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ABSTRACT

While it is widely accepted that species richness and rarity are non-randomly distributed 
across time, space, and taxa, it is by no means evident which are the factors affecting 
the distribution patterns of both attributes. In this study we analyze richness and rarity 
patterns of small mammals (rodents and marsupials) in Mediterranean and Temperate 
Chile. We test for the effect of environmental factors that may explain richness and 
endemism variability after accounting for spatial autocorrelation. We also analyze the 
relationship between species traits and correlates of rarity (density and range size) after 
accounting for phylogenetic relatedness. Our results show that energy input and to a 
lesser degree glaciations may explain richness pattern of small mammals from forest 
habitats in Chile, whereas glaciations and topographic heterogeneity are associated 
with endemicity patterns. Both factors may explain the high richness found at 37° 
S and the low values at the southernmost tip of the continent. When phylogenetic 
relatedness was accounted for, the number of vegetation types was the only ecological 
trait significantly associated with density and latitudinal range. Our results reinforce 
the importance of energy availability and productivity in determining patterns in 
biodiversity. 
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RESUMEN

Si bien la idea de que la riqueza y la rareza específica tienen una distribución no aleatoria 
con relación al tiempo, el espacio, y la taxonomía, no es para nada evidente cuáles son 
los factores que afectan los patrones de distribución de aquellos dos atributos.  En este 
estudio analizamos los patrones de riqueza y rareza de pequeños mamíferos (roedores 



y marsupiales) en Chile mediterráneo y templado.  Ponemos a prueba el efecto de los 
factores ambientales en la variación en riqueza y endemismo luego de dar cuenta de 
la autocorrelación espacial.  También analizamos la relación entre rasgos específicos 
y correlatos de la rareza (densidad y tamaño del rango de distribución) luego de dar 
cuenta del parentesco filogenético.  Nuestros resultados muestran que la cantidad de 
energía y, en menor grado, el efecto de las glaciaciones, pueden explicar los patrones 
de riqueza de los pequeños mamíferos en los habitats boscosos en Chile, mientras 
que las glaciaciones y la heterogeneidad topográfica están asociadas a los patrones de 
endemismo.  Ambos factores pueden explicar la alta riqueza encontrada a 37° S y los 
bajos valores en el extremo sur del continente.  Cuando se tuvo en cuenta el parentesco 
filogenético, el número de tipos vegetacionales fue el único factor ecológico asociado 
significativamente con la densidad y el rango latitudinal.  Nuestros resultados refuerzan 
la importancia de la disponibilidad de energía y la productividad en la determinación 
de los patrones de biodiversidad.

Palabras claves: Chile, diversidad, mamíferos, test de Mantel, rareza, macroecología, 
efectos filogenéticos

INTRODUCTION

Spatial patterns of variability in species richness have been reported for centuries. 
Recently, however, they have gained renewed attention, driven by the urgent need to 
improve our understanding of processes underlying its generation and maintenance 
(e.g., Ceballos and Brown, 1995; Rosenzweig, 1995; Hubbell, 2001; Blackburn and 
Gaston, 2003; Gaston, 2003) at local, regional, and global scales (e.g., Ricklefs and 
Schluter, 1993; Brown, 1995; Gaston 2000). Unfortunately, and despite decades of 
research, no simple general answer to the question of the determinants of species 
diversity at any single scale, let alone to explain how the different scales interact to 
the formation of biodiversity patterns, is yet available (Hubbell, 2001; Whittaker et 
al., 2001). One way of improving our understanding of factors determining spatial 
changes in diversity is by expanding the traditional scope of analysis beyond the 
quantification of species numbers to encompass associated traits such as abundance, 
geographic range, and body size, and how they may contribute to the observed 
patterns (Arita and Figueroa, 1999; Kaspari et al., 2000; Jetz and Rahbek, 2002; Marquet 
et al., 2004; Ruggiero and Kitzberger, 2004; Vázquez and Gaston, 2004). Although this 
phenomenological approach can be criticized as lacking a solid theoretical foundation 
and by its limited predictability and generality, it may nevertheless allow us to at least 
identify those factors that might need to be included and/or accounted for in a general 
theory of biodiversity.

Numerous studies have assessed species richness, endemicity, and rarity across 
geographical areas in the context of identifying priority areas for the conservation 
of biodiversity (Prendergrast et al., 1993; Ceballos and Brown, 1995; Williams et al., 
1996; Arita et al., 1997; Dobson et al., 1997; Kerr, 1997; Ceballos et al., 1998; Baquero 
and Tellería, 2001). However, few of these studies have assessed how environmental 
factors and life history traits affect patterns of species richness and rarity (Ceballos 
and Brown, 1995; Baquero and Tellería, 2001; Ruggiero and Kitzberger, 2004). On the 
other hand, rarity has been recognized as an indicator of extinction risk and provides 
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a concrete basis for identification of threatened species (Diamond, 1984; Rabinowitz et 
al., 1986; Pimm et al., 1988; Arita et al., 1990; Arita, 1993; Manne et al., 1999; Purvis et 
al., 2000; Manne and Pimm, 2001; Cardillo et al., 2004). In spite of this, little consensus 
exists about the factors that best predict species abundance and/or range distribution 
(Bevill and Louda, 1999; Murray et al., 2002; Gaston, 2003). 

In this chapter, we attempt to answer some questions related to the richness and 
rarity of small mammals from the Mediterranean and Temperate zones of Chile.  
Specifically, we ask if spatial patterns in the distribution of small mammal species are 
congruent with the spatial distribution of endemicity, and if there is any congruence 
among the environmental and historical factors that may explain patterns in species 
richness and rarity. 

MATERIALS AND METHODS

Study Area and Taxonomic Group

According to Armesto et al. (1996) native forests in Chile occur between 30° and 55° 
S. In this gradient of 25 degrees of latitude, we can find two main kinds of forest: 
Sclerophyllous forest (31° - 36°) and Temperate rain forest (36° - 55°) (see also 
Armesto et al., 1996; Amigo and Ramírez 1998). In the Mediterranean region (mostly 
Sclerophyllous forests), mean annual precipitation ranges between 200 and 1000 
mm and occurs mostly in winter. The average annual maximum temperature ranges 
between 12° and 16°C, and the minimum is rarely below 0°C.  On the other hand, 
the Temperate region experiences mean annual rainfall from 800 to 4000 mm, and 
average annual maximum temperatures between 7° and 14°C (Di Castri and Hajek, 
1976; Amigo and Ramírez, 1998).  

Our study area extends from 30° to 55° S and from sea level to 2500 m. We used 
a geographic information system (GIS) to divide the study area to 274 half-degree 
quadrants. We selected 50 quadrants that satisfied the requirements of being located 
only in the Sclerophyllous or Temperate forest ecoregions, and not overlapping with 
the Patagonian or Andean steppe ecoregions. This general approach has been widely 
used in a broad range of ecological studies to map species richness (e.g. Arita et al., 
1990, 1997; Kerr and Packer, 1997; Ceballos et al., 1998; Baquero and Telleria, 2001; 
Hawkins and Porter, 2003; Rodríguez and Arita, 2004; Ruggiero and Kitzberger, 2004; 
Tognelli and Kelt, 2004).  Our species pool includes 33 small mammal species (<500 g) 
inhabiting forest in Mediterranean and Temperate zones of Chile (Table 1). Taxonomy 
follows Yañez and Muñoz-Pedreros (2000), although we consider Abrothrix xanthorhinus 
to be a junior synonym of A. olivaceus following Smith et al. (2001). 

Variables and Statistical Methods

Variables.  The dependent variables in all diversity analyses were species richness and 
endemicity. Species richness was determined by tallying the number of species whose 
geographic range overlapped each half-degree quadrant. Endemicity was quantified 
using the following index:



Table 1. Small mammals species found in forest habitats in Mediterranean and 
Temperate Chile. Type of forest: MF = Mediterranean forest, TF = Temperate 
forest. 

Family Species Type of forest
Didelphidae Thylamys elegans mainly MF / marginally TF
Caenolestidae Rhyncholestes raphanurus TF
Microbiotheriidae Dromiciops gliroides Marginally MF / mainly TF
Muridae Oligoryzomys longicaudatus MF / TF

Oligoryzomys magellanicus TF
Akodon hershkovitzi TF
Akodon lanosus TF
Akodon markhami TF
Abrothrix olivaceus MF / TF
Abrothrix sanborni TF
Abrothrix longipilis MF / TF
Geoxus valdivianus marginally MF / mainly TF
Chelemys megalonyx MF
Chelemys macronyx marginally TF
Pearsonomys annectens TF
Phyllotis darwini MF / marginally TF
Phyllotis xanthopygus marginally TF
Loxodontomys pikumche marginally MF
Loxodontomys micropus TF
Irenomys tarsalis marginally MF / TF
Reithrodon physodes marginally TF
Euneomys chinchilloides marginally TF 

Chinchillidae Chinchilla lanigera marginally MF
Octodontidae Octodon degus MF

Octodon bridgesi MF / TF
Octodon lunatus MF
Octodon pacificus TF
Spalacopus cyanus MF
Aconaemys fuscus TF
Aconaemys sagei TF
Aconaemys porteri TF

Ctenomyidae Ctenomys maulinus marginally MF/TF
Abrocomidae Abrocoma bennetti MF
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where Ri represents the latitudinal range for species i (Gaston, 1994) and ns corresponds 
to the total number of species per site (s). This type of index has been used to study 
patterns of congruence in the spatial distribution of endemism and species richness 
(e.g., Williams et al., 1996; Arita et al., 1997; Baquero and Tellería, 2001). However, 
we also use it to evaluate the relationship between endemism and environmental 
variables. In order to assess the effect of the environment on species richness we 
considered 6 environmental variables for each quadrant: the normalized difference 
vegetation index (NDVI), the mean Elevation (Elevation), the mean daily temperature 
(Temperature), mean daily precipitation (Precipitation), the number of vegetation 
types (Vegetation Types), and the history of Glaciation. This last variable is a binary 
variable that indicates whether or not a quadrant was covered by ice during the last 
glacial maximum (Mercer, 1983; see also Vuilleumier, 1971; Villagrán et al., 1996). 
NDVI is a measure of “greenness” that is obtained from images developed by the 
National Oceanic and Atmospheric Administration’s Advanced Very High Resolution 
Radiometer satellite (NOAA AVHRR). NDVI appears to correlate strongly with plant 
biomass, primary productivity, and actual evapotranspiration (e.g., Box et al., 1989; 
Hobbs, 1995; Paruelo et al., 1998, 2001) and has been broadly used as a surrogate of 
productivity in studies of avian and mammal diversity (Fraser, 1998; Acevedo and 
Currie, 2003; Hurlbert and Haskell, 2003; Hawkins, 2004; Hurlbert, 2004; Tognelli and 
Kelt 2004). The NDVI data used here corresponds to the mean value (from April 1992 
to March 1993) for each half-degree quadrant and was obtained from http://edcsns17.
cr.usgs.gov/1KM/. The same procedure was used to obtain the mean elevation based 
on 30 arc-second map produced by the United States Geological Survey (available 
at http://edcdaac.usgs.gov/gtopo30/hydro/sa_dem.asp).  Mean daily temperature 
and mean daily precipitation were obtained from the 1961-1990 databases available 
at the IPCC Data Distribution Center (http://ipcc-ddc.cru.uea.ac.uk). The number of 
vegetation types in each quadrant was obtained by counting the variety of vegetation 
types in each quadrant following Gajardo (1994). 

To assess the relationship between rarity and life-history traits, species were 
classified according to body size, mean litter size, diet, habitat breadth, activity 
period (diurnal vs. nocturnal), life form or habit (terrestrial vs. fossorial), and 
sociability (social vs. non-social). We defined rarity based on density and range size 
of species (Gaston 1994). We compiled data on density, latitudinal range, diet, body 
mass, habitat use, and life history traits using published literature (e.g., Mann, 1978; 
Pearson and Pearson, 1982; Pearson, 1983, 1984; Reise and Venegas, 1987; Johnson et 
al., 1990; Meserve and Jaksic, 1991; Meserve et al., 1991; Jiménez et al., 1992; Redford 
and Eisenberg, 1992; Kelt, 1994; Murúa, 1996; Spotorno et al., 1998, 2001; Cofré and 
Marquet, 1999; Muñoz and Yañez, 2000; Saavedra and Simonetti, 2000, 2001, 2003; 
Ebensperger and Cofré, 2001). Density of each species was defined as the mean of 
values reported in the literature. The geographic range of each species was defined 
by latitudinal extent (sensu Gaston, 1994; see also Gillespie, 2002). Habitat breadth 
was assessed by counting the occurrence of each species in different types of habitat.  
We followed Murúa (1996) for most species habitat occurrences. For species endemic 
to the Mediterranean region, habitat occurrence was assigned by a literature review 



(Mann, 1978; Jaksic, 1997; Muñoz and Yañez, 2000 and reference therein). We then 
tallied the number of vegetation types in which each species may be found.  To analyze 
the role of trophic status we created 2 dummy variables (Draper and Smith, 1998; 
Zar, 1999) – herbivory and insectivory; based on published studies, all species were 
characterized as herbivore (“herbivory” = 1, “insectivory”= 0), omnivore (“herbivory” 
= 1, “insectivory” = 1), or insectivore (“herbivory” = 0, “insectivory” = 1). Habits were 
defined as either terrestrial or fossorial.  Mean body mass (g), latitudinal range size, 
and litter size were log10 transformed for all statistical analyses. Density was expressed 
as log10 (mean regional density +1).

Statistical Analyses. To explore the univariate relationship between rarity and species 
attributes, we applied regression analysis or ANOVA, depending on trait type. To 
assess the extent to which the observed variance in density and latitudinal range may 
be explained by a combination of species´ attributes we applied a multiple regression 
analysis with backward elimination and stepwise forward selection methods (Zar, 
1999). In the backward procedure, the least significant variables were removed until 
2 criteria were met: first, explained variance (R2) was maximal, and second, all the 
variables in the model were significant (p < 0.1; Draper and Smith, 1998; Zar, 1999).  
Variables already in the model that lost their significance during the process were 
deleted.  The stepwise forward selection procedure was stopped when no remaining 
variable was significant (p < 0.1), if added to the model. Both analyses were performed 
separately, and we selected the model (forward vs. backward procedure) which 
explained the greatest amount of variance.  Because multiple regressions may fail 
to identify significant independent variables when multicollinearity is present, we 
examined the tolerance values in this procedure.  Tolerance is computed as 1-R2 for a 
regression between a given independent variable and all other independent variables 
(Legendre and Legendre, 1998; Draper and Smith, 1998; Zar, 1999; Graham, 2003). As 
a rule of thumb, multicollinearity is indicated by tolerance values <0.20.  In this study, 
all tolerance values were >0.5; therefore all variables had a small redundancy or large 
contribution to the regression. 

Because our analysis involves comparisons across different species, it is possible 
that species can share traits because of shared ancestry (Felsenstein, 1985; Harvey 
and Pagel, 1991). To assess the contribution of phylogenetic relatedness on traits 
potentially associated to rarity, we used the Signed Mantel test (Böhning-Gaese et 
al., 2000; Böhning-Gaese and Oberrath, 2001; Oberrath and Böhning-Gaese, 2002), 
which is an extension of the traditional Mantel test (Mantel, 1967; Smouse et al., 1986; 
Legendre et al., 1994; Taylor and Gotelli, 1994).  A Mantel test assesses the correlation 
between the elements of 2 distance matrices (Manly, 1986). To construct each matrix, 
each trait x species combination is compared with all the other species. Thus, for each 
variable (dependent and independent), the distance data on N sampling units (small 
mammal species) are represented by an N x N matrix with N(N - 1) / 2 different paired 
distances. We constructed two Y matrices describing the dissimilarity (distance) in 
regional density and latitudinal range, respectively, an X1 matrix with the phylogenetic 
distance among species (= taxonomic distance; Oberrath and Böhning-Gaese 2002), 
and X2…Xn matrices representing the dissimilarities in the other attributes among 
species. The Mantel test determines the statistical relationship between these matrices. 
In the univariate version of the test each of the matrices representing the predictor 
variables were assessed separately. For the multivariate analysis we used the same 
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independent predictor variables as identified by the multiple regression procedure.  In 
Mantel tests, the regression of the individual values in the matrices yields the partial 
regression coefficients b1 and b2n and the respective t-values (Smouse et al., 1986). A 
valid significance level for each variable (the Mantel significance level) is then derived 
by comparing the original t-value with a null distribution of t-values constructed by 
Monte Carlo randomization. For each permutation, the X1 and X2,…,n matrices are held 
constant and the species in the Y matrix are randomly permuted (Smouse et al., 1986; 
Oberrath and Böhning-Gaese, 2001). To construct the null distribution of t-values we 
used 2000 randomizations. 

To study the univariate relationship between community traits (endemicity and 
richness) and environmental variables, we also applied Poisson or linear regression 
analyses for richness and endemicity respectively. In multivariate models for species 
richness and endemicity we examined the extent to which the observed variance may 
be explained by only two historical or environmental variables to avoid the effect of 
multicollinearity and overfitting (e.g. Currie and Fritz 1993; Van Rensburg et al., 2002). 
Model selection was based on the Akaike Information Criterion (Akaike 1973). For 
simple and multiple Poisson regression analyses, model fit was assessed by analyzing 
the deviance table using a Chi-square approximation (Dalgaard 2002) in the R statistical 
software (R Development Core Team 2005). In the multivariate analysis of endemicity, 
the dichotomous variable Glaciation was entered as a dummy variable.

To test for the potential effect of spatial autocorrelation and properly control 
for its effect on environmental and community traits (endemicity and richness) we 
again employed the Signed Mantel test (Legendre and Legendre, 1998; Oberrath 
and Böhning-Gaese, 2001; Lemoine and Böhning-Gaese, 2003). We constructed two 
dissimilarity Y matrices (as distances of richness and endemicity index, respectively), 
an X1 matrix with the spatial distance among sites, and X2,…,n matrices representing 
dissimilarities in environmental traits. Valid significance levels for each X-variable (the 
Mantel significance level) were derived by comparing the original t-value with a null 
distribution of t-values obtained from 2000 Monte Carlo randomizations (Oberrath 
and Böhning-Gaese, 2001). Geographic distance between sites was calculated using the 
Great-Circle distance calculator available in the Fields package (Nychka 2004) of the R 
statistical software (R Development Core Team 2005). 

When necessary, variables were transformed to be as close to normality as possible. 
Specifically, Temp was log10 transformed and NDVI, Number of vegetation types, and 
Elevation were square root transformed. Unless stated otherwise, all regular statistical 
methods were implemented with Statistica 5.1 for Windows (StatSoft Inc., Tulsa, 
Oklahoma, USA).

RESULTS

Richness, Endemicity, and Environmental traits

Species richness showed the classic latitudinal pattern with a monotonic decrease from 
high values at low latitudes to low values at high latitudes (Fig. 1a). Nevertheless, the 
highest richness values were found between 35° and 40° S (see also spatial patterns 
in Fig. 2). On the other hand, the endemicity index shows a decreasing trend from 
30° to 50° S punctuated by peaks at 38° and 52° S and a steep increase at the tip of the 



continent (Fig. 1b; see also Fig. 2). 
Univariate analyses show that all 6 environmental and historical variables 

were statistically associated with species richness (Table 2).  NDVI, Temperature, 
and Glaciation showed the strongest relationship with richness (i.e., large deviance 
and low AIC; see also Fig. 3). Endemicity also showed a strong association with all 
environmental and historical variables (Table 2), but with the number of vegetation 
types. Elevation, Temperature, and Glaciation were the variables that best predicted 
endemicity (Fig. 4). 

The best 2-variable regression model for species richness variation included the 
positive effects of NDVI and Temperature (Table 3) a measure of productive energy 
available for consumers and of solar energy availability respectively (Evans et al.  
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Figure 1.  Mammal species richness (a) and 
endemicity (b; Ie) in each 0.5° (lat/long) quadrant, 
as a function of latitude, in Mediterranean and 
Temperate Chile (30° - 55° S).  



2005). In the case of endemicity, the best model included Elevation and Glaciation. In 
this case non-glaciated areas had a larger endemicity index than glaciated ones (Table 
3). 

The signed Mantel test results (Table 4) show a significant effect of Temperature 
and NDVI on richness and of Elevation and Glaciation in endemicity.  It also reveals that 
there is a significant influence of spatial autocorrelation on richness. This was apparent 
in a significant effect of geographic distance and an increase in explained variability in 
richness in the two variable model when distance was included. Endemicity, however, 
was not affected by spatial autocorrelation.  

Rarity and Life-history Traits

Without taking phylogenetic relatedness among species into account, univariate 
analyses show that latitudinal range and mean density are similarly influenced by 

Figure 2. Spatial distribution of mammal species richness and endemicity (Ie) 
in Mediterranean and Temperate Chile.  Maps of Chile are superimposed by a 
grid of 49 0.5° (lat/long) quadrats.



species attributes (Table 5). Latitudinal range and density were significantly and 
positively correlated with the number of vegetation types, such that specialists 
(i.e., species found in quadrants with few vegetation types) not only have narrower 
geographic ranges, but also occur at lower densities than do generalists (Fig. 5). The 
multivariate regression analysis gave results similar to the univariate analysis (Table 
6). For density, the variables that entered the model were number of vegetation types 
(a measure of habitat breadth) and habits (terrestrial vs. fossorial). Similarly, the 
latitudinal range of species was best predicted by the number of vegetation types and 
by herbivory.

Phylogeny did not have a significant effect on density or geographic range (Table 
6). When phylogenetic relatedness was accounted for, the results did not change, and 
the number of vegetation types remained as the only ecological trait significantly 
associated with latitudinal range and vegetation types and habits were the only traits 
related with density. 

DISCUSSION

Richness, Endemicity and Environmental traits

In this work, we have documented patterns of species richness for small mammals 
inhabiting forested habitats in Chile.  Species richness is highest between 35° and 40° S, 
followed by a decrease in richness until the tip of the continent.  This non-linear pattern 
has also been reported in plants (Villagrán, 1995; Arroyo et al., 1996), birds (Cofré, 
2004), and butterflies (Samaniego and Marquet, unpubl. data).  Our results suggest 
that this pattern may be driven by ecological factors associated with energy input, 
as measured by NDVI and temperature.  Similar results have been reported recently 
for the South American mammal fauna (Ruggiero and Kitzberger, 2004; Tognelli and 
Kelt, 2004) at a continental scale; these authors found that variables associated with 
productivity, such as actual evapotranspiration, NDVI, and solar radiation were the 
most important in affecting spatial changes in species richness for mammals.  However, 

Table 2. Univariate analyses to assess the influence of six predictor variables on species 
richness (using Poisson regression) and endemicity (using linear regression) of small 
mammals assemblages in Mediterranean and Temperate Chile. 

Predictor Variables Regional richness Endemicity Index
Deviance AIC Coefficient F value AIC

  NDVI  52.03***      216.2  0.44 11.56**  -1.28
  Elevation 10.23**      258  -0.57 22.55**  -9.71
  Vegetation types  30.69***      237.5  0.25      3.16 n.s 6.3
  Temperature  57.35***      210.9  0.45 12.04** -1.68
   Precipitation  15.98***      252.2 -0.35   6.71**  2.95
   Glaciation  48.09***      220.14 -0.23 11.74** -1.43

* p < 0.05, ** p < 0.01, *** p < 0.001.
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we also found that glacial events may play a role in explaining richness patterns.  
Glaciation was the third most important determinant of richness in univariate analysis 
and strongly affected the spatial pattern of endemicity.  It has been recently recognized 
that Pleistocene refuges and non-glaciated areas in the Nearctic and Palearctic can 
explain current biodiversity patterns as they have acted as important diversification 
centers (e.g., Mönkkönen and Viro, 1997; Baquero and Telleria, 2001; Hawkins and 
Porter, 2003).  On the other hand, we also found a tendency for glaciated sites to exhibit 
lower endemicity indices than non-glaciated sites.  This indicates that species with 
smaller ranges are not represented in most of the glaciated sites (see also Mönkkönen 
and Viro, 1997; Baquero and Telleria, 2001; Hawkins and Porter, 2003). According to 
Vuilleumier (1971), the main effect of Quaternary glaciations has been the reduction of 
species distribution in glaciated areas south of 45° S.  Further analyses, however, are 
needed to substantiate the effect of glaciations and to separate them with others, such 
as a potential peninsular effect.  

The lower regional richness observed between 45° and 52° S coincides with 
low endemism, given the over-representation of species with broad ranges from 
the Mediterranean area (e.g., Abrothrix longipilis, A. olivaceus) or other biomes (e.g., 
Euneomys chinchilloides, Phyllotis xanthopygus) (Murúa, 1996).  We also observed a peak 
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Figure 3. Mammal species richness in each 0.5° (lat/long) quadrat as a function of 
NDVI (rs = 0.81, p < 0.0001); temperature (rs = 0.87, p < 0.0001); annual mean daily 
precipitation, (rs = -0.54, p < 0.001; and number of vegetation types (rs = 0.58, p < 
0.001).



Figure 4. Mammal endemicity (Ie) as a function of 
temperature (rs = 0.34, p < 0.02) and mean elevation 
(rs = -0.45, p < 0.001).
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in endemism at the bottom of the latitudinal gradient due to species with restricted 
insular distributions (e.g., Akodon lanosus, A. hershkovitzi, A. markhami, and Oligoryzomys 
magellanicus).  These species likely diversified in this area after it was colonized by 
ancestral taxa coming from more northern areas when Pleistocene ice fields started to 
retreat (e.g., Smith et al., 2001; Palma et al., 2005).

Biogeographic studies using unprojected latitudinal bands or degree-based 
quadrants are likely to be affected by area, as the area at different latitude differ due 
to the poleward convergence of longitudinal meridians (e.g., Lyons and Willig, 1999, 
Romdal et al., 2005).  Area has no effect on richness in our study, probably because of 
the short latitudinal extent included in the analysis.  This claim is based on the fact 
that none of all possible 2-variable models including area as a predictor had lower AIC 
value than the best model reported in Table 3.  The same result has been observed when 

Table 4. Results of multivariate Signed Mantel test including and not including 
spatial autocorrelation when testing for the influence of environmental variables 
on species richness and endemicity. Numbers are partial correlations. 
				  

Models with 
Environmental 

Variables

Richness Endemicity
not including 

geographic 
distance

including 
geographic 

distance

not including 
geographic 

distance

including 
geographic 

distance
      Temperature   12.75***    3.94**
      NDVI     9.06***    11.11***
      Distance    12.09***
      R2 0.48 0.55
      Elevation  -14.16***  -14.12***
      Glaciation    -7.93***    -7.98***
      Distance        0.98 n.s.
      R2 0.24 0.20

 ** p < 0.01, *** p < 0.001

Table 3. Best two variable model for species richness (based on Poisson regression) and 
endemicity (based on linear multiple regression) of small mammals assemblages in 
Mediterranean and Temperate Chile. 

                        Richness Endemicity
Predictor 
Variables Coefficient Deviance AIC

Predictor 
Variables Coefficient R2 AIC

Temperature 1.31 57.35*** 11.33 Elevation    -0.01*** 0.36 -12.34
NDVI 0.17    1.55 n.s Glaciation -0.14*

*** p < 0.001, * p < 0.05



analyzing all mammalian species in half-degree quadrants across Chile (Samaniego 
and Marquet, unpublished data.)

We have also shown a significant and positive effect of topographic heterogeneity 
on endemicity, as measured by mean difference in elevation.  Such topographic 
heterogeneity may increase isolation between populations, and may foster population 
differentiation and speciation processes, thereby increasing the diversity of these areas, 
as suggested by Fuentes and Jaksic (1979) for lizards. 

Rarity and Life-history Traits

At least 10 different hypotheses have been proposed to explain species rarity (see 
reviews by Kunin and Gaston, 1993; Gaston and Kunin, 1997; Gaston, 2003).  We have 
found a strong relationship between latitudinal range and the number of vegetation 
types, or habitat breadth.  We also find significant associations between density and 
number of vegetation types.  Small mammals that only occur in a few habitats in 
Mediterranean or Temperate Chile have a significantly smaller latitudinal extent and 
a smaller population density than widespread mammals that occur in many habitats.  
This is in agreement with Brown’s (1984, 1995) niche breadth hypothesis, which states 
that species with broad niches (e.g., habitat generalists) have higher abundance and 
larger geographic ranges than species with more restricted niches (e.g., specialists), 
although the mechanistic basis for this hypothesis might still be questionable, unless 
an independent measure of niche breadth is used.  While a positive relationship 
between habitat breadth and geographic range has been found for many organisms 
including mammals (e.g., Jones, 1997; Eeley and Foley, 1999; Harcourt and Coppeto, 
2002; see also Gaston, 2003), a correlation between habitat breadth and abundance 
has not often been reported (see Gaston et al., 1997 for review).  However, our results 

Table 5. Results of univariate analyses (linear regression or one-way 
ANOVA) on the influence of eight species attributes either on the log10 
density or the log10 latitudinal range of small mammal species from 
Mediterranean and Temperate Chile.

Variable log10   Density log10 Latitudinal range
Slope F  value Slope F value

Body size -0.02 0.01 -0.25  2.09
Herbivory 0.51  0.66
Insectivory   0.003  0.11
Number of 
vegetation types  0.45  5.75*  0.61     18.17***

Activity 3.45  0.41
Habits 0.42  0.85
Sociability 0.21  0.05
Litter size  0.04 0.02  0.19  0.61

* p < 0.05, *** p < 0.001
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A

B

Figure 5. The relationship between number of 
vegetation types in 0.5° (lat/long) quadrants and 
latitudinal range (A) and population density (B).



should be interpreted with caution, since our analysis suffers from being restricted 
to “small mammals” which renders, for example, any correlation between body size 
and abundance or distribution difficult to find because of the reduced range of the 
size axis.  Since other relationships can be similarly affected, further studies on the 
complete assemblage of Chilean mammals are necessary to assess the generality of 
these results.  

Conservation Implications

Many studies have found no congruence between the number of rare species and 
overall richness for mammals (Ceballos and Brown, 1995; Ceballos et al., 1998; Baquero 
and Tellería, 2001) or other taxa (Prendergrast et al., 1993; Williams et al., 1996; Dobson 
et al., 1997; Kerr 1997; but see Arita et al., 1997).   In contrast, we documented a positive 
correlation between richness and endemicity in small mammals of the Mediterranean 
and Temperate regions of Chile (r = 0.628, p < 0.001).  This pattern emerges because 
the majority of the 14 species with the most restricted distributions in this region have 
their southern or northern distributional boundaries around 37° S.  The transitional 
character of this area contributes to the emergence of this biodiversity pattern (Fig. 
1b).  For example, Reise and Venegas (1987) described an assemblage of 10 species 
– including 4 species with their northern distributional boundaries here: Aconaemys 
fuscus, Ctenomys maulinus, Dromiciops gliroides, and Loxodontomys micropus (= Auliscomys 
micropus) near Termas de Chillán (71° 25’ W, 36° 54’ S, 1,250 m).  On the other hand, 
in coastal forests such as Nahuelbuta National Park (73° 07’ W, 37° 53’ S, 1,000 m) it 
is possible to find species from the Mediterranean as well as Temperate forest (e.g., 
O. bridgesi and P. darwini are from the Mediterranean area whereas A. fuscus and D. 
gliroides belong to the Temperate forest) (Jimenez et al., 1991; see also Fuentes and 
Jaksic 1979; Reise and Venegas, 1987; Medel et al., 1990; Murúa, 1996).  

Species in different rarity categories (sensu Rabinowitz et al., 1986) require different 
conservation strategies (Arita et al., 1990).  For example, specialized species with 
restricted distribution ranges that overlap species-rich areas (e.g., the genus Aconaemys, 
Ctenomys maulinus, Loxodontomys pikumche, Octodon bridgesi, and Abrothrix sanborni) are 

Table 6.  Results of multivariate Mantel test with and without consideration of 
phylogenetic distance, testing the influence of species attributes on log10 Density and 
log10 of latitudinal range. Numbers in table are t-values.  				 
Species traits log10 Density log10 Latitudinal range

not including 
phylogenetic 

distance

including 
phylogenetic 

distance

not including 
phylogenetic 

distance

including 
phylogenetic 

distance
Phylogeny 0.21 -0.95
Number of 
Vegetation types 

   6.06**    6.01**     8.64***       8.63***

Habits    4.55**    4.54**
R2 0.13 0.13 0.14  0.14

* p < 0.05, ** p < 0.01, *** p < 0.001



Cofré et al.: Small Mammal Species Richness in Chile

likely to benefit from a conservation strategy that targets species-rich regions.  On the 
other hand, restricted and/or low abundance species whose geographic distribution 
do not overlap species-rich areas (such as Octodon lunatus, Chinchilla lanigera, Chelemys 
megalonyx, Pearsonomys annectens, Octodon pacificus, and Rhyncholestes raphanurus) 
will benefit most from a conservation strategy focusing on individual species.  Thus, 
conservation strategies should remain  flexible in the face of  the diversity of biological 
attributes exhibited by taxa and habitats.    
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