
H
yp

er
st

or
ie

s:
 A

 M
od

el
 t

o 
S

pe
ci

fy
 a

nd
 D

es
ig

n
In

te
ra

ct
iv

e 
E

du
ca

tio
na

l 
S

to
rie

s

Jaime Sánchez, PhD. & Mauricio Lumbreras, MSc.

1

Hyperstories: A Model to Specify and
Design Interactive Educational Stories*

Jaime Sánchez, PhD. & MauricioLumbreras, MSc.
Department of Computer Science

University of Chile
Blanco Encalada 2120, Santiago

CHILE
jsanchez@dcc.uchile.cl
mlumbrer@dcc.uchile.cl

* Paper to be presented in the XVII International Conference of the Chilean Computer Science Society,
November 13 - 15, 1997, Valparaíso, Chile.
* also LIFIA - Fac. Cs.Exactas - Universidad Nacional de La Plata - Argentina



H
yp

er
st

or
ie

s:
 A

 M
od

el
 t

o 
S

pe
ci

fy
 a

nd
 D

es
ig

n
In

te
ra

ct
iv

e 
E

du
ca

tio
na

l 
S

to
rie

s

Jaime Sánchez, PhD. & Mauricio Lumbreras, MSc.

2

ABSTRACT
 

We introduce a conceptual model for building interactive hypermedia literary stories. Hyperstories
extend and plasticize the idea of «branching games» and the classic «choose your own adventure»
stories. The model combines static and dynamic objects embedded in nested contexts to allow flexible
navigation through virtual worlds. Hyperstories include the concept of object migration between nodes,
underexplored in hypermedia environments. As a result, the model supports objects manipulated by the
learner, autonomous objects, characters representing entities that behave independently from the user,
and a clear separation between content and interface representation. We discuss different aspects
involved in the implementation of hyperstories. Finally, we analyze some further trends and issues in this
growing line of research.
 
1. Introduction
 

Conventional models of educational software engineering are based on the tutorial mode of
instruction by focusing on book-like presentation design guidelines, stemming from a cycle of presentation
of a learning content-questioning-presentation-questioning [1,6]. This model is seen as presentation of
information/knowledge [28]. Even though this model is somehow useful, action, control, rhythm, and
interaction are given by the software demanding a very passive user. Using this type of software has been
described as «clicking arrows back and forth «. As a result, no added value is included in the software
besides presenting information more dynamically and attractively.

A slight variation of this type of software is the model for representing information/knowledge.
The idea here is to mimic the human mind by presenting information/knowledge in a way to match with
a given model of human memory. Some examples of this software are hypermedia educational software
that include concept maps or semantic networks for designing and structuring content, navigating, and
even evaluating user’s performance [27].

A much more flexible and learner-centered model of educational software is the type of software
to construct and reconstruct knowledge. This is mainly recognized by the fact that users have to make
things, construct, reconstruct, resolve, create, correct, build from errors, etc. Educational games, stories,
comics, editors, and some developing systems are illustrations of this type of software. They incorporate
key cognitive strategies motivating and fully involving learners by giving them control over the learning
task, challenging, engaging, interacting, and adapting to the player’s level, ranging from beginning to
advanced ones [1,2,10,11,19,30,31,36]

This study introduces a conceptual model for developing educational software to help learners to
construct and reconstruct knowledge. A model for building interactive hypermedia literary stories. We
name this hyperstories [33,34]. Stories are narratives of true or fiction events that intend to capture and
involve learners actively. Hyperstories extend and plasticize the idea of «branching games» and the
classic «choose your own adventure» stories. The model combines static and dynamic nested contexts
to allow flexible navigation through virtual worlds. Thus supporting of objects manipulated by the learner,
autonomous objects, characters representing entities that perform independently from the user, and a
clear separation between content representation and interface management.

The literature on the design and specification of hypermedia applications focus primarily on
navigational and structure design [38]. It is uncommon that current methodologies put emphasis on
traces of interaction between objects in the application through the time. They often take into account
only media synchronization and similar ideas. On the contrary, in hyperstories it is critical at the semantic
level to capture the trace of events (giving the plot of the hyperstory) and the interaction between objects
(giving the roles). As a consequence, we believe that it is desirable to have a well grounded methodology
to design this type of applications. The scope of this paper is to describe the specification model for
hyperstories and to outline the major steps involved in the design of hyperstories. One of the added value
of the proposed specification is a compiler designed in order to run hyperstories written within the framework
of this model.



H
yp

er
st

or
ie

s:
 A

 M
od

el
 t

o 
S

pe
ci

fy
 a

nd
 D

es
ig

n
In

te
ra

ct
iv

e 
E

du
ca

tio
na

l 
S

to
rie

s

Jaime Sánchez, PhD. & Mauricio Lumbreras, MSc.

3

Finally, the target focus of hyperstories is cognitive development. Hyperstories were built to
enhance the development of cognitive structures that determine tempo-spatial relationships and laterality
in early age children. These intellectual structures include learner consciousness of his own position in
time and space, the position of others, the position of others in relation to them, the position of the things
and objects that surround him, time duration, succession, and the recognition of his and other’s left and
right [34]. Hyperstories are mainly based on spatial navigation and time-events, presenting a strong
metaphor to deliver these ideas.
 

2. What is a Hyperstory?
 

There are several disciplines, computer environments, and applications that come together to
the concept of hyperstory. One type of such environments are MUDs (Multi-User Dungeons) and their
variations (MOOs, etc.). In the original version, these text-based systems allow many users to connect
simultaneously to virtual «worlds» composed by rooms, objects, and people. Depending upon the design
of a particular system, themes vary from fantasy environments with dragons and wizards, to futuristic
exploration with spaceships and aliens.

Our model extends these ideas by including the elements of a story. These elements are: plot,
roles and character. The main idea is to capture these elements in the representation [17]. Plot is a
temporal sequence of actions involving a set of individuals. A plot and its constituent actions may be
quite abstract. i.e.: A meets B, A loves B, A loses B, A wins B. Role is a class of individuals, whose
prototypical behaviors, relationships, and interactions are known by both actors and audience. For example,
the plot outlined above ordinarily is instantiated with alternative roles, for example: the boy in love and the
girl he loves. Character is a personality defined as a coherent configuration of a psychological trait. For
example: any of the characters in the present scenario might be: shy and sensitive, silly and affectionate.

We start the construction of the concept of Hyperstory by first introducing the definition of a
Hypermedia Virtual Environment (HVE) as:
 
HVE : = hypermedia I + dynamic objects II + characters III (eq.1)
 
Where:
 
I. Hypermedia is:
 

• In charge of modeling the virtual world composed by several navigable environments connected
between them by links. This is a special case of hypertext, in which each node basically represents
a container of objects and a potential scenario of the hyperstory. The connection is rendered by
physical gates, portals and doors which are represented as links. Thus hypermedia models the
spatial relationship and connection of environments. The concept of associated hypertext as underlying
model to describe spatial navigable metaphors is discussed in [9]

· A modeling technique to provide basically the branching in the course of the story. But while
this definition might be sufficient, it fails to convey a significant semantic aspect of the
structures embedded in the hyperstories. It is also complex to model interaction patterns
among entities by using just the node-link model.

 
II. Dynamic Objects are:

 
· In charge to represent the objects of the virtual world. They are entities that have behavior in

time and react to the events produced by the user and other entities.

III. Characters are:
 

· The entities that carry on the main course of the events and have a very complex behavior.



H
yp

er
st

or
ie

s:
 A

 M
od

el
 t

o 
S

pe
ci

fy
 a

nd
 D

es
ig

n
In

te
ra

ct
iv

e 
E

du
ca

tio
na

l 
S

to
rie

s

Jaime Sánchez, PhD. & Mauricio Lumbreras, MSc.

4

There is a distinguished character that is called the protagonist, manipulated by the user and
representing the connection of him with the system. If the protagonist is third-person viewed,
an avatar will be in charge of this representation. In addition that characters are special cases
of dynamic objects, they are very important to the story level. Characters represent the main
plot and elicit the content of the story. For example, in a film the most interesting events
happen to the characters and they develop the actions that emotionally impact to the
audience.

 
Up to this point a MUD or an adventure computer game fall in the scope of HVE. We then envision a
Hyperstory (HS) as an extension of this concept. A Hyperstory is composed of:
 

HS = HVE + narrative (eq. 2)
 

Our model extends the idea of HVE by introducing the idea of narrative, including an intentional
sequence of events, based on plot, roles and characters. Other differences between HS and MUDs arise
from the idea of closure or explicit final, described as a good feature in narrative [23]. Thus hyperstories
are intentional in a greater degree rather than a casual scenario. Additionally, the plot in a hyperstory is
not linear, is a hyper-plot. Then action, object activation and dialog can trigger changes in the flow of the
story. To do this, we borrow ideas from hypertext/hypermedia technology, by including narrative in a
hypermedia context [4].
 

2.1 Hyperstories and branching games
 

One form of interactivity that is underlying similar to HS is referred as «branching games», first
popularized in «choose your own adventure» stories. In these games, the player experiences short,
linear story segments. At the end of each segment are a small number of (say, two to four) choices, each
leading to a new linear segment, which leads to further choices, and so on. Sometimes the pathways
converge, other times they diverge to different endings. As Joiner points out [18], the advantage of a
branching game is that allows to write a small (or at least finite) number of alternate story paths. The
disadvantage of this technique, however, is that the full power of interactivity is diminished. The player
can only choose paths that have been anticipated by the designer.

Hyperstories grow from this concept by introducing the idea of opportunity. Real world stories
have an ample variety of opportunities. These chances occur throughout the time. Characters may
decide whether or not to take an opportunity. This concept was previously explored in [35] by presenting
the powerful idea of temporal link, available only in some time window. We move forward by including in
the behavior of entities some rules that can be triggered for a given period of time without being aware of
the beginning of the time window. For example, a treasure map flying freely in several environments can
be found only if it is perceived by the character. If the character refuses to explore the map, the opportunity
could be lost forever. As a result, even though the flight of the map was predefined in the authoring stage
the encounter map-character is a non-deterministic scenario. This gives an unpredictable performance of
the story by presenting a powerful extension of the concept of opportunity or a kind of floating link such
as in a custom version of the Storyspace authoring environment [21]. We call this feature blur link.

In addition, hyperstories have improved conventional literary stories by allowing a «dynamic
binding» between characters, the world where they move and the objects they act on [34]. This binding
is performed by the learner, thus allowing a greater flexibility in the learning process. In other words, a
hyperstory is a combination of a virtual world where the learner can navigate, a set of objects operated by
the learner, and the pattern of interaction between entities [33].

A particular feature of a hyperstory is that two different learners may experience different views of
the same virtual world. Slight changes introduced by the learner to the object’s behavior can produce
different hyperstories in the same world. Learners when manipulating a character, can also interact with
other characters to solve a given problem. Familiar environments such as schools, neighborhoods, squares,
parks, and supermarkets, can be interesting metaphors for building virtual worlds.



H
yp

er
st

or
ie

s:
 A

 M
od

el
 t

o 
S

pe
ci

fy
 a

nd
 D

es
ig

n
In

te
ra

ct
iv

e 
E

du
ca

tio
na

l 
S

to
rie

s

Jaime Sánchez, PhD. & Mauricio Lumbreras, MSc.

5

It is interesting to notice that conventional hypermedia authoring tools do not provide an adequate
set of facilities for building hyperstories as we have conceptualized them. The static environments involved
in a hyperstory -virtual world- can be simulated easily, but several aspects such as the behavior of
dynamic objects and complex interactions between the protagonist and characters exceed the conventional
«nodes and links» model, as seen in [12,14,24].
 

3. The model
 

Our model is Object Oriented, providing a framework in order to model diverse building blocks of
a hyperstory. The model supplies a framework made up of three foundational classes as described in
OOD techniques [32]. It is important to realize that each one of these classes has customized syntax
and associated semantic. The classes are: context, link and entity. In addition to classes, there is an
associated constructor called channel. Contexts model the static world and links model the connection
between contexts. Entity is the abstract class that captures any object or character definition and
channels work as a broadcast media of events in a fan-in or fan-out fashion to the subscribed entities.

Each base class has a predefined behavior and a set of attributes that differentiate from each
other (e.g. a link knows about the movement of entities between contexts). Another example of specialized
behavior arises from contexts: if an entity sends an event to a context, it sends the event to all contained
objects. Thus a context works as a diffuser of events. All these base classes have certain behavior,
based on a modal programming. Objectcharts is the formalism to specify it. To give rigorousness to our
model, we adapt a semantic borrowed from the StateMate specification [16].
 

3.1 The state-based behavior specification paradigm
 

A hyperstory is based on the idea of a mixture of reactive objects and an intentional plot mapped
to predefined behaviors, extending the concepts of [37]. But reactive systems owe much of their complexity
to the intricate nature of the reactions. From these systems arise the notion of reactive behavior, whereby
the system is not adequately described by specifying the output that results from a set of inputs. Rather,
it requires to specify the relationship of inputs and outputs throughout the time [15]. Typically, such
descriptions involve complex sequences of events, actions, conditions and information flow. They have
often explicit timing constrains that combine to form the system’s overall behavior. To deal with this
problem we found that the standard structured analysis and structured design methods do not adequately
deal with the dynamics of a HS, since they were proposed to deal primarily with nonreactive, data-driven
applications. Moreover -and at a higher level of design- standard design methodologies for hypermedia
applications such as OOHDM [38], do not convey dynamic behavior of objects that navigate in a hypermedia
environment.

On the contrary, functional approaches fail to model HS, because they do not specify dynamics:
it is not clear when and why the activities are activated, whether or not they terminate on their own, and
whether they can be carried out in parallel. In short, a functional view says virtually nothing about how the
activities are done during the HS flow. For this reason, we start to model the behavior of hyperstories’
entities based on some reactive specification language because the nature of a HS is basically animated
by events and states. There are several languages to deal with this feature like Esterel [5] and others, but
they do not include explicit foundational concepts associated with hyperstories such as navigation.

4. Main conceptual design building blocks
 

A hyperstory specification can be splitted in two interrelated conceptual parts by using the
following classes:
 

• static scenarios (contexts and links),
• objects (entities) and the explicit routing mechanism (channel).



H
yp

er
st

or
ie

s:
 A

 M
od

el
 t

o 
S

pe
ci

fy
 a

nd
 D

es
ig

n
In

te
ra

ct
iv

e 
E

du
ca

tio
na

l 
S

to
rie

s

Jaime Sánchez, PhD. & Mauricio Lumbreras, MSc.

6

4.1 The static world
 

When a hyperstory involves several scenarios, they are organized according to their physical
connection (linking). For this purpose, we can describe the virtual world as a kind of nested context
model. A virtual world is defined as a set of contexts that represent different environments. Each context
contains an internal state, a set of contained contexts, a set of objects, links to other contexts, and a
specific behavior. Different relationships may be held between two different contexts, such as:
 

• neighborhood (there is a link from one context to the other),
• inclusion (one context is included in the other),
• none (contexts are «disjoints»).
 

The idea of a context is the same as in standard hypertext technology: a node or container. Different
«real world» metaphors can be implemented easily with this simple model, such as a town, a house and
a room (or houses within a town and rooms in a house). All these metaphors are designed in such a way
that can be freely navigated. The main difference between our model and traditional hypermedia models
is that nodes (contexts) may be nested, in some way like [7]. Another important concept about context
is perception: a context is a spatial container that can be perceived as a whole rendered as a unity at the
interface level. In this stage of modeling, context and link are used to build new navigational elements
through the use of the inheritance mechanism. At this point of the designing, we are dealing with the first
term of the eq. 1.
 

4.2 Populating the world
 

In order to bring life to the hyperstory, we populate the environment with objects, some active,
some passive, orthogonally composed of a navigational dimension. To avoid misunderstandings we briefly
define some terms related to objects in this context.
 

• Passive : the object answers only a simple events like «Who am I?»
• Active : the object has a noticeable behavior while the time progress -continuous or discrete- or
they respond to events with some algorithm that reflects some behavior.
• Static : the object always belongs to the same context.
• Dynamic : the object can be carried to contexts by some entity or may travel autonomously.

 
Any object or character (even the protagonist) can be a subclass of an entity. Therefore we need to
extend the basic attributes and behavior of an entity. Basically an entity can be viewed as an object that
has a set of attributes that define an internal state and a behavior. The object behavior is specified by
using a special made state-based script. In each state, there are a set of rules containing a triggering
event, a pre-condition, and a list of actions that must be performed when the event arrives and the pre-
condition holds.
 

 

 
Table 1. Characterization of some common objects in hyperstories according to
navigational and behavioral characteristics



H
yp

er
st

or
ie

s:
 A

 M
od

el
 t

o 
S

pe
ci

fy
 a

nd
 D

es
ig

n
In

te
ra

ct
iv

e 
E

du
ca

tio
na

l 
S

to
rie

s

Jaime Sánchez, PhD. & Mauricio Lumbreras, MSc.

7

Each rule plays the role of a method in OOD jargon. But if we try to capture the nature of the
narrative and the diverse branches of a hyperstory, the model must consider this. Certain entities in a
story can respond to the same event (message in OOD jargon) in a different way according to the story
stage. For example, according to the stages of the hyperstory a person can respond: «fine» or «tired»
related to the question «How are you?». In short, an object can behave differently to the same message
received in its life stage. This concept is called programming with modes [39] or state-based programming.
To capture this feature the rules are not specified in a flat way, they are blocked and grouped according
to the entity life stage. We use state-based scripts in order to deal with this feature. Therefore, for the
same event there are different rules according to the state of the hyperstory. The post-condition embedded
in each rule activates or de-activates these blocks of rules, managing the stages of the HS. At this stage,
the behavior specification enables us to describe the nature of characters and objects. We map narrative
in the behavior by means of dialog, dynamic behavior, blur links, etc. As a result of this, we satisfy the eq.
2 .

We thought that the reuse of entities from previous HS by using inheritance would be an interesting
feature to avoid repetitive work. But the more complex objects -characters- are very difficult to reuse due
to their custom nature, very related to the original HS. Thus this feature only applies to simpler objects.
 

4.3 How to specify the behavior
 

Objectcharts is a visual formalism for describing the behavior of an object class as a state
machine. They extend the idea of Statecharts [15], which are an improvement of the standard finite state
machines. The Objectcharts incorporate the notion of hierarchy, orthogonality (concurrence), composition,
a broadcast mechanism for communication between concurrent components, composition, aggregation
and refinement of states. The Objectcharts provide an effective and concise notation for the specification
and design of complex reactive systems [8].

The object behavior performs the hyperstory content and is critical to capture the narrative into
objects. Because narrative is guided by behavior and changes in a reactive manner, we based the
specification on the Objectcharts formalism. It fits well at the behavior level of the hyperstories’ entity.
Previously, Statecharts have been used to model hypermedia applications [40,41].
 

5. Writing and modeling a hyperstory
 

When we write a hyperstory, the first idea is to write a flowchart or state diagram [20] describing
different paths and the main events that may modify the story. This is a naive method that can easily
produce a monolithic piece of code, but is unable to specify temporal opportunities. It is also complex to
maintain and debug. A more natural way is to think about the behavior of each object or character and to
map the main events that can change the story to rules, such as writing a script for each drama actor.
These rules describe the object’s behavior. As a result, we have fragmented the whole story into each
object. Therefore maintenance and debugging is easier, because the cause-effect rule is contained in the
object´s behavior.
 

5.1 The specification language
 
The hyperstory specification language satisfy the followings requirements:
• A way to represent scenarios, connection among them, routing events and a way to specify
changing behaviors according to different stages of the hyperstory.
• Isolation of the interface from the content of the story in such a way that at the moment of story
specification we can avoid representation problems and deal exclusively with the content of the hyperstory.
• Independence between the specification and the implementation language.
• Ability to embed objects with dynamic and some kind of autonomous behavior. This characteristic
enables us to create «virtual creatures» or robots that perform activities by themselves



H
yp

er
st

or
ie

s:
 A

 M
od

el
 t

o 
S

pe
ci

fy
 a

nd
 D

es
ig

n
In

te
ra

ct
iv

e 
E

du
ca

tio
na

l 
S

to
rie

s

Jaime Sánchez, PhD. & Mauricio Lumbreras, MSc.

8

• Synchronous and asynchronous communication among entities in order to simulate concurrence
 
This language tries to be clear and intuitive, and thus amenable to be generated, inspected and modified
by humans, as well as precise, and capable of validation and execution. Moreover, our language is an
executable specification.

As a consequence, this model allows the use of the same virtual world for different learning
purposes. (e.g.: modifying the interface -not the content-, you can build a hyperstory presenting all the
information represented by sound to build a hyperstory for a blind child [26]).
 
 
5.2 Modeling stages
 

At the beginning of our work we thought that describing isolated behavior of objects could directly
generate a hyperstory. But when we tested some prototypes with object interactions without an embedded
narrative, the hyperstory appeared somehow misleading because objects alone only generate useless
interactions without generating story.
  

 
Table. 2. Issues identified in the writing of the content for a hyperstory .



H
yp

er
st

or
ie

s:
 A

 M
od

el
 t

o 
S

pe
ci

fy
 a

nd
 D

es
ig

n
In

te
ra

ct
iv

e 
E

du
ca

tio
na

l 
S

to
rie

s

Jaime Sánchez, PhD. & Mauricio Lumbreras, MSc.

9

6. Implementing Hyperstories
 
The specification model captures the hyperstory independently from the machine leaving a mechanism
precisely defined to map this specification to the target executing machine. A small excerpt of a hyperstory
displayed below intends to show the main features of the specification language. This example does not
try to show how dialog and higher level narrative are mapped. It only illustrates the underlying computational
elements of a given hyperstory.
 

6.1. Illustration of the Model
 
Imagine a killer robot originally placed on context A traveling each n units of time to the neighbor context
in clockwise direction as seen in figure 2. When the robot finds the character tries to shot the character.
The character -originally placed on context B- can protect himself by taking the shield located in context
C. Thus the shots of the robot do not make any effect on the character.

 
Below, the related code shows how the specification is directly executable by using our compiler. The
example does not show formally most of the main characteristics of the language, but it intends to be an
intuitive example. Each rule is defined as: event; pre-condition; list of actions; post-condition. The post-
condition is in charge of activate and de-activate states. Synchronous events are noted as receiver<—
event and can return a value. Comments are between braces.
CLASS directedLink IS A LINK
.... definition of a directed link, is a link that enables to be crossed only in one direction
CLASS Robot IS AN ENTITY
ATTRIBUTES
... some attributes of the robot
BEHAVIOR
STATE global
 
PAR {allows parallel analysis in two contained              substates: main and navigation }
STATE main

(sys_init; true; TIMER<—setEvent(‘navigate’,100,true);      NULL)
{ sys_init is an initialization event. Here we set the timer to        generate a cyclical ‘navigate’

event every 100 ticks }
(entityin; sender<—are_you_a _person?; sender<—kill ;      NULL)
 { if a person enter to my context, I try to kill the         character}
(crossed; myContext<—is_there_a_person?;

  LOCAL aperson:hobject; aperson:=mycontext<—       getAPerson; aperson<—kill;null).
{ when crossing a link, I receive a ‘crossed’ event from the       link. Then I ask to my new

context if there is a person, if       it is true, I try to kill the character }
END { main}
 
STATE navigation
STATE A
(navigate; true; linkAtoB<—crossby(self);B)

{ Hardwired coding of the navigation between            contexts.. Each time I receive an event
‘navigate’ I            change my state and navigate to the neighbor context }

 {To navigate, I tell the adequate link I want to           cross the next context. The last
parameter in the rule           indicates the change of state}
END {A}
STATE B



H
yp

er
st

or
ie

s:
 A

 M
od

el
 t

o 
S

pe
ci

fy
 a

nd
 D

es
ig

n
In

te
ra

ct
iv

e 
E

du
ca

tio
na

l 
S

to
rie

s

Jaime Sánchez, PhD. & Mauricio Lumbreras, MSc.

10

(navigate; true; linkBtoC<—crossby(self);C)
END { B }
STATE C
(navigate; true; linkCtoA<—crossby(self);A)
END { C }
END { navigation}
 END { PAR }
END { global }
 
CLASS human IS an ENTITY
STATE main
(objTaked(obj);obj<—getname=‘shield’;; IMMORTAL)

{ if at the interface level I take the shield, then I will get        immortal }
STATE living
(kill; true; self<—die;DEAD)

{ due to the nesting structure, this state is automatically activated with the previous one }
{ somewhere I need to model the state DEAD }
END { living }
STATE immortal
(kill; false; ;NULL)

{ redefinition of the behavior to attend the «kill» event.      Thus I never die}
END { inmortal }
END { main}
 
CLASS world is a CONTEXT
{ define my virtual world }
ATTRIBUTES
  aRobot :Robot 
  theUser :Human
CONTEXTS
{ these are the containers of the objects }
   A,B,C ARE CONTEXTS.
LINKS
 { my virtual world has this type of links}
 AtoB,AtoC ARE directedLink
 AtoC IS A link
INITIALIZATION
 { linking the contexts between them }
  A LINKED TO B BY AtoB
  B LINKED TO C BY BtoC 
  A LINKED TO C BY AtoC
 { loading the virtual world with entities}
 A INCLUDES aRobot
 B INCLUDES theUser
END { of the world definition }
 
We notice that there are two hyperspaces running simultaneously:

•• The static environment that supports the
navigation, and
•• The story space.
 
In the story space there are links and nodes, but in the standard way, because one node can be
conceptualized as a determined state of the instance variables, behavior of objects, and characters. The
instance variables and behavior can change due to certain events generated by the user or some objects.
A subset of these events can change the course of the story. In this case, a story-link has been activated.



H
yp

er
st

or
ie

s:
 A

 M
od

el
 t

o 
S

pe
ci

fy
 a

nd
 D

es
ig

n
In

te
ra

ct
iv

e 
E

du
ca

tio
na

l 
S

to
rie

s

Jaime Sánchez, PhD. & Mauricio Lumbreras, MSc.

11

 

6.2 System Architecture
 

Basically the system is composed of some way like [3,25] by:
 

•• The kernel
•• The interface manager

 
The kernel maps every interface object -such as characters, contexts, etc.- to an internal object The
kernel’s object can send messages to the equivalent interface object in the interface. The communication
between internal and interface objects is made through a special protocol. The interface has the capability
to receive and show the incoming messages sent by the kernel. Furthermore, the interface manager
captures the user activity and dispatches it to the kernel.

As stated previously, conventional hypermedia authoring tools reflect a lack of facilities to
implement the requirements of hyperstories. Our architecture solves this drawback because timing and
complex object behaviors (managed by the kernel) are implemented by using an adequate language that
manages this constraint. In addition, there are several tools that provide an easy user interface
management. Therefore we made the system to profit from the best tools available. Different interfaces
and networked hyperstories can be easily implemented with this global design.

A hyperstory is finally made as follows: a cross-compiler generate Pascal code from the hyperstory
code defined as showed in section 6. The Pascal code is again compiled and linked to build the executable
kernel to be run under MS Windows 3.X. By using some multimedia authoring environments -such as
Asymetrix Toolbook and Borland Delphi- or a plain textual interface, we can run the system obtaining the
final performance of the Hyperstory. The interface and the kernel link the internal and interface objects
through a configuration file generated at the compilation time.
 

7. Final Discussion
 

We have introduced Hyperstories as a new concept for producing interactive software. Our idea
is supported by a model for building highly interactive stories and a language to satisfy complex
requirements of Hyperstories. As a result, a new way for producing interactive educational software is
delineated. Actually, we believe that our proposal is an alternative metaphor to produce software that
involves the learner more deeply, thus giving control, adaptability, constructability, and plasticity, therefore,
a truly rich interaction. Furthermore, we have extended key attributes of branching games and MUDs
with an intentional non-linear narrative embedded in a hypermedia virtual environment.

Our model covers most requirements to engineer quality OOD software for learning purposes.
We believe that in the way presented here our concept can be standardized to enrich the area of educational
software engineering.

Hyperstories give learners control over stories, access to diverse tools, and materials to construct
with. These features may help to develop strategies and abilities to test hypothesis with the implicit idea
of fostering the development and use of tempo- spatial relationships and laterality. As as consequence,
our model for building Hyperstories supports complex user requirements in order to assist constructivist
learning.

Diverse efforts have to be made to improve our concept. We are now working on several directions
to enrich our model. First, we are testing Hyperstory prototypes supporting most of the features at the
kernel level and a sub-set at the interface level. We intend to define different user-centered interface
styles in order to adapt Hyperstories to learners with different communication access requirements. In
addition, our research group is studying the modeling and implementation of collaborative hyperstories,
ludic hyperstories, web-based hyperstories, and hyperstories for blind children.



H
yp

er
st

or
ie

s:
 A

 M
od

el
 t

o 
S

pe
ci

fy
 a

nd
 D

es
ig

n
In

te
ra

ct
iv

e 
E

du
ca

tio
na

l 
S

to
rie

s

Jaime Sánchez, PhD. & Mauricio Lumbreras, MSc.

12

Finally, the main belief behind the concept of Hyperstories is that they can contribute to make
the interaction with computers much more enjoyable and learnable to learners. Children like stories and
get involved in them easily. If we add non linearity, navigability, interactivity, flexibility and plasticity, we
end up with an interesting software to learn and to construct with.
 

8. Acknowledgment
 
This work was partially supported by the Chilean Science and Technology Fund (FONDECYT) grant No.
1950584 and CYTED Project VII-8. We would like to thank to Guillermo Capelli for his work with the
programming.
 

References
 
[1] S. Allesi , S. Trollip. Computer-based instruction: Methods and development. New Jersey:

Prentice Hall Inc., 1991

[2] S. Alessi. The design of educational software: state of the art. Proceeding of the Educational
Software Workshop, Valdivia, Chile, pp.1-18, 1996..

[3] P. Appino, J. Lewis, L. Koved et al. An Architecture for Virtual Worlds. Presence, Volume 1,
Number 1, Winter 1992, MIT Journals, 1992.

[4] M. Bernstein. Conversation with friends: hypertext with characters. Lectures on Computing,
Springer Verlag, forthcoming.

[5] G. Berry, G. Gonthier. The Esterel Synchronous Programming Language:Design, Semantics,
Implementation. Science of Computer Programming, Vol 19 #2: 87-152, 1992.

[6] A. Bork .Personal computer for education. New York: Harper & Row Publisher, 1985.

[7] M. Casanova, L. Tucherman, J.L. Neto,
N. Rodriguez, L. Soares. The nested context model for hyperdocuments, Proceedings of Hypertext
‘91, 1991.

[8] D. Coleman, F. Hayes, S. Bear. Introducing object charts or how to use state charts in object-
oriented design. IEEE Transactions on Software Engineering, Vol.18, No.1: 9-18, 1992.

[9] A. Dieberger. Browsing the WWW by interacting with a textual virtual environment - A
framework for experimenting with navigational metaphors. Proceedings of Hypertext ’96, pp.170-179,
1996.

[10] A. Druin. A place called school. Interactions, January 1996, pp.17-22, 1996.

[11] A. Druin, C. Solomon. Designing multimedia environment for children: computers, creativity and
kids. New York: John Wiley and Sons,1997.

[12] R. Furuta, D. Stotts. The Trellis Hypertext Reference Model. Proceedings of the Hypertext
Standarization Workshop, National Institute of Standards and Technology, pp. 83-93, 1990.

[13] F. Garzotto, P. Paolini, D. Schwabe. HDM: A Model for the design of Hypertext applications.
Proceedings of Hypertext ‘91, 1991.



H
yp

er
st

or
ie

s:
 A

 M
od

el
 t

o 
S

pe
ci

fy
 a

nd
 D

es
ig

n
In

te
ra

ct
iv

e 
E

du
ca

tio
na

l 
S

to
rie

s

Jaime Sánchez, PhD. & Mauricio Lumbreras, MSc.

13

[14]. F. Halasz, M. Schwartz. The Dexter Hypertext Reference Model. Proceedings of the Hypertext
Standarization Workshop, National Institute of Standards and Technology, pp. 95-133, 1990.

[15] D. Harel. Statecharts: a visual formalism for complex systems. Science of Computer
Programming, Vol 8: 231-274, 1987

[16] D. Harel, A. Naamad. The STATEMATE Semantics of Statecharts. Technical report CS95-
31.The Weizmann Institute of Science. Available at http://www.wisdom.weizmann.ac.il/Papers/trs/
CS95-31/abstract.html, 1995.

[17] B. Hayes-Roth, R. v. Gent, D. Huber. Acting in character. Technical Report KSL-96-13,
Knowledge Systems Laboratory, March 1996.

[18] D. Joiner. Real Interactivity in Interactive Entertainment. Computer Graphics, Vol 28, number 2:
97-99, 1994.

[19] Y. Kafai, E. Solloway. Computational gifts for the barney generation. Communications of the
ACM, 37(9): 19-22., 1994.

[20] M. Kelso, P. Weyhrauch, J. Bates. Dramatic Presence, Presence, Volume 2, Number 1, MIT
journals, Winter 1993.

[21] R. Kendall. Hypertextual Dynamics in A Life Set for Two. Proceedings of ACM Conference on
Hypertext ́ 96, pp. 74-83, 1996.

[22] H. Kenneth, M. Guzdial, S. Jackson, R. Boyle, E. Soloway. Students as multimedia
composers. Computers Education, vol 23, 4: 301-317, 1994.

[23] G. Landow. Hypertext: the convergence of contemporary critical theory and technology.
Baltimore: The John Hopkins University Press, 1992.

[24] D. Lange . A Formal Model of Hypertext. Proceedings of the Hypertext Standarization
Workshop, National Institute of Standards and Technology, pp. 145-166, January 1990.

[25] J. Lewis, L. Koved, D. Ling. Dialogue structures for virtual worlds. CHI’91 Conference
Proceedings. New Orleans, USA. pp. 131-136, 1991.

[26] M. Lumbreras, J. Sánchez, M. Barcia. A 3D sound hypermedial system for the blind.
Proceedings of the First European Conference on Disability, Virtual Reality and Associated
Technologies, pp. 187-191, Maidenhead, UK, 1996.

[27] J. McKendree, W. Reader, N. Hammon. The «homeopathic fallacy» in learning from hypertext,
Interactions, pp.74-82, july1995.

[28] W. Nelson. Efforts to improve computer-based instruction: the role of knowledge representation
and knowledge construction in hypermedia systems. Computers in the schools, 10(1-4) ,1994.

[29] M. Reed, S. Giessler. Prior computer-related experiences and hypermedia metacognition. Ed-
Media 94. Unpublished paper, 1994.

[30] M. Resnick. Behavior construction kits. Communications of the ACM, July 1993, Vol. 36,
7:†66-71, 1993.

[31] M. Resnick, F. Martin, A. Bruckman. Computational construction kits. Interactions (3), 5:.40-
50, 1996.



H
yp

er
st

or
ie

s:
 A

 M
od

el
 t

o 
S

pe
ci

fy
 a

nd
 D

es
ig

n
In

te
ra

ct
iv

e 
E

du
ca

tio
na

l 
S

to
rie

s

Jaime Sánchez, PhD. & Mauricio Lumbreras, MSc.

14

[32] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy , W. Lorensen. Object-Oriented Modeling and
Design. Englewood Cliffs, NJ:Prentice Hall, 1991.

[33] J. Sánchez , A. Mallegas, L. Cernuzzi, G. Rossi, M. Lumbreras, A. Díaz, A conceptual
framework for building hyperstories. Ed-Media ’94 Conference Proceedings, p.761, 1994.

[34]. J. Sánchez, M. Lumbreras. Interfaces for learning. In Anzai, Y., Ogawa, K. And Mori,
H(Editors). Advances in Human/Factors: Human-Computer Interaction., Symbiosis of Human and
Artifact : Future Computing and Design for Human-Computer Interaction, 20A, pp. 865-870. New
York : Elsevier Publishers, 1995..

[35] N. Sawhney, D. Balcom, I. Smith. HyperCafe: narrative and aesthetic properties of Hypervideo.
Proceedings of ACM Conference on Hypertext ‘96 pp. 1-10, 1996.

[36] R. Schank. Learning via multimedia computers. Communications of the ACM, May, 36(5): 54-
56, 1993

[37] R. Schank, R. Abelson. Scripts, Plans, Goals and Understanding, Chapters 1-3:1-68, Hillsdale,
NJ: Erlbaum, 1977.

[38] D. Schwabe, G. Rossi, S. Barbosa. Systematic Hypermedia Application Design with OOHDM.
Proceedings of Hypertext ́ 96 , Washington DC, pp. 116-128, 1996.

[39] A. Taivalsaari. Object-Oriented programming with modes. Journal of Object Oriented
Programming, Vol. 6, No. 3: 25-32, June 1993.

[40] M. Turine , M. Ferreira de Oliveira, P. Masiero. A Naviga tion-Oriented Hypertext Model Based
on Statecharts. Proceedings of Hypertext ‘97, pp. 102-111, 1997.

[41] Y. Zheng, M. Pong. Using Statecharts to Model Hypertext. Proceedings of ACM Conference on
Hypertext Technology, Milan, pp.242-250, 1992.


