Crystal structure of taedol, C₁₀H₁₆O₂, from Haplopappus taeda

R. Torres*,^I, F. Faini^{II}, J. M. L. Rodilla^{III}, L. A. Silva^{III} and F. Sanz^{IV}

¹ Universidad de Santiago de Chile, Facultad de Quimica y Biologia, Departamento de Ciencias del Ambiente, Casilla 40, Santiago, Chile

II Universidad de Chile, Facultad de Ciencias, Departamento de Quimica,, Casilla 653, Santiago, Chile

^{III} Universidade da Beira Interior, Departamento de Quimica, 6201-001 Covilha, Portugal

^{IV} Universidad de Salamanca, Servicio de Difraccion de Rayos X, Plaza de los Caidos 1-5, 38007 Salamanca, Spain

Abstract

C₁₀H₁₆O₂, monoclinic, *P*12₁1 (no. 4), *a* = 8.974(2) Å, *b* = 5.933(1) Å, *c* = 8.994(2) Å, β = 96.29(3)°, *V* = 476.0 Å³, *Z* = 2, *R*_{gt}(*F*) = 0.052, *wR*_{obs}(*F*²) = 0.148, *T* = 293 K.

Source of material

Taedol was isolated by column chromatography from the CH₂Cl₂ extract of the resinous exudates of leaves and stems of *Haplo-pappus taeda Reiche* and its structure was determinated by spectroscopical analysis. The monoterpene was crystallized in hexane to afford the material used in this study.

Experimental details

The N_{gt}/N_{param} ratio is small due to poor quality/decomposition of the crystals and connected with the use of a restricted *hkl* range according to the Laue group with respect that a higher accuracy of the structural parameters which could be reached with a complete data set. Therefore, all H atoms were placed in calculated positions, although they could be found from Fourier difference maps.

Discussion

Taedol was previously isolated from the an EtOAc extract of dried and ground stems of *Haplopappus taeda*, without any discussion about the stereochemistry [1]. The perspective view of tadeol shows a structure of a bicyclic derivative of α -terpineol, with an epoxy function between carbons C4 and C7. The ring of

Table 3. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site	x	у	z	U_{11}	U_{22}	<i>U</i> ₃₃	U_{12}	<i>U</i> ₁₃	U_{23}
O(1)	2 <i>a</i>	0.8263(5)	-0.5561(7)	0.0826(4)	0.113(3)	0.068(2)	0.076(2)	0.005(2)	0.018(2)	-0.004(2)
O(2)	2a	0.8006(5)	0.0072(7)	0.2030(5)	0.112(3)	0.066(2)	0.121(3)	-0.016(2)	0.047(2)	-0.004(2)
C(1)	2a	0.4376(6)	-0.056(1)	0.2879(5)	0.074(3)	0.075(3)	0.069(3)	-0.008(3)	0.007(2)	0.002(3)

* Correspondence author (e-mail: rtorres@lauca.usach.cl)

 α -terpineol, assumes a sofa conformation (asymmetry parameter $\Delta C_2(C8-C1) = 0.004(6)$ Å) with atom C4 displaced by 0.600(2) Å from the C3-C2-C1-C8-C7 basal plane. The tetrahydrofuran ring adopts an envelope conformation with $\Delta C_s(C7) = 0.022(1)$ Å. The C1-C8-C7-O2 torsion angle of 115.4(3)° indicates the *cis* arrangement of the tetrahydrofuran-ring-junction H atoms. The bond distances and angles are in normal ranges.

Table 1. Data collection and handling.

Crystal:	colorless, prismatic,
	size $0.08 \times 0.10 \times 0.15$ mm
Wavelength:	Cu K_{α} radiation (1.54180 Å)
<i>u</i> :	6.38 cm^{-1}
Diffractometer, scan mode:	SEIFERT XRD 3000 SC, $\omega/2\theta$
$2\theta_{\rm max}$:	119.98°
N(hkl) _{measured} , N(hkl) _{unique} :	826, 774
Criterion for I_{obs} , $N(hkl)_{gl}$:	$I_{\rm obs} > 2 \sigma(I_{\rm obs}), 563$
N(param)refined:	113
Programs:	X-RAY80 [2], SHELXTL [3]
C C	

Table 2. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site	x	у	z	$U_{\rm iso}$
H (1)	20	0 8255	-0.6810	0 1215	0 127
$H(2\Delta)$	$\frac{2u}{2a}$	0.3233	-0.0810	0.1213	0.127
H(2R)	$\frac{2a}{2a}$	0.3966	-0.3902	0.3029	0.097
H(3A)	$\frac{2a}{2a}$	0.5656	-0.2882	0.0651	0.089
H(3B)	2a	0.5425	-0.5292	0.1309	0.089
H(4)	2a	0.6904	-0.4361	0.3534	0.073
H(6A)	2a	0.9735	-0.1335	0.1233	0.117
H(6B)	2a	0.8218	-0.1654	0.0200	0.117
H(7)	2a	0.7752	-0.0888	0.4111	0.085
H(8)	2a	0.5773	0.1784	0.3573	0.089
H(9A)	2a	0.9466	-0.5912	0.3606	0.148
H(9B)	2a	0.9799	-0.3353	0.3922	0.148
H(9C)	2a	1.0615	-0.4632	0.2719	0.148
H(10A)	2a	0.3232	0.2142	0.3545	0.144
H(10B)	2a	0.2365	-0.0131	0.3675	0.144
H(10C)	2a	0.2429	0.0991	0.2105	0.144

Table 3. Continued.

Atom	Site	x	у	z	U_{11}	U_{22}	<i>U</i> ₃₃	U_{12}	U_{13}	U_{23}
C(2)	2a	0.4184(5)	-0.2873(9)	0.2243(6)	0.069(3)	0.074(4)	0.095(4)	-0.006(3)	-0.009(3)	-0.009(3)
C(3)	2a	0.5551(5)	-0.371(1)	0.1563(5)	0.078(3)	0.068(3)	0.070(3)	-0.007(3)	-0.013(2)	-0.006(3)
C(4)	2a	0.6958(5)	-0.3403(9)	0.2654(5)	0.063(3)	0.057(3)	0.061(2)	-0.009(2)	-0.001(2)	0.001(2)
C(5)	2a	0.8434(6)	-0.3863(9)	0.1970(5)	0.082(3)	0.060(3)	0.073(3)	0.004(3)	0.010(2)	0.004(3)
C(6)	2a	0.8671(8)	-0.163(1)	0.1230(7)	0.112(4)	0.082(4)	0.104(4)	0.001(4)	0.034(3)	0.008(4)
C(7)	2a	0.7153(6)	-0.0945(9)	0.3134(5)	0.075(3)	0.069(3)	0.067(3)	-0.015(3)	0.008(2)	-0.003(3)
C(8)	2a	0.5714(6)	0.030(1)	0.3235(5)	0.094(4)	0.061(3)	0.068(3)	-0.004(3)	0.016(2)	-0.008(3)
C(9)	2a	0.9695(6)	-0.450(1)	0.3164(6)	0.072(3)	0.100(4)	0.120(4)	0.006(3)	-0.005(3)	0.001(4)
C(10)	2a	0.2975(6)	0.073(1)	0.3068(6)	0.093(4)	0.104(5)	0.090(3)	0.008(4)	0.010(3)	0.000(4)

Acknowledgments. This work was supported by FONDECYT (Chile, grant no. 103-0813) and CYTED (subprogram IV project IV.12).

References

- Marambio, O; Silva, M.: New Compounds from *Haplopappus taeda Reiche*. Bol. Soc. Chil. Quim. **34** (1989) 105-113.
 Stewart, J. M.; Kundell, F. A.; Baldwin, J. C.: The X-RAY80 System. Computer Science Center, University of Maryland, Maryland, USA 1990.
- 3. Sheldrick, G. M.: SHELXTL. Structure Determination Software Suite. Version 5.0. Siemens Industrial Automation, Analytical Instrumentation, Madison, Wisconsin, USA 1995.