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ABSTRACT

In mammals, neurogenesis continues during adulthood in restricted places of the nervous system, namely the
subventricular zone, the dentate gyrus and the olfactory epithelium. A dual role of the second messenger nitric
oxide has been reported in such places, either promoting or inhibiting proliferation of neuronal precursors
depending on the cellular signal implicated. In this review the regulation of adult olfactory epithelium

neurogenesis by nitric oxide is discussed.

INTRODUCTION

This review discusses recent cellular and
molecular studies on the effects of the
second messenger nitric oxide (NO) on
neurogenesis in the adult olfactory
epithelium, the tissue comprising the sensory
cells of the sense of smell. In the olfactory
epithelium, neurogenesis occurs throughout
adult life, allowing the replacement of dying
olfactory sensory neurons. Nitric oxide
seems to act as a proliferative agent of
neuronal precursors in the olfactory
epithelium. The mechanism involved in this
complex regulation is discussed.

Neurogenesis and the adult neuronal
regeneration

Neurogenesis is the process by which new
neurons are generated from precursor cells.
This process involves the proliferation,
migration and differentiation of neuronal
precursors from stem cells to mature
neurons. It was believed for over 50 years
that in mammals neurogenesis occurred
exclusively within a limited time period
during embryonic development. However,
the generation of new neurons in a few

areas of the adult nervous system has been
recently demonstrated.

Adult neurogenesis was described for the
first time in rat hippocampus (Altman and
Das, 1965) and, more recently, in the
primate dentate gyrus (Gould et al., 1997;
Eriksson et al., 1998). It has been proposed
that adult neurogenesis is accompanied
either by an increase in the neuronal number
(Boss et al., 1985) or the replacement of
dying neurons (Gould and Tanapat, 1999).

The ability to generate new neurons in
adulthood distinguishes the hippocampus,
the olfactory bulb and the olfactory
epithelium from the rest of the nervous
system. The generation of new granular
cells in the dentate gyrus has been reported,
as well as the fact that new neurons are
generated in the subventricular zone. These
neurons migrate to the olfactory bulb,
where they differentiate into mature
interneurons and glomerular cells
(Graziadei, 1973; Moulton, 1974; Graziadei
and Monti Graziadei, 1980).

As in other regenerating tissues, such as
the skin, liver and hematopoietic cells, the
presence of stem cells that give origin to
the differentiated cells has been reported in
the olfactory epithelium.
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Olfactory epithelium

The olfactory epithelium contains three
different cell types: supporting cells,
sensory neurons and basal cells (Fig 1). The
basal cells can be classified in horizontal
cells, which express cytokeratin and exhibit
a flat shape, and global cells, which have
spherical shape and do not express
cytokeratin. The olfactory epithelium is
divided in three layers: basal, apical and
intermediate. The apical layer contains the
somata of the supporting cells (Hempstead
and Morgan, 1983), the basal layer is
adjacent to the basal membrane and
contains the horizontal basal cells
(Graziadei and Monti Graziadei, 1980;
Calof and Chikaraishi, 1989) and in the
intermediate layer are located the somata of
the sensory neurons. These neurons display
a bipolar shape, bearing a soma with an
axon on one end and a single dendrite on
the other. The dendrite terminates in the
dendritic knob, the structure from where the
chemosensory cilia project into the nasal
cavity (Schild and Restrepo, 1998).
Olfactory transduction begins when the
odorants bind to their receptors, located in
the chemosensory cilia (Rhein and Cagan,

1980; Menco et al., 1997). These receptors
are proteins belonging to the G protein-
coupled receptor family, with seven
transmembrane domains (Buck and Axel,
1991). When the receptors are activated
upon odorant binding, they stimulate type
IIT adenylyl cyclase (ACIII) (Bakalyar and
Reed, 1990) through a G-protein termed
G, (Jones and Reed, 1989). cAMP
generated by this cyclase directly activates
a non-specific cationic channel, known as
cyclic nucleotide gated channel (CNGC)
(Firestein et al., 1991; Scott et al., 1996).
The opening of CNGC leads to an increase
in free Ca?* levels inside the cilia
(Goulding et al., 1992), activating either a
Cl" or a K* channel, eliciting an excitatory
or an inhibitory response, respectively
(Morales et al., 1994; Morales and
Bacigalupo, 1996; Morales et al., 1997).

The stem cells of the olfactory epithelium

The term stem cells refers to immortal,
multipotential cells with asymmetric division
that can give origin to several cell types in a
given tissue. Instead, precursor cells are
those cells committed to a particular cellular
fate (Cameron and McKay, 1998).
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Figure 1: Olfactory epithelium displaying its different cell types in their characteristic spatial

distribution in the tissue.
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Early radiographic studies suggested that
the olfactory stem cells are part of the basal
cells (Graziadei, 1973; Harding et al., 1977).
Now it is generally accepted that new
neurons and supporting cells arise from
proliferation and differentiation of basal
cells, although the cellular identity of the
stem cells is still under debate, mostly
because of the unavailability of specific
markers for quiescent and undifferentiated
cells such as the stem cells from adult tissues
(Weiss and van der Kooy, 1998; Gage,
2000). There is evidence supporting both,
horizontal and global basal cells as the
olfactory epithelium stem cell. It has been
proposed that the stem cells represent a
subpopulation of the global basal cells,
because they are mitogenic and
multipotential (Caggiano et al., 1994; Feron
et al., 1999a). Furthermore, at the peak of
neurogenesis in the regenerating olfactory
epithelium, most of the mitotic cells are
global basal cells, rather than horizontal
basal cells (Carter et al., 2004). The idea that
horizontal basal cells are stem cells is based
on the fact that they are a relatively
quiescent cell population. As the stem cells
of the hippocampus and subventricular zone,
they respond in vitro and in situ to EGF and
TGF-o (Farbman and Buchholz, 1996;
Getchell et al., 2002). Furthermore,
horizontal basal cells are adjacent to the
basal membrane and express the same cell
adhesion molecules as the stem cells of other
non-neuronal systems, such as the colon and
the epidermis (Carter et al., 2004), and they
give rise to all olfactory epithelium cell
types (Leung and Reed, 2006). This
evidence suggests that horizontal basal cells
correspond to the stem cells, whereas global
basal cells are the neuronal precursors.

Basal cell mitosis occurs in two phases,
slow and fast, in the same way as in the
developing nervous system (Mackay-Sim
and Kittel, 1991). During the slow phase, a
stem cell divides every 50 days producing
another stem cell, which stays close to the
basal membrane, and a precursor cell which
rapidly divides at least two to three times,
generating many immature neurons. These
immature neurons migrate away from the
basal membrane as they differentiate
(Mackay-Sim and Kittel, 1991).

Neuronal regeneration in the olfactory
epithelium

In situ studies

Normally, there is a permanent neuronal
production in the olfactory epithelium,
where a small fraction of the ORNs die and
are replaced by new ones. In rodents,
individual olfactory neurons can live for
one year or further (Hinds et al., 1984).
Neurons may die at anyone of several
stages of their life cycle (Farbman, 1990;
Carr and Farbman, 1992; Schwob et al.,
1992; Mahalik, 1996), some of them as
early as one day after mitosis (Carr and
Farbman, 1992). Moreover, experimental
damage destroying mature ORNs is
followed by an almost complete
regeneration and functional restoration of
the tissue a few weeks after the lesion,
depending on the magnitude of the damage
(Schultz, 1960; Graziadei and Monti
Graziadei, 1983; Astic and Saucier, 2001).
When ORNs are damaged, the rate of basal
cell mitosis increases dramatically (Camara
and Harding, 1984) and the progeny
differentiates into fully mature neurons,
expressing the olfactory marker protein
(OMP) (Graziadei, 1973). Since
neurogenesis occurs throughout the life
span, it provides the adult olfactory
epithelium with the capacity to replace the
damaged olfactory sensory neurons, even
after an extensive lesion such as that
produced by axotomy (Smith, 1951;
Schultz, 1960; Westerman and von
Baumgarten, 1964; Graziadei and Monti
Graziadei, 1979); or by exposure to
xenobiotics such as zinc sulphate
(Cancalon, 1982), methyl bromide (Hurtt et
al., 1988; Schwob et al., 1995), Triton X-
100 (Verhaagen et al., 1990), dichlobenil
(Brandt et al., 1990; Delaleu and Sicard,
1995), copper (Saucier and Astic, 1995),
iminodipropionitrile (Genter et al., 1994) or
sulphur dioxide (Min et al., 1994). After
axotomy, when the olfactory bulb (the
synaptic target of ORN) is removed, the
olfactory epithelium regenerates only
partially, due to the lack of trophic factors
(Schwartz Levey et al., 1991; Gordon et al.,
1995). In the case of chemical damage (zinc
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sulphate or methyl bromide), however, the
olfactory epithelium is fully restored
(Cancalon, 1982; Schwob et al., 1995),
allowing the experimental manipulation of
the regeneration rate.

In vitro studies

Several primary culture procedures have
been developed to obtain olfactory
epithelial cells (Cunningham et al., 1999).
There are cultures containing only ORNSs,
which keep their ability to respond to
odorants (Barber et al., 2000) and cultures
comprising only non-neuronal cells, such as
supporting and basal cells (Newman et al.,
2000). These cultures can be treated with
growth factors that induce the proliferation
or differentiation of neuronal precursors.
Among the proliferation-promoting growth
factors are FGF-2 (Newman et al., 2000),
EGF (Mahanthappa and Schwarting, 1993),
NGF (Plendl et al., 1999) and LIF (Bauer et
al., 2003; Kim et al., 2005). The last one is
released by dying ORNs and promotes
proliferation of the basal cells (Nan et al.,
2001; Getchell et al., 2002). On the other
hand, BDNF (Buckland and Cunningham,
1998), NT-3 (Simpson et al., 2003),
dopamine (Feron et al., 1999b), IGF-1
(Pixley et al., 1998) and TGF-$2
(Mahanthappa and Schwarting, 1993)
promote differentiation of neuronal
precursors. A key role on regulating
neurogenesis during development of the
central nervous system has been proposed
for these factors. The expression of some
growth factors and their receptors continues
through the adulthood in the hippocampus,
the subventricular zone and the olfactory
epithelium (Holbrook et al., 1995; Seroogy
et al., 1995; Okano et al., 1996). EGF
stimulates proliferation of neuronal
precursors in the hippocampus and in the
SVZ of adult and new born rats (Tao et al.,
1996; Kuhn et al., 1997). Furthermore, the
expression of EGF and TGF-a receptors in
these three zones of active neurogenesis has
been reported (Holbrook et al., 1995;
Seroogy et al., 1995; Okano et al., 1996).
The in vitro studies of the olfactory
epithelium have allowed the identification
several molecular markers, which are used

to determine the neuronal differentiation
stages. Stem cells express cytokeratin 14
(CK14), intercellular adhesion molecule-1
(ICAM-1) and Bl-integrin (Satoh and
Yoshida, 2000; Carter et al., 2004), while
immature neurons express nCAM, (Calof
and Chikaraishi, 1989) and initially,
specific neuronal tubulin (TRIII) and
GAP43. When fully differentiated, GAP43
disappears and the expression the olfactory
marker protein (OMP), gal-nCAM (Pays
and Schwarting, 2000) and constituents of
the odor transduction pathways, such as
ACIII and odorant receptors, can be
detected (Illing et al., 2002).

Nitric Oxide and neurogenesis

Nitric oxide is a gaseous free radical
produced by the enzyme nitric oxide
synthase (NOS). It participates as a second
messenger in intracellular signaling
processes in the nervous system (Garthwaite,
1991; Snyder, 1992; Bredt and Snyder,
1994). So far, three NOS isoforms have been
described: the inducible isoform (iNOS),
whose activity is calcium-independent, the
epithelial (eNOS) and the neuronal isoforms
(nNOS), both of which depend on calcium.
nNOS is expressed by approximately 1% of
the neurons, but not by most adult sensory
neurons, such as photoreceptors, olfactory
neurons and dorsal root ganglia cells
(Dawson et al., 1991; Verge et al., 1992;
Schmachtenberg et al., 2001). NO can
rapidly reach intra or extracellular targets by
diffusion from its production site (Stamler et
al., 1997a; Stamler et al., 1997b). The brief
half-life and high reactivity of NO severely
limit its action range (Garthwaite and
Boulton, 1995). Several signaling systems
are modulated by NO, whose effects in a
given cell depend on the affected pathway.
The most common target of NO is the
soluble guanylyl cyclase (sGC) (Van
Wagenen and Rehder, 2001). sGC generates
the second messenger cyclic GMP (cGMP)
upon NO activation. cGMP may gate ion
channels and regulate protein kinases
(Haynes et al., 1986; Bacigalupo et al., 1991;
Pineda et al., 1996; Firestein and Bredt,
1998; Gudi et al., 1999). NO can also
modify proteins directly by nitrosylation
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(Stamler, 1994). Protein nitrosilation seems
to be involved in regulatory mechanisms of
several cellular processes, including signal
transduction, DNA repair, blood pressure
regulation and neurotransmission (Stamler,
1994; Stamler et al., 1997a).

Different functions have been
established for NO in the nervous system of
adult animals, such as its participation in
the NMDA-induced neurotoxicity (Dawson
et al., 1991; Dawson et al., 1993),
neuroprotection and neurotoxicity after
cerebral ischemia (Moro et al., 2004), GC
regulation (Moncada et al., 1991; Nathan,
1992), synaptic plasticity modulation
(Edelman and Gally, 1992; Zorumski and
Izumi, 1993), neurotrasmissor secretion
(Dawson et al., 1994) and neuronal activity-
dependent gene expression (Peunova and
Enikolopov, 1993).

Substantial experimental evidence
supports the participation of NO in
neurogenesis, but its specific role remains
unclear. The first evidence was
morphological, and demonstrated that NOS
expression occurs “at the right place in the
right moment” during embryonic and adult
neurogenesis. It has been reported that NOS
expression increases in several neuronal
structures during embryonic development,
and decreases in adulthood (Bredt and
Snyder, 1994; Roskams et al., 1994;
Keilhoff et al., 1996; Santacana et al., 1998;
Schmachtenberg et al., 2001; Holmqvist et
al., 2004). For instance, nNOS expression
in the cortical neural plate of the mouse
embryo during the period of maximal
neurogenesis has been described (Bredt and
Snyder, 1994). In the developing zebra fish
embryo, the nNOS expression pattern
correlates with the patterns of neuronal
differentiation (Holmqvist et al., 2004).

During neurogenesis of the adult
olfactory system, the expression of nNOS
has been reported in both the olfactory bulb
and the olfactory epithelium (Roskams et
al., 1994). This enzyme is also expressed in
the adult mouse SVZ, where the neuronal
precursors of the olfactory bulb are
generated. Furthermore, after adult mice
bulbectomy, NOS is quickly and transiently
expressed in the regenerating olfactory
neurons (Roskams et al., 1994).

More recent functional studies report
opposite effects of NO upon neurogenesis,
promoting or inhibiting the proliferation of
neuronal precursors (Peunova and
Enikolopov, 1995; Kuzin et al., 1996;
Obregon et al., 1997; Mize and Lo, 2000).
Antiproliferative effects of NO during
neurogenesis have been reported in
Drosophila during neuronal development,
where NO inhibits proliferation through the
retinoblastoma (Rb) pathway (Kuzin et al.,
1996; Kuzin et al., 2000), during brain
development in Xenopus (Peunova et al.,
2001) and, in mammals, during brain
development (Chen et al., 2003) and in the
adult dentate gyrus and SVZ (Packer et al.,
2003; Matarredona et al., 2004; Moreno-
Lopez et al., 2004).

On the other hand, NO has been proposed
as a paracrine or autocrine factor that
promotes neuronal precursor mitosis during
development of the olfactory system (Chen
et al., 2004b). NOS expression has been
reported in cultures of neuronal precursors
obtained from mouse SVZ (Wang et al.,
1999). NO promotes neurogenesis in the
SVZ and the hippocampus of adult animals
in response to ischemia (Zhang et al., 2001;
Lu et al., 2003; Chen et al., 2004a; Keynes
and Garthwaite, 2004). Furthermore, in
ischemic dentate gyrus of adult mice, iNOS
expression and activity are necessary for the
stimulation of the proliferation of neuronal
precursors (Zhu et al., 2003). In primary
cultures of olfactory precursors, NO donors
promote proliferation and iNOS inhibitors
promote differentiation, inhibiting cell
proliferation (Sulz, unpublished).

It has been suggested that factors that
regulate the sGS activity may have a role
during neuronal development (Weller and
Klein, 1992; Giuili et al., 1994), both in
proliferation and survival of olfactory
neurons (Chen et al., 2003), in axonic
outgrowth and in synaptic plasticity in vitro
(Hess et al., 1993). On the other hand, NO
seems to stimulate proliferation of olfactory
neuronal precursor cells in a ¢cGMP-
independent fashion (Sulz, unpublished).

The experimental studies reviewed here
indicate a dual role for NO in embryonic
and adult neurogenesis (Fig 2), as NO
synthesized by nNOS appears to reduce
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neurogenesis acting as an antiproliferative
molecule (Bredt and Snyder, 1994;
Roskams et al., 1994; Peunova et al., 2001;
Packer et al., 2003; Holmgvist et al., 2004;
Matarredona et al., 2004; Moreno-Lopez et
al., 2004), whereas the production of NO by
iNOS and eNOS seems to stimulate
neurogenesis (Zhang et al., 2001; Lu et al.,
2003; Zhu et al., 2003; Chen et al., 2004a;
Keynes and Garthwaite, 2004; Reif et al.,
2004).

As in the GD and SVZ after focal
ischemia, in the regenerating olfactory
epithelium neuronal precursor proliferation
is stimulated by NO likely produced by
iNOS (Sulz, unpublished), suggesting that
the NO proliferative effect observed in this
tissue is functionally similar to those
observed in other regenerating systems,
where cell death is a signal that triggers
iNOS expression in the damaged tissue.

Accordingly, neuronal death in the
olfactory epithelium would be followed by
the generation of NO, which would
stimulate proliferation of basal cells, the
neuronal precursors. A plausible signal
linking cell death and NO generation is the
leukaemia inhibitory factor (LIF). When the
olfactory neurons are damaged and die,
they transiently generate LIF. At the same
time, the LIF receptor (gpl130/LIFR) is

transiently expressed in basal cells, axons
of apoptotic neurons and infiltrated
macrophages (Satoh and Yoshida, 1997;
Nan et al., 2001; Getchell et al., 2002;
Bauer et al., 2003). Macrophage depletion
at this time severely impairs proliferation of
neuronal precursors (Borders et al., 2000).
LIF induces basal cell proliferation in vitro
(Satoh and Yoshida, 1997; Bauer et al.,
2003; Kim et al., 2005), therefore it is a
primary feedback signal that increases
neuronal precursor proliferation in the
event of sensory neuron death, acting via
the JAK/STAT3 pathway (Moon et al.,
2002). This action may involve NO,
because in the immune system LIF induces
iNOS expression through the JAK/STAT
pathway (Kleinert et al., 2003). In this
model, NO would act downstream of LIF
promoting neuronal precursor proliferation
after olfactory sensory neurons die (Fig 3).

CONCLUSION

The evidence reviewed herein suggests a
proliferative role for NO in olfactory
epithelium regeneration. The mechanisms
involved in the induction iNOS expression
or of the NO proliferative effects are still
unknown.

Cellular signal Injury signal
nNOS | Neuronal stem or NOS
N precursor cell o
20 , (+)

Neuronal precursor proliferation

Neuronal precursor proliferation

Figure 2: Neuronal precursors or stem cells respond in different forms to particular environmental
signals. These cells express either nNOS in response to a normal neurogenic signal, inhibiting cell
proliferation, or iNOS in response to an injury signal, stimulating cell proliferation.
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Figure 3: Model of proliferation induced by injury in the olfactory epithelium. A dying neuron
produces LIF, which induces the expression of iNOS in horizontal basal cells (HBC) or global basal
cells (GBC). The NO generated by iNOS stimulates the proliferation of neuronal precursors.
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