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a b s t r a c t

The main objective of this study was to develop a vision system that is able to classify fresh-cut apple
slices according to the development of enzymatic browning. The experiment was carried out on ‘Granny
Smith’ apple slices stored at 7.5 ◦C for 9 days (n = 120). Twenty-four samples were analyzed per day: at
zero time and after storage for 1, 3, 7 and 9 days, which corresponds to treatments t0, t1, t3, t7 and t9

respectively. Multispectral images were acquired from the samples by employing a 3-CCD camera cen-
tered at the infrared (IR, 800 nm), red (R, 680 nm) and blue (B, 450 nm) wavelengths. Apple slices were
evaluated visually according to a visual color scale of 1–5 (where 1 corresponds to fresh samples without
any browning and 5 to samples with severe discoloration), to obtain a sensory evaluation index (ISE) for
each sample. Finally, for each sample and for each treatment, visible (VIS) relative reflectance spectra
(360–740 nm) were obtained. In order to identify the most related wavelengths to enzymatic brown-
ing evolution, unsupervised pattern recognition analysis of VIS reflectance spectra was performed by
principal components analysis (PCA) on the autoscaled data. Maximum loading values corresponding to
the B and R areas were observed. Therefore, a classification procedure was applied to the relative his-
tograms of the following monochromatic images (virtual images), which were computed pixel by pixel:
(R − B)/(R + B), R − B and B/R. In all cases, a non-supervised classification procedure was able to generate
three image-based browning reference classes (BRC): Cluster A (corresponding to the t0 samples), Cluster B
(t1 and t3 samples) and Cluster C (t7 and t9 samples). An internal and an external validation (n = 120) were

carried out, and the best classifications were obtained with the (R − B)/(R + B) and B/R image histograms
(internal validation: 99.2% of samples correctly classified for both virtual images; external validation:
84% with (R − B)/(R + B) and 81% with B/R). The camera classification was evaluated according to the col-
orimetric measurements, which were usually utilized to evaluate enzymatic browning development (CIE
L*a*b* color parameters and browning index, BI) and according to ISE. For both validation phases a*, b*,

e L* v
BI and ISE increased whil
browning state.

. Introduction

The act of cutting fresh produce invariably stimulates a range
f degradative changes, which present additional challenges to the
resh-cut industry to maintain quality for an acceptable marketing
eriod. An important factor causing loss of quality in much pro-

uce is the development of browning on cut surfaces. Browning
as a significant impact on the quality of apples and their products
ecause it results in changes in the appearance and organoleptic
roperties of the food, which can affect market value and, in some

∗ Corresponding author. Tel.: +34 913365862; fax: +34 913365845.
E-mail address: loredana.lunadei@gmail.com (L. Lunadei).

925-5214/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.postharvbio.2011.02.001
alues decreased with image-based class number, thereby reflecting their

© 2011 Elsevier B.V. All rights reserved.

cases, result in exclusion of the food product from certain mar-
kets (Pristijono et al., 2006). Browning is generally considered to
be caused by a range of endogenous phenolic compounds contain-
ing an o-dihydroxy group that is oxidized to the corresponding
o-quinones in the presence of oxygen by an oxidizing enzyme
(in particular, polypheloloxidase (PPO)), with subsequent reactions
leading to the formation of brown, black or red pigments (melanins)
(Robards et al., 1999). The control of cut-surface browning is critical
for maintaining the quality and safety of fresh-cut produce. The use

of anti-browning agents based on citric or ascorbic acid, together
with modified atmosphere packaging and low-temperature storage
increases the shelf life of fresh-cut fruit (Baldwin et al., 1996).

Traditionally, enzymatic browning has been quantified using
browning indicators through a biochemical index. For example,

dx.doi.org/10.1016/j.postharvbio.2011.02.001
http://www.sciencedirect.com/science/journal/09255214
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sing polyphenol oxidase activity (Osanai et al., 2003; Hosoda et al.,
005), or physical indicators such as surface color have been used
Lambrecht, 1995; Kang et al., 2004). In the case of physical indi-
ators based on color, CIE L*a*b* color space has been the most
xtensively used color model due to the uniform distribution of
olors and because it is very close to the human perception of color
Yam and Papadakis, 2004). Based on CIE L*a*b* coordinates, espe-
ially on the L* value, or on CIE XYZ color space (a color model
trongly related to the Lab), browning indicators in fruit have been
eveloped (Pristijono et al., 2006; Lu et al., 2007). A browning index
BI), defined as brown color purity, is one of the most common indi-
ators of browning in sugar containing food products (Buera et al.,
986). In order to carry out a detailed characterization of the color
f a food item, and thus to more precisely evaluate its quality, it
s necessary to know the color value of each point of its surface
León et al., 2006). However, the available commercial colorime-
ers do not allow a global analysis over entire surfaces, since they

easure L*a*b* coordinates only over a few square centimeters,
oinciding with the dimension of the measurement area (around
0 mm). Thus, their measurements are not representative in het-
rogeneous materials such as food products (Papadakis et al., 2000;
endoza and Aguilera, 2004). On the contrary, computer vision sys-

ems (CVSs) allow acquisition of digital images of entire samples
hat can be analyzed pixel by pixel, allowing accurate measure-

ent of color coordinates in each point of the surface. Recently,
eón et al. (2006) demonstrated a computer vision system (CVS)
or measuring color in L*a*b* coordinates from RGB space. Some
tudies have been undertaken to apply that approximation to food
Pedreschi et al., 2007; Quevedo et al., 2008). During the descrip-
ion of browning kinetics using color information, an L* mean value
s generally assumed. That is, an average of the L* values is calcu-
ated using a CVS for an analyzed area. However, in apple slices,
he development of non-uniform color patterns during browning
specifically L* color) was observed. With the aim of quantifying
on-homogenous color surfaces in apple slices during browning,
oruk et al. (2004) employed an approximation, based on the reduc-
ion of the original number of red, green and blue intensity levels.
hey adopted a sub-color space derived from the RGB space, in
hich each color axis (Red, Green, Blue), normally ranging from 0

o 255, was divided by eight so that the colors were regrouped in
× 8 × 8 = 512 ranges. Texture image analysis has been suggested
s a possible tool to quantify color information extracted from
oth gray and color images without reducing the intensity levels
f the RGB components. This has been possible because the texture
f images is usually determined by analyzing the surface inten-
ity obtained by plotting the (x, y) pixel coordinates against the
ray level of each pixel (z axis). As a result, the changes in pixel
alue intensity reflect the texture of the image, which might con-
ain information about the color and the geometric structure of
he objects in the image (Quevedo et al., 2002; Du and Sun, 2004;
heng et al., 2006; Gonzales-Barron and Butler, 2008). Until now,
mage texture analysis has been employed to quantify the non-
omogenous distribution of the L* color in fresh-cut products with
cubical shape (2 cm × 2 cm × 2 cm) (Quevedo et al., 2009a,b,c). The
im of this work was to classify fresh-cut apple slices on the basis
f their browning state by employing a multispectral image vision
ystem. The main objective was to identify proper virtual images as
combination of monochromatic ones in order to detect changes

n color related to the browning process.

. Materials and methods
.1. Fruit samples

Apple fruit (Malus domestica Borkh. L. cultivar Granny Smith)
rom France (category: I; caliber: 80/85 mm) were purchased from
d Technology 60 (2011) 225–234

a local wholesale produce distributor. Two sets of fifteen apples
(Set 1 and Set 2) were selected based on their regular shape and
uniform size and they were employed as calibration and validation
sets respectively. The apples were peeled and cut into eight equal
slices in a refrigerated room at 7.5 ◦C and 85% RH, resulting in a total
of 120 slices. After covering the slices with a cling film, they were
stored at 7.5 ◦C for 9 days. A sharp stainless-steel knife was used
throughout the process to reduce mechanical bruising. A single slice
was considered to be a sample unit for these experiments. Twenty-
four samples were evaluated at zero time and after storage for 1, 3,
7 and 9 days. In this experiment, each storage time corresponded
to a treatment: zero time is the t0 treatment, one day of storage is
the t1 treatment, three days of storage is the t3 treatment and so
on.

2.2. Reference values

Visible (VIS) relative reflectance spectra and CIE L*a*b* color
coordinates were obtained from the samples using a Minolta
CM-50I portable spectrophotometer (Konica Minolta Sensing, Inc.,
Japan), whose measurement area had a diameter of 8 mm. All mea-
surements were taken under the conditions of standard illuminant
D65 and 10◦ observer. A standard white calibration plate was
employed to calibrate the equipment. Measurements were per-
formed three times on each side of every apple slice, by positioning
the measurement area in the center of the samples, which corre-
sponded to the region where browning process was more clearly
visible. An average VIS relative reflectance spectrum and a set of
color coordinates expressed as average values were thus obtained
for each apple slide. Browning of the cut surfaces from each sam-
ple was also evaluated visually according to a visual color scale. All
analyses were carried out using MATLAB® software (MathWorks,
Inc., USA).

2.2.1. Reflectance spectra analysis
Visible relative reflectance spectra 360–740 nm, at 10 nm inter-

vals, were obtained from each sample and for each treatment.
In order to simplify processing, reduce the dimension of the
data and identify the most important features associated with
the acquired spectra, a principal components analysis (PCA) was
performed on the reflectance data after normalizing the spectra,
which employed the Total Absolute Sum normalization, and after
autoscaling spectra with the Standard Normal Variate (SNV) method
(Barnes et al., 1993). The original number of variables K, corre-
sponding to the thirty-nine wavelengths, could thus be reduced
to a much smaller number (A) of variables called principal com-
ponents (PCs), which were orthogonal linear combinations of the
original 39 variables, and they accounted for most of the vari-
ability in the data. Moreover, the examination of loading plots
generated by the PCA would identify the optical ranges related to
the main differences between the different treatments. In order
to decide how many components (and corresponding variants) to
retain, the scree test (Otto, 2007) was applied, which is one of the
most commonly used criteria. This criterion is based on the phe-
nomenon of the residual variance leveling off when the proper
number of PCs is obtained: after plotting the eigenvalues against
the PCs in a scree plot, the component number can be derived from
the leveling off in this dependence. Since the number of PCs can
slightly vary depending on the test applied, the results obtained
were tested with the eigenvalue-one criterion: according to this,
only the PCs with eigenvalues greater than one could be signifi-

cant in the analysis (Otto, 2007). Finally, a one-way ANOVA was
performed on the PCs score values in order to test the ability of
the scree test to capture the variability between the treatments.
A test of mean comparisons according to Fisher’s least signifi-
cant difference (LSD) was applied, with a level of significance
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ground = 0). This mask was multiplied by the images acquired at
800 nm (IR), 680 nm (R) and 450 nm (B) and by a proper combi-
nation of monochromatic images (virtual images) to obtain the
corresponding images only for the ROI. Further analyses were
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f 0.05 was used to determine which means were significantly
ifferent.

.2.2. Color parameters
CIE L*a*b* coordinates were measured, where L* is the lumi-

ance component (ranging from 0 to 100), while a* and b* are
olor coordinates related respectively with the red/green and yel-
ow/blue spectral ranges, with values varying from −120 to +120
Yam and Papadakis, 2004). The results were also reported as XYZ
ristimulus values. As such, it was possible to calculate the brown-
ng index (BI) by applying the equation defined by Buera et al.
1986) (1):

I = (x − 0.31)
0.172

× 100 (1)

Variable x is the chromaticity coordinate calculated from the
YZ values according to the following formula x = X/(X + Y + Z). The
esults were employed as a reference of browning during storage
ith regard to multispectral image information.

.2.3. Sensory evaluation
Based on techniques from other studies investigating the rela-

ionship between changes in color of food products and their
onsumer evaluations (Abbott et al., 2004; Zhou et al., 2004; Perez-
ago et al., 2006; Pristijono et al., 2006; Quevedo et al., 2008), the
helf-life of each apple slice was determined as the time required
or browning to develop to an unacceptable level. Browning of the
ut surfaces was evaluated by three referees according to a visual
olor scale of 1–5, where 1 = fresh without any browning, 2 = slight
rowning of the cut surface, 3 = moderate browning, 4 = severe
rown discoloration, 5 = complete discoloration. A sensory evalu-
tion index (ISE) was obtained for each sample by averaging the
hree scores of the sensory panel. This index was employed as a
eference for the browning state of the samples and was compared
o the information obtained from the vision system.

.3. The vision system

Images were acquired through a multispectral imaging sys-
em consisting of a frame-grabber (National Instruments®, Austin,
X, USA) and a 3-CCD camera (DuncanTech/Redlake MS-3100®,
edlake Inc., USA) with a digital output. The camera resolution
as 1300 × 1000 pixels with three band-pass filters (band-width:

0 nm) centered at 800 nm (infrared, IR), 680 nm (red, R), and
50 nm (blue, B). Acquired images were stored as 1300-by-1000-
y-3 data arrays (IRRB images) that defined the infrared, red, and
lue color components for each individual pixel. The light source
as provided by six 100 W/220 V halogen lamps and the object dis-

ance between the lens system and the sample was 60 cm. The angle
etween the camera lens axis and the lighting source axis was 45◦

ecause the diffuse reflection responsible for the color occurs at 45◦

rom the incident light (Francis and Clydesdale, 1975; Marcus and
urt, 1998). The images were acquired using a black background.
black canvas was put around the vision test station in order to

reate a uniform light field around the object and to eliminate any
ffect of environmental light.

.3.1. Image analysis: image segmentation and virtual images
alculation

IRRB images were acquired for each sample and for each treat-
ent and they were stored and processed off-line in MatLab®. At
rst, samples were distinguished from the background through
he Otsu method (Otsu, 1979), a common segmentation technique.
his technique computes the threshold level based on the image
istogram distribution. It was performed on the IR images since
hey presented the greatest difference between the gray levels
PC number

Fig. 1. Scree plot for the principal component model of the reflectance data. The X
axis corresponds to the component number and the Y axis to the eigenvalues.

corresponding to samples (the region of interest, ROI) and to the
background. This operation resulted in a binary image that could
be considered as an “image mask” (gray level: ROI = 1 and back-
Fig. 2. Upper panel: PC1 scores plot for autoscaled and normalized reflectance data
with 95% confidence limits (dotted lines). The X axis corresponds to the sample
number and the Y axis to the sample scores for PC1. Vertical lines separate the
samples based on treatment. Lower panel: PC1 loadings plot. The X axis corresponds
to the wavelength (nm) and the Y axis to the loading values for PC1.
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it was validated with Set 2 samples and their corresponding his-
tograms were classified into the BRC generated from Set 1 data.

Table 1
The 12 first PCs resulting from the PCA performed with the autoscaled and normal-
ized reflectance data.

Component number Eigenvalue Percent of variance Cumulative
percentage

1 32.0973 82.301 82.30
2 5.7639 14.779 97.08
3 0.6424 1.647 98.72
4 0.2921 0.749 99.47
5 0.1026 0.263 99.74
6 0.0621 0.159 99.89
7 0.0206 0.053 99.95
ig. 3. The upper panel shows a fresh-cut apple slice at zero time (t0) and after 1 (t1

Total Absolute Sum normalization) VIS relative reflectance spectra acquired from the
nd the red (dotted line) spectra regions according to the center of the B (450 nm) an
o the wavelength (nm) and the Y axis to the VIS relative reflectance of the spectra

pplied on the ROI-relative histograms of the virtual images, which
ere computed as the relative frequency of pixels over the inten-

ity range of the image. In the rest of this document, “histogram”
efers to “relative histogram” of the image.

.3.2. Non-supervised image classification
A non-supervised classification according to Ward’s method

Ward, 1963) was performed in order to define browning reference
lasses (BRC) based on the histograms of the virtual images of Set 1
calibration set). A multidimensional space was considered, where
ach dimension corresponded to an intensity level of the R − B/R + B,
− B and B/R histograms. Each histogram was thus represented
s a single point on the multidimensional space. Ward’s classifi-
ation method was applied by computing the matrix of Euclidean
istances between each pair of individuals (histograms), grouping
he closest individuals and hierarchically merging groups (or indi-
iduals) whose combination gave the least Ward linkage distance
that is the minimum increase within the sum of squares of the
ew-formed group). As an advantage to other classification meth-
ds, Ward’s method takes into account all histograms of the data set
t every level of the grouping, producing very well structured and
omogeneous groups (Otto, 2007). Besides, this method gave rise
o successful results in previous works investigating fruit ripeness
Lleó et al., 2009; Herrero et al., 2011). A MatLab® devoted code was
eveloped in order to generate groups automatically on the basis
f the input maximum Ward linkage distance, which is derived from
he analysis of the cluster tree features. The average histogram was
omputed for each generated group and defined as BRC.
.3.3. Validation: classification of anonymous samples into
rowning reference classes

A validation procedure was developed to assess the errors in real
ime classification of anonymous images. Internal and external vali-
), 7 (t7) and 9 (t9) days of storage (T = 7.5 ◦C). The lower panel shows the normalized
les during the different treatments. Vertical lines indicate the blue (continuum line)
he R (680 nm) band-pass filters of the multispectral camera. The X axis corresponds
ary units).

dations were successively carried out by assigning each anonymous
individual into the previously generated BRC. Each anonymous his-
togram was classified into the reference class (each one defined
by the average histogram of the class) to which it computed the
minimum Euclidean classification distance.

For internal validation, the same population generating the
model was classified again, one by one, into the BRC: the observed
classification of the samples was compared with the predicted
classification of the same samples, obtained by computing the
Euclidean distances between the histogram of the samples image
and the average histograms of the generated BRC.

In order to test the robustness of the model based on Set 1 data,
8 0.0065 0.017 99.96
9 0.0043 0.011 99.98

10 0.0022 0.006 99.98
11 0.0015 0.004 99.99
12 0.0011 0.003 99.99
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An ANOVA table for PC1 organized by treatment.

Source Sum of squares D.f. Mean square F P-Value

F
c
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.4. Statistical analysis of reference values

Color reference parameters (CIE L*a*b* coordinates and BI) and
SE were compared to the classification based on the histograms of
irtual images of each index. An ANOVA was performed on L*, a*, b*,
I and ISE values and on the clusters extracted from the image anal-
sis. A mean comparison procedure (LSD test) was applied, with a
evel of significance of 0.05. Statistical procedures were performed
sing MatLab 7.0® and STATGRAPHICS Plus 5.1 (Manugistics Inc.,
ockville, MD, USA).

. Results and discussion

.1. PCA of reflectance spectra

In the scree plot reported in Fig. 1, the slope changes between the
econd and third components. Therefore, according to the scree test,
wo significant PCs were revealed. The same result was obtained
hrough the eigenvalue-one criterion, since only the eigenvalues of
C1 and PC2 were greater than one (Table 1). The percent variance
aptured by the PC1 and PC2 explained 97.08% of the variability
n the data set (Table 1). In the plot of PC1 scores against sam-
le number (n = 120) (Fig. 2), it was possible to observe that the

owest PC1 scores corresponded to the samples submitted to the
0 treatment (1–24), whereas the samples corresponding to the
9 treatment were characterized by the higher scores (96–120).
esides, PC1 scores of samples submitted to the t1 (25–48), t3
49–71) and t7 (72–95) treatments were in between the t0 and
9 values and increased over time. On the contrary, in the plot
f PC2, PC3 and PC4 scores (not shown) against sample number,
o consistent trends were found, suggesting that the variability of
hese components, which accounted for 14.78%, 1.65% and 0.76%

espectively of the total variance (Table 1), was not related to the
reatments. The above considerations suggested that the variabil-
ty associated with PC1, which accounted for 82.30% of the total
ariance, could explain the difference between the samples ana-
yzed at zero time and after storage for 1, 3, 7 and 9 days. Since PC1

ig. 4. IRRB image and R − B/R + B, R − B, B/R virtual images of an apple slice sample com
olor scale represents the intensity values of the images.
Between groups 2644.98 4 661.24 64.74 0.0000
Within groups 1174.60 115 10.21
Total (Corr.) 3819.58 119

yielded highly negative loadings in the 380–440 nm range (cor-
responding to the violet-blue zone) and highly positive loadings
in the 670–740 nm range (red region) (Fig. 2), these wavelengths
were related to the variability between the different treatments.
From the ANOVA performed on the PC1 scores, there was a signif-
icant difference between the scores and the different treatments
(F = 64.3, ˛ = 0.05) (Table 2). After performing the LSD test, five
homogenous groups were identified (data not shown). This means
that the proposed method was able to select proper subsets of
wavelengths in which the variability was associated with the treat-
ments. This suggested that the 360–490 nm and 620–700 spectral
ranges had the closest relationship to changes in pigment con-
tent during the browning process. Fig. 3 shows the VIS reflectance
spectra after applying the Total Absolute Sum normalization of a
fresh-cut apple slice at zero time (t0) and of the same sample after
treatments t0, t1, t3, t7 and t9. The shape of these spectra con-
firmed the results obtained from the PCA. The main difference is
that the relative reflectance values in the blue (430–490 nm) area
are higher at the beginning of the storage period than at the end,
whereas the reflectance values in the red (620–700 nm) ranges
are lower at t0 than at t9. This agrees with previous studies that
have observed that an increase in enzymatic browning in fresh-cut
products during storage is accompanied by an increase in colori-
metric a* and b* values (Pristijono et al., 2006; Lu et al., 2007). This
means that during the enzymatic browning, apple surface color

changes to red and yellow. The increase of red and yellow color
components could explain the increase in pinkish-red colors in
apple slices over time. The appearance of pinkish-red off-colored
compounds has been attributed to phenol regeneration during the

puted at zero time (t0) and after storage for 1, 3, 7 and 9 days (t1, t3, t7 and t9). The
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ig. 5. (a) plots the average histograms calculated from the samples for each imag
eports the relative dendrograms generated by applying Ward’s non-supervised clas
efined as browning reference class (BRC). Horizontal lines in the cluster trees repre

xidation process with deep color formation (Richard-Forget et al.,
991).

.2. Virtual images

On the basis of the results obtained from the analysis of VIS
pectra, proper virtual images were calculated as a combination
f red and blue images of the samples acquired by the IRRB cam-
ra. Since the reflectance values corresponding to the red range
ncreased from t0 to t9, whereas those corresponding to the blue

egion decreased, the virtual images were calculated to amplify
hese differences. The following virtual images were computed:
R − B)/(R + B), R − B and B/R. In the rest of this paper, R − B/R + B
efers to (R − B)/(R + B). Fig. 4 shows an example of these vir-
ual images for one sample in each treatment. In all cases, from
d class (R − B/R + B, R − B and B/R) and for each treatment (t0, t1, t3, t7 and t9); (b)
tion and (c) shows the average histograms computed for each generated cluster and
e maximum Ward Linkage distance within groups (pixel relative frequency = 0.30).

t0 to t9 treatment, changes in color were observed in the sam-
ples, which corresponded to a change in pixel intensity values. In
R − B/R + B and R − B images, the pixel intensity values increased
during the storage period. In the B/R images, the pixel intensity
value decreased. These changes in color did not occur uniformly
in the analyzed samples since the same samples presented regions
whose pixels turned to higher (or lower) intensity values faster than
others. This could be related to the increase in enzymatic activity,
which results from tissue disruption and takes place at a different
rate on the cut surface according to the local substrate compo-

sition and to the amount of enzymes that initiated the browning
(Li-Qin et al., 2009). By comparing virtual images with the origi-
nal samples (Fig. 4), the sub-regions corresponding to the zones
of the surface whose color turned brown during storage could be
identified.
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ig. 6. 3-D plots (left column) of L, BI and ISE index values and bi-plots of BI against
luster (A–C) obtained from R − B/R + B, R − B and B/R image histograms (Ward’s me
limit (76.0) and the BIlimit values (34.07), respectively.

.3. Generation of browning reference classes

For each virtual image (i.e., R − B/R + B, R − B and B/R) the aver-
ge of the twenty-four ROI-histograms obtained during each one

f the treatments t0, t1, t3, t7 and t9 was calculated, obtaining five
verage histograms per image combination (Fig. 5). The average
istograms of R − B/R + B and R − B images shifted to higher inten-
ity values, while those of B/R images shifted to lower intensity
alues. Fig. 5 also shows the dendrograms that were generated
es (right column) of Set 1 samples categorized in their corresponding image-based
. In the bi-plots of the right column, the vertical and horizontal lines represent the

by applying Ward’s non-supervised classification to each virtual
image. On the basis of the dendrogram features, the maximum
Ward linkage distance within groups was set at a 0.30 pixel relative
frequency. In all cases, three clusters, corresponding to the three

BRC (Cluster A, Cluster B and Cluster C) were obtained. In the same
figure, the average histograms computed for each generated clus-
ter and defined as BRC are also shown. Regarding the population
classified in the different clusters, R − B/R + B and B/R images gen-
erated clusters that were highly related to the various treatments:



232 L. Lunadei et al. / Postharvest Biology and Technology 60 (2011) 225–234

B          A 

0

10

20

30

40

50

60

70

80

90

100

Samples L>76.0 & BI<34.07

Samples L<76.0 & BI>34.07

0 20 40 60 80 100 120
0

1

2

3

4

5

6

N samples

IS
E

 v
a

lu
e

s

Cluster A

Cluster B

Cluster C

0

10

20

30

40

50

60

70

80

90

100

Samples L>76.0 & BI<34.07

Samples L<76.0 & BI>34.07

0 20 40 60 80 100 120
0

1

2

3

4

5

6

N samples

IS
E

 v
a

lu
e

s

Cluster A

Cluster B

Cluster C

0

10

20

30

40

50

60

70

80

90

100

Samples L>76.0 & BI<34.07

Samples L<76.0 & BI>34.07

0 20 40 60 80 100 120
0

1

2

3

4

5

6

N samples

IS
E

 v
a

lu
e

s

Cluster C

Cluster B

Cluster A

A B

A

C

C

C

B

B

A

R-B/R+B

R-B

B/R

F >76 an
a nst sa
c

1
8
t
p
i
5
C

3

R
i
c

testing for their robustness. The classification of anonymous his-
ig. 7. Stacked bar plots (left column) obtained by selecting samples with L* values
nd the Y axis to the sample percentage for each range) and plots of ISE values agai
luster.

00% of Cluster A consisted of samples analyzed at zero time, nearly
5% of Cluster B was composed of samples belonging to the t1 and

3 treatments and nearly 95% of Cluster C were samples that were
art of to the t7 and t9 treatments. The classification based on R − B

mages was less related to the treatments (Cluster A: 95% of t0 and
% of t1; Cluster B: 60% of t1 and t3, 38% of t7 and t9, 2% of t0; Cluster
: 60% of t7 and t9, 40% of t1 and t3).

.4. Internal validation
Internal validation of the model showed that in the case of the
− B/R + B and B/R histograms, 99.2% of the samples were classified

n the same group by two methods: the Ward’s non-supervised
lassification (BRC from A to C) and the classification according to
d BI values <34.07 for each cluster (the X axis corresponds to the A, B and C Clusters
mple number, where samples are categorized in their corresponding image-based

Euclidean distances to Ward-generated reference classes. For R − B
histograms, nearly 96% of the samples were classified in the same
group by both methods (table not shown).

3.5. External validation

The proposed classifications showed satisfactory results after
tograms of Set 2 samples, obtained by calculating the minimum Ed
distance to the reference classes generated with R − B/R + B, R − B
and B/R histograms of Set 1 samples was able to correctly classify
84, 66 and 81%, respectively, of the samples considered from Set 2
(table not shown).
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Table 3
Average values, confidence intervals (95%) and the results of an ANOVA Fisher LSD test performed on L*, a*, b*, BI and ISE values. The values come from samples grouped in
Clusters A–C according to Ward’s method based on R − B/R + B, R − B and B/R image histograms. An asterisk indicates that there is a significant difference (P < 0.05) between
all of the means.

Reference values

Cluster L* mean ±1.96SDL* a* mean ±1.96SDa* b* mean ±1.96SDb* BI* mean ±1.96SDBI ISE* mean ±1.96SDSE

R − B/R + B A 78.92 0.65 −1.28 0.30 21.28 0.65 21.28 0.67 1.00 0.13
B 74.35 0.41 1.52 0.25 28.60 0.44 28.60 0.44 2.57 0.07
C 70.21 0.49 3.55 0.22 30.80 0.52 30.85 0.51 4.20 0.08
F-values 59.58* 77.21* 65.80* 81.71* 211.21*

R − B A 79.05 0.63 −1.31 0.37 21.10 0.78 25.96 1.57 1.01 0.21
B 73.46 0.42 1.76 0.24 29.04 0.49 40.42 0.97 2.89 0.13
C 71.77 0.50 2.98 0.25 29.69 0.52 43.29 1.02 3.57 0.14
F-values 28.23* 44.30* 45.85* 46.33* 49.62*
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B/R A 78.95 0.64 −1.24 0.31
B 74.25 0.42 1.59 0.20
C 70.11 0.49 3.58 0.24
F-values 59.60* 77.25*

.6. Reference parameters of image based clusters

Table 3 reports the results of an ANOVA performed on L*, a*, b*, BI
nd ISE values as well as the clusters obtained through the described
on-supervised classification of the image histograms. For each

ndex and for each image-based cluster, a consistent increase was
bserved in a*, b*, BI and ISE values as well as a consistent decrease
n lightness (L*) from Clusters A to C. The trend of these param-
ters agreed with the results of previous studies that examined
he changes in color coordinates related to enzymatic browning
rom storage (Perez-Gago et al., 2006; Pristijono et al., 2006; Lu
t al., 2007; Toivonen, 2008). After performing the LSD test, sig-
ificant differences were observed between all the means of the
nalyzed variables. In other words, Clusters A–C could be consid-
red homogenous in regards to color parameters and to sensory
valuation. The left column of Fig. 6 provides 3-D plots of L*, BI
nd ISE values of Set 1 samples categorized in their corresponding
mage-based cluster (A–C). The relationship between BI values and
* values was analyzed and the linear model reported in Eq. (2) was
btained:

I = ˇ0 + ˇ1(L∗) (2)

here ˇ0 = 184.25, ˇ1 = −197 and R2 = 90.1%. According to the
esults obtained by Pristijono et al. (2006) in a study investigat-
ng browning in ‘Granny Smith’ apple slices, an L* value of 76.0 was
onsidered to be the limit for acceptability of browning (Llimit = 76).
q. (2) allowed us to predict the threshold value for BI (BIlimit) cor-
esponding to Llimit and we found that BIlimit = 34.07. This value
as considered to be a threshold value for browning with a 95%

onfidence interval. These limits are reported in the bi-plots of BI
gainst L* values showed in the right column of Fig. 6. Considering
limit and BIlimit limits, Cluster A, B and C samples were classified
n slices with acceptable (L > 76 and BI < 34.07) and inacceptable
rowning (L < 76 and BI > 34.07) (left column of Fig. 7). According
o these classifications, nearly 84% of Cluster A, 15% of Cluster B
nd 2% of Cluster C (calculated with R − B/R + B and B/R images)
nd nearly 80% of Cluster A, 13% of Cluster B and 10% of Cluster C
calculated with R − B images) were considered to have acceptable
evels of browning. According to sensory evaluation, which consid-
red a color scale of 1–5 for each sample, all Cluster A samples were
udged as fresh without any browning, while almost all Cluster B and
luster C samples were evaluated as samples with slight-moderate
nd severe-complete browning of the cut surface, respectively (right

olumn of Fig. 7). These results suggested that the proposed vision
ystem was able to classify samples according to colorimetric and
ensory parameters since Cluster A would mainly comprise sam-
les with a cut surface without browning, while Cluster B and
samples would exhibit different degrees of browning. Consid-
21.28 0.67 26.25 1.23 1.01 0.12
28.61 0.44 39.27 0.81 2.58 0.08
30.85 0.51 46.13 0.94 4.22 0.09
65.96* 81.72* 210.76*

ering the three image-based classifications, R − B/R + B and B/R
images showed the best agreement between treatments submit-
ted to the sample, color parameters and ISE values. On the basis
of these results, image-based classes may provide relevant infor-
mation for the management of fresh-cut apple slices and has
the potential to help detect fruit with an unacceptable level of
browning.

4. Conclusions

In the present study, a new method based on a multispec-
tral vision system was proposed to classify fresh-cut apple slices
according to enzymatic browning evolution. The method utilized
relative histograms of virtual images, i.e., R − B/R + B R − B and B/R,
as well as combinations of red (R, 680 nm) and blue (B, 450 nm)
images of the samples. The red and blue spectral ranges contained
enough information for the proposed method to adequately classify
sample images. On the basis of our internal classification results, all
the indexes were sufficient to detect changes in browning by clas-
sifying the samples into three reference classes (A–C). In all cases,
Clusters A–C presented decreasing lightness and increasing a*, b*, BI
and ISE values. The robustness of the classification procedure was
determined by applying an external validation to a second set of
samples. It was possible to correctly classify a high percentage of
images from fruit in the second testing set with the model gener-
ated with the first set. The classification based on R − B/R + B and
B/R images exhibited the best sensitivity for reflecting the change
in colors associated with browning. All these results confirmed
the potential of the proposed method for characterizing fresh-cut
apples according to their browning state. This method could be
used as a potential criterion for establishing the optimal shelf-
life of fresh-cut apple slices under refrigeration conditions with or
without additional inhibitory treatments. In addition, this method
allows for a more spatially detailed determination compared to
other colorimetric techniques, which analyze a small portion of
a sample and lead to errors and inaccurate results if the analysis
is not repeated in different zones on the surface. Moreover, col-
orimetric measurements can only be made if there is contact with
the surface of the fruit and cannot be automated. On the contrary,
analyzing the histogram for the whole image of each sample is an
easier and faster technique that allows quantification based on the
original colors of the sample.
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