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An alternative possibility to calculate tE would be to evaluate 
it from the known dielectric constant theories and converting them 
into mixing rules; but their number is large starting with the 
original one by Mossotti and Clausius. It was thus decided to 
use only those models that are based on spherical cavity intro- 
ducing no correlation factors. This narrowed our choice to only 
three equations given by Debye,% On~ager ,~ '  and Ki rk~ood .~*  
Suitable computer programs were written for each equation and 
least-squares fittings were performed by using eq 13. The es- 
timated standard e m  and the smoothing constants of eq 13 have 
been evaluated for tE by using the dielectric mixing rules and eq 
13. 

In order to obtain further evidence to support the formation 
of 1:l complexes in solution as shown by the isorefractive point 
in Figure 10, the total molar polarization, P,, for mixture has 
been calculated by using the Kirkwood-Frohlich equations4 

(23) 
Thus, if long-chain alkanes have molecular ordering in their pure 
states, it is possible to use P, values calculated from Kirkwood- 

P, = ( e ,  - n2)(2r ,  - n,,,2)Vm/9c, 

(56) Debye, P. Polar Molecules; The Chemical Catalog Co., Inc.: New 
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(59)  Riddick, J. A.; Bunger, W. B.; Sahno. T. K. Techniques of Chem- 

istry, Vol I I ,  Organic Solvents; Wiley: New York, 1986. 
(60) Chevalier, J. L. E.; Petrino, P. J.; Gaston-Bonhomme, Y. H. J.  Chem. 

Eng. Data 1990, 35. 206. 
(61) Awwad, A. M.; Salman, M. A. Fluid Phase Equilib. 1985,25, 195. 
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York, 1929. 

Frohlich equation as an approximate measure of molecular ori- 
entations of n-alkanes in the presence of bromoform. The cal- 
culated value of P, from eq 23 a t  x l  0.5 is around 17 f l 
cm3/mol proving the existence of 1:l weak molecular complexes 
as evidenced by maxima or minima of several excess properties 
in addition to the isorefractive point shown in Figure 10. 

Conclusions 
In the present paper we have attempted to study a number of 

excess thermodynamic functions based on the results of densities, 
viscosities, refractive indices, sound velocities, and dielectric 
constants of the mixtures of n-alkanes with bromoform. To the 
best of our knowledge these mixtures have not been studied 
previously in the literature. It is realized that for a prediction 
of the thermodynamic behavior of mixtures of n-alkanes with a 
nearly spherical molecule such as bromoform, it is necessary to 
have accurate data on thermodynamic excess functions. Further, 
the results of this study indicate the destruction or creation of order 
in n-alkanes and that there is a systematic variation of thermo- 
dynamic excess properties with the chain length of n-alkane 
molecules. 
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New developments in the continuum representation of solvent effects are presented. General expressions for the Helmholtz 
free energy of an arbitrary discrete charge distribution placed in spherical and spheroidal (oblate and prolate) cavities and 
surrounded by multiple dielectric layers are derived. The solutesolvent interaction energy is accounted for by using the 
multipole expansion. This dielectric partition permits the modeling of nonlinear dielectric effects (NLDE). These results 
are incorporated into quantum mechanical formalisms at the CND0/2 level, giving origin to prolate spheroidal (PS) generalized 
Born formula (GBF), PS modified GBF, and PS self-consistent multilayered reaction field with overlap schemes. Some 
of these schemes incorporate nonsphericity, NLDE, or both. The Miertus and Kysel parametrization of the soluttsolvent 
interaction is generalized. The electrostatic contributions to some selected thermodynamic properties are presented. The 
integrative value of this work is shown through the recuperation of the spherical cases and of some expressions presented 
by Abe and Abrahams. 

I. Introduction 
Continuum models are widely used to deal with solvent ef- 

fec t~ . ' -~  Their simplicity makes them suitable for a number of 
applications, especially for large molecules. These models are 
based on considering the solute molecule inside an empty cavity 
surrounded by a polarizable continuous dielectric medium. The 
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potential acting on the solute is found by using reaction field 
theory6 and then incorporated into quantum-mechanical for- 
malisms. 
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Continuum Representation of Solvent Effects 

The first work in this area considered a point charge in the 
center of a spherical cavity surrounded by a dielectric medium 
characterid by the macroscopic permittivity of the solvent.’ Its 
application (Born formula, BF) to ionic solvation showed a sys- 
tematic overestimation when compared with experimental dataa7 
This was due to the nonconsideration of three main factors: the 
solute’s higher multipoles, the real shape of the molecules, and 
the nonlinear dielectric effects (NLDE Le., dielectric saturation 
and electrostrictive phenomena). 

In subsequent works, the solute’s higher multipoles were in- 
cluded by introducing the permanent and induced dipole moments2 
or the multipole expansion for a nonpolarizabld and a polarizable9 
molecule. 

The nonsphericit of molecules was modeled by employing 

bitrary shape,I5J6 or a set of interlocking spheres to represent the 
~ o l u t e . ~ J ~  

NLDE are important because the main contributions to the 
electrostatic free energy of solvation come from the inner solvation 

Attempts to model these phenomena have considered 
the continuum as partitioned in concentric shells with different 
dielectric c ~ n s t a n t s . * J ~ * ~ ’ - ~ ~  Also, modifications of the BF have 
been p r0posed’~*~3J~  that are based on theoretical26M and em- 
piricaP expressions taking into account the radial dependence 
of the medium’s permittivity. However, the complexity of the 
theoretical problem and the relative lack of experimental data 
relating dielectric constants with high electric fields preclude the 
obtention of a realistic distance-dependent function. For this 
reason, the partition of the continuum is still the best way to predict 
solvation energies.”23 

Hereafter, we shall concentrate our attention on the methods 
incorporating solvent effects into the self-consistent field scheme 
via the generalized Born formula (GBF).32 GBF considers each 
atom as a charged conducting sphere immersed in the continu- 
ume3‘J3 The total solvation free energy is computed by summing 
the atomic contributions appearing as Born-like terms. This 
approach is called the self-consistent reaction field (SCRF). 
Because the spheres are considered not to be in contact, there is 
an overestimation of the solvation free energy,” like in classical 
calculations. An improvement of this model employs an empirical 
function, fi taking into account the interlocking of spheres (de- 
solvation proce~s).’~”~ This leads to the modified generalized 

spheroidal cavities,’ i- l 3  polyhedrical cavities,14 cavities of an ar- 
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Figure 1. 

Born formula (MGBF). Additionally, formal expressions for this 
process were given by Constancie1.S These models will be referred 
to as self-consistent reaction field with overlap (SCRF/O). The 
last amelioration consists in modeling NLDE effects.6f8 This 
is done by the explicit inclusion of the first solvation layer through 
the use of a local dielectric ~ o n s t a n t . ’ ~ . ~ J ~  This model is called 
self-consistent local reaction field with overlap (SCLRF/O). 

All the above representations were developed for a solute 
composed of spherical atoms. Consequently, a natural extension 
can be undertaken by considering the solute molecule as a set of 
interlocking prolate spheroidal atoms to account for the defor- 
mation of the atomic electronic densities when a molecule is 
formed. 

In a previous article we presented the reaction field potential 
and the Helmholtz free energy of an arbitrary discrete charge 
distribution in prolate and oblate spheroidal cavities embedded 
in two and three concentric dielectric continua, considering the 
complete multipolar expan~i0n.l~ 

This paper is organized as follows: In the Classical Aspects 
section, we shall consider the solvation free energy for spherical 
and spheroidal molecules. The full multipole expansion will be 
used, and the NLDE will be accounted for by means of a mul- 
tilayer partition of the medium. In the Quantum Aspects section, 
we present the derivation of a new modified generalized Born 
formula for multiple layers and its incorporation to the CNDO/2 
framework. Here, the solute is treated quantically and the solvent 
classically. 

Also we derive the prolate spheroidal Fock Hamiltonians and 
their generalization for any number of solvation layers. The 
formalism is presented for all the models mentioned above at the 
CND0/2 level of calculation. Finally, we present equations 
permitting the computation of the electrostatic contributions to 
some thermodynamic properties. 

11. Classical Aspects 
The problem of finding the reaction potential, P, for a discrete 

charge distribution within a cavity surrounded by one and two 
concentric dielectric continua of the same symmetry was solved 
for the spherical* and spheroidal (prolate and oblate) c a ~ e s . ~ ~ , ~  
The general procedure used here to obtain the Helmholtz free 
energy of a discrete charge distribution surrounded by any number 
of layers follows the one employed by Beveridge et a1.8 Essentially, 
it consists in solving Laplace’s equation in the appropriate co- 

~ ~ ~ ~ ~~ ~ 
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ordinate s y ~ t e m . ~ * l ~ - ~  The potential in the different regions is 
formulated by separate and related through-boundary conditions 
ensuring its continuity and the continuity of the normal component 
of the dielectric displacement vector across the limiting surfaces. 
These restrictions provide a system of equations for the potential 
coefficients. Their resolution leads to expressions for them. 
Finally, starting from the cavity's potential, VR is obtained. 

The work necessary to introduce the charge distribution re- 
versibly and isothermically into the previously cavitated solvent 
(insertion energy) is the Helmholtz free energy, A, that can be 
calculated for a discrete charge distribution as8J3,a 

M 

&= 1 
A = hx9kp(Fk)  (1) 

where 9k is the net charge of particle k located at Fb the summation 
being over all the charges. 

In the following, we deal with the case of a discrete charge 
distribution in a spherical cavity surrounded by three, four, and 
five dielectrics (Figure 1). Given that the mathematical work 
and the resulting expressions are similar to those appearing in the 
two-dielectric case,8 we shall present here only the results. 
However, we must stress that we carried out a full verification 
of our work by fusing consecutively two neighborhood shells, until 
the recuperation of the expressions presented in ref 8. These 
equations permitted us to obtain, for the first time, general ex- 
pressions for the reaction potential and the Helmholtz free energy 
for any number of layers. 

For p spherical layers (Figure 1). we have found the following 
expression for the generalized Helmholtz free energy: 

(n + l)tr@'+fl + n 
with the following definitions: 

L 
0 - 1 )  

(0 )  
X % 

€rX 

-(1 - Q') 

( n  + I)e,t,*x-*fl + n 

and the square of the multipole momen& 

Q,2 = 

. .  
(6) 

where the Pn"s are the associated Legendre polynomials of the 
first 

(41) Hobson. E. W .  Spherical and Ellipsoidal Harmonics; Cambridge 
University Press: New York. 193 I .  
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In eqs 2 and 3, the c i s  represent the permittivity of the di- 
electrics accordingly to Figure I ,  and the r,'s are the radii of the 
surfaces limiting the dielectrics. The second term of eq 2 vanishes 
when p = 0 (i.e., when no layers are present), recuperating eq 
15 of ref 8. The multilayer expression for the reaction potential 
can be easily obtained by using eqs 1 and 2. 

On the other hand, the resolution of the case of a prolate 
spheroidal cavity was camed out for zero," one, and twoI3 layers. 
Using the same techniques of our earlier work,I3 we solved for 
the three-layer case. The verification of the results was carried 
out by fusing two adjacent layers in order to recuperate the inferior 
case and by considering the case in which the eccentricity of the 
ellipsoid tends to zero in order to recuperate the spherical case. 
The mathematical work is based on eqs 27-36 of ref 40. These 
results and those presented in refs 13 and 40 permit the following 
extrapolation to p layers: 

A = (1/2to)C 
* +n 

n-0 m i - n  
Z rJ€h@),&)Qm2 + 

+n P 

n-0 m=-n i-I 
(1  /260) 5 c Crnm(Ex,*i),Xi) x 

where X is one of the spheroidal coordinates defining prolate 
surfaces. Also, in eq 7 we have defined the following relative 
dielectric permittivities: 

L r 

Here, the Q." are the associated Legendre polynomials of the 
second kind,a941 the pointed functions representing their first 
derivative. The square of the ellipsoidal multipoles is12.41 

where p and 6 are prolate spheroidal coordinates. 
As in the spherical case, the ex's describe the relative medium's 

permittivity of the dielectrics, and the Xis, the surfaces limiting 
these regions. 

The r,, functions obtained in this work are 

and can be considered as a generalization of the r quantity in- 
troduced by Abbot and BoltonZ8 and employed by Beveridge et 
aLa 

For the zero-layer case, the second term of the right side of 
eq 7 vanishes. 

The resolution of this problem for the oblate case is similar to 
that for the prolate one with the only difference being that it is 
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necessary to work in the complex plane by replacing X and d 
everywhere by iX and d/ i ,  re~pectively."'+~~ The resulting equations 
are, therefore, eqs 7-1 2 including these changes. 

Now, if we consider only the charge contribution (n  = 0) to 
the interaction energy (effective charge approximation) and start 
from eq 7 for the prolate case or if we take this contribution for 
p = 0 and 1 and work as in ref 13, we get 

where qo is the net charge of the distribution, X i  defines the ith 
prolate surface limiting the ith and ( i  + 1)th dielectrics, and e,,+, 
represents the bulk dielectric permittivity. 

Noting that the eccentricity of the ellipsoid is ei = X;l = d/r i  
and expanding the natural logarithm in a Taylor's series, we 
showed that I 

where we defined 
(D 

K , = l + E -  ,.12t+ 1 

By inserting eq 14 into eq 1, we get for the reaction potential 
P 

VR = -qc i-0 [:-&I: 
The spherical limit is attained when all the eccentricities tend 

to zero, disappearing the summation on t in eq 15 and the K,'s 
in eqs 14 and 16. This limit case can be also recuperated from 
eq 2. 

It is important to stress that KO is a convergent series expansion 
and that the number of terms to consider in a given case will 
depend on the convergence criterion imposed. By taking only the 
first term of eq 16, Le., by considering the nonlayered case, we 
obtain 

VR = -[ t -,].,KO 1 4  

which corresponds to the reaction potential for the spherical case 
multiplied by the factor KO. Then, the Rs can be considered as 
a corrective terms taking into account the loss of sphericity. When 
the spheroid tends to a sphere (Le., eo - 0), KO tends to the unity 
and VR tends to the nonlayered spherical case described in ref 8. 

111. Quantum Aspects 
In the following, we shall present the main lines for the de- 

rivation of the Fock Hamiltonian in the framework of the MGBF 
for the nonlayered spheroidal case. The basis of this work can 
be found in refs 4, 17, 39, and 42. 

In reaction field theory, the polarization of the solvent can be 
represented by a potential due to the creation at the surface X 
= A,, of a fictitious polarization charge given by35 

04"' = -aoq (18) 
where 

Accordingly, the reaction potential acting on the particle can 
be expressed as 

(42) Conatanciel. R. The effects of a polarizable environment represented 
by the generalized Born formula in Self Consistent quantum chemical cal- 
culations: application to the study of ambident reactions. In Qwnrum Theory 
of Chemical Reactions; Daudel, R., Pullman, A., Salem, L.. Veillard, A.. Eds.; 
D. Reidel: Dordrecth, 1981; Vol. 11, pp 73-98. 

VR = Oqpl/ro (20) 

Within the framework of the GBF each atom B of the solute, 
having a net charge qB, contributes to the total reaction field with 
the following Born-like term: 

= 'qPo1B/r0 (21) 

0qpoIe -aoqB (22) 
where 

In this case, the potential acting at p i n t  7, due to the polar- 
ization charge distribution induced in the solvent can be expressed 
in an atomic orbital basis [p, u, ...I as42 

P I (  P)  = -zoqpo'BroAB (24) 
B 

where P is the density matrix and P A B  are integrals representing 
the solutesolvent interaction. To get eq 24, we made the a p  
proximation that atomic eccentricities differ little from zero. 

From eq 24 and within the zero differential overlap approxi- 
mation, we get the following expression for the matrix elements 
of the solvent's reaction field operator:42 

[ Pl]pu = -6,uCoqpo'BrABo (25) 
B 

S,, being the Dirac 6 function. 
Up to now, the procedure we followed is totally analogous to 

that appearing in similar works, the only difference being the 
introduction of the nonsphericity factor, KO. 

To maintain the internal coherence of the model, the polari- 
zation charges must satisfy the condition" 

for all B. 
Physically, eq 26 means that in highly polarizable solvents the 

charge loses its capacity to interact electrostatically with other 
charges because of the screening produced by the solvent's po- 
larization. Condition 26 is satisfied by the spherical case but not 
for that studied here. This can be shown by introducing eqs 19 
and 20 into eq 26. To surmount this problem, we adopted the 
procedure of Constanciel and Contrera~,'~ i.e., we considered that 
the polarization charges can be partitioned into the following two 
contributions: 

OqPOIB = OqPl,aB + oqPolbB (27) 

(28) 

(29) 
It is easy to demonstrate that these polarization charges fulfill 

eq 26. In addition, it is necessary to redefine the reaction potential 
as 

with the definitions 
0 poll  4 ' B = -[ 1 / e 0  - 1 /ell ( 1 - KOB)qB 
Oqpo"bB = -[ 1 /eo - 1 /el]KOBqB 

[ = -6,,~(0qpo'sBparAB - oq"''bBro'bAB) (30) 
B 

where the new solutesolvent interaction integrals are given by 

(31) 
roSbAB = KAoroAB (32) 

ro"AB = (1 - KAo)pAB 

Inserting eqs 28, 29, 31, and 32 into eq 30, we get for the 
reaction field potential 

[ P ' ] , u  6,u[l / e 0  - 1 /cl1580ABqBpAB (33) 

with 
@'AB = 1 - ( P A  + P B  - 2PAPB) (34) 
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The corresponding Fock Hamiltonian is 

[Ffl,, = [FII,, + [V'I,, (35) 
where [F,],, corresponds to the Fock Hamiltonian for the isolated 
system. 

Introducing eq 33 into eq 35, we obtain 

Equation 36 corresponds to the RF level of approximation. As 
mentioned above, the spherical analogue of eq 36 overestimates 
the solvation free energy, given that the atoms of the solute are 
implicitly considered as lying in separate ~avities. '~ 

Now, we shall allow for the steric inhibition to solvation due 
to the specific neighborhood of each atomic center of the solute 
(SCRF/O scheme). Even when the general formalism and its 
application to the spherical case is in the l i t e r a t ~ r e , ~ ~ J ~ * ~ ~ . ~ ~  its 
application to the case treated here is not direct. For this reason 
we present in the following the main equations to solve this 
problem. The methodology consists in making allowance for an 
empirical corrective parameter characterizing the specific 
neighborhood effects on atom A?6 However, if we operate in the 
same way as in ref 35, the condition of electroneutrality for the 
whole system is not satisfied. The solution consists in carrying 
out the following partition of the polarization charges, solute- 
solvent interaction integrals, and reaction potential: 

Oqpol.aB = Oqpol,acB + 0 polrd 

(37) 
4 8 9  

' ? B  oqPoLbB = 0qPOhbcB + 0 POLbf 

0 p o l d B  0 polc dB (38) 

0 pol,bf 

0qpdrcg I 0qP01.Le(1 - fB), 4 

q B = oqpd'bdB (39) oqpD'bB = OqPolvbB(l - fB), 

rowAB = ro"AB( 1 -fA)r ro'adAB = roVaA$A (40) 

[ VP"'],, = - 6 ~ u ~ [ 0 ~ p o 1 C C ~ r o C C A ~  + oqp'rdBro'adAB + 
B 

Oqpl'bcBp'beAB + O~pol'bf~ro'MAB] (41) 

By introducing eqs 38-40 into eq 41 and carrying out a little 
algebra, we obtain the following expression for the reaction field 
operator with overlap: 

[ W I f i c  = 6,u[f/cO- I / ~ I ] C @ ' A B ( 1  - F A B ) q B p A B  (42) 
B 

where we have defined 

FAB = f A  + f B  - 2fAB (43) 

In eq 42, the term containing Fm has been interpreted as giving 
an account of a desolvation contribution to the reaction field 
potential.3' 

By using eqs 35 and 42, we get the following final form for the 
Fock operator: 

[Ffl,u [Fll,c + 6 p u [ 1 / e 0  - l /c l lC@oAB(l  - F A d q B p A B  
B 

(44) 
Equation 44 corresponds to the prolate spheroidal self-consistent 

Usually, the fA parameter appearing in eq 43 is empirically 
reaction field with overlap approach (SCRF/O). 

expressed as43 

f A  1/2 E S A B  (45) 
B Z A  

where SA, is the overlap integral between the 2sA and 2sg atomic 
orbitals of atoms A and B (1s for H atoms). Our experience with 
the spherical SCRF/O approach suggested that a better repre- 
sentation involves the square of SA, in eq 45." A further way 

(43) Contreras, R.; Gi3mez-Jeria, J. S. J .  Phys. Chem. 1984, 88, 1905. 
(44) Gbmez-Jeria, J. S.; Escobar-Ramirez, G.; Morala-Lagos, D. Proc. 

of the XWII Chilean Meeting of Chemistry; Santiago, Nov 27-Dec 1, 1989; 
Vol. 2, pp 709-71 I .  
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to compute the fA's is through the hydration shell model.'5 
Proceeding in an analogous way, it is possible to obtain the 

following expressions for the matrix elements of the self-consistent 
multilocal reaction field with overlap (SCMLRF/O): 

In eq 46, the parameter @AB is analogous to that in eq 34, the 
only difference being that the coefficients K A  and KB must be 
calculated by considering the eccentricities of the ith limiting 
surface of atoms A and B, respectively (see eq 34). The superscript 
i in the r A < S  refers to the interaction integrals of the solute with 
the polarization charges located on the ith surface. They can be 
evaluated according to the parametrization suggested by Miertus 
and K y ~ e l , ~ ~  enlarged by C~nt reras , )~  and generalized here as 
follows: 

(a) When the atomic orbitals belong to the same atom A, we 
make 

where r A  is the van der Waals radius of atom A and Ri is the 
thickness of the ith layer. 

(b) When the AOs belong to different nucleus, we use 

(49) 

r i A B  = [ R A B  + !4{(ri&&I + (riBB)-']]-' (50) 

where R A B  is the internuclear distance between atoms A and B. 
Also, it is possible to use the OrAB integrals directly provided by 
the CNDO/2 method as the electronic repulsion integrals. 

IV. Thermodynamic Aspects 
Here we shall present the general equations permitting the 

calculation of the electrostatic contributions to some selected 
thermodynamic properties. Starting from the relation for the 
Helmholtz free energy of the solute-solvent system (eq 1) and 
by using the reaction potential in the effective charge approxi- 
mation for the multilayer case, we get the following expression: 

Physically, this energy corresponds to the work required to 
transfer isothermically the solute from the gas phase to the pre- 
viously cavitated solvent without changing the nuclear and elec- 
tronic configurations (insertion energy).40 

On the other hand, it has been demonstrated through statis- 
tical-thermodynamical arguments that the insertion energy can 
be assimilated to the electrostatic contribution to the solute's 
Helmholtz free energy of solvation, Us." Now, if the charging 
process is carried out at constant pressure, L 4 ,  is the electrostatic 
contribution to the Gibbs free energy of solvation, AG,. Then 

c 

The electrostatic contribution to the solvation entropy can be 
found starting from 

(45) Hopfinger. A. J.  In ConJiwmational Properties of Macromolecules; 

(46) Miertus, S.; Kyd, 0. Chem. Phys. Lett. 19f9,65, 395. 
(47) Contreras, R.; Airman, A.; Gbmez-Jeria, J. S. Bo/. Soc. Chil. Quim. 

Academic Press: New York, 1973; p 70. 

1909, 34, 93. 
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where T and P are, respectively, the absolute temperature and 
the pressure. 

After taking the derivative and considering that the only tem- 
perature-dependent variables in AG, are the dielectric constants, 
it is possible to find the general relation 

Given that co does not depend on T,  the first derivative for I 
= 0 vanishes in all the cases. 

The solvation enthalpy can be easily obtained from eqs 52 and 
54. 

On the basis of the above relations, it is possible to compute 
the electrostatic contributions to other thermodynamical properties. 
For example, the electrostatic contribution to the partial molar 
volume is 

where No is Avogadro’s number. 

constant pressure is 
The electrostatic contribution to the heat caloric capacities at 

ACp = 

V. Discussion 
Equations 2 and 7 are, respectively, the general expressions for 

the helmholtz free energy of an arbitrary discrete charge dis- 
tribution in spherical and prolate spheroidal cavities surrounded 
by p finite dielectric layers of the same symmetry and immersed 
in a continuum. In these equations, each term of the summations 
on n gives the contribution to the interaction energy coming from 
the nth-order multipoles. Thus, the terms with n = 0 are the 
multilayered spherical and ellipsoidal counterparts of the Born 
charging energy, and those with n = 1 the multilayered Onsager 
analogues. 

The reaction field technique, in the form used here, does not 
show clearly the breakdown of A into contributions coming from 
each particular dielectric.** This problem arises from the fact 
that, in q s  2 and 7, each term incor rates all the dielectric 

However, for any given number of layers, it is possible to fully 
expand and reorder A in order to find thest contributions. Also, 
it is important to stress that for p layers, there are xf2$ values 
of t, (4 or c (4 @, c 1 0). 

Tke mult3ayered prolate spheroidal Born charging energy is 
given by eqs 13 or 14. Here, each value of i represents the 
contribution to A. due to the polarization charges on the surface 
X = These contributions depend on the eccentricity of the 
limiting surface and on the permittivities of both dielectrics. As 
NLDE generates an approximately sigmoidal behavior of e with 
X or r for ionic s0lvation,2~ it is expected that the contributions 

constants of the system through cro@ p” and ebb), respectively. 

of the more external shells will be negligible. 
From eq 14, it is easy to obtain the spherical Born charging 

energy in a multilayered medium (see eq 15). In this limit case 
and when no layer is present, eq 14 reduces to the Born equation.’ 
When p takes the values 1 and 2, eq 16 becomes those of Abraham 
et 

Equation 36 is the Fock Hamiltonian in the SCRF approach 
within the CNDO/2 framework, permitting us to take into account 
solvent effects by the incorporation of a reaction field operator 
in the effective charge approximation. Also, it considers the 
nonsphericity of atoms in molecules, modeling them as prolate 
spheroids. In the limit case, i.e., when atoms become spherical, 
KOB and BAB tend to unity and eq 36 becomes the Fock Hamil- 
tonian for the spherical SCRF.3Z3S Then, eq 36 is the first prolate 
spheroidal generalized Born’s formula. As mentioned above, the 
pm’s give an account of the deviation from sphericity. Given that 
in nonspherical cavities KA > 1, it follows that flm > 1, increasing 
the molecular energy and all the thermodynamical parameters. 

In eq 36, the second term of the right side is the quantum 
operator of the total reaction potential, and each term i represents 
the contribution to the reaction potential acting on atom A of the 
solute, due to the virtual polarization charges induced by the entire 
solute in the surface X = Xi. Also, each term B of the summation 
is a contribution to the total reaction potential over atom A of 
the solute, due to all the polarization charges induced in the solvent 
by atom B. 

Equation 44 is the Fock Hamiltonian in the SCRF/O level of 
approximation. Desolvation effects are modeled through the 
FAg)s.35’43 When atoms are not in contact, all the F A ~ s  tend to 
zero and we recuperate the SCRF scheme of eq 36. If we consider 
spherical atoms, we also recuperate the spherical SCRF 
s ~ h e m e . ~ ~ , ) ~  Then, eq 44 is the first prolate spheroidal modified 
generalized Born’s formula. The physical meaning of the terms 
appearing in eq 44 is similar to those in eq 36. 

To model nonlinear dielectric effects, we have generalized our 
work by considering that all the solute’s atoms are surrounded 
by multiple dielectric shells. This level of approximation is given 
by eq 46 and was called self-consistent multilayered reaction field 
with overlap (SCMLRF/O). In this scheme, if we consider no 
layers, we recuperate eq 44. On the other hand, the spherical limit 
of the monolayer case permits the recuperation of the local reaction 
field methodology previously publi~hed.~’J~ In eq 46, each term 
i of the summation represents the reaction potential on atom A 
due to the polarization charges lying on surface i .  

It is interesting to notice that in the original RF  framework, 
the a coefficients of the polarization charges (eq 18) depend only 
on the solvent’s dielectric With the development of 
the RF/O scheme the a’s become also dependent upon the 
overlapping fact~rs’~ and, in the LRF/O method, on the solvent’s 
~arti t i0n.l~ In this work we have shown that the a’s can be also 
dependent upon the cavity’s geometry through the Rs. This is 
logical given that all these parameters influence the electrical field 
acting on the solute. 

With respect to the partition of the polarization charges (eqs 
27 and 37), we shall not attempt to give a physical meaning 
because, as Constanciel pointed it out, this is only a mathematical 
artifact for maintaining the internal coherence of the modeLS 

Concerning the increasing effect of the solvation energetic due 
to the f s ,  in a previous article we showed that this is physically 
correct.’) On the other hand, given that in the same system the 
spherical cavity induces a more major NLDE than the spheroidal 
0neI3 and also that NLDEs have an effect opposite to that of the 
f s ,  there is a subtle equilibrium between these effects. Therefore, 
in the SCMLRF/O scheme it is important to select good values 
for the local dielectric constant. 

Regarding the solute-solvent interaction integrals, they can be 
computed accordingly to the Miertus and Kysel parametrization,46 
generalized here for multiple surfaces. 

A very interesting feature of the continuum models is that they 
permit the obtention of a complete picture of the thermodynamics 
of solvation and the incorporation of temperature-dependent ef- 
fectS.34947 
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In the thermodynamics section we presented equations per- 
mitting the calculation of the electrostatic contributions to the 
solvation properties. They were obtained for the prolate spheroidal 
multilayer scheme with overlap. Other levels of approximation 
can be easily obtained. 

The SCF procedure carries out the optimization of the solvation 
free energy. The other thermodynamical properties are computed 
at the end of the SCF cycle by using the density matrix. Since 
the classical formalism considered the insertion of the solute in 
a frozen nuclear configurati~n,~ these expressions, including the 
Hamiltonians, can be used for relatively nonpolarizable solutes 
or for polarizable ones but immersed in a low-polarity medium. 
Also, to derive eqs 53-56, we considered in a first approach that 
the cavity’s volume is not temperature or pressure dependent. 
Finally, the atomic eccentricities must be small. 

The components of the solvent’s polarization can be divided 
into atomic, electronic, and orientational ones. In a first ap- 
proximation the atomic contribution can be neglected. In the inner 
solvation layers, especially the first one, the solvent molecules are 
strongly oriented by the solute’s electrical field. Therefore, in this 
case it is possible to consider only the electronic component of 
the polarization. In the external layers, the solute’s field is screened 
by the polarization charges, the solvent’s molecules being less 
oriented. This effect is accentuated by the thermal agitation, 
generating the so-called orientational polarization. On the basis 
of the above considerations, it is possible to see that the derivatives 
of e with Tare important only in the external layers. Then, in 
a strong approximation, we may consider only the bulk contri- 
bution to ASs. In this case, eq 54 reduces to 

This limit case was published for the spherical case.39 Its 
application to the study of the protonation of primary alkylamines 
in water showed an overestimation of MS. In light of the above 
discussion, it is expected that consideration of more layers will 
improve the results. 

In an analogous way, pressure variations affect more strongly 
the most external layers. Then, in a first approach it is possible 
to consider in eq 55 only the bulk’s contribution. 

For the optimum values of t, there are theories accounting for 
the radial dependence of the dielectric permitti~ities.~’-)l To our 
knowledge, no expression relating t to X has been published. 
However, as a first approach, it appears reasonable to change the 
radial symmetry of t ( r )  for the ellipsoidal case simply by sub- 
stituting A for r. The border conditions for t still hold, i.e., when 
X = b, c = 1 and when X = -, t = tg (see, for example, Block 
and Walker’s function in ref 27).  Then, optimum values of c can 
be found by averaging t(X) among the selected values of X that 
determinate the layer thickness. It is important to stress that 
theoretical expressions for t ( r )  have been developed considering 
ionic solvation. In neutral molecules, as the atomic net charges 
are small in relation to atomic ions, it is expected that NLDE be 
not very pronounced. This phenomenon also influences the de- 
rivatives of c. 

There are no homogeneous criteria for the best solvent’s par- 
tition. As a working rule it seems logical to consider layers with 
a thickness given by the solvent’s diameter. The number of shells 
to consider should be given by the distance at which NLDE are 
negligible. In water, this is accounted for in an approximate way 
by considering two layers plus the bulk r e g i ~ n . ’ ~ ~ ~ ~ . ~ ~  

There exist some empirical data about derivatives of t with 
respect to P and T for the bulk dielectric and in the neighborhood 
of atomic An alternative way to compute thermody- 
namical properties is to restrict the calculations to one layer model 
using these experimental values or to consider the derivatives as 
adjustable parameters. More refined solutions to this problem 
will be given only when theories accounting for the behavior of 
O , T , P )  appear. 

(48) Noyes, R. M. J .  Am. Chem. Soc. 1964,86,971. 

In the actual state of research, it is difficult to provide a good 
methodology to calculate atomic eccentricities (and therefore, KB, 
and @AB). Nevertheless, it appears reasonable to optimize these 
values in the framework of the SCRF/O methodology. After this 
procedure, we may use the models with layers because with the 
original values we may calculate the eccentricities of the layers. 
Other useful, but strong approximation, is to use the same ec- 
centricity for all the atoms. 

It is clear that for nonpolar molecules NLDE are not important 
and then the best election is to use the spherical or spheroidal 
nonlayered method (SCRF/O). This is also true for dipolar 
molecules and, apparently, for molecular monocharged ions such 
as acetate.49 However, it is possible to expect that for highly 
dipolar molecules, such as zwitterions or multicharged species, 
NLDE become important. In this case, a bilayered method could 
be the correct tool. 

The main contributions to the solvation energy are the elec- 
trostatic energy, the specific solutesolvent interaction energy, 
and the cavitation energy.18”.50 On the other hand, reaction field 
theory is restricted only to the evaluation of the electrostatic 
contribution. Thus, if specific solutesolvent effects are present, 
they should be taken into account by carrying out a mixture of 
continuum plus supermolecule calculations. If large molecules 
are considered, the cavitation energy becomes nonnegligible. This 
contribution can be evaluated through Monte Carlo simulations,5’ 
by scaled particle theory,s2 or by experimental  procedure^.^^^^^ 

Regarding quantum chemical calculations incorporating the 
spheroidal multilayered model, these can be done for approxi- 
mately spheroidal charged solutes, as in Rivail’s work,12 Le., by 
inserting the entire solute in a single cavity. The parameters d 
and c carr be computed as in refs 11, 12, and 55. 

In this last part, it is necessary to stress the integrative value 
of the formalisms above presented. Effectively, when we apply 
appropriate border conditions to the formulas developed here, they 
are r e d u d  to various expressions that appeared in the literature 
recently. We give a further example. If the dielectric layers 
become of infinitesimal thickness, we get for the spherical case 

Now, if we introduce into eq 58 Block and Walker’s function?’ 
we get 

where CB is the bulk’s dielectric permittivity. Equation 59 cor- 
responds to a modified Born’s formula due to Abe.2s 

A similar treatment for the spheroidal case leads to the new 
modified Born’s formula: 

This equation incorporates both the nonsphericity of molecular 
ions and the nonlinear dielectric effects. In the limit case when 
eo - 0, and remembering that eo = A,,-] = d/ro, eq 60 transforms 
into Abe’s modified Born formula (eq 59). 

In future works, we shall present numerical applications of these 
methodologies. 
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