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We study light localization at a phase-slip defect created by two semi-infinite mismatched identical arrays of
coupled optical waveguides. We demonstrate that the nonlinear defect modes possess the specific properties
of both nonlinear surface modes and discrete solitons. We analyze the stability of the localized modes and
their generation in both linear and nonlinear regimes. © 2008 Optical Society of America
The study of nonlinear dynamics in discrete systems
has recently attracted special attention owing to
novel physics and possible interesting applications
[1]. In particular, it is well known that discrete pho-
tonic systems can support different types of spatially
localized states in the form of discrete solitons [1,2].
These solitons can be controlled by the insertion of
suitable defects in an array, as was theoretically sug-
gested [3,4] and experimentally verified for arrays of
optical waveguides [5]. Defects may provide an addi-
tional physical mechanism for light confinement, and
they can support both linear and nonlinear localized
modes, which have been theoretically studied for dif-
ferent linear [6] and nonlinear models [7–9] and ex-
perimentally observed in one-dimensional photonic
lattices [6,10].

In this Letter, we introduce a novel type of nonlin-
ear defect in waveguide arrays. It is related to recent
theoretical studies of surface states at the interface
between two dissimilar, nonlinear (Kerr) waveguide
arrays [11] and to the experimental observation of
linear localized modes at the interface of different
AlGaAs waveguide arrays [12] but also closely linked
with the recently discussed phase-slip defects in two-
dimensional photonic crystals [13,14]. In particular,
we demonstrate that two semi-infinite mismatched
identical arrays of optical waveguides can support a
variety of linear and nonlinear localized modes with
the specific properties of both discrete solitons [1] and
nonlinear surface modes [15,16]. We analyze the sta-
bility of the localized modes and their generation in
both linear and nonlinear regimes.

We consider an array of nonlinear optical
waveguides created by two semi-infinite identical
mismatched arrays as shown in Fig. 1. In this array,
two mismatched waveguides at the sites n=m and
n=m+1 interact with a different coupling parameter,
V��V, so that the coupled-mode system can be de-
scribed by the discrete equations for the normalized
mode amplitudes En:
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where En are defined in terms of the actual electric
fields �n as En= �2�0�0 /�n0n2�1/2�n, where �0 is the
free-space wavelength; �0 is the free-space imped-
ance; n2 and n0 are nonlinear and linear refractive
indices of each waveguide, respectively; and �= ±1
defines the type of nonlinearity.

We look for stationary solutions of Eqs. (1) and (2)
in the form of En�z�=En exp�i�z� and first consider
the linear waveguide array (or the limit of low beam
powers) when �=0. In this case, we expect that local-
ized modes may exist only for V��V since decreasing
the V� /V ratio decouples the chain into two pieces,
and each of the semi-infinite chains does not support
surface modes [15,16]. We search for localized solu-
tions of the form En=A	!n−m!, for n
m, and
En=B	�n−m−1�, for n�m+1, where !	 ! �1. After some
algebra, we obtain �=V�	+ �1/	��, B /A=	�V� /V�, and
	= ± !V /V�! so that, indeed, localized modes require
the condition V��V.

For 	= !V /V�! and A=B we obtain unstaggered lo-
calized modes [see Fig. 2(a)], En=A !V /V�!!n−m!, for n

m, and En=A !V /V�!n−m−1, for n�m+1, with the

Fig. 1. Transverse profile of the refractive index for an ar-
ray of weakly coupled nonlinear optical waveguides with a
phase-slip defect located between the waveguides at the

sites m=0 and m=1. Top, V��V; bottom, V��V.



propagation constant � /V= !V /V� ! + !V� /V!. Simi-
larly, for 	=−V /V� and A=−B we obtain the corre-
sponding staggered localized modes [see Fig. 2(b)].

Next, we consider the nonlinear case described by
the stationary form of Eqs. (1) and (2) for ��0. For a
given value of �, the system of the stationary equa-
tions is numerically solved by a multidimensional
Newton–Raphson scheme. As we are interested in
the modes localized near the defect, we look for the
modes with the mode maxima near the slip boundary
that quickly decay away from the bond impurity. We
find that the results vary depending on whether V�
�V or V��V.

Figures 3 and 4 depict the mode power versus
propagation constant and show specific examples of
the mode profiles for the V��V case. First, one of the
nonlinear modes extends all the way down to the zero
power, and it generalizes the linear mode found
herein [see the curves in Figs. 3(a)–3(c) and Figs.
4(a)–4(c)]. This mode becomes unstable above a cer-
tain threshold power, and it transforms into an odd
mode centered at any of the two equivalent sites
coupled by the bond impurity [see Fig. 4(b)]. This re-
sult can be easily understood from the known insta-
bility of an even mode for a discrete homogeneous lat-
tice; as the power is increased, the effective coupling
is decreased and the distinction between V and V� be-
comes blurred. Thus, in the high-power limit, the
evenlike localized state “feels” as though inside an
homogeneous lattice, hence the onset of instability.
The inset in Fig. 3 shows the critical power needed to
destabilize the fundamental, evenlike localized mode.
The most interesting feature of this curve is that it
very steeply rises as soon as the V� /V ratio is slightly
above one, followed by a slow, almost linearlike
growth. This suggests that a tiny amount of mis-
match is enough to stabilize the evenlike mode at the
phase slip.

For larger powers, we find novel types of nonlinear
modes localized at the phase-slip defect [see Figs.
4(d), 4(e)] resembling a bound state of two simpler
modes. These modes resemble the so-called twisted
modes found earlier in the homogeneous chain [8,17],
and they exist only above a certain power threshold.
The complementary unstable mode looks like the
twisted mode with “shoulders” [See Fig. 4(e)].

In the case of a weaker bond defect, i.e., V��V, lin-
ear localized modes do not exist. This result is consis-
tent with the case of surface modes [15,16], where a

Fig. 2. Linear (a) unstaggered and (b) staggered localized
modes at the phase-slip defect for V� /V=1.3 (N=100, m

=50).
certain power threshold is required to support a
mode localized at the edge of the waveguide array.
Similarly, in this model the localized mode appears
for finite powers (see the branch marked “a” in Fig.
5). The mode profiles are similar to those presented
in Figs. 4(a)–4(e). In this case, all localized modes are
strictly nonlinear, i.e., they disappear in the limit �
→0. As a result, most of those modes are unstable,
and only two modes corresponding to the lower power
are stable.

We should mention that all modes for ��0 remain
unstaggered, and staggered modes in this model ap-
pear only for �=−1, which were found through a
simple transformation En→ �−1�nEn applied to all
types of modes discussed herein.

Finally, we analyze the generation of the defect
modes by an input beam sent to one of the
waveguides of the phase-slip defect. For weaker cou-
pling �V��V� and low powers, we observed no power
localization near the defect sites, and the input power

Fig. 3. (Color online) Power versus propagation constant
for several families of nonlinear localized modes at the
phase-slip defect for V� /V=1.3. Solid (dashed) curves de-
note stable (unstable) branches. Cases a–e are related to
Fig. 4. Inset, minimum power to destabilize the fundamen-
tal mode versus coupling mismatch.

Fig. 4. (a)–(e) Examples of the nonlinear localized modes

marked by the letters a–e in Fig. 3.



diffracts as in homogeneous arrays [see Fig. 6(a)].
However, when we increase the input power, we are
able to generate the asymmetrical nonlinear defect
mode that corresponds to the lowest branch (marked
with “b”) in Fig. 5 and finite powers, similar to the ex-
citation of discrete surface solitons [15,16]. On the
contrary, the surface mode is always generated for
the case of stronger coupling, V��V, when the defect

Fig. 6. (Color online) One-waveguide excitation of the de-
fect modes. Top, V� /V=0.7, i.e., for a weak bond defect for
the input amplitude (a) E =1.0 and (b) E =2.0. Bottom,

Fig. 5. (Color online) Power versus propagation constant
for several localized states at the phase-slip defect for
V� /V=0.7. Solid (dashed) curves denote stable (unstable)
branches.
�

mode exists in the linear regime as shown in Figs.
6(c) and 6(d).

In conclusion, we have introduced and described
novel types of nonlinear defect modes localized at a
phase-slip defect in an array of nonlinear optical
waveguides. We have demonstrated that these local-
ized modes possess many specific properties of both
discrete solitons and nonlinear surface modes, and
they can be easily generated in both linear and non-
linear regimes.
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