g((z). Finally, if 302 € C°%1 then
ue Co ().

Proof. We introduce new coordinates
N—-2

k—1 N
, x e RN, wherek = ———————,
Ty N—-2@a+1)

X=ly
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and seD = {y: X € 2}, v(y) .= u(X), h(y,t) .= g(x,1t),V(x,t) € 2 x R. Itis then easy to
see thab € W&’Z(D), andv satisfies weakly

—%ai(y, Vv) =K’y 7h(y,v)  inD, (2.12)
|
where
ai(y. &) = K% + (1— k%%‘ifj V(y,£) e D xRV,
andy =2 —c(N — 2)/(N — 2(a + 1)). Notice thatk > 0,
L g2 ifk>1
&ai(y,§) = {k2|é|2 1 - 1 and (2.12)

N .
2 1 ifk <1
i;ay 08 = {kzlél if k > 1. (2.13)

Now we write

lyI=7h(y, v(y))
diy) = —————
W= )

Sincev e L2N/(N=2 () by the Sobolev Embedding Theorem, and sigce: 1 + 2¢/(N —
2(a+ 1)), we findusing Hilder's inequdity and (2.8),

/D|d|N/2dy < C2/|;|y|_VN/2(1+|U|(q—1)N/2)

4-(N-2)(q—1)
_ 2yN 4
=¢C (/ yl ““N-z’(q-l’)
D

(N-2)(q-1)/4
o (oo (o)
D

< 400,

, VyeD.

wherecy, c3 are some positive constants. In other words, we have that
—(9/9yai(y, Vv) = d(y)(1 + |v]) in D,

whered € LN/2(D). We can now apply Lemma B3 ofi[), p. 244 ff., to obtain that € L" (D)
for everyr > 1. (Notice that the above mentioned Lemma B3 has been formulated only for
the Laplace operator, but its proof carries over without difficulty to the general case, due to the
propertieq2.12)and(2.13)) Hene we have thalty| =" g(y, v(y)) € L?(D) for somep > N/2.
The assertions then follow from]. O
Next we onsider the problem
ue Wy, Ix|72),

) ) " ) (2.14)

—div(|x|7%4Vu) = |x| 2 f (x) in 02,

wherec > 1 andf € L*°(£2). Notice first that ifc > 0, then a result of], Theorem 1.1, tells
us thatu is bounded and e C%%(£2’) for somex < (0, 1) and for every?’ cc 2. Ourproofis
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based on a blow-up argument as used by Gidas and Sprucké{sesnd requires the following
Liouville-type result:

Theorem 2.2. Letae (—oo, (N —2)/2) and

N-—2 N-—2 2
m=-——r—+a+,/(———-a) +N-1 (2.15)
2 2
Then, if ue WgZ(RN, |x|~2) satisfies
—div(]x|7?Vu) =0 and (2.16)
lue)l < CA+ |x™*) onRY, (2.17)

for some C> 0, ande € (0, my), it follows that u & constant oriRN.

Proof. Let (r, #) denoteN-dimensional polar coordinates, £ |x|, 8 € SN~1), and let{vn} be
the sequence of orthonormal eigenfunos for the Laplace—Beltrami operator SN—1, that is,

—Apwk =2k onSVNl k=012..., (2.18)
/ vivj do = §jj, i,j=0,1,2,..., and (2.19)

SN-1
MSA <A<, (2.20)
Notice thatig = 0,v9 =const.£0,A1 =--- =An =N -1,k = Cx/|X|,k=1,..., N, for

someC > 0, and the eigenvalueg= Ax) can be calculated from the relation
A =n%+n(N - 2), n=0,12,....
LetR > 0, and letox(R), k =0, 1, .. ., (unique!) numbers such that
+00
U(R.6) =Y bk(Rw(®). voesN ™ (2.21)

k=0
Then we have the following representatiorudfsee [L], proof of Theorem 4.4),

+o00
uer, ) = Zbk(R)rmkvk(Q), vr € [0, R], VO € SN, (2.22)
k=0
N-—2 N-—2 2
where my = 5 +a+ — - al + Ak (2.23)

SinceR > 0 is arhitrary, we have that
bk(R) = ckR™, (2.24)

for some numbersy € R, k = 0,1, 2,.... Using Parseval’'s identity oABr and a&sumption
(2.17) we then find that

+00
C(l+ RPM~2) > / u?(R, 0)do = ZcERka VR > 0, (2.25)
SN-1 k=0
for someC > 0. Passing téhe limit R — +o0, this givesck = 0 fork > 1. Henceu is constant
onRN. O
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Lemma2.l. Letae (—oo, (N —2)/2),c> 0, f € L°°({2), and let u be a solution 0f2.14)
Then for every > 0 satisfyingd < cand§ < my, there isa number ¢ > 0 depending only on
8, ¢, a, N andf? suchthat

lux) —u)] < ciM|x|® Vx e 2, (2.26)
where M= || f ”L”O(Q)'

Proof. First assume tha¥l = 1. Suppose thgf.26)is wrong. Then there is a numbér> 0
with § < cands < mp and a sequende,} C {2\ {0} with X, — 0 such that

lim |u(Xn) — U()|[Xn| ™% = +o0. (2.27)
n—o00
Define roationspy, of the coordinate system about the origin such a4, = (en, 0,...,0)
=: Yn, (en > 0), and let2, .= on 2, fa(X) ;== f(onX), Un(X) ;= U(ppX),N =1, 2, .... We may
assume w.l.o.g. thdty} is decreasing and
lun(X) = Un(0)[1X|™® < [Un(yn) — Un(O)|e,® VX € £2n with |X| > en. (2.28)
Sett'ngDn = {(1/8n)x X € .Qn}, gn(x) = fn(SnX), and

_Un(enX) — un(0)

vn(X) = ,
"0 = () — tn(0)
we findvn (0) = 0, va(€) = 1, whereeis the unt vector(1, 0, ..., 0),
lon()] < [x]° in D\ By, (2.29)

vn € Wy?(D, x| 728), and

x| ~28=2+Cg, (x)e))

—div(|x|~2Vup) = =h in Dp. 2.30
VIXI™FVen) = 2o 0) n(X) in Dn (2.30)
By (2.27)we have that
1)

m — o _ 0,

n—0o0 Un(en€) — Un(0)
so that

Ir]Iim hn(x) = 0 uniformly in any compact subset oy . (2.31)

— 00

Furthermore, using elliptic estimates separatelyBinand in Dy \ Bi, we find — see §] —
that the vy,s ae uniformly bounded and, € C%%(D’) for somea € (0,1), for every
D’ cc Dpn. Herce, in view of (2.29)—(2.31) there is a sbsequencdvy} and a function

v e WE2RN, [x|-22) 0 CO«(RN) suchthat

vy — v inWY2(BR, [x|7?®) andinC%¥(Bgr), VR > 0, (2.32)
div (]x|7%Vv) =0 onRN, (2.33)
lv(x)| <|x|® for|x|>1, and (2.34)
v(0) =0, v =1 (2.35)

Using the previous theorem, condition&.33) and (2.34) imply that v must be constant,
contradicting(2.35)
In the general case, the result falls from the above analysis, replacingpy M~1u. O
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We now pove the mainesults of this section.

Theorem23. Let0 <a < (N—-2)/2,c > 1, f € L*®(£2), and let u be a solution 0f2.14)
Thenue CLA(2) for every2’ cc 2,andforeveng € (0, ) withg <c—1landp < my;—1.
Moreover, for every suclg, and (2, there is a onstant ¢ depending only on ¢8, a, and {2/
suchthat

ullcre oy < C2M, (2.36)

where M:= || f || (g). Finally, if £ is a Cl#-domain, then ue C1-#(2) and(2.36)holds with
2’ replaced bys?.

Proof. As in the poof of Lemma 2.1 we mayassume thaM = 1. First observe that standard
regularitytheory tells us (see, e.g7]j that

ue CL¥2'\ B, forevery® cc (£2)\{0}) andVa € (0, 1). (2.37)

Let§ € (1,c] with § < my, andeg > O such thatBs,, C 2, ande € (0, o). Setting
Ue(X) == e7%(u(ex) — u(0)), f.(x) == f(ex), andf = {(1/e)x : x € £}, we have that
Us € Wy'(2, x|723), and

—div(]X|7%2Vu,) = |x|"2%Cf, (%) in (2. (2.38)

By the prevous lemma, thai.s ae uniformly bounded. Hencaysing elliptic estimates in
B4 \ By/2, weobtain from(2.38)that far everya € (0, 1) there is aconstantz(«), independent
of ¢ suchthat

[VU:(X) — VUe(Y)| < C2(e)[x — y|* in B2\ By,
which implies
IVU() — Vu(y)| < ca(e)lx — y1%e® "+ in By \ Be.
Choosinge < § — 1, this shows that
IVU(x) — Vu(y)| < ca(a)|x — y|* in By \ Be. (2.39)

By the previous lemma and by2.37)we have that € C&JC(Q) andVu(0) = 0. Together with
(2.37) this proves(2.36)
Finally, if £2 is aC'#-domain, then one has

ue CY¥(2\ By, Ve=>D0. (2.40)
This impliesu € C1A(2), by the aboe mnsiderations. [

A slight modification of the above proof in the case- 1 leads to thdollowing:

Theorem24. Let0 <a < (N—-2)/2,c =1, f € L°(£2), and let u be a solution 0f2.14)
Then ue C%1(2) for every2’ cc 2. Moreover, there is a constantddepending only on a
and 2’ suchthat

VUL < d2M, (2.41)

where M is as ifTheoren?.3 Finally, if 2 is a Cl-domain, then i C%1(2) and(2.41)holds
with 2’ replaced byy?.
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Proof. We proceed similarly as in the previous proof. Notice first thagatisfies(2.26) with
§ = 1, and tha{2.37) Moreover, if 12 is aCl-domain, then one has

ueC%(@\ B, Ve=>0. (2.42)
Choosingeg as before and € (0, gg), we setu. (x) := (u(ex) — u(0))/e. Then we have that
—div(Ix|7%2Vu,) = |x|72 1. (x) in 2. (2.43)

Using elliptic estimates ifB4 \ By/2, we sedrom (2.43)that there is a constang independent
of ¢, such hat

IVU:(x)| <c3 inBz\ By
This implies
IVux)| < cs in B \ Be.
Now the assertion follows from the continuity ofand from(2.26)with § = 1 and(2.42) O

Remarks. (1) Let us briefly report about the well-known Laplacian case; 0. Notice that we
cannot argue as in the proof theorem 2.3sincem; = 1.
Assume that € (1, 2). Since|x|~222+C¢f(x) e LP() for everyp > N/(2 — ¢), we
have thatvvz’p(!?) for thesep. By the Enbedding Theorem this implies thate C1A (")

loc
forevery2?’ cc 2, andg € (0, c— 1). Moreover, if 2 is aC1-#-domain theru € C1A(12).
(2) We wish to demonstrate that the restrictions on the paramatensd c in the above
Theorems 2.&nd2.4are optimal.
ChooseRy > 0 such hat Br, CcC {2, and leta € (—oo, (N — 2)/2), and¢ > 0,
i = 1,2, 3, with c3 = my, wherem; is given by(2.15) Settinguy(x) = |X|%, uz(x) =
x1|x|™ 1, anduz(x) = x1/x|™~tlog|x| in Bg,, we hae that

—div(|x|?Vu;) = [x]7272*% fi(x) inBgr, =123, (2.44)
wherefi(x) = —ci3(N +c¢1 — 2 — 2a), f2(x) =0, and

f300 = —2xalxI "1/ (N —2— 28)/2)2+ N — 1.

Clearly we may continue; to a function inC2(£2 \ {0}) with compact support if2, and
suchthatu; is a solutim of problem (2.14) with right-hand sidex|~22-2*G f; (x), where
fi € L°(£2),i = 1, 2, 3. The examples show that an estim@e6)with § > my or with

8 > cdoes not hold in general. In particular, the first example,shows that one cannot
expect a solution of2.14)to be Lipschitz continuous i€ < 1. Moreover, ifa < 0 then we
have thatn; < 1, so thauy provides an examplof a soltion of (2.14)that is not Lipschitz
continuous. Finally, a counter example for Lipschitz continuity in the ease0 andc = 1

is given byus.

3. Truncation argument

Fromnow on, we assume th&, a andc are as inTheorem 1.1In orderto obtain a solution
of (1.2)we first consider a truncadl problem. Fix some numb& > 0. Then let

frX,t,&) = f(X,t,¢r()), and
t

Fr(X, t, &) = / frX,7,&)dr VX, t,&) € 2 x R x RN,
0
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wheregr € C1(RN) and satisfies the following conditions

lpr(6)| <1 V& e RN,
pr) =1 V|§[ =R (3.45)
pr(§) =0 V|§| = R+ 1

Furthemore, for any fixedv € W&’Z(Q, IX|~22) we define atﬁnctionallu? : W&’Z(Q, Ix|~22) —
R by

1
IE(v)=E/Q|x|*2a|Vv|2—/Q|x|*2<a+1>+°FR(x,v,Vw).

The critical pointsulff of Iu'? are weak solutions of the semi-linear elliptic problem

—div(|x|72VuPl) = |x| 2@+ D+efo(x, uR vw) in @
uR =0 ona .

w

Our aim is to show that the functiond} has a structure of Mountain Pass type for any
w e W&’Z(Q, IX|~22). Indeed one can state the following two lemmata.

Lemma 3.1. For every R> 0 there exist positive numbegs< 1 and« suchthat

IRW) > « Vwe Wy ?(2,1x|7%) and (3.46)
Vv e W2, |x|728)  satisfying|lv]| = p. '
Lemma 3.2. There exists sonig e Wol’z(ﬂ, IX|~22) withw > 0, ||| > 1 suchthat
IR@) <0  VR>O0and¥w e Wy2(#2, [x|~2). (3.47)

Proof of Lemma 3.1. It follows from (f;) and (f2) that here is a positive constahkt that
depends only om, such hat

st2
IFROX L 8)] < —- +ke(R+ 2)" |t|PH.

In view of (1.4) we have that

/|x|’2(a+1)+°FR(x, 0. V) < f/ x| ~2@+D+e,2
7] 2/)q
+k8(R+2)r/ |X|—2(a+l)+clv|p+1 (348)
7]

&
< C(5+k(R+20lP) Jul?,

for some constar® > 0. Now, choosing

1

& p-1
W=\ ZcrT2

in the above inequality, one gets

/ x| 72@FDFCER(x, v, Vw) < Ce|lv|?,
(7
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so that(3.46)easily follows by takingg < (2C)~1, p < min{1; (4k.(R + 2)'C)~Y/(P—D} and
o 2

Proof of Lemma 3.2. We fix somefunctionvg € W&’Z(Q, IX|~23), with vo > 0, vo # 0. By
(1.3)one gets, for any > 0,

t2 B _ -
| R(tvo) < E/Q'X' 26‘|Vvo|2—az/0|x| 2atlired ¥ 4 &3,

where&g = ag [, [x|72@+D+¢ Then we choos@ = Tug with T sufficiently large such that
7] > 1andlX@) <O0foralR>0. O

Proposition 3.1. Let(fo), ..., (f3) be satisfied and leb € W&’Z(Q, Ix|~22) and v be given by
Lemma3.2 Then, for every R> 0, there eists some» = v(w, R) suchthat

DUIX/@w) =0  and

IR@) = inf_max I} (3.49)
yel'te[0,1]
where
I'={y € C%0,1I; Wol’z(f?, IX|7?)) : y(0) =0, y(1) = v} (3.50)

Proof. We have that }(0) = 0. Furthermore, the functionaf} satisfies the (PS)-condition in
view of (fp), ..., (f3). Then he exisence of an elementsuchthat(3.49)and(3.50)hold is an
immediate consequence of themmatas 3.5and3.2and of the Mountain Pass Theorem due to
Ambrosetti and Rabinowitz (seg]). O

Next, we will obtain a positive and a negative solutior{hfl). To this end, we fix an arbitrary
elementug € Wol’z(!Z, [x|~22) andR > 0, and we considehe following iterative scheme:

Givenn € N, fix an elemenb = u,? satisfying(3.49)and(3.50)with
w=ul,. (3.51)

Notice that the elementsy above are not unique in general. Now we obtain a uniform estimate

from above for theW&’Z(Q, Ix|~2%)-norms ofuR. This will finally allow us to get rid of the
dependence oR, and topass tahe following iteration scheme:

P)n {—div(|x|2""Vun) — x["2@HDICE (¢ U Vuny) N 2

up =0 onaf.
Lemma 3.3. There exists a positive constantsuchthat

lufll < c1 (3.52)
for every ne Nand R> 0.

Proof. Using the definition ofi} and choosing the path ifi given by the line egment janing
0 andv, one gets fron{1.3)

t? Com _ o~
| & (u,ﬁ‘)ssup{—f Ix] 2a|Vv|2—azt9f | <a+1>p+°|v|9+a3},
n-1 t>0 2 2 9}
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wherea;s is defined inthe poof of Lemma 3.2 Sinced > 2, the function

t2 ~
Ry ot o /Q Ix|~22|Vo|? — at? /Q x|~ @FDPHeG)9 4 g

attains a positive maximum. Hence
1% (uf) <const vneNandvR> 0. (3.53)

n-1

Now (3.53) (f3), the fact thatjpr| < 1,and the criticality oluR for IURR imply
n-1

1 1
EIIUEII2 < constt - /Q Ix|~@FDPTCfo(x, uR, VuR HuR

1
= const+ 5||u§||2,
and(3.52)follows in view of6 > 2. 0O

Using the results oSection 2 we nowobtain uniform estimates for thie>-norms of{u,ﬁ*}
and{VuR}, by assuming additionally that

ult e C®1(®) foreveryR > 0. (3.54)

Lemma 3.4. Assumg3.54) Then, for every ne Nand R> 0, uR e C%1(12).
Proof. We have thauf is the weak solution of

—div (|x|72Vul) = fr(x, uR, vul) in 2,
ul=0 onasn.

Since
| fR(X, UF, VU < M1+ uf P2+ R)',
that is, || fr(x, UR, VuR) L2y < M(2 + R), we mayapply Theorem 2.1 Herce uR e
CO((2). In view of Theorems 2.2nd 2.4 and the remark at the end 8&ction 2 this means
thatuf is Lipschitz continuous oif?, for any R > 0. Our result now follows by induction. O
Lemma 3.5. Assumg3.54) Then here existugp > 0 and 1 > 0 suchthat
luliLe(2) < ko= pto(R+2)", (3.55)
IVURllLo(o) < ki = 1 (R+2"  ¥R>O0andv¥neN. (3.56)

Proof. Recall that any Lipschitz function is a.e. fdifentiable with bounded gradient. Then,
arguing as in.emma 3.4 the condition (f2) and the definition of fr yield the estimateé3.55)
and(3.56) O

Lemma 3.6. Assumg3.54) Then here exits someR > 0, sud that
IuRliLe) < ko= no(R+2" <R, (3.57)
IVURlLo) < ki = p1(R+2) <R, (3.58)

Proof. (3.57) and (3.58) are an obvious consequence (@t55) and (3.56) and the fact that
re@©1>. O
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Lemma 3.7. Assumg3.54) Then = unﬁ is a solution of (P), and the fdowing estimates
hold, for any ne N,

lunll < c1, (3.59)
[unllL>(2) < ko = no(R+2) (3.60)
[VUnllLe2) < ki =pu1(R+2)". (3.61)

Proof. The fact thati, solves( Pn, is aconsequence of the definition &k and the assumptions
(3.45) and (3.57) with R = R. Moreover, (3.52) (3.57) and (3.58) resgectively, imply
(3.59)(3.61withR=R. O

The functionu, given inLemma 3.7is a nontrivial solution of (P),,. More peecisely, there
holds

Lemma 3.8. For any ne N, there exsts a positive constanpsuchthat
unll > c2. (3.62)
Proof. For anyv € Wol’z(!), Ix|~22) we have that
/ IX|"2VupVo = / IX|~@FDPTC£ (x up, Vun_1).
0 0
Settingv = uy, in the relation above, we obtain that
f X722 Vup|? = / |X|~@HDPFCE (x U, Un_1)Un.
0 I}
Hence( f1) and( f2) imply that, for anys > 0, there exists a numbe(s) > 0 such that

f IXI72%|Vun|? < 5f x|~ @Ry, 2 c(a)f x|~ @FDPEEy, P
2 2 2
< C@llunli? + (&) [lunlP™),
for anyn € N and for some consta@ > 0. Now (3.62)follows, by choosingC < 1. O

Lemma 3.9. Let

ko := min{kg > 0: (3.60)holdg
k1 := min{k; > 0: (3.61)holdg,

and choosep; = ko and p, = ky in (f4). Then he sequencéun} converges strongly in
Wy 2(92, X722,

Proof. By the criticality ofun41 anduy, one has, for everg € N,
/Q X722 VUn11(V (Uns1 — Un)) = /Q IX|72EFDFCE (X, Unya, VUn) (Unya — Un), (3.63)
fg IX| 722V Un(V (Un41 — Un)) = /Q X|T2EFDFEE (X, Un, VUn-1)(Uns1 — Un).  (3.64)
Subtracting(3.64)from (3.63) we obtain that

lunt1 — un| = /Q x| 72@+FDHC( £ (X, Uny1, VUn) — f(X, Un, VUn)](Unt1 — Un)

+[f(X, up, Vun) — (X, Un, VUp—1)1(Un+1 — Un)}.
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Using hypothesis {4), this leads to the following estimate,
unia = Unl? = Ly [ 3720 g — 2
Q

+Lo /Q X 2@ D4 (U — Un_1)][Uns1 — Unl. (3.65)

Using Cauchy-Schwarz and singular Poinearéqudities, and since > 1, we have fron{3.65)
Ilunt1 — Unll? < L1S(2, 8, ©) Y unt1 — unl?
+L2S(22, 8, 2(c — 1)) Y?||uns1 — Unl| llun — Un—1ll.
This means that
LoS(12,a,2(c— 1))"1/2

L0 a gt U~ Un-l = Kith — Unall

lUnt1 — Unll <

By our assumptions, we hake< 1. Hence the sequen¢e,} converges irW&’Z(Q, IX|~%3) to

some finctionu € W&’Z(Q, IX|~22). Furthermae, since|un|| > ¢ by Lemma 3.8it follows
thatu # 0. In this way we obtain a nontrivial solution ¢f.1). O

Lemma 3.10. Problem(P), hasa postive solution g and a negative solutionju Moreover,
the sguencegu;’} and{u } converge strongly in \%VZ(Q, IX|~22).

Proof. We consider only the case of the positive solution. The argument leading to a negative
sdution is analogous. We replace the functidrix, t, &) in (1.1) by the function

N (o if f(x,t.6) <0
f (X,t,«?)—{f(x,t,g) if f(x,t,&)>0.

Of course, f T satisfieg( f3) only fort > 0. But this is of no importance if we choosg > 0 in
the pioof of Lemma 3.2 Indeed, proceeding analogously asdbe, we obtain a solution of the
problem

—div(IX|7?Vup) = T (x, uf, vul ) in 92,

ur =0 onafn.

Multiplying the differential equation by the negative partwf and integrating by parts, we
conclude thatiy is positive, that isy;;, =u,. O

Proof of Theorem 1.1. The proof is a direct consequence of tteemmatas 3.@nd3.1Q0 O
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