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deviations nor a fixed sign on the coefficients functions are asked. An explicit estimation of
the solutions is obtained and a necessary and sufficient condition is determined. Classical
results are improved and generalized.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

This research is motivated by a number of difficulties encountered when we study the stability by means of Lyapunov’s
direct method. Much of these difficulties disappear by applying fixed point theory [1–10]. While Lyapunov’s direct method
usually requires pointwise conditions, our results ask averaging conditions. Lyapunov functions have been the main tool
used to obtain boundedness, stability and the existence of periodic solutions of differential equations, differential equations
with functional delays and functional differential equations (see [11–13]). As an example, in the study of differential
equations with functional delays by using Lyapunov functionals, many difficulties arise if the delay is unbounded (see
[14,8]). Even more difficult it is to obtain necessary and sufficient conditions. Many authors have examined particular
problems which have offered great difficulties for that theory and have presented solutions by means of various fixed point
theorems for the last ten years. Burton [1–3] and Burton and Furumochi [4–6] have shown that many of these problems can
be solved using fixed point theory. For a complete framework of stability by fixed point theory, see the new book [15] and
the reference therein.

In this paper we look the scalar neutral differential equation

x′(t) = a(t)x(t) + b(t)x′(γ1(t)) + g(t, x(t), x(γ2(t))), t ≥ τ
x(t) = φ(t), t ≤ τ ,

(1)

where a(t)may change sign, a(t), b(t), γi(t), i = 1, 2 and g(t, x, y) are continuous in their respective arguments.We assume
the local existence and uniqueness of the solutions x(t) = x(t, τ , φ) of (1). We obtain necessary and sufficient conditions
under which the asymptotic stability is ensured. The stability is not necessarily uniform and the result gives an explicit
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estimation for the solutions. Precisely, the h-stability [16] of the zero solution of (1) is proved, namely for a positive constant
c , we have

|x(t, τ , φ)| ≤ c‖φ‖hσ (t)hσ (τ )−1, for t ≥ τ ≥ 0, ‖φ‖ ≤ δ, (2)

where

hσ (t) = exp


σ

∫ t

0
a(s)ds


, 0 < σ < 1. (3)

This function is bounded if

lim sup
t→∞

∫ t

0
a(s)ds < ∞ (4)

and converges to zero if

lim
t→∞

∫ t

0
a(s)ds = −∞. (5)

Furthermore, the condition∫ t

t1
a(s)ds ≤ K , for t ≥ t1 ≥ 0, (6)

is associated with the uniform stability of Eq. (1). Note that (2) implies the boundedness of the solutions x(t, τ , φ) and the
stability of the null-solution.

The integral equation associated to (1) has a linear part and other nonlinear parts, for that it is natural to use Krasnosel-
skii’s fixed point theorem. Once the correctmapping is constructed, then the analysis in this paper is based on an appropriate
choice of the invariant set where (2) must be true. To our knowledge this general type of result is new (see [1,5,6,17,9]). Our
Eq. (1) generalizes the work of [1,4,8,10] where the Banach’s fixed point is used and, in addition, we obtain a precise bound
for the behavior, see [8] and the new book [15].

The rest of the paper is organized as follows. In the next section, Krasnoselskii’s fixed point theorem, some definitions
and preliminary results are presented. Section 3 is devoted to establish the main results for the stability of the zero solution
of (1). Finally, in Section 4 we show an illustrative example.

2. Fixed-point theorems and preliminaries

Now, we state the Krasnosleskii’s fixed point theorem, which will be useful in Section 3. A statement of this theorem can
be found in [18].

Theorem A. Let S be a closed, bounded convex, non-empty set of a Banach space E. Suppose that Γ1 and Γ2 map S into E and
that

(1) Γ1x + Γ2y ∈ S for all x, y ∈ S.
(2) Γ1 is completely continuous on S, and
(3) Γ2 is a contraction on S.

Then, there exists z ∈ S such that Γ1z + Γ2z = z.

Let R and R+ denote, respectively the set of real numbers and nonnegative real numbers, |x| the absolute value for x ∈ R.
Let the delay functions di, di(t) = t − γi(t) ≥ 0, i = 1, 2, which can be both bounded or unbounded delays. We define

ρi(τ ) := inf
t≥τ

γi(t), i = 1, 2; ρ−(τ ) = min{ρ1(τ ), ρ2(τ )}.

Considering the initial closed interval [ρ−(τ ), τ ] ((−∞, τ ] if ρ−(τ ) = −∞), Eq. (1) has a natural vectorial space for the
initial conditions:

BC(τ ) = {φ : [ρ−(τ ), τ ] → R| φ is a bounded continuous function}.

Denote B to BC([ρ−(τ ), ∞), R) the Banach space of bounded and continuous real functions, with the supreme norm ‖·‖.
For the compactness in the space B an equi-convergence criterion is useful, see, [5,19].

Lemma 1. Let

Sφ := {y ∈ B : y(t) = φ(t), t ∈ [ρ−(τ ), τ ], |y(t)| ≤ q(t), t ≥ τ },

for fixed φ, and |φ(τ)| ≤ q(τ ). If limt→∞ q(t) = 0 and Sφ is an equi-continuous set on every interval [τ , n], n ∈ N, then Sφ is a
compact convex nonempty subset of B.



3928 M. Pinto, D. Sepúlveda / Nonlinear Analysis 74 (2011) 3926–3933

Weneed find an admissiblemap for (1), to apply the fixed point theory. To obtain the desiredmap, we consider the linear
differential equation

x′(t) = a(t)x(t) + b(t)x′(γ1(t)) + f (t), t ≥ τ
x(t) = φ(t), t ∈ [ρ−(τ ), τ ],

(7)

where a(t), f (t) are continuous, b(t) is continuously differentiable and γ1 is twice continuously differentiable such that
γ ′

1(t) ≠ 0, ∀t ∈ R.

Lemma 2. x(t) = x(t, τ , φ) is a solution of Eq. (7) if and only if

x(t) = Ψφ(τ )h1(t)h1(τ )−1
+ B(t)x(γ1(t)) +

∫ t

τ

h1(t)h1(u)−1w(u)x(γ1(u))du +

∫ t

τ

h1(t)h1(u)−1f (u)du, (8)

where

Ψφ(τ ) =


φ(τ) − B(τ )φ(γ1(τ ))


, B(t) =

b(t)
γ ′

1(t)
,

ω(u) = B(u)a(u) − B′(u), h1(t) = e
 t
0 a(s)ds.

(9)

Proof. By Eq. (7) we have

d
dt

[x(t) − x(γ1(t))B(t)] = a(t)[x(t) − x(γ1(t))B(t)] + w(t)x(γ1(t)) + f (t)

and (8) follows from the variation of parameters formula. �

3. Stability via fixed-point theory

In this section we prove our main result, so we recall the Eq. (1)

x′(t) = a(t)x(t) + b(t)x′(γ1(t)) + g(t, x(t), x(γ2(t))),

where

g(t, 0, 0) = 0, γi(t) ≤ t, i = 1, 2; t ∈ R.

Let σ ∈ (0, 1) and Di,Mi : R → R+, i = 1, 2, defined by

Di(t) := exp

−

∫ t

γi(t)
a(s)ds


, Mi(t) := max{1,Dσ

i (t)}. (10)

Next, we state our assumptions:

(H1) • The function a : R → R, satisfies (4) and (6).
• The functions γi : R+

→ R, i = 1, 2 are continuous and
lim
t→∞

γ1(t) = ∞, (11)

• γ1 and B = b/γ ′

1 are continuously differentiable.
(H2) • g is a continuous function, say: x1, x2 ∈ R and y1, y2 ∈ R. For any ε > 0, there exist δ > 0 and λ : R → R+ function

such that |x1 − x2| , |y1 − y2| < δ implies
|g(t, x1, y1) − g(t, x2, y2)| ≤ ελ(t), t ∈ R+. (12)

Moreover, there exists ν : R+
→ R+ a nondecreasing continuous function for which ν(0+) = 0 and

|g(t, x, y)| ≤ λ(t)ν (|x| + |y|) [|x| + |y|] , t, s ∈ R. (13)
(H3) • For a positive constant σ < 1 the functions λ and M2 satisfy:

sup
t≥0

∫ t

0
h1−σ (t)h1−σ (u)−1λ(u)M2(u)du < ∞. (14)

• The functions B = b/γ ′

1, ω andM1 verify

|B(t)|M1(t) +

∫ t

0
h1−σ (t)h1−σ (u)−1

|ω(u)|M1(u)du ≤ α < 1, t ≥ 0. (15)

Theorem 1. If (H1), (H2) and (H3) hold. Then:
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(i) Assuming the condition (5), the zero solution of (1) is hσ -asymptotically stable, namely, there exists δ > 0 such that ‖φ‖ ≤ δ
implies

|x(t, τ , φ)| ≤ c‖φ‖hσ (t)hσ (τ )−1, t ≥ τ ≥ 0, (16)

where c = (1 + ‖B‖)e(1−σ)K , K given by (6).
(ii) The zero solution of (1) is asymptotically stable if and only if (5) is true.

Proof. Sufficiency. Assuming that (5) is valid. For any δ > 0, the set

S = {x ∈ B : x(t) = φ(t), t ∈ [ρ−(τ ), τ ], |x(t)| satisfies (16) and ‖φ‖ ≤ δ},

is a closed, convex and nonempty subset of B. From Lemma 2, we define the map P by

(Px)(t) = φ(t), ρ−(τ ) ≤ t ≤ τ ,

and

(Px)(t) = Ψ (φ)h1(t)h1(τ )−1
+ B(t)x(γ1(t)) +

∫ t

τ

h1(t)h1(u)−1ω(u)x(γ1(u))du

+

∫ t

τ

h1(t)h1(u)−1g(u, x(u), x(γ2(u)))du, t ≥ τ .

From (H1) and (14), we can see that PS ⊂ B. We consider the operators Γ1, Γ2 by

Γ1x(t) = Ψφ(τ )h1(t)h1(τ )−1
+ B(t)x(γ1(t)) +

∫ t

τ

h1(t)h1(u)−1ω(u)x(γ1(u))du,

Γ2x(t) =

∫ t

τ

h1(t)h1(u)−1g(u, x(u), x(γ2(u)))du.

We note that Γ1x + Γ2x = Px so, we shall use Theorem A to ensure the existence of a fixed point of P . We claim that
Γ1 : S → B is a contractive mapping. Let x, y ∈ B, from (13), (15) and the factM1(t) ≥ 1, we have

|Γ1x(t) − Γ1y(t)| ≤ |B(t)| |x(γ1(t)) − y(γ1(t))| +

∫ t

τ

|h1(t)h1(u)−1
|ω(u)||x(γ1(u)) − y(γ1(u))|du

≤ α‖x − y‖, α < 1.

Next, wewill show that there exists a δ > 0 such that for any x, y ∈ S = S(δ)with ‖φ‖ ≤ δ we haveΓ1x+Γ2y ∈ S, i.e., there
exists S a convex closed non-empty subset of B, such that PS ⊂ S. We denote R = R(φ) := 2c‖φ‖ ‖hσ ‖. Let x, y ∈ S the

|Γ1x(t) + Γ2y(t)| ≤ |Ψφ(τ )|h1(t)h1(τ )−1
+ |B(t)||x(γ1(t))|

+

∫ t

τ

h1(t)h1(u)−1
|ω(u)||x(γ1(u))|du +

∫ t

τ

h1(t)h1(u)−1
|g(u, y(u), y(γ2(u)))|du.

We note that h1(t) = hσ (t)h1−σ (t) and hσ (γi(t))hσ (t)−1
= Dσ

i (t), i = 1, 2. So, from x, y ∈ S, we have

|Γ1x(t) + Γ2y(t)| ≤ |Ψφ(τ )|h1(t)h1(τ )−1

+ c‖φ‖hσ (t)hσ (τ )−1
[
|B(t)|Dσ

1 (t) +

∫ t

τ

h1−σ (t)h1−σ (u)−1
|ω(u)|Dσ

1 (u)du
]

+ c‖φ‖hσ (t)hσ (τ )−1
∫ t

τ

h1−σ (t)h1−σ (u)−1λ(u)ν(R)(1 + Dσ
2 (u))du.

From (10) and (11), we obtain

|Γ1x(t) + Γ2y(t)| ≤ |Ψφ(τ )|h1(t)h1(τ )−1
+ c‖φ‖hσ (t)hσ (τ )−1


α + 2ν(R)

∫ t

τ

h1−σ (t)h1−σ (u)−1λ(u)M2(u)du


.

From assumptions on ν in (H2), there exists δ > 0 such that for ‖φ‖ ≤ δ we obtain

2ν(R)
∫ t

τ

h1−σ (t)h1−σ (u)−1λ(u)M2(u)du ≤ 1 − α.

So, for x, y ∈ S with ‖φ‖ ≤ δ we have

|Γ1x(t) + Γ2y(t)| ≤ |Ψφ(τ )|h1(t)h1(τ )−1
+ c‖φ‖hσ (t)hσ (τ )−1, t ≥ τ ≥ 0.
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So, by choice of δ small enough, we get

|Γ1x(t) + Γ2y(t)| ≤ c‖φ‖hσ (t)hσ (τ )−1, t ≥ τ ≥ 0.

So for φ ∈ BC(τ ) such that ‖φ‖ ≤ δ, we have that PS ⊂ S, so S is a convex non-empty invariant set for the operator Γ1 +Γ2.
Actually, from assumptions, for any τ fixed, hσ (t)hσ (τ )−1

→ 0 as t → ∞.
Now, we prove that operator Γ2 is completely continuous. For the continuity of Γ2, let ε > 0. From (12) there exists

ξ > 0 such that: x, y ∈ S and ‖x − y‖ < ξ , imply

|Γ2x(t) − Γ2y(t)| ≤

∫ t

τ

h1(t)h1(u)−1
|g(u, x(u), x(γ2(u))) − g(u, y(u), y(γ2(u)))|du

≤ εI,

where

I := sup
t≥0

∫ t

0
h1(t)h1(s)−1λ(s)ds, (17)

which exists by (14). Moreover, Γ2S is equi-continuous on each compact interval. Indeed, let x ∈ S, then

|Γ2x(t) − Γ2x(v)| ≤

∫ v

τ

|g(u, x(u), x(γ2(u)))||h1(t)h1(u)−1
− h1(v)h1(u)−1

|du

+

∫ t

v

|g(u, x(u), x(γ2(u)))|h1(t)h1(u)−1du,

from (13) we obtain

|Γ2x(t) − Γ2x(v)| ≤ 2ν(R)hσ (v)hσ (τ )−1
∫ v

τ

h1−σ (v)h1−σ (u)−1λ(u)M2(u)
1 − h1(t)h1(v)−1

 du
+ 2ν(R)hσ (t)hσ (τ )−1

∫ t

v

h1−σ (t)h1−σ (u)−1λ(u)M2(u)du,

for every x ∈ S. From condition (15) and the fact that function h1(u) is continuous and positive in every compact, we have
for every ϵ > 0, there exists ξ > 0 such that |t − v| < ξ implies

|Γ2x(t) − Γ2x(v)| ≤ ϵ, ∀x ∈ S.

Therefore, Γ2S is equi-continuous on every interval [τ , τ + n], and it is clear Γ2S ⊂ S. So we can apply the Lemma 1, which
guarantees Γ2 is a compact operator. Therefore, from Theorem A, we obtain for ‖φ‖ < δ there exists a solution x(t, τ , φ) of
(1) and x(t, τ , φ) ∈ S, namely,

|x(t, τ , φ)| ≤ c‖φ‖hσ (t)hσ (τ )−1, t ≥ τ ≥ 0.

Therefore, the zero solution of (1) is stable and asymptotically stable.
Necessity. Conversely, suppose (5) fails. From (H2) and (H3) there exists r > 0 such that α + 2ν(2r)I < 1, where I is given
by (17). From (4), we have that ‖h1‖ := ‖h1‖∞ is well-defined and there is a sequence {tn}, tn → ∞ as n → ∞ such that tn
0 a(s)ds is convergent as n → ∞, i.e. there exists ℓ > 0 such that |

 tn
0 a(s)ds| ≤ ℓ for n ≥ 1. We consider

η(u) := |B(u)a(u) − B′(u)| + 2λ(u)ν(2r).

From (14) and (15), we have that
 tn
0 e

 tn
u a(s)dsη(u)du is bounded, so there exists a constant κ > 0 such that∫ tn

0
e
 tn
u a(s)ds

|η(u)|du =

∫ tn

0
h1(tn)h1(u)−1η(u)du ≤ κ.

This yields∫ tn

0
h1(u)−1η(u)du ≤ κh1(tn)−1

= κe−
 tn
0 a(s)ds

≤ κeℓ.

Therefore, the sequence {
 tn
0 h1(u)−1η(u)du}n∈N is bounded, so there exists a subsequence of {tn}, which we call again {tn},

such that

lim
n→∞

∫ tn

0
h1(u)−1η(u)du = γ , γ ∈ R+.
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We can choose a positive integerm0 large enough that∫ tn

tm0

h1(u)−1η(u)du <
1 − α − 2ν(2r)I

4‖h1‖
2

, n ≥ m0.

We consider the solution x(t) = x(t, tm0 , φ) with ‖φ‖ < δ. Then we can choose δ ≤ r such that:

|Ψφ(tm0)|‖h1‖

1 − α − 2ν(2r)I
≤ r.

Lemma 2 implies

|x(t)| ≤ |Ψφ(tm0)|e
 t
tm0

a(s)ds
+ α‖x‖ + 2‖x‖ν(2r)I.

Then we have

|x(t)| ≤
|Ψφ(tm0)|‖h1‖

1 − α − 2ν(2r)I
=: ρ ≤ r

for all t ≥ tm0 . Moreover from (8), we have for tn ≥ tm0 and φ ≠ 0:

|x(tn) − B(tn)x(γ1(tn))| ≥ |Ψφ(tm0)|h1(tn)h(tm0)
−1

−


∫ tn

tm0

h1(tn)h(u)−1 [ω(u)x(γ1(u))du + g(u, x(u), x(γ2(u)))]


≥ |Ψφ(tm0)|h1(tn)h(tm0)

−1
− 2ρ

∫ tn

tm0

h1(tn)h(u)−1η(u)du

= h1(tn)h(tm0)
−1


|Ψφ(tm0)| − 2ρ

∫ tn

tm0

h1(tm0)h1(u)−1η(u)du



≥ h1(tn)h(tm0)
−1


|Ψφ(tm0)| − 2ρ‖h1‖

∫ tn

tm0

h1(u)−1η(u)du



≥ h1(tn)h(tm0)
−1


|Ψφ(tm0)| −
1
2
|Ψφ(tm0)|


=

1
2
|Ψφ(tm0)|e

 tn
0 a(s)dse−

 tm0
0 a(s)ds

≥
1
2
|Ψφ(tm0)|e

−2ℓ > 0. (18)

On the other hand, if the zero solution of (1) is asymptotically stable, then x(t) = x(t, tm0 , φ) → 0 as t → ∞. From
γ1(t) → ∞ as t → ∞ and (15), we have

x(tn) − B(tn)x(γ1(tn)) → 0 as n → ∞,

which contradicts (18). Hence condition (5) is necessary for the asymptotic stability of the zero solution of (1). The proof is
complete. �

Remark 1. For τ = 0, (16) is reduced to

|x(t, 0, φ)| ≤ c‖φ‖h(t), t ≥ 0, ‖φ‖ ≤ δ

and the result follows with the only condition∫ t

0
a(s)ds ≤ 0, for t ≥ 0,

which does not imply (6). See for instance [11]. Note that function a can take negative and positive values. Thus, in our
results, much Eq. (1) which are not uniformly stable are included. This is the case of the Eq. (1) with

a(t) = sin(log t) + cos(log t) − α, 1 < α <
√
2.

Several papers are generalized [11,2,6].

Remark 2. The functionsDi(t) (i = 1, 2) in (10) can be unbounded (see [1]). If a(·) ≤ 0 then they are bounded anddisappear
(Mi ≡ 1). In ourwork, functionsDi(t)were important to achieve a proper invariant space, therefore to obtain an estimate for
the behavior of the solutions from (1). In [2–4,7,8] they get results on the stability of the zero solution, but not an estimate
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of the asymptotic behavior. The use of these functions can improve the works mentioned. Note that (14) shows the close
relation between the delay, the stability of the linear equation, and the possibility of getting an estimate.

Remark 3. Obviously, similar results can be obtained when g is a locally Lipschitz function, i.e.

|g(t, x1, y2) − g(t, x1, x2)| ≤ λ(t) (|x1 − x2| + |y1 − y2|) ,

t ≥ 0, |xi|, |yi| ≤ r, i = 1, 2 (see [11,15,7,8,10]).

4. Example

To illustrate our result, consider the neutral nonlinear differential equation

x′(t) =


sin(t) −

1
1 + t


x(t) +

β

1 + 2t
x′(t/2) + ln


1 +

x(t/3)2

1 + t


, (19)

for t ≥ τ ≥ 0, and with initial condition x(t) = φ(t), t ≤ τ . The above neutral delay differential equation has the form of
(1), where

a(t) = sin(t) −
1

1 + t
, b(t) =

β

1 + 2t
, g(t, x, y) = ln


1 +

y2

1 + t


.

So we give conditions on the constant β , to apply our result to (19). It is clear that (H1) holds. We note that

g(t, x, y) = ln

1 +

x(t/3)2

1 + t


≤

x(t/3)2

1 + t
,

so λ(t) =
1

1+t , ν(x) = x. Therefore (H2) holds. By a straightforward computation we have∫ t

u
a(s)ds = ln


1 + u
1 + t


+ cos(u) − cos(t). (20)

So, we obtain

h 1
2
(t)h 1

2
(u)−1

=


1 + u
1 + t

exp

cos(u) − cos(t)

2


, t ≥ u ≥ 0,

it follows that∫ t

0
h 1

2
(t)h 1

2
(u)−1λ(u)du ≤ e

∫ t

0


1 + u
1 + t

1
(1 + u)

du = 2e, t ≥ 0.

We have verified (14). From (20), the functions Di(t), i = 1, 2 are

Di(t) = exp

−

∫ t

γi(t)
a(s)ds


=


1 + t

1 + γi(t)


exp{cos(t) − cos(γi(t))}.

Therefore, we have that D
1
2
i (t) =


(1+t)
1+γi(t)

exp


cos(t)−cos(γi(t))
2


, i = 1, 2 for t ≥ 0. We note that B(t) =

2β
1+2t , B′(t) =

−4β
(1+2t)2

, so

|B(t)| ≤ 2|β|, M1(t) ≤
√
2e, M2(t) ≤

√
3e, t ≥ 0.

Next, we must estimate∫ t

0
h 1

2
(t)h 1

2
(u)−1

|w(u)|du,

where w(u) = B(u)a(u) − B′(u), since above we have:∫ t

0
h 1

2
(t)h 1

2
(u)−1

|B′(u)|du ≤ 2|β|e
∫ t

0

2
(1 + 2u)2

du ≤ 2|β|e, t ≥ 0,

and ∫ t

0
h 1

2
(t)h 1

2
(u)−1

|B(u)||a(u)|du ≤ 2e
∫ t

0


1 + u
1 + t

2|β|

1 + 2u
du ≤ 4e|β|, t ≥ 0.
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Then we obtain

|B(t)|M1(t) +

∫
∞

0
h 1

2
(t)h 1

2
(u)−1

|w(u)|M1(u)du ≤ 23/2e|β|(1 + 3e), t ≥ 0.

Therefore the assumption (15) becomes

23/2e|β|(1 + 3e) < 1.

So we have shown

Corollary 1. If |β| < [23/2e(1+ 3e)]−1 in (19), then for |φ| small enough the solution x(t, τ , φ) of (19) satisfies for t ≥ τ ≥ 0

|x(t, τ , φ)| ≤ 2(1 + 2|β|)‖φ‖


1 + τ

1 + t
exp


1
2
(cos(t) − cos(τ ))


.

In the same way, the examples in [7] can be done more precisely, showing an explicit estimate.
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