
(Sync|Async)+ MPI Search Engines

Mauricio Marin1 and Veronica Gil Costa2

1 Yahoo! Research, Santiago, University of Chile
2 DCC, University of San Luis, Argentina

Abstract. We propose a parallel MPI search engine that is capable
of automatically switching between asynchronous message passing and
bulk-synchronous message passing modes of operation. When the ob-
served query traffic is small or moderate the standard multiple mana-
gers/workers thread based model of message passing is applied for pro-
cessing the queries. However, when the query traffic increases a round-
robin based approach is applied in order to prevent from unstable behav-
ior coming from queries demanding the use of a large amount of resources
in computation, communication and disk accesses. This is achieved by
(i) a suitable object-oriented multi-threaded MPI software design and
(ii) an “atomic” organization of the query processing which allows the
use of a novel control strategy that decides the proper mode of operation.

1 Introduction

The distributed inverted file is a well-known index data structure for supporting
fast searches on Search Engines dealing with very large text collections [1–5, 7,
8]. An inverted file is composed of a vocabulary table and a set of posting lists.
The vocabulary table contains the set of relevant terms found in the collection.
Each of these terms is associated with a posting list which contains the document
identifiers where the term appears in the collection along with additional data
used for ranking purposes. To solve a query, it is necessary to get the set of
documents associated with the query terms and then perform a ranking of these
documents in order to select the top K documents as the query answer. In this
paper we assume posting list items composed of pairs of document identifier and
frequency in which the associated term appears in the given document.

The approach used by well-known Web Search Engines to the parallelization
of inverted files is pragmatic, namely they use the document partitioned ap-
proach. Documents are evenly distributed on P processors and an independent
inverted file is constructed for each of the P sets of documents. The disadvan-
tage is that each user query has to be sent to the P processors which leads
this strategy to a poor O(P) scalability. Apart from the communication cost,
sending a copy of every query to each processor increases overheads associated
with large number of threads and disk operations that have to be scheduled.
It can also present imbalance at posting lists level (this increases disk access
and interprocessor communication costs). The advantage is that document par-
titioned indexes are easy to maintain since insertion of new documents can be

done locally and this locality is extremely convenient for the posting list inter-
section operations required to solve the queries (they come for free in terms of
communication costs).

Another competing approach is the term partitioned index in which a sin-
gle inverted file is constructed from the whole text collection to then distribute
evenly the terms with their respective posting lists onto the processors. However,
the term partitioned inverted file destroys the possibility of computing intersec-
tions for free in terms of communication cost and thereby one is compelled to use
strategies such as smart distribution of terms onto processors to increase local-
ity for most frequent terms (which can be detrimental for overall load balance)
and caching. However, it is not necessary to broadcast queries to all processors.
Nevertheless, the load balance is sensitive to queries referring to particular terms
with high frequency and posting lists of differing sizes. In addition index con-
struction and maintenance is much more costly in communication. However, this
strategy is able to achieve O(1) scalability.

Most implementations of distributed inverted files reported so far are based
on the message passing approach to parallel computing in which we can find
combinations of multithreaded and computation/communication overlapped sys-
tems. The typical case is to have in each of the P processing nodes a set of threads
dedicated to receive queries and communicate with other nodes (threads) in or-
der to produce an answer in the form of the top K documents that satisfy the
query. However, it is known that threads can be potential sources of overheads
and can produce unpredictable outcomes in terms of running time. Still another
source of unpredictable behavior can be the accesses to disk used to retrieve
the posting lists. Some queries can demand the retrieval of very large lists from
secondary memory involving hundreds of disk blocks.

In that context the principle behind the findings reported in this paper can
be explained by analogy with the classic round-robin strategy for dealing with
a set of jobs competing to receive service from a processor. Under this strategy
every job is given the same quantum of CPU so that jobs requiring large amounts
of processing cannot monopolize the use of the CPU. This scheme can be seen as
bulk-synchronous in the sense that jobs are allowed to perform a set of operations
during their quantum. In our setting we define quantums in computation, disk
accesses and communication given by respective “atoms” of size K where K is
the number of documents to be presented to the user. We use a relaxed form of
bulk-synchronous parallel computation [9] to process those atoms in parallel in a
controlled (synchronous) manner with atoms large enough to properly amortize
computation, disk and communication overheads.

For instance, for a moderate query traffic q = 32 and using a BSP library
built on top of MPI (BSPonMPI http://bsponmpi.sourceforge.net/) we found
this bulk-synchronous way of query processing quite efficient with respect to
message passing realizations in MPI and PVM. See figure 1 that shows results
for two text collections indexed using the document (D) and term (T) partitioned
indexes. Notice that the technical details of the experiments reported in this pa-
per are given in the Appendix. Also larger number of processors P implies larger

 120

 140

 160

 180

 200

 220

 240

TDTDTDTDTDTD

R
u

n
n

in
g

 T
im

e
(s

ec
)

Distributed Inverted Files

2 GB 12 GB

BSP MPI PVM BSP MPI PVMq= 32

 P

32

16
 8

 4

Fig. 1. Comparing BSP, MPI and PVM for inverted files under moderate query traffic.

running times because we inject in each processor a constant number of queries.
This because the inter-processor communication cost is always an increasing
function of P for any architecture. These results shows that our realizations of
inverted files scale up efficiently because in each curve we duplicate the number
of processors and running times increase modestly as O(log P).

However, we also observed that with a semi-synchronous MPI realization we
were able to achieve similar performance to BSP. In this case we force every MPI
processor to wait for P messages (one per processor) before delivering them to
their target threads. The results are in figure 2 which shows other alternative im-
plementations of inverted files where DB and TB represent bucketing strategies
devised for improving load balance and T a bad (but in use) idea for implement-
ing the term partitioned index. These results are evidence that in practice for
this application of parallel computing it is not necessary to barrier synchronize
all of the processors, it suffices to synchronize locally at processor level from
messages arriving from the other processors.

Nevertheless the situation was quite different when we considered cases of
low traffic of queries. The figure 3 shows results for two MPI realizations of the
inverted files, namely an asynchronous message passing multi-threaded (Async)
version and a non-threaded semi-bulk-synchronous MPI (Sync) realizations (de-
tails in the next section). This clearly makes a case for a hybrid implementation
which is the discussion of this paper.

In the remainder of this paper we describe our proposal to make possible
this hybrid form of parallel query processing using MPI. The rule to decide
between one or another mode of operation is based on the simulation of a BSP
computer. This simulation is performed on-the-fly as queries are received and
send to processing.

 140

 160

 180

 200

 220

 240

 260

 280

TB2TB1TDBDTB2TB1TDBD

R
u
n
n
in

g
 T

im
e

(s
ec

s)

Distributed Inverted Files

q= 32

P= 4

8

16

32

MPI BSP

Fig. 2. Comparing BSP with a semi-synchronous MPI realization in which each pro-
cessors waits to receive at least one message from all other processors before continuing
query processing.

2 Round-Robin query processing

In this section we describe our algorithm for query processing and method for
deciding between asynchronous and synchronous modes of operation. The paral-
lel processing of queries is basically composed of a phase in which it is necessary
to fetch parts of all of the posting lists associated with each term present in the
query, and perform a ranking of documents in order to produce the results. After
this, additional processing is required to produce the answer to the user. At the
parallel server side, queries arrive from a receptionist machine that we call the
broker. The broker machine is in charge of routing the queries to the cluster’s
processors and receiving the respective answers. It decides to which processor to
route a given query by using a load balancing heuristic. The particular heuristic
depends on the approach used to partition the inverted file. Overall the broker
tends to evenly distribute the queries on all processors.

The processor in which a given query arrives is called the ranker for that query
since it is in this processor where the associated document ranking is performed.
Every query is processed using two major steps: the first one consists on fetching
a K-sized piece of every posting list involved in the query and sending them to
the ranker processor. In the second step, the ranker performs the actual ranking
of documents and, if necessary, it asks for additional K-sized pieces of the posting
lists in order to produce the K best ranked documents that are passed to the
broker as the query results. We call this iterations. Thus the ranking process
can take one or more iterations to finish. In every iteration a new piece of K
pairs (doc id, frequency) from posting lists are sent to the ranker for every term
involved in the query. In this scheme, the ranking of two or more queries can
take place in parallel at different processors together with the fetching of K-sized
pieces of posting lists associated with other queries.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

GFEDCBAGFEDCBAGFEDCBAGFEDCBA

R
un

ni
ng

 T
im

e

Query Traffic

SYNC ASYNC

Doc PartitionTerm Partition

P= 32

16

8
4

A ==> q=1
B ==> q=8
C ==> q=16
D ==> q=32
E ==> q=64
F ==> q=128
G ==> q=256

Doc PartitionTerm Partition

Fig. 3. Comparing MPI under bulk-synchronous (SYNC) and asynchronous (ASYNC)
modes of operation for the term and document partitioned inverted files under different
query traffics of q queries per processor per unit time for 32, 16, 8 and 4 processors.

We use the vectorial method for performing the ranking of documents along
with the filtering technique proposed in [6]. Consequently, the posting lists are
kept sorted by frequency in descending order. Once the ranker for a query receives
all the required pieces of posting lists, they are merged into a single list and
passed throughout the filters. If it happens that the document with the least
frequency in one of the arrived pieces of posting lists passes the filter, then it
is necessary to perform a new iteration for this term and all others in the same
situation. We also provide support for performing the intersection of posting
lists for boolean AND queries. In this case the ranking is performed over the
documents that contain all the terms present in the query.

The synchronous search engine is implemented on top of the BSP model
of parallel computing [9] as follows. In BSP the computation is organized as a
sequence of supersteps. During a superstep, the processors may perform compu-
tations on local data and/or send messages to other processors. The messages
are available for processing at their destinations by the next superstep, and each
superstep is ended with the barrier synchronization of the processors. The un-
derlying communication library ensures that all messages are available at their
destinations before starting the next superstep.

Thus at the beginning of each superstep the processors get into their input
message queues both new queries placed there by the broker and messages with
pieces of posting lists related to the processing of queries which arrived at previ-
ous supersteps. The processing of a given query can take two or more supersteps

to be completed. All messages are sent at the end of every superstep and thereby
they are sent to their destinations packed into one message per destination to
reduce communication overheads.

Query processing is divided in “atoms” of size K, where K is the number
of documents presented to the user as part of the query answer. These atoms
are scheduled in a round-robin manner across supersteps and processors. The
asynchronous tasks are given K sized quantums of processor time, communi-
cation network and disk accesses. These quantums are granted during super-
steps, namely they are processed in a bulk-synchronous manner. As all atoms
are equally sized then the net effect is that no particular task can restrain oth-
ers from using the resources. During query processing, under an observed query
traffic of Q = q P queries per unit time with q per processor per superstep, the
round-robin principle is applied as follows. Once Q new queries are evenly in-
jected onto the P processors, their processing is started in iterations as described
above. At the end of the next superstep some queries, say n queries, all requiring
a single iteration, will finish their processing and thereby at the following super-
step n new queries can start their processing. Queries requiring more iterations
will continue consuming resources during a few more supersteps.

In each processor we maintain several threads which are in charge of pro-
cessing the K-sized atoms. We use LAM-MPI so we put one thread to perform
the inter-processors message passing. This thread acts as a scheduler and mes-
sage router for the main threads in charge of solving the queries. We use the
non-blocking message passing communication primitives. We organized our C++
code into a set of objects, among them we have the object called “processor”
which is the entry point to all the index methods and ranking. The crucial point
here is that all threads have access to this object and concurrency conflicts are
avoided by keeping in thread’s local memory the context of each queries they are
in charge of. When the search engine switches to bulk-synchronous operation all
threads are put to sleep on condition variables and the main thread takes control
of processing sequentially the different stages of queries during supersteps.

When the search engine is operating in the asynchronous mode it simulates
the operation of a BSP machine. This is effected every Nq completed queries
per processor as follows. During the interval of Nq queries each processor of the
asynchronous machine registers the total number of iterations required by each
query being solved. The simulation of a BSP computer for the same period can
be made by assuming that q new queries are received in each superstep and
processor. For this period of ∆ units of time, the observed value of q can be
estimated in a very precise manner by using the G/G/∞ queuing model. Let
S be the sum of the differences [DepartureTime - ArrivalTime] of queries, that
is the sum of the intervals of time elapsed between the arrival of the queries
and the end of their complete processing. Then the average q for the period is
given by S/∆. This because the number of active servers in a G/G/∞ system
is defined as the ratio of the arrival rate of events to the service rate of events
(λ/µ). If n queries are received by the processor during the interval ∆, then the
arrival rate is λ = n/∆ and the service rate is µ = n/S.

1.0

1.0

1.0

 0

P=4

P=32

P=4

P=32

 50 100 150 200 250 300 350 400

Supersteps

Query

Ranking

Snd+Rcv

Comm

List

Fetching

 Term partitioned index

1.0

1.0

1.0

P=4

P=32

P=4

P=32

 0 50 100 150 200 250 300 350 400

Supersteps

Query

Ranking

Snd+Rcv

Comm

List

Fetching

 Term partitioned index

Fig. 4. Predicted SYNC efficiencies in disk accesses, communication and query ranking.
Figure [left] is a case in which the query traffic is very low (q = 1) and figure [right] is
a case of high traffic (q = 128). These extreme cases explains the performance of the
SYNC term partitioned index in figure 3.

In addition the processors maintain the number of “atoms” of each type
processed during the interval of running time. The efficiency metric is used to
determine when to switch from one mode of operation to the another. For a
metric x this is defined as the ration average(x)/maximum(x) both values taken
over all processors and averaging across supersteps. The search engine switches
to bulk-synchronous mode when efficiencies in ranking, communication and list-
fetching are over 80%. Below that the asynchronous message passing mode is
used. We have found that this simulation is accurate as a predictor of perfor-
mance. For instance, this simulation predicts the efficiencies shown in figure 4
which are consequent with the bad and good performances observed in figure 3
for the term partitioned index for the same experiments in both cases.

3 Conclusions

We have presented a method and a MPI-based implementation to allow a search
engine to dynamically switch its mode of parallel processing between asyn-
chronous and bulk-synchronous message passing. This is achieved by dividing
the tasks involved in the processing of queries into K-sized single-units and
interleaving their execution across processors, network communication and disk-
accesses. The glue between the two modes of operation is the simulation of a
bulk-synchronous parallel computer. Our experiments show that this simulation
is quite accurate and independent of the actual mode of operation of the search
engine, be it under low or high traffic of queries.

Appendix

We use two text databases, a 2GB and 12GB samples of the Chilean Web taken
from the www.todocl.cl search engine. The text is in Spanish. Using this collec-
tion we generated a 1.5GB index structure with 1,408,447 terms. Queries were
selected at random from a set of 127,000 queries taken from the todocl log. The
experiments were performed on a cluster with dual processors (2.8 GHz) that
use NFS mounted directories. In every run we process 10,000 queries in each

processor. That is the total number of queries processed in each experiment re-
ported in this paper is 10,000 P . For our collection the values of the filters Cins

and Cadd of the filtering method described in [6] were both set to 0.1 and we set
K to 1020. On average, the processing of every query finished with 0.6K results
after 1.5 iterations. Before measuring running times and to avoid any interfer-
ence with the file system, we load into main memory all the files associated with
queries and the inverted file.

References

1. C. Badue, R. Baeza-Yates, B. Ribeiro, and N. Ziviani. Distributed query process-
ing using partitioned inverted files. Eighth Symposium on String Processing and
Information Retrieval (SPIRE’01), pages 10–20, Nov. 2001.

2. F. Cacheda, V. Plachouras, and I Ounis. Performance analysis of distributed ar-
chitectures to index one terabyte of text. In In S. McDonald and J. Tait, editors,
Proc. ECIR European Conf. on IR Research, pages 395–408, Sunderland, UK, April
2004.

3. B. S. Jeong and E. Omiecinski. Inverted file partitioning schemes in multiple disk
systems. IEEE Transactions on Parallel and Distributed Systems, 16(2):142–153,
1995.

4. A.A. MacFarlane, J.A. McCann, and S.E. Robertson. Parallel search using par-
titioned inverted files. In 7th International Symposium on String Processing and
Information Retrieval, pages 209–220. (IEEE CS Press), 2000.

5. W. Moffat, J. Webber, Zobel, and R. Baeza-Yates. A pipelined architecture for
distributed text query evaluation. Information Retrieval, October 5 2006.

6. M. Persin, J. Zobel, and R. Sacks-Davis. Filtered document retrieval with
frequency-sorted indexes. Journal of the American Society for Information Science,
47(10):749–764, 1996.

7. B.A. Ribeiro-Neto and R.A. Barbosa. Query performance for tightly coupled dis-
tributed digital libraries.(acm press). Third ACM Conference on Digital Libraries,
pages 182–190, 1998.

8. C. Stanfill. Partitioned posting files: a parallel inverted file structure for information
retrieval. In 13th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 413–428, Brussels, Belgium, 1990.

9. L.G. Valiant. A bridging model for parallel computation. Comm. ACM, 33:103–111,
Aug. 1990.

