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in two variables are considered. The results extend the corresponding ones to the
convolution type integral equations. They are used to study pseudo-almost periodic
solutions of general neutral differential equations and to the so-called scalar neutral logistic
equation version.
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1. Introduction

The existence of almost periodic, asymptotically almost periodic, pseudo-almost periodic solutions is among the most
attractive topics in qualitative theory of differential equations due to their applications, especially in biology, economics
and physics [1–5]. The concept of pseudo-almost periodicity, which is the central subject in this paper, was introduced by
Zhang [6,7,5] in the early nineties. Since then, such a notion became of great interest to the classical almost periodicity in
the sense of Bohr and Bochner. Thus such a concept is welcome for implementing another existing generalization of almost
periodicity, the so-called asymptotically almost periodicity due to Frechet; see e.g. [1–4,8,5]. For more on the concepts of
almost periodicity and pseudo-almost periodicity and related issues, we refer the reader to [1–4,6,7,5,9] (for both the almost
periodicity and asymptotic almost periodicity) and to [10–19] (for the pseudo-almost periodicity).
In [20], Burton, studying the existence and uniqueness of periodic solutions to the logistic differential equation

u′(t) = au(t)+ βu′(t − p)− Q (t, u(t), u(t − p)), a 6= 0, |β| < 1, p > 0, (1.1)

introduces the so-called neutral delay integral equations of advanced type

u(t) = f (u(t − p))+
∫
∞

t
C(t − s)Q (s, u(s), u(s− p))ds+ g(t). (1.2)

This paper is concerned with the existence and uniqueness of pseudo-almost periodic and almost periodic solutions to
an abstract integral equation of the form [21,20,22–25]

u(t) = f (t, u(t), u(h0(t)))+
∫

R
C(t, s, u(s), u(h(s)))ds, t ∈ R
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or, more specifically, its advanced and delayed decomposition:

u(t) = f (t, u(t), u(h0(t)))+
∫ t

−∞

C1(t, s, u(s), u(h1(s)))ds+
∫
∞

t
C2(t, s, u(s), u(h2(s)))ds, t ∈ R, (1.3)

where hi : R → R are continuous functions with hi(R) = R for i = 0, 1, 2 and f : R × Cn × Cn → Cn and Ci : R ×
R× Cn × Cn → Cn, i = 1, 2 are jointly continuous. The cases

Ci(t, s, u, v) = Λi(t, s)Ĉi(s, u, v), i = 1, 2, (1.4)

where Λi(t, s) are n × n matrices and Ĉi : R2 × Cn × Cn → Cn, are of special interest; see [20,22,24,25]. In particular,
Λi(t, s) = Λi(t − s) represents the convolution situation Ci(t, s, u, v) = Λi(t − s)Ĉi(s, u, v). Both cases appear naturally in
the study of general neutral differential equations

y′ = A(t)y+
d
dt
[f (t, y(t), y(h0(t)))]+ C(t, y(t), y(h1(t))). (1.5)

An interesting particular case in Eq. (1.3) is given by hi(t) = t + pi, pi constant, i = 0, 1, 2 and the neutral integral equation
of delayed and advanced type

u(t) = f (t, u(t), u(t + p0))+
∫ t

−∞

C1(t, s, u(s), u(s+ p1))ds+
∫
∞

t
C2(t, s, u(s), u(s+ p2))ds. (1.6)

Some contributions related to pseudo-almost periodic solutions to abstract ordinary and partial differential equations
have recently beenmade [10–13,2,14–17,4,26,19,6]. The existence of pseudo-almost periodic solutions to integral equations,
especially those of the form Eq. (1.3) is, it seems, an untreated topic and this is the main motivation of present paper.
Due to the character of pseudo-almost periodic functions in the two variables t and s of kernels Ci we introduce some

definitions of functions which could be understood as ‘‘weighted pseudo-almost periodic functions’’. These definitions
represent very well the separated variables situation (1.4). So, under some suitable assumptions, the existence and
uniqueness of a pseudo-almost periodic and almost periodic solution to Eq. (1.3) are obtained (Theorem 1). Next we make
use of the previous results to prove the existence and uniqueness of a pseudo-almost periodic and almost periodic solutions
to general neutral differential equation (1.5) and logistic type equations (Theorem 2).

2. Almost and pseudo-almost periodic functions

Let (Y, ‖ · ‖Y) be a Banach space and let (BC(R,Y), ‖ · ‖∞) be the Banach space of bounded continuous functions from
R into Y endowed with the supremum norm ‖φ‖∞ = supt∈R ‖φ(t)‖Y. For (X, ‖ · ‖X) another Banach space and a function
λ : R2 → (0,∞), BCλ(R2 × X,Y) will denote the vectorial space of continuous functions f : R2 × X → Y such that f /λ
is bounded. IfΩ ⊂ X is an open subset, then BC(R2 ×Ω,Y) denotes the vectorial space of bounded continuous functions
F : R2 ×Ω → Y.
A function f ∈ BC(R,Y) is called almost periodic [2–5] if for each ε > 0, there exists lε > 0 such that every interval of

length lε contains a number τ with the following property:

‖f (t + τ)− f (t)‖Y ≤ ε, for every t ∈ R.

The number τ above is then called an ε-translation number of f , and the collection of such functions will be denoted
AP(R,Y). Similarly, a function F ∈ BC(R × Ω,Y) is called almost periodic in t ∈ R uniformly in any K ⊂ Ω a bounded
subset if for each ε > 0, there exists lε > 0 such that every interval of length lε contains a number τ with the following
property: ‖F(t+τ , x)−F(t, x)‖Y ≤ ε, for every t ∈ R, x ∈ K . Here again, the number τ above is then called an ε-translation
number of F , and the class of such functions will be denoted AP(R ×Ω,Y). AP(R,Y) is a closed subspace of BC(R,Y). For
more on AP(R,Y) (respectively, AP(R×Ω,Y)) and related issues, we refer to [2–5] and the references therein.

Definition 1. Let λ : R2 → (0,∞) be a function. A function F ∈ BCλ(R2×Ω,Y)will be called λ-almost periodic in t, s ∈ R
uniformly in any bounded subset K ⊂ Ω if for each ε > 0, there exists Aε > 0 such that for every rectangle R1 × R2 ⊂ R2
of area Aε there is a number τ ∈ R1 ∩ R2 with the following property:

‖F(t + τ , s+ τ , x)− F(t, s, x)‖Y ≤ εcλ(t, s), t, s ∈ R, x ∈ K ,

for c > 0 constant.

Again, the number τ above will be called an ε-translation number with respect to λ of F and the class of such functions F
will be denoted APλ(R2×Ω,Y). Particularly, wewill need functions F in APλ(R2,Y), i.e. F = F(t, s), independent on x. Note
that for λ = 1: AP(R2 × Ω,Y) = AP1(R2 × Ω,Y). Moreover, this definition harmonizes very well with the convolution
case (1.4).



M. Pinto / Nonlinear Analysis 72 (2010) 4377–4383 4379

Now, we consider the ergodic terms:

PAP0(R,Y) =
{
f ∈ BC(R,Y) : lim

r→∞

1
2r

∫ r

−r
‖f (s)‖Y ds = 0

}
.

Similarly, PAP0(R× X,Y) denotes the collection of functions F ∈ BC(R× X,Y) such that limr→∞ 1
2r

∫ r
−r ‖F(t, u)‖Ydt = 0

uniformly in u ∈ X.

Definition 2. For a function ϑ : R2 → [0,∞) and F = F(t, s, x), we will say that F ∈ PAP0ϑ (R
2
× X,Y), if

‖F(t, s, x)‖ ≤ ϑ(t, s)F̂(s, x), t, s ∈ R, x ∈ X (2.1)

with 0 ≤ F̂(s, x) ∈ PAP0(R× X,R).

Definition 3. Let f ∈ BC(R × X,Y). f is called pseudo-almost periodic if f = g + φ, where g ∈ AP(R × X,Y) and
φ ∈ PAP0(R× X,Y). g and φ are called the almost periodic component and the ergodic perturbation of f , respectively. The
collection of such functions f will be denoted by PAP(R× X,Y).

We now equip the collection of pseudo-almost periodic functions from R into Y, PAP(R,Y), with the supremum norm.
It is well known that (PAP(R,Y), ‖ · ‖∞) is a Banach space; see details in [13,2–5].

Definition 4. Let λ, ϑ : R2 → [0,∞) be two functions. A function f : R2×X→ Y is called (λ, ϑ) pseudo-almost periodic
in R2 uniformly in x ∈ X if it can be expressed as f = g + φ, where g ∈ APλ(R2 × X,Y) and, the ergodic component,
φ ∈ PAP0ϑ (R

2
× X,Y). The collection of such functions will be denoted by PAP(λ,ϑ)(R2 × X,Y).

A typical and very interesting example of F ∈ PAP(λ,ϑ)(R2 ×Ω,Y) is given by

F(t, s, x) = Λ(t, s)G(s, x),

which includes the convolution situation; see (1.4) and hypothesis (S) below. The matrix Λ(t, s) could be a Green matrix
associated to a differential operator; see Eqs. (1.5), (3.6) and (3.9), and [11–17].
Throughout the rest of the paper, the most of the times, we suppose that X = Y = Cn, equipped with a suitable norm.

However, when we deal with the pseudo-almost periodicity in R2 of the kernels Ci, i = 1, 2, in Eqs. (1.2), (1.3), (1.5) and
(1.6), we choose X = Cn × Cn.
We require the following assumptions:
(C) For i = 0, 1, 2, the functions hi : R→ R are continuous, hi(R) = R, and u ∈ PAP(R) implies u(hi) ∈ PAP(R).
(Lf) The function f : R× C2n → Cn is pseudo-almost periodic satisfying for some constant L ∈ (0, 1),

|f (t, x1, y1)− f (t, x2, y2)| ≤ L (|x1 − x2| + |y1 − y2|) , t ∈ R, xi, yi ∈ Cn.

(LC) For i = 1, 2, there exist µi = µi(t, s) such that for t, s ∈ R, xi, yi ∈ Cn, Ci satisfies the Lipschitz condition:

|Ci(t, s, x1, y1)− Ci(t, s, x2, y2)| ≤ µi(t, s) (|x1 − x2| + |y1 − y2|) ,

where
∫ t
−∞

µ1(t, s)ds+
∫
∞

t µ2(t, s)ds ≤ µ, for t ∈ R.
(PAP) For i = 1, 2, the functions Ci are (λi, θi) pseudo-almost periodic in t, s ∈ R uniformly if (x, y) ∈ C2n, that is we

have decomposition:

Ci = Q i1 + Q
i
2 with Q i1 ∈ APλi(R

2
× C2n,Cn), Q i2 ∈ PAP

0
ϑi
(R2 × C2n,Cn),

i.e. |Q i2(t, s, x, y)| ≤ θi(t, s)Q̂
i
2(s, x, y).

(I) For some constants αi, θi > 0 i = 1, 2, the functions λi, ϑi: R2 → [0,∞) satisfy∫ t

−∞

λ1(t, s)ds ≤ α1,
∫
∞

t
λ2(t, s)dt ≤ α2, t ∈ R, (2.2)∫ r

s
ϑ1(t, s)dt ≤ θ1,

∫ s

−r
ϑ2(t, s)dt ≤ θ2, for |s| ≤ r. (2.3)

(AP) For i = 1, 2, the functions Ci are λi-almost periodic in t, s ∈ R uniformly in (x, y) ∈ C2n, where λi satisfy (2.2).
Specially interesting are the cases (1.4): Ci(t, s, u, v) = Λi(t, s)Ĉi(s, u, v), i = 1, 2, for which conditions (LC), (PAP) and

(I) follow from the following condition (S).
(S) For i = 1, 2:
(a) Ĉi(s, u, v) are pseudo-almost periodic in s uniformly in u, v and there exist constants Li = Li(Ĉi) such that for all s ∈ R,

uk, vk ∈ Cn:∣∣∣Ĉi(s, u1, v1)− Ĉi(s, u2, v2)∣∣∣ ≤ Li (|u1 − u2| + |v1 − v2|) .
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(b)Λi(t, s) ∈ APλi(R
2), where λi : R2 → (0,∞) satisfy (2.2), and

sup
t∈R

∫ t

−∞

|Λ1(t, s)| ds = µ1, sup
t∈R

∫
∞

t
|Λ2(t, s)| ds = µ2 and∫ r

s
|Λ1(t, s)| dt ≤ θ1,

∫ s

−r
|Λ2(t, s)| dt ≤ θ2, for |s| ≤ r.

In particular, for the convolution caseΛi(t, s) = Λi(t − s), the conditions (b) becomeΛ1 ∈ L1(0,∞),Λ2 ∈ L1(−∞, 0).

3. Existence of almost periodic and pseudo-almost periodic solutions

So, for the neutral integral equation (1.3), we obtain:

Theorem 1. Under assumptions (C), (Lf), (LC), (PAP) and (I)with 2(L+µ) < 1, the neutral integral equation (1.3) has a unique
pseudo-almost periodic solution. In particular, if (C) and (Lf) are true for almost periodic functions and (PAP) is replaced by (AP),
then the neutral integral equation (1.3) has a unique almost periodic solution.

Before proving Theorem 1, we establish the following technical lemma:

Lemma. Let

F1(u)(t) :=
∫ t

−∞

C1(t, s, u(s), u(h1(s)))ds, t ∈ R,

F2(u)(t) :=
∫
∞

t
C2(t, s, u(s), u(h2(s)))ds, t ∈ R.

(3.1)

Under assumptions (C), (LC), (PAP) and (I), the functions Fi map PAP(R) into itself. In particular, Fi map AP(R) into itself, if
(PAP) is replaced by (AP) and (C) is true for almost periodic functions.

Proof. We prove only the case i = 2. For i = 1, the proof is similar. Let i = 2, C2 = C and F2 = F. Let u ∈ PAP(R). By
hypothesis (C), t → u(h2(t)) is pseudo-almost periodic. Using (LC) and (PAP), from the composition theorems, it follows
that the function (t, s)→ C(t, s, u(s), u(h2(s))) is pseudo-almost periodic in t, s; see, e.g., [13,2,14,18]. From (PAP) and (I),
we have the decomposition

C = Q1 + Q2, Q1 ∈ APλ(R2 × C2n,Cn) and Q2 ∈ PAP0ϑ (R
2
× C2n,Cn),

where λ, ϑ : R2 → (0,∞) satisfy (2.2) and (2.3). Then

M1(u)(t) :=
∫
∞

t
Q1(t, s, u(s), u(h2(s)))ds (3.2)

is the almost periodic component of Fu(t) and its ergodic component is

M2(u)(t) :=
∫
∞

t
Q2(t, s, u(s), u(h2(s)))ds. (3.3)

In fact, both integrals (3.2), (3.3) exist by (LC). We will prove that M1u ∈ AP(R) and M2u ∈ PAP0(R). By (PAP) and (I),
Q1(t, s, u(s), u(h2(s))) ∈ APλ(R2), where λ : R2 → (0,∞) satisfies (2.2). Then for each ε > 0, there exists δ > 0 such that
every rectangle R = R1 × R2 ⊂ R× [t,∞)with area A(R) < δ, there is τ ∈ R1 ∩ R2, for which

|Q1(t + τ , s+ τ , u(s+ τ), u(h2(s+ τ)))− Q1(t, s, u(s), u(h2(s)))| ≤ εcλ(t, s) (3.4)

for t, s ∈ R and some constant c . Since

M1(u)(t + τ) =
∫
∞

t
Q1(t + τ , s+ τ , u(s+ τ), u(h2(s+ τ)))ds,

(3.2) and (3.4) imply that |M1(u)(t + τ)−M1(u)(t)| ≤ εcα, for every t ∈ R. ThenM1(u) ∈ AP(R).
Now, we show thatM2(u) ∈ PAP0(R). By (3.3), it is clear that t → M2(u)(t) is a bounded continuous function. By (PAP),

the ergodic component Q2 satisfies |Q2(t, s, x, y)| ≤ ϑ(t, s)Q̂2(s, x, y), where
∫ s
−r ϑ(t, s)dt ≤ θ for all |s| ≤ r . Finally, (PAP)

and (I) imply

lim
r→∞

1
2r

∫ r

−r
|M2(u)(t)| dt = 0. (3.5)
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In fact, limr→∞ 1
2r

∫ r
−r |M2(u)(t)|dt ≤ l1 + l2, where

l1 := lim
r→∞

1
2r

∫ r

−r
dt
(∣∣∣∣∫ r

t
Q2(t, s, u(s), u(h2(s)))ds

∣∣∣∣) , and

l2 := lim
r→∞

1
2r

∫ r

−r
dt
(∣∣∣∣∫ ∞

r
Q2(t, s, u(s), u(h2(s)))ds

∣∣∣∣) .
Moreover, by changing the order of integration, (1.6) and Q̂2(·, u(·), u(h2(·))) ∈ PAP0(R) imply:

l1 ≤ lim
r→∞

1
2r

∫ r

−r
Q̂2(s, u(s), u(h2(s)))ds

(∫ s

−r
ϑ(t, s)dt

)
≤ θ lim

r→∞

1
2r

∫ r

−r
Q̂2(s, u(s), u(h2(s)))ds = 0,

and similarly,

l2 ≤ lim
r→∞

1
2r

∫ r

−r
Q̂2(s, u(s), u(h2(s)))ds

(∫ r

−r
ϑ(t, s)dt

)
= 0.

So, (3.5) follows. Respect to the second assertion, the situationwhere the functions are all almost periodic is clearly included
in the previous proof. Thus the demonstration is complete. �

Proof of Theorem 1. For u ∈ PAP(R), define the nonlinear operator

A(u)(t) := f (t, u(t), u(h0(t)))+
∫ t

−∞

C1(t, s, u(s), u(h1(s)))ds+
∫
∞

t
C2(t, s, u(s), u(h2(s)))ds, t ∈ R.

From the composition theorems of pseudo-almost periodic functions in [13,2,14,18], we have f (·, u(·), u(h0(·))) ∈
PAP(R). Thus, by the previous lemma, A maps PAP(R) into itself and M i1u and M

i
2u, i = 1, 2 are respectively the almost

periodic and ergodic perturbation components of functions Fiu, i = 1, 2 in A(u).
Finally, A : PAP(R) → PAP(R) has a unique fixed point. For u, v ∈ PAP(R), (Lf) and (LC) imply |A(u)(t) − A(v)(t)| ≤

2(L+ µ)‖u− v‖∞, since

|A(u)(t)− A(v)(t)| ≤ 2L ‖u− v‖∞ +
∫ t

−∞

|C1(t, s, u(s), u(h1(s)))− C1(t, s, v(s), v(h1(s)))| ds

+

∫
∞

t
|C2(t, s, u(s), u(h2(s)))− C2(t, s, v(s), v(h2(s)))| ds

≤ 2L ‖u− v‖∞ +
∫ t

−∞

µ1(t, s) (|u(s)− v(s)| + |u(h1(s))− v(h1(s))|) ds

+

∫
∞

t
µ2(t, s) (|u(s)− v(s)| + |u(h2(s))− v(h2(s))|) ds.

As 2(L + µ) < 1, the operator A is a contraction and has a unique fixed point, which obviously is the only pseudo-
almost periodic solution to the integral equation (1.3). The assertion corresponding to almost periodic situation is obviously
included in the above development. Then the proof is complete. �

In the separated variables situation (4), when condition (S) holds, the next corollary is a straightforward consequence of
Theorem 1.

Corollary 1. Under assumptions (C), (Lf), (S), and 2L+L1µ1+L2µ2 < 1, the integral equation (1.3) has a unique pseudo-almost
periodic solution. In particular, if (C), (Lf) and (S), part (a) hold for almost periodic functions, then neutral integral equation (1.3)
has a unique almost periodic solution.

Moreover, we can study a general neutral differential equation (1.5)

y′(t) = A(t)y+ [f (t, y(t), y(h0(t)))]′ + Q (t, y(t), y(h1(t))), (3.6)

where

x′ = A(t)x (3.7)

has an exponential dichotomy and the function t → f (t, y(t), y(h0(t))) is supposed differentiable. Indeed, if G is the Green
matrix of the linear system (3.7), any solution of the integral equation

y(t) = f (t, y(t), y(h0(t)))+
∫
∞

−∞

G(t, s) (A(s)f (s, y(s), y(h0(s)))+ Q (s, y(s), y(h2(s)))) ds (3.8)
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is solution of the neutral differential equation (3.6).
By simplicity, we consider A(t) = A constant and the assumptions:
(E) The eigenvalues λ of the constant matrix A satisfy Reλ 6= 0 and the Green operator has the norm supt∈R

∫
∞

−∞
|G(t, s)|

ds = µ <∞.
(L) Q = Q (t, u, v) and fA(t, u, v) = A(t)f (t, u, v) are pseudo-almost periodic and for all t ∈ R, ui, vi ∈ Cn, i = 1, 2

satisfy

|Q (t, u1, v1)− Q (t, u2, v2)| ≤ LQ (|u1 − u2| + |v1 − v2|), LQ constant,
|A(t)(f (t, u1, v1)− f (t, u2, v2))| ≤ LA(|u1 − u2| + |v1 − v2|), LA constant.

Theorem 2. If (C), (E) and (L) are fulfilled and 2L+ (LA + LQ )µ < 1, then the neutral differential equation (3.6) has a unique
pseudo-almost periodic solution. In particular, if (C) holds for almost periodic functions and fA and Q are only almost periodic
functions, then the neutral differential equation (3.6) has a unique almost periodic solution.

Proof. If A satisfies condition (E), then Φ(t) = exp(tA) is the fundamental matrix and Φ(t)Φ−1(s) = Φ(t − s). Let P be a
projection matrix such that G1(t, s) = G1(t − s) = Φ(t − s)P → 0 as t → ∞. So, the Green matrix G = G(t, s) is given
by: G(t, s) = G1(t − s) for t ≥ s and G(t, s) = G2(t − s) = −Φ(t − s)(I − P) for t < s. Hypothesis (I) is provided with
µi(t, s) = λi(t, s) = ϑi(t, s) = |Gi(t − s)|. Now, Theorem 2 follows at once from Theorem 1. �

Remark 1. Using technical lemmas about linear differential equations with almost periodic coefficients (see for example,
Fink [3]), Theorem 2 is easily extended to an exponentially dichotomic system (3.7) with almost periodic matrix A(t). In this

case, we must take λ1(t, s) = e
−(t−s)
2µ , λ2(t, s) = e

(t−s)
2µ .

An interesting particular case of (3.6) is given by

u′ = Au+ Bu′(h0(t))+ Q (t, u(t), u(h2(t))), (3.9)

when B is a constant matrix and h′0 = 1, implying the following:

Corollary 2. If (C) and (E) hold, Q satisfies (L) and [(1+ |A|)|B| + 2LQ ]µ < 1, then the conclusions of Theorem 2 follow.

Finally, for the scalar neutral logistic equation (1.1), we deduce

Corollary 3. If (C) holds and (Q ) satisfies (L) with |β|(1 + |a|) + 2LQ < |a|, the logistic equation (1.1) has a unique pseudo-
almost periodic solution. In particular, if Q is an only almost periodic function, then the logistic equation (1.1) has a unique almost
periodic solution.
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