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When the target is in the solid state, most infrared spectral features are manifestly asymmetric; hence, a line
shape function well-grounded in theory is necessary to ascertain the net energy taken by the associated electronic
transition. The main sources for spectral line broadening, asymmetry, and shift, no matter the transferred
energy, are multiphonon events involving the acoustic vibrational modes. A simple closed-form mathematical
expression for the phonon-broadened lineshapes, shown to be valid at low temperatures, and linewidths on
the order of the Debye energy of the solid or smaller, giving remarkable agreement with experiment is studied
in connection with its utility for analyzing infrared spectral features.

Introduction

Despite the capital role infrared spectroscopy has played in
the study of molecular structure and dynamical properties, the
recognition of chemical species and determination of their
relative presence in heterogeneous environments and a number
of other very fundamental applications, there is still an unsolved
technical question. If the target is in a condensed thermodynamic
phase, the shapes of the spectral features and the position of
the maxima are modified in a temperature-dependent manner.
When the temperature-dependent width of an absorbance peak
is comparable to or smaller than the Debye energy of the solid,
the absorption line generally exhibits noticeable asymmetry. In
most cases, the peak side corresponding to lower photon energies
is steeper than the other side, but the opposite situation is
possible, as well, albeit seldom. The interpretation of the inverse
asymmetry is quite interesting because it seems to contradict
the entropy principle.

Identifying the optical frequency associated to maximum
absorption or emission with the peak position and interpreting
it as the energy of the corresponding electronic transition may
be not a bad practice because most asymmetrical features are
relatively narrow, but anyway, it introduces an error. In general,
the maximum of asymmetric bands shifts with temperature. This
error is particularly significant in the far-infrared spectral region,
where the frequencies are small enough to be comparable to
the peak widths and may be not negligible also in the near-
infrared. It is shown below that, as a general rule, the net energy
taken by an electronic transition is never coincident with the
maximum of the corresponding spectral feature. Both photon
capture and emission processes produce a sudden nonadiabatic
disturbance of the condensed medium. Statistically, they involve
entropy production and, hence, dissipate net energy into the
thermal bath at the expenses of the radiation field. Depending
on the strength of the coupling of the disturbed electronic bond
with the elementary excitations of the condensed environment,
this effect may manifest in the absorption (emission) spectra as

either approximately symmetric spectral features displaced
toward higher (lower) energies or the production of asymmetric
spectral maxima with a steeper low (high) energy side. Color
centers, usually evidencing large Stokes shifts, pertain to the
former case, and the excitation of vibronic modes and most
infrared features are in the latter.1-4

A main part of the harmonic forces between the crystal ions
comes from the adiabatic shifts played by the energy levels of
the electronic bonds when the ionic relative positions change.
By virtue of the adiabatic approximation, the electronic degrees
of freedom disappear and become implicit in the force constants
governing the ionic motions. Notwithstanding, because of the
large mass ratio between ionic cores and electrons, the
electromagnetic radiation field interacts mostly with the elec-
tronic bonds. This way, any interaction of the electromagnetic
field with the nuclear motions is via a nonadiabatic alteration
of the local force constant of the solid. From this viewpoint,
localized vibronic modes can be dealt with as electronic degrees
of freedom when focusing their interaction with electromagnetic
radiation.

Therefore, determining the net excitation energy of an
electronic bond or vibronic mode from an asymmetrical spectral
feature demands precise knowledge of the concurrent energy
transfers taking place in the target. Otherwise, the error bonds
will be dictated not by the experimental device but by the
incomplete knowledge of how it works. Consider, for instance,
the absorption peak observed by Takeno and Sievers for
substitutional Ag+ in KI.5 For temperature T ) 10.4 K, the
maximum is at a wavenumber k ) 18.1 cm-1, and the full width
at half-maximum (fwhm) is 2Γ ) 1.6 cm-1; that is, almost 10%
of the peak position. As the temperature is reduced to T ) 7.4
K, the maximum shifts to k ) 17.2 cm-1, and the fwhm changes
to 2Γ ) 1.4 cm-1. A refined analysis of the experimental data
revealed that the real frequency of the electronic transition,
which must not depend on temperature, is k ) 17.17 cm-1 in
the two spectra.6

The example recalled above illustrates the convenience of
having an accurate model for the line shape, well founded on
the physics of the photon absorption or emission process.
Judging by the peak position in the two spectra, the frequency
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of the local mode of Ag+ in KI is 17.2 - 18.1 cm-1; however,
the line shape study gives a figure as precise as 17.17 cm-1.
The dramatic accuracy improvement occurs because the latter
result has the precision of barely the experimental setup, whereas
the former is affected also by unresolved phenomena taking
place in the target.

The literature shows extensive studies on the line shape of
the optical spectra, considering a variety of line broadening
sources, such as Doppler shifts, molecular collisions, crystal
defects, inhomogeneous strains, and many others. The most
commonly used distributions for the spectral analysis are the
Gauss distribution, accounting for Doppler shifts, and Voigt
distribution,7 which convolutes a Gauss and a Lorentz distribu-
tion in an attempt to incorporate collisions and more complex
sources of energy dispersion. Both are ineffective for our
purposes because they are symmetric. A recent paper put
forward an empirical method for imparting asymmetry to these
distributions.8 Although fitting well the experimental data, the
procedure gives just a good interpolation formula because it is
not based on the physics of the optical transitions.

When the target is in the solid state, the main source for line
broadenings are the acoustic crystal modes. Acoustic phonons
have no energy threshold and obey Bose-Einstein statistics;
hence, any local electronic transition which modifies in any way
the equilibrium of the surrounding lattice will excite and de-
excite many crystal modes. No matter the magnitude of the
energy involved, the process will be a multiphonon event.6 This
is apparent from experiment, since zero-phonon lines, which
are expected to have significant intensity in few-phonon
processes, are infrequent in the infrared spectra.9,10 This way,
acoustic phonons are always present: widening, shifting, and
deforming the spectral features. The good new is that simple
closed-form mathematical expressions can be written for the
profiles of the electromagnetic absorption and emission bands.6

Transitions involving relatively high energies, such as the
excitation to a higher-energy atomic or molecular stationary
state, of either an impurity center or a main constituent of the
crystal couple strongly with the lattice modes and give rise to
wide bands of several tenths of an electronvolt in width. They
are usually in the visible (color centers) or near-infrared spectral
regions. On the other hand, the excitation of local modes of
point defects, or internal vibrations of molecular bonds, couple
weakly with the lattice and produce narrow asymmetrical bands
in the infrared or far-infrared, whose widths are in the range
0.1-10 meV. The shape of these narrow infrared bands is our
main concern here. We will show they can be accurately
described by a simple line shape function, whose only param-
eters are the net energy of the electronic transition and an
asymmetry coefficient, both temperature-independent, and the
temperature-dependent peak width. The theory assumes linear
electron-phonon coupling, which is accurate enough for dealing
with optical transitions in the infrared.6 Quadratic coupling is
far beyond our needs because it implies substantial modification
of the electronic bonds.11 Anharmonicity is also not considered
because we are not occupied here with higher order effects or
fine details of spectra. Examining real spectra, line shape
asymmetries are neither uncommon nor small when compared
with the corresponding line widths. Our main purpose here is
to link recently published theoretical achievements,6 which put
strong emphasis on the mathematical derivations, with the needs
of experimental spectroscopists to interpret their data.

The General Phonon Widened Line Shape Function

The Line Shape Function. In general, the one-photon
spectral feature associated with the transition between the
localized electronic states l and l′ in an elastic environment is
given by the integral expression6

which satisfies

Here, El′l is the energy difference between the two electronic
states, which will be the discussed in detail in a forthcoming
subsection. pck is the photon energy, c denoting the speed of
light, and k ) 2π/λ, with λ the wavelength, the wavenumber.
Index q ) (µ, qb) stands for the crystal vibrational mode of the
branch µ whose wave vector, frequency, and polarization vector
are qb, ωq, and êq. The branch index, µ, may also characterize
localized modes associated with eventual crystal defects. The
coefficients |Gql′l|2 will be defined in the next subsection.

The Physical Bases for the Line Shape Function. Just to
make clear the general character of the line shape expression
(eq 1) and the assumptions it involves, we briefly review its
derivation.6 The Hamiltonian of the solid, having eventual lattice
imperfections, is

where aq is a phonon operator. The fermion operator, cl
†, with

l ) (R, lb), creates an electron in internal excitation state ψR(rb-lb)
with energy εl bound to the site lb. The operator cl

†cl accounts
for the internal state of the ion, or binding orbital, located at
the crystal site lb. The eigenstates of H0 for which the eigenvalue
of cl

†cl vanishes for any l effectively reduce the operator, eq 3,
to just its first term, which represents a standard harmonic solid.
They describe the dynamics of the unperturbed crystal, with
all its ions in the ground state. The second and third terms of
H0 account for the possibility of the internal states of the crystal
constituents to be excited. Notice that off-diagonal terms of the
form

are not considered in H0. The terms in gql′l may contribute to
the phonon-assisted hybridization of the electronic states, turning
their energy levels into bands of finite width. H1 is a compara-
tively small term but may acquire importance at high enough
temperatures. Its neglect is usually referred to as the Condon
approximation.

The linear electron-phonon coupling coefficients of H0 have
the explicit expression

Fl'l(pck;T) ) ∫-∞

∞
dt exp{∑

q

|Gql'l|
2 ×

[-2 coth( pωq

2kBT) sin2(ωqt/2) + i sin(ωqt)]}exp[-i(ck - El'l/p)t]
2πp

(1)

∫-∞
∞

d(pck) Fl'l(pck;T) ) 1 (2)

H0 ) ∑
q

pωqaq
†aq + ∑

l

εlcl
†cl + ∑

ql

gqlcl
† cl(aq - aqj

†)

(3)

H1 ) ∑
l*l'

∑
q

gql'lcl'
† cl(aq - aqj

†) (l' * l) (4)
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where N is the number of atoms in the sample, Mlb is the mass
in site lb, and FbR(lb-lb′) is the expectation value of the force exerted
on the ion at lbby the one at lb′, both assumed in internal state R.
The coefficients |Gql′l|2 appearing in eq 1 are given by

The line shape function, eq 1, follows from calculating the
single photon transition probability per unit time of the
electromagnetic field, whose free Hamiltonian reads

when expressed in terms of the photon operators ηνkb of
wavevector kb and polarization index ν, coupled with the
electronic degrees of freedom of H0 by the interaction term

where Ql′lνkb is an electron-photon coupling coefficient, for any
final and thermally weighted initial state of the vibrational
modes. No restriction on the number of exchanged phonons in
each virtual process is made.

Employing the methods of quantum field theory, the math-
ematical procedure can be accomplished exact and rigorously,
with no additional assumptions,6 and hence, eq 1 is as general
and accurate as is H0. In particular, no assumption is made on
the size of the coefficients Gql′l, which determine the bandwidth.
Therefore, eq 1 is valid for either wide and narrow bands. An
expression similar to eq 1 has been written in the past,2 but
was derived from the less general theory of Huang and Rhys12

for color centers, based on the semiclassical Franck-Condon
principle.13,14 The semiclassical approach was believed to hold
just for wide bands because they are associated with shorter
transition times by the uncertainty principle. The recent more
rigorous treatment6 demonstrates that eq 1 can be safely
employed to study any optical feature, no matter the width.

The Transition Energy El′l. The eigenvalue spectrum of H0

is given by6

where the nonnegative numbers nq account for the excitation
state of the vibrational modes q, and ml stands for the excitation
state of the orbital at lb. The energy, εl, is the energy of the
electronic orbital l ) (R, lb) when the nuclei or ionic cores are
all fixed to their corresponding lattice sites, {lb}. On the other
hand, the crystal lattice, {lb}, is defined as the set of the
equilibrium positions of the nuclei when all the electronic
orbitals are in their ground state. Thus, the promotion of one

orbital from its ground state to an excited state, l, conveys a
local lattice distortion whose magnitude is governed by the
electron-phonon coefficients gql, which vanish when l represents
the ground state. Therefore, we can interpret

as the energy of an excited electronic orbital at lbcoupled to the
rest of the solid by the linear electron-phonon interaction. The
first term in the right-hand side of eq 10 represents the excitation
energy with no lattice deformation, and the second one is the
corresponding lattice relaxation energy.

The energy term, eq 10, does not depend on the vibrational
state, {nq}, of the solid. It is characterized by only the electronic
quantum number l and, hence, can be considered as the net
energy of the electronic orbital in the solid environment.
However, it depends on the elastic force constants of the solid
through the relaxation energy term.

Together with the intensity factor, spectroscopy experiments
measure the normalized distribution, Fl′l(pck; T). As shown by
eq 1, the transition energy

plays the role of a displacement along the pck axis in a plot of
the line function Fl′l. Hence, the temperature-independent
difference eq 11 determines the line position and is usually the
main value the spectral feature can retrieve. It is apparent from
the previous discussion that the line center, El′l, is in general
dependent on the precise nature of the solid environment, and
the spectra of a same molecule embedded in different solids
should exhibit line shiftings.

The Line Shape Is Always Asymmetric. The photon energy
distribution, eq 1, can be split as

with

an even function of pck - El′l, and

which is odd in pck - El′l. Therefore, the component Fl′l
(e)(pck; T)

of the exchanged electromagnetic energy distribution is sym-
metric with respect to the electronic excitation energy, El′l, and

gql ) � p
2NM lbωq

êq · ∑
lb′

eiqb· lb′ FbR( lb- lb′) (5)

Gql'l )
gql' - gql

pωq
(6)

H2 ) ∑
νkb
pckηνkb

† ηνkb (7)

H3 ) � c
V ∑

l'l

Ql'lνkbcl'
† cl(ηνkb - ην(-kb)

† ) (8)

El{nq} ) ∑
{nq}

pωqnq + ∑
l

(εl - ∑
q

|gql|
2

pωq
)ml

nq ) 0, 1, 2, ..., ml ) 0, 1 (9)

El ≡ εl - ∑
q

|gql|
2

pωq
(10)

El'l ) El' - El (11)

Fl'l(pck;T) ) Fl'l
(e)(pck;T) + Fl'l

(o)(pck;T) (12)

Fl'l
(e)(pck;T) )

∫-∞

∞
dt exp[-2 ∑

q

|Gql'l|
2 coth( pωq

2kBT) sin2(ωqt/2)] ×

cos[ ∑
q

|Gql'l|
2sin(ωqt)] cos[(ck - El'l/p)t]

2πp
(13)

Fl'l
(o)(pck;T) )

∫-∞

∞
dt exp[-2 ∑

q

|Gql'l|
2 coth( pωq

2kBT) sin2(ωqt/2)] ×

sin[ ∑
q

|Gql'l|
2sin(ωqt)] sin[(ck - El'l/p)t]

2πp
(14)
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function Fl′l
(o)(pck; T) is an antisymmetric correction. Because

Fl′l
(o) does not vanish identically, spectral maxima are expected

not to be at the exact transition energies El′l.
The adoption of a linear Debye model for the crystal acoustic

modes, which are the only contributors for narrow lines because
eventual optical and localized branches produce separate peaks,6

allows one to write eq 1 in a more explict form. Because very
low vibrational frequencies prove to contribute the most, the
linear dispersion relation is also expected to give good precision.
However, we will show next that the integrals in eq 1 can be
solved by introducing no specific model, but just three param-
eters having very clear physical meaning. Notwithstanding, the
particularization to a Debye model may be useful to rapidly
perceive the general properties of the functions involved, we
refer the reader to the previous literature,6 where an illustrative
example is given.

Asymptotic Line Shape for Weak Electron-phonon
Coupling

The absolute value of the subintegral function in eq 1 has a
maximum at t ) 0, which will be referred to as the central
maximum and decays in an oscillating manner to a constant as
|t| grows, which gives rise to the zero-phonon line. We will
refer to the side oscillating decays as the tails of the subintegral
function. If the coefficients |Gql′l|2 are big, the central maximum
is narrow and decays rapidly as a Gauss distribution, and the
integral converges quickly because the oscillating tails yield little
contribution. When the coefficients |Gql′l|2 are small, the integral
exhibits poor convergency, the central maximum has a marginal
relative role, and the tails contribute the most to the integral. In
the extreme case of |Gql′l|2 ) 0, the line shape function becomes
a δ-function.

From examining eqs 5 and 6, one can realize that Gql′l is
proportional to the mean force variations upon the orbital
excitation l f l′. Hence, for weak electron-phonon coupling,
what matters is the asymptotic behavior for large values of |t|.
As was done before,6 we make

where δ1 is a finite distribution that approaches a δ-function
for large t. Replacing in eq 1 and integrating, one obtains

where

is the half width at half-maximum (hwhm) of the distribution
and

governs the asymmetry.
Notice that we gave all credit to the tails for obtaining eq 16

and neglected the central maximum. However, as |ck - El′l/p|
is increased, the exponential factor in the subintegral function
of integral eq 1 will oscillate with increasing speed, and the
tails rapidly will average to zero. In such a case, the small
contribution of the central maximum will predominate. Hence,
the relative accuracy of the asymptotic distribution eq 16 will
be lost for large enough values of |pck - El′l|, where F l′l(pck; T)
is small.

Application to the Analysis of Spectral Features

We turn now to the main purpose of this article, which is to
relate recently published achievements,6 whose emphasis on the
mathematical derivations may obscure the reach of the results,
with the needs of experimental spectroscopists to interpret their
data. The first points are how to make sure that the data is in
the proper asymptotic limit and how the limitations of the line
shape asymptotic expression eq 16 may come to the fore.

To go right into the matter, consider the spectral peak of solid
NH3 observed by Gerakines et al.15 at k ) 1/λ ) 4993 cm-1

and T ) 10 K (Figure 8 of their paper). The open circles in
Figure 1 reproduce the experimental data with the top of the
peak normalized to unity; the solid curve represents the fit given
by eq 16. Although the peak of the distribution is at k ) 4993
cm-1, for the energy of the electronic transition, the fit gives
El′l/(hc) ) 4997.5 cm-1. Although the accuracy of the fit is
remarkable, the most stringent test of the theory is coming next.

Examine now eq 16 and notice that, due to the antisymmetric
component proportional to sin δ, the higher (lower) photon
energy side of Fl′l decays as (pck - El′l)-1 when δ > 0 (when
δ < 0). The other side of Fl′l (the steeper one) has a zero, but
we know from a previous discussion that the asymptotic
expression eq 16 ceases to be valid for Fl′l ≈ 0. Hence, the
zero in the steeper side of Fl′l determines a bound for the range
of the distribution.

The other bound follows from examining Figure 2, which
plots the logarithm of the (k - El′l/(hc))-1 side of the peak
represented in Figure 1 (corresponding to lower photon energies
because δ < 0) versus log |k - El′l/(hc)|. (Notice that now, k )
1/λ instead of k ) 2π/λ, as in the previous sections; we adapt
ourselves to the usual notation in spectroscopic studies). The
equation for the straight line appearing in Figure 2 is log F )
-log|k - El′l/(hc)| + 1.39. The coincidence of the experimental
points for large values of |k - El′l/(hc)| with the -1 slope line
is impressive. Observe that the |k - El′l/(hc)|-1 decay of the
less steep side of the peak is due to the dominance of the odd
term of the distribution, responsible for the asymmetry; the other
Lorentzian term decays as |k - El′l/(hc)|-2. Because the Fourier
transformation is a bijective operation, the accurate fit of the
data to the (k - El′l/(hc))-1 law shows that the substitution in
eq 15 of the exact functions with their asymptotic expressions
is the right analytic condition for the physics of narrow spectral
bands.

Finally, notice the three last experimental points at the
extreme right in Figure 2, defying the tendency to align along
the straight line log F ) -log |k - El′l/(hc)| + 1.39. They are
quite revealing because they mark the other bound for the range
in which the asymptotic approximation eq 15 does hold. The
plot shown in Figure 2 constitutes a good method for determin-

sin(ωqt)
ωq

≈ πδ1(ωq)
t
|t|
f { πδ(ωq) (t f ∞)

-πδ(ωq) (t f -∞),

[sin(ωqt/2)
ωq

]2

≈ π
2

δ1(ωq)|t| f
π
2

δ(ωq)|t| (t f (∞)

(15)

Fl'l(pck;T) ) 1
π

cos δl'lΓl'l(T) + sin δl'l(pck - El'l)
(pck - El'l)2 + [Γl'l(T)]2

(16)

Γl'l(T) ) π ∑
q

pωq
2|Gql'l|

2 coth( pωq

2kBT) δ1(ωq) (17)

δl'l ) π ∑
q

ωq|Gql'l|
2δ1(ωq) (18)
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ing from the experimental data the range in which eq 16 is
expected to hold. The best way to proceed is to determine first
the bound of the less abrupt side of the peak from the
logarithmic graph, as in Figure 2, and then to assign the other
bound to the point corresponding to the same value of Fl′l in
the steeper side. The position of the dotted lines in Figure 1
was chosen this way. The criterion of the zero of Fl′l in the
steeper side, which was explained before, is too extreme.

Together with linewidths of less than, or on the order of, the
Debye energy of the solid, low enough temperatures that keep
negligible the contribution of the term H1 are the basic
conditions for the validity of the asymptotic line shape function,
eq 16. On the basis of our experience, T < 20 K is sufficient in
most cases. However, the best procedure is to take data for at
least two different temperatures to make sure that the corre-
sponding theoretical fits give the same values for El′l and δl′l
(e.g., see Table 3 of Lagos et al.6).

Figure 3 shows another example of the application of eq 16
to a solid mixture of water and methane.16 Notice the much
narrower line width and the positive value for δ. In general, eq
16 gives the same good fit to any near,15,16 and far5,6 infrared

spectral features and allows one to obtain the transition energies
with four significative digits. Just a few experimental points
are displayed in Figure 3 to show better the fit of the theoretical
curve. Figure 4 shows the logarithmic plot of the data points in
the less steep side of the maximum of Figure 3. Again, the
experimental points rapidly go asymptotically to a straight line
of -1 slope with high precision.

Figure 5 shows what happens when a small constant is
uniformly added to the absorbance data. The data points do not
go asymptotically to a straight line with -1 slope and acquire
some curvature when the added constant is not very small (not
shown in Figure 5). Hence, logarithmic plots such as those of
Figures 2, 4, and 5 constitute a good test for the proper choice
of the background level in the analysis of the experimental
peaks. Background levels linear in the relative energies pck -
El′l or following more complex functions may be assayed for
peaks not completely resolved. A good criterion for choosing
the right parameters for the function representing the nonuniform
background profile should be given by the logarithmic plot of
the presumed net absorbance in the less steep side of the peak,
which should go asymptotically to a straight -1 slope line when
the parameters are well chosen.

In general, eq 16 fits most near- and far-infrared asymmetric
spectral features as well as it does for the two examples shown
in this section. In addition to their intrinsic interest, these two
cases were chosen from the quite extense literature because they

Figure 1. Infrared absorption by solid NH3 at T ) 10 K. Open circles
represent experimental data of Gerakines et al.,15 and the solid line
depicts eq 16 with the parameters given in the inset. The maximum is
at k ) 4993 cm-1 and the energy El′l of the electronic transition is
such that El′l/(hc) ) 4997.5 cm-1. The dashed vertical lines mark the
bounds within which eq 16 is accurate.

Figure 2. Logarithmic plot of the experimental points of the less abrupt
side of the spectral feature shown in Figure 1. The slope of the straight
line is -1, as predicted by eq 16. The three points in the extreme right
are beyond the bounds within which eq 16 is valid. This kind of plot
constitutes a useful tool for determining such bounds.

Figure 3. Data of Bernstein et al.16 on the infrared absorption by a
solid mixture of 20 parts of H2O to one of CH4. Solid line represents
eq 16.

Figure 4. Logarithmic plot of the experimental points of the less steep
side of the spectral peak of Figure 3 on the infrared absorption by a
solid mixture of 20 parts of H2O to one of CH4. The slope of the straight
line is -1.
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exhibit the absorption peaks in a particularly thorough manner.
We also take care of selecting peaks with fairly different
characteristics.

The Asymptotic Character of Equation 16. In the limit of
very small electron-phonon coupling coefficients, gql, the line
shape function Fl′l should go to a δ-function. Writing eq 5 for
|qb| , 1/a, where a is a typical lattice spacing, one has

However,

because it is the net mean force excerted on the ion at the lattice
site lb. Therefore, the coefficients gql vanish for |qb| ) 0 and are
linear in |qb| for small values of |qb|. Because we are considering
just acoustic modes, the frequencies, ωq, are also linear in |qb|
and vanish for |qb| ) 0. With this in mind, from examining eqs
5 and 6,

Consider now eqs 17 and 18 for Γl′l and δl′l. Because the
density of modes with respect to |qb| is proportional to |qb|2, the
coefficients multiplying δ1(ωq) in both equations vanish for |qb|
) 0. Therefore,

In other words, both Γl′l and δl′l vanish if δ1 is a true
δ-function, and the line shape function Fl′l becomes a δ-function
centered at pck ) El′l. Therefore, the finite width of the spectral
line demands that δ1 be a finite distribution.
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JP103459P

Figure 5. Data of Figures 3 and 4 with a small constant background
level added. The so-modified data do not go asymptotically to the
straight line with slope -1. This kind of logarithmic plot provides a
rapid and objective method for choosing the proper background level.

gql ) � p
2NM lbωq

êq · ∑
lb′

(1 + iqb· lb′)FbR( lb- lb′) (19)

∑
lb′

FbR( lb- lb′) ) 0 (20)

|Gql'l|
2 ∝ |qb|-1 for |qb| , 1/a (21)

Γl'l ) δl'l ) 0 if δ1(ωq) ) δ(ωq) (22)
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