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Summary
Prunus is an economically important genus with a wide range of physiological and biological

variability. Using the peach genome as a reference, sequencing reads from four almond

accessions and one sweet cherry cultivar were used for comparative analysis of these three

Prunus species. Reference mapping enabled the identification of many biological relevant

polymorphisms within the individuals. Examining the depth of the polymorphisms and the overall

scaffold coverage, we identified many potentially interesting regions including hundreds of small

scaffolds with no coverage from any individual. Non-sense mutations account for about 70 000

of the 13 million identified single nucleotide polymorphisms (SNPs). Blast2GO analyses on these

non-sense SNPs revealed several interesting results. First, non-sense SNPs were not evenly

distributed across all gene ontology terms. Specifically, in comparison with peach, sweet cherry is

found to have non-sense SNPs in two 1-aminocyclopropane-1-carboxylate synthase (ACS) genes

and two 1-aminocyclopropane-1-carboxylate oxidase (ACO) genes. These polymorphisms may

be at the root of the nonclimacteric ripening of sweet cherry. A set of candidate genes associated

with bitterness in almond were identified by comparing sweet and bitter almond sequences. To

the best of our knowledge, this is the first report in plants of non-sense SNP abundance in a

genus being linked to specific GO terms.

Introduction

Genetic and genomic diversity arises through multiple mecha-

nisms including whole-genome duplication, gene copy and

transposable elements. However, in closely related species, and

especially within varieties, single nucleotide polymorphisms (SNPs)

play a large role in contributing to genetic variation. The SNP

differences in closely related species and varieties determine the

phenotypic diversity observed in these plants. While large-scale

rearrangements, duplications and deletions contribute to genetic

changes, SNPs as well as insertions and deletions (indels) can have

a direct effect on gene expression and function. SNPs and indels

can be rapidly assessed through high-throughput sequencing and

re-sequencing efforts and are becoming widely used as genetic

markers in breeding programmes (Ahmad et al., 2011; Ganal

et al., 2009; Hyten et al., 2010; Kulheim et al., 2009).

While most previously identified polymorphisms have been the

result of intraspecific analyses, the genetic changes contributing

to the phenotypic variation across different species of a genus are

also of interest. Prunus, a diverse genus in the Rosaceae family

with economically important ornamentals, fruits, seeds and

wood-based products, is a good candidate genus for this type

of analysis. Prunus contains species that are diploid with

n = x = 8 and have estimated genome sizes between 225 and

300 Mb (International_Peach_Genome_Initiative, 2013; Shulaev

et al., 2008; Zhebentyayeva et al., 2008), relatively small for the

Rosaceae family. Peach has also been established as a reference

genotype for Prunus due to the vast genomic resources available

for peach including many ESTs, DNA markers and linkage maps

(Zhebentyayeva et al., 2008). The recently completed draft

genome sequence of peach is 220–230 Mb (Interna-

tional_Peach_Genome_Initiative, 2013).

Production of peach, almond and sweet cherry was collectively

valued at over 3.6 billion dollars in the US in 2010 (National

Agricultural Statistical Services, 2011), demonstrating the eco-

nomic importance of this genus and the value of understanding

the genomic structure of these species. Each of these is crops in the

Prunus genus that produce stone fruits, have a perennial growth

habit and have a prolonged juvenility stage that has hindered the

rate of progress of conventional breeding and genetic analyses.

While these species are closely related, they have differences in

economically important traits that are important to production. In

almond, the primary trait of interest is the difference between

bitter and sweet almonds, although flowering time and shell
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hardness are also important. Bitterness in almonds is driven by the

production of amygdalin, a cyanogenic diglucoside and its

degradation products benzaldehyde and cyanide (S�anchez-P�erez

et al., 2008, 2012). This trait has been found to be controlled by a

single, dominant gene called Sweet kernel (Sk) that produces

sweet almonds (Dicenta and Garc�ıa, 1993; Dicenta et al., 2007).

SSR markers have placed Sk on linkage group 5 of the ‘R1000’

and ‘Desmayo Largueta’ almond maps (S�anchez-P�erez et al.,

2010). The position of these SSRs on the almond ‘Texas’ 9 peach

‘Earlygold’ (T 9 E) places the Sk locus between 11 and 14.6 Mb

on the peach scaffold 5 (S�anchez-P�erez et al., 2010). Several

targets for DNA markers in sweet cherries are fruit size, firmness,

pedicel-fruit retention force (PFRF) and powdery mildew resis-

tance. As the peach genome is available and intra-specific

polymorphism analyses have already been concluded in peach

(Ahmad et al., 2011), this work focuses on the genomic

differences of almond and cherry with respect to peach.

Here, a reference mapping approach using the peach genome

v1.0 as the reference genome and high-throughput sequencing

from four almond accessions and one sweet cherry cultivar were

used to identify regions of increased and decreased conservation

in Prunus. Detailed analysis of SNPs and indels was completed to

build a resource for future inquiries into these species. Addition-

ally, preliminary analysis of the Sk locus in almond was

completed, identifying 228 SNP candidates associated with the

Sk gene. The collective polymorphism data set provides several

regions of interest that have lower polymorphism rates and may

be essential to the shared characteristics of these Prunus species.

Results

Sequencing data acquisition

Four almond accessions were chosen for sequencing including

two sweet cultivars, Ramillete and Lauranne, and two bitter

selections of CEBAS-CSIC, D05-187 and S3067. Shotgun

sequencing of these four almond genotypes produced 142

million 76-base Illumina reads. Each of the individual almond

genotypes was sequenced at 8–139 coverage, or 2.1–3.3 Gb of

sequence, and combined to yield a 10.8 Gb data set or 439

coverage (Table 1). The sweet cherry cultivar Stella was chosen

for genomic sequencing, and through 454 single-end reads, 454

paired-end reads and Illumina paired-end reads, 1.6 Gb of

sequence or roughly 79 coverage was acquired. Transcriptome

sequencing of sweet cherry produced an additional 460 Mb of

sequence of single-end 454 reads from Bing and Rainier cultivars.

The raw data were submitted to NCBI SRA (accession number

SRP020000).

Assembly

A reference-based assembly of the reads onto the v1.0 of the

peach genome (International_Peach_Genome_Initiative, 2013)

was completed to identify regions of conservation and divergence

in the Prunus genus. Out of all the combined Illumina reads, 56%

mapped to the peach nuclear genome. Ninety-nine per cent of

the remaining reads (44% of the total reads) mapped to the

peach chloroplast genome. Only 0.2% of the total reads did not

map to either. This confirmed that the mapping was efficient and

the chloroplast-mapped reads were not analysed further. The

eight primary scaffolds of peach were covered between 0.4 and

6.39 as shown in ‘Data S1’ which contains the coverage statistics

for each scaffold and data set. These scaffolds were covered an

average of 4.949 for the combined cherry data and a 3.149

average for the almond genotypes. Overall, 162 of the 334

scaffolds contained zero reads from cherry or almond, while an

additional 24 were not mapped by the cherry data. Also, mapping

data show that 96%–99% of peach genes were mapped to with

these data sets (Table 2).

Polymorphism analyses

Overall, 13 126 567 initial polymorphisms were identified

between each individual genotype and peach. The raw SNP

report is made available from authors upon request. Potential

polymorphisms were initially identified and parsed to 9 751 035

after filtering to retain only sites with at least three reads

supporting the difference as previously described (Deschamps

and Campbell, 2010; Hyten et al., 2010; Koepke et al., 2012;

Kulheim et al., 2009). These polymorphisms were then further

identified based on their position revealing a total 6 138 404

polymorphic sites.

Polymorphism type and region identification

Based on the reference genome annotations (Data S2) from GDR

(Jung et al., 2008), the polymorphisms passing the filtering

criteria were classified by their location (Table 3) yielding an

average of 260 000 polymorphisms in the coding sequence (CDS)

for the almond accessions and >300 000 polymorphisms in sweet

cherry. Polymorphisms in the exons of cDNAs (Data S3) of the

almond genotypes average 52.1% (155 010), 43.3% (128 778)

and 4.5% (13 454) for sense, mis-sense and non-sense muta-

tions, respectively (Table 3). Additionally, 0.1% (342) of the CDS

SNPs are read-through mutations, mutations modifying a stop

codon into an amino acid yielding C terminus extension also

termed ‘stop loss mutations’ (Zirn et al., 2005). Sweet 1,

however, had a much higher rate of non-sense mutations

Table 1 Raw sequencing data. Total data acquired for one sweet cherry cultivar and four almond accessions. Only genomic data was used for

almond genotypes

Data type

Sweet cherry Almond

Transcriptome
Genomic

Bitter1 Bitter2 Sweet1 Sweet2

454 454 Illumina Illumina Illumina Illumina Illumina

Total sequences 1 225 030 3 742 780 977 713 29 202 304 43 522 066 42 403 474 27 607 822

Total bases (Mb) 467 1020 557 2219 3307 3222 2098

Mean read length 381 272 57 76 76 76 76

Approximate genome coverage 2.19 4.59 2.59 8.99 13.29 12.99 8.49
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(10.6%), while the other three genotypes had fewer non-sense

mutations (2%–3%). The insertions and deletions in the exons

averaged ~3000 each for the four almond genotypes. In the

cherry genomic data set, exonic SNPs were 50.4% (162 662)

sense, 42.8% (137 976) mis-sense, 6.6% (21 234) non-sense

and 0.1% (335) read-through mutations along with 16 155

indels (Table 3).

Polymorphism depth analyses

The passed filtering data set was also used to analyse the

occurrence patterns of the polymorphisms. For scaffold 1 (Data

S4), it is clear that there are several regions of interest containing

significantly more or less than the average number of polymor-

phic sites. Similar mapping of the number of genes in these

regions of the peach scaffold reveal low gene density regions with

high polymorphism rates. Statistical analyses reveal 346 sections

that significantly differ from the mean number of polymorphisms

in each 50-kb region on each individual scaffold (Data S5). 95 of

these sections combine to make 31 regions that are >100 kb in

length with the longest region containing significantly higher

polymorphisms being a 600-kb block in almond from 20.45 to

30 Mb on scaffold 1. This region in cherry contains two 50-kb

blocks and one 100-kb block that are also significantly higher in

polymorphism rate. These genomic regions may potentially be the

regions responsible for phenotypic divergence from other mem-

bers of Prunoideae.

Analysis of Sk locus

Further filtering of the almond polymorphisms around the Sk

locus was completed to identify putative candidates for the Sk

gene and causative mutations for the bitter/sweet phenotype.

Using the BPPCT017 (11 Mb) and BPPCT038 (14.6 Mb) markers

flanking the Sk locus as the boundaries reduced the 311 497

polymorphisms identified on scaffold 5–56 155 located between

the SSR markers that have been reported previously as flanking

the Sk locus (Table 4). Subsequent reduction in this data set

was completed by removing polymorphisms that were not

homozygous in both sweet cultivars and within both bitter

accessions. Also, the homozygous polymorphisms were required

to be different between the sweet and bitter accessions yielding

6304 polymorphisms of which 228 caused codon-changing

mutations. These mis-sense, non-sense and read-through SNPs,

as well as the indels, comprise the reduced set of putative

candidates for future screening and analysis.

Blast2GO global analysis

A global comparison of putative non-sense mutations within

cherry and the four selected genotypes of almond reveals a

similar distribution of mutations across various gene ontology

terms. This can be seen in GO terms relating to biological

process, molecular function as well as cellular component (Data

S6). Response to stress, protein modification process, catabolic

process and transport each comprised at least 10% each of the

total biological process GO terms for each tested data set. With

respect to molecular function, over 35% of annotated genes

containing non-sense SNPs are involved in nucleotide binding

with approximately 15% having kinase activity and slightly fewer

than 15% having DNA binding activity. Finally, with respect to

cellular component, about 25% of all annotated genes were

predicted to be localized to the plastid, with both the mitochon-

drion and plasma membrane comprising 15% of all annotated

genes. As there appeared to be little variation in the GO term

Table 3 Classifications of polymorphisms identified in each data set based on their location relative to peach genes. Locations are denoted based

on the annotations as found in Data S2. Potential synonyms for the mutations are listed in parentheses

Mutation location (Synonym)

Cherry Almond

Cherry transcripts Cherry 454 Cherry illumina Almond sweet 1 Almond sweet 2 Almond bitter 1 Almond bitter 2

Gene total 247 818 701 534 39 338 678 587 774 780 483 905 646 641

mRNA Total 266 340 739 110 40 978 707 564 808 159 504 028 673 423

CDS – Total 194 279 305 314 22 881 274 904 290 793 207 911 266 252

CDS – Sense 99 947 12 702 149 960 132 747 156 693 196 849 133 753

CDS – Mis-sense 80 131 10 688 127 288 118 544 151 659 106 056 138 853

CDS – Non-sense (Stop Gain) 3261 443 20 791 32 810 8109 5446 7452

CDS – Read-through (Stop loss) 113 23 312 355 404 257 354

CDS – Deletions 5114 6415 107 2415 3399 3549 4028

CDS – Insertions 4820 9533 100 2299 3295 3412 3761

3′ UTR 32 317 42 486 1083 26 924 30 330 19 015 25 398

5′ UTR 10 788 13 967 402 13 309 14 687 10 102 12 891

Intergenic 43 137 797 699 58 654 1 789 323 2 263 108 1 208 734 1 734 295

Table 2 Non-sense mutation analysis statistics

Sweet cherry Bitter 1 almond Bitter 2 almond Sweet 1 almond Sweet 2 almond

Total number of peach genes represented 27 576 (96.20%) 28 332 (99.33%) 28 420 (99.64%) 28 488 (99.38%) 27 590 (96.73%)

Total genes with predicted non-sense mutation(s) 5384 4016 5110 5302 5529

Total genes with predicted non-sense mutation(s)

unique to each Genotype

2535 190 409 467 624
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composition of the five data sets, Blast2GO analysis of the entire

peach gene set was performed and compared with data sets

mapping back to non-sense-SNPs. A chi-square test revealed that

several GO terms have statistically higher or lower GO terms than

predicted (Data S7). Non-sense mutations map back to a total of

133 unique KEGG pathways, with Bitter 1 mapping to 121, Bitter

2–119, Sweet 1–124, Sweet 2–127 and Cherry to 127 KEGG

pathways, respectively (Data S8). The cherry non-sense SNP-

containing data set contains members participating in atrazine

degradation, chlorocyclohexane and chlorobenzene degradation,

fluorobenzoate degradation, synthesis and degradation of

ketone bodies and toluene degradation, while none of the

investigated almond accessions did. Conversely, all four almond

genotypes contained predicted non-sense mutations within

genes involved in butirosin and neomycin biosynthesis, D-alanine

metabolism, D-arginine and D-ornithine metabolism. In the

almond accessions, non-sense mutations were also found in

genes assigned in databases as involved in glucosinolate biosyn-

thesis all of which lacked participating genes with putative non-

sense mutations in cherry. As members of the Rosaceae family do

not produce glucosinolates but synthesize cyanogenic glucosides

using similar gene families, the assignment of such genes to

glucosinolate biosynthesis is obviously erroneous (Conn, 1969;

S�anchez-P�erez et al., 2008).

Comparison of the non-sense-containing genes within the five

data sets reveals that a large subset of the genes, 1191 in total, is

shared between all members (Figure 1). Additionally, some non-

sense SNPs are unique to individual samples. The largest of these

sets, 2535 genes, are the non-sense mutations unique to cherry.

One thousand two hundred and seventy-six genes containing

putative non-sense SNPs are present within each individual

almond genotype and absent from the cherry analysis.

Blast2GO targeted pathway analysis

The most abundant biological process gene ontology (GO) term

represented in the data sets ‘Response to stress’ was selected as a

GO of interest to further investigate. Further breakdown of this

category reveals that its members are involved in a total of 92

KEGG pathways within the five investigated data sets (Data S9).

While all data sets contain genes with putative non-sense SNPs in

numerous pathways, only sweet cherry contains putative

non-sense SNPs related to stress in C5-branched dibasic acid

metabolism, chlorocyclohexane and chlorobenzene degradation,

indole alkaloid biosynthesis, isoquinoline alkaloid biosynthesis,

naphthalene biosynthesis, N-glycan biosynthesis, nicotinate and

nicotinamide metabolism, primary bile acid biosynthesis, retinol

metabolism, steroid degradation, steroid hormone biosynthesis,

toluene degradation, tropane, piperidine and pyridine alkaloid

biosynthesis and valine, leucine and isoleucine biosynthesis.

Alternately, all four accessions of almond contain potential non-

sense SNPs in alanine, aspartate and glutamate metabolism,

benzoate degradation, caprolactam degradation, fatty acid elon-

gation, geraniol degradation, monoterpenoid biosynthesis,

sulphur metabolism and vitamin B6 metabolism, while cherry

lacks non-sense mutation in these pathways.

Further investigation into non-sense mutations present within

members of the genes involved in cyanogenic glucoside metab-

olism was performed as these biosynthetic and catabolic

pathways lead to amygdalin synthesis and catabolism, respec-

tively. Blast2GO analysis performed through searching for the

keywords ‘Prunasin’ and ‘Amygdalin’ revealed the presence

of four isoforms of peach prunasin beta-glucosidase and

amygdalin beta-glucosidase with non-sense mutations in cherry

(ppa003891m, ppa016583, ppa003856m and ppa003831m),

one in Bitter 1 (ppa003831m), three in Bitter 2 (ppa003856m,

ppa003891m and ppa003831m), four in Sweet 1 (ppa003891m,

ppa016583, ppa003856m and ppa003831m) and four in Sweet

2 (ppa003891m, ppa016583, ppa003856m and ppa003831m).

Based upon the annotations, numerous other members within

this pathway contained putative non-sense mutations and addi-

tional members with potential prunasin beta-glucosidase or

amygdalin beta-glucosidase activity were detected (Figure 2 and

Table 5).

These data were further probed to identify differences in

non-sense SNPs involved in ripening, another biological process of

interest with respect to the Prunus genus. Within the 25 genes in

all peach sequences mapping to the ripening GO term, cherry

surprisingly contains eight that are predicted to contain putative

non-sense SNPs (two putative multidrug resistance genes, two

Table 4 Sk locus analysis demonstrating the effect of the various

parameters on the reduction in potential targets related to bitterness

in almond

Number of target

polymorphisms

A. Chromosome 5 311 497

B. A + 11-14.6 MB 56 155

C. B + fitting genetic patterns 6304

D. C + with codon change 228

Figure 1 Venn diagram displaying the presence of non-sense single

nucleotide polymorphisms (SNPs) present within the five investigated data

sets mapped against peach predicted genes. A comparison of the

composition of putative non-sense SNP-containing genes between the

four investigated genotypes of almond and the combined cherry data set

reveals the presence of a large set, 1191, of non-sense containing

homologues across all members. Additionally, each sample has a unique

set of genes containing putative non-sense SNPs, most notably cherry with

2535 genes.
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1-aminocyclopropane-1-carboxylate synthase (ACS) genes, two

1-aminocyclopropane-1-carboxylate oxidase (ACO) genes, one

polygalacturonase gene and one glycosyl hydrolase family nine

protein gene; Data S10). Bitter 1 and Bitter 2 almond data sets

each contain two non-sense SNP-containing genes (one ACO

gene and one putative multidrug resistance gene), while Sweet 1

and Sweet 2 almonds each contain three (two ACO gene and one

putative multidrug resistance gene). Further analysis of genes

containing SNPs in the KEGG pathway ‘cysteine and methionine

biosynthesis’ reveals additional non-sense SNPs that may affect

ethylene synthesis, but are not mapped to the ripening GO term

(Figure 3 and Table 6).

The final biological process of interest, abscission, has very few

members containing non-sense mutations compared with the

other GO terms, in fact only 23 genes in the entire peach gene set

map to this term. Sweet 1 and Sweet 2 almonds are predicted to

have a single gene related to abscission containing a non-sense

SNP in a gene encoding btb/poz ankyrin repeat protein. Bitter 1

almond sequences had no non-sense mutations in any predicted

gene sequences, while Bitter 2 almond has a non-sense mutation

in a gene encoding a probable adp-ribosylation factor gtpase-

activating protein (agd5-like). Cherry has non-sense SNPs present

in both the gene encoding adp-ribosylation factor gtpase-

activating protein (agd5-like) and the btb/poz ankyrin repeat

protein.

Discussion

Uneven distribution of sequencing reads

Reference-based assemblies are built upon the presumption that

the sequenced genomes are highly similar to the reference. When

differences exceed the threshold of the mapping software, reads

from these highly divergent regions are not mapped. 7.5% of

reads from indica rice cultivars did not map to the Nipponbare

Figure 2 KEGG Pathway of genes containing non-sense mutations within cherry and almond samples involved in Cyanogenic glucoside metabolism.

Table 5 lists the EC numbers, their identities, as well as the predicted coding sequence (CDS) from Prunus persica which contain a SNP for each respective

species. Coloured boxes correspond to the colour code found in the first column of Table 5.
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Table 5 Prunus persica predicted CDS IDs containing non-sense mutations for putative members in cyanoamino acid metabolism (Figure 2)

EC number Enzyme Cherry Bitter 1 Bitter 2 Sweet 1 Sweet 2

3.2.1.21 (Red) Beta-glucosidase ppa018777m

pp a015330m

pp a004484m

pp a001692m

pp a006142m

pp b011574m

pp a023763m

pp a001675m

ppa015619m

pp a001675m

pp a004484m

pp a006167m

pp a006142m

pp a023264m

pp a023763m

ppa015619m

pp a001675m

pp a004484m

pp a001656m

pp a006167m

pp a007195m

pp a001692m

pp b021184m

pp a026252m

pp a024207m

pp a021476m

pp a023264m

pp a023763m

ppa015619m

pp a014607m

pp a018777m

pp a019582m

pp a001675m

pp a001656m

pp a006167m

pp a006142m

pp b021184m

pp a026252m

pp a024207m

pp a020836m

pp a023264m

pp a023763m

ppa015619m

pp a015239m

pp a014607m

pp a014605m

pp a018777m

pp a019582m

pp a001675m

pp a004484m

pp a001656m

pp a006167m

pp a007195m

pp b021184m

pp a024207m

pp a020836m

pp a023264m

pp a023763m

3.5.5.4 (Yellow) Cyanoalanine nitrilase ppa008090m ppa008090m ppa008090m ppa008090m ppa008090m

3.5.5.1 (Green) Nitrilase ppa008583m ppa008767m ppa008767m ppa008767m ppa008767m

pp a007102m

6.3.1.1 (Orange) Aspartate-ammonia ligase 0 ppa015268m 0 0 ppa015268m

4.1.2.10 (Brown) (R)-mandelonitrilelyase ppa016983m

pp a003595m

pp a003414m

pp a003422m

pp a004308m

pp a020579m

ppa003595m

pp a003414m

ppa003595m

pp a003414m

pp a003422m

pp a020579m

pp a022916m

ppa003595m

pp a003414m

pp a003422m

pp a020579m

pp a022916m

ppa003414m

pp a003422m

pp a020579m

pp a022916m

3.2.1.118 (Blue) Prunasin beta-glucosidase ppa017484m

pp a019137m

pp a019262m

pp a015721m

pp a003718m

pp a003891m

pp a021158m

pp a020817m

pp a026358m

pp a016583m

pp a003856m

pp a003831m

ppa017484m

pp a019137m

pp a018933m

pp a018404m

pp a003831m

ppa017484m

pp a018933m

pp a015970m

pp a019262m

pp a015161m

pp a003718m

pp a003856m

pp a003891m

pp a003831m

pp a022831m

pp a020817m

pp a020368m

pp a026358m

pp a027189m

ppa017484m

pp a016583m

pp a015970m

pp a019262m

pp a016757m

pp a015161m

pp a003718m

pp a003856m

pp a003891m

pp a003831m

pp a022831m

pp a025067m

pp a020368m

pp a026358m

pp a027189m

ppa017484m

pp a019137m

pp a018933m

pp a016583m

pp a015970m

pp a016757m

pp a015161m

pp a004108m

pp a003718m

pp a003856m

pp a003891m

pp a003831m

pp a021158m

pp a020839m

pp a026358m

pp a027189m

3.2.1.117 (Pink) Amygdalin beta-glucosidase ppa017484m

pp a019573m

pp a019137m

pp a019262m

pp a015721m

pp a003718m

pp a003891m

pp a021158m

pp a020817m

pp a020067m

pp a026358m

pp a016583m

pp a003856m

pp a003831m

ppa017484m

pp a019573m

pp a019137m

pp a018933m

pp a018404m

pp a004380m

pp a003831m

ppa017484m

pp a019573m

pp a018933m

pp a015970m

pp a019262m

pp a015161m

pp a004380m

pp a003718m

pp a003856m

pp a003891m

pp a003831m

pp a022831m

pp a020817m

pp a020067m

pp a020368m

ppa017484m

pp a019573m

pp a016583m

pp a015970m

pp a019262m

pp a016757m

pp a015161m

pp a004380m

pp a003718m

pp a003856m

pp a003891m

pp a003831m

pp a022831m

pp a020067m

pp a025067m

ppa017484m

pp a019573m

pp a019137m

pp a018933m

pp a016583m

pp a015970m

pp a016757m

pp a015161m

pp a004380m

pp a004108m

pp a003718m

pp a003856m

pp a003891m

pp a003831m

pp a021158m

ª 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd, Plant Biotechnology Journal, 11, 883–893

Tyson Koepke et al.888



rice genome (Subbaiyan et al., 2012). In our data, 0.2% of the

Illumina reads were unmapped to the peach genome (Interna-

tional_Peach_Genome_Initiative, 2013), strengthening the asser-

tions that peach is a credible reference genome for Prunus.

In addition to unmapped reads, the data produced in this work

identified 162 and 186 scaffolds of peach that were not covered

by any reads from almond and sweet cherry, respectively. One

explanation for this is that these smaller, un-anchored scaffolds

may be unique to the peach genome. Alternatively, as the peach

genome was built using Sanger sequencing, these could be

repetitive regions and the shorter reads used here were placed in

the dual location during the mapping. In either case, these

regions provide insights into genome structure differences that

need to be further evaluated to fully understand the differences

among these Prunus species.

Polymorphism analyses

Our analyses show 48% of the mutations in the CDS to be

nonsynonymous, being either non-sense or mis-sense mutations,

in almond and 50% in sweet cherry. This is comparable to the

57% found in rice cultivars (Subbaiyan et al., 2012); however, it is

interesting that this interspecies comparison identified a higher

percentage of synonymous SNPs than the intraspecific compar-

ison in rice. While it is possible that the heterozygous nature of

the almond and sweet cherry genotypes caused polymorphisms

to be screened out during filtering, it is unlikely that this would

have significantly shifted the representation of synonymous and

nonsynonymous mutations.

It is important to note that the read-through mutations could

be discussed as non-sense mutations of the almond gene in

peach; therefore, discussion of read-through and non-sense

mutations is limited by the perspective of the analysis which, in

this case, is in respect to the peach reference genome. At first

glance, the 0.1% generation rate of read-through mutations

suggests that these mutations may be highly deleterious with

strong selection against them as they occur at ~1/50th of the rate

that non-sense mutations arise. A closer examination, however,

reveals that while the probability of a stop codon mutation

causing a read-through mutation is 85%, there is only one stop

codon per protein. This contrasts significantly with the 4.2%

Table 5 Continued

EC number Enzyme Cherry Bitter 1 Bitter 2 Sweet 1 Sweet 2

pp a026358m

pp a027189m

pp a020368m

pp a026358m

pp a027189m

pp a020067m

pp a020839m

pp a026358m

pp a027189m

3.5.1.1 (Grey) Asparaginase ppa008583m 0 ppa016260mppa008761m ppa008583m ppa016260m

pp a008583m

1.14.13.68 (Purple) 4-Hydroxyphenylacetaldehyde

oximemonooxygenase

0 0 0 ppa014661m 0

2.1.2.1 (Cyan) Glycine hydroxymethyltransferase ppa003640m 0 0 0 ppa004090m

Figure 3 KEGG pathway of genes containing non-sense mutations within cherry and almond samples participating in cysteine and methionine

metabolism. Genes containing non-sense mutations were mapped to EC numbers using Blast2GO and mapped on the cysteine and methionine metabolism

KEGG map closest to ethylene production. Table 6 lists the identity of each enzyme, as well as the predicted CDS from Prunus persica which contain a SNP

for each respective species. Only the lower half of the pathway was imaged. Coloured boxes correspond to the colour code found in the first column of

Table 6.
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chance of a random SNP causing a non-sense mutation multi-

plied by the 403 amino acids found in the average CDS in the

peach genome. Calculating for the distribution of amino acids

yields one polymorphism having a 4.18% or 0.21% chance of

causing a non-sense or read-through mutation, respectively, in

the average peach gene. The data from this work show a 2.5-fold

change from expected providing intrigue but requiring further

evaluation regarding the effect of these mutations on gene

function.

Three hundred and forty six regions with higher and lower

rates of polymorphism were identified in this work. Higher rates

could result from genomic duplications or from low conserva-

tion yielding more divergence. Similarly, regions with lower

average polymorphisms could be the result of either low

divergence where few polymorphisms arose or very high

amounts of differentiation preventing the mapping of the

sequencing reads to these locations. Subbaiyan et al. (2012)

revealed similar regions of lower polymorphism rates in six

inbred lines of rice with several being >100 kb in length. The

600-kb region in almond is particularly interesting as it may

represent a larger region of diversity between almond and

peach and may contain genes related to the divergence of these

two species.

Analysis of the Sk locus

The combination of the existing DNA markers, the reference

sequence and genotype-specific sequencing yielded 228 candi-

date mutations for the Sk trait in almond. As this work was

completed using only two bitter and two sweet genotypes,

reductions in this candidate set would be expected if more

genotypes were examined. However, whole-genome sequencing

of further genotypes is not necessary at this time as site-specific

testing of the genotypes for the identified mutations is expected

to identify the allele responsible for the difference between these

types of almonds. As the major and highly critical trait, developing

a gene-based marker for the Sk gene will provide an important

benefit to the almond community by rapidly identifying the

undesirable bitter genotypes. As suggested by Michelmore et al.

(1991), bulked segregant analysis can function in an obligate

outcrossing species. The results shown here demonstrate the

ability of the approach to produce a small candidate list from a

large region of interest. Adding more individuals to the bulks in

this work would allow the marker placement to be independently

confirmed as well, although using two individuals of each

phenotype was possible due to the previously developed markers

for the Sk locus.

Blast2GO comparisons

The global distribution of GO terms within the non-sense SNP-

containing genes was similar among all samples tested. This

suggests two potential options regarding the presence of non-

sense SNPs: (i) certain gene ontology terms have accrued

non-sense SNPs at similar levels across species in Prunus, and (ii)

non-sense SNPs simply occur randomly throughout the genome.

Each gene ontology term contains a similar number of genes

among the samples investigated. To assess this, comparison of

the observed number of members for each GO term was

performed against expected values generated from the entire

peach predicted gene set using a chi-square test. This test showed

that numerous GO categories contained statistically significant

higher or lower numbers of non-sense SNPs than expected (Data

S7). This suggests that many GO terms are linked to an increased

likelihood to generate non-sense SNPs in Prunus, while other GO

terms appear to be more conserved in the genus supporting

option one above. Interestingly, the GO terms associated with

significantly higher non-sense SNPs (P-value <1E�10) include the

following: the biological processes: ‘DNA metabolic process’

(GO:0006259), ‘cellular protein modification process’(GO:

0006464), ‘signal transduction’ (GO:0007165) and ‘pollen-pistil

interaction’ (GO:0009875); the cellular components: ‘mitochon-

Table 6 Prunus persica predicted CDS IDs containing non-sense mutations with putative functions cysteine and methionine metabolism

(Figure 3)

EC Number Enzyme Cherry Bitter 1 Bitter 2 Sweet 1 Sweet 2

2.6.1.57 (Red) Aromatic-amino-acid transaminase ppa003908m ppa004475m ppa004475m ppa004475m ppa004475m

4.4.1.14 (Yellow) 1-Aminocyclopropane-1-Carboxylate

synthase

ppa015636m

ppa016458m

ppa004774m

ppa003908m

ppa005521m

ppa015636m

ppa004475m

ppa015636m

ppa004475m

ppa003850m

ppa015636m

ppa004475m

ppa005521m

ppa015636m

ppa004475m

ppa003850m

1.14.17.4 (Green) Aminocyclopropanecarboxylate oxidase ppa008813m

ppa008791m

ppa008813m ppa008813m ppa008813m

ppa008791m

ppa008813m

ppa008791m

2.1.1.13 (Orange) Methionine synthase 0 ppa015268m 0 0 ppa015268m

4.1.1.50 (Lime Green) Adenosylmethionine decarboxylase ppa007732m ppa007732m 0 0 ppa007294m

2.6.1.5 (Blue) Tyrosine transaminase ppa019805m 0 ppa019805m ppa019805m ppa019805m

ppa018754m

2.1.1.10 (Pink) Homocysteine S-methyltransferase ppa008404m 0 0 0 ppa010310m

2.1.1.37 (Grey) DNA (cytosine-5-)-methyltransferase ppa019831m

ppa000190m

ppa006086m

ppa019831m ppa015623m

ppa000190m

ppa006086m

ppa019831m

ppa015623m

ppa000190m

ppa006086m

ppa000190m

ppa006086m

2.5.1.6 (Purple) Methionine adenosyltransferase ppa006915m 0 0 ppa025497m 0

2.1.1.14 (Cyan) 5-Methyltetrahydropteroyltriglutamate-

homocysteine S-methyltransferase

0 ppa026306m

ppa021650m

ppa021650m ppa026306m

ppa021650m

ppa021650m
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drion’ (GO:0005739), ‘cytoskeleton’ (GO:0005856) and ‘plastid’

(GO:0009536); and the molecular functions: ‘nucleotide binding’

(GO:0000166) and ‘kinase activity’ (GO:0016301). GO terms

associated with significantly lower non-sense SNPs (P-value

<1E�10) include the biological processes ‘response to biotic

stimulus’ (GO:0009607), ‘response to abiotic stimulus’ (GO:

0009628), ‘anatomical structure morphogenesis’ (GO:0009653)

and ‘response to endogenous stimulus’ (GO:0009719); the

cellular component ‘cytosol’ (GO:0005829); and the molecular

functions ‘chromatin binding’ (GO:0003682), ‘sequence-specific

DNA binding transcription factor activity’ (GO:0003700) and

‘structural molecule activity’ (GO:0005198). While a connection

between GO term and occurrence of non-sense SNPs appears to

exist, this does not disprove the option two stated above.

Concerning the GO term ‘response to stress’, there appears to

be significant genetic variability with respect to non-sense SNPs.

In fact, sequences containing detected non-sense SNPs mapped

to this GO term more than any other GO term investigated in the

biological process domain. This gene ontology is of high

agricultural importance as breeding and genetic modification of

plants resistant to both biotic and abiotic stresses is a large focus

in both industry and academia. Previous studies have used gene-

based SNPs detected through interspecific comparisons to iden-

tify, verify and attach function to SNPs which may be involved in

stress response (Parida et al., 2012). These putative non-sense

SNPs represent a preliminary data set within Prunus which may be

used in similar studies.

Basic differences exist in the ripening patterns of members of

the Prunus genus. Peach, apricot and plum fruits are climacteric,

meaning that a burst of ethylene occurs quickly followed by an

increase in respiration. Cherry and almond, on the other hand,

exhibit nonclimacteric ripening, outliers in the genus. The identi-

fication of non-sense mutations in several versions of ACS and

ACO could significantly disrupt the ethylene production pathway

in cherry rendering it nearly unable to provide the burst seen in

other fruits in this genus. It has been suggested that in sweet cherry

regulation of respiration may not be under the regulation of

ethylene receptors (Gong et al., 2002).

While these results enable the identification of targets for gene-

linked marker screening, it is important to realize the limitations of

this project. First of all, non-sense SNPs do not necessarily equate

to loss of function of a protein. Additionally, as these sequences

were aligned to a predicted peach data set, the true sequence of

genes of interest may be biased. Potential splice variants may have

the ‘non-sense’ mutation in an exon that is not utilized in these

species. Also, the presence of a single non-sense mutation may

not be deleterious at all and could be sufficiently complemented

by the other allele especially in a genus where very few

self-compatible varieties exist leading to high amounts of heter-

osis. Gene duplications or those genes unique to almond or cherry

may not be represented in these data; alternatively, they may be

represented as SNPs, while they are actually different alleles.

Conclusions

Using reference-based assemblies of four almond accessions and

one sweet cherry cultivar, we were able to begin interspecific

comparative genomic analysis of Prunoideae. Over 99%of the raw

readsmapped to the peach genome although nearly 44%mapped

to the chloroplast. Identifying hundreds of smaller scaffolds in the

peach genome that were not mapped to by either the almond or

sweet cherry data finds many potentially peach-specific regions of

interest for further investigation. The 6.1 million putative SNPs

provide a resource for gene-based investigations. While many of

the SNPs and indels are in noncoding regions, 250–300 thousand

SNPs are located in the coding regions of annotated peach genes.

These SNPs should prove to be useful in expanding our knowledge

of genetics and genomics in these species through their use as

molecular markers and gene-based interrogations. The coverage

depth images revealed 31 regions that have significantly different

amounts of SNPs.

A keystone goal of genomics is to identify genes responsible for

specific traits. Here, we examined the bitterness trait of almond

and identified 228 codon-changing mutations near the previously

identified Sk locus. Additionally, to the best of our knowledge, we

provide the first report in plants of non-sense SNP abundance in a

genus being linked to specific GO terms. A global analysis of SNPs

has also revealed several candidate mutations of interest for

different physiological properties of these species including

response to stress, ripening and abscission. Combined, these

data should provide a foundation for further genomics and

genetics research in Prunoideae.

Methods

Sequencing data acquisition

Almond

D05-187 (Bitter1) and S3067 (Bitter2) are homozygous bitter

selections from the CEBAS-CSIC, and Ramillete (Sweet1) and

Lauranne (Sweet2) are each homozygous sweet cultivars of

almond. Using an estimated genome size of 250 Mb, approx-

imately 109 coverage was obtained for each of the four

genotypes with 76 bp Illumina paired-end reads.

Cherry

The sweet cherry genome project has developed roughly 79

coverage of Stella, an important parental cultivar based on a 225-

Mb genome size estimation. These data were derived mostly

through single-end 454 with some paired-end 454 and Illumina

paired-end sequencing. Both 454 GS-FLX and 454 GS-FLX+
versions were used to acquire these sequences. Also, 454

transcriptome data from Bing and Rainier cultivars of sweet

cherry were obtained and used in the analyses. These transcrip-

tome data were utilized only for polymorphism analysis to

compare to the gene annotations of peach and were not

obtained in sufficient depth for expression-based analyses.

Peach genome

The peach genome version 1.0 (International_Peach_Genome

_Initiative, 2013) was obtained from GDR (Jung et al., 2008) for

use as the reference sequence throughout this project. The

chloroplast and mitochondrial genomes were excluded from the

assembly initially, and the chloroplast was later used to screen the

unassembled reads.

Assembly

A reference-based assemblies of both the cherry genomic 454 and

cherry transcriptomic 454 data were assembled using the NGen

assembler (DNAStar, Madison, WI) version 3.1.0 with the peach

genome version 1.0 as the reference and using the following 454

default parameters: mersize = 21, merSkipQuery = 3, minMatch-

Percent = 85, MaxGap = 15, minAlignedLength = 50. Similarly, all

Illumina data from the four almond accessions and sweet cherry
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were assembled using the peach genome as a reference with the

Illumina default parameters: mersize = 21, minMatchPercent = 93,

mismatchPenalty = 20,MaxGap = 6,minAligned Length = 35. For

each assembly, the different genotypes were input separately to

enable unique SNP information to be attained for each individual.

Polymorphism analyses

Assembled data were imported into SeqMan (DNAStar) where

SNP reports were created. A custom script was used to remove

polymorphisms with <3 reads confirming each nonreference call

similar to previous SNP reporting works (Deschamps and Camp-

bell, 2010; Hyten et al., 2010; Koepke et al., 2012; Kulheim

et al., 2009). These filtered SNPs were then imported into

ArrayStar (DNAStar) to enable further analyses.

Polymorphism type and region identification

Custom computational comparisons of the base calls from the

sequenced individuals against the peach genome were completed

to determine the base changes involved. Similarly, polymorphism

regions were identified by analysing the reference position against

the annotation of the peach genome. These SNPs were classified

as 5′ UTR, intron, exon, 3′ UTR or intergenic. Exonic polymor-

phisms were further classified as sense, non-sense, mis-sense or

read-through mutations based on the resulting amino acid

compared with the peach genome annotation. Read-through

mutations were defined as the SNPs causing a stop codon to be

changed into an amino acid thereby elongating the C terminus of

the protein with respect to the peach gene (Zirn et al., 2005).

Polymorphism depth analyses

To visualize the depth of the polymorphisms across the eight main

scaffolds of the peach reference, the total polymorphisms in each

discreet 50-kb window were analysed and displayed as a single-

pixel-wide bar one pixel high for each 20 polymorphisms. The

graphs for each individual were then compiled into a single image

per scaffold. The composite polymorphism set, where each

unique SNP was counted once for each species, was also analysed

in this manner. The distribution of polymorphism counts per

50-kb window was analysed to identify regions of the peach

reference that had a polymorphism depth >2 standard deviations

from the mean of that scaffold.

Analysis of Sk locus

The total almond SNP report was filtered to retain only the

polymorphic sites near the Sk locus. As the markers BPPCT017

and BPPCT038 are located at ~11–14.6 Mb on peach linkage

group 5, respectively (S�anchez-P�erez et al., 2010), they were

used for the bounds around the Sk locus. All polymorphisms that

were conserved within a group but contrasting between the two

types were retained as both bitter and both sweet genotypes are

homozygous for the trait. Further screening reduced the data set

to only contain codon-changing polymorphisms that make up the

candidate gene set.

Blast2GO comparisons

Nucleotide sequences for all predicted Prunus persica genes were

imported into Blast2GO (Conesa et al., 2005; Gotz et al., 2008).

Details of Blast2GO methods used are provided in Data S11z. A

gene annotation file containing the information from this study

was submitted to the Plant Ontology project. A chi-square test

was performed to determine whether the observed GO distribu-

tion of non-sense SNP-containing genes was significantly differ-

ent from the expected. Custom scripts were used to compare

data sets to determine which contained unique or shared entries.

Finally, KEGG pathway maps and corresponding information

were downloaded from the KEGG Pathway Database through

Blast2GO (http://www.genome.jp/kegg/pathway.html) (Kaneh-

isa, 2002; Kanehisa et al., 2012).
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Data S1 Excel file of the mapping coverage for each scaffold of

the peach genome for each sample. Blank entries are the result of

no mapping.

Data S2 GFF annotation file (International_Peach_Genome_Ini-

tiative, 2013) of the peach genome used in these analyses as

downloaded from GDR (Jung et al., 2008).

Data S3 Fasta file of peach cDNA sequences.

Data S4 PPT file with a compressed bar graph depicting

polymorphism rate in each 50kb window for each sample.

Data S5 Excel file of the 50 kb regions with significantly higher or

lower polymorphism depth.

Data S6 GO-term composition of nonsense SNP-containing

datasets separated by molecular function, biological process,

and cellular component. Blast2GO was used to assign function to

sequences predicted to have nonsense mutations. GO-terms were

separated by percent composition for each dataset including the

entire peach dataset. Comparison to the entire peach identifies

GO-terms which may have higher or lower frequencies of

developing nonsense-SNPs.

Data S7 Chi-square test of observed Gene Ontology distribution

amongst datasets.

Data S8 KEGG pathways with members predicted to have

non-sense SNPs.

Data S9 KEGG pathways with members in ‘Response to Stress’

gene ontology.

Data S10 Venn diagram of Peach genes containing non-sense

mutations detected within the four investigated genotypes of

almond. Sequences corresponding to mutations in the peach

predicted genes were recorded for each almond genotype

(Oliveros 2007).

Data S11 Blast2GO methods used in this study.
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