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Stability analysis of a self-cycling
fermentation model with state-dependent
impulse times
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Communicated by J. Banasiak

A self-cycling fermenter is a batch fermenter subject to recurrent emptyings of liquid volume followed by the refilling with
new fresh substrate. This article constructs a modified model of self-cycling fermenter, which is described by an impulsive
differential equation at impulse-dependent times, which have been recently introduced. The main result is a set of con-
ditions depending of the fraction of removed volume, the concentration of new substrate introduced, and the maximal
length between two impulses, which ensure the existence and attractiveness of a periodic cycle. A second result provides
alternative conditions for the biomass extinction. Copyright © 2013 John Wiley & Sons, Ltd.
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1. Introduction

A self-cycling fermenter (SCF) [1–7] consists of a controlled batch fermentation process [8, 9] containing a limiting substrate, which is
degraded by a microbial population. At the same time, the device is subject to successive emptyings of a constant fraction p 2 .0, 1/
of its total volume, which is replaced by an equivalent input containing fresh substrate. In a SCF, the time’s interval between two
emptying/refilling actions is determined by some measure of the fermenter’s available outputs.

There are two processes in a batch fermenter: the consumption of the limiting substrate by the microorganisms and the growth of
the last one. As batch fermenters have no inputs (neither substrate nor microbial biomass), the substrate concentration is always de-
creasing, which eventually leads to the biomass starvation in the long term. In this context, under certain conditions, the introduction
of a sequence of emptying/refilling actions can promote the biomass persistence in a periodic way.

The SCF can be seen either as a complement or an alternative to the classical batch and fed-batch fermenters. Nevertheless, its
theoretical and experimental literature is considerably less extended. Some well-known applications of SCF are

� Sewage treatment: if the limiting substrate is a contaminant that is consumed by the biomass (e.g., ethanol and phenol are respec-
tively degraded by Acinetobacter calcoaceticus [1] and Pseudomonas putida [3]). The process is a cycle where the device is filled
with a fixed contaminant concentration S0 > 0 at the beginning of each refilling/emptying interval and partially released with a
lower concentration at the end.

� Production of biomass: in general, under certain conditions, it is expected that SCF can have better productivity outcomes than
batch processes. For example, in [10], the production of Eschericia coli in a SCF and a batch fermenter with glucose as limiting
substrate are compared: by using SCF, the productivity increased by 50% and the production time decreased by 40% compared
with a batch fermenter.

It is important to emphasize that a SCF has two time scales: the first one describing the continuous biological processes inside the fer-
menter: consumption of substrate and growth of cellular biomass. The second scale is given by the emptying/refilling actions, whose
duration is considerably shorter than the global process, but leads to big changes of the substrate level.

There exists several tools for the modeling of phenomena having two time scales. A prominent one is the theory of impulsive differ-
ential equations (IDEs) [11–13], which could consider the second scale as a pulse. In spite of IDE have been extensively used to modeling
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SCF [14–19], this work employs a new type of IDE whose main property is that the value of the substrate at the kth emptying/refilling
action determines (without a priori knowledge of the future continuous dynamics) the time of the next one. More details will be
given later.

The main result of this paper is a condition ensuring the existence of periodic solutions of the resulting impulsive model, which is de-
scribed in terms of the released fraction p of liquid volume and the maximal time between two consecutive emptying/refilling actions.
The proof is carried out by studying the qualitative and asymptotic properties of the stroboscopic map associated to the impulsive sys-
tem and the basic mathematical tools are the average Lyapunov functions [20, 21] (used to find conditions ensuring the nonextinction
of the microbial biomass) and some results about the !–limits of discrete dynamical systems.

The paper is organized as follows. In Section 2, we formulate an IDE describing the model and introduce some technical definitions. In
Section 3, we introduce the main results of the article. Section 4 studies some stroboscopic maps related to the model and the uniform
persistence problem. The main results are proved in Sections 5 and 6. Section 7 is devoted to some numerical examples.

2. The self-cycling fermenter mathematical model

To the best of our knowledge, the first model was introduced by Wincure et al. in [19] and subsequently generalized in a series of articles
[14–17] and [18]. In general, there are three processes to be described: (i) consumption of substrate; (ii) growth of the microorganisms;
and (iii) the device emptying and refilling. Given an initial instant t0, the first two processes take place in any time interval .tk , tkC1/,
with k 2 ZC, and the last one will be considered as a pulse taking place in the sequence ftkg of emptying/refilling instants.

2.1. Biological processes

We will introduce two simplifying assumptions: the consumed substrate is directly converted in new microorganisms, whose mortality
will be neglected. In consequence, between two consecutive emptying/refilling instants, that is, for any t 2 .tk , tkC1/, the behavior is
described by the system: (

Ps.t/D���1�.s.t//x.t/,

Px.t/D �.s.t//x.t/.
(1)

To explain (1), let us denote by Ms.t/ and Mx.t/ the masses, at time t 2 Œt0,C1/, of a limiting substrate and the microorganism,
respectively. The concentrations of substrate and microorganism (at time t � t0) in the device, with constant volume V , are denoted by
s.t/ and x.t/. In consequence, Ms.t/D Vs.t/ and Mx.t/D Vx.t/.

The growth rate (by unit of mass) of the microorganisms is described by a function �.s/ of the available substrate concentration s,
where � : Œ0,C1/! Œ0,C1/ satisfies:

(C1) �.�/ is continuously differentiable.
(C2) �.�/ is strictly increasing and �.0/D 0.
(C3) �0.s/� �0.0/ <C1 for any s� 0.

The parameter � > 0 denotes the conversion factor of consumption in new biomass by unit time. Hence, between two consecutive
emptying/refilling instants, the variation of the substrate and microbial masses are respectively given by M0s.t/ D ��

�1�.s.t//Vx.t/
and M0x.t/D �.s.t//Vx.t/. Finally, we obtain (1) by dropping the volume.

2.2. Emptying/refilling instants

We will consider the concurrence of two actions at tD tk : the emptying of a proportion p 2 .0, 1/ of the whole volume and the refilling
of the same volume with a substrate concentration S0. The process is summarized by the diagrams:

By denoting q D 1� p and using the fact that the external flow to the tank does not have microorganisms, we can deduce that the
concentrations at the instant tD tk vary according to: (

s.tC/D qs.t/C pS0,

x.tC/D qx.t/,
(2)

where s.tC/D lim
r!t,r>t

s.r/ and x.tC/D lim
r!t,r>t

x.r/.
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The coupling of (1)–(2) determines the following IDE:8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

Ps.t/D���1�.s.t//x.t/,
Px.t/D �.s.t//x.t/,

�
t¤ tk ,

s.tC/D q s.t/C p S0

x.tC/D q x.t/

�
tD tk .

s.t0/ 2 Œ0, S0� and x.t0/ > 0.

(3)

The sequence of emptying/refilling instants ftkg can be defined by several ways, which determine the type and the properties of the
resulting IDE:

� A usual choice is to define ftkg as the times when the trajectories in the phase space reach the line of a prefixed substrate level sD Ns,
this approach has been followed in the related model [15, 16], which considers the mortality of the species and its generalization
[14, 18], where non-monotone functions �.�/ are considered.

� In [17], the system (3) has a substrate dependent yield coefficient � D �.s/ and the times tk are defined when the microbial
biomass reaches a level x D Nx.

� The seminal model [19] adds a third equation to (3) describing the variation of oxygen and tk is defined when this variable de-
creases to a critical level. Some problems with the oxygen balance equation are pointed out in [6, pp.18–20], where an alternative
formulation is proposed.

� The model [22] considers several species fxig
n
iD1 in competition for the limiting substrate and the sequence is defined as tk D kT

with T > 0.

The last work is an example of IDE at fixed times (IDE-FT), whose theory is widely established and presents a development fashioned
along the lines of ODE theory [13]. On the other hand, the first three groups of models are examples of IDE at variable times (IDE-VT),
where the instants ftkg occur when the trajectories reach a predetermined set of hypersurfaces in the time–phase space. Its theory can
be found in [11, 23–25].

From a mathematical point of view, IDE-VT have intrinsic technical difficulties (see, e.g., [13] and [25] for a detailed discussion) as
the possible existence of a cluster point for ftkg (beating phenomenon [13]), nonuniqueness to the past, and loss of autonomy of
the systems. In addition, a practical IDE-VT implementation for a batch fermenter assumes the ability of carrying out certain online
measurements of the state variables; hereafter, we will relax these requirements.

2.3. Novelty of this work

In this work, we will introduce a sequence of emptying/refilling instants ftkg defined recursively as follows:

�tk D tkC1 � tk D �
�

s
�

tCk

��
, (4)

where � : ŒpS0, S0� ! Œ0,C1/ will be called the timing function. We point out that the domain of �.�/ is given by the third equation
of (3).

Equation (4) points out that the unique necessary information to calculate the .k C 1/th emptying/refilling instant is the substrate
level at time t D tk . This fact contrasts with the IDE-VT formalism, which needs to know the trajectory on an interval to the right of
t D tk . We emphasize that the dynamics associated to (3)–(4) leads to a new type of IDE: the IDE at impulse dependent times (IDE-IDT),
which have been simultaneously introduced by [26] in a bioeconomic context and Karafyllis [27] in a control theory framework, with
the name of hybrid systems with sampling partition generated by the system.

A preliminary IDE-IDT theory has been developed in [28]. On the other hand, applications to epidemiology and fisheries management
are presented in [29] and [30], respectively.

In this work, we will assume that �.�/ satisfies the following conditions:

(T1) �.�/ is differentiable, positive, increasing, and

�.S0/ <
1

�.S0/
ln

�
1C

�.S0/

qS0�0.0/

�
. (5)

(T2) For any y 2 .pS0, S0/, its derivative satisfies the inequality:

� 0.y/ <
1

�.S0/

�
1

S0 � y
�
�0.0/

�.S0/

h
e�.S

0/�.S0/ � 1
i�

. (6)

Remark 1

(i) Positiveness of �.�/ is a technical assumption introduced to avoid the beating phenomena.
(ii) The fact that �.�/ is monotonically increasing will imply that lower substrate concentrations at t D tCk (compared with higher

ones) must lead to shorter intervals of time before the next emptying/refilling action. This property can help to promote the
permanence of the biomass.

(iii) The inequality (5) implies the positiveness of the right part of (6) and is a technical assumption imposed by the stability analysis
described later.
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2.4. Preliminaries

Lemma 1
For any initial condition .s.t0/, x.t0// 2�, with:

�D
n
.s, x/ 2R2

CW s 2 Œ0, S0� and sC ��1x � 2S0
o

,

the system (3)–(4) has a unique solution t 2 Œt0,C1/ 7! .s.t/, x.t//, which remains in�, for any t � t0.

Proof
The existence and uniqueness follow from [28]. As the beating phenomena is excluded (Remark 1), it follows that the solution is defined
in Œt0,C1/.

By (3), we have that .s.t0/, x.t0// 2� implies that
�

s
�

tC0

�
, x
�

tC0

��
2�, because

s
�

tC0

�
D qs.t0/C pS0 < S0 and x

�
tC0

�
D qx.t0/ > 0.

The continuous part of (3) implies that t 7! s.t/ and t 7! x.t/ are respectively decreasing and increasing on .t0, t1�. By evaluating at
tD t1, we have

s.t1/ < s
�

tC0

�
< S0 and x.t1/ > x

�
tC0

�
> 0,

which means that s.t1/ < S0 and x.t1/ > 0. By following a recursive procedure, it can be proved that s.tk/ < S0 and x.tk/ > 0 for any
k 2N .

Finally, the change of variables wD sC ��1x leads to PwD 0 and

w.tkC1/D qw.tk/C pS0.

If w.t0/ 2 .0, S0�, then it is easy to verify that w.tk/ is a nondecreasing sequence convergent to S0. On the other hand, if x.t0/ 2

.S0, 2S0�, it is straightforward to prove that w.tk/ is strictly decreasing and the Lemma follows. �

Remark 2
The solutions of (3)–(4) determine a unique stroboscopic map:(

skC1 D '1.sk , xk/,

xkC1 D '2.sk , xk/,
(7)

where .sk , xk/ is a solution of (3)–(4) evaluated at t D tCk . Moreover, '1.�, �/ and '2.�, �/ can be deduced by the integral equation
corresponding to (3)–(4).

Definition 1
A fixed point p� D .s�, x�/ of (7) is

(i) Locally stable if there exists a ball centered at p� with radius ı > 0, Bı .p
�/, such that if .s0, x0/ 2 Bı .p

�/, then .sk , xk/ 2 Bı .p
�/ for

any k. Locally asymptotically stable if is locally stable and lim
k!C1

.sk , xk/D p�.

(ii) Globally asymptotically stable on a subset �� � � if is locally stable and, for any initial condition .s0, x0/ 2 ��, it follows that
lim

k!C1
.sk , xk/D p�.

Remark 3
Any fixed point .s�, x�/ of (7) leads to a �.s�/-periodic solution t 7! .s.t/, x.t// of (3)–(4) with

�
s.tCk /, x.tCk /

�
D .s�, x�/ for any k � 0.

Definition 2
A �.s�/-periodic solution t 7! .s.t/, x.t// of (3)–(4), with �tk D �.s

�/, is globally asymptotically stable on �� if .s�, x�/ is a fixed point
of (7) globally asymptotically stable on��.

3. Main results

Theorem 1
Assume that the timing function � W ŒpS0, S0�! Œ0,C1/ is continuous and positive. Then, there exists a constant biomass-free solution
t 7! .S0, 0/ of (3)–(4), which is globally asymptotically stable on�0 D f.s, x/ 2�W x D 0g.

Copyright © 2013 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014, 37 1460–1475

1
4

6
3



F. CÓRDOVA-LEPE, R. D. VALLE AND G. ROBLEDO

Proof
By following the lines of the proof of Lemma 1, it can be proved that any initial condition .s.t0/, 0/ 2 �0 leads to a unique solution

t 7! .s.t/, 0/ 2�0, where s.t/D s
�

tCk

�
for any t 2 .tk , tkC1�. In addition, the stroboscopic map (7) corresponding to this initial condition

is given by

s
�

tCkC1

�
D qs

�
tCk

�
C pS0 and x

�
tCkC1

�
D x

�
tCk

�
D 0

Finally, it is easy to see that s
�

tCk

�
! S0 as k!C1 and the result follows by Definition 2. �

The following results assume that the initial conditions have biomass, and its proof will be the consequence of a series of technical
results:

Theorem 2 (Existence of a periodic cycle)
Assume that the timing function � W ŒpS0, S0�! Œ0,C1/ satisfies the conditions (T1)–(T2). If the inequality

1

�.S0/
ln

�
1C

p

q

�
< �.S0/ (8)

is verified, then there exists a periodic positive solution t 7! .Os.t/, Ox.t// of (3)–(4), which is globally asymptotically stable on �C D
f.s, x/ 2�W x > 0g.

Theorem 3 (Washout of the biomass)
Assume that the timing function � W ŒpS0, S0�! Œ0,C1/ satisfies the conditions (T1)–(T2). If the inequalities

�.S0/�
1

�.S0/
ln

�
1C

p

q

�
<

1

�.S0/
ln

�
1C

�.S0/

qS0�0.0/

�
(9)

are satisfied, then the constant biomass-free solution t 7! .S0, 0/ of (3)–(4) is globally asymptotically stable on�C.

From a bioprocess point of view, of Theorems 2 and 3 prompt the existence of a trade-off between the fraction of removed volume
p and the maximal cycle duration �.S0/. Indeed,

� If the maximal time between two emptying/refilling actions is shorter than ln.1C p=q/=�.S0/, the process fails and concludes in
the extinction of the biomass in the long term since the resulting biomass growth at each cycle cannot compensate the average
of evacuated biomass.

� If �.S0/ > ln.1C p=q/=�.S0/, then the time between two emptying/refilling actions allows a sustainable growth of the biomass.

Remark 4
Observe that

(i) The inequalities (5) and (8) can be written as

1

1� p
< e�.S

0/�.S0/ < 1C
1

1� p

�.S0/

S0�0.0/
,

which allows to estimate an upper bound for the removed fraction p:

0< p <
�.S0/

S0�0.0/
< 1,

where the last bound can be deduced from (C3).
(ii) The left inequality of (5) is equivalent to

e�.s
0/�.s0/ <

1

1� p
.

A direct byproduct of Theorem 2 is the following result:

Corollary 1
If the timing function is constant �.�/D T satisfying

1

�.S0/
ln

�
1C

p

q

�
< T <

1

�.S0/
ln

�
1C

1

q

�.S0/

S0�0.0/

�
, (10)

then there exists a periodic positive solution t 7! .Os.t/, Ox.t// of (3)–(4), which is globally asymptotically stable on�C.

Nevertheless, we point out that this result is more restrictive than the obtained by Smith in [22, Section 3], which only requires the
left inequality of (10) to ensure the stability of a periodic solution.
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4. Some useful lemmata

The proof of Theorems 2 and 3 will be the consequence of a series of intermediate results about the stroboscopic map (7) and its asymp-
totic properties; we introduce a change of variables leading to a more tractable map. In addition, we will provide some conditions
ensuring either the extinction or the permanence of the biomass.

The change of variables wD sC ��1x and �D w � sD ��1x, leads to8̂̂̂<̂
ˆ̂:
Pw.t/D 0,
P�.t/D � .w.t/� �.t// �.t/,

�
t¤ tk ,

w.tC/D qw.t/C pS0,
�.tC/D q�.t/.

�
tD tk ,

(11)

and

�tk D tkC1 � tk D �
�

w
�

tCk

�
� �

�
tCk

��
. (12)

It is easy to verify that (11)–(12) is well defined by using the fact that �.�/D ��1x.�/, together with (C1)–(C2) and the invariance of the
set� under (3)–(4).

Lemma 2
The solutions of (11)–(12) determine a unique stroboscopic map:8<:

wkC1 D G1.wk , �k/D qwk C pS0,

�kC1 D G2.wk , �k/D q�k exp
�R �.wk��k/

0 �Œwk � 	.
 ; 0, �k/�d

�

,
(13)

where w
�

tCk

�
D wk , �k D �

�
tCk

�
and 
 7! 	.
 ; 0, �k/ is the unique solution of�

z0 D �.wk � z/z
z.0/D �k .

(14)

Proof
Let us consider an arbitrary solution t ! .w.t/, �.t// of (11) and its corresponding sequence ftkg of emptying/refilling instants
determined by (12).

Notice that if t 2 .tk , tkC1�, then w.t/ D w
�

tCk

�
. By denoting wk D w

�
tCk

�
for any k � 0, we can verify that the associated

stroboscopic map is

wkC1 D qwk C pS0.

Now, if t 2 .tk , tkC1�, we can deduce that

�
�

tCkC1

�
D q�

�
tCk

�
exp

 Z tkC�.wk��k/

tk

�Œwk � 	.r; tk , �k/�dr

!

D q�
�

tCk

�
exp

 Z �.wk��k/

0
�Œwk � 	.
 C tk ; tk , �k/�dr

!

D q�
�

tCk

�
exp

 Z �.wk��k/

0
�Œwk � 	.
 ; 0, �k/�dr

!
,

where the last equality is a consequence of the uniqueness of the solution of (14). �

An important byproduct of Lemma 2 is the boundedness of the sequence (13):

Corollary 2
The stroboscopic map (13) is bounded in the compact set:

�1 D
n
.w, �/ 2R2

CW 0� w � 2S0 and 0� �� 2S0
o

.

Notice that (13) has a triangular structure because the first equation is not dependent of the second one. Moreover, it is easy to see
that w.�/ is a step function satisfying

lim
k!C1

wk D S0 and lim
t!C1

w.t/D S0, (15)

Copyright © 2013 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014, 37 1460–1475
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which motivates to introduce the limit equation:8̂<̂
:

v0.t/D �ŒS0 � v.t/� v.t/, t¤ ˛k ,
v.tC/D qv.t/, tD ˛k ,

�˛k D �
�

S0 � v
�
˛Ck

��
.

(16)

The rest of the proof will be decomposed in several steps: firstly, we will study the stability properties of (16). Secondly, the uniform
persistence problem is addressed. Finally, we will study the stroboscopic map associated to (3).

4.1. Asymptotic behavior of the limit equation (16)

By following the lines of Lemma 2, we can deduce that a stroboscopic map associated to (16) is given by

v
�
˛CkC1

�
D qv

�
˛Ck

�
exp

0@Z �
�

S0�v
�
˛
C
k

��
0

�
h

S0 � V
�

t; 0, v
�
˛Ck

��i
dt

1A ,

where t 7! V.t; 0, v/ is the solution of the initial value problem:�
z0 D �.S0 � z/z
z.0/D v.

This map can be written as v
�
˛CkC1

�
D F

�
v
�
˛Ck

��
, with F : Œ0, qS0�! Œ0, qS0� defined as follows:

F.v/D qveW.v/, with W.v/D

Z �.S0�v/

0
�
h

S0 � V.s; 0, v/
i

ds. (17)

To study the asymptotic behavior of (17), we will employ a restatement of Lemma 2 from [30]:

Proposition 1
Let us consider a one-dimensional map: vkC1 D F.vk/with v0 2 Œ0, K�, where F : Œ0, K�! Œ0, K� satisfies the following properties:

(a) F.0/D 0 and F.K/ < K .
(b) F.�/ is differentiable and increasing.
(c) For any v 2 .0, K� it follows that .F.v/=v/0 < 0.

Then,

1. If F0.0/� 1, then it follows that vk ! 0 as k!1.
2. If F0.0/ > 1, then there exists a unique fixed point v� 2 .0, K/which is globally asymptotically stable on .0, K�.

Lemma 3
Assume that (T1) and (T2) are satisfied.

(i) If (8) is satisfied, then the stroboscopic map (17) has a globally stable (on .0, qS0�) fixed point �� 2 .0, qS0/with F0.��/ < 1.
(ii) If (9) is satisfied, then 0 is the unique fixed point of the stroboscopic map (17) and is globally stable (on Œ0, qS0�) with F0.0/� 1.

Proof
We will prove that F.�/ satisfies the hypotheses of Proposition 1 with K D qS0. Firstly, we will verify that the hypothesis (a) is satisfied:
note that F.0/D 0 and, to check F.qS0/ < qS0, we proceed by contradiction by assuming that there exists ˛Ck such that

0< v
�
˛Cj

�
< qS0 for any j 2 f0, 1, : : : , k � 1g and F

�
v
�
˛Ck

��
D v

�
˛CkC1

�
D qS0,

then it follows that v.˛kC1/D S0. In addition, by (16) we can observe that v0.t/D 0 and v.t/D S0 for any t 2
�
˛Ck ,˛kC1

i
, which implies

v
�
˛Ck

�
D qv.˛k/D S0, obtaining a contradiction with the inequality stated earlier.

The hypothesis (b) is satisfied because F0.v/D qeW.v/f1C vW0.v/g, with

W0.v/D��ŒS0 � V.�.S0 � v/; 0, v/�� 0.S0 � v/

�

Z �.S0�v/

0
�0
h

S0 � V.s; 0, v/
i @V

@v
.s; 0, v/ds.

By defining u.s; 0, v/D S0 � V.s; 0, v/ for any v 2 Œ0, qS0�, we have that F0.�/ > 0 if and only if

v

(
�Œu.�.S0 � v/; 0, v/�� 0.S0 � v/C

Z �.S0�v/

0
�0Œu.s; 0, v/�

@V

@v
.s; 0, v/ds

)
< 1, (18)1

4
6

6
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for any v 2 Œ0, qS0�.
To determine if (18) is satisfied, observe that s 7! .@V=@v/.s; 0, v/ is solution of the initial value problem:�

z0.s/D f�Œu.s; 0, v/���0Œu.s; 0, v/�V.s; 0, v/gz.s/,
z.0/D 1,

and by integral representation, we obtain that for any s 2 Œ0, �.y/�:

@V

@v
.s; 0, v/D exp

�Z s

0
f�.u.r; 0, v//��0.u.r; 0, v//V.r; 0, v/gdr

�
� e�.S

0/s.

Now, by using (C1)–(C2) and (T1) combined with 0 < u.s; 0, v/ < S0, the change of variables y D S0 � v 2 .pS0, S0/ and the last
inequality, it follows that

�Œu.�.y/; 0, v/�� 0.y/C

Z �.y/

0
�0Œu.s; 0, v/�

@V

@v
.s; 0, v/ds < �.S0/� 0.y/C�0.0/

Z �.y/

0
e�.S

0/s ds

< �.S0/� 0.y/C
�0.0/

�.S0/

h
e�.S

0/�.y/ � 1
i

for any y 2 .pS0, S0/. Now, by using this fact and noticing that the inequality (6) from (T2) is equivalent to

.S0 � y/

�
�.S0/� 0.y/C

�0.0/

�.S0/

h
e�.S

0/�.y/ � 1
i�
< 1,

which implies that (18) is satisfied.
The hypothesis (c) is satisfied because .F.v/=v/0 D qeW.v/W0.v/=v and by using the fact that W0.v/ is negative.

If (8) is verified, we have F0.0/D qeW.0/ D qe�.S
0/�.S0/ > 1 and Proposition 1 imply that (17) has a fixed point �� 2 .0, qS0/, which is

globally asymptotically stable for any initial condition in .0, qS0�. Finally, by following the proof of Proposition 1, it can be deduced that
0< F0.��/ < 1 and the statement (i) follows. Otherwise, F0.0/ < 1 is equivalent to (9) and (ii) can be proved in a similar way. �

4.2. Uniform persistence

The microbial species described by (3)–(4) is said to be uniformly persistent (see, e.g., [31] for details) if there exists ı > 0 independent
of the initial condition such that

lim inf
t!C1

x.t/ > ı.

Uniform persistence is a necessary condition for the self-cycling fermentation.

Lemma 4
Assume that (T1)–(T2) are verified.

(i) If (8) is satisfied, then there exists ˇ > 0 independent of �0, such that

lim inf
k!C1

�k > ˇ, (19)

for any initial condition of (13).
(ii) If (9) is satisfied, then lim

k!C1
�k D 0, for any initial condition of (13).

Proof
To prove (i), we will use theory of average Lyapunov functions for discrete dynamical systems (see, e.g., [20, 21] for details). Let us note
that the solutions of (13) define a discrete semiflow over the compact metric space�1.

Let us define the subset �1 D f.w, �/ 2�1W �D 0g � @�1. In addition, let us introduce the function P : �1 ! RC defined by
P.w, �/D � and notice that

(a) P.w, �/D 0 if and only if .w, �/ 2 �1.
(b) For any .w0, �0/ 2 �1, it follows that

P.wkC1, �kC1/D �kC1 D q exp

 Z �.wk/

0
�Œwk � 	.
 ; 0, 0/�d


!
�k

D qe�.wk/�.wk/�k D‰.wk/�k .

Copyright © 2013 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014, 37 1460–1475
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Notice that (8) implies that

‰.S0/D qe�.S
0/�.S0/ > 1.

By using this fact, together with (15) and continuity properties, it can be proved that

sup

8<:
k�1Y
jD0

‰.wj/W j � 1

9=;> 1.

Now, by following Corollary 2.3 from [20] (see also [21]), we have that �1 is a repellor, which is equivalent to (19) and the statement (i)
follows. To prove (ii), notice that Lemma 1 implies that

wk � �k � S0 and wk � 	.
 ; 0, �k/� S0,

this fact combined with (C2), (T1), and (9) implies the inequalities:

�kC1

�k
D q exp

 Z �.wk��k/

0
�Œwk � 	.
 ; 0, �k/�d


!
� qe�.S

0/�.S0/ < 1

and the result follows straightforwardly. �

An important consequence of Lemma 4 is the following corollary:

Corollary 3
Assume that (T1)–(T2) are verified.

(i) If (8) is verified, then the microbial species described by (3)–(4) is uniformly persistent.
(ii) If (9) is verified, then the microbial species satisfies lim

t!C1
x.t/D 0.

Proof
Notice that x.t/D ��.t/ is strictly increasing in .tk , tkC1� and satisfies

x
�

tCk

�
< x.t/� x.tkC1/D .1� p/�1x

�
tCkC1

�
, for any t 2 .tk , tkC1�. (20)

If (8) is verified, Lemma 4 implies the existence of ı D �ˇ > 0 (independent of the initial conditions) such that lim inf
t!C1

x.t/ > ı and (i)

follows.
On the other hand, if (9) is verified, Lemma 4 combined with (20) implies statement (ii). �

5. Proof of Theorem 2

Firstly, we will show the following discrete stability results:

Lemma 5
If (T1)–(T2) and (8) are satisfied, the unique fixed points of (13) are E0 D .S0, 0/ and E� D .S0, ��/, where �� is the non-trivial fixed point
(17). In addition, E� is locally asymptotically stable.

Proof
If . Nw, N�/ is a fixed point of (13), then it is easy to verify that G1. Nw, N�/ D q NwC pS0 D Nw if and only if Nw D S0. Now, we can observe that
the map

G2.S
0, �/D q� exp

 Z �.S0��/

0
�ŒS0 � 	.
 ; 0, �/�d


!
D F.�/

has two fixed points, a trivial one N�D 0 and N�D �� 2 .0, qS0/, whose existence was proved by using Lemma 3.
The linearization of (13) around E� leads to a triangular matrix whose diagonal terms are q 2 .0, 1/ and

@G1

@w
.w, z/

ˇ̌̌̌
E�
D q, and

@G2

@�
.w, �/

ˇ̌̌̌
E�
D qeZ.S0,��/

�
1C ��

@Z

@�
.S0, ��/

�
where Z.w, �/D

R �.w��/
0 �Œw � 	.s; 0, �/�ds and 	.s; 0, �/ is solution of the initial value problem�

z0 D z�.w � z/
z.0/D �.

(21)

1
4

6
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As .@G1=@w/.E�/D q 2 .0, 1/, the local asymptotic stability of E� follows if and only if j@G2=@�/.E�/j< 1.
By following the lines of the proof of Lemma 3, it can be proved that

@G2

@�
.w, �/

ˇ̌̌̌
E�
D qeZ.S0,��/

�
1C ��

@Z

@�
.S0, ��/

�
D F0.��/ < 1,

where the last inequality follows from Lemma 3 and (8). �

Lemma 6
If (T1)–(T2) and (8) are satisfied, then E� is globally asymptotically stable.

Proof
Let Eu0 D .w0, �0/ be any initial condition of (13) and let us define its orbit and !-limit respectively by

�.Eu0/D
˚

Gn.Eu0/W n� 0
�

where Gn D G ı � � � ı G„ ƒ‚ …
n times

and G.�/D .G1.�/, G2.�//,

with G1 and G2 defined in (13), and

!.Eu0/D

�
. Qw, Q�/W 9nk !C1 such that lim

k!C1
Gnk .Eu0/D . Qw, Q�/

�
.

It is straightforward to verify that if . Qw, Q�/ 2 !.Eu0/, then it follows that QwD S0. In addition, Lemma 4 implies that Q� > 0.
As !.Eu0/ is invariant and . Qw, Q�/D .S0, Q�/ 2 !.Eu0/, we can deduce that

�.S0, Q�/D
n

Gn.S0, Q�/D .S0, Gn
2.S

0, Q�//W n� 0
o
2 !.Eu0/.

On the other hand, notice that n 7! Gn
2.S

0, Q�/ is a solution of the map (17) with v0 D Q� and by using (T1)–(T2) together with Lemma 3,
we obtain that

lim
n!C1

Gn.S0, Q�/D .S0, ��/,

which implies that .S0, ��/ 2 !.Eu0/. Hence, there exists a subsequence fnkgk such that

lim
k!C1

Gnk .Eu0/D .S
0, ��/ 2 !.Eu0/. (22)

Finally, by using (22) combined with the local asymptotic stability of E�, we can conclude that Gn.Eu0/ enters the basin of attraction
of E� in a finite time and the Lemma follows. �

Now, by using wk D sk C �
�1xk and �k D wk � sk together with Lemma 6, we can deduce that the stroboscopic map (7) has a fixed

point .s�, x�/ D .S0 � ��, ���/, which is globally asymptotically stable on �C, and the Theorem follows by using Definition 2 and
Remark 3.

6. Proof of Theorem 3

The structure of the proof is similar to the previous one. Firstly, we have the stability results.

Lemma 7
If (T1)–(T2) and (9) are satisfied, then E0 D .S0, 0/ is the unique fixed point of (13) and is locally asymptotically stable.

Proof
By following the lines of the proof of Lemma 5, we know that if . Nw, N�/ is a fixed point of (13), then G1. Nw, N�/D q NwC pS0 D Nw if and only
if NwD S0, and by using Lemma 3 combined with (5), it follows that the map

G2.S
0, �/D q� exp

 Z �.S0��/

0
�ŒS0 � 	.
 ; 0, �/�d


!
D F.�/

has a unique fixed point N�D 0.
As before, the linearization of (13) around E0 leads to a triangular matrix whose diagonal terms are q 2 .0, 1/ and

@G1

@w
.w, z/

ˇ̌̌̌
E0
D q and

@G2

@�
.w, �/

ˇ̌̌̌
E0
D qe�.S

0/�.S0/ < 1,

which implies local asymptotic stability. �

Copyright © 2013 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014, 37 1460–1475
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Lemma 8
If (T1)–(T2) and (9) are satisfied, then the fixed point E0 of (13) is globally asymptotically stable on�C.

Proof
Let Eu0 2 �C be any initial condition of (13) and !.Eu0/ its !-limit. By using statement (ii) of Lemma 4, it can be proved that for any
. Qw, Q�/ 2 !.Eu0/, it follows that Q�D 0.

On the other hand, the invariance of !.Eu0/ combined with . Qw, Q�/D . Qw, 0/ 2 !.Eu0/ implies that

�. Qw, 0/D fGn. Qw, 0/D .Gn
1. Qw/, 0/W n� 0g 2 !.Eu0/.

Now, observe that k 7! Gk
1. Qw, 0/ is a solution of the discrete map:�

wkC1 D qwk C pS0

w0 D Qw,

and it is easy to verify that wk ! S0, which implies that E0 2 !.Eu0/.
Finally, the global stability follows by using E0 2 !.Eu0/ combined with its local asymptotic stability. �

As before, we can verify that (7) has a fixed point .S0 � ��, ���/, which is globally asymptotically stable on �C, and the Theorem
follows by using Definition 2 and Remark 3.

7. Numerical examples

When considering ethanol as limiting substrate and Acinetobacter calcoaceticus as the microbial species, the growth is usually described
by the Michaelis–Menten function:

�.s/D �max
s

ks C s
with �max > 0 and ks > 0, (23)

Figure 1. Graph of f.˛/ and e˛ . The fraction q 2 .0, 1/ satisfying (27) must be chosen such that if q�1 2 .1, y�/D .1, e˛� /, then ˛ 2 .˛�q ,˛Cq /.
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Figure 2. Convergence to the periodic solution of (3) obtained with timing function (24), the parameters (26), �max D 3=8 and qD 0.9. The substrate is convergent

to a periodic function centered around 0.011 while the biomass converges to a function lowerly bounded by 0.002, which ensures uniform persistence.

1
4

7
0

Copyright © 2013 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014, 37 1460–1475



F. CÓRDOVA-LEPE, R. D. VALLE AND G. ROBLEDO

which satisfies (C1)–(C3).
In addition, we will consider a timing function � W ŒpS0, S0�!RC defined as follows:

�.y/D
�max

qS0
.y � pS0/. (24)

By defining 
 D �.S0/
S0�0.0/

and ˛ D �.S0/�.S0/ (where �.S0/ D �max), it is easy to verify that (T1)–(T2) are implied by the inequality

q.e˛ � 1/ < 
.1� ˛/, which is equivalent to

1




e˛ � 1

1� ˛
D f .˛/ <

1

q
, for any ˛ 2 .0, 1/. (25)

Let us consider the kinetic parameters from [19]:

� D 0.73, �max D 0.6 Œ1=h�, and ks D 0.007 Œgr=L�, (26)

where h, gr, and L denote hours, grams and liters respectively. So that, if S0 D 0.014 Œgr=L�, then �0.0/ D 600=7 ŒL=.gr h/� and
�.S0/D 2=5 Œ1=h�. Finally, we obtain the additional parameters
 D 1=3 and ˛ D .2=5/�max.

7.1. Conditions for Theorem 2

Considering (8) in terms of
, ˛, and the inequality (25), the pair .q,˛/must satisfy

f .˛/ <
1

q
< e˛ , for any ˛ 2 .0, 1/. (27)

Notice that f .˛/ < e˛ if and only if ˛ 2 .0,˛�/ with ˛� � 0.27613. Because f .˛�/ D e˛� � 1.31802, we conclude that q�1 has to be
chosen in the interval .1, e˛�/, that is, q 2 Iq D .0.7587 : : : , 1/. According to Figure 1, given some q 2 Iq, the parameter ˛ has to be in

.˛�q ,˛Cq /, with f .˛Cq /D e˛
�
q D 1=q.

Figure 3. Graphs of f.˛/ and e˛ . The fraction q 2 .0, 1/ satisfying (28) could be chosen of two ways: (a) If q�1 2 .1, y�/, then ˛ 2 .0,˛�q /. (b) If q�1 2 .y� , 3=2/,

then ˛ 2 .0,˛Cq /.
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Figure 4. Washout of the biomass in (3) verified with timing function (24), the parameters (26), �max D 7=10 and qD 7=10.
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Figure 5. Idealized image of the periodic solution t 7! .Os.t/, Ox.t//.

For instance, if q D 0.9, then ˛�q � 0.1054 and ˛Cq � 0.21216. We can take ˛ D 15=100, which leads to �max D 3=8. The numerical
simulation of the trajectories t 7! s.t/ and t 7! x.t/, with the initial condition .s.0/, x.0//D .0.014, 0.015/, are presented in Figure 2 and
confirms our result.

7.2. Conditions for Theorem 3

Let us consider (9) in terms of
, ˛, and the inequality (25). These conditions can be summarized as

maxff .˛/, e˛g<
1

q
<

3

2
, for any ˛ 2 .0, 1/. (28)

If q�1 < f .˛�/ D e˛� , then from Figure 3, it can be deduced that ˛ has to be restricted to the interval .0,˛�q /. On the other hand, if

q�1 2 .e˛� , 3=2/D .1.31802 : : : , 3=2/, then ˛ 2 .0,˛Cq /.

For example, if q D 7=10 (i.e., q�1 � 1.4285), then ˛ has to be in .0,˛Cq / with ˛Cq � 0.29092. By choosing ˛ D 28=100, we obtain
�max D 7=10, and Figure 4 shows the numerical simulation (carried out with the previous initial conditions), and the washout of the
biomass is illustrated.

8. Discussion

Provided that the assumptions (T1)–(T2) are satisfied, we have deduced sufficient conditions ensuring either the existence and
attractiveness of a periodic cycle (R0 > 1) or the washout of biomass (R0 < 1), where

R0 D
�.S0/�.S0/

ln.1C p=q/
.

A key step in the proof of our main results is the existence and stability of a fixed point of the stroboscopic map xkC1 D F.xk/, with
F.�/ defined by (17). In this paper, the assumptions (T1)–(T2) were introduced to ensure the increasing monotonicity of F.�/ and to use
Proposition 1. This choice provides a simple study of the one-dimensional stroboscopic map but gives us conservative results. Less
restrictive conditions could be obtained by relaxing assumptions (T1)–(T2) but, it is still a pending task.
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Theorem 2 proves the existence of a globally asymptotically stable periodic solution t 7! .Os.t/, Ox.t// of (3)–(4). A careful lecture of
the proof shows the following properties described in Figure 5: (i) the function t 7! Os.t/ is strictly decreasing on .tk , tkC1/; and (ii) the
function t 7! Ox.t/ is strictly increasing on .tk , tkC1/. The values at the boundary are

Os.tCk /D s� D S0 � �� 2 .pS0, S0/ and Os.tkC1/D s�� D
s��pS0

1�p ,

Ox.tCk /D x� D ��� and Ox.tkC1/D x�C D
x�

1�p ,

where �� is the positive fixed point of the map (17).
Our result has some shortcomings and advantages from an applied point of view. Indeed, note that Theorem 2 only ensures that at

each emptying/refilling instant, the state variables can be asymptotically stabilized at a level .s�, x�/, which can be numerically esti-
mated but not analytically known. In spite that this result is weak compared with those presented in [16] and [18], where the levels of
substrate [16] and biomass [18] are measured online, which allows a stabilization in the required level, our model needs to measure the
substrate only at the recursive sequence of the emptying/refilling instants.

To obtain lower (resp. bigger) asymptotic levels of substrate (resp. biomass), we propose some possible strategies:

8.1. Optimization issues

As the substrate concentration of the positive periodic solution t ! .Os.t/, Ox.t// at the emptying/refilling instants, namely Os.tk/ D s��,
with tk D t0C k�.s�/, k 2N , is dependent of the fraction p, we have that

ds��
dp

.p/D�
1

.1� p/2

�
��.p/C .1� p/

d��

dp
.p/

�
. (29)

To determine the sign of (29), we use the identities

��.p/D F.��.p//D .1� p/��.p/eW.��.p//,

where W.�/ is defined in (17) and satisfies F0.v/D veW.v/1CW0.v/. Now, it is easy to deduce

d��

dp
.p/D�

F.��.p//

.1� p/
C F0.��.p//

d��

dp
.p/,

which implies that

d��

dp
.p/D�

1

.1� p/

��.p/

1� F0.��.p//
< 0

because 0< F0.��.p// < 1 (see Lemma 3 for details). Upon inserting in (29), we have that the periodic solution has a level of evacuated
substrate at tD tk , which is increasing with respect to the emptying/refilling fraction p, because

ds��
dp

.p/D
��.p/

.1� p/2
F0.��.p//

1� F0.��.p//
> 0.

From a sewage treatment point of view, lower levels s��.p/ of contaminant at the emptying/refiling instant can be obtained by
reducing the released liquid volume pV . Nevertheless, this volume is removed with a bigger frequency because

d

dp

�
1

�.s�.p//

�
D
� 0.s�.p//

�2.s�.p//

d��

dp
.p/ < 0.

By the reasons stated earlier, it is natural to state the problem of static optimization of the released liquid volume per unit of time:

max
p2.0,1/

˚.p/, where ˚.p/D
p

�.s�.p//
V ,

subject to the existence of the periodic solution.
Note that (if the conditions of Theorem 2 are satisfied) a fractionbp satisfying the first order condition is defined by the expression:

� 0.s�.Op//s�.Op/

�.s�.Op//
D

�
s�0.Op/Op

s�.Op/

��1

,

that is, the product of the elasticities of �.�/ and s�.�/ atbp is equal to 1.
On the other hand, from a biomass production point of view, we have that the production function of biomass by unit of time is

‰.p/D
pVx�C.p/

�.s�.p//
D
�pV

1� p

��.p/

�.S0 � ��.p//
.
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Provided that the conditions of Theorem 2 are satisfied, it can be proved that the production function is decreasing with respect to
p because

‰0.p/D�
�V��.p/

.1� p/2�2.s�.p//

�.s�/F0.��.p//C ��.p/� 0.s�.p//

1� F0.��.p//
< 0.

8.2. Chain of fermenters

We can construct a chain of two batch fermenter interconnected in series, where the output of the first device becomes the input of
the second one. The resulting IDE-IDT is given by the coupling of (3) with8̂̂̂<̂

ˆ̂:
Ps2.t/D���1�.s2.t//x2.t/,
Px2.t/D �.s2.t//x2.t/,

�
t¤ tk ,

s2.tC/D q s2.t/C p s1.t/,
x2.tC/D q x2.t/,

�
tD tk ,

where s2.�/ and x2.�/ denote the state variables of the second device and ftkg is still defined by (4) in the first fermenter. We conjecture
that (provided some additional conditions) the concentration of the limiting substrate and biomass can be stabilized in a level .s�2 , x�2 /,
where s�2 < s� and x�2 > x�. Similarly, larger chains of interconnected fermenters can also be constructed.

This chain and its generalization have direct applications in sewage treatment and biomass production because at each step, we can
either reduce the contaminant level or increase the biomass concentration. Nevertheless, to give mathematical proofs is an ongoing
work.

Another extension of our results is the following one:

8.3. Variable fraction of removed liquid volume

We can consider a sequence fpkg � .0, 1/ instead of a fixed emptying/refilling fraction. This idea is motivated by the possible perturba-
tions and uncertainties at each emptying/refilling action. We have in mind a sequence of type pk D pC ık , where p 2 .0, 1/ is a fixed
value and ık is a perturbation with properties

lim
k!C1

ık D ı Ð 0 or lim
K!C1

1

K

KX
kD1

ık D ı1 Ð 0,

the first case is an asymptotically constant perturbation and the second one is called an ergodic perturbation. We point out that the case
of periodic and almost periodic sequences are well known examples of ergodic perturbations [13].

In this framework, the resulting stroboscopic map (7) becomes a non autonomous system, where the classical theory of discrete
dynamical systems cannot be used. We expect to carry out an asymptotic analysis by using skew-product semi flows techniques [32].
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