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de Chile, Casilla 114-D, Santiago CP 6513677, Chile; †Instituto de Ecologı́a y Biodiversidad, Casilla 653, Santiago, Chile; §National Center for Ecological
Analysis and Synthesis, 735 State Street, Suite 300, Santa Barbara, CA 93101; and ¶The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501

Complex ecological and economic systems show fluctuations in
macroscopic quantities such as exchange rates, size of companies
or populations that follow non-Gaussian tent-shaped probability
distributions of growth rates with power-law decay, which sug-
gests that fluctuations in complex systems may be governed by
universal mechanisms, independent of particular details and idio-
syncrasies. We propose here that metabolic rate within individual
organisms may be considered as an example of an emergent
property of a complex system and test the hypothesis that the
probability distribution of fluctuations in the metabolic rate of
individuals has a ‘‘universal’’ form regardless of body size or
taxonomic affiliation. We examined data from 71 individuals
belonging to 25 vertebrate species (birds, mammals, and lizards).
We report three main results. First, for all these individuals and
species, the distribution of metabolic rate fluctuations follows a
tent-shaped distribution with power-law decay. Second, the stan-
dard deviation of metabolic rate fluctuations decays as a power-
law function of both average metabolic rate and body mass, with
exponents �0.352 and �1/4 respectively. Finally, we find that the
distributions of metabolic rate fluctuations for different organisms
can all be rescaled to a single parent distribution, supporting the
existence of general principles underlying the structure and func-
tioning of individual organisms.

allometry � body mass � Laplace distribution

L iving organisms have been described as the most complex
system in the universe, emerging from the activity of an

adaptive network of interacting components that allows energy,
materials, and information to be acquired, stored, distributed,
and transformed (1, 2), and whose end result is the maintenance
and reproduction of the network itself (3). A striking feature of
complex systems is that they show regularities in the behavior of
macroscopic variables, which emerge as the result of nonlinear
interactions among multiple components and because of the
competition of opposing control forces (4–6). These regularities
commonly take the form of simple scaling relationships or
power-laws (7, 8). A macroscopic variable that shows scaling
relationships is metabolic rate (VO2) (the rate at which an animal
consumes oxygen), which scales with body mass (M) such that
VO2 � Ma with ��1.

For over a century, biologists have documented and tried to
explain both the value of �, and the effects ecological factors
have on it (1, 9–17). Most of these studies focus on average values
of VO2 and M, and do not consider the temporal variability in
individual energy use. However, physiological variables, such as
cardiac and breathing dynamics, display complex rhythms, which
often show changes both with disease and aging (17–20). In this
context, the study of fluctuations in VO2 can shed light on the
determinants of metabolic scaling and provide a way to test
competing models and explanations. Indeed, work on complex
systems has shown that study of the scaling properties of
fluctuations in macroscopic quantities can provide insights on
the processes responsible for the macroscopic behavior, even in
the absence of detailed mechanistic descriptions of the func-
tioning of the system (4–6). Most comparative analyses of VO2
variability study circadian rhythms (21–24), and do not examine
high frequency variation. In this contribution, we argue that the

study of high frequency fluctuations in VO2 across different
species may provide insights on the processes determining its
dynamics and their interaction with body size and physiology.

In general terms, the rates of whole-body VO2 displayed by
animals represent the interaction between a supply component,
represented by the network that supplies metabolic substrates,
removes waste products and regulates activity and a demand
component, represented by the sum of cellular respiration rates
in various metabolically active organs within the whole organism.
Although the relative importance of supply and demand com-
ponents in accounting for metabolic rate and in particular for the
value of the scaling exponent � is still debated (1, 14, 16, 17), it
is accepted that to maintain homeostasis, living organisms must
allocate their available resources to meet the demands of dif-
ferent organs and their component tissues. This has for long been
recognized by physiological ecologists in the context of alloca-
tion to generic functions such as growth, reproduction, and
maintenance (25, 26). In this regard, the allocation of limited
resources to varying functions implies the existence of a complex
web of competing forces, which together drive the resultant
metabolism. Furthermore, some of the processes involved in the
supply of oxygen and its consumption at cellular level are usually
driven by competing forces, such as the case of respiratory and
cardiac systems, which respond to parasympathetic versus sym-
pathetic stimuli from the autonomic control system (27, 28).
These two characteristics, the emergence of a macroscopic
phenomenon (in this case whole-body VO2) from microscopic
interactions with a large number of degrees of freedom and the
competition of opposing control forces, are hallmarks of com-
plex systems such as those studied in statistical physics and
economy (4, 6).

In recent years, Stanley and coworkers (29–31) have studied
fluctuations in diverse complex systems, such as business firms,
countries, universities, and bird assemblages, and have shown
that despite the many striking differences setting them apart,
they all show non-Gaussian tent-shaped distributions of growth
rates with power-law decay. This has led to the proposition that
the fluctuations of complex systems are governed by universal
mechanisms, independent of particular details and idiosyncra-
sies (4, 5, 29, 31). If this is so, this hypothesis should hold true
in other complex systems, and thus we should expect the
statistical properties of fluctuations in VO2 of individual animals
to follow these universal laws. In this context, we aim to test the
working hypothesis that the distributions of VO2 f luctuations of
individual organisms in different species follow a tent shaped
distribution. Further, because biological rates, such as breathing
or heart rate, scale as M�1/4 (11, 32, 33), it can be expected that
the magnitude of relative fluctuations in VO2 should decrease
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with increasing body mass following a �1/4 power. This implies
that much of the variability in VO2 f luctuations can be accounted
for by rescaling the original distribution by its observed standard
deviation. We thus expect that all distributions, regardless of
species, sex, and size will collapse to an universal distribution of
fluctuations under rescaling.

Results
We studied VO2 time series for 71 individuals belonging to 25
species of small terrestrial vertebrates (10 bird species, 12 small
mammals, and 3 lizards) [see supporting information (SI) Table
1]. We found that, for all individuals studied, the conditional
probability density of VO2 f luctuations p(r�v) has a simple ‘‘tent’’
shape, although with different widths. Given that individuals of
the same species did not differ greatly in their body sizes, we
pooled the information from conspecific individuals, and then
compared the distributions of fluctuations between different
species (SI Table 2 shows results for individual organisms). Fig.
1 shows the results for a subset of the species we studied. This
tent-shaped distribution corresponds to the double exponential
or Laplace distribution (29, 34)

p�r�v� �
1

�2� r�v�
exp� �2 �r � �r� �

� r�v�
� [1]

where �r� and �r(v) correspond to the mean and standard
deviation of VO2 growth rates, respectively. A likelihood ratio
test statistic (34, 35) showed this fit to be statistically significant
for all of the species studied and different from a Gaussian
distribution, which is to be expected if system components vary
independently of each other (see SI Table 3 for tests results at
the species level). In agreement with this result the variation in
the width of the distribution of the VO2 growth rates, measured
by its standard deviation �r(v), is a function of �VO2�, the average
rate of oxygen consumption. Fig. 2A shows that despite residual
variation in the data, �r(v) scales as a power-law

�r�v� � �VO2�
� [2]

with an exponent � � �0.352 	 0.072 (ordinary least squares
regression estimate 	 1 SE, 95% confidence interval: �0.208 to
�0.496). On the other hand, �r(v) scales with body mass as

�r�v� � M� [3]

with � � �0.241 	 0.103 (ordinary least squares regression
estimate 	 1 SE, 95% confidence interval: �0.035 to �0.447),
which does not differ from the expected �1/4 exponent.

All these species show the same scale invariant probability
distribution of VO2 f luctuations, regardless of the differences in
their phylogeny, physiology, and body size, which suggests that
they are expressions of a more general phenomenon. If this is
indeed the case, we expect these distributions to show data
collapse under adequate rescaling (29, 31). Fig. 2B shows that
when we plot the scaled probability density function pscal �

2�r(v)p(r�v) against the scaled growth rate rscal � 
2[r �
�r(v)�]/�r(v), the observed distributions for all of the species do
indeed collapse, with data from all of the species converging
onto a single scaling curve pscal � exp(��rscal�).

Discussion
Our results show that the distribution of metabolic rate fluctu-
ations follows a tent-shaped distribution rather than the normal
distribution expected from the null model of a random multi-
plicative process. This is not so surprising if one considers that
such a null model implies that log(VO2) follows a random walk,
and hence is not regulated. However, metabolic rate is under
homeostatic regulation and must show dynamic feedback struc-

ture. A simple dynamical model showing such a feedback is the
biased random walk,

VO2�t � �t�
VO2�t�

� �k�1 � �1� for VO2 	 VO*2
1
k

�1 � �1� for VO2 
 VO*2
[4]
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where k is a constant �1, measuring the strength of the feedback
input biasing the random walk toward a preferred value, and �t

are uncorrelated Gaussian random numbers with zero mean and
variance ��

2 �� 1. For this well studied problem, r is distributed
according to Eq. 1 (29). Extensions of this model that include
more than one scale of regulation have been shown to generate
complex dynamics similar to those observed in other physiolog-
ical variables (36). Thus, the nonnormality of VO2 f luctuations
provides evidence of homeostatic regulation or feedbacks acting
on VO2.

It has been argued the tent-shaped distributions of growth rates
in complex systems may emerge if the units composing the system
evolve according to a random multiplicative growth process (e.g., a
mixture of lognormal distributions with different variances) (37,
38). However, for this explanation to hold in our system, the amount
of oxygen consumed by the units composing the system (i.e., cells,
tissues or organs) would need to be independent, with similar mean
and different variances. Notwithstanding that the assumption of
independent energy use is likely a strong one (see below), consid-
ering that energy is usually limited and its allocation to different
functions (growth, storage, and reproduction) and trade-offs have
fitness consequences (39) we cannot at present provide a definitive
test of this explanation, because such a test would require the
availability of measurements of metabolic rate dynamics at the level

of cells, tissues, and organs within living organisms. Further re-
search on the statistical patterns of VO2 dynamics within individuals
and across different species are needed to gain a better under-
standing of the nature of the homeostatic processes acting on this
emergent attribute of individual organisms.

Our second result is the power-law decay of the width of the
distribution p(r�v) as a function of both average metabolic rate and
body size. The simplest model to explain the dependence of �r(v)
on �VO2� would be to assume that an organism is made up of n
equally sized cells of mass mc, each consuming oxygen at indepen-
dent rates. The central limit theorem predicts �r(v) decays as n�1/2

or equivalently under this general assumption, as M�1/2 (37, 40). If
�VO2� is assumed to be proportional to n, we would also expect that
�r(v) � �VO2��1/2. However, the decay in VO2 fluctuations is much
slower, and both � and � are ��1/2 (� � �0.352 	 0.072 SE and
� � �0.241 	 0.103 SE), which suggests that cellular oxygen
consumption rates are not independent within an organism, further
reinforcing the existence of physiological feedbacks, which do not
fully synchronize all cells. On the other hand, if all cells were
strongly correlated, then the size of the organism should not matter,
and we should find that � � � � 0. Interestingly, it can be shown
that the scaling of VO2 fluctuations is related to the more widely
studied allometric scaling of VO2 by the following expression: � �
� 
 �. This predicts a value of � � �0.27 	 0.14 SE, which does
not differ from the observed �1/4 value. Future research may be
directed to examining whether dynamical extensions of existing
explanations of the allometry of VO2, either the supply limitation
(1) or the multiple control model (16) can predict statistical patterns
in VO2 variability.

In closing, we want to emphasize that individual organisms are
complex systems, the study of which could provide the basis for
a deeper understanding of complex ecological and economic
systems, which, unlike individuals, do not allow for controlled
experimentation. The universality of tent-shaped distributions
for VO2 f luctuations across individuals belonging to species that
differ in many regards, including the details of their respiratory
system, their thermal physiology, and body size, supports the
claim that complex biological systems show power-law depen-
dence in emergent quantities, the same as do other physical and
economic systems. Reconciling or resolving the apparent con-
tradiction between such universal patterns and the observed
diversity of form and function in animal taxa is an emerging
challenge for scientists working at the interface between evolu-
tionary biology, physiology, and complex systems sciences.

Materials and Methods
Determination of Individual Metabolic Rate. To study the scaling
properties of metabolic rate fluctuations, we recorded VO2 time
series for individual organisms at rest during observation periods
averaging 1 h. To determine VO2, we transferred individuals of
different species of small terrestrial vertebrates (mammals, birds,
and lizards) to the laboratory and housed them individually. VO2
was determined according to the following protocol for mea-
surements collected over a 3-h period during midmorning: Birds
were measured in dark metabolic chambers. Oxygen consump-
tion was measured in a Datacan V computerized open-flow
respirometry system (Sable Systems, Henderson, NV). The
metabolic chamber received dried air at a rate ranging from 500
to 1,000 ml/min from mass flow-controllers (Sierra Instruments,
Monterey, CA), which ensured adequate mixing in the chamber.
In all cases, the metabolic chambers allowed the animals a
limited amount of movement. It is important to note that,
although these movements could potentially increase the ob-
served metabolic rate, all measurements were done in the rest
phase of the circadian cycle of these species. Air passed through
CO2 and H2O absorbent granules of Baralyme and Drierite
respectively before and after passing through the chamber and
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Fig. 2. Scaling and universality of metabolic rate fluctuations. (A) Filled
circles show average standard deviation �r(v) of observed metabolic rate
fluctuations as a function of average metabolic rate �VO2�. The solid line shows
a least squares regression fit to the log transformed data, with slope � �
0.325 	 0.07. Error bars show one standard error. Also shown in open circles
are the data observed for each species. (B) Scaled probability density function
pscal � 
2�r(v)p(r�v) plotted against the scaled growth rate rscal � 
2[r �
�r(v)�]/�r(v) for all of the species shown in Fig. 1. Note that the scaled data
collapse onto the single scaling curve pscale � exp(��rscal�)
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was monitored every 5 s by an Applied Electrochemistry O2-
analyzer, model S-3A/I (Ametek, Pittsburgh, PA).

Birds and mammals were fed ad libitum with bird seed and
rabbit food pellets respectively, and lizards were fed mealworms
(Tenebrio molitor). Water was also provided ad libitum. Ambient
temperature (Ta) and photoperiod were held constant at 20 	
2°C and 12:12 light:dark. Animals were held for 1 and 2 days
before VO2 measurements and then fasted for 6–12 h. before
placement in metabolic chambers, at Ta within the thermoneu-
tral zone of each endothermic species (41–43). Standard met-
abolic rates of lizards were measured at Ta � 30°C. Individual
body size was measured by using a digital balance at the
beginning and at the end of each experiment. All experiments
with animal subjects were conducted according to current
Chilean law for ethical manipulation of laboratory animals and
under permits issued from Servicio Agrı́cola y Ganadero.

Data Processing and Analysis. To study the statistical properties of
fluctuations in VO2, we examine its variation within a single
organism during a given period (averaging 1 h of observation).
The fluctuations of a variable may be described by many
quantitative descriptors, such as their periodicity, amplitude, and
frequency spectrum (44). However, as a first approximation, we
choose as our measure of variability the growth rate of VO2 in
logarithmic scale, and so we define r � log[VO2(t��)/VO2(t)],
where VO2 (t) and VO2 (t � �) are the metabolic rates observed
for a given individual in time intervals t and t � �, respectively.
This measure has the advantage that it removes the effect of any
trends and hence is not affected by changes in the average value
of the variable (6). We also define v � log[�VO2�], the logarithm
of the average metabolic rate observed over the study period. We
then calculate the conditional probability density distribution,
p(r�v), of growth rates r for each species with a given v.

The simplest model for the fluctuations in VO2 is one that
assumes that it fluctuates independently of organism size and that
successive fluctuations are uncorrelated in time. These assumptions
can be formalized in a simple random multiplicative process, which
predicts that VO2 values should be log-normally distributed (28). A
direct consequence of this is that p(r�v) follows a Gaussian distri-
bution, which would show in our graphs as a parabola. We take this
as our null hypothesis for the fluctuations of VO2. On the other
hand, studies on other complex systems have shown that p(r�v) can
be described by a Laplace distribution (Eq. 1) (28–30, 34, 37)

Therefore, for each of the species studied, we tested the hypothesis
that the conditional probability density p(r�v) fits either a Laplace
or a Gaussian distribution, using a likelihood ratio test statistic (see
refs. 34 and 35 for details).

If the conditional probability density functions of different
individuals or species follow the same functional form, one
would expect that under a nontrivial scale, transformation that
all of these distributions should converge or collapse into a single
statistical distribution. By ‘‘scaling,’’ we mean applying the same
function of observed parameters to the distributions. If the
scaling holds, then, data for a wide range of parameter values [in
this case, values of v and �r(v)] are said to ‘‘collapse’’ on a single
curve. One key parameter in the rescaling procedure is the width
of the conditional distribution p(r�v). It can be expected that the
magnitude of fluctuations should decrease with increasing body
mass following a �1/4 power (11, 45, 46), so that VO2 in smaller
individuals should fluctuate more in than large ones. The
magnitude of the variability or fluctuations in a variable can be
measured by examining the standard deviation of growth rates,
�r(v). Thus, we also examined the possible effects of average
metabolic rate and body size on the magnitude of VO2 f luctu-
ations as measured by the value of �r(v) by plotting the scaling
relationship between these two variables. Given the low mea-
surement error rate in both body size (47) and VO2, we estimated
the scaling exponent, using ordinary least squares regression.
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