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Abstract

Simple patch-occupancy models of competitive metacommunities have shown that coexistence is possi-
ble as long as there is a competition–colonization tradeoff such as that of superior competitors and dispers-
ers. In this paper, we present a model of competition between three species in a dynamic landscape, where
patches are being created and destroyed at a different rate. In our model, species interact according to a
linear non-transitive hierarchy, such that species Y3 outcompetes and can invade patches occupied by spe-
cies Y2 and this species in turn can outcompete and invade patches occupied by the inferior competitor Y1.
In this hierarchy, inferior competitors cannot invade patches of species with higher competitive ability.
Analytical results show that there are regions in the parameter space where coexistence can occur, as well
as regions where each of the species exists in isolation depending on species’ life-history traits associated
with their colonization abilities and extinction proneness as well as with the dynamics of habitat patches.
In our model, the condition for coexistence depends explicitly on patch dynamics, which in turn modulate
the limiting similarity for species coexistence. Coexistence in metacommunities inhabiting dynamic land-
scapes although possible is harder to attain than in static ones.
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0. Introduction

One of the fundamental characteristics of ecological systems is that they are spatially heteroge-
neous, which renders space as an important axis of ecological enquiry (e.g. [45]). Ecologists inter-
ested in the role of space envision populations as open systems, not independent from nearby
populations with which they interact through the exchange of individuals. This ensemble of inter-
acting populations is what is called a metapopulation or ‘population of populations’ as presented
by Richard Levins in two foundational papers [23,24]. Under the metapopulation paradigm, in
addition to the importance of local populations, there is an added emphasis on the dynamics
of the ensemble of local populations and the way they interact through migration. Many species
exist as metapopulations, and more are expected to do so, considering that the distribution of
habitats within landscapes is becoming increasingly patchy through habitat loss, degradation,
and fragmentation (see examples in [27,14,13]). Particularly this latter process, fragmentation,
is the largest and one of the most important of the many interacting components of global change
affecting ecological systems [47] and one of the main causes of species extinction. Landscapes sub-
jected to change through fragmentation represent one of the real world situations where metapop-
ulation theory and models have been shown to be particularly suited to understand species
persistence and population dynamics. The process of habitat fragmentation entails the creation
of discrete habitat patches whose effect is that local populations interact with each other through
the exchange of dispersing individuals, thus behaving as a metapopulation system [15].

The first metapopulation model was proposed by Levins [23,24]. This model assumes a set of
identical habitat patches with local populations going extinct and the empty patches being recol-
onized from the currently occupied ones. This model, of the patch-occupancy type, has proven to
be a simple and fruit-full way to understand the basic dynamical properties of metapopulations.
This success is reflected in its many subsequent modifications and applications to describe single-
species metapopulations (e.g. [11,12,7]), two-species (e.g. [18,37,10,30,31]), and multi-species inter-
actions in metacommunities (e.g., [44,17,21,30]). All these models assume that patches are not
only identical, but also static. This latter assumption means that patches are neither created
nor destroyed or that their dynamics is so slow that does not affect the dynamics of the popula-
tions inhabiting them. However, as mentioned above, the undergoing fragmentation of habitats
all across the globe and their effect on species extinction means that patches are being created
and destroyed at different rates and that this matters for species persistence. Following the lead
of Lande [22], Nee and May ([30], N&M hereafter) proposed a general model designed to under-
stand the effect of habitat destruction (characterized as a fraction of habitat unavailable for col-
onization) upon species interaction and persistence in patchy landscapes. The scenario modeled
by N&M consists of two competing species utilizing resources in the same habitat patches.
N&M demonstrated that habitat destruction might have counter-intuitive consequences: favoring
coexistence of both types, or the extinction of the superior competitor, thus favoring the persis-
tence of the inferior competitor when it is better at colonizing empty patches (a weedy strat-
egy). The simplicity and generality of this result has prompted its application to multi-species
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communities or metacommunities, under the assumption of an explicit competitive hierarchy and
the existence of a tradeoff between competition and colonization abilities [44,43,45,40] and has
fostered the development of spatially explicit models where the spatial pattern and rate of habitat
destruction have been shown to have an effect upon species interaction and persistence
[6,29,48,3,19,43,20].

In addition, even if fragmentation were not a problem, the fact that habitat patches are made of
living entities, such as shrubs, trees or single individuals, that recruit, grow, and eventually die,
means that patch dynamics is relevant to understand metapopulation dynamics [26,33,20,1]. In
this paper, our aim is to understand species coexistence in dynamic landscapes. Previous studies
of interspecific competition in a metapopulation context have made use of a simple competitive
hierarchy to model the effect of species upon each other [25,44]. However, these models assume
that the habitat is fixed (i.e., there is no creation nor destruction of patches) and that inferior com-
petitors are invisible for superior competitors so that the latter do not distinguish between empty
patches and patches occupied by competitively inferior species. For these models, it has been
shown that coexistence is possible as long as there is a competition–colonization tradeoff such that
superior competitors are per dispersers. However, it has not yet been explored if this condition
holds for metapopulations in dynamic landscapes. In this paper, we present a model to assess
the effect of patch dynamics upon coexistence in a competitive metacommunity. We use the
two-species model proposed by Mena-Lorca et al. [28] as our point of departure. However, in this
case we consider three species Y1, Y2, Y3, whose patch competitive abilities form a hierarchical
linear order, such that Y1 < Y2 < Y3, which implies that the competitively superior species can col-
onize empty patches and also displace competitively inferior species from already occupied ones.
In our model patches have dynamics of their own, being created and destroyed at different rates.
Our interest is in identifying the condition that allows for species coexistence and how it is affected
by patch dynamics. We show that species coexistence in dynamic landscapes depends upon species
life-history attributes as well as upon landscape characteristics, which jointly define a limiting sim-
ilarity criterion for coexistence.
1. Mathematical model

Metapopulation models share important similarities to infectious disease models (e.g.
[9,26,31,28]) such that the latter only require minor modifications to describe the dynamics of a
whole variety of ecological systems [5]. Similar to some epidemiological models that incorporate
among hosts differences in susceptibility to a disease, metapopulations models can be made more
realistic by incorporating differences in patch quality [26,20,16]. Patch quality in the model devel-
oped here is associated with higher or lower extinction rate of patches (i.e. patch mortality rates)
due to density-dependent effects. This definition of patch quality is derived from epidemiology
and underscore the fact that patches are usually other organisms, such as individual plants or
animals or groups of individuals conforming a structure such as forests patches. Thus, not only
infectious diseases can impose dynamics in the host (patch) population. Organisms that colonize
others require, depending upon time and spatial scale considerations, that models incorporate
patch dynamics to better describe the evolving nature of the interaction between organisms
and the patches they inhabit, whereas Hastings (2003) claims quality changes. Although most
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metapopulation models have assumed that patches are objects without dynamics, or whose
dynamics is too slow to be relevant for the organisms inhabiting them, recent theoretical (e.g.
[20,16]) and empirical evidences (e.g. [4,46,36,38,39]) have pointed out that patch demography
and dynamics do affect metapopulation persistence and patterns in metacommunities [35].

Our model envisions a landscape wherein habitat patches are dynamic, that is they are created
and destroyed. The number of habitat patches N available for colonization is created at a per
patch rate b and they are destroyed in a density-dependent fashion. We assume that the dynamics
of the habitat patches is of logistic type of the form
_N ¼ bN � hðNÞ;
where hðNÞ ¼ Nðeþ r
K NÞ, with K representing the total maximum allowable number of patches in

the system, N
K being the fraction of suitable patches [8] and r = b � e is the net growth rate since b

is the per patch rate of creation of new empty patches and e is the per patch destruction rate of
patches. Using a logistic type dynamics is justified in that we are dealing with biotic patches (e.g.,
plants and corals that are generated and die according to a demographic process. Species Y1, Y2,
Y3 occupy the empty habitat patches but are excluded from patches colonized by species that are
competitively superior. The competitive hierarchy follows a linear order of the form Y1 < Y2 < Y3.
Thus, in this model patches can be in four different states, denoted as follows:

V: the number of empty patches
Yi: the number of patches inhabited by species number i, i = 1,2,3

Therefore, the total number of patches is N = V + Y1 + Y2 + Y3. The patches being created are
initially empty and can be colonized by one of the three species at a rate Ci

Y i
N ; i ¼ 1; 2; 3, where Ci

represents the maximal patch colonization rate of species i. Because the habitat has a density-
dependent extinction rate h(N), the rate of extinction corresponding to empty patches is hðNÞ V

N
and hence the rate equation for empty patches is
dV
dt
¼ bN � C1V

Y 1

N
� C2V

Y 2

N
� C3V

Y 3

N
� hðNÞ V

N
:

We further consider that occupied patches become extinct at a rate vi, in addition to their back-
ground density-dependent extinction rate. This effect can be thought of as the negative effect of the
species upon their habitat patches, as for example when the habitat is also a food resource as in
host-parasite systems. Since species are aligned in a hierarchical way, the stronger competitor, spe-
cies j, will instantaneously outcompete and successfully invade all patches where the weaker spe-
cies i is present at a rate aijCj

Y j

N ; thus, we do not allow for multiple occupation of patches (see
[37,41]). In the above expression, the parameter aij can be interpreted as an index of habitat affin-
ity, such that

If aij > 1, the presence of the weaker species i facilitates the colonization of the species j, in com-
parison to the capacity of colonizing the empty patches. In this case, Yi patches become more
attractive for the superior competitor.
If aij < 1, it is easier for the stronger species j to colonize empty patches than the ones occupied
by species i.
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If aij = 1, the colonization of the species j to the patches either occupied by species i or empty
occurs at the same rate.

In this model, we assume that the patches Yj are neither invaded nor colonized by a species i;
thus, the equations for Y1, Y2, Y3, are
_V ¼ bN � C1V
Y 1

N
� C2V

Y 2

N
� C3V

Y 3

N
� hðNÞ V

N

_Y 1 ¼ C1V
Y 1

N
� a12C2Y 1

Y 2

N
� a13C3Y 1

Y 3

N
� v1Y 1 � hðNÞ Y 1

N

_Y 2 ¼ C2V
Y 2

N
� a23C3Y 2

Y 3

N
þ a12C2Y 1

Y 2

N
� v2Y 2 � hðNÞ Y 2

N

_Y 3 ¼ C3V
Y 3

N
þ a23C3Y 2

Y 3

N
þ a13C3Y 1

Y 3

N
� v3Y 3 � hðNÞ Y 3

N
:

ð1Þ
Thus, by adding up the preceding equations, we may have the equation for N:
dN
dt
¼ rN 1� N

K

� �
� v1Y 1 � v2Y 2 � v3Y 3: ð2Þ
Note that the model formed by Eqs. (1) and (2) is well posed; firstly, we have to take into account
that because N = V + Y1 + Y2 + Y3, the system has, in fact, four variables, so it suffices to analyze
system (1), and the region we are interested in is the compact
K ¼ fðV ; Y 1; Y 2; Y 3Þ : V þ Y 1 þ Y 2 þ Y 3 6 K; V ; Y 1; Y 2; Y 3 P 0g:
This system is positively invariant in K, since
V ¼ 0 implies
dV
dt
¼ bN ;
thus, V(t) P 0, "t P 0.
On the other hand, by using the equations in (1), we get that if Yi = 0, then dY i

dt ¼ 0, which in
turn says that the planes Yi = 0 are an invariant set for the system. Therefore, the solutions of
the system for initial values in R4

0þ remain inside R4
0þ. Now, by using Eq. (2), we see that

V + Y1 + Y2 + Y3 6 K. All of the preceding considerations guarantee that the solutions will al-
ways have positive or null components, and their sum will not exceed the capacity of the habitat.

To simplify the system formed by Eqs. (1) and (2), we define the following variables:
I1 ¼
Y 1

N
I2 ¼

Y 2

N
I3 ¼

Y 3

N
I0 ¼

V
N
:

With these new variables, our system (1) and (2) reduces to the four-variable system (I1, I2, I3,N),
as follows:

For each i, i = 1,2,3,
dI i

dt
¼

dY i
dt

N
� Y i

N

dN
dt

N
:
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Since
dN
dt

N
¼ r 1� N

K

� �
� v1I1 � v2I2 � v3I3
and
dY 1

dt

N
¼ C1I0I1 � a12C2I1I2 � a13C3I1I3 � v1I1 � eþ r

K
N

� �
I1;
thus we get, for the first species, the equation:
dI1

dt
¼ I1ðC1I0 � a12C2I2 � a13C3I3 � v1 � e� r þ v1I1 þ v2I2 þ v3I3Þ:
Now, since
I0 ¼ 1� ðI1 þ I2 þ I3Þ;
we have
dI1

dt
¼ I1fI1ðC1 þ v1Þ þ I2ð�C2a12 þ v2 � C1Þ � I3ð�v3 þ a13C3 þ C1Þ þ C1 � v1 � e� rg
in an analogous fashion; we have the equations for dI2

dt and dI3

dt .
To further simplify the analysis, we re-scale time according to the dynamics of the patches,

which is given by r. Thus
t ¼ s=r con s > 0:
Similarly, we define
ci ¼
Ci

r
ei ¼

vi

r
;

e0 ¼
e
r

h ¼ N
K
;

where h represents the fraction of suitable patches in the system [8]. The preceding operation al-
lows us to re-scale the system under analysis in terms of the dynamics of the patches where it is
embedded, thus linking explicitly metapopulation dynamics and patch dynamics. One may reduce
the system even more. The first equation, for example, reduces to
dI1

ds
¼ ð�c1 þ e1ÞI1 þ ð�c1 � a12c2 þ e2ÞI2 þ ð�c1 � a13c3 þ e3ÞI3 � e1 �

b
r
þ c1

� �
I1:
Since
r ¼ b� e () b
r
¼ 1þ e0;
by replacing the last expression dI1

ds , we get
dI1

ds
¼ ½ð�c1 þ e1ÞI1 þ ð�c1 � a12c2 þ e2ÞI2 þ ð�c1 � a13c3 þ e3ÞI3 � e1 � 1� e0 þ c1�I1:
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In a completely analogous way, we obtain the other equations that form the following system:
dI1

ds
¼ ½ð�c1 þ e1ÞI1 þ ð�c1 � a12c2 þ e2ÞI2 þ ð�c1 � a13c3 þ e3ÞI3 � e1 � 1� e0 þ c1�I1

dI2

ds
¼ ½ð�c2 þ a12c2 þ e1ÞI1 þ ð�c2 þ e2ÞI2 þ ð�c2 � a23c3 þ e3ÞI3 � e2 � 1� e0 þ c2�I2

dI3

ds
¼ ½ð�c3 þ a13c3 þ e1ÞI1 þ ð�c3 þ a23c3 þ e2ÞI2 þ ð�c3 þ e3ÞI3 � e3 � 1� e0 þ c3�I3

dh
ds
¼ ð1� h� e1I1 � e2I2 � e3I3Þh:

ð3Þ
From now on, we will work with this system in the compact region
K ¼ fðI1; I2; I3; hÞ 2 R4 : I1; I2; I3; h P 0; I1 þ I2 þ I3 6 1; h 6 1g;

where K is positively invariant since each plane Ii = 0, i = 1,2,3 and h = 0 is invariant and
dðI1 þ I2 þ I3Þ
ds I1þI2þI3¼1

¼ �e0 � h < 0
and dh
ds at h = 1 is negative.

Notice that the first three equations in (3) depend only on I1, I2, I3 and do not depend on h.
2. Equilibrium points

The equilibrium points are the solutions of the algebraic system
½ð�c1 þ e1ÞI1 þ ð�c1 � a12c2 þ e2ÞI2 þ ð�c1 � a13c3 þ e3ÞI3 � e1 � 1� e0 þ c1�I1 ¼ 0

½ð�c2 þ a12c2 þ e1ÞI1 þ ð�c2 þ e2ÞI2 þ ð�c2 � a23c3 þ e3ÞI3 � e2 � 1� e0 þ c2�I2 ¼ 0

½ð�c3 þ a13c3 þ e1ÞI1 þ ð�c3 þ a23c3 þ e2ÞI2 þ ð�c3 þ e3ÞI3 � e3 � 1� e0 þ c3�I3 ¼ 0

ð1� h� e1I1 � e2I2 � e3I3Þh ¼ 0:

ð4Þ
We will denote the equilibrium point as E = (I1, I2, I3,h). The trivial equilibrium point is
E0000 = (0,0,0,0); the equilibrium point for the empty habitat is E0001 = (0,0,0,1). Note that in
(4) the first three equations are independent of the last one. Now, if h 5 0, by using the last equa-
tion in (4), we get
h ¼ 1� e1I1 � e2I2 � e3I3 ð5Þ

and hence, to get the other equilibrium points it suffices to find their first three coordinates (by
using only the first three equations in (4)) and substituting these into (5) to find the fourth coor-
dinate of the equilibrium point. Note also that, for each P = (I1, I2, I3), there are two equilibria
that differ only in their fourth coordinate, that is, E = (P, 0) = (a,b,c, 0) and E = (P,h) =
(a,b,c, 1 � e1a � e2b � e3b).

These points may be classified into two groups, those corresponding to h = 0 or h > 0.
Although the equilibrium points with h = 0 are not biologically meaningful (since they imply that
there is no suitable habitat), their significance, which will become apparent once we know their
stability, resides in how this point is approached.
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2.1. Existence of only one species

If Ii = Ij = 0 and Ik > 0, with i, j,k 2 {1,2,3}, i, j 5 k we have that
I�k ¼ 1� 1þ e0

ck � ek
:

Now, if we define Rk ¼ ck
1þe0þek

, we have that
I�k ¼
ðek þ 1þ e0ÞðRk � 1Þ

ck � ek
:

Note that Rk P 1 implies ck P ek, and since I�k ¼ 1� 1þe0

ck�ek
, we have that Rk P 1 which implies

that 0 6 I�k 6 1. Thus, Rk is the basic reproductive number of theoretical epidemiology [2]. How-
ever, note that in this case Rk is not only a function of the life history of the species as in classical
Levin type metapopulation models, which is given by its colonization and extinction rates [26,8],
but it is also affected by the dynamics of the patches (see [20]). Because the quantity 1

1þeoþek
can be

interpreted as the average lifetime of patch k, Rk is equivalent to the average number of new col-
onizations produced by a patch in state k during its lifetime. Then, it becomes obvious that if
Rk > 1 empty patches will be colonized and the species will attain a positive equilibrium. Thus,
the non-trivial equilibrium points corresponding to each species in isolation are feasible if and
only if their basic reproductive number is greater than or equal to one, and they are
E1001 ¼ ðI�1; 0; 0; 1� e1I�1Þ, E0101 ¼ ð0; I�2; 0; 1� e2I�2Þ, E0011 ¼ ð0; 0; I�3; 1� e3I�3Þ, E1000 ¼ ðI�1; 0; 0; 0Þ,
E0100 ¼ ð0; I�2; 0; 0Þ, E0010 ¼ ð0; 0; I�3; 0Þ.

2.2. Two-species coexistence

If Ik = 0, with k 5 i, j, i < j, Ii 5 0 5 Ij, we define
Wc
ijðaijÞ ¼ aijcj þ ci � cj;

We
ijðaijÞ ¼ aijcj þ ei � ej;
where Wc
ijðaijÞ represents the net flux of empty patches that become patches j through i, discounted

by the direct colonizations of empty patches by the superior competitor j. This is a measure of the
relative importance of the indirect path, which is a reflection of the species’ competitive ability.
Similarly, We

ijðaijÞ represents the net flux of patches that are lost from i once direct losses from
j are discounted. In short, these terms represent the importance of the path aijcj (or competition
path) in comparison with the direct colonization or extinction paths. Note that, in a single-species
case, the quotient

Wc
ijðaijÞ

We
ijðaijÞ is equivalent to Levin’s basic reproductive number c

e. However, in the pres-

ent case it can be interpreted as a measure of the importance of the competitive path to the repro-

ductive number of the dominant species.
Let
P 110 ¼
1þ e0

We
12ða12Þ

þ e2 � c2

Wc
12ða12Þ

;
�ð1þ e0Þ
We

12ða12Þ
þ c1 � e1

Wc
12ða12Þ

; 0

� �
;

then E1101 = (P,h) and E1100 = (P, 0) are the equilibrium points in the absence of the strongest
competitor (species 3). In a completely analogous way as done in Mena-Lorca et al. [28], we
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use P101, P011 to obtain the equilibrium points E1011 and E0111. In summary, solutions (5) give a
total of 16 feasible equilibrium points with coordinates (I1, I2, I3,h).

2.3. Conditions for two-species coexistence

In this section, we will use species 1 and 2 without loss of generality, to represent typical one to
one species interaction. Due to the symmetry in our model equations, results for this case are anal-
ogous to the cases for species 1, 3 and 2, 3. We will now consider the equilibrium points of bio-
logical importance.

Given that we handle now a two-species model, we will simplify the notation by relabeling
Wc

12ða12Þ ¼ W1ðaÞ and We
12ða12Þ ¼ W2ðaÞ defined as
W1ðaÞ ¼ ac2 � ðc2 � c1Þ;
W2ðaÞ ¼ ac2 � ðe2 � e1Þ:
Hence, the equilibrium points where coexistence of both species is possible are
E1100 ¼
1þ e0

W2

þ e2 � c2

W1

;
�ð1þ e0Þ

W2

þ c1 � e1

W1

; 0; 0

� �
;

E1101 ¼
ð1þ e0Þ

W2

þ e2 � c2

W1

;
�ð1þ e0Þ

W2

þ c1 � e1

W1

; 0; h�
� �

;

where h� ¼ 1� e1I�12
1 � e2I�12

2 and I�12
1 ; I�12

2 represent the first and the second components of E1100,
respectively. With this change in notation, we can refer directly to Mena-Lorca et al. [28] when
needed.

Note that the first and the second coordinates of E1100 and E1101 must be positive, and this
holds if
e2

W1

c2

e2

� 1

� �
<

1þ e0

W2

<
e1

W1

c1

e1

� 1

� �
: ð6Þ
As the reader can see, this is a relation between reproductive numbers; the term in the middle cor-
responds, in the original parameters, to b/(aC2 � v2 + v1). So, since b is the gross rate of creation
of empty habitat, as b increases, the difference in the reproductive numbers of species that allows
their coexistence also increases. For example if b is large, then the term 1þe0

W2
is large too, and the

inferior competitor has to colonize empty patches at a higher rate to compensate the extra growth
of the superior competitor. This competitor can colonize both empty patches and patches colo-
nized by the inferior competitor and therefore it would occupy a larger proportion of the habitat
very quickly. This process forces the inferior competitor to increase its colonization ability in
order to avoid competitive exclusion by the superior one. On the other hand if b is small, the term
1þe0

W2
is also small and the inferior competitor can afford to be less efficient in colonization ability

since the abundance of the superior competitor is limited by the rate of habitat production. The
term 1þe0

W2
then sets a limiting similarity in colonization abilities (see also [44,21]), which depends

both on the attributes of the species and the landscape wherein it is embedded. To finish this dis-
cussion, note that if both reproductive numbers are equal to one, coexistence is not possible, and
the superior competitor wins.
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We define, following Mena-Lorca et al. [28],
f ðaÞ ¼ W1ðaÞ
W2ðaÞ

¼ a� ac

a� ae
;

which can be interpreted as the relative contribution of the competitive path to the reproductive
number of the dominant species or, alternatively, as the proportion of patches that a dominant
competitor will occupy if introduced in a population of patches occupied by the subdominant spe-
cies, where
ac ¼
c2 � c1

c2

;

ae ¼
e2 � e1

c2

:

Lemma 1

(a) If ac < ae, then E1100 and E1101 exist if and only if
a 2 f �1 c2 � e2

1þ e0

;
c1 � e1

1þ e0

� �
and a > ac: ð7Þ
(b) If ae < ac, then E1100 and E1101 exist if and only if
a 2 f �1 c1 � e1

1þ e0

;
c2 � e2

1þ e0

� �
and a < ac: ð8Þ
(c) E1000 and E1001 exist if and only if R1 > 1.
(d) E0100 and E0101 exist if and only if R2 > 1.
3. Stability of equilibrium points

Mathematically, the study of a two-species system is equivalent to the study of (3) on the plane
I3 = 0, for example. On that plane, the system is invariant as are the other two systems obtained
by setting Ii = 0 and h = 0. Let K3 be the set
K3 ¼ fðI1; I2; I3; hÞ 2 R4 : I3 ¼ 0; I1; I2; h P 0; I1 þ I2 6 1; h 6 1g;
and similarly for K0, K1 and K2. This is the system studied in Mena-Lorca et al. [28] where the
following results are proven.

Lemma 2. Each pair of equilibrium points that differs at most in the third coordinate is connected by
a heteroclitic orbit.

Given the preceding result, the following step is the stability of the equilibrium point E1100 in
the set K3 with h = 0, which we will denote by K0

3. For this, we establish the following:
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Theorem 3

(1) If condition (7) and ae < a hold, then E1100 is locally asymptotically stable, and so, it is globally
asymptotically stable in K0

3 deprived the axes I1 and I2.
(2) If, on the other hand, condition (8) and ae > a hold, then we have the same result as above.
Theorem 4

(1) The equilibrium point E1101 is globally asymptotically stable in K3 provided that E1101 is locally
asymptotically stable.

(2) There are no periodic orbits in K3 if E1101 is locally stable.
The proof of the stability of E1101 is provided in Mena-Lorca et al. [28].

Theorem 5. Assume that E1100 is locally asymptotically stable. Then, E1101 is globally stable in the
interior of K3.

Similarly, (global) stability can be shown for E0111, E1011, restricted to the 3 dimensional invari-
ant manifolds K1 and K2, respectively. The next theorem shows that under certain conditions all
three species persist in the community in
K ¼ fðI1; I2; I3; hÞ 2 R4 : I1; I2; I3; h P 0; I1 þ I2 þ I3 6 1; h 6 1g:
Theorem 6. Let X2 = {(I1, I2, I3, h) 2 K: I1 = 0 or I2 = 0 or I3 = 0}, X1 = K � X2. If
Wc

ijðaijÞ;We
ijðaijÞ have the same sign, Rk > 1, k = 1,2,3, a23 � 0 and a12 � 2 � a13 and
ðcj � ejÞ
Wc

ijðaijÞ
<

1þ e0

We
ijðaijÞ

<
ci � ei

Wc
ijðaijÞ

with i < j; i; j ¼ 1; 2; 3; ð9Þ
then X2 is a uniform strong repeller for X1, that is, there is some � > 0 such that
lim inf
t!1

dð/tðxÞ;X 2Þ > �; for all x 2 X 1;
where /t is the semiflow of system (3) in X1.

Proof. The proof is based on Theorem 4.5 in [42, p. 426] and we use his notation. Note that our
X 2 ¼

S3
j¼1Kj and since X2 is a closed set in a compact set K, X2 is compact.

Setting Ij = 0 in system (3), we get
dIj

ds ¼ 0 for all s, then each Kj (j = 1,2,3) is invariant for the
flow /. Analogously, if we choose h ¼ 0; dh

ds ¼ 0 for all s. Therefore,
Y 2 ¼ fx 2 X 2 : /tðxÞ 2 X 2;8t > 0g ¼ X 2:
Notice that Y2 could properly contain X2 but in this case these sets are equal. On the other hand, if
we set h = 1, we get dh

ds < 0, so K is positively invariant; therefore, X1 is also forward invariant for
the semiflow.

From the results given in Lemma 2 and Theorems 3–5, we know that the omega limit sets x(x)
for each x 2 X2 are contained in X2 and therefore we have that[
X2 ¼
x2X 2

xðxÞ
is the union of the fourteen equilibrium points Eijkl (with i, j,k, l 2 {0,1}) in X2.
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By analysis of the explicit eigenvalues and eigenvectors for all of the fourteen boundary
equilibria, we can claim that these points cannot be connected into a cyclic chain. To prove our
claim (and without loss of generality), we will study the case of K3.

The equilibrium points in K3 are E0000, E0001, E1000, E0100, E1001, E0101, E1100 and E1101, each
one having only one eigenvector with third non-zero component. By Theorem 5, E1101 is a global
attractor in the interior of K3 (since the corresponding hypotheses are satisfied, for instance, (9)
with i = 1, j = 2), therefore the equilibrium points in K3 cannot form a cyclic chain (the same
occurs with the invariant manifold K1 and K2) since this would contradict the globally attracting
character of E1101.

Given that, by the previous argument, the 8 equilibrium points cannot be cyclically connected
within K3, they still may connect with all the other 6 equilibria outside K3. Now, the points E1101,
E0111 and E1011 are global attractors in K1, K2 and K3, respectively. Then the connection must
happen through the fourth dimension. However, this one dimensional manifold has a tangent
spanned by an eigenvector with positive eigenvalue that does not live in X2 (therefore points into
X1). However, X1 is positively invariant and therefore cannot contain points that belong to a
cyclic chain since, in that case, one of the equilibrium points should have all corresponding
eigenvalues with negative real part which, by hypothesis, cannot be true. Thus X2 has an acyclic
isolated covering.

The following are the set of ‘fourth’ eigenvalues of each point:
G1101
2 ¼ G1100

2 ¼ ð�c3 þ a13c3 þ e1ÞI�12
1 þ ð�c3 þ a23c3 þ e2ÞI�12

2 ðR3 � 1Þð1þ e0 þ e3Þ
for the points E1100 and E1101;

G1011
2 ¼ G1010

2 ¼ ð�c2 þ a12c2 þ e1ÞI�13
1 þ ð�c2 � a23c3 þ e3ÞI�13

3 þ ðR2 � 1Þð1þ e0 þ e2Þ
for the points E1010 and E1011;

G0111
2 ¼ G0110

2 ¼ ð�c1 � a12c2 þ e2ÞI�23
2 þ ð�c1 � a13c3 þ e3ÞI�23

3 þ ðR1 � 1Þð1þ e0 þ e1Þ
for the points E0110 and E0111;
and since
G1101
2 > ½e1 þ e2 � 2c3 þ c3a13 þ c3a23� �minfI�12

1 ; I�12
2 g þ ðR3 � 1Þð1þ e0 þ e3Þ;

G1011
2 > ½e1 þ e3 � 2c2 þ c2a12 � c3a23� �minfI�13

1 ; I�13
3 g þ ðR2 � 1Þð1þ e0 þ e2Þ;

G0111
2 > ½e1 þ e3 � 2c2 þ c2a12 � c3a23� �minfI�23

2 ; I�23
3 g þ ðR1 � 1Þð1þ e0 þ e1Þ;
and Rk > 1, k = 1,2,3 and a23 � 0 and a12 � 2 � a13, by hypothesis, then the unstable manifiold
of each and every equilibrium point is contained in X1; so each part of the covering is a weak
repeller. On the basis of Thieme’s result, X2 is a uniform strong repeller for X1, showing that
the three-species coexistence is persistent at the metacommunity level. h
4. Conclusion

As implied by conditions (6) and more generally in (9), the coexistence of competing species in
dynamic landscapes, as well as their relative similarity in terms of fecundity and mortality or
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colonization and extinction depends as much on the attributes of species as on the dynamics attri-
butes of the landscape wherein they are embedded. Thus, the coexistence of species emerges as a
consequence of the interaction between species and the environmental setting that they inhabit. In
this sense, it is a relational property. Previous analysis of interspecific competition in metacommu-
nities (e.g. [30,44,43,30]) has neglected the dynamical properties of the patches competed for arriv-
ing to the conclusion that coexistence is possible as long as there is a tradeoff between competitive
ability and dispersal capability. However, as shown in (9) in dynamic landscapes a competition–
colonization tradeoff is not sufficient to assure coexistence because patch dynamics modulate the
limiting similarity among competing species. In this paper, we have explored the implications
upon the steady-states of variable habitat size. As in previous published results [32], we have
found that competitive exclusion and coexistence are outcomes that depend on the relative com-
petitive ability of the species and on the similarity in terms of colonization that the species must
possess in order to guarantee coexistence, but modulated by patch dynamics.Variable habitat size
introduces a whole range of conditions that determine coexistence. Our results indicate that, at
least for the case of patch density-dependence mortality (extinction), coexistence is rather a special
outcome of the interaction between competing species, and although coexistence is feasible the
conditions are much harder to be satisfied. We point out that the results that we have obtained
with the density-dependence function h(N) are immediately generalizable to a convex non-
decreasing function of N with the properties described by Pugliese [34]. This kind of function al-
lows for the partial decoupling of (3). Thus, our treatment of h(N) as a logistic density-dependent
term involves no loss of generality. Although it can be questioned that patches do actually under-
go density-dependent destruction or mortality, this is a realistic assumption as these models apply
both to patches and sites as large as local populations or as small as single individuals [44,43], and
in this latter case density-dependence is a realistic assumption and a standard way of modeling
theoretical populations.
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