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Summary

• Paleobotanists have long used models based on leaf size and shape to recon-

struct paleoclimate. However, most models incorporate a single variable or use

traits that are not physiologically or functionally linked to climate, limiting their

predictive power. Further, they often underestimate paleotemperature relative to

other proxies.

• Here we quantify leaf–climate correlations from 92 globally distributed, climati-

cally diverse sites, and explore potential confounding factors. Multiple linear

regression models for mean annual temperature (MAT) and mean annual precipi-

tation (MAP) are developed and applied to nine well-studied fossil floras.

• We find that leaves in cold climates typically have larger, more numerous teeth,

and are more highly dissected. Leaf habit (deciduous vs evergreen), local water

availability, and phylogenetic history all affect these relationships. Leaves in wet

climates are larger and have fewer, smaller teeth. Our multivariate MAT and MAP

models offer moderate improvements in precision over univariate approaches

(± 4.0 vs 4.8�C for MAT) and strong improvements in accuracy. For example, our

provisional MAT estimates for most North American fossil floras are considerably

warmer and in better agreement with independent paleoclimate evidence.

• Our study demonstrates that the inclusion of additional leaf traits that are func-

tionally linked to climate improves paleoclimate reconstructions. This work also

illustrates the need for better understanding of the impact of phylogeny and leaf

habit on leaf–climate relationships.
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Introduction

The sizes and shapes (physiognomy) of leaves correlate
strongly with temperature and moisture from global to local
scales, and there are biological bases for these relationships
(Bailey & Sinnott, 1915, 1916; Webb, 1968; Lewis, 1972;
Givnish, 1979, 1984; Wolfe, 1979, 1993; Hall & Swaine,
1981; Richards, 1996; Wilf, 1997; Wilf et al., 1998;
Jacobs, 1999, 2002; Feild et al., 2005; Traiser et al., 2005;
Royer & Wilf, 2006). Paleobotanists have long used
these leaf–climate correlations to develop proxies for recon-
structing paleoclimate (Bailey & Sinnott, 1915, 1916;
Dilcher, 1973; Wing & Greenwood, 1993; Wolfe, 1993,
1995; Wilf, 1997; Wilf et al., 1998; Jacobs, 1999, 2002;
Kowalski & Dilcher, 2003; Traiser et al., 2005; Adams
et al., 2008).

One key leaf–climate association is between leaf teeth
and both temperature and local water availability (Baker-
Brosh & Peet, 1997; Feild et al., 2005; Royer & Wilf,
2006). The percentage of woody, non-monocotyledonous
angiosperms (woody dicots) at a site with toothed leaves
(Bailey & Sinnott, 1916; Wolfe, 1979; Wilf, 1997), as well
as variables related to tooth count and tooth size (Huff
et al., 2003; Royer et al., 2005), all negatively correlate with
mean annual temperature (MAT). The prevalence of leaf
teeth in cool climates is potentially an adaptation for
increased carbon uptake through enhanced sap flow early in
the growing season (Billings, 1905; Bailey & Sinnott, 1916;
Wolfe, 1993; Baker-Brosh & Peet, 1997; Wilf, 1997;
Royer & Wilf, 2006). In cold environments, this early-
season pulse in sap flow may allow plants with toothed
leaves to maximize the duration of their growing seasons; in
warmer climates, the potential benefit is outweighed by the
attendant water costs (Wing et al., 2000; Royer & Wilf,
2006). The relationship between leaf teeth and enhanced
sap flow may also help explain why, at a given MAT,
toothed species are sometimes more abundant in locally wet
environments where the water cost associated with teeth
may be less important (the ‘freshwater-margin effect’ in and
near swamps, and near lakes and streams; Wolfe, 1993;
Burnham et al., 2001; Kowalski & Dilcher, 2003;
Greenwood, 2005; Royer et al., 2009a). Teeth may also
release excess root pressure through guttation, preventing
the flooding of intercellular spaces in the leaf lamina and, in
cooler climates, freeze–thaw embolisms (Feild et al., 2005).

Leaf size is also sensitive to climate: site-mean leaf size
typically scales with water availability and, to a lesser degree,
temperature (Webb, 1968; Dilcher, 1973; Dolph &
Dilcher, 1980a,b; Givnish, 1984; Greenwood, 1992; Wilf
et al., 1998). Energy balance models predict that for a given
level of radiation and wind speed, leaf temperatures are
higher in large canopy leaves because of their thicker
boundary layers (Vogel, 1968, 1970, 2009; Parkhurst &
Loucks, 1972; Givnish, 1979, 1984, 1987; Gates, 1980).

Warmer leaf temperatures promote both photosynthesis
and transpiration; thus, plants in drier climates tend to have
smaller leaves to reduce evaporative cooling, while in more
humid climates larger leaves are common because the atten-
dant water cost is less critical (Givnish, 1984).

Other factors can affect these leaf–climate relationships.
It has been commonly claimed, but never rigorously tested,
that deciduous species are more likely to be toothed than
evergreen species (Bailey & Sinnott, 1916; Givnish, 1979;
Wolfe, 1993; Jacobs, 2002). Shared phylogenetic and ⁄ or
regional histories of floras may also be important. Multiple
studies have noted different leaf–climate relationships in the
northern and southern hemispheres, with extant southern
hemisphere temperate floras typically having a higher per-
centage of untoothed species than temperature-equivalent
northern hemisphere floras (Greenwood, 1992; Jordan,
1997; Jacobs, 1999, 2002; Kennedy et al., 2002; Kowalski,
2002; Greenwood et al., 2004; Aizen & Ezcurra, 2008;
Hinojosa et al., 2010; Steart et al., 2010). These differences
may be the result of regional differences in environment,
such as soil fertility and thermal seasonality, and ⁄ or phylo-
genetic differences (Wolfe and Upchurch, 1987; Jordan,
1997; Greenwood et al., 2004). Other regional differences
in leaf–climate relationships exist, although often the
differences are not statistically significant (e.g. Gregory-
Wodzicki, 2000; Traiser et al., 2005; Miller et al., 2006; Su
et al., 2010).

To address these potential problems, regional calibrations
have been developed (for example, see Hinojosa et al.,
2010; Su et al., 2010) and make the assumption that leaf–
climate relationships within a region were the same as they
are now. This is a valid assumption in some cases (e.g. late
Neogene and Quaternary floras), but not in others (e.g.
Cretaceous and early Cenozoic floras), particularly given the
uncertainty in the cause for the difference and the major
environmental and evolutionary changes since the
Cretaceous. If phylogeny is important, then regional cali-
brations assume that past lineage composition of the fossil
flora was similar to the current composition in the region,
and that evolution and extinction subsequent to the deposi-
tion of the fossils has not changed leaf–climate relationships
in those lineages (Jordan, 1997; Hinojosa et al., 2010;
Little et al., 2010). If current environment drives regional
differences, then regional calibrations must assume that crit-
ical environmental features, such as soil fertility and thermal
seasonality, were the same in the relevant region at the time
of deposition of the fossils, another questionable assump-
tion. Overall, the effects of phylogeny and regional
environmental differences on leaf–climate correlations are
poorly constrained and have rarely been tested in a proper
statistical framework (Hinojosa et al., 2010; Little et al.,
2010). As more detailed large-scale assessments of the rela-
tionship between phylogeny and leaf traits become available
(Little et al., 2010), comparing the leaf–climate correlations
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in this and other studies to related methods that incorporate
phylogenetic relationships (Felsenstein, 1985; Garland
et al., 1992; Westoby et al., 1998) will likely provide addi-
tional insights into the ecological and evolutionary forces
shaping trait–climate correlations.

The most common leaf physiognomic methods for
estimating MAT and mean annual precipitation (MAP),
leaf-margin analysis and leaf-area analysis, are each based on
a single variable, the percentage of untoothed species at a
site and site-mean leaf size, respectively (Wolfe, 1979; Wilf,
1997, 1998; Jacobs, 2002; Miller et al., 2006). Although
climate estimates from these methods commonly agree with
independent evidence (e.g. Greenwood & Wing, 1995;
Wing et al., 2000; Uhl et al., 2003; Wilf et al., 2003a,b;
Mosbrugger et al., 2005; Yang et al., 2007; Greenwood
et al., 2010), there are many instances where these proxies
provide cooler and drier estimates of MAT and MAP than
alternative proxy evidence (Utescher et al., 2000; Liang
et al., 2003; Fricke & Wing, 2004; Kvacek, 2007; Wing
et al., 2009b). Because these are univariate approaches,
additional characters may lead to improvements.

To this end, Wolfe (1993, 1995) developed a method
called Climate-Leaf Analysis Multivariate Program (CLAMP),
which uses 31 categorical leaf states, including leaf-margin
and leaf-size categories. The method correlates the charac-
ters to climate using canonical correspondence analysis
(CCA; Wolfe, 1995). Because CLAMP more thoroughly
describes leaf physiognomy, it might be expected to result
in more accurate climate estimates than the univariate
approaches, but in practice it does not (Jacobs & Deino,
1996; Wilf, 1997; Wiemann et al., 1998; Gregory-
Wodzicki, 2000; Kowalski & Dilcher, 2003; Royer et al.,
2005; Dilcher et al., 2009; Smith et al., 2009b). This may
be caused by errors and biases related to the ambiguity of
character definitions, the categorical nature of the character
states, weak or non-existent correlations between climate
and some character states, and problems related to using CCA
in a predictive framework (Jordan, 1997; Wilf, 1997; Wilf
et al., 1998, 1999; Green, 2006; Peppe et al., 2010). Thus,
although CLAMP is multivariate, it is fraught with systemic
problems and does not produce more accurate climate esti-
mates. Other multivariate approaches have been proposed
(Wing & Greenwood, 1993; Stranks & England, 1997;
Gregory-Wodzicki, 2000), but because they use the CLAMP
characters they suffer from many of the same problems.

Recently, Huff et al. (2003) and Royer et al. (2005)
developed a new procedure, called digital leaf physiognomy,
which has three major advantages over CLAMP and the
univariate approaches. First, it minimizes the ambiguity of
CLAMP scoring because computer algorithms process most
of the measurements. Second, it uses mostly continuous
variables, such as tooth number and size, not categorical
characters. Thus, for example, digital leaf physiognomy can
discern between a leaf with one and 100 teeth, but CLAMP

and leaf-margin analysis do not (Royer et al., 2005, 2008).
Third, digital leaf physiognomy incorporates more traits
that have a functional and ⁄ or physiological connection to
climate, such as tooth number, tooth size, leaf area and degree
of leaf dissection (see earlier discussion). Importantly, the traits
used in digital leaf physiognomy can display some degree of
phenotypic plasticity (Royer et al., 2009b), suggesting they
can respond quickly to climate change even in the absence
of evolutionary responses.

Using digital leaf physiognomy, Huff et al. (2003) and
Royer et al. (2005) observed that leaves from cold climates
are more likely to be highly dissected and to have many,
large teeth; importantly, these correlations are consistent
with the ecophysiological principles outlined earlier. Royer
et al. (2005) also developed a preliminary, multiple
linear regression model for predicting MAT that was con-
siderably more accurate than leaf-margin analysis and
CLAMP. A limitation of the study, however, is that it
was based on 17 sites from eastern North America and
Panama that spanned a limited biogeographic and climatic
range (Fig. 1).

Here, we investigate correlations between leaf physiog-
nomy and climate across 92 globally distributed sites from
the biomes where fossil leaves are most likely to be pre-
served (Fig. 1). A major goal of the study was to assess
global correlations of MAT and MAP to functionally
linked leaf traits using a phylogenetically and climatically
diverse data set of extant vegetation (Fig. 1). In addition,
we quantitatively tested the importance of two potential
confounding factors on these correlations: the evergreen
effect (i.e. are woody dicot evergreens less likely to be
toothed?) and the freshwater-margin effect (i.e. do freshwater-
margin habitats contain a higher percentage of toothed
species?). We also compared leaf–climate correlations
between extant northern and southern hemisphere floras;
however, it is beyond the scope of the present study to
employ more formal phylogenetic tests (e.g. Little et al.,
2010). Third, we developed multiple linear regression equa-
tions derived from the extant vegetation to estimate
MAT and MAP. To gauge the accuracy of the equations,
we estimated the climate of each extant site using a jack-
knife-type approach. We then applied the equations to
nine, well-studied fossil floras and compared the climate
reconstructions to other climate proxies, including leaf-
margin analysis and leaf-area analysis.

Materials and Methods

Calibration sites

We photographed leaves of native, woody dicots from 92
geographically and climatically diverse extant sites (Fig. 1)
(n = 6525 leaves and 3033 species-site pairs). This data set
expands on the 17 calibration sites of Royer et al. (2005).
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The majority of new sites (n = 42) come from the CLAMP
collection (Wolfe, 1993; Spicer, 2009), whose voucher
specimens are housed in the Department of Paleobiology,
National Museum of Natural History, Smithsonian
Institution, Washington, DC, USA. Sampling was generally
restricted to outer, exposed leaves in the canopy or tree
crown (see the Supporting Information for detailed collec-
tion protocols). To test the potential of herbs as climate
indicators, a collection of 34 herbaceous dicot species was
made from north of Reed Gap in Wallingford, Connecticut
(see Royer et al., 2010 for sampling details).

Mean annual temperature of our sites ranged from 0.1 to
27.7�C and MAP from 189 to 4694 mm (see the
Supporting Information, Table S1). Mean monthly climate
data were extracted from a global, interpolated 1 km spatial
resolution climate model (WORLDCLIM, Hijmans et al.,
2005). Where available, WORLDCLIM matches local
climate station data at all but five sites for MAT (± 0.3�C)
and three sites for MAP (± 22 mm). For the seven sites
where the model deviated strongly from station data
(> ± 2.0�C or ± 100 mm), we relied on the latter. We
defined the growing season as the period during which the
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mean monthly minimum temperature exceeded 0�C and
precipitation exceeded 20% of the maximum monthly
precipitation, and growing-degree-days as the number of
degree-days in a year when the average temperature exceeded
10�C (Table S2) (e.g. Johnson et al., 2000). The functional
basis of leaf physiognomy (see the Introduction) may imply
that physiognomic traits are more closely linked to growing-
season variables such as growing-season precipitation,
growing-season mean temperature and mean annual range
in temperature (warmest month mean minus coldest month
mean); however, we focus here on MAT and MAP because
correlations of leaf physiognomy to annual and growing-
season climate variables were very similar (Table S3).

Typically, at least two leaves or leaflets per species at each
site were used. More than two leaves were used if there was
a large variation in leaf form (e.g. compound leaves, species
with and without lobes or teeth). Computerized resampling
indicates that this level of sampling is sufficient for detect-
ing site-level patterns (Royer et al., 2005). All leaf images
used in this study are available from Dryad (http://dx.
doi.org/10.5061/dryad.8101) and the personal websites of
DJP and DLR. Leaves were manipulated in Adobe
Photoshop (Adobe Systems, San Jose, CA, USA) to separate
the petiole and teeth (if present) from the blade following
the protocols of Royer et al. (2005). Most physiognomic
characters were calculated using IMAGEJ (http://rsbweb.
nih.gov/ij/); presence of teeth and number of teeth were
determined visually (see Table S4 for all physiognomic
data). Definitions of characters follow Royer et al. (2005)
(see also Table S2). Site means (Table S1) were calculated
from species means. For variables involving teeth, un-
toothed species were excluded in order to maintain normal
distributions (Huff et al., 2003). Because climate impacts
leaf physiognomy, we plot climate as the independent vari-
able and leaf traits as the dependent variables. Site-mean
data were correlated to climate with single and multiple lin-
ear regression (SPSS 17; SPSS Science, Chicago, IL, USA)
and with CCA (CANOCO 4.5; Microcomputer Power,
Ithaca, NY, USA). Using leaf traits as the independent
variables and climate as the dependent variable, we devel-
oped predictive multiple linear regression models for MAT
and MAP. The variables shape factor (perimeter2 ⁄ blade
area), compactness (4p · blade area ⁄ perimeter2), number
of teeth, tooth area and perimeter ⁄ area cannot be calculated
in any meaningful way for fragmentary fossils and were
excluded from our models (Royer et al., 2005). However,
these traits may be useful for studying extant leaf–climate
relationships (Royer et al., 2005, 2008; see Table S5 for
most significant MAT and MAP models derived using all
variables). Models were considered only if: the model and
all individual variables in the model were significant at the
a = 0.05 level, and variables did not show a high degree of
co-linearity with the other predictor variables (variance
inflation factor < 10; Sokal & Rohlf, 1995). We used the

ordinary least squares regression module in the program
SMATR (http://www.bio.mq.edu.au/ecology/SMATR/; Warton
et al., 2006) to test for slope and intercept differences
between regression lines. We define accuracy as the extent
to which a given MAT or MAP estimate agrees with other
independent lines of evidence. Precision is defined as uncer-
tainty of an estimate derived from a regression model (i.e.
the standard error).

Fossil sites

We applied the digital leaf physiognomy MAT and MAP
models, as well as leaf-margin analysis and leaf-area analysis,
to 10 fossil floras from the latest Cretaceous and early
Paleogene (c. 66 to c. 47.0 million years ago (Ma)) of
North and South America (Fig. 1, Table 1). All floras are
well-studied and represent a broad range of interpreted bio-
mes and phylogenetic histories. For each site, we processed
1–48 specimens of each species or morphotype (med-
ian = 3; see Tables S6, S7 for all fossil physiognomic data).
As fossil specimens are in rock matrix and often fragmen-
tary, additional processing protocols were necessary
(Cariglino, 2007; see Methods S1). Because it is possible to
determine the margin type (toothed, untoothed) of speci-
mens that cannot be digitally processed, we calculated the
percentage of untoothed species based on all species, not
just the digitally-processed species.

The Fox Hills flora is from the Linton Member of the
Fox Hills Formation and is late Maastrichtian in age
(c. 66 Ma; Peppe, 2003; Peppe et al., 2007; Table 1).
Specimens are stored at the North Dakota Heritage Center
in Bismarck, North Dakota, USA, and at St Lawrence
University in Canton, New York, USA.

The Fort Union Formation floras (Williston Basin I, II,
and III) are from the Fort Union Formation in the
Williston Basin of southwestern North Dakota, USA (65.5
to c. 58.5 Ma; Peppe, 2009, 2010; Table 1). We grouped
these taxa by floral zone following Peppe (2009, 2010).
Specimens used in this study are housed at the Yale
Peabody Museum in New Haven, Connecticut, USA.

The Palacio de los Loros flora (P. Loros), first described in
Berry (1937), is from the westernmost exposures of the
Salamanca Formation in southern Chubut Province,
Argentina, and is early Paleocene in age (c. 61.7 Ma; Iglesias
et al., 2007; Table 1). Specimens used in this study come
from two outcrops representing the same general depositional
environment that are geographically and stratigraphically
close to each other (Iglesias et al., 2007). The specimens are
reported by Iglesias et al. (2007) and are housed at the Museo
Paleontológico Egidio Feruglio in Trelew, Argentina.

The Cerrejón flora is from the middle Late Paleocene (c.
58 Ma) Cerrejón Formation of Colombia reported by
Wing et al. (2009b; Table 1). Specimens are housed at
INGEOMINAS in Bogotá, Colombia.
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The Hubble Bubble flora (USNM locality 42384) is
from the Willwood Formation in the Bighorn Basin,
Wyoming, USA, and dates to within the Paleocene–Eocene
thermal maximum (PETM, c. 55.8 Ma, Currano et al.,
2008, 2010; Wing et al., 2009a; Table 1). Specimens are
housed in the Department of Paleobiology, National
Museum of Natural History, Smithsonian Institution in
Washington, DC, USA.

The Early Eocene Laguna del Hunco flora, which was
first described by Berry (1925), is 51.91 ± 0.22 Ma and
comes from the Tufolitas Laguna del Hunco, a lacustrine
unit in the Chubut River volcanoclastic complex in the
northwestern Chubut Province in Patagonia, Argentina
(Wilf et al., 2003a, 2005a; Table 1). Specimens are stored
at the Museo Paleontológico Egidio Feruglio in Trelew,
Argentina.

The Bonanza flora, first described by MacGinitie (1969),
is from the uppermost Parachute Creek Member of the
Green River Formation in northeastern Utah, USA, and is
early Middle Eocene in age (c. 47.3 Ma, Smith et al., 2008;
Table 1). Specimens studied here are a subset of those
reported in Wilf et al. (2001). The Republic flora (Wolfe &
Wehr, 1987; Radtke et al., 2005) is from the Klondike
Mountain Formation in northeastern Washington, USA,
and is late Early Eocene in age (49.4 ± 0.5 Ma, Radtke
et al., 2005; Table 1). Specimens studied here are a subset

of those reported in Wilf et al. (2005b). Both collections
are housed at the Denver Museum of Nature and Science in
Denver, Colorado, USA.

Results and Discussion

Physiognomic correlation with climate

The site means of many leaf physiognomic characters corre-
late strongly with temperature and precipitation (Figs 2, 3,
Table S3). Notably, MAT correlates significantly to tooth-
related characters, including percent of untoothed species
(r2 = 0.58, P < 0.001), number of teeth (r2 = 0.23, P <
0.001), tooth area : internal perimeter (r2 = 0.11, P =
0.001; internal perimeter is the leaf perimeter after teeth are
removed), and number of teeth : internal perimeter
(r2 = 0.35, P < 0.001), as well as leaf dissection variables
such as perimeter ratio (r2 = 0.37, P < 0.001; blade perime-
ter divided by internal perimeter) and shape factor
(r2 = 0.22, P < 0.001) (Fig. 2). In warmer climates, leaves
generally have fewer, smaller teeth and are less dissected, as
previously observed by Royer et al. (2005).

Leaf-margin analysis models are currently calibrated with
woody dicots because the physiognomy of herbaceous
angiosperms is considered to be less sensitive to climate
(Bailey & Sinnott, 1916). However, we found that the

Table 1 Age, paleolatitude, number of species, and provisional mean annual temperature and mean annual precipitation estimates for fossil
floras

Site Age (Ma) Paleolatitudea

Number
of woody
dicotyledonous

angiosperm
species
in flora

Number
of woody
dicotyledonous

angiosperm
species
processed

Digital
leaf
physiognomy

MAT
estimate
(�C)b

Leaf-margin
analysis

MAT
estimate
(�C)c

Regional
digital
leaf
physiognomy

MAT
estimate
(�C)d

Digital
leaf

physiognomy
MAP estimate
(cm)e

Leaf-area
analysis

MAP
estimate
(cm)e

Fox Hills 66.5 49.7 34 25 21.6 14.8 17.1 141 (+116, )64) 152 (+125, )68)
Williston Basin I 65.5–64.0 50.8 26 20 15.7 10.9 12.6 175 (+144, )79) 157 (+129, )71)
Williston Basin II 64.0–63.0 50.8 31 23 15.0 10.2 12.4 148 (+122, )69) 156 (+129, )71)

Williston Basin III 61.0–58.5 50.8 19 18 16.3 9.4 11.6 152 (+125, )68) 157 (+129, )71)
Palacio de los Loros 61.7 )54.7 36 33 12.8 12.9 12.8 125 (+103, )56) 144 (+119, )65)
Cerrejon 58 7.4 48 48 23.6 20.5 14.0 264 (+217, )119) 212 (+174, )96)
Hubble Bubble 55.8 47.6 29 16 20.3 17.9 20.2 147 (+121, )66) 146 (+120, )66)
Laguna del Hunco 51.9 )49.0 132 119 10.9 14.1 16.9 127 (+103, )57) 142 (+117, )64)
Republic 49.4 50.9 45 41 9.0 9.2 8.9 134 (+110, )60) 135 (+111, )61)

Bonanza 47.3 40.4 28 24 f 14.8 f f 110 (+90, )50)

Ma, million years ago; MAT, mean annual air temperature; MAP, mean annual precipitation.
aPaleolatitude reconstruction based on Torsvik et al. (2008).
bStandard Error (SE) is ± 4.0�C.
cStandard Error is ± 4.8�C. Independent proxy evidence suggests that most of these MAT estimates are considerable underestimates (see
text).
dRegional digital leaf physiognomy models were created for North America and South America. The North American model (r2 = 0.81,
SE = ± 3.3�C) used the variables percent untoothed and number of teeth : internal perimeter. The North American model was based on all
extant sites in our calibration from North America, Central America, and Asia and was applied to all fossil sites from North America. The South
American model (r2 = 0.96, SE = ± 1.7�C) used the variables percent untoothed and Feret’s diameter ratio. The model was based on all extant
sites in our calibration from South America and was applied to all fossil sites from South America.
eStandard errors are asymmetrical because they were converted from logarithmic units.
fMAT and MAP for Bonanza were not reconstructed (see discussion in text).
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percentage of untoothed herbaceous dicot species from a
central Connecticut site (35.4%) was almost identical to
that of woody dicots species from four nearby sites
(mean = 34.5%; see Table S1). There may be potential for
including herbaceous taxa in leaf-climate proxies, but fur-
ther work is needed.

Moisture variables also significantly correlate with several
physiognomic characters (Fig. 3, Table S3). Correlations
are stronger with loge(MAP) than with untransformed
MAP, probably owing to the non-normal distribution of
MAP across sites (Fig. 1) and ⁄ or a non-linear relationship
between MAP and water stress. As expected, leaf area posi-

tively correlates with loge(MAP) (r2 = 0.23, P < 0.001;
Fig. 3). Tooth area ⁄ blade area inversely correlates with
loge(MAP) (r2 = 0.18, P < 0.001), indicating that tooth
area normalized to leaf area declines as precipitation
increases (Fig. 3b). Although the functional significance of
the relationship between precipitation and tooth area ⁄ blade
area is unclear, it is consistent with a field study of Acer
rubrum (Royer et al., 2008).

Water availability is a major control on leaf size, but tem-
perature is also important (see the Introduction). In our
calibration, MAT weakly correlates with leaf area (r2 =
0.09, P = 0.003; Fig. S1). However, the relationship is
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even weaker after accounting for the covariation between
MAT and MAP (Fig. 1b) with partial correlation
(r2 = 0.07, P = 0.01). As noted by Webb (1968), the leaf
size–MAT relationship is strong within the Australia ⁄ New
Zealand subset (Fig. S1; r2 = 0.34, P = 0.002 for partial
correlation). These observations raise two points. First,
paleoclimate reconstructions based on leaf physiognomy
should consider the interactive MAT–MAP control on
physiognomy (discussed later). Second, regional differences

in leaf–climate correlations exist (see also Figs 2–3 and the
Introduction) and understanding their root causes, whether
related to phylogeny, ecology or other factors, will improve
paleoclimate reconstructions. Next, we discuss some of
these biases.

Potential confounding factors

Freshwater-margin effect Sites with shallow water tables
often have a higher percentage of species with teeth (c. 10–
15%) than nearby drier sites (e.g. Burnham et al., 2001;
Kowalski & Dilcher, 2003; Greenwood, 2005; Royer et al.,
2009a). When using leaf-margin analysis to estimate MAT,
this freshwater-margin effect could lead to an underesti-
mation of up to 4�C (Burnham et al., 2001; Kowalski &
Dilcher, 2003; Greenwood, 2005; Royer et al., 2005,
2009a). Further, the effect may be more severe (up to 10�C)
at warmer temperatures (Kowalski & Dilcher, 2003). To test
for this bias, we compared the slope of the regression fit
between MAT and the percentage of untoothed species in the
entire CLAMP data set (Wolfe, 1993) with that of the
edaphically wet sites from Kowalski & Dilcher (2003) and
Wolfe (1993), and found no statistical difference (P = 0.12;
Fig. S2). By contrast, the y-intercept of a regression fit for
edaphically dry CLAMP sites is shifted towards a higher
percentage of untoothed species than that for edaphically wet
sites (P < 0.001, Fig. S2). Thus, while we detected the
freshwater effect, it probably does not strongly affect most
paleo-MAT reconstructions because enough calibration sites
contain a sufficient proportion of edaphically wet vegetation.
The freshwater-margin effect reported by Kowalski &
Dilcher (2003) is not representative; instead, a bias of up to
4�C is more plausible (Burnham et al., 2001; Fig. S2).
Critically, the additional characters used in digital leaf physi-
ognomy (e.g. number of teeth) generally show less sensitivity
to the freshwater-margin effect than does percent of untoothed
species (Fig. S3).

Effect of leaf habit and phylogeny Are woody dicots with
teeth more likely to be deciduous than evergreen at a given
temperature (e.g. Bailey & Sinnott, 1916; Wolfe, 1993;
Jacobs, 2002)? We selected sites from our calibration and
from the CLAMP calibration that each contained > 15%
evergreen and > 15% deciduous species (n = 29 sites). At
individual sites, deciduous species are more likely to be
toothed than evergreen species (P < 0.001); at warm
temperatures, this discrepancy diminishes such that above
16�C MAT there is no significant effect (P = 0.18; Fig. 4).
The slope of the relationship between the proportion of
toothed deciduous species in a flora and MAT is signifi-
cantly steeper than that of evergreen species (P = 0.04),
indicating the presence of a leaf-habit effect. The evergreen
effect is also present in many of the digital leaf physiog-
nomy variables (Fig. 4). Evergreen species usually have
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Fig. 3 Relationship between site mean of physiognomic variables
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Supporting Information, Table S3). Physiognomic variables are
defined in Table S2. For comparison, the leaf area compilation from
Jacobs (2002) (grey circles) and associated linear regression (dotted
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captured in the Jacobs (2002) compilation. It appears that the
correlation between loge(leaf area) and loge(MAP) is influenced by
sites from Oceania (New Zealand, Australia, Fiji); however, the slope
of the regression after these sites are removed is not significantly
different (P = 0.40) from the full data set. N. South America =
northern South America and includes all sites north of 34�S latitude;
S. South America = southern South America and encompasses all
sites south of 34�S latitude; NZ = New Zealand.
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fewer teeth (P < 0.001), smaller teeth (P = 0.005), and
smaller teeth relative to their leaf area (P = 0.03) than do
deciduous species at the same site. Evergreen species also
have lower Feret’s diameter ratio (diameter of a circle with
the same area as the leaf divided by the leaf’s longest axis;
P = 0.009; Wolfe, 1993; Greenwood and Basinger, 1994).
Furthermore, for these traits, either the slope of the regres-
sion between the trait and MAT in deciduous taxa is
significantly steeper than for evergreen taxa (Feret’s diame-
ter ratio: P = 0.04), or there is a significant difference in the
y-intercept between deciduous and evergreen regressions
(number of teeth, P < 0.001; tooth area, P < 0.001; num-
ber of teeth ⁄ blade area, P < 0.001). As with percent of
untoothed species, the effect diminishes at warmer temper-
atures. We posit that evergreen species are less toothed
because leaves in many evergreen taxa flush throughout the
growing season, and thus any tooth-driven pulse in sap flow
is more muted relative to neighboring deciduous taxa with a
more synchronized leaf flush.

The physiognomy of evergreen taxa therefore responds
differently to climate than that of deciduous taxa. Across all
sites in our calibration and the CLAMP calibration, 11% of
the variance in the relationship between MAT and the per-
centage of untoothed species can be explained by the
percentage of evergreen species. This leaf-habit effect can
contribute to physiognomic differences both within and
across sites (Figs 2, 4, 5). It may even provide a simple
explanation for the higher percentage of untoothed species

in southern hemisphere floras compared with northern
hemisphere floras (Greenwood et al., 2004; Fig. 5) because
southern hemisphere floras are typically dominated by ever-
green taxa (mean = 98% vs 25% in our sites). However, as
discussed in the Introduction, differing evolutionary or
environmental histories of the floras may also contribute to
differences.

Estimating climate from leaf physiognomy

A global approach Our models include all 92 calibration
sites. The most commonly applied leaf-margin analysis
model is based on 34 sites from eastern Asia (Wolfe, 1979;
Wing & Greenwood, 1993). Because the correlation
between MAT and the percent of untoothed species is
remarkably strong in this data set (r2 = 0.98), the standard
errors quoted in the paleobotanical literature are typically c.
± 2�C (Wilf, 1997). However, these errors are too low
because factors associated with sample size and over-disper-
sion in the binary data set will inflate them (Miller et al.,
2006). Weaker, but similar correlations to those of Wolfe
(1979) are found in other regional studies (Wilf, 1997;
Jacobs, 1999, 2002; Gregory-Wodzicki, 2000; Kennedy
et al., 2002; Kowalski, 2002; Greenwood et al., 2004;
Traiser et al., 2005; Miller et al., 2006; Adams et al., 2008;
Aizen & Ezcurra, 2008; Hinojosa et al., 2010; Su et al.,
2010). The leaf-margin analysis regression using our cali-
bration, which is more climatically, geographically, and
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phylogenetically diverse than any single regional data set
(Fig. 1), is considerably weaker than most regional equa-
tions (Fig. 2a; r2 = 0.58; standard error (SE) = ± 4.8�C). A
larger compilation from the literature (n = 535 sites) is con-
sistent with this finding (r2 = 0.64; SE = ± 4.1�C; Fig. 5).
This suggests that the error associated with a globally
derived leaf-margin analysis equation is at least ± 4�C.

The calibration data for leaf-area analysis (Wilf et al.,
1998; Jacobs, 1999, 2002; Gregory-Wodzicki, 2000) are
primarily from low-latitude in Central America, South
America, Asia and Africa. A compilation of these calibration
sites suggests a strong univariate correlation between
loge(MAP) and loge(leaf area) (r2 = 0.71; Jacobs, 2002).
Similar to leaf-margin analysis, our more global calibration
indicates a much weaker correlation (r2 = 0.23, Fig. 3).

Together, these results raise the obvious question: Why
use a global model when regional calibrations are usually
more precise (i.e. smaller standard errors)? On one hand,
regional models capture the current relationship between
leaf physiognomy and climate, which may be appropriate
for specific floras. On the other hand, regional models
capture a narrower slice of biological and ecological infor-
mation (see the Introduction), which is not appropriate for
fossil floras with a taxonomic composition or environmental
setting different from the modern. For example, if the
distinct leaf–climate character of Australian vegetation is
related to nutrient-poor soils, lack of frost tolerance, ever-

green leaf habit, and ⁄ or phylogenetic isolation (Jordan,
1997; Greenwood et al., 2004), any fossils that use an
Australia-specific calibration must fit within this relatively
narrow phylogenetic and ecological space. We find with
our fossil floras that application of regional calibrations
typically leads to cooler MAT estimates than the global
calibration (Table 1), and that these are more at odds with
independent evidence (see ‘Application of digital leaf
physiognomy to fossil record’ section). The regional-based
estimates are thus more precise, but may be less accurate.

An advantage of a global calibration for fossil applications
is that it increases the likelihood that the appropriate biolo-
gical and ecological information has been captured, although
it may also lead to the incorporation of information not
applicable to some fossil floras. For example, the biggest
difference between the Jacobs (2002) compilation and our
calibration of leaf area is at wet sites. Our data show a much
wider range in site-mean leaf area at high MAP, regardless of
temperature. That is, some of the warmest, wettest sites have
comparatively small leaves (e.g. sites from Colombia,
Australia, and Hawaii and Florida, USA, circled in Fig. 3),
demonstrating that small leaves at wet sites are not always
driven by the confounding influence of cool temperature.
There are two possible reasons for the discrepancy between
our calibration and the Jacobs (2002) compilation. First, our
data contain many sites that are both wetter and drier than
the compilation of Jacobs (2002). Second, although the
Jacobs (2002) compilation includes sites from Africa, Asia,
and Central and South America, many of the sites are from a
few discrete areas (e.g. 35% of sites are from Costa Rica and
Bolivia). Our calibration includes a greater phylogenetic,
geographic and climatic diversity of sites, and probably better
reflects the global range of leaf size.

The trade-off with a global calibration is that any single
regional signal, which could be important in a fossil appli-
cation, is diluted through the inclusion of extra-regional
sites. Clearly, if sufficient phylogenetic and ecological infor-
mation is available, approaches that take this information
into account would be preferred. We consider our global
models to be important, but conservative, first steps for dig-
ital leaf physiognomy because a global approach captures
the widest range of information and accounts for floras with
mixed phylogenetic histories, such as extinct species that are
related to extant taxa living in both the northern and south-
ern hemisphere.

Digital leaf physiognomy models The standard error of
the best MAT multiple linear regression model that can be
applied to fragmentary fossil leaves is ± 4.0�C (r2 = 0.70,
P = 10)23) (Table 2). Compared with the leaf-margin anal-
ysis equation derived from the same 92 sites (± 4.8�C), our
model represents a moderate improvement in precision.
The multivariate MAT model incorporates the percentage of
untoothed species, the number of teeth : internal perimeter,
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and Feret’s diameter ratio. Both of the tooth variables are
probably related functionally to accelerating growth early in
the growing season in cooler climates (Royer & Wilf,
2006). Feret’s diameter ratio decreases in warmer climates;
that is, leaves typically become longer than they are wide as
MAT increases. This negative correlation most likely allows
leaves to better shed heat in warm climates (e.g. Givnish,
1984). None of these three variables significantly correlate
with MAP, even after accounting for the covariation of
MAT (Table S3).

The multiple linear regression MAP model (r2 = 0.27,
P = 10)6; SE = 0.60) is somewhat more precise than the
univariate leaf-area analysis MAP model (r2 = 0.23,
P = 10)6; SE = 0.61; Table 2). For example, the error for
the Fox Hills fossil flora using digital leaf physiognomy is
+116 ⁄)64 cm but with leaf-area analysis is +125 ⁄ )68 cm
(Table 1); the errors are asymmetric because both methods
estimate loge(MAP). The multivariate MAP model incorpo-
rates loge(leaf area, mm2), loge(number of teeth : internal
perimeter) and loge(perimeter ratio). Both perimeter ratio
and number of teeth : internal perimeter negatively corre-
late with MAP (i.e. leaves are less toothy at higher rainfalls);
the functional basis for this response is not known (see the
Introduction). Leaf area increases with MAP, a leaf trait that
is functionally related to water loss (Parkhurst & Loucks,
1972). Of the three variables in our MAP model, two also
correlate significantly with MAT after controlling for MAP
with partial correlation (loge(perimeter ratio): r2 = 0.36,
P < 0.001; loge(number of teeth : internal perimeter):
r2 = 0.24, P < 0.01; Table S3). This raises the possibility
that our paleo-MAP estimates are affected by the confound-
ing influence of MAT.

To gauge the accuracy of our models, MAT and MAP
were estimated at each site using the regression based on the
other 91 sites (i.e. a jackknife-type approach). For MAT,
the standard error of the estimates was smaller for the multi-

variate model than for leaf-margin analysis (4.0 vs 4.8�C).
Furthermore, a paired sample t-test indicates that the abso-
lute values of the deleted residuals are significantly smaller
in the multivariate model (P = 0.02). Our multivariate
MAT model is thus more accurate and precise than a simi-
larly-calibrated leaf-margin analysis equation. The patterns
for MAP are less convincing. The standard error of the esti-
mates is marginally smaller for the multivariate model than
for leaf-area analysis (0.60 vs 0.61), and a paired sample t-
test indicates that the absolute value of the deleted residuals
are smaller in the multivariate model, but not significantly
so (P = 0.10). Thus, our MAP model is somewhat more
precise, but not significantly more accurate than the univar-
iate leaf-area analysis; further, two of the variables are
confounded by the influence of MAT. For these reasons, it
is not clear whether our MAP model is worth the additional
processing effort relative to leaf-area analysis. In summary,
neither our model nor leaf-area analysis are particularly
good at estimating MAP.

Application of digital leaf physiognomy to fossil record
We applied our multivariate models to 10, well-studied,
latest Cretaceous to Eocene fossil floras (Table 1). We
emphasize that the climate estimates presented here are provi-
sional until the potential confounding effects already
discussed (especially phylogeny and leaf habit) are more fully
accounted for. Nonetheless, we feel an initial application of
this new approach is warranted and demonstrates its promise.

First, we used CCA as an initial quality check for our fos-
sils. If a fossil site plotted outside the range of the
calibration data, then it occupies uncalibrated physiog-
nomic space; we did not attempt to reconstruct climate
from such sites. All fossil sites plotted within our calibrated
space except Bonanza (Fig. S4). Bonanza may be an outlier
because it mixes two habitats, a lowland lake margin and an
upland distal to the lake margin (MacGinitie, 1969). Also,

Table 2 Regression models for predicting mean annual temperature and mean annual precipitation for 92 calibration sites

Regression model Variables Coefficient r2 SE F P

Mean annual temperature
Leaf-margin analysis Percent untoothed 0.204 0.58 4.8 (�C) 126.1 10)19

Constant 4.600
Digital leaf physiognomy Percent untoothed 0.210 0.70 4.0 (�C) 69.8 10)23

Feret’s diameter ratio 42.296
Number of teeth : internal perimeter )2.609
Constant )16.004

Mean annual precipitation
Leaf-area analysis Leaf area (loge, mm2) 0.283 0.23 0.61 (loge, cm) 27.0 10)6

Constant 2.92
Digital leaf physiognomy Leaf area (loge, mm2) 0.298 0.27 0.60 (loge, cm) 10.78 10)6

Perimeter ratio (loge) )2.717
Number of teeth : internal perimeter (loge) 0.279
Constant 3.033

Variables defined in the Supporting Information, Table S2. SE, standard error.
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among fossil sites, Bonanza has the highest estimated mean
leaf mass per area, suggesting a mix of both evergreen and
deciduous species (Royer et al., 2007), whereas the other
sites were likely composed of a higher percentage of decidu-
ous taxa (Fig. S5). As discussed earlier, leaf habit may
influence leaf–climate correlations. For these reasons, we
currently do not advocate using leaf physiognomy to recon-
struct paleoclimate at Bonanza.

Mean annual temperature estimates made using our leaf-
margin analysis equation for the Williston Basin floras are c.
10�C (± 4.8�C; Table 1), which is cooler than expected for
three reasons. First, high-latitude deep-sea temperatures were
c. 10�C at this time (Zachos et al., 2001) and are incompati-
ble with low-elevation, mid-latitude MATs of c. 10�C.
Second, the presence of palm fossils in floral zone Williston
Basin I (Peppe, 2009, 2010) suggests a MAT > 10�C
(Larcher & Winter, 1981; Sakai & Larcher, 1987; Wing &
Greenwood, 1993; Greenwood & Wing, 1995). Third,
crocodilian fossils are present throughout the Paleocene
sequence in the Williston Basin and across the Western
Interior of North America, implying a MAT of ‡ 14�C
(Markwick, 1998). The digital leaf physiognomy estimates
for the three Williston Basin floral zones are, on average,
5.5�C warmer than leaf-margin analysis estimates (Table 1).
These estimates, which are all ‡ 15�C (± 4.0�C), are in bet-
ter agreement with the independent evidence cited above.

The warmer temperatures with digital leaf physiognomy
are mostly driven by the low teeth : internal perimeter val-
ues, which negatively correlate with MAT (Fig. S6). The
percentage of toothed species at these three sites is quite
high (c. 75%), which accounts for the cool MAT estimates
with leaf-margin analysis, but most of the toothed species
have small and few teeth. Thus, these floras demonstrate the
usefulness of incorporating climatically meaningful physi-
ognomic variables and provide strong support for the
digital leaf physiognomy approach.

The MAT estimate for the Fox Hills flora using digital
leaf physiognomy is over 6�C warmer than with leaf-margin
analysis (21.6, ± 4.0�C vs 14.8, ± 4.8�C; Table 1), and is
more compatible with independent MAT estimates based
on oxygen isotopes of shallow-water marine invertebrates
from the adjacent, contemporaneous Fox Hills Seaway
(18.0�C; Carpenter et al., 2003). As with the Williston
Basin floras, the warmer estimate is largely driven by a low
teeth : internal perimeter ratio (Fig. S6).

In the case of the Hubble Bubble flora from the PETM
in the Bighorn Basin, independent evidence from the basin
suggests a warming (Koch et al., 2003; Fricke & Wing,
2004; Wing et al., 2005; Secord et al., 2010) and drying
(Kraus & Riggins, 2007; Smith et al., 2009a) during the
PETM. Digital leaf physiognomy produces an MAT esti-
mate that is 2.4�C warmer than leaf-margin analysis
(Table 1), and thus is in slightly better agreement with the
expected temperature increase during the PETM (Fricke &

Wing, 2004). The warmer estimate is again driven primar-
ily by the flora’s low teeth : internal perimeter (Fig. S6).

Several lines of evidence are consistent with the Cerrejón
flora being a tropical rainforest, including the presence of a
large-bodied snake (Head et al., 2009) and soft-shelled tur-
tles (Cadena et al., 2010), as well as the climatic affinities of
the nearest living relatives of several Cerrejón plant taxa
(Doria et al., 2008; Herrera et al., 2008; Gómez-Navarro
et al., 2009; Wing et al., 2009b). The digital leaf physiog-
nomy estimates of MAT and MAP support a tropical
rainforest interpretation and are wetter and considerably
warmer than estimates from the univariate approaches
(Table 1, Fig. S4). We note that our MAP estimate is some-
what drier than the leaf-area analysis estimate of Wing et al.
(2009b) (264, +217 ⁄ )119 cm vs 324, +140 ⁄ )98 cm), but
this is because they used the more regional leaf-area analysis
regression of Wilf et al. (1998).

The digital leaf physiognomy estimates for Republic are
similar to the univariate model estimates (Table 1), which
broadly agree with some independent evidence (Wolfe &
Wehr, 1987) but are cooler than estimates based on the
species composition of the flora (c. 12–13�C, Greenwood
et al., 2005). The MAT and MAP estimates for the two
southern hemisphere floras, P. Loros and Laguna del Hunco,
are similar to estimates from univariate approaches, but are
cooler and drier than expected (Table 1; see also Fig. S4).
For example, the presence of a species of Papuacedrus in the
Laguna del Hunco flora (P. prechilensis) suggests that the flora
was fairly warm and wet (Wilf et al., 2009). This discrepancy
may be due to the phylogenetic histories of the floras (see
earlier discussions). Because we have few sites from southern
South America in our calibration, we may not have fully
characterized the physiognomy–climate space of this region.

Implications and future directions

Our study demonstrates the promise of using leaf–climate
correlations in a multivariate context for reconstructing
MAT and MAP from fossil floras. Digital leaf physiognomy
has three major advantages over the traditional univariate
and multivariate methods. First, the physiognomic variables
are mostly continuous, highly reproducible, and are
functionally linked to climate. Second, digital leaf physiog-
nomy is somewhat more precise than global univariate
approaches, offering the potential for more refined climate
reconstructions. Third, and perhaps most importantly, cli-
mate estimates for fossil floras made using digital leaf
physiognomy are typically warmer and wetter, and much
closer to independent climate evidence than other leaf–
climate approaches. Digital leaf physiognomy thus offers
the potential for better understanding ancient greenhouse
climates. However, there is room for improvement; in par-
ticular, more calibration sites from Europe, Africa, southern
South America, Oceania, and the tropics are needed to
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increase phylogenetic diversity. Most critically, a quantita-
tive assessment of the impacts of leaf habit and phylogeny
(and their interaction) on leaf physiognomy is required so
that ecologically and phylogenetically informed calibrations
can be developed.
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2008. Fossil Araceae from a Paleocene neotropical rainforest in

Colombia. American Journal of Botany 95: 1569–1583.

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high

resolution interpolated climate surfaces for global land areas.

International Journal of Climatology 25: 1965–1978.

Hinojosa LF, Armesto JJ, Villagran C. 2006. Are Chilean coastal forests

Pre-Pleistocene relicts? Evidence from foliar physiognomy, palaeoclimate,

and phytogeography. Journal of Biogeography 33: 331–341.
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