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13C-NMR SPECTRA OF AZAnUORENONES 
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Assmcr.-The 13C-nmr chemical shifts of onychine (l-methyl4-aza8uoren-9-one) [l] 
were assigned with the aid ofheternnuclear 2D-nmr spectraand these results were used to inter- 
pret the 13C n m r  spectra of several other synthetic duorenones.  

Although onychine 111, the first 
azafluorenone alkaloid, was described 
over a decade ago ( l ) ,  the number of nat- 
ural products in this class has grown con- 
siderably only in the past couple of years 
with the discovery of a wide variety of 
mono-, di, and tri-substituted deriva- 
tives of this skeleton (2-7). The first 
13C-nmr data published for this series 
corresponded to onychine itself (8) ,  and 
the signal assignments were then based 
on the erroneous structure initially pro- 
posed for the alkaloid (1). We have now 
reproduced a literature synthesis of 
onychine (9) and recorded heteronuclear 
2D-nmr spectra to assign all the signals. 
In particular, a long-range 'H-13C 
chemical shift correlation spectrum 
(COLOC) suggested 13C signal attribu- 
tions that differ from some which have 
been recently published (10). 

The 13C-nmr spectrum of onychine 
117 showed the presence of seven carbon 
atoms bonded to hydrogen, ofwhich the 
one resonating at 17.0 pprn could be im- 
mediately assigned to the methyl group, 
while the heteronuclear COSY spectrum 
left no doubt that C-2 and C-3 were rep- 
resented by the signals at 125.5 and 
152.4 ppm, respectively. At this point, 
neither the C-51H-5 and C-8/H-8 peaks 
on one hand nor the C-6lH-6 and C-71 
H-7 peaks on the other could be assigned 
unambiguously. Of the quaternary car- 
bon signals, assignment of the one at 
192.8 ppm to C-9 was trivial and the 
one at 147.1 ppm could be attributed to 
C-1 because of its relatively strong in- 
tensity due to the nOe of the methyl pro- 
tons. A long-range 'H-13C chemical 
shift correlation spectrum (COLOC) 
confirmed the latter assumption and al- 

lowed the identification of several long 
range 'H-13C couplings. Thus, a corre- 
lation was observed between the car- 
bonyl carbon and the proton resonating 
at 7.58 ppm, which was therefore lo- 
cated at C-8; this proton was similarly 
correlated with a quaternary carbon res- 
onating at 142.7 ppm, assigned in con- 
sequence to C-4b. Stepwise analysis of 
the other long-range correlations in 
combination with the COSY results 
finished off the assignments shown in 
Table 1. A correlation observed between 
C-4b and the proton resonating at 7.50 
pprn led us to locate the latter to C-6. 
Both the H-5 (7.7 ppm) and H-7 (7.34 
ppm) are coupled with the carbon at 
134.5 ppm which corresponds to the C- 
8a. The COSY spectrum shows the cor- 
relation between the carbon atoms at 
120.4 and 130.5 ppm and the protons 
situated at positions 5 and 7,  respec- 
tively, which completes the assignment 
of the whole spectrum. 
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R, R2 R, R4 

1 H  H H H 
2 OMe H H H 
3 H  OMe H H 
4 H  H OMe H 
S H  H H OMe 
6 H  OMe OMe H 
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I1 
6 

2.54 
- 

6.87 
8.31 
- 
- 

7.70 
7.50 
7.34 
7.58 
- 
- 
- 

- I  

Proton 

CH, 

H-3 

- 
H-2 

- 
- 

H-5 
H-6 
H-7 
H-8 
- 
- 
- 

Carbon 

CH, c- 1 
C-2 
C-3 
C-4a 
C-4b 
C-5 
C-6 
c-7 
c-8 
C-8a 
c-9 
C-9a 
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17.0 
147.1 
125.5 
152.4 
164.8 
142.7 
120.4 
134.6 
130.5 
123.3 
134.5 
192.8 
130.4 

@IO) 

17.2 
147,l 
125.6 
152,7 
165,l 
134,9 
123.5 
130,6 
134,7 
120,6 
143,O 
192,7 
125,8 

Syntheses of the four benzene-ring 
monomethoxylated onychines 2-5 (1 1) 
and of the 6,7dimethoxy derivative 6, 
modeled on the above-mentioned onychine 
synthesis (9), have led to an extension of 
these results. With the 13C-nmr spec- 
trum of onychine as a reference, the as- 
signment of the spectra of its oxygenated 
derivatives was quite straightforward 
(Table 2). The deviations of the observed 
13C-nrnr chemical shifts of these syn- 
thetic onychine derivatives from calcu- 
lated values (13) based on our onychine 
assignments are clearly smaller than 

those found using the alternative inter- 
pretation of the onychine spectrum (10). 
We fehl that this circumstance supports 
our signal assignments. 
As may be seen in Table 2, the C- 

methyl group and pyridine ring reso- 
nances show little variation. The C-1 
signal was consistently stronger than 
those of most other quaternary carbon 
nuclei, as in the case of onychine, and a 
similar effect could be observed in some 
cases for C-9a. The methoxyl groups 
exhibited “normal” chemical shifts of 
55.8-56.5 ppm indicating that they lie 
in the plane of the benzene ring (12). 
The fact that in the C-5- and C-8- 
methoxylated compounds 2 and 5 the 
methoxyl resonances are not strongly af- 
fected by the neighboring pyridine ring 
or carbonyl function suggests that the 
conformationally mobile group is turned 
away from the magnetically anisotropic 
moiety most of the time. 
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Carbon 

1-Me 
c- 1 
c-2 
c -3  
C-4a 
C-4b 
c-5 
C-6 
c-7 
c-8 
C-8a 
c-9 
C-9a 
OMe 
OMe 

2 

17.4 
147.3 
124.7 
152.9 
165.7 
125.4 
155.4 
118.5 
132.4 
116.1 
136.8 
193.3 
128.7 
56.3 
- 

3 

17.1 
147.0 
125.7’ 
152.2 
164.3b 
145.9 
105.9 
165.7b 
116.4 
126.1’ 
127.1 
191.9 
127.9 
55.9 
- 

Compound 

4 

17.3 
147.3 
124.8 
152.7 
165.6 
135.5’ 
122.1 
120.4 
162.3 
108.8 
136 .9  
193.0 
126.0 
55.8 
- 

5 

17.0 
147.2 
126.0 
152.1 
163.9 
144.9 
113.2’ 
137.1 
114.6‘ 
157.9 
122.7 
191.2 
131.2 
55.9 
- 

6 

17.0 
146.5 
125.2 
15 1.9 
165.0 
137.9 
103.5 
154.9 
151.2 
106.3 
126.3 
192.4 
128.0 
56.3 
56.5 

~~ 

‘sbvalues in the same column with the same superscript are interchangeable. 
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